CHALMERS |) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Battery Dimensioning for Hybrid
Vehicles in a Routing Application

Generalised Duality and Logic-Based
Benders Decomposition

Master's thesis in Engineering Mathematics and Computational Science

JONAS KINDSTRAND & LINUS NORDGREN

Department of Mathematical Sciences
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2018

Master’s Thesis 2018

Battery Dimensioning for Hybrid Vehicles in
a Routing Application

Generalised Duality and Logic-Based Benders Decomposition

Authors: Supervisor:
Jonas Kindstrand Ann-Brith Stromberg

Linus Nordgren

UNIVERSITY OF
GOTHENBURG

CHALMERS

UNIVERSITY OF TECHNOLOGY

Department of Mathematical Sciences
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2018

Battery Dimensioning for Hybrid Vehicles in a Routing Application
An Application of Logic-Based Benders Decomposition
JoNAs KINDSTRAND & LINUS NORDGREN

© 2018 JoNAS KINDSTRAND & LINUS NORDGREN

Supervisor & examiner: Ann-Brith Stromberg

Master’s thesis 2018

Department of Mathematical Sciences
Chalmers University of Technology and
University of Gothenburg

SE-412 96 Gothenburg

Sweden

Telephone +46 (0)31-772 1000

Cover: An illustration of a solution to a hybrid vehicle routing problem with two vehicles. The
depot node is orange and the dashed arrow indicates the freedom to not take the detour through
the blue recharge station node.

Typeset in IWTEX
Gothenburg, Sweden 2018

ii

Battery Dimensioning for Hybrid Vehicles in a Routing Application
An Application of Logic-Based Benders Decomposition
JONAS KINDSTRAND & LINUS NORDGREN

Department of Mathematical Sciences
Chalmers University of Technology and University of Gothenburg

Abstract

The Vehicle Routing Problem (VRP), which is defined as to find optimal
routes for a fleet of delivery vehicles to various customers, constitute an
important class of combinatorial optimisation problems of both practical
and theoretical interest. Among the various flavours of VRP, this report
specifically focuses on a case with hybrid vehicles with two fuel types,
with the goal of finding the optimal battery sizes which minimises the
total cost.

We present an exact solution method using a generalised Benders
decomposition method, known as logic-based Benders decomposition. In
this method, the subproblems are generalised to mixed integer linear
optimisation problems. The master problem is a simple routing problem,
while the subproblems concern resource constraints and battery types.

The mixed integer master problem is solved by branch-and-bound, and
lower bounds are generated from the solution tree. Only small instances
of up to 14 customers are solved to optimality, and the performance of
our algorithm is compared with more direct solution methods. As it is,
the method is slower than solving the full problem directly, and further
work is needed to make it competitive.

Keywords: Vehicle routing problem (VRP), hybrid vehicles, battery
capacity, logic-based Benders decomposition (LBBD), branch-and-bound

iii

Contents

Abstract

Contents

1 Introduction
1.1 Problem Formulation & Project Alm oo
1.2 Limitations 0 0 e e e e e e
1.3 Outline of Thesis e

Literature study

2.1 Overview of Vehicle Routing Problems
2.2 Benders Decomposition and Applicationsto VRP
Theory
3.1 Linear and Integer Linear Programming Preliminaries
3.1.1 Linear Programming, Duality and Sensitivity Analysis
3.1.2 Mixed Integer Linear Programming and Branch-and-Bound
3.1.3 A Branch-and-Bound Example
3.1.4 The Benders Decomposition Algorithm
3.2 Inference Duality
3.2.1 The Inference Dual of a Linear Program
3.3 The Logic-Based Benders Decomposition Algorithm 0 0 00 0000 L.
3.4 Logical Clauses and Resolution
3.4.1 Resolution Example
3.5 An LBBD Method for Mixed binary Linear Programming

3.5.1 Surrogate Incqualitieso oL o
3.5.2 Sensitivity Analysis Lo

Mathematical Formulation of the Problem

4.1 A Mixed Binary Lincar Optimisation Model
4.2 A Reformulation of the Mixed Binary Linear Model
Method
5.1 Lincar Programming Subproblems 00000
5.1.1 The Time Window Subproblem
5.1.2 The Cargo Subproblem
5.2 The Battery Charge Distribution Subproblem
5.3 Default Lower Bounds
54 The Master Problemn

iii

W W N =

S ot G

© ©

10
11
14
16
17
18
19
20
21
23
25

29
30
31

CONTENTS

5.5 Algorithm L

6 Numerical Tests and Results

6.1 Implementation Details
6.2 Test Data e e e
6.3 Test Sctup L
6.4 Test Results and Algorithm Performance

6.4.1 On the Strength of the Logic-Based Benders Cuts

7 Discussion

7.1 Summary of Results
7.2 Further Research o
7.2.1 Minor Improvements
7.2.2 Structural Improvements to the Benders Algorithm
7.3 Conclusion
Bibliography

A Problem Data for Test Instance P6
B Computation Times

C Alternative Proof of Lemma 3.5.2

vi

43
43
43
44
44
47

51
51
52
52
53
54

55

59

61

65

Introduction

Vehicle Routing Problems, abbreviated throughout this text as VRPs, constitute a well-studied
class of problems in combinatorial optimisation and operational research. Generally, the problem
consists of a road network, a set of customers with demands interspersed in the road network,
and a vehicle fleet to service those demands. The goal is typically to minimise the total distance
that the vehicles travel. Multiple variations of this problem have been investigated; usually
some additional constraints are added to the problem to more accurately model real-life routing
applications. Some well-studied variations add limited load capacities to vehicles [32], time
windows for deliveries [46], synchronisation constraints [23], or the need to visit some customers
in a particular order [6].

Mathematically, a VRP is represented as a weighted graph; customers, the depot, and charging
stations are represented as nodes, and roads are represented as arcs. A route in the road network
corresponds to a path in the graph, and road lengths are represented by the arc weights. The
problem is then to find routes emerging from the depot node such that all customer nodes are
included in at least one route, and to minimise the total length of the combined routes while
doing so. As alluded to earlier, additional constraints may be put on this minimisation problem to
represent the amount of goods to be picked up at each customer along with vehicle load capacities,
time constrained nodes that must be visited during certain time windows, and so on.

From an environmental point of view, minimising the total fuel use of the fleet is of great
interest. Normally this is not meaningfully different mathematically from minimising total
distance travelled, since each arc is assigned a constant cost in both cases. But if instead the
problem contains two different fuel types and the total combined fuel cost is minimised, this is
qualitatively a different problem compared to the single fuel case. For example, this is the case
with hybrid vehicles which can use both conventional fuel and electricity. Hybrid vehicles are
unable to drive long distances on electricity before recharging. Any VRP model containing hybrid
vehicles needs to consider how this changes the problem. Normally fuel stations can be left out
of the model since the time to refuel is negligible, but this is not the case for electric vehicles.
Driving on electricity is typically cheaper, which means that it might be beneficial for a vehicle
to take a longer route if this allows a stop at a charging station and less use of conventional fuel.
All of these complications must be reflected in a solution method.

Solution methods are an important aspect of VRP type problems, since the problems are often
computationally heavy due to the large number of constraints and variables needed to model
them. In practice, both exact and heuristic methods are used. Branch-and-bound and variants
thereof are some of the most common exact solution methods. A search of literature revealed few
studies which solve VRPs with hybrid vehicles, and especially few which employed exact methods.

For more complex VRP models, branch-and-bound might not be enough, due to the fact
that the problems become too large. Column generation (originally introduced in [28]) is a
type of decomposition method which has been found the be effective at solving these types of
problems. Another one is Benders decomposition which was first proposed by Benders [5] in

CHAPTER 1. INTRODUCTION

1962. It is a method for decomposing certain kinds of complicated optimisation problems. Since
the original suggestion of the method by Benders, it has been generalised to work for a larger
class of problems. One such generalisation is the logic-based Benders decomposition algorithm,
abbreviated as LBBD, presented by Hooker and Dawande [22] which is based on ideas from
computational logic. One advantage of these kinds of decomposition methods is that by splitting
the problem into several parts, solution methods can be tailored to each part of the problem.

1.1 Problem Formulation & Project Aim

The problem studied in this project is a modification of the VRP with load capacity and time
window constraints for hybrid vehicles. Multiples vehicles have to be routed out of one depot
in such a way that all customers are visited by exactly one vehicle. Each customer has a time
window in which they can be serviced, and requires a certain amount of cargo. All pairs of
customers are connected to each other and to the depot by road links. For simplicity, the vehicles
are modelled to have the same maximum cargo capacity.

The vehicles use two different fuel types: Conventional fuel and electricity. It is assumed that
the conventional fuel capacities are unlimited, since either refuelling takes a negligible amount
of time or the distances are sufficiently small such that refuelling is not needed. Recharging
batteries, however, takes a significant amount of time. Therefore maximum battery capacities
are included in the model together with the location of recharge stations and recharge times.
Moreover, it is assumed that the cost for each unit of distance is significantly higher when using
conventional fuel than when using electricity, and that recharge stations are connected to every
customer and to the depot. In addition, it is assumed that the vehicles always wait for a full
recharge before leaving the recharge stations.

Customers, the depot, and the recharge stations are modelled as nodes in a graph, with arcs
representing routes between nodes. Combined with the constraints mentioned above, the problem
can then be written as a minimisation problem. A so called three-index vehicle flow formulation
[18] is used as the model, and the different resource constraints are easily added to this model.
The full mathematical model with all constraints is presented in Chapter 4.

This model is solved using a Benders decomposition algorithm, which splits the problem into
two layers. These are referred to as the master problem and the subproblem. The master problem
is a simplified routing problem without many of the constraints from the full formulation. Cargo
capacity, time windows, and battery constraints are included only in the subproblem, which turns
out be decomposable into three corresponding parts. A consequence of this particular split is
that the subproblem is not of the kind typically considered in the classical Benders decomposition
algorithm, since it includes binary variables. This necessitates a different approach, and a so
called logic-based Benders decomposition algorithm will be used instead, which has the following
requirements:

i. A proof scheme has to be devised for the solution to the subproblem.

ii. A method for generating sensitivity information from the solution to the subproblem has to
be established.

The aim of this project is to formulate and implement a logic-based Benders decomposition
algorithm, and in particular the two requirements above, for the problem outlined in this section.
Limitations to this problem are discussed in the following section.

CHAPTER 1. INTRODUCTION

1.2 Limitations

To simplify the model, it is assumed that vehicles are instantaneously recharged at recharge
stations. The technical reason for this is so that the variables that model time and charge should
not be directly dependent on each other. Further, it is possible to consider a problem with several
depot nodes, but only one depot will be used in the model.

The master problem from the logic-based Benders decomposition algorithm is computationally
quite difficult to solve, but this is not the primary focus of this project. Instead, the focus is on
the theoretical aspect of how to solve and generate sensitivity information from the subproblem,
which is a difficult problem in its own right. The subproblem consists of three parts, and the
focus is on the battery capacity part. The time window and cargo capacity parts are simplified
variants of the battery part, and are thus not as interesting in the context of the focus chosen.

Finally, there is a natural limit imposed by the size of problem instances a computer can
feasibly solve in a reasonable time frame with the available hardware. For this project only
instances with no more than 15 customers have been fully solved.

1.3 Outline of Thesis

Following this introductory chapter, Chapter 2 contains a literature review, focusing on the
vehicle routing problem and Benders decomposition. Chapter 3 is a presentation of the necessary
theoretical concepts used later in the report: basic mixed-integer linear programming (MILP),
classical Benders decomposition for linear programs (LP), and logic-based Benders decomposition
for MILP. In Chapter 4, we present the mathematical formulation of our VRP as one large
MILP. Chapter 5 describes how this model is partitioned in order for a logic-based Benders
decomposition scheme to be applied, and discusses the master problem and subproblems which
arise. The chapter also contains a brief description of our computer implementation of the
resulting algorithm. Chapter 6 contains our results, along with a discussion about the efficacy of
our method. Finally, in Chapter 7 we discuss concrete directions for further research, both in
terms of performance tuning and in broader changes to our method. The report ends with our
conclusions in Section 7.3.

Literature study

In the following section a brief overview of existing literature on different VRP problems is
presented together with some common methods used for solving them. Section 2.2 continues by
focussing on the Benders decomposition algorithm, and extensions to it.

2.1 Overview of Vehicle Routing Problems

The vehicle routing problem was originally introduced as ‘The Truck Dispatching Problem’ by
Dantzig and Ramser [11] as a generalisation of the so called Travelling Salesman Problem (TSP),
which is the problem of finding the shortest path that visits all the nodes in a graph. Their
VRP was distinct from a multiple TSP by the introduction of carrying capacities. Although
the concept of an NP problem (we will not be needing concepts from complexity theory, but
an overview can be found in [1]) had at this point not yet been named or even formalised, the
computational intractability of the travelling salesman problem for even relatively small problem
instances was well recognised. As a generalisation, the VRP inherits all the difficulties of the
TSP, and hence the method of Dantzig and Ramser was heuristic and could only find near-best
solutions in some scenarios. An example of a VRP route is shown in Figure 2.1.

An early exact method for the VRP appeared in Christofides and Eilon [7], in the form of
a so called branch-and-bound algorithm. Exact methods based on so called cutting planes had
however been described for the TSP much earlier [12]. These two approaches, branching and
cutting planes, are the core of most exact methods. A combination of the two, branch-and-cut,
forms the basis for several general purpose integer optimisation solvers, including IBM ILOG
CPLEX Optimization Studio [27], Gurobi [19], and COIN-OR [47].

A survey of different exact methods was done by Laporte and Nobert [34], who present the
state of the art up until the late eighties. Methods discussed included direct tree search, dynamic
programming, and methods using integer linear programming (ILP) formulations. Most of the ILP
was based on vehicle flow formulations, where binary variables were used to indicate if a vehicle
travels between two nodes. Two different types were used: three-index formulations and two-
indexed formulations. The three-index formulation has one binary variable for each combination
of vehicle, origin, and destination, whereas the two-indexed formulation has integer variables
counting how many vehicles travel from each origin to each destination. The three-indexed
formulation was first introduced by Golden, Magnanti, and Nguyen [18], and the two-indexed
formulation was presented by Laporte and Nobert [32] together with a commodity flow model.
Letchford and Salazar-Gonzélez [37] give a survey of formulations for the capacitated VRP,
including the three-index formulations. A set partitioning formulation of the capacitated vehicle
routing problem together with an exact algorithm was presented in [2]. More recent surveys of
exact methods are Toth and Vigo [49] and Laporte [33].

Solomon [46] presented a variant of the VRP with time window constraints, together with

5

CHAPTER 2. LITERATURE STUDY

@

Figure 2.1: Example of route for a VRP with two vehicles (red and blue) and one depot (0).
Every node except for the depot is a customer that must be visited by at least one vehicle. All
vehicles start and end in the depot.

heuristic solution methods and data sets of test problem instances. Another variant of the VRP is
the electrical vehicle routing problem in which the vehicles have a limited range before they have
to recharge at a recharge station. Several different models for this problem have been proposed.
Lin, Zhou, and Wolfson [38] presented a version where battery consumption was affected by
vehicle loads. They found that the effect of vehicle load on routing strategy cannot be ignored. A
branch-and-price-and-cut algorithm was presented in [14] as a method for solving the electrical
VRP with time windows, where a labelling algorithm was used to solve the subproblems.

An extension to the electrical VRP is to consider vehicles that can use both conventional fuel
and electrical charge. A ‘Hybrid Vehicle Routing problem’ was introduced by Mancini [39], in
which a large neighbourhood search is used to solve a VRP where a vehicle switches to the more
expensive conventional fuel once the battery is empty.

2.2 Benders Decomposition and Applications to VRP

The (classical) Benders decomposition algorithm was introduced by Benders [5] in 1962. In broad
terms, the method partitions an optimisation problem into a master problem and one or more
LP subproblems. The master problem is solved and yields trial values which are fed to the
subproblems. The subproblems are solved, and using LP duality theory, constraints (commonly
called cuts) are generated and fed back to the master problem, which is then re-solved, leading to
new trial values for the subproblem. This back-and-forth continues until a solution to the original
problem has been found and verified. More explicitly, classical Benders cuts are obtained by

6

CHAPTER 2. LITERATURE STUDY

solving the dual of the subproblem, from which a bound on the optimal value of the subproblem
is deduced. If the subproblem is an ILP or MILP, the LP dual is however not defined. An LP can
still be obtained by relaxing the integrality constraints, and the bound from this relaxed problem
is indeed valid for the original problem. Even so, if the duality gap is large, this bound will not
be very strong [43], and results in slow convergence if used in the Benders decomposition method.
Geoffrion [17] extended the Benders algorithm to non-linear convex subproblems.

Another extension is presented by Hooker [20], where an inference dual is defined for very
general optimisation problems. Solving this dual amounts to examining the results of a primal
method. The inference dual is used in [22] to develop a generalised Benders decomposition
method, resulting in a new method named logic-based Benders decomposition. This method
requires a proof schema, and that a method of generating Benders cuts be devised for each class
of optimisation problems. Hooker and Dawande [22] and Hooker and Ottosson [24] applied this to
binary programming problems by interpreting the branch-and-bound tree as a proof of optimality.
This was then used to perform sensitivity analysis of the problem. The analysis was extended to
branch-and-bound methods which included cutting planes.

Hooker [21] studied a planning and scheduling problem where the problem naturally decomposes
into an assignment portion and a scheduling portion. The assignment problem was solved as an
MILP model, and the scheduling problem was solved as a constraint programming model. A
logic-based Benders decomposition algorithm was used to link these problems, and it was found
that this gave a speedup over other state of the art methods. Coban and Hooker [9] showed
that for pure scheduling problems, a logic-based Benders decomposition algorithm performed
well when the problem size scaled up. Hooker [26] contains several examples of inference rules
for different classes of problems, together with a so called branching dual which obtains dual
information by inspection of a solution tree formed by branching on the primal problem.

Kloimiillner and Raidl [30] applied a logic-based Benders decomposition algorithm to a
‘Balancing Bike Sharing Systems problem’ The problem was to balance bikes in a public bike
sharing network to prevent too many rental stations running full or empty. They found that
using a logic-based Benders decomposition algorithm was an improvement over previous exact
methods.

A branch-and-check method was introduced in Thorsteinsson [48], which they describe as
essentially a branch-and-cut method in which a Benders subproblem is used as what they call
the separation subproblem. This combines the ideas from the logic-based Benders decomposition
algorithm with a branching scheme, so that subproblems of almost any form can be considered.
They present a branch-and-check method for solving a capacitated VRP with time windows.
Lam and Hentenryck [31] considers a branch-and-price-and-check method for solving a VRP
with location congestion. Branch-and-price is used to solve the underlying VRP, and constraint
programming to check the feasibility of the location congestion subproblem. It contains a nice
overview of different hybrid methods for solving VRPs.

Riazi, Seatzu, Wigstrom, and Lennartson [42] proposed a logic-based Benders decomposition
algorithm for solving the heterogeneous multi-vehicle routing problem, a extension of the multi-
TSP. The nodes are assigned to different vehicles in a master problem and each subproblem
consisted of solving a TSP for that vehicle. These subproblems were solved using a standard TSP.

Fischetti, Ljubié¢, and Sinnl [15, 16] describes the basic steps for designing a Benders decom-
position approach to be embedded in a modern MILP solver.

Theory

In this chapter, we first introduce some preliminary theory of linear programming (LP) and integer
linear programming (ILP) in Section 3.1. This theory forms a necessary basis for understanding
the methods presented in Sections 3.2, 3.3, and 3.5. Section 3.2 introduces the concept of inference
duals. This is then used in Section 3.3 to generalise the classical Benders decomposition algorithm.
Section 3.4 introduces notation for logical clauses and the resolution algorithm. Finally, in
Section 3.5, we fill in the details necessary to formulate a logic-based Benders decomposition
algorithm for a problem with mixed-integer linear programming (MILP) subproblems.

We adopt the convention that some vectors are in the dual (i.e. row) vector space, and denote
this as v € V' 7. This eliminates the need to write explicit transposes of vectors.

3.1 Linear and Integer Linear Programming Preliminaries

The theory of (continuous) LP forms the basis for the usual treatment of exact methods for ILP
and MILP. This section begins with a short review of this theory and describes its application
to the branch-and-bound method for MILP. The section ends with a description of the Benders
decomposition method for LP.

3.1.1 Linear Programming, Duality and Sensitivity Analysis

Consider a general LP,

min az, (3.1.1a)
x

s.t. Az > ¢, (3.1.1b)

x>0, (3.1.1c)

where A € R™*" 2 € R", a € (R")T and ¢ € R™. The feasible set defined by the constraint
(3.1.1b) together with the domain defined by constraint (3.1.1¢) define a convex polyhedron. An
example of a polyhedron defined in this way is shown in Figure 3.1. The shape of the region
together with the fact that the objective function is linear guarantees that an optimal solution
can always be found in a vertex, of which there are a finite number, provided that the polyhedron
is not unbounded. Since a solution can always be found in one of these vertices, one solution
method might be to check the objective function value for each vertex. One of the most commonly
used algorithms for solving LP is the simplex method. The simplex method is a refinement of the
idea of checking vertices which draws conclusions from how the objective function value changes
when the values of the variables change.

Consider now a vector of non-negative multipliers « € (R™)T, where each multiplier is
associated with one row of the constraint matrix A. Since u > 0, multiplying u with both sides

CHAPTER 3. THEORY

~

(a) (b)

Figure 3.1: The feasible set together with the domain define a convex polyhedron. Figure 3.1a
shows the feasible set defined by a linear inequalities and the domain R220~ Figure 3.1b shows the
convex polyhedron.

of (3.1.1b) implies a new inequality uAx > uc. Assuming that uA < a yields the bound uc < ax
on the optimal solution of the model (3.1.1). Since this bound is valid for all u > 0 satisfying the
inequality uA < a, it is also valid for the v maximising uc. This new maximisation problem is
referred to as the dual problem, and the original problem as the primal problem. We write it as

max uc, (3.1.2a)
s.t. ud<a, (3.1.2b)
u>0. (3.1.2¢)

From the construction of the dual problem, it is apparent that the optimal value of the primal
problem is bounded from below by the optimal value of the dual problem. This property is
referred to as weak duality. In fact, an even stronger statement holds for LP. This is the content
of the following theorem due to von Neumann, which is presented here without proof. The crucial
property that is used to prove Theorem 3.1.1 is some version of a hyperplane separation theorem,
typically Farkas’ lemma. Several proofs can be found in [13].

Theorem 3.1.1 (Strong Duality). If the primal problem (3.1.1) has an optimal solution, then so
does the dual problem (3.1.2), and their optimal objective function values coincide.

The LP dual can be used to perform sensitivity analysis on the primal LP model (3.1.1). Let
u* be the optimal solution to the dual problem (3.1.2). If the vector ¢ is perturbed to ¢ + Ac,
u* remains dual feasible, since the feasible set has not changed for the dual problem. This gives
a dual objective function value u*(c + Ac). Since u* is dual feasible, the optimal dual value is
bounded from below by u*(c + Ac). From Theorem 3.1.1 it follows that the analogue is true for
the optimal value of the primal problem. This gives us a lower bound az > u*(c¢ + Ac) on the
optimal value of the perturbed primal problem.

3.1.2 Mixed Integer Linear Programming and Branch-and-Bound
A general MILP can be stated as

min cz,
s.t. Az > a,
x>0,

z e ZF xR"F

10

CHAPTER 3. THEORY

with ¢ € (R")T, A € R™*" and a € R™. This class of optimisation problems contains LP, binary
linear programs, and ILP as special cases. Moreover, since general MILP are known to be NP-hard,
any NP-complete problem can in fact be reformulated as an MILP. (For general complexity theory,
see, e.g., [1].) As a consequence, any exact method for general MILP must be able to handle a
very broad class of problems. In practice, this means that it is typically undesirable to use an
entirely general method, and consequently more problem specific methods are usually developed.
This section is concerned with branch-and-bound—one of the most prevalent design schemes for
such methods.

The branch-and-bound paradigm of algorithms is the backbone of many exact methods for
MILP. At the core of the method is the idea of implicit enumeration of the feasible set (also
referred to as the search space in the pure integer case). Consider for a moment a pure binary
program in n variables x1,...,x, with objective function f. A divide-and-conquer approach to
this problem might be to choose one of the variables, say x1, and to split the search space into
two halves corresponding to the trial assignments ;1 = 0 and x; = 1. This process is called
branching. If either of these smaller search spaces represents an infeasible problem, that branch
need not be considered further. However, for each half that was feasible, choose a new variable,
say x2, and again make trial assignments o = 0 and xo = 1. A search tree is built by iterating
this procedure. Iteration continues until all assignment options have been explicitly considered or
deemed infeasible. After the process terminates, all feasible points can be found as leaf nodes
of the search tree, along with the leaf nodes that were deemed infeasible. The optimal variable
assignment «* = (7, 25,...,2}) is then the one with the lowest objective function value, f(z*),
among all these feasible leaf nodes. In general, a branching procedure like this can be performed
by partitioning the variables and forming one new branch per set in the partition.

Branching alone only amounts to a method for explicit enumeration of the search space;
the objective function is evaluated at every feasible point. To improve on this, the method
is augmented with the help of bounds on the objective function value. Every feasible point
found by branching gives an upper bound on the objective function. By relaxing the condition
x € ZF x R"F to x € R™ in the node problems, LP are obtained. Solving this LP relaxation of a
node problem gives a lower bound on the objective function for that branch. If at any point such
a relaxed node problem is solved and the optimal solution is found to exceed the best known
upper bound, then that branch need not be considered, and can be discarded from the problem.
This way, parts of the search space are not considered explicitly and instead removed by bounding,
and as such branch-and-bound is said to perform implicit enumeration of the search space. The
general MILP case, where x may contain both discrete and continuous parts, does not represent
a problem for branch-and-bound. Branching need only be performed on the discrete part of z,
and since LP relaxations are solved, the continuous part is automatically handled.

3.1.3 A Branch-and-Bound Example

In this section, consider a simple branch-and-bound application to the ILP

min — 57 — 8o, (3.1.4a)
s.t. 1+ 1z < 6, (3.1.4b)
51 + 9xo < 45, (3.1.4c¢)

1, To € ZLy. (3.1.4d)

We will build the solution tree in a series of iterations, solve an LP relaxation in each one, and
decide whether to branch or not in each individual node using the information from the LP
relaxation.

11

CHAPTER 3. THEORY

lteration 0 (Ly): Let Ly be the LP relaxation of problem (3.1.4). The relaxation has an optimal
solution 20 = (2.25,3.75) with objective function value 2° = f(2") = —41.25. Both 29 and 29
are fractional, so we pick (arbitrarily) 29 to branch on. We form one new LP L; by adding the
constraint ;1 < 2 to Ly, and another new LP Ly by instead adding the constraint 1 > 3 to Lg.
These two nodes constitute the new branches in the branches in the branching tree.

Iteration 1 (L; = Lo A (z1 < 2)): The solution to the LP Ly is x! = (2, 3.888) with the objective
function value 2* = —41.111. Only 23 is fractional, so it is the branching variable. We form
the problem L3 by adding the constraint zs > 3, and the problem L, by adding the constraint
To Z 4.

lteration 2 (L3 = L; A (73 < 3)): The solution to the LP L3 is 23 = (2,3) with the objective
function value 2 = —34. Since 22 is feasible, there’s no reason to branch, and z* < 23 is our
current best upper bound on the optimal value of the objective function.

lteration 3 (Ly = L1 A (22 > 4)): The solution to the LP L3 is 2% = (1.8,4) with the objective
function value 2z = —41. Only 23 is fractional, so it is the branching variable. We form the
problem L5 by adding the constraint ;1 < 1 and the problem Lg by adding the constraint z; > 2.

lteration 4 (L5 = Ly A (z1 < 1)): The solution to the LP Lj is #° = (1,4.444) with the objective
function value 2° = —40.555. Only x5 is fractional, so it is the branching variable. Form the
problem L7 by adding the constraint o < 4 and the problem Lg by adding the constraint xo > 5.

lteration 5 (L; = L5 A (25 < 4)): The solution to the LP L7 is 27 = (1,4) with the objective
function value z7 = —37. Since 27 is feasible, there is no need to branch, and since z7 < 23, we
obtain a new best upper bound z* < z” on the optimal objective function value.

lteration 6 (Lg = L5 A (72 > 5)): The solution to the LP Lg is 2® = (0,5) with the objective
function value z® = —40. Since z® is feasible, there’s no need to branch, and since 2% < 27, we

obtain a new best upper bound z* < 2% on the optimal objective function value.
Iteration 7 (Ls = Ly A (x1 > 2)): The LP is infeasible.

lteration 8 (L, = L; A (25 > 4)): The solution to the LP Ly is 2 = (3,3) with the objective
function value z2 = —39. Since 22 > 28, there is no need to branch.

Figure 3.2 depicts the branch-and-bound tree for this example graphically. The tree proves that
the optimal solution is z* = —40, and that it is attained at * = (0,5). Only nine points are
explicitly considered by the algorithm, while a complete enumeration would have to consider at
least the 25 points that make up the feasible set. Remaining points are only implicitly considered
by means of the bounding process, which is why the method is often described as an implicit
enumeration.

12

CHAPTER 3. THEORY

N\
x = (2.25, 3.75)
z = —41.25
r1 <2 r1 >3
| |
x = (2, 3.888) x = (3, 3)
AN z = —41.111 z=—39
AN
To <3 X9 >4

AN ‘
|
N = (2,3)
N\ z=-34
AN
I S 1
} N\ z i (_1;1 61 %1) infeasible
\ AN
| >
T2 <4 o >5
\
— z=(14
\ N\ z =—-37
} AN

Figure 3.2: A branch-and-bound tree for the the solution to the example problem (3.1.4). Each
node contains the solution to the relaxed problem and its optimal value and a visualisation of
the relaxed problem in that node. The shaded regions indicate the feasible areas, the arrows
represent the objective function gradient, and the optimal solutions are marked with dots. For
clarity, only the relevant branch cuts are shown in each node.

13

CHAPTER 3. THEORY

3.1.4 The Benders Decomposition Algorithm

The classical Benders decomposition algorithm introduced in [5] is a method for solving a certain
class of optimisation problems. The problem is partitioned into a master programming problem
(which can be continuously linear, discrete, or nonlinear) and an LP subproblem. In other words,
it is required that the subproblem can be written as an LP.

For example, an MILP can be solved using this method by decomposition into a pure ILP
master problem and a pure LP subproblem. These problems are then solved iteratively to arrive
at the optimal solution to the full problem. Explicitly, one first solves the master problem, fixes
the integer variables, and then sends them to the linear subproblem as constants. After solving
the subproblem with these variables fixed, new constraints, so called cuts, are generated to feed
back into the master problem, which is then re-solved. The hope is that solving these smaller
problems will be considerably simpler than solving the full problem.

The Benders decomposition algorithm can also be applied to an LP problem, and the goal is
then to split a very large model into smaller LP that are quicker to solve. The master variables
are the complicating variables, and if after fixing them the subproblem separates further into
multiple smaller problems, the result is many smaller problems which are simpler to solve.

Consider the problem

min 2z = ax + by, (3.1.5a)

€y

s.t. Az + By > ¢, (3.1.5b)
x,y > 0. (3.1.5¢)

Any LP of the type (3.1.1) can be written in this form by partitioning the variables into two
groups. Let z* be the optimal value of this problem. The variables x are in this case continuous,
but they can for example also be in {0,1} or Zxo. As previously stated the variables y are
required to be linear. Fixing x to T yields the subproblem

min 2(Z) == by + az, (3.1.6a)

y
s.t. By > c— Az, (3.1.6b)
y > 0. (3.1.6¢)

The terms involving x are renamed and moved to the right hand side to indicate that they are
considered constants in the problem (3.1.6). If the values z are feasible in the original problem,
the optimal value of the full problem z must be at least as small as the optimal value of (3.1.6a):

2" < 2*(Z)

By associating the constraint (3.1.6b) with a dual variable u, the dual of the subproblem can be
written as

min u(c — AZ) + az,
s.t. uB <b,
y=>0.

Let u(Z) be the optimal solution to this dual problem. Weak duality gives the bound
2(z) > u(Z) - (c — AZ) + aT (3.1.8)

on the value of z(Z), and since u(Z) is feasible for any choice of Z, the inequality (3.1.8) remains
valid if we replace Z by x. Here, it is assumed that there exists a feasible solution u to the

14

CHAPTER 3. THEORY

subproblem dual, since if the subproblem is infeasible, the original problem is also infeasible for
that choice of Z. In summary, we get the bound

z > u(Z) - (c— Az) + ax (3.1.9)

for the subproblem; this is the classical Benders cut. This procedure assumes that (3.1.6) has a
feasible solution. If instead the subproblem is infeasible or unbounded, it is possible to obtain a
cut

u(z) - (¢ — Az) <0, (3.1.10)

where u(Z) is the ray that solves

max v(c — AZ),
s.t. vB <0,
v >0.
The ray defined by «(Z) is an unbounded direction and so long as inequality (3.1.10) is true it
will remain an unbounded direction.

Let S denote the set of points = such that the system of inequalities (3.1.6b) and (3.1.6¢) are
consistent. With this notation, the original problem (3.1.5) can be written as

min z*(z),

x
s.t. r €8,
x > 0.

This problem can be linearised by introducing a new variable £ such that £ > 2. Using the cuts
(3.1.9) and (3.1.10), the problem (3.1.5) can be written as

migl 13

s.t. € > ax+ui(c— Az), i €U,
0 > vi(c — Ax), ieV,
x>0,

where U is the set of extreme points and V is the set of extreme rays of the subproblem polytope.

Instead of enumerating the full sets U and V', the Benders decomposition algorithm constructs
these iteratively by generating the cuts (3.1.9) and (3.1.10) in the subproblem. These are then
added to the master problem, which is solved again, and new trial values Z; are sent to the
subproblem. This procedure continues until the objective value of the subproblem is no longer
greater than the objective value obtained from the last solution of the master problem. The
general structure of the Benders decomposition algorithm is summarised in Figure 3.3.

There are two main reasons why the Benders decomposition algorithm might be a good choice.
First by partitioning the variables in a way that exploits the program structure, the resulting
subproblem might be in a class of problems which are known to be simple to solve. Second, the
subproblem might decouple into several smaller subproblems. These properties are interesting for
more classes of optimisation problems than can be treated by the classical Benders decomposition
algorithm. However, the Benders decomposition algorithm relies on the ability to obtain a bound
on the optimal value of the full problem from the LP dual. If after decomposing the problem, the
subproblem is not an LP, this dual does not exist. In Section 3.2, a new type of dual is introduced
that can be written for a general optimisation problem. This is the first step to a generalised
Benders decomposition algorithm.

15

CHAPTER 3. THEORY

‘ Start ’

)

infeasible Master add cuts

LInfeasible problem}

optimal (Z,¢)

infeasible

Feasibility Cut

Subproblem

Optimal
value z

Finished Optimality Cut

Figure 3.3: Flowchart of the general structure of the Benders decomposition algorithm.

3.2 Inference Duality

Consider the general minimisation problem

min f(z), (3.2.1a)
s.t. z €8S, (3.2.1D)
zeD, (3.2.1¢)

with domain D, the feasible set .S, and objective function f : 2 — R for some superset €2 of D
and S. It need not be true that S is a subset of D, nor D of S. For example, a general LP can be
described by the objective function f(z) = cz, the feasible set S = {x € R™ | Az > b}, and the
domain D = R™. Choosing instead the domain D = ZF x R™*, for some k < n, yields a general
MILP. Other classes of optimisation problems can similarly be represented by appropriate choices
of f, S, and D. We will in this section outline a generalisation of LP duality which is applicable
in this more general setting, following the description by Hooker and Ottosson [24].

Some notation is needed before the inference dual can be stated. Let P and Q be two
propositions whose truth or falsehood are functions of x. This gives the following definition:

Definition 3.2.1. P implies Q with respect to D (notated P EEN Q) if @Q is true for any = € D
for which P is true.

The inference dual is defined as a maximisation problem over a proof family, where we want to
find the proof which proves for « in the domain the largest lower bound of f(z) over the feasible

16

CHAPTER 3. THEORY

set. Mathematically, the inference dual is written as

mgmx B, (3.2.2a)

s.t. z€8 2 fz) > B, (3.2.2b)

where 8 can be seen as the largest lower bound on the function f(x) for any « € D that can be
inferred from x € S. For convenience we assume that the problem has an optimal value, where
we allow §* = —oo as a possible value if the problem is unbounded, and 8* = oo if it is infeasible.
With these conventions we get a form of strong duality, i.e. the problem (3.2.1) has the same
value as the dual problem (3.2.2), which is true by definition.

A solution to the inference dual is a proof that the inequality f(z) > 8 holds. Hooker and
Ottosson [24] give two steps for solving the inference dual:

i. Identify inference rules that are complete for the type of constraints in the problem, i.e.
they can be used to infer any valid implication of the form f(z) > .

ii. Use the rules to prove optimality.

The exact procedure differs for each class of problem. In Section 3.2.1 this procedure is
demonstrated for a LP, where we see that this yields the standard LP dual. In Section 3.5 this is
done for a MILP by inspecting a branch-and-bound tree.

3.2.1 The Inference Dual of a Linear Program

The classical LP dual is a special case of the inference dual, where the inference rule is to take a
linear combination of the constraints. The proof that this is a complete inference rule is essentially
the same as the classical separation lemmas for polyhedra [20].

Consider a linear minimisation problem:

min cz,
s.zt. Az > a,
x>0,
and the corresponding inference dual
max 2, (3.2.4a)
s.t. (Az >a,z>0) B> z, (3.2.4b)

where Ax > a and x > 0 defines the feasible set and R"™ is the domain of x. This constraint set
can be rewritten by the following observation.

Theorem 3.2.1 (Linear implications). Az > a implies cx > z if and only if Ax > a is infeasible
or there is a real vector u > 0 for which uA < ¢ and ua > z.

Theorem 3.2.1 is essentially just a reformulation of the usual separation lemmas for convex
polyhedra. Using Theorem 3.2.1, we get that (3.2.4) is equivalent to finding a non-negative linear
combination of Az > a that dominates cx > z, i.e., uA < ¢ and ua > z, and maximises z. This is
the same as the classical dual for an LP:

max ua,
s.t. uA <cg,
u > 0.

17

CHAPTER 3. THEORY

The vector u can be seen as encoding a proof of optimality, since using it we can deduce the
optimal value of z.

3.3 The Logic-Based Benders Decomposition Algorithm

The basic idea behind the logic-based Benders decomposition algorithm [24] is the same as in
the classical Benders decomposition algorithm, but in a more abstract setting. Variables in the
problem are partitioned into two vectors, x and y. A subproblem containing only the variables y
is obtained by fixing the variables x to some trial values x := Z. If the solution to the subproblem
reveals that the trial assignments are either infeasible or result in a non-optimal objective value
for the full problem, the reason why is identified using the constraint set. New trial values for x
are then generated using this information. One continues iteratively in this way until an optimal
solution is found, or until the problem is found to be infeasible.

The classical Benders decomposition algorithm uses the LP dual to get this information. In
the logic-based Benders decomposition algorithm an inference dual (3.2.1) is instead used, which
is the problem of inferring a strongest possible bound from the constraint set. The solution to
the dual is a proof that the bound is valid for z = z. Identifying for which other values of x the
same reasoning holds, we get a valid bound on the objective value as a function of . Since an
inference dual is used instead of an LP dual, the logic-based Benders decomposition algorithm
can be used to solve more general optimisation problems.

Chu and Xia [8] define a valid Benders cut by the following:

i. The cut must exclude the current solution to the master problem if it is not globally feasible.
ii. The cut must not exclude any globally feasible solutions.

The first property guarantees finite convergence, since in the worst case scenario it results in a
complete enumeration of the master variables. If the master problem is finite, the enumeration
terminates in a finite number of steps. The second property guarantees optimality since no
feasible solutions are removed from the problem. This means that the optimal solution remains
in the problem. Consider a general optimisation problem of the form
min f(z,y),
T,y
s.t. (z,y) € S,
x € Dy,
y € D,.

The logic-based Benders decomposition algorithm goes as follows: Fix x to some trial value
T € D,, resulting in the subproblem

min f(z,y),
y
s.t. (Z,y) € S,
y € D,.

The inference dual, see (3.2.2), to the above subproblem,

ml.;;tx 3, (3.3.3a)
st (7y) €S 25 f(z,y) > B, (3.3.3b)

18

CHAPTER 3. THEORY

is finding the tightest bound § on f(Z,y) that can be inferred from (Z,y) € S. The next step
is to somehow derive a function S(x) that gives a valid bound on the value of the subproblem
for any value z € D,. How this bound is generated differs between classes of problems, but the
general idea is the following: Let 8* be the optimal value of (3.3.3), whose solution is a proof
of the fact that g* is a lower bound on the optimal value when x = Z. Using this same line of
argument for other values of x yields a valid lower bound as a function of z. This bounding
function fz(-) yields a Benders cut z > Bz (x) generated from the trial assignment = Z. The
algorithm continues in the same way as the classical Benders decomposition. In each iteration
the master problem has the form

min Z:= z,
z,x
st z> Bi(x),i=1,..., K,
z € D,
where !, ... 2% are the trial values obtained from earlier iterations and SB;: () are the correspond-

ing bounding functions. A new trial value (5+1 z5+1) is obtained by solving the subproblem
for this trial value. The algorithm terminates when the optimal value of the subproblem §* is
equal to Z.

3.4 Logical Clauses and Resolution

This section will give a brief introduction to propositional logic so that it can be used to define
the logic-based Benders decomposition algorithm for a mixed binary linear program (MBLP).
For general MILP, propositional logic is not applicable, instead see [22].

Propositional logic consists of formulae containing atomic propositions x; which can be either
true or false. These can then be connected to create formulae with for example ‘and’, ‘or’, and
‘not’. These are written in the following way: the conjunction ‘x; and x5’ is written as xq A x2,
the disjunction ‘xy or zs’ is written as z1 V z2, and the negation ‘not x;’ is written as —x1. A
formula F} is said to imply another formula F; if for any z; that make F; true, z; also make F»
true. A literal is an atomic proposition or its negation, and a logical clause is a disjunction of
literals such that the clause is true if any of the literals it contains are true. The empty clause is
the clause containing no literals; it is false by necessity. We will need the following lemma from
Hooker and Dawande [22]:

Lemma 3.4.1. A clause Cy implies clause Cy if and only if all the literals in C1 occur in Cs.
C4 is then said to absorb Cs.

A method for deriving all implications of a given set of clauses is the resolution algorithm
introduced by Quine [40, 41]. A brief overview of the resolution algorithm is given below.

Algorithm 1 A brief overview of the resolution algorithm.

A resolution rule is used to generate a new clause from two other clauses which contain exactly
one atomic proposition z; that occurs positively in one clause (z;) and negatively in the other
clause (—z;). This new clause is called the resolvent, and consists of the disjunction of all literals
from either clause except for z; and —z; (this is the resolution rule). Quine showed that the
resolution algorithm is complete, i.e. if it begins with a set S of clauses and terminates with S,
then any clause implied by S is absorbed by some clause in S’. Then S is false if and only if S’
contains the empty clause.

19

CHAPTER 3. THEORY

If after performing a resolution step, as described in Algorithm 1, on a set S we receive the
empty set, this proves that there is no solution to the original set. As stated above the empty set
is always false, so any set of clauses that imply the empty set must also be false.

3.4.1 Resolution Example

Consider three atomic propositions x1, z2, and x3. Write down a set of clauses containing these
propositions. The resolution method can then be used to prove that there is no solution to this
set. As an example consider the set

-z, V —xg V g, (a)
3, (b)

T2, (c)

—xo V —3, (d)
x1V x3, (e)

z1 V To. (f)

A resolution proof that the set (a)—(f) of clauses is false can be performed as follows.
Step 1. The resolution of clause

Step 2. The resolution of clause

Step 4. The resolution of clause

(
(

Step 3. The resolution of clause (g) and (¢) is (i):
(

Step 5. The resolution of clause (

i) and (j) is (k): 0.

Since we get the empty clause, this proves falsehood for the set of clauses (a)—(f). This
procedure is visualised in Figure 3.4.

(k) 0
(i) 1 / \ (J) 1
VAN /N
(g) ~x1 V "2 (¢)zo (h) z1 Ve (2) ©1V x4
AN /N
(a) ~a1 V—wa Vowg (b) s (d) —as Vg (¢) 21 V 3

Figure 3.4: Visualisation of the resolution proof performed in this section. The clauses are
associated with leaf nodes, and the resolvents with non-leaf nodes. The arrows show which two
clauses are used to produce the corresponding resolvent.

20

CHAPTER 3. THEORY

3.5 An LBBD Method for Mixed binary Linear Programming

This section broadly follows the work in Hooker and Dawande [22] and Hooker [25]. We consider

an MBLP with n variables x;, where the binary variables correspond to j = 1,...,k and the
continuous variables correspond to j =k +1,...,n:

min z == cx (3.5.1a)

s.t. Az > a (3.5.1b)

—z> —b (3.5.1¢)

x>0 (3.5.1d)

zj e {0,1} j=1,....k (3.5.1e)

z; € R j=k+1,...,n (3.5.1f)

Inequality (3.5.1b) contains the constraints of the problem and the b; is an upper bound on z;,
which is taken to be 1 for the binary variables. In each node of the branch-and-bound tree a
relaxed problem of the following form is solved:

min z = cx (3.5.2a)
s.t. Az >a (3.5.2b)
Hx >h (3.5.2¢)
—z> —b (3.5.2d)
x>0 (3.5.2¢)

The constraints Hx > h correspond to the active branch cuts, which have the form of z; <0 or
x; > 1. Describing the variable bounds explicitly with b and the branch cuts with A and A in
this way will be convenient for the sensitivity analysis performed in this section.

The sensitivity analysis consists of two parts, where the first part is to recover a proof scheme
that the optimal value of z is z*, i.e. z > z*, from the solution to the primal problem. The second
part of the analysis consists of fixing this proof and and investigating under which perturbations
of the problem this proof remains valid.

We will present two different proof schemes, which both infer bounds from the branching tree
used to solve the primal problem. The first proof scheme is more easily motivated, but results in
very complicated cuts. Lower bounds from the relaxed node problems are valid for the original
problem. For leaf nodes this is the best value we can infer, while for a non-leaf node we get that
the smallest bound from its children is a valid bound.

Consider a node ¢ € I, where I are all the non-leaf nodes. Then let J; be the children of node
i and z; be optimal solution in node ¢. For a leaf node j let LB; = 27, and for a non-leaf node
1 € I let the inferred bound be

LB; = max{z;, min{LB, | j € J;}}.

By starting at the bottom and going up through the tree we can recursively get a valid bound
for the root node which is valid for the original MBLP, and it can be used to prove optimality
after a perturbation of the right-hand side. The bounding function is then a piecewise linear
function, containing nested min and max functions. For large trees, this function can be difficult
to interpret, since it contains information of all the nodes. A full description of this proof scheme
is presented in [26].

21

CHAPTER 3. THEORY

The second proof scheme only uses information from leaf nodes, which gives a more practical
way of generating the bounding function. Violated inequalities are associated with each leaf
node. In feasible nodes we start with z < z*, and in infeasible nodes with one of the violated
constraints. From these we derive surrogate inequalities—see Section 3.5.1—which we associate
with the respective nodes. These surrogate inequalities are violated in their associated leaf nodes.
Logical clauses are inferred from the surrogate inequalities, and these clauses are proven to be
inconsistent using a resolution proof. This is used as a refutation proof that the inequality z* is
the optimal value, i.e. a proof that z < z* is false.

This proof remains valid if the violated inequalities at each leaf node continue to imply the
logical clauses used in the resolution proof. More details are presented in Section 3.5.2. In the
context of logic-based Benders decomposition algorithm, this is used to generate the bounding
functions Bz (-). Due to the fact that strong duality holds for inference duals, this is a strong dual,
yielding a strong cut when used in a Benders decomposition scheme.

The resulting Benders cuts from using this method are in general nonlinear. However this is
not a problem if the master problem is solved by branching; Hooker and Dawande [22] contains a
description on how this is done. The cuts can also be linearised; see [25] for how this can be done.

Node A
1 Sy Vl >3
Node B Node C
oy < y Nﬁ >4 =511 — 8y < —39
Node D Node E
—5$1—8I2<—34m1§1/ \r122
Node F Node G
‘T2§V \5225 5x1 + 929 < 45
Node H Node I
—Bxr1 — 8xy < =37 —dxr1 — 8xo < —40

Figure 3.5: The branching tree resulting from the solution of (3.1.4). Each leaf node (C, D, G,
H, 1) is associated with an inequality, which violates the fixed variables for that node. Each
feasible leaf node (C, D, H, I) is associated with the inequality that the value of z is lower than
the objective value for that node. Each infeasible leaf node (G) is associated with one of the
violated constraints.

If the branching tree is viewed from the bottom it represents a proof of optimality, and a
solution to a suitably defined inference dual. Figure 3.5 shows a proof of optimality for the ILP
(3.1.4). The branch cuts in each leaf node violate the inequality associated with that node. The
resolution algorithm described in Section 3.4 then proves that these inequalities are inconsistent.
This means that a feasible solution must violate at least one of the inequalities associated with
feasible nodes. This is only possible if the optimal value from the branch-and-bound tree is a lower
bound on the objective function for any feasible values of x; and x5. Solving a MIP by branching

22

CHAPTER 3. THEORY

method, as in Section 3.1.2, solves an inference dual simultaneously. This is an analogue of the
simplex method solving the primal and dual problems simultaneously [26].

3.5.1 Surrogate Inequalities

Consider the tree obtained by solving (3.5.1) using a branch-and-bound, and let T" be the set
of leaf nodes. For a leaf node ¢t € T, define a partial assignment as disjoint subsets Jf, J& of
J =1,...,k, such that J? is the set containing all j for which x; are fixed to 1 and J¢, analogously,
those z; which are fixed to 0. If z; = 1 then the literal x; is said to be true and analogously if
z; = 0 the negation —x; is true. This partial assignment can be uniquely associated with the
weakest clause that it falsifies, i.e.

)

Ct:\/ l‘j\/\/ Ly,

JjeJS JjEJT

that one of the values of z; differ from the fixed values in the node.

The set of clauses C; for t € T implies that there is an x which is not contained in any of the
leaf nodes, i.e. it differs from the fixed values for all nodes. This statement is proven to be false
by the resolution algorithm described in 3.4. Branching on z; creates two clauses that contain
exactly one literal which is positive in one clause (z;) and negative in the other clause (—z;). By
starting at the bottom of the tree we can associate with the parent node the resolvent of the
clauses of its children. The resolvent will contain neither z; nor —z;, and by continuing in this
way all z; are successively removed, and the empty clause will be associated with the root node.
Since the resolution algorithm is complete, it proves that the clauses C; for all leaf nodes are
inconsistent.

The missing piece is how to get inequalities for each leaf node ¢t that imply Cy. Since the set
of these clauses for the leaf nodes can be proven to be inconsistent, a system of such inequalities
must also be inconsistent. These inequalities are constructed such that if they are inconsistent
they prove that z* is the optimal value of the problem (3.5.1).

Cousider the relaxed node problem in (3.5.2). Let Z be the best objective value found from
previous nodes, and possibly Z = oo if no solution has been found. In each node there are three
cases:

Case 1. (3.5.2) is feasible and its value 2 is not better than the current bound z, i.e. £ > Z.

Case 2. (3.5.2) is feasible and its value £ is better than the current bound z, i.e. £ < Z.
Case 3. (3.5.2) is infeasible.

For each of these cases we associate the node with a surrogate inequality which is violated by the
fixed variables, so that they imply C;. These inequalities are constructed from the dual solutions
in each node. Associating dual variables to the relaxation (3.5.2) as A corresponding to (3.5.2b),
u corresponding to (3.5.2¢), and v corresponding to (3.5.2d), results in the following dual LP:

max Aa + ph — vb, (3.5.3a)

Ahav

s.t. M+ pH —v <e, (3.5.3b)
A p,v > 0. (3.5.3¢)

Each of the Cases 1-3 are considered separately and results in different surrogate inequalities.

23

CHAPTER 3. THEORY

(Case 1.) z is the minimum value of the objective function. By adding cx < Z to the original
constraint set, the resulting constraint set becomes infeasible. This can be shown by writing
down the following system:

—cx > €—Z, (3.5.4a)
Az > a, (3.5.4b)
Hzx > h, (3.5.4¢)
x> b, (3.5.4d)

where € > 0 is added to remove the strict inequality. Consider a linear positive combination of
inequalities (3.5.4a—d) with multipliers (1, A, u, v). If the above system has a feasible solution, it
implies that such a combination also has a solution. The proof of inconsistency is the content of
Lemma 3.5.1.

Lemma 3.5.1. A linear positive combination of inequalities (3.5.4a—d) with specified multipliers
(1, A, ,v) has no solution if (A, p,v) is a feasible solution to the dual problem (3.5.3).

Proof. Assume there is a feasible solution to the inequality
1(—cx) + AM(Az) + p(Hz) + v(—x) > 1(e — Z) + A(a) + pu(h) + v(=b).
By reordering, we obtain
M+ pH —v—c)x > e+ (Aa+ ph —vb— %), (3.5.5)
and since the dual solution (A, p, v) satisfies the inequalities

M+ pH —v—c¢ <0,
Aa+ ph —vb—2z >0,

the surrogate inequality (3.5.5) implies
0>MNM+puH—-v—c)z>e+ (Aa+ph—vb—2) >e>0,
which is false. The initial assumption must then be false, which concludes the proof. O

If a positive linear combination of inequalities has no solution it is implied that the system formed
by these inequalities also has no solution. Combining the results above, we obtain an infeasible
system:

AM—-c)x > a+e—Z (3.5.6a)
Hz>h (3.5.6b)
—r> —b (3.5.6¢)

In branch-and-bound we only consider values of x such that Hx > h and —z > —b, so the
inequality (3.5.6a) violates the fixed variables, i.e. it implies C;. In other words, inequality (3.5.6a)
is our surrogate inequality.

(Case 2.) The analysis is analogous as in Case 1, with Z replaced by 2. The surrogate inequality
thus obtained is
(M —c)x > da+e—2. (3.5.7)

24

CHAPTER 3. THEORY

(Case 3.) Since the primal problem (3.5.2) is infeasible, there exists a non-negative vector of
dual variables (A, p, v) such that these dual variables prove infeasibility, that is

M+ puB —v <0,
Aa + pb —vh > 0.

Like in the previous cases

Azx > Aa,
Hzx > h,
—x> —b.

is infeasible. Hence the surrogate inequality is given by

Az > Aa. (3.5.8)

The surrogate inequalities (3.5.6a), (3.5.7), and (3.5.8) all imply C in their respective leaf
nodes.

3.5.2 Sensitivity Analysis

For the logic-based Benders decomposition algorithm, we want to investigate for which perturba-
tions the inequalities (3.5.6a), (3.5.7), and (3.5.8) are still valid for the refutation proof that z* is
the optimal value, i.e. when they still imply C}. In this algorithm only the right hand side a is
perturbed. We will only consider MBLP and not general MILP. For a complete description of the
general integer case, see [22]. Consider thus an MBLP which has been decomposed so that the
variables are split into two groups:

min z = cx + dy,
s.t.
Ax + By > a,
—x> —b,
x>0,
z; € {0,1}, j=1,...,k,
y e {0,1}".

Here, 2 € Z* x R"* are the subproblem variables, and y are the master variables. After fixing
the master variables to y = ¥, they can be moved to the right hand side and treated as constants:

min z = cx + dy, (3.5.10a)
s. t.

Az > a — By, (3.5.10b)

x> —b, (3.5.10c)

x>0, (3.5.10d)

2 e {01}, j=1,... k. (3.5.10¢)

25

CHAPTER 3. THEORY

We obtain our surrogate inequalities by applying inequalities (3.5.6a), (3.5.7), and (3.5.8) to our
perturbed constraint (3.5.10b):

(Case 1.) (M —c)Jz>Na—By)—zZ+e¢ (3.5.11a)
(Case 2.) (M —c)Jx>MNa—By)—2+e¢ (3.5.11b)
(Case 3.) Az > M a — BY) (3.5.11¢)

The next step is to see for which other values of y these inequalities continue to imply C;. A
necessary and sufficient condition for when an inequality implies a clause of the form C; is the
content of the following lemma®.

Lemma 3.5.2. Consider x € {O,I}k xRk aqcR" and « € R. Let J = {1,...,n} and
Jo, J1 be disjoint subsets of {1,...,k}. Let aj =max{0,a;}, j € J. Moreover, assume that the
variables x are bounded as 0 < x; < hj for all j € J, where hj =1 for j € {1,...,k}. Then, the
inequality

Z a;rj > o

jeJ
implies the clause
Ct = \/ Zj V \/ Ty
Jj€Jo VISDA

if and only if it holds that
Y aj+) afh<a (3.5.12)

JjEN J¢Jo U J1

Proof. We will first rewrite the first statement to show that it is equivalent to (3.5.12). By
contraposition

Z a;jr; > a— Cp <= ﬁCt—>Z ajr; < .
jeJ jed
This is further equivalent to the inequalities Z ajr; < o, for all z such that C} is false, which

jeJ
is true if and only if

max E a;xz; | ~Cy p < a.
jeJ

The next step is to show that the left-hand side (3.5.13) is equal to the left-hand side of (3.5.12).
Fix x to £ where Z; = 0 for j € Jy and Z; = 1 for j € J;. Then the negation of Cy, i.e. ,

_\Ct:/\ _‘l'j/\/\ X
Jj€Jo NS
is always true for x = z. Further, it holds that
Z a;T; = Z a; + Z a;xj.
jeJ j€N j¢doU s

The result then follows from the fact that the maximum of a;x; is aj'hj for all 5 € J. O

LAn alternate proof of this lemma can be found in Appendix C.

26

CHAPTER 3. THEORY

If the surrogate inequalities still imply C; for a new trial assignment of y, the proof of
optimality outlined in the previous section still holds. From Lemma 3.5.2 it follows that the
surrogate inequalities imply C} for different values of y if and only if the following inequalities are
satisfied:

(Case 1.) Z (M —¢j) + Z (AA; —¢j)Th; < Aa— By)—z (3.5.13a)
JjEJ1 J¢JoU J1
(Casc 2.) Z (M —¢j) + Z (AA; —¢j)Th; < Xa — By) — 2 (3.5.13b)
JjEJ1 J¢JoU J1
(Casc 3.) DA+ (M) Thy < Ma — By) (3.5.13¢)
Je€N i¢JoU N

After inequalities for each node in the solution tree have been generated, they are combined
to obtain a Benders cut. If all of the above inequalities hold in each leaf node for y it is possible
to prove that z(g) is still a lower bound on the value of the subproblem. For each node ¢t € T,
depending on which case arose, let I; denote the corresponding surrogate inequality (3.5.13a—c).
Let & be the variable introduced to the master problem by the decomposition. The Benders cut
is then given by

5 > f(y) + C'min + (Z(g) - CVmin)]l{ /\Tlt}(y)a
te

where T is the set of leaf nodes, C\,i, is the smallest possible value that the subproblem can

attain for any fixed z and provides a default bound. This cut is then used in the logic-based
Benders decomposition algorithm as described in Section 3.3.

27

4

Mathematical Formulation of the
Problem

The problem is formulated with a three-index vehicle flow formulation, first introduced by Golden,
Magnanti, and Nguyen [18]. As a starting point, we used the model presented by Ruffieux
[44], which we extended to include variable battery capacities. Definitions for the different
sets, parameters, and variables used to describe the model are presented in Table 4.1. The full
model is presented in Section 4.1. This model is then rewritten in Section 4.2 to facilitate our
decomposition.

Table 4.1: Definitions of sets, parameters, and variables used to model the problem.

Notation Description

Sets

Ve The set of all nodes containing customers

V: The set of all nodes containing recharge stations
{0} The depot node

YV ={0} UV, UV, The set of all nodes in the graph
K={1,...,K} The set of all vehicles

ACVY XV The set of all arcs in the graph

N The set of all battery sizes

Parameters

K Size of vehicle fleet (number of vehicles)

T Latest time to return to the depot [h]

U Cargo storage capacity in each vehicle [kg]

Qn Battery capacity for battery type n € A [kWh]
cfv/ce! Cost of fuel/electricity [€/1]/[€/kWh]

rfu /el Consumption rate of fuel/electricity [1/h]/[kWh/h]
ey Cost of choosing battery type n € N [€]

tij Travelling time over arc (i, j) € A [h]

s Service time at node i € V [h]

i Demand of cargo in node i € V [kg]

d;j Length of arc (4, j) € A [h]

ei/l; Earliest/latest time at which the service in node i € V can start [h]
Mr A large enough time (Mt = 2T suffices) [h]

Continued on next page

29

CHAPTER 4.

MATHEMATICAL FORMULATION OF THE PROBLEM

Notation Description
My A large enough cargo capacity (My = U suffices) [kg]
Mq A large enough battery capacity (Mg = 2max,en @y, suffices) [kWh]
Variables
) = 1if arc (4, j) € A is used by vehicle k € K; = 0 otherwise
e Arrival time at node ¢ € V' \ {0} for vehicle k € I [h]
uk Amount of cargo in vehicle k € K at arrival in node i € V [kg]
k Battery level for vehicle k € IC upon arrival in node i € V [kWh]
zlfu’c/zfjlk Fuel/electricity used on arc (i, j) € A by vehicle k € K [1]/[kWh]
w% = 1 if battery type n € N is used by vehicle k € K; = 0 otherwise

4.1 A Mixed Binary Linear Optimisation Model

The three-indexed vehicle flow formulation of our VRP is given by the following:

wn Y Y () S ek (412
TG ER T T () e A kEK neEN

s. t.

o> =1, i€V, (4.1b)
keEK jeV:(i,j)eA
> ak <1, keK,icV, (4.1c)
JEV:(i,j)EA
doalh=) ah keK,ieV, (4.1d)
JEV:(i,j)EA JEV:(j,i)EA
Y. D<K (4.1e)
IV <k <1, kek,ieV, (4.1f)
TH < T — (si4ti0), keK,icV,UV,, (4.1g)
TF —7F > (sit+ty) — My (1-af;), k€ K, i € V\ {j},j € V.UV, (4.1h)
uk < U, kek, (4.1i)
uf —uf > paf; — My (1-2F), keKieV\{jLjeWuV, (41j)
fu,k u el,k .o
Z; Jri Zij Jrel = dijwfj7 kek, (i,5) € A, (4.1k)
@ =g > 25— Mg (1-2k), keK.jeV\{i}ieV, (4.11)
> Quul—qf =2 = Mg (1-2f;), keK,jeV\{i}ieVU{0}, (41m)
eN

! 3wk =1, kek, (4.1n)
neN ke {01}, kek, (i,j) € A, (4.10)
wk € {0,1}, keK,neN, (4.1p)
2 2R >0, kek, (i,7) € A, (4.1q)
™ uk gF >0, kek,ieV. (4.1r)

30

CHAPTER 4. MATHEMATICAL FORMULATION OF THE PROBLEM

The constraints (4.1b) ensure that at most one vehicle visits each customer, the constraints
(4.1¢) that at most one vehicle visits each node, the constraints (4.1d) state that if a vehicle enters
a node then it also must leave it, the constraint (4.1e) ensures that at most K vehicles leave
the depot (node 0). Furthermore, the constraints (4.1f) guarantees that the time windows are
followed, while the constraints (4.1g) and (4.1h) model the travel times between consecutive nodes
in the routes. The cargo constraints are modelled by the constraints (4.1i) and (4.1j) which say
that a vehicle can not carry more cargo than its storage capacity, and that the cargo in a vehicle
decreases by the demand of each visited node. The constraints (4.1k) define the distance travelled
on each used arc as the sum of the distances travelled using fuel and electricity, respectively. The
constraints (4.11) keep track of the vehicles’ battery charge levels, where constraints (4.1m) resets
the charge to max each time it leaves the depot or visits a recharge station. The constraints
(4.1n) ensure that each vehicle chooses exactly one battery type. There are no specific subtour
elimination constraints, i.e. that each vehicle must follow a continuous route containing the depot,

but these are implied by the time and cargo constraints (4.1g—j).

The variables zfjlk appear in the objective function with a positive coefficient, and since
problem (4.1) is a minimisation problem it would at first seem like that it would be profitable
f]lk to a small as possible value. The constraints (4.11) would in that case not guarantee
that in (4.11) the battery use zfjlk is equal to the difference in battery levels ¢¥ — q;‘? . This is in
fact not the case since a reasonable assumption is that c®'r®! < 7 and using more electricity
would always be cheaper since this uses less fuel. This forces z; L% 0 be as large as possible to
minimise the use of conventional fuel, and we get equality between battery use and the difference
between battery levels in (4.11).

Of note is that we can divide the variables and constraints in four different groups: One group

with the variables z%., one group with the time variables Tik, one group with the cargo variables

]
uf, and one group with the variables zf;‘k, z;]l.’k, and wF. The only shared variables are xfj, which
are in fact present in all four groups. This will be used when we formulate our decomposition
of the model. Before we get to the decomposition, however, we will need to slightly rewrite the

model, which is the contents of the next section.

to set z

4.2 A Reformulation of the Mixed Binary Linear Model

The model in the previous section does not have a explicit cost related to how the route looks.
Instead there are the requirement that the fuel and electricity use covers all the routes. When
decomposing the problem in the next chapter, we would like there to be some information about
the objective function in the master problem. This would give the master problem a reason for
choosing shorter routes, instead of unnecessary long routes. The shortest route is not necessarily
the optimal one, but it seems like a good place to start.

Further, it is not necessary to keep track of how much fuel is used, i.e. the variables zf}l’k,

since we can assume that fuel is used for all arcs xfj that is not driven on by electricity. It is not
clear that changing the model in this way does not affect the speed at we can solve the problem,
but it makes it simpler when we later decompose the problem.
The model is reformulated so that it no longer contains zf;k
constraints (4.1k) to remove the variables zlf?k from the model. The variables zf‘-”k

ij
in the objective, and the new objective now instead contains xfj and zfjlk This results in a
explicit cost on the variables mfj which is used when solving the problem using the logic-based

elbk _ _k
g = R

. This is achieved by using the

is only present

Benders decomposition algorithm. Renaming z results in the following reformulated

31

CHAPTER 4. MATHEMATICAL FORMULATION OF THE PROBLEM

model:

zﬁgqur}%w Z Z cfquudung +Z Z < - 70)z” +Z Z cVwk (4.2a)

kEK (i,5)EA ke (i,5)eA keK neN

s. 1.
> D=1, i€V, (4.2)

ke jeVv:(i,j)eA

>k <, keK,icV, (4.2¢)
JEV:(i,j)EA

S oaki= >k, kek,ieV, (4.2d)

JEV:(i,j)EA FEV:(j,i)EA

Y. D<K, (4.2¢)

RERIEVIVe o < 7k <1, kek,ieV, (4.2f)

Tlvk <T-— (5i+ti0), kek,ieV. U, (42g)

TF =1 > (si+ty)— Mr(1—2f;), keK,ieV\{j},jeVuV., (4.2h)

ug < U, k€K, (4.2)

uf—ué?zp MU(l—x) keK,ieV\{j},j VU, (4.2)

2 < ldljx”, kek, (i, j) € A, (4.2k)

aF — ¢ > 2F — Mg (1-2F), kek,jeV\{iliecV,, (4.21)

D Quuwl —qf =2l - Mg (1-ay), kEeK,jeVv\{i},icV,U{0}, (4.2m)
neN k

> wh =1, kek, (4.2n)

"N gk e 0,1}, ke K, (i, §) € A, (4.20)

w® € {0,1}, keK,neN, (4.2p)

2k >0, kek, (i, j) € A, (4.2q)

T uk gF >0, keK,ieV. (4.2r)

The cost (ce1 - cf“) in front of zzkj represents the costs incurred by using electricity instead of

fuel over a arc. A reasonable assumption is that c®'r! < ¢, Hence, this cost will be negative,

and it will be beneficial to use electricity over fuel whenever possible. If instead ¢®'re! > ¢furfu,
the optimal value is attained by zk = 0 and the problem is the same as a normal VRP. The

constraints (4.1k) also gives a bound for z - which is included in the model as constraints (4.2k).

32

Method

A logic-based Benders decomposition algorithm was used to solve the problem defined in Chapter 4.
The method works by splitting the optimisation model (4.2) into a master problem and a
subproblem. This separation was done in such a way that the variables xfj occur in the master
problem and the other variables occur in the subproblem. Constraints containing only the
variables xfj are the only ones left in the master problem. Considering only these parts, the

following problem is obtained

min Z Z cf“rfud,»ja:fj, (5.0.1a)
keK (i, j)eA
s.t

> 2 w=1 i€V, (5.0.1b)

keK jeV:(i,j)EA

Z xfj S 1’ k € K:a (S Va (501(})
JEV:(1,5)EA
Yoali= Y i, kek i€V, (5.0.1d)

JEV:(i,§)EA JEV:(j,i)EA

Z Z xlgj < K. (5.0.1e)

ke jeV:UV,

The problem (5.0.1) will constitute the basis for the master problem, where the full master
problems contains additional constraints in the form of cuts. These cuts are generated from the
subproblem, which consists of three smaller subproblems. After fixing the values of the variables
a:fj in (4.2), the model separates into three parts: one problem containing the variables 7F that
verify that the time window constraints are obeyed, one problem containing the variables u¥ that
verify that the cargo capacity constraints are obeyed, and one problem containing the variables g¥,
zfj, and w¥ which distributes where the vehicles use battery charge instead of conventional fuel.
The first two are LPs, so these cuts can be generated using the LP dual. These two problems are
similar in that they posses resource constraints. They differ in that cargo amount is decreasing
and time is increasing, and also in that the variables representing cargo all have the same bounds
whereas the time variables all have different bounds. The third subproblem is to distribute the
battery charge, and is a MBLP, so it does not posses an LP dual. Instead an inference dual is
used, and the solution method used for this is a branch-and-bound algorithm.

Two types of Benders cuts have been formulated for the problem: classical Benders cuts
from the LP subproblems, and a special cut using bounds inferred from the constraint set of
the MBLP subproblem. This inference from the constraint set is achieved by inspecting the
branch-and-bound tree used to solve the subproblem. A overview of the algorithm employed can

33

CHAPTER 5. METHOD

be found in Section 5.5. The models for the different subproblems are presented in Sections 5.1
and 5.2 together with corresponding bounds. These bounds are then combined in Section 5.4 to
create the cut that is added to the master problem.

5.1 Linear Programming Subproblems

The time subproblem and the cargo subproblem are both LP problems, which means that the
same method can be used to generate cuts from both. The cuts are normal Benders feasibility cuts
which are constructed by solving the LP dual. The LP dual and the corresponding feasibility cuts
are defined in the following sections. Only feasibility cuts are generated since neither subproblem
contains an objective function.

5.1.1 The Time Window Subproblem

The time window constraints are enforced in the model by the 7F variables, which appears in the
constraints (4.1f-h). By isolating these constraints, a time window subproblem can be formulated
as

min 0, (5.1.1a)
S. t.

e <1F <l kelk,ieV, (5.1.1b)

TF < T — (s; + tio), kek,ie VUV, (5.1.1c)

TH—rF > (si+ty) - My (1-2F), keK,ieV\{j},jeVUV, (5.1.1d)

>0, kek,icV. (5.1.1e)

Since the variables Tik do not appear in the objective function (4.1a), the subproblem (5.1.1) is a
feasibility problem, and since the variables xfj are fixed, the subproblem is an LP. This problem
separates even further since each vehicle is independent of the others, resulting in |X| subproblems.
For each vehicle k € IC, we write down the LP dual to the corresponding subproblem:

max (aiei — 57,l1) + Z Yi (tiO + 8; — T)

A=Y i€V UV,
+ > 0y ((tig + s1) — Mr (1 - 25)), (5.1.2a)
(i,5)eA:5¢{0}
s. t.
ao — Bo — Z v <0, (5.1.2b)
JEVUV,
ai—Bi—vi+Y 0= 6; <0, i€V UV, (5.1.2¢)
JEVIUVe: ji(j,i)€EA
(i,5)€A
ai, Bi,vi >0, i€V, (5.1.2d)
v >0, i€V,UV., (5.1.2e)
8i; >0, FeVeUVN\{i},ieV. (5.1.2f)

34

CHAPTER 5. METHOD

The dual variables «;, §; are associated with the constraints (5.1.1b), ; with the constraint
(56.1.1¢), d;; with the constraint (5.1.1d). Since the primal problem is a feasibility problem, the
dual is either feasible or unbounded. If it is feasible the primal problem is also feasible, and no
cut is generated.

Let (&, Bi, Vi, (Ej) be the direction of an unbounded ray to the dual problem so that the
objective value is increasing along it. The feasibility cut, see the inequality (3.1.10), from this
subproblem is then given by the inequality

Z (@iei — Bili) + Z Vi (tio +si —T) + Z 8ij ((tij + s:) — Mp (1 —2j;)) <0. (5.1.3)
i€V i€V,UVe (i,5)€Aj {0}

The inequality (5.1.3) is then added to the master problem (5.0.1).

5.1.2 The Cargo Subproblem

The cargo capacity subproblem is a simpler variant of the time window subproblem as described
in the previous section. It separates analogously, one subproblem for each k € K, which are
formulated as

min 0, (5.1.4a)
u
s. t.

uf < U, (5.1.4b)

uf —uf > pal, — My (1—2y), i€ V\{j}, j €V UV, (5.1.4c)

uf >0, ieV. (5.1.4d)

It is also a feasibility problem due to the lack of objective function. There are two main differences
between (5.1.4) and the time window problem (5.1.1). First, all variable bounds (5.1.4b) are
equal in the cargo subproblem, and second, the cargo variable is counting down between nodes
instead of counting up as in the time window problem. These differences do, however, not change
how the feasibility cuts are obtained. We start by writing down the LP dual of (5.1.4) as

=k =k
max —nU + Z mij (p;zi; — My (1 —135)) (5.1.5a)
(i,5)€A:j¢{0}
S. t.
—n—i—Z mo; <0, (515b)
FEV, UV,
Z mi; — Z mj; <0, i eV, UVC, (515C)
JEV,UV: (4, 5)€A 34, i) €A
n >0, (5.1.5d)
mij >0, eV, UV, \ {Z},Z ev. (5.1.56)

Here n corresponds to the constraint (5.1.4b) and m;; correspond to the constraints (5.1.4c). By
the analogous argument as for the time subproblem (5.1.2), the feasibility cut corresponding to
vehicle k is given by the inequality

—al + > mi; (pjaf; — My (1-2f)) <0. (5.1.6)
(4, 5)eA:5¢{0}
The inequality (5.1.6) is then added to the master problem (5.0.1).

35

CHAPTER 5. METHOD

5.2 The Battery Charge Distribution Subproblem

The battery charge distribution subproblem is to decide which battery capacity to use for each
vehicle, and to find the best way to spend the electricity charge given a specific route, i.e. for a
fixed value of . The variables w ql , and zk , together with their associated constraints, are
contained in one subproblem for each vehicle k: e

qmljnz Z (cel - —c) zi5 + Z ey (5.2.1a)

(3,5)€A neN
s. t.
Zf] S Cldl] z]’ (Za j) S Aa (521b)
% - Q? - Zi-“j > — Mg (1-2), jev\{i},ieV, (5.2.1¢)

D Quut—gf — 2> — Mg (1—-2f), jeV\{i},ieVu{0}, (52.1d)
neN
> wp =1, (5.2.1e)
neN
wy, € {0,1}, nen, (5.2.1f)
25 > 0, kek, (i) eA (521g)
g >0 i€ V. (5.2.1h)

This subproblem is not continuous since wX € {0,1}, and therefore an inference dual is used to
obtain Benders cuts; see Section 3.5. The subproblem is solved by a branch-and-bound algorithm.
For a node in the branch-and-bound tree let Ny and N7 be a partial assignment corresponding to
the fixed values of the variables w?.

In the node the following relaxed problem is solved:

- el
Inin Z (c - r—c) i + Z ey (5.2.2a)
(i,5)€A neN
s. t.

constraints (5.2.1b—d),

> wh =1, (5.2.2b)
neN

=Y wh > -1, (5.2.2¢)
neN

—wk > -1, neN, (5.2.2d)

—wk >0, n € N (5.2.2¢)

wh > 1, n €N (5.2.2f)

wk >0, neN, (5.2.29)

25 >0, (i,) € A, (5.2.2h)

qF >0, ieV. (5.2.2i)

The relaxed subproblem (5.2.2) is feasible as long there exists a solution to the constraints

(5.2.2b—¢), since it is always possible to choose qz =0, Zz] = 0 in the solution. Branching is done

36

CHAPTER 5. METHOD

Root

Figure 5.1: Branching tree for the battery subproblem, where the variables w,, are branched on.
The structure is due to the constraint (5.2.1e), which forces one w,, to 1, and the others to be set
to 0. Consequently, if any w,, is fixed to 1, this results in a feasible solution, and the branching
stops. If all but one w,, are fixed to zero it is immediately guaranteed that the solution is integral,
and thus the bottom two nodes are never reached.

by fixing the value of w,,, for some n, to either 0 or 1. The structure of the solution tree from the
branch-and-bound procedure is simple; see Figure 5.1.

The branching procedure can never get to the point where all w* have been set to zero, since a
integer solution is guaranteed in the node before by the constraints (5.2.2b) and (5.2.2¢). Because
of this it is assured that there exists a feasible solution in each node of the branch-and-bound tree.
Cuts are obtained by following the procedure outlined in Section 3.5. First the primal problem
model (5.2.2) is solved. Then we construct the necessary and sufficient conditions for the optimal
objective value of (5.2.2) being a valid lower bound on (5.2.1) for other trial assignments of the
master variable.

In each node of the branch and bound tree, there is a relaxed node problem. For each of the
node problems, write down the corresponding LP dual. From the optimal solution of the primal
problem in each node we obtain a bound, and from the solution of the dual problems we obtain
the sensitivity analysis. Exactly how this is done is the contents of the rest of this section. We
use the theory that we developed in Section 3.5.

Let p;; be dual variables associated with the constraints (5.2.1b), m;; with the constraints
(5.2.1¢) and (5.2.1d), o1 with the constraint (5.2.2b), and o2 with the constraint (5.2.2¢). It is
not necessary to explicitly write down how the dual variables corresponding to the branch cut
constraints (5.2.2e—f) and the integer relaxation constraints (5.2.2b—d). Call these dual variables
¥, and as in (3.5.3), let h and H be the corresponding coefficients. The dual problem for in each

37

CHAPTER 5. METHOD

node is given by the following:

max = pirdigzly =) m Mo (1-28) + 01 — 02 + ¢,
Hij,ﬂij,01,02”¢ . i,]
(i,j)eA (i,5)€A
S. t.
| ,r.fu . o
— i — T — 01+ 02 < (CC — Tdcu) , (1, 7) € A,
> (miy —mis) <0, 1€ Ve,
JEV:(i,j)EA
> mai<o, i€V, u{0},
JEV:(i,j)EA
o102+ Qu Yy i+ wH < e, neN,
(i, §)EArigt Ve
Hij >0, (i, 5) € A,

01,02 > 0.

In (5.2.3), ¢ denotes the optimal value of the relaxed problem (5.2.2) in the node, Ny :=
{n € N | wy, is fixed to 0} , and N} := {n € N | w, is fixed to 1} . As in 3.5.2, define the plus
operator as a™ = max {0, a}. The inequality, for x = z, I; +(z) from node ¢ is obtained from the
solution to (5.2.3), according to Section 3.5.1, as

fu +
Iz (z) Z <—7‘rij — i — (CEI — :elcfu)> -rld;;

(i,7)eA
+ +

+Z z (ﬁij - 7_sz') . Qmax + Z Z (77?],2,) . Qmax

i€Ve \ jEV:(4,j)€A PEV\Ve \ jEV:(4,5)€A
+Z 51752+an Tji = Cn

neN (i, 5)EALEV,

+
+) Gl Qu Y Ty
neN\{NoUN7} (i, j)EAEV,
== Z Tddiiﬂijx?j + Z Mq;; (xfy —1)+a5' - 72 - ¢, (5.2.4)
(i,5)€A (i,5)€A

If the inequality (5.2.4) Iz () is satisfied for some other route z, the surrogate inequalities
(3.5.11a—¢) imply that the fixed variable values are violated. It is not necessary to write these
surrogate inequalities down explicitly, since only the inequalities Iz ;(x) are needed. A resolution
proof can then be used to prove that these surrogate inequalities are false. This is then a proof
that the optimal value CA is a lower bound for other routes that fulfil all inequalities Iz ¢(x), where

t is a leaf node corresponding to the tree where f was obtained.

38

CHAPTER 5. METHOD

We also use the fact that the variables qf and zlkj can be bounded from above as
Zf] S ’r‘eldijﬁ (27 .7) € A7
¢F < max{Q, |neN},icV.
These bounds are independent of the choice of value for xfj and can be added to the model in
(5.2.2) without affecting the solution. Bounds are inferred from the constraints (5.2.1b) for zfj
and from the constraints (5.2.1¢-d) for ¢¥.

Before the cuts for the battery charge distribution subproblems (5.2.1) can be formulated, a
globally valid lower bound is needed. If the inequalities Iz ;(x) are not fulfilled, the refutation
proof that the optimal objective value is a lower bound is no longer valid. The next section
formulates two different globally valid bounds and uses them to obtain the cut for the battery
charge subproblem.

5.3 Default Lower Bounds

The last step is to provide a default lower bound (. If the proof can no longer be used to prove
that CA is a lower bound, this globally valid bound is used instead. We present bounds from two
different methods. Which method results in the tightest bound depends on the problem data.
The first bound is derived from the maximum amount of charge that can be used by a single
vehicle. Solving a relaxed version of the battery problem,

fu

. 1_ T k k

min Z <ce - —aC u> 2 +Z chwy,
(i,4)€A neN
ij < Teldijxfj7 (Z7 .]) € A7
5 >0, (i, j) € A,
wh € {0,1}, neN,

provides a global bound. Due to our assumptions on the fuel costs and consumption rates the
coefficient in front of zfj is negative, so choosing each zfj to equal its maximum is optimal in
this problem. The cost for the different battery types are all positive, so choosing w¥ all zero is
optimal. Since the problem above is a relaxation of the battery subproblem the optimal value of
it gives the default bound

fu

(e T s el k k

Ciin = <c — ﬁc “) r® max E dijx;; | r; €X o,
(i,5)€A

where X are the possible set of routes defined by constraints (5.0.1b—e). This value is of course
larger than if we set all xfj = 1, which yields the value

fu
1 7 1
Cmin = (ce - ¢)re § dij. (5.3.2)

(i,j)eA
A better bound can be found by finding the longest possible route. Let the length of this route
be dpax. The lower bound is then given by

R el ﬂ fu el
Cin == | € Telc 7 dmax- (5.3.3)

39

CHAPTER 5. METHOD

Which of the two default bounds Equations (5.3.2) and (5.3.3) is the better depends on how
difficult it is to find the longest route, compared to using a tighter bound. Depending on the
problem data, these bounds may both be very poor since they calculate the cost as if it was
possible to drive on electricity the whole way. If the battery capacities are small or if there are
few recharge stations, a better bound is acquired by counting the number of recharge station and
depot nodes. The amount of electricity used can not be greater than

Cmin = Qmax(Nr + Nd)a

where N, is the number of recharge stations, and Ny is the number of depots. Our model assumes
that there is only one depot node. This gives the following valid lower bound on the objective
function:

r

fu
Qmax(Nr + 1) (Cel - rdcfu) . (534)

Let (¢*)* be the optimal objective value off the problem (5.2.1) for vehicle k obtained for the
fixed value = Z and let T* be the set of all the leaf nodes in the solution tree for that vehicle.
The set of Iz ;(x) represents the inequalities associated with these leaf nodes. The cut from the
battery subproblem is then given by

€2 > (e +) &, (5.3.5)

kEK (i, j)EA kek

where, for each vehicle k € K, the lower bounds

(C)E, i A Tae(2),
§p > teT*
Cmin, Otherwise,

are those that can be proven from the branch-and-bound tree. The default lower bound (i, can
be chosen as either of the two formulated above. Which is preferable depends on the problem
data and on available computation time (see further in Section 6.4).

5.4 The Master Problem

In this section we combine everything described in this chapter to formulate the master problem,
together with all of the cuts. For each vehicle k € KC, we obtained three separate subproblems
that each yielded valid cuts. These were combined to form the Benders cut that was added to
the master problem. Let be the index set of previous iterations, and (8*)*“ be the optimal
objective value obtained in iteration w € §2 of the battery subproblem for vehicle k € K. The

40

CHAPTER 5. METHOD

complete master problem with all of the cuts is then written as

min , 5.4.1a
z,6,€1,--,€K ¢ ()
s. t.
€= Y MrMdgal+) &, (5.4.1b)
kEK (i, j)eA kek
(C*)w7k7 if /\ Iw,t($)7
§e = teTw:k ke, we, (54.1c)
Cuin, otherwise,
0> —a U+ m" (pjafy — My (1—2f))), kek,weQ, (54.1d)
(4, 7)€ A:
i¢{0}
OZZ(MC'* wkl)JFZ’YZ (tio +s; —T)
i€V 1€V, UV,
+> 0 ((t+s) —Mr(1—af)), keK, weQ, (54.le)
(z,7)€A:
J¢{0}
L=> > i€V, (5.4.1f)
kEK (i, j)EA
1>l kek,ieV, (54.lg)
JEV:(i, j)EA
Sl =Dk, kek,ieV, (54.1h)

JEV:(i,j)EA JEV:(j,i)EA

K=Y Y af, (5.4.1i)

ke i€V, UV,
oy € {0,1}, ke K, (i, j) € A. (5.4.1j)

The constraints (5.4.1b—c¢) contain the optimality cuts generated from the battery subproblem,
where (5.4.1¢) define approximate values of the subproblem objective for each vehicle. Here T%*
indexes the leaf nodes of the branch-and-bound tree from iteration w for vehicle k, and I; are the
inequalities associated with these leaf nodes. If the route z* for vehicle k fulfils the logical clause

/\ Iw7t(l'k

teThr

for some iteration w, where I, ;(x) are the inequalities (5.2.4), the proof that (¢*)“"* is a lower
bound remains a valid proof. If no bounds can be proven, (min (see (5.3.2) and (5.3.3)), is used as
a default lower bound. The constraints (5.4.1d) correspond to the feasibility cuts generated from
the cargo subproblems, and the constraints (5.4.1e) corresponds to the feasibility cuts from the
time window subproblem. Finally, the constraints (5.4.1f-i) define feasible routes. To improve the
performance of the logic-based Benders decomposition algorithm, a relaxed version, see (5.3.1), of
the battery problem is added as an initial cut:

& > Z (— 70) Tfudijl‘fj
(i,5)€A

41

CHAPTER 5. METHOD

5.5 Algorithm

In this section we go through more of how each iteration of our LBBD algorithm functions. The
full logic-based Benders decomposition algorithm is summarised in Algorithm 2.

Algorithm 2 Logic-based Benders decomposition algorithm for the problem in Chapter 4

1: choose an initial route and set i‘f] to the corresponding values
2: let & be the vector containing the values of a’:fj

3: set (* := 00, £ := —00, where (*/¢ is the current upper/lower bound
on the objective value of the complete problem (4.2)
4: while (* > ¢ do
5: for each vehicle k € K do
6: solve the battery subproblem (5.2.1) for z
7: for each leaf node in the solution of the battery subproblem do
8: let I; be as in (5.2.4)
9: end for
10: solve the time window (5.1.2) and the cargo subproblem (5.1.5) for Z
11: add Benders cuts (5.3.5), (5.1.3), and (5.1.6) to the master problem
12: end for
13: let ¢* be the sum of subproblem objective values.
14: solve the master problem (5.4.1)
15: if master problem infeasible then
16: original problem infeasible
17: else
18: set T := optimal route obtained from the master problem
19: set & := objective value of route .

20: end if
21: end while

Algorithm 2 starts by choosing an initial route Z. Let ¢* be the current best upper bound on
the objective value, which is updated each time a feasible solution of the subproblem is found.
The variable £ acts as a current best lower bound on the optimal objective value due to the fact
that all cuts are valid, i.e. no feasible solutions are cut of from the master problem.

Each iteration starts by solving the subproblems. Cuts from the time window and cargo
capacity subproblem are obtained as in the classical Benders algorithm, where a valid cut is
constructed from the optimal solution of the respective LP duals. The battery capacity subproblem
is an MBLP, and cuts are obtained by inspecting the leaf nodes of the branch-and-bound tree used
to solve the problem. From each leaf node t an inequality I, as defined in (5.2.4), is obtained, and
the objective value is a valid lower bound as long as these inequalities are all satisfied. After all
cuts are generated, the master problem is solved. The optimal route is fixed and if the upper and
lower bounds are not equal, the algorithm starts a new iteration by solving the subproblems again.
The algorithm continues generating cuts and resolving the master problem until the optimal
solution is found and verified.

42

Numerical Tests and Results

In this chapter, we present the numerical results of our logic-based Benders decomposition
algorithm implementation. First, details of the implementation is outlined in Section 6.1. The
data set that is used to test the algorithm is described in Section 6.2, and in Section 6.3 we go
through our test setup. Then, a discussion of the performance of the implementation follows in
Section 6.4. As a part of this discussion, we conclude the chapter with a discussion of the quality
of our Benders cuts in Section 6.4.1.

6.1 Implementation Details

The logic-based Benders decomposition algorithm was implemented in C++98 using IBM ILOG
CPLEX 12.1 to solve the master problem and the node problems. The battery subproblem was
solved by a manual branch-and-bound implementation. Tests were performed on a standard PC
running Linux with an Intel® Core™ i5-3470S CPU at 2.90 GHz and 16 GB of RAM.

6.2 Test Data

As a preliminary test instance, we created a six node data set which we will henceforth refer
to as P6. This instance consists of four customers, one depot, and one recharge station, and it
is presented in full in Appendix A. The parameters of the instance were chosen in such a way
as to enforce a nontrivial solution. More specifically, we required that all resource constraints
play a role in the optimal solution and that the battery size chosen was neither of the extreme
cases (i.e. smallest or largest available). As long as a vehicle is able to deplete its battery and the
battery charge level is zero when arriving at a recharge station, the distance that the vehicle can
drive on electricity for a specific route is linearly dependent on the battery capacity. Fulfilling our
requirement that a non-extreme value of the battery sizes be chosen then necessitates a nonlinear
cost of increasing the battery capacities. Instance P6 allowed us to verify the validity of our
implementation in the initial stages of development.

Our bigger test data sets were downsampled from a benchmark set generated by Schneider,
Stenger, and Goeke [45], which in turn is based on the data sets for VRP with time windows of
Solomon [46]. Their data set adds recharge stations to instances with 100 nodes so that each node
can be reached from the depot using at most two recharge stations. The data set also includes
time windows and demands for customers. We randomly sampled nodes from the specific 100
node test instance C101 (from [45]) in order to create our test data set, where customers and
recharge stations were sampled from independently. The number of customer nodes sampled
varied between four and 19, but we kept the number of recharge stations sampled fixed to two.
Since the data sets from [45] were made for a pure electric VRP with time windows, we had to
produce a selection of battery types for the hybrid vehicles. We adopted the parameter values

43

CHAPTER 6. NUMERICAL TESTS AND RESULTS

generated for instance P6, and these proved to still yield interesting solutions, i.e. they impacted
the route chosen. For all versions of the downsampled problems, we used a maximum of two
vehicles.

6.3 Test Setup

In its original implementation, our algorithm was too slow to test on the larger problem instances,
and instead the problem instance P6 (see Appendix A) was used as a test problem to diagnose
performance issues. We found that keeping time window and cargo constraints in the master
problem sped up solution times while not affecting the battery subproblem, which was our main
focus. All the results presented in this chapter use this decomposition.

We performed two sets of tests. Our first set of tests was done on problem instance P6. We
used two different default lower bounds, (5.3.2) and (5.3.3), and compared the performance of our
implementation on these. Our second set of tests was done on randomly downsampled problem
instances (from C101) of different node counts. These tests were done only with the tighter default
lower bound (5.3.4). For each node count, we generated and solved several problem instances.
The larger problem instances were very time consuming, and we used a maximum computation
time for each node count of 60/300 CPU seconds, depending on the test.

6.4 Test Results and Algorithm Performance

Bounds on the objective value for each iteration of using our algorithm on instance P6 are shown
in Figure 6.1. In each iteration, a feasible solution is found from the trial route and the best
value in all previous iterations provides a upper bound. The lower bounds are obtained from the
objective function in the Benders master problem. When using the simple default lower bound
(5.3.3), the optimal solution was found at iteration 110 for the test instance P6, but it took
until iteration 263 before the algorithm concluded that this was indeed the optimal solution; see
Figure 6.1a. The total calculation time was 7276 CPU seconds, and of those, 7049 CPU seconds
were spent solving the master problem. The tighter bound (5.3.3) significantly improved the
performance of our algorithm, and it took nine iterations before the optimal solution was found;
see Figure 6.1b.

©
o

Objective value
=
o o
\
|
jective value
oo
® ©
WE
| | |

8.6¢
e
| | | | | O g4 | | | |
50 100 150 200 250 2 4 6 8
Iteration Iteration
(a) Simple default lower bound (b) Tight default lower bound

Figure 6.1: Upper (red) and lower (blue) bounds, together with the objective value of the trial
routes (black), in each iteration of the logic-based Benders decomposition algorithm for instance
P6 using different default lower bounds. The simple default lower bound was computed as in
(5.3.3), and the tight as in (5.3.4). The optimal objective value was 8.881.

44

CHAPTER 6. NUMERICAL TESTS AND RESULTS

When solving the instance P6 with the simple bound, the CPU time for each iteration of the
master problem was recorded, as illustrated in Figure 6.2. The initial master problem was solved
in 0.12 CPU seconds, but at later iterations this took several CPU seconds. After iteration 200,
each iteration took more than 30 seconds. This was due to more cuts being added to the master
problem and since the cuts from the battery subproblem were non-linear, the master problem
quickly became very time consuming.

140 T T *
» Master problem .
120 - N
100 [o
—_ 2
2 80 o]
e
2 60| .. |
(@)
. ° e® . '.'o
40 % o on® . o a® —
O ° .$ ‘. .v . K'd .‘. O.o .'.~’.'.~'.s
v & Se
20 I o et o~ P |
° FY el o N0
oA ,.dl.ﬁ"".:' ~
0 P e i ! ! ! ! ! ! ! ! | | | |
20 40 60 80 100 120 140 160 180 200 220 240 260

Iteration

Figure 6.2: Computation times in CPU seconds for solving the master problem of the instance
R6 in each iteration of the logic-based Benders decomposition algorithm.

Every cut generated in each test only cut away one solution point in the master problem,
leading to potentially full enumeration of the search space of mfj This is elaborated upon in
Section 6.4.1. The number of feasible routes of the test instance R6, ignoring the resource
constraints, was found by numerical calculation to be 2680. For an arbitrary n, a general closed-
form formula for the number of routes is hard to find, but a lower bound can be computed by
ignoring the recharge stations. Without the recharge stations, the number of routes for k& vehicles
is

| (n-i—k:—l) (n+k—1)!
n!- =
k—1 (k—1)!

The real number of feasible routes is smaller than this, since some of the routes counted might
violate cargo or time window constraints. For example, instance R6 has 1026 routes that fulfil its
resource constraints. For more customers, the set of feasible routes quickly becomes too large
to solve with enumeration, e.g. for n = 15 the number of routes is larger than 10'2. Since the
master problem is computationally expansive, see Figure 6.3, it becomes infeasible to solve larger
problems in a reasonable timeframe.

45

CHAPTER 6. NUMERICAL TESTS AND RESULTS

10% ¢ T T]
e Subproblem |
| | —®— Master problem |

10t |- E

O i |
g | |
£ 100F E
= -]
o r i
o e i
1071 1 E
I |

10—2 | | | | | | | | |

9 10 11 12 13 14 15 16 17 18 19
Number of customer nodes

Figure 6.3: Average computation times in CPU seconds for the first iteration of the master
and subproblem in the logic-based Benders decomposition algorithm. Each problem instance
contains one depot and two recharge stations. For each number of customer nodes the problem
was repeatedly solved for a new random sampling of a larger instance until 300 CPU seconds had
elapsed.

Another issue is that the default lower bound Ciy, from (5.3.2) is much lower than the
objective value of any reasonable route. For our test instance R6 we obtained Ci,, = —40.55
and the value of the two subproblems in the optimal solution were {(; = —0.017 and (; = —0.089,
respectively. The bound for instance P6 using (5.3.3) was Cinin = —9.655, which is still much
lower than the objective value of a normal route. This means that the first time the master
problem obtains the optimal solution as a new trial value, the algorithm will not stop, and will
continue checking every solution that in the master problem is only bounded by the default lower
bound C\,i,. If the gap between the lower bound and optimal solutions of the subproblem were
smaller, the master problem would not check as many poor trial values before concluding that the
optimal solution had already been found in an earlier iteration. Before iteration 73 both vehicles
only used the default bound, and only after iteration 73 did one of the vehicles use bounds from
earlier iterations. This can be seen in the jump of the lower bound in Figure 6.1a. In iteration
263 neither of the vehicles used the default bound, which is the cause of the sudden jump up to
the optimal value.

The function (5.3.4) is a much tighter bound, giving Cp,in = —0.189, and this results in much
better performance of our algorithm. The cuts still only give a tight lower bound for one route,
but with a better global lower bound, the algorithm does not test as many solutions in the
master problem before finding the optimal solution. Let £* be the objective value of the optimal
solution and let A¢ be the global lower bound on the subproblem values. Only routes with a
objective value of at most £* + A¢ are tested. Similar jumps as for the simple bound can be seen
in Figure 6.1b; see Table 6.1.

46

CHAPTER 6. NUMERICAL TESTS AND RESULTS

Table 6.1: The total number of iterations needed to solve test instance P6. The lower bounds in
Figure 6.1 jumps at two iterates. Jumps one/two corresponds to when the algorithm has obtained
a non-default bound for one/two of the vehicles, respectively.

Default lower bound Total # iterations Jump one Jump two

Simple (5.3.3) 9 3 9
Tight (5.3.4) 263 73 263

We tested the performance of the algorithm on the randomly downsampled instances using
the tighter default lower bound (5.3.4). Computation times using this bound is presented in
Figure 6.4; CPLEX is used as comparison, and it is faster by approximately a factor of ten. The
full data for the computation times for our LBBD implementation is presented in Appendix B.
Of note is that some of the tests took much longer than the average.

1042 T T g
| |—e—LBBD x]
10% | |~ CPLEX . * £
. 102) < ? i il
=z E * % E
<D} [X |
£ ol 2 + H E
o S — P
S 100; FT X . % i
TlixdESETT
1071 F ¥ E
.]
[1 i

1072 | | |

4 5 6 78 9 10 11 12 13 14

Number of customer nodes

Figure 6.4: Computation times in CPU seconds for the logic-based Benders decomposition
algorithm with tight default lower bound presented as a boxplot. The default lower bound
was computed as in (5.3.4). As a comparison the average computation times in CPU seconds
for solving the full problem with CPLEX are also shown. For each customer count, randomly
downsampled instances were solved. The boxes have lines at the median, the upper quartile, and
the lower quartile. Whiskers are placed at the smallest/largest data point which is larger /smaller
than lower /upper quartile + 1.5 - IQR, where IQR is the inter-quartile-range. Points outside this
range are outliers (cross). The width of the boxes are scaled according to the sample size.

6.4.1 On the Strength of the Logic-Based Benders Cuts

As mentioned in Section 6.4, our cuts from the subproblem only removed one point from the
master problem at a time. In other words, the cuts were equivalent to so-called no-good cuts.
This is certainly not always the case for the logic-based Benders method [24], and we see no
theoretical reason to believe that it will always be the case for our specific VRP and decomposition.

47

CHAPTER 6. NUMERICAL TESTS AND RESULTS

Moreover, even when presented with cuts for an explicit instance of our problem, it is a nonobvious
conclusion to draw that only one point is being cut away. In this section we therefore describe a
sufficient condition that we devised to show that a cut generated in the battery subproblem is
equivalent to a no-good cut.

Consider first a relaxed node problem from the branch-and-bound solution to a general MILP
(3.5.2), that is

mmin z = czx, (6.4.1a)
s.t. Az >a, (6.4.1b)
Hz > h, (6.4.1¢)
—x> —b, (6.4.1d)

z >0, (6.4.1e)

and let z be its optimal value. Associate the dual variable vectors A, u, and v with the constraints
(6.4.1b), (6.4.1¢c), and (6.4.1d), respectively. Combining (3.5.6a) and (3.5.7), we obtain the
relation

(M =)z # da — Z, (6.4.2)

which holds for any optimal integer solution x to the node problem at hand. Moreover, the
following system is feasible:

—cx> —Z (6.4.3a)
Az > a (6.4.3b)

Multiplying the inequality (6.4.3a) by one and the inequality (6.4.3b) by A > 0 and adding them
yields
(M —c)x > da—z, (6.4.4)

which is also satisfied for any optimal solution = to the node problem. Together (6.4.4) and (6.4.2)
prove equality whenever z is an integer optimal solution to the node problem., or in other words
that

(M —c)x =X a—Z. (6.4.5)

For our battery subproblem (see Section 5.2), the dual vector A corresponds to the variables
Wij» Tijs 01, and o2, and we thus obtain the following expression for Aa:

A=Y —rdipgal;+ Y Mo (1— o) m; + 01— 02
(1,5)€A (i,5)€A

= Z (MQ’/TZ-J- — T‘eldijﬂij) (Ei-cj + | o1 —02— Z Mq”Tij
(i,5)€A (i,5)€A

If we now assume that the dual solutions of ;; and p,; to the relaxed node problems have the

J

properties
ﬂ—ij = 07 (7’7]) € AO; (646&)
mi; >0, (i, j) € A, (6.4.6¢)
Mz‘j = 07 (27 .7) S A17 (646(21)

CHAPTER 6. NUMERICAL TESTS AND RESULTS

it follows that Aa has the structure

da= 3 ~Corly+ Y Cualy 4 €,
(4, 7)€Ao (4, 5)€A1

where Cy, C1, C do not depend on :c , and Cy, C; > 0. Here A; denotes the set of all indices
(4, j) such that the variables z,; are ﬁxed to one in the subproblem, and 4y denotes the set of
indices of those that are fixed to zero, like in Section 3.5.1. It is then straightforward to see that
Aa attains its maximum value only if xfj =0 for all (7, j) € Ap, and xfj =1 for all (i, j) € A;.
Combining this with Equation (6.4.5), we can conclude that there is only one route that violates
the surrogate inequality Iz :(z) in inequality (5.2.4). In other words, the assumptions (6.4.6)
constitute a sufficient condition for the generated cut to be a no-good.

For the general battery subproblem, we do not see any reason to believe that the condition
(6.4.6) on the solution values of m;; and p,; will always hold. In fact, only on the following very
simplified version of the dual to the relaxed node problem were we able to conclude that this
must always be the case:

w3 (o= 7+ X ot
" g)ea (6, 5)eA
k E 1 ,,,fu £ ..
= My~ Hig = (Ce - 7.elcu> » (L7) €A

However, the advantage of the condition (6.4.6) is that it can be used to diagnose any concrete cut
obtained during runtime, and in our numerical observations from actual experimental data this

indeed seemed to universally be the case; in practice, all cuts we generate satisfy the condition
(6.4.6).

49

Discussion

In this chapter, we discuss our method and our results from a performance perspective. To begin
with, a summary of our main results and their performance is found in Section 7.1. Following
that, we also describe potential improvements that could be made to our method and areas for
further research in Section 7.2.

7.1 Summary of Results

The aim of this project was to formulate and implement a logic-based Benders decomposition
algorithm, and as a consequence, to formulate an inference dual for our MBLP. This procedure
has two main components: Generating a proof scheme to enforce strong duality, and extracting
sensitivity information to be able to use the dual for estimation. As a proof scheme we used the
structure of the primal branch-and-bound method. In this tree, certain inequalities are assigned
to each leaf node, which facilitates a sensitivity analysis. We formulated the method for a specific
VRP variant with hybrid vehicles and variable battery capacities, and implemented this method
in C++. To solve the LP subproblems we used the IBM ILOG CPLEX toolkit. Nothing special
was done to treat the nonlinear cuts and they were sent directly to the master problem in CPLEX.

We tested our method on instances with totally six to 16 nodes with varying degrees of
success. Cuts were generated from a MILP subproblem, and we could solve these relatively
small subproblem instances using our implementation of the logic-based Benders decomposition
algorithm. For our test instances, our implementation was slower than a straightforward solution
of the original MILP formulation using CPLEX even when we used cuts with tight default lower
bounds. When cuts used the worse and more naive lower bounds, computation times increased
drastically. We found that the cuts were not as good as we had expected, and the proof of each
lower bound would only hold for the particular route that was used to generate the bound. This
is problematic since it leads to a partial explicit enumeration of the search space. The hope
was that lower bounds would be valid for more than one route, so that more information from
the subproblem structure would be embodied by each cut. It is plausible that if applied to a
larger instance, the cuts could be stronger and might exclude several routes from the master
problem. However, since the method is too slow to scale to particularly large problems, this was
not possible to verify.

The method was tested with two variations of default lower bounds in the cuts. The difference
in the performance of the simple and the tighter default lower bound can be seen in Figure 6.1.
This better lower bound drastically improved performance, which indicates that is important to
find a tight lower bound on the subproblem objective value. If the bound is poor, the algorithm
gets stuck checking solutions that are not very good during the initial iterations. Using a better
lower bound speeds up the early iterations, so that the algorithm does not spend time in the
beginning considering poor solutions.

51

CHAPTER 7. DISCUSSION

Only a cursory examination was performed on the effects of battery capacities and costs. We
used the same non-linear relationship between them in all tests and changed only their magnitudes.
If the battery capacities were too small compared to the distances in the problem, the battery
subproblem had little effect on the optimal solution. The same was true if the capacities were too
large. As previously stated, we chose to mostly test the performance of the battery subproblem.
The time window and cargo capacity subproblems were not of as great interest, since they are
simpler variants of the battery subproblem and only need standard LP duality to produce cuts.
Solving the master problem with time windows and cargo capacities was also not noticeably
slower than solving the master problem without them.

7.2 Further Research

Broadly, improvements can be classified into two categories. First, there are smaller-scale
improvements which can be made. These constitute the subject of Section 7.2.1. Although they
are described as smaller-scale, they might potentially have a large impact on the performance
of our algorithm, and due to technicalities some might be rather time consuming to implement.
However, they clearly contrast with the second category: large structural changes to our method.
These are broader reworkings of our method based on the same idea of generalised duality and
Benders decomposition, and are discussed in Section 7.2.2.

7.2.1 Minor Improvements

Several potential improvements could be made to our Benders algorithm. As mentioned above,
when we tightened the default lower bounds in our Benders cuts, we obtained a substantial
increase in performance. It is possible that these default lower bounds could be tightened further,
leading to better performance.

In an attempt to improve the cuts, the symmetries present in the model could be exploited.
For instance, a cut generated by one vehicle is valid for all vehicles since the vehicles are identical
in the master problem. We did not test if using more cuts improved the performance of the
algorithm, or if the additional complexity would result in slower solution times.

There is also a potential problem in how our model avoids so called subtours (degenerate
routes consisting of disjoint loops). These are prevented by the inclusion of the time variables used
to enforce time window constraints in the model. A time variable is strictly increasing in each
route, which prevents a route from ever forming a loop. These time variables generalise the so
called Miller-Tucker-Zemlin (MTZ) constraints; see [3]. The MTZ constraints are useful because
they avoid the traditional explicit subtour elimination constraints, which are exponentially many
in the node count of the problem. However, the MTZ constraints are known to have poor linear
relaxation, as described in [3]; the authors present several remedied MTZ constraints with better
relaxation, motivated by polyhedral theory. However, it is not immediately obvious if these
ideas generalise to the time variable setting. One practical option might be to add a subset of
the traditional subtour elimination constraints to our master problem, preventing for example
three-node and four-node loops. These constraints would be redundant in the sense that they
would not change the optimal solution of the problem, but they might improve the quality of the
linear relaxation of the master problem, leading to faster solution speeds.

It is possible that the flow formulation with big-M constants performs poorly when we
decompose the problem in such a way that the big-M constants are included in the cuts from the
subproblems. Models using big-M constants are known to have poor relaxations. These big-M
constants might be the cause of the poor quality of our cuts. There are ways of avoiding big-M

52

CHAPTER 7. DISCUSSION

constants by instead considering the disjunctions that they ultimately represent; see for instance
[25, 26, 35]. None of these seem straightforward to implement, since they require a different
branching scheme than what CPLEX offers.

We only tested one particular partial decomposition, but it is probable that there exists some
way to split the problem which is more advantageous. A decomposition could be better if the cuts
contain more information about the structure of the subproblem. It could also be better if there
is a better balance between subproblem and master problem complexity. In the first case, cuts
would hopefully generate valid lower bounds for more than a single route, leading the algorithm to
no longer check trial values one by one. In the second case, the master problem would be simpler,
and less time would be spent re-solving it. Both of these are problematic with our decomposition;
our subproblem is likely too simple, so that the cuts are too weak. At the same time, our master
problem is a very complex problem in its own right, and it is time consuming to solve repeatedly.

7.2.2 Structural Improvements to the Benders Algorithm

In our implementation of a logic-based Benders algorithm, we used the strategy outlined in
Figure 3.3. This is how the Benders decomposition algorithm is usually formulated, but it turns
out to not be a very effective way, for several reasons:

e The master problem has to be re-solved in every iteration.
e The master problem becomes more time consuming to solve as more cuts are added.
o Full convergence may take many iterations after an optimal point has been found.

Some of these problems are remedied in so called ‘modern Benders’, as mentioned in [15, 16]. While
classical Benders is a cutting plane method, modern Benders takes this idea and reformulates
it as a branch-and-cut method. Concretely, this means that instead of repeatedly solving the
master problem and generating cuts, the master problem is solved only once by branching. Cuts
are successively generated in the nodes of the search tree during the branching procedure in a so
called cut loop.

Fischetti, Ljubi¢, and Sinnl [15] also propose that while it is important to produce the best
possible cuts, it is even more important to use a better cut loop. Traditionally, this would often
be Kelley’s cut loop [29]. This cut loop is similar in structure to the Benders decomposition
algorithm that we have implemented, as in Figure 3.3. A problem with Kelley’s cut loop is that
it may zigzag towards the optimal solution during the initial iterations, which significantly slows
down convergence. Several other cut loops have been proposed to stabilise the method. Among
others, these include bundle methods [36] and in-out methods [4].

It would be interesting to test if these methods could be extended to work with the logic-based
Benders decomposition algorithm, since it seems to exhibit the same problems that classical
Benders does. A potential complication is to determine whether the decomposition into master
and subproblem would change, and if so, how. Such a change might then necessitate another
inference dual than a branching dual for cut generation. It seems likely that a logic-based Benders
decomposition algorithm could be implemented in a single search tree, like a modern Benders
implementation. This would bear some similarities with the branch-and-check method [48].
However, the alternative cut loop strategies do not seem directly compatible with nonconvex
problems, and it would be an additional challenge to try to overcome this.

Another difficulty is that generally, cuts generated by the logic-based Benders decomposition
algorithm need not be linear. In our implementation the nonlinear cuts are modelled using
extra logical variables, increasing the size of the problem, and subsequently resulting in slower
computations. This can be addressed by instead solving the master problem by branching. Cuts

53

CHAPTER 7. DISCUSSION

are then added to the master problem during the branching procedure [25]. Without the extra
logical variables the master problem would be faster to solve.

It would also be interesting to test a different decomposition of the model with the hope
that the cuts generated would be of better quality. For example Riazi, Seatzu, Wigstrém, and
Lennartson [42] decomposed the problem into an assignment master problem and a travelling
salesman subproblem, solving the former with constraint programming, and the latter with the
special-purpose TSP solver Concorde [10]. For our model this decomposition would be slightly
different since we have a different initial VRP model.

7.3 Conclusion

We have utilised logic-based Benders decomposition to partition a VRP into a routing master
problem and a resource constraint subproblem. The VRP under consideration incorporated
time windows, cargo capacities, and hybrid vehicles with variable battery capacities. The aim
of this project was to devise a proof scheme for solving the resource constraint subproblem,
and a method for generating sensitivity information from that solution. Since, the subproblem
was an MBLP, ordinary LP duality theory could not be applied in the same way it would have
been for the classical Benders decomposition. Instead, the solution tree obtained by solving the
primal subproblem by branch-and-bound was viewed as proving optimality by refutation. We
formulated necessary and sufficient conditions for which other routes this proof remains valid.
These conditions allowed the formulation of the Benders cuts.

The logic-based Benders decomposition algorithm is a flexible method, and solution methods
can be tailored individually for the master and subproblem. This flexibility comes with the
difficulty of that a method for generating cuts has to be devised for each solution method since
the logic-based Benders decomposition algorithm is mostly a framework. Formulating these cuts
can be an arduous process, which limited the scope of the study to in regards to solution methods
for the subproblem. Only one particular problem decomposition was considered.

Compared to directly using CPLEX to solve the full problem, our method is an order of
magnitude slower across all test instances. Further work needs to be done to establish whether
this method performs better for larger problem instances. We have investigated the reasons for
the poor performance, and suggest three main areas for further research.

Firstly, this study has shown that each cut we generate using this method contain only
information of a single route, which is one of the main reasons for the relatively poor performance.
A natural progression of this work is to study if a different decomposition would result in better
cuts, that contain information about several routes.

Secondly, the numerical results highlight the importance of finding good bounds before
initiating the algorithm, as otherwise the method spends a long time at the start considering
suboptimal solutions. The initial cuts presented work well for our specific data, but more general
cuts would be very beneficial for improving the method. A relaxation of the subproblem might
be added to the master problem in hopes of improving performance at the start of the algorithm.
However, it is not immediately obvious which relaxation to use in this case.

Finally, several of the ideas from ‘modern Benders’ are of interest and could possibly be
extended to work with the logic-based Benders decomposition algorithm. This would however
require a much more comprehensive study.

In summary, as we chose to formulate the method for our VRP, the method results in relatively
poor performance. However, logic-based Benders decomposition still seems to be an interesting
framework for exact solution methods due to its flexibility, especially the possibility of solving
each part of the decomposition using the most efficient method.

54

Bibliography

S. Arora and B. Boaz. Computational Complexity: A Modern Approach. Cambridge Univer-
sity Press, 2009.

R. Baldacci, N. Christofides, and A. Mingozzi. ‘An exact algorithm for the vehicle routing
problem based on the set partitioning formulation with additional cuts’ Mathematical
Programming, 115(2):351-385, 2008. DOI: 10.1007/s10107-007-0178-5.

T. Bektag and L. Gouveia. ‘Requiem for the Miller—Tucker—Zemlin subtour elimination
constraints?’ European Journal of Operational Research, 236(3):820-832, 2014. por: 10.
1016/j.ejor.2013.07.038.

W. Ben-Ameur and J. Neto. ‘Acceleration of cutting-plane and column generation algorithms:
applications to network design’. Networks, 49(1):3-17, 2007. DOI: 10.1002/net.20137.

J. F. Benders. ‘Partitioning procedures for solving mixed-variables programming problems’.
Numerische Mathematik, 4(1):238-252, 1962. DOL: 10.1007/bf01386316.

G. Berbeglia, J.-F. Cordeau, I. Gribkovskaia, and G. Laporte. ‘Static pickup and delivery
problems: a classification scheme and survey’. TOP, 15(1):1-31, 2007. DOL: 10.1007/s11750~
007-0009-0.

N. Christofides and S. Eilon. ‘An algorithm for the vehicle-dispatching problem’. OR,
20(3):309-318, 1969. DOI: 10.2307/3008733.

Y. Chu and Q. Xia. ‘Generating Benders cuts for a general class of integer programming
problems’. In: Integration of AI and OR Techniques in Constraint Programming for Com-
binatorial Optimization Problems. Ed. by J.-C. Régin and M. Rueher. Berlin, Heidelberg;:
Springer Berlin Heidelberg, 2004, 127-141. DOT: 10.1007/978-3-540-24664-0_9.

E. Coban and J. N. Hooker. ‘Single-facility scheduling by logic-based Benders decomposition’.
Annals of Operations Research, 210(1):245-272, 2013. DOI: 10.1007/510479-011-1031-2.

W. J. Cook. Concorde TSP Solver. URL: http://www.math.uwaterloo.ca/tsp/concorde
(visited on 2018-02-08).

G. B. Dantzig and J. H. Ramser. ‘The truck dispatching problem’. Management Science,
6(1):80-91, 1959. DOI: 10.1287/mnsc.6.1.80.

G. Dantzig, R. Fulkerson, and S. Johnson. ‘Solution of a large-scale traveling-salesman
problem’. Journal of the Operations Research Society of America, 2(4):393-410, 1954. DOIL:
10.1287/opre.2.4.393.

G. B. Dantzig and M. N. Thapa. Linear Programming 2: Theory and Eztensions. Springer
US, 2003. DOI: 10.1007/b97283.

95

https://doi.org/10.1007/s10107-007-0178-5
https://doi.org/10.1016/j.ejor.2013.07.038
https://doi.org/10.1016/j.ejor.2013.07.038
https://doi.org/10.1002/net.20137
https://doi.org/10.1007/bf01386316
https://doi.org/10.1007/s11750-007-0009-0
https://doi.org/10.1007/s11750-007-0009-0
https://doi.org/10.2307/3008733
https://doi.org/10.1007/978-3-540-24664-0_9
https://doi.org/10.1007/s10479-011-1031-z
http://www.math.uwaterloo.ca/tsp/concorde
https://doi.org/10.1287/mnsc.6.1.80
https://doi.org/10.1287/opre.2.4.393
https://doi.org/10.1007/b97283

BIBLIOGRAPHY

[14]

[15]

G. Desaulniers, F. Errico, S. Irnich, and M. Schneider. ‘Exact algorithms for electric vehicle-
routing problems with time windows’. Operations Research, 64(6):1388-1405, 2016. DOTI:
10.1287/opre.2016.15635.

M. Fischetti, I. Ljubi¢, and M. Sinnl. ‘Benders decomposition without separability: a compu-
tational study for capacitated facility location problems’. Furopean Journal of Operational
Research, 253(3):557-569, 2016. DOI: 10.1016/j.ejor.2016.03.002.

M. Fischetti, I. Ljubié, and M. Sinnl. Modern Benders (in a nutshell). 2017. URL: http:
//www .dei.unipd.it/~fisch/papers/slides/2017%20Lunteren?20%5BFischetti?
200n%20Benders},5D . pdf.

A. M. Geoffrion. ‘Generalized Benders decomposition’. Journal of Optimization Theory and
Applications, 10(4):237-260, 1972. poI: 10.1007/BF00934810.

B. L. Golden, T. L. Magnanti, and H. Q. Nguyen. ‘Implementing vehicle routing algorithms’.
Networks, 7(2):113-148, 1977. DOI: 10.1002/net.3230070203.

Gurobi Optimization. Gurobi. URL: http://www.gurobi.com (visited on 2018-01-26).

J. N. Hooker. ‘Inference duality as a basis for sensitivity analysis’ Constraints, 4(2):101-112,
1999. po1: 10.1023/4:10098387252286.

J. N. Hooker. ‘A hybrid method for the planning and scheduling’. Constraints, 10(4):385-401,
2005. poI: 10.1007/s10601-005-2812-2.

J. N. Hooker and M. W. Dawande. ‘Inference-based sensitivity analysis for mixed integer/
linear programming’. Operations Research, 48(4):623-634, 2000.

J. N. Hooker and N. R. Natraj. ‘Solving a general routing and scheduling problem by

chain decomposition and tabu search’ Transportation Science, 29(1):30-44, 1995. DOI:
10.1287/trsc.29.1.30.

J. N. Hooker and G. Ottosson. ‘Logic-based Benders decomposition’. Mathematical Pro-
gramming, 96(1):33-60, 2003. DOI: 10.1007/s10107-003-0375-9.

J. N. Hooker. Logic-Based Methods for Optimization: Combining Optimization and Con-
straint Satisfaction. John Wiley & Sons, Inc., 2000. DOI: 10.1002/9781118033036.

J. N. Hooker. Integrated Methods for Optimization. Springer US, 2012. DOI: 10.1007/978-
1-4614-1900-6.

IBM. ILOG CPLEX Optimization Studio. 2018. URL: http://www.1ibm.com/products/
ilog-cplex-optimization-studio (visited on 2018-01-26).

L. V. Kantorovich and V. F. Zalgaller. Calculation of Rational Cutting of Stock. Lenizdat,
1951.

J. E. Kelley. ‘The cutting-plane method for solving convex programs’. Journal of the Society
for Industrial and Applied Mathematics, 8(4):703-712, 1960.

C. Kloimiillner and G. R. Raidl. ‘Full-load route planning for balancing bike sharing systems
by logic-based Benders decomposition’. Networks, 69(3):270-289, 2017. DOI: 10.1002/net.
21736.

E. Lam and P. V. Hentenryck. ‘A branch-and-price-and-check model for the vehicle routing
problem with location congestion’. Constraints, 21(3):394-412, 2016. DOI: 10.1007/s10601~
016-9241-2.

G. Laporte and Y. Nobert. ‘A branch and bound algorithm for the capacitated vehicle
routing problem’. OR Spektrum, 5(2):77-85, 1983. DOI: 10.1007/b£01720015.

56

https://doi.org/10.1287/opre.2016.1535
https://doi.org/10.1016/j.ejor.2016.03.002
http://www.dei.unipd.it/~fisch/papers/slides/2017%20Lunteren%20%5BFischetti%20on%20Benders%5D.pdf
http://www.dei.unipd.it/~fisch/papers/slides/2017%20Lunteren%20%5BFischetti%20on%20Benders%5D.pdf
http://www.dei.unipd.it/~fisch/papers/slides/2017%20Lunteren%20%5BFischetti%20on%20Benders%5D.pdf
https://doi.org/10.1007/BF00934810
https://doi.org/10.1002/net.3230070203
http://www.gurobi.com
https://doi.org/10.1023/A:1009838725226
https://doi.org/10.1007/s10601-005-2812-2
https://doi.org/10.1287/trsc.29.1.30
https://doi.org/10.1007/s10107-003-0375-9
https://doi.org/10.1002/9781118033036
https://doi.org/10.1007/978-1-4614-1900-6
https://doi.org/10.1007/978-1-4614-1900-6
http://www.ibm.com/products/ilog-cplex-optimization-studio
http://www.ibm.com/products/ilog-cplex-optimization-studio
https://doi.org/10.1002/net.21736
https://doi.org/10.1002/net.21736
https://doi.org/10.1007/s10601-016-9241-2
https://doi.org/10.1007/s10601-016-9241-2
https://doi.org/10.1007/bf01720015

BIBLIOGRAPHY

[49]

G. Laporte. ‘Fifty years of vehicle routing’. Transportation Science, 43(4):408-416, 20009.
DOI: 10.1287/trsc.1090.0301.

G. Laporte and Y. Nobert. ‘Exact algorithms for the vehicle routing problem’. In: Surveys
in Combinatorial Optimization. Ed. by S. Martello, G. Laporte, M. Minoux, and C. Ribeiro.
Vol. 132. North-Holland Mathematics Studies Supplement C. North-Holland, 1987, 147-184.
DOI: 10.1016/30304-0208(08)73235-3.

J. Lee and S. Leyffer. Mized Integer Nonlinear Programming. Springer, 2012. DOI: 10.1007/
978-1-4614-1927-3.

C. Lemaréchal, A. Nemirovskii, and Y. Nesterov. ‘New variants of bundle methods’. Math-
ematical Programming, 69(1):111-147, 1995. DOI: 10.1007/BF01585555.

A. N. Letchford and J.-J. Salazar-Gonzalez. ‘Projection results for vehicle routing’ Math-
ematical Programming, 105(2-3):251-274, 2005. DOI: 10.1007/s10107-005-0652-x.

J. Lin, W. Zhou, and O. Wolfson. ‘Electric vehicle routing problem’. Transportation Research
Procedia, 12(Supplement C):508-521, 2016. Ninth International Conference on City Logistics
17-19 June 2015, Tenerife, Spain. DOI: 10.1016/j.trpro.2016.02.007.

S. Mancini. ‘The hybrid vehicle routing problem’. Transportation Research Part C: Emerging
Technologies, 78(Supplement C):1-12, 2017. DOI: 10.1016/j.trc.2017.02.004.

W. V. Quine. ‘The problem of simplifying truth functions’ The American Mathematical
Monthly, 59(8):521, 1952. DOI: 10.2307/2308219.

W. V. Quine. ‘A way to simplify truth functions’ The American Mathematical Monthly,
62(9):627, 1955. DOI: 10.2307/2307285.

S. Riazi, C. Seatzu, O. Wigstrom, and B. Lennartson. ‘Benders/gossip methods for het-
erogeneous multi-vehicle routing problems’. In: 2018 IEEE 18th Conference on Emerging
Technologies Factory Automation (ETFA). 2013, 1-6. DOI: 10.1109/ETFA.2013.6647983.

P. Rubin. Benders decomposition with integer subproblems. 2013. URL: https://orinanob
world.blogspot.se/2013/07/benders-decomposition-with-integer.html (visited on
2018-01-15).

J. Ruffieux. ‘Optimization of routes for a fleet of plug-in hybrid vehicles Mathematical
modeling and solution procedures’. MSc thesis. Chalmers University of Technology, 2017.

M. Schneider, A. Stenger, and D. Goeke. ‘The electric vehicle-routing problem with time
windows and recharging stations’ Transportation Science, 48(4):500-520, 2014. DpOI: 10.
1287/trsc.2013.0490.

M. M. Solomon. ‘Algorithms for the vehicle routing and scheduling problems with time
window constraints’. Operations Research, 35(2):254-265, 1987. DOI: 10.1287/opre.35.2.
254.

The COIN-OR Foundation. COIN-OR. URL: http://www . coin-or .org (visited on
2018-02-07).

E. S. Thorsteinsson. ‘Branch-and-check: a hybrid framework integrating mixed integer
programming and constraint logic programming’. In: Principles and Practice of Constraint
Programming — CP 2001. Ed. by T. Walsh. Springer Berlin Heidelberg, 2001, 16-30. DOTI:
10.1007/3-540-45578-7.

P. Toth and D. Vigo. ‘Models, relaxations and exact approaches for the capacitated vehicle
routing problem’. Discrete Applied Mathematics, 123(1):487-512, 2002. DOI: 10.1016/50166~
218X(01)00351-1.

o7

https://doi.org/10.1287/trsc.1090.0301
https://doi.org/10.1016/S0304-0208(08)73235-3
https://doi.org/10.1007/978-1-4614-1927-3
https://doi.org/10.1007/978-1-4614-1927-3
https://doi.org/10.1007/BF01585555
https://doi.org/10.1007/s10107-005-0652-x
https://doi.org/10.1016/j.trpro.2016.02.007
https://doi.org/10.1016/j.trc.2017.02.004
https://doi.org/10.2307/2308219
https://doi.org/10.2307/2307285
https://doi.org/10.1109/ETFA.2013.6647983
https://orinanobworld.blogspot.se/2013/07/benders-decomposition-with-integer.html
https://orinanobworld.blogspot.se/2013/07/benders-decomposition-with-integer.html
https://doi.org/10.1287/trsc.2013.0490
https://doi.org/10.1287/trsc.2013.0490
https://doi.org/10.1287/opre.35.2.254
https://doi.org/10.1287/opre.35.2.254
http://www.coin-or.org
https://doi.org/10.1007/3-540-45578-7
https://doi.org/10.1016/S0166-218X(01)00351-1
https://doi.org/10.1016/S0166-218X(01)00351-1

A

Problem Data for Test Instance P6

Problem data for a small VRP with time windows, cargo constraints, and hybrid vehicle battery
capacities. The data is presented in Tables A.1 to A.3.

Table A.1: Node data for the test problem with totally six nodes. The distance between two
nodes is taken to be the Euclidean distance, where (x,y) are the geographical coordinates of a
node. The average velocity is 1[km/h].

Node x [km] y [km] demand [kg] earliest time [h] latest time [h]
Depot A 10 20 0 0 200
Customer B 10 10 30 0 100
7 C 15) 30 20 50
7 D 20 30 30 0 200
7 E 20 10 30 0 200
Recharge R 15 15 0 0 200

Table A.2: Parameter data for the test problem instance with six nodes.

Parameter Value
Load Capacity [kg] 100
Fuel Consumption Rate [1/h] 0.1
Battery Consumption Rate [kWh/h] 1
Fuel Cost [€/]] 1.35
Battery Cost [€/kWh] 0.03
Maximum Number of Vehicles 2

Table A.3: Battery capacities and costs for ten different battery types, for the test instance with

totally six nodes. Here (),, denotes the capacity of battery type n and ¢V the cost for choosing
battery type n.

Type /n 1 2 3 4 5 6 7 8 9 10
Q. [kWh] 0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
ey [€] 0 0.001 0.004 0.009 0.016 0.025 0.036 0.049 0.064 0.081

59

B

Computation Times

Table B.1: Computation times for different number of customers in CPU seconds for the logic-
based Benders decomposition algorithm with the tight default lower bound (5.3.4). Each instance
contains one depot and two recharge stations. The computation times are sorted by length. The
larger problem instances as the smaller, since they were too time consuming. was not tested as
many times. There are fewer instances solved for six node instances due to one of the six node
instances taking significantly longer time to solve.

customer nodes
4 5 6 7 8 9 10 11 12 13 14

0.150 0.150 0.200 0.350 3.26 144 159 586 231 90.1 16.4
0.160 0.230 0.620 0.360 6.34 4.62 2.21 853 46.7 104 81.0
0.170 0.250 0.690 0.520 6.42 6.76 3.20 20.9 488 252 1990
0.180 0.280 0.720 0.610 16.8 9.72 11.7 190 109 - -
0.180 0.290 0.990 0.720 20.6 10.0 26.5 2520 159 - -
0.220 0.290 1.61 0.800 32.6 20.6 154 - - - -
0.230 0.340 1.70 0930 62.5 28.0 1200 - - - -
0.260 0.400 1.88 1.11 567 36.1 - - - - -

0.290 0.400 2.05 1.16 - 93.8 - - - - -
0.300 0.430 242 1.17 - 142 - - - - -
0.310 0.440 243 1.43 - 190 - - - - -
0.310 0.440 255 147 - 707 - - - - -

0.320 0.440 276 1.50 - - - - - - -
0.330 0.450 2.81 1.61 - - - - - - -
0.330 0460 4.36 1.70 - - - - - - -
0.340 0480 443 1.70 - - - - - - -
0.350 0.500 5.12 1.79 - - - - - - -
0.360 0.510 7.53 1.82 - - - - - - -
0.390 0.510 16.0 1.86 - - - - - - -
0.460 0.520 18.6 1.87 - - - - - - -
0.470 0.530 72.5 1.88 - - - - - - -

0.480 0.540 - 1.91 - - - - - - -
0.490 0.540 - 2.00 - - - - - - -
0.510 0.550 - 2.04 - - - - - - -
0.530 0.560 - 2.06 - - - - - - -
0.530 0.560 - 2.06 - - - - - - -
0.550 0.580 - 2.13 - - - - - - -

Continued on next page

61

APPENDIX B. COMPUTATION TIMES

4 5 7 9 10 11 12 13 14
0.560 0.590 2.16 - - - - - -
0.570 0.630 2.30 - - - - - -
0.570 0.650 2.39 - - - - - -
0.590 0.660 2.52 - - - - - -
0.610 0.670 2.67 - - - - - -
0.620 0.680 2.82 - - - - - -
0.630 0.710 2.86 - - - - - -
0.700 0.760 2.88 - - - - - -
0.710 0.880 2.88 - - - - - -
0.730 0.910 2.93 - - - - - -
0.730 0.910 3.06 - - - - - -
0.730 0.940 3.07 - - - - - -
0.730 1.00 3.09 - - - - - -
0.740 1.06 3.47 - - - - - -
0.750 1.08 3.55 - - - - - -
0.780 1.11 3.55 - - - - - -
0.790 1.13 3.58 - - - - - -
0.790 1.14 3.61 - - - - - -
0.800 1.27 3.96 - - - - - -
0.800 1.28 4.04 - - - - - -
0.800 1.33 4.17 - - - - - -
0.810 1.37 4.22 - - - - - -
0.830 1.40 4.47 - - - - - -
0.840 1.40 4.90 - - - - - -
0.840 1.42 5.00 - - - - - -
0.850 1.48 5.00 - - - - - -
0.870 1.53 5.05 - - - - - -
0.890 1.53 5.35 - - - - - -
0.920 1.69 5.40 - - - - - -
0.960 1.72 5.48 - - - - - -
1.00 1.78 6.02 - - - - - -
1.02 1.84 6.07 - - - - - -
1.04 1.89 6.68 - - - - - -
1.09 1.96 7.17 - - - - - -
1.10 2.01 7.37 - - - - - -
111 2.01 7.81 - - - - - -
1.18 2.07 7.85 - - - - - -
1.23 2.07 7.89 - - - - - -
1.24 212 7.97 - - - - - -
1.27 2.35 8.16 - - - - - -
1.29 2.38 8.78 - - - - - -
1.33 243 8.94 - - - - - -
1.38 2.46 9.41 - - - - - -
1.40 2.52 9.63 - - - - - -
144 2.66 10.4 - - - - - -
1.44 2.68 11.0 - - - - - -

Continued on next page

62

APPENDIX B. COMPUTATION TIMES

4 5 6 7 8 9 10 11 12 13 14
150 270 - 114 . - - _ _ _ i
152 279 - 119 . - ;] _ _ -
153 279 - 121 _ -] _ - _ _
157 280 - 123 - - - - _ _ _
157 303 - 135 - - : - _ _ _
1.62 307 - 148 - - ;] _ _ -
1.66 314 - 154 . - ;] _ _ _
1.69 331 - 174 - -] _ - _ _
171 358 - 209 - - - - _ _ _
172 38 - 234 - -] _ _ _ _
177 421 - 244 . - ; ; _ _ _
1.84 446 - 251 . - ;] _ _ _
188 453 - 260 - - - - _ _ _
190 468 - 333 - - - - _ _ _
197 483 - 358 - - - - _ _ _
2.16 497 - . - - - _ _ _ _
230 497 - . - - - - _ _ _
233 6.04 - - : - - _) _ _
255 814 - - - - _ _ _ _ _
2.93 11.9 - - - -] _ _ _ _
3.26 15.5 - - - - ; _ _ _ _
3.48 209 . . - - - . _ _ _
3.50 24.2 - - : - - _) _ _
561 41.5 § . - -] _ - _ _

- 123 - - - - - - - - -

63

Alternative Proof of Lemma 3.5.2

This chapter contains a different way to prove Lemma 3.5.2. Here, we instead consider a more
general statement than in 3.5.2.

Lemma C.1. Let f: X — R be such that max,cy f(x) exists and is attained for some x € Y.
Then f(x) > 0 implies x ¢ Y if and only if max,ecy f(x) <O0.

Proof. The general structure of the lemma is
(A— B)+— C.
By contraposition, an equivalent statement is
(=B — —A) «— C,

or, explicitly, that € Y implies f(x) < 0 if and only if max,cy f(z) < 0. This statement is
trivially true since the maximum of f over Y is assumed to be attained. O

Lemma 3.5.2 is now straightforward to prove.

Proof of Lemma 3.5.2. Let X = {0,1}" x [0, hyp1] X - - x [0, hy] and Y be the subset of X such
that x; =0 for j € Jy and z; =1 for j € Jy. In other words, Y = {z € X | =C}}. Let

fl@) =Y ajz; —a.

jeJ

The result then immediately follows as an application of Lemma C.1. O

65

	Abstract
	Contents
	Introduction
	Problem Formulation & Project Aim
	Limitations
	Outline of Thesis

	Literature study
	Overview of Vehicle Routing Problems
	Benders Decomposition and Applications to VRP

	Theory
	Linear and Integer Linear Programming Preliminaries
	Linear Programming, Duality and Sensitivity Analysis
	Mixed Integer Linear Programming and Branch-and-Bound
	A Branch-and-Bound Example
	The Benders Decomposition Algorithm

	Inference Duality
	The Inference Dual of a Linear Program

	The Logic-Based Benders Decomposition Algorithm
	Logical Clauses and Resolution
	Resolution Example

	An LBBD Method for Mixed binary Linear Programming
	Surrogate Inequalities
	Sensitivity Analysis

	Mathematical Formulation of the Problem
	A Mixed Binary Linear Optimisation Model
	A Reformulation of the Mixed Binary Linear Model

	Method
	Linear Programming Subproblems
	The Time Window Subproblem
	The Cargo Subproblem

	The Battery Charge Distribution Subproblem
	Default Lower Bounds
	The Master Problem
	Algorithm

	Numerical Tests and Results
	Implementation Details
	Test Data
	Test Setup
	Test Results and Algorithm Performance
	On the Strength of the Logic-Based Benders Cuts

	Discussion
	Summary of Results
	Further Research
	Minor Improvements
	Structural Improvements to the Benders Algorithm

	Conclusion

	Bibliography
	Problem Data for Test Instance P6
	Computation Times
	Alternative Proof of Lemma 3.5.2

