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Using pre-learned semantic representations of biomedical concepts
for analyzing electronic medical records
TOBIAS SUNDELL
Department of Electrical Engineering
Chalmers University of Technology

Abstract
With the increasing availability of electronic medical record data, machine learning
methods have been developed to analyze this data. Such methods can for example
be used to predict a patient’s diagnoses or if the patient’s state will deteriorate in
the near future. This thesis investigates the benefit of using pre-learned semantic
representations of biomedical concepts when making such predictions. The seman-
tic representations are pre-learned from sources other than the analyzed medical
records, such as scientific articles. Since concepts tend to retain their semantics
across languages, this method has the advantage of being language-independent.
Three different machine learning models are used to predict in-hospital mortality
and early or unplanned hospital readmission. The models are logistic regression,
random forest, and artificial neural networks. The predictions are made on patients
from two data sets: an English data set with intensive care unit patients, and a
Swedish data set with addiction care patients. Models using semantic representa-
tions are compared against baseline models that did not. The results show that
the baseline models outperform the models using pre-learned semantic representa-
tions. Thus, unless a principally different method of using pre-learned semantic
representations than the method employed in this thesis is used, there seems to be
little promise in using semantic representations of biomedical concepts for analyzing
electronic medical records.
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1
Introduction

Health care systems are increasingly being digitized. Nowadays most health care
providers store patients’ medical records electronically, and efforts are being made
to expand the use and communication of such records (e.g. in the USA [1], and
the EU [2]). These records can contain both short-term information, such as vital
sign measurements and lab test results, and long-term information, such as diag-
noses and prescriptions. The adoption of electronic records has been deemed to
improve decision-making, decrease the number of medical errors, and improve com-
munication both with patients and other health care providers [3]. Apart from
these benefits such records furthermore allow for uses that would be impossible with
paper-based records, such as large-scale data mining, information extraction, and
artificial intelligence decision-support systems.
One area of research exploiting this increase in available patient data is predicting
unknown health-related information of patients using machine learning. These might
be predictions regarding a patient’s diagnosis, how long a newly admitted patient
will need to stay in a hospital, or if a patient’s state will rapidly deteriorate in the
near future. Such predictions could support decision-making and avoid errors, and
improve both patient care and the utilization of resources.
Machine learning methods are known to improve as more data becomes available.
However, since electronic medical records contain patients’ private information, gain-
ing access to large amounts of such records is often an obstacle when producing
machine learning models. The available data might be limited not only to a specific
hospital but to single departments within the hospital. A way to improve predictions
under these circumstances is to extract knowledge from sources other than confiden-
tial patient records, but which can still be useful when predicting patient outcomes.
This is called transfer learning. For instance, electronic medical records contain
biomedical concepts such as diagnoses, symptoms, and pharmacological drugs, and
it seems likely that such concepts are very important for making predictions about
what will happen to the patient. Instead of learning what these concepts mean
only from the medical records, it is possible to learn this from other sources, such
as scientific articles, and then transfer that knowledge to the problem of predicting
patient outcome. Such "learned meanings" are called semantic representations. It
would furthermore be advantageous if such transfer learning methods work across
languages, since most of the available data are in English.
Previous work has been done on learning the meaning of biomedical concepts [4],
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1. Introduction

and some work has been done on utilizing this knowledge for predicting patient
outcome [5]. This work showed that transferring knowledge of biomedical concepts
to the problem of predicting patient outcome only had modest benefits. During the
years since publication, however, progress has been made in extracting knowledge
of biomedical concepts, which warrants testing transfer learning with this improved
knowledge. Furthermore, no work has been done on transfer learning to other lan-
guages.

1.1 Purpose and Scope
The purpose of this thesis is to investigate if predictions on patient outcome using
machine learning can be improved by using pre-learned semantic representations of
biomedical concepts. In particular, the benefits of using semantic representations
learned from sources in one language used on medical records in another language
are investigated. A major contribution of the thesis is the development of methods
for transfer learning across languages. Although the data sets used in the thesis are
in two particular languages, the methods should be relatively simple to adapt to
other languages. The thesis expands on previous work in the following ways: (1)
it uses improved semantic representations of biomedical concepts, (2) it develops
methods of transfer learning to other languages, (3) it uses partly different data
sets, and (4) it employs partly different machine learning models.
The purpose is achieved by testing two different pre-learned sets of semantic rep-
resentations of biomedical concepts on an English data set containing data about
patients in intensive care, and on a Swedish data set containing data about patients
in addiction care. Three kinds of machine learning models are used: (1) logistic re-
gression, (2) random forests, and (3) simple artificial neural networks. The models
are used to predict in-hospital mortality and unplanned or early readmission. In ad-
dition to the models using semantic representations, several similar baseline models
will be used for comparison. In particular, a model that uses biomedical concept
without the pre-learned semantic representations will be used. If the models using
semantic representation perform better compared to the other models on the data
sets, this would indicate that semantic representations do improve performance on
similar predictive tasks on similar data sets.
The scope of the thesis is limited by the following factors:

• Relatively simple and fast models will be used. The goal is not to achieve
state-of-the-art performance, but to compare how similar models perform given
different input data.

• The study is limited to the two data sets (MIMIC-III [6] and a proprietary
data set from Sahlgrenska University Hospital).

• The models will not necessarily be directly applicable to clinical settings. For
example, discharge notes are used when predicting if a patient will be read-
mitted shortly after discharge. But if the patient has already been discharged,
the usefulness of the information that the patient is likely to be readmitted
might be diminished, since it might have been important when making the
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1. Introduction

decision whether the patient should be discharged or not.

1.2 Thesis Outline
The thesis is divided into the following parts:

• Chapter 2 introduces the theory the rest of the thesis is based on. It explains
(1) electronic health and medical records, (2) machine learning and the types of
models used in the thesis, (3) natural language processing, (4) transfer learning
and the relevant techniques for transfer learning, and (5) common practices
and considerations when training machine learning models. The chapter ends
with a more in-depth treatment of the relevant previous work than was given
in this chapter.

• Chapter 3 describes the methods used in the thesis. It consists of (1) how the
biomedical concepts are extracted from free-text and how they are embedded
using the pre-learned semantic representations, (2) a description of the data
sets used, and (3) the models used to make predictions on the data sets.

• Chapter 4 shows the results of extracting concepts and making predictions on
the data sets. It also includes a discussion of these results.

• Chapter 5 contains the most important conclusions that can be drawn from
the thesis.
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2
Theory

This chapter presents the theory required for the rest of the thesis. Section 2.1 de-
scribes Electronic Medical Records (EMRs) and Electronic Health Records (EHRs),
what they are and how they are being used. Sections 2.2-2.4 describe relevant meth-
ods of machine learning, Natural Language Processing (NLP), and transfer learning,
respectively, both in general and specifically in relation to EMRs. Section 2.5 dis-
cusses the relevant practices and techniques used to train machine learning models;
and finally section 2.6 describes relevant previous work on analyzing EMRs using
methods similar to those in this thesis.
The book [7] is the main source for the key machine learning concepts presented in
this chapter.

2.1 Electronic Medical Records and Electronic
Health Records

EMRs and EHRs are variously defined and sometimes used interchangeably. The
definitions given below are the ones that will be used in this thesis.
An EMR stores information regarding a patient’s medical history from a single
health care provider (for example a hospital). It can contain many different kinds of
information. Examples include the patient’s diagnoses, drug prescriptions, results of
lab tests, medical images, and hand-written clinical notes. The kinds of information
produced can differ between departments. For example, an Intensive Care Unit
(ICU) continually produces measurements of values signifying the patient’s present
state, while a psychiatric department does not. Different health care providers can
have different EMR systems, collecting different kinds of information and using
different formats. Hence the systems are not necessarily interoperable.
An EHR stores a subset of information from a patient’s EMRs and is intended
to contain more long-term health information and to be used across health care
providers. For instance, short-term lab tests results should not be included, but
diagnoses should. The EHR should contain all relevant health history of a patient.
EMRs and EHRs have been increasingly adopted by health care providers during the
last decades. The simplest implementations of electronic records replace older paper-
based records and facilitate storage and communication of such records. Electronic
records have many potential advantages, such as the possibility of storing larger
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2. Theory

amounts of information automatically and in real-time. However, the adoption of
electronic records has encountered several obstacles, and while many hospitals have
more or less advanced EMR systems, work is still being done to establish standards
for EHRs [2].
Because of the huge and increasing amounts of EMR data for every patient, it is
not feasible to manually inspect and analyze anything but small parts of it. Thus,
automatic analysis of EMRs using machine learning has become a very active field
of research.

2.2 Machine Learning
Machine learning has been defined in various ways. One illuminating definition,
which will be adhered to in this thesis, is: "a set of methods that can automatically
detect patterns in data, and then use the uncovered patterns to predict future data,
or to perform other kinds of decision making under uncertainty" [7]. The data from
which the machine learning method learns to detect patterns is called training data.
A simple example of a machine learning algorithm is linear regression. In this case
the training data is N d-dimensional input vectors xi ∈ Rd, each with a correspond-
ing output yi ∈ R, where 1 ≤ i ≤ N . Each dimension of the input data is called
a feature. The objective is to fit a hyperplane f(xi) = ŷi (i.e. find the hyperplane
parameters) such that the total squared error ∑N

i=1(f(xi) − yi)2 is minimized. In
the special case d = 1, this is simply fitting a line to a set of 2-dimensional (x, y)
points, and is illustrated in figure 2.1. Thus, using the training data xi a mathemat-
ical model f(x) is constructed (the hyperplane), which can then be used to make
predictions ŷ = f(x′) for previously unseen data x′.

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

y

Noisy data

Fitted line

Figure 2.1: Example of a linear regression. The data are sampled from y = x+ ε,
where ε is normally distributed noise with mean 0 and standard deviation 0.1.

Machine learning has traditionally been divided into the following approaches:
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• Supervised learning learns a mapping y = f(x), where each training input
xi has a known output yi. Linear regression is an example of supervised
learning.

• Unsupervised learning learns how to separate the input samples xi into
different groups based on their positions relative to each other in the d-
dimensional space. In this approach, the input samples to do not have corre-
sponding known outputs (labels) yi.

• Reinforcement learning learns to adapt a model to a dynamic environment
by getting positive and negative rewards from the environment as a response
to the model behavior.

The only approach relevant to this thesis is supervised learning.
In supervised learning, the output y can either be continuous, i.e. y ∈ R, or a discrete
set of classes, i.e. y ∈ {1, 2, . . . , C}. The former case is called a regression problem,
while the latter is called a classification problem. In this thesis only classification
problems will be discussed and, for simplicity, only binary classifications problems,
i.e. y ∈ {0, 1}. The machine learning algorithms used, logistic regression, Artificial
Neural Networks (ANNs), and random forests, are described in the following sections
in the case of binary classification problems.

2.2.1 Logistic Regression
Logistic regression is very similar to linear regression, except instead of predicting
a real value y ∈ R from the input x it predicts the probability that x belongs to a
certain class. In the binary classification case, the probability can easily be used to
compute the estimated class ŷ = {0, 1} by establishing a decision boundary using a
threshold θ:

ŷ =

0 if p(y = 1) ≤ θ

1 if p(y = 1) > θ
. (2.1)

A common threshold is θ = 0.5.
The model used to predict p(y = 1) is based on a linear combination of x: w0 +
w1x1 + w2x2 + · · · + wnxn, where wi are model parameters to be learned. If an
element x0 = 1 is added to x it can be written more succinctly as wT x. To ensure
that this linear combination produces a probability 0 ≤ p(y = 1) ≤ 1, it is limited
to the interval [0, 1] using a sigmoid function σ(x) = 1

1+e−x , so that

p(y = 1) = σ(wT x) . (2.2)

An illustration of a 1-dimensional fitted logistic regression model with decision
boundary at θ = 0.5 is shown in figure 2.2. All the samples to the left of the
decision boundary are predicted to belong to class 1, and everything to the right to
be class 0.
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Figure 2.2: Example of a logistic regression.

The model is fitted to the training data by minimizing an error or loss function.
Logistic regression uses the cross entropy loss function. Its derivation and motivation
is beyond the scope of this thesis (for details see e.g. [7]). In the binary case, letting
pi = p(yi = 1) = σ(wT xi), it has the equation

L(w) =
N∑

i=1
(yi log(pi) + (1− yi) log(1− pi)) . (2.3)

An optimization method is then used to find the minimum of this loss function, i.e.
min

w
L(w). The most commonly used optimization methods for logistic regression

are so-called quasi-Newton methods, which are all based on Newton’s method.
Newton’s method iteratively finds an optimum of a twice-differentiable function. At
an iteration k, an optimal parameter estimate wk is used to produce an improved
estimate wk+1 using the equation

wk+1 = wk −
∇L(wk)
∇2L(wk) (2.4)

where ∇ denotes the gradient of a function, and ∇2 denotes the Hessian. Usually
the method is stopped either after a maximum number of iterations kmax or when
the difference between iterations falls below some selected tolerance ε, i.e. when
|L(wk+1)−L(wk)| < ε. The quasi-Newton methods differ from Newton’s method in
that they approximate the Hessian ∇2L(wk) instead of calculating it directly since
this is a computationally intensive operation for large d.

2.2.2 Artificial Neural Networks
There are many different kinds of ANNs. The only kind that will be considered here
is feed-forward, fully-connected networks.
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2. Theory

An ANN consists of artificial neurons. An artificial neuron is a simple mathematical
function loosely modeled on biological neurons. It takes a d-dimensional vector
x ∈ Rd as input, and outputs a single number y ∈ R. Internally it performs a linear
combination of the input x, adds a bias term, β, and applies a so-called activation
function f to the result. Expressed mathematically,

y = f(wT x + β) . (2.5)

The activation function could be anything, but common ones are Rectified Linear
Unit (ReLU), tanh and sigmoid functions. Clearly, if the activation function is a
sigmoid, the artificial neuron is equivalent to logistic regression.
ANNs consists of many neurons. In feed-forward networks, the neurons are organized
in sequential layers, and a neuron in one layer only has connections to neurons in
the next layer; no connections between neurons in the same layer or between non-
neighboring layers are allowed. An illustration is shown in figure 2.3. In a fully-
connected network, each neuron in a layer is connected to every neuron in the next
layer. The illustrated network is fully-connected. The first layer is called the input
layer. It does not consist of neurons but of the current input vector x. The last
layer is the output layer. Any layers in between the input and output layers are
called hidden layers. There can be an arbitrary amount of hidden layers as well as
an arbitrary number of neurons in any layer.

·	·	·

Input layer Output layerHidden layer 2Hidden layer 1

Figure 2.3: Example of an ANN. The squares represent input features, circles
represent neurons, and the arrows represent connections between them. There can
be any number of hidden layers.

To produce an output from a given input, the values of subsequent layers are fed
forward to the next layer consecutively, and the value of the output layer is taken as
the output of the whole network. If a network is used for binary classification, the
output layer generally consists of a single neuron with a sigmoid activation function
(thus essentially performing a logistic regression on the output from the previous
layers). This ensures that the output p ∈ [0, 1] can be interpreted as the probability
that the input x belongs to class 1.
To train an ANNs a loss function to be minimized has to be defined. For binary
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2. Theory

classification binary cross entropy (the same as for logistic regression) is commonly
used. If there are N vectors of input xi with corresponding known classes yi and
the ANN outputs predictions pi, the loss function is

L(W) =
N∑

i=1
(yi log(pi) + (1− yi) log(1− pi)) (2.6)

where W denotes all model parameters (i.e. the neurons’ weights and biases). The
loss function is usually optimized using gradient descent methods (such as Adam
or RMSprop), a method very similar to the Newton’s method described above.
Gradient descent takes steps in the descent direction, using the equation

Wk+1 = Wk − γ∇L(Wk) (2.7)

where γ is the learning rate. It is often selected experimentally. A too large learning
rate might hinder convergence, while convergence might be too slow with a too small
learning rate. Many extensions to the simple gradient descent method have been
developed, usually to facilitate convergence, but will not be discussed here.
Since calculating the gradient for each parameter in W separately is very computa-
tionally intensive, the backpropagation algorithm is used instead. Backpropagation
takes advantage of the feed-forward structure of the network, since in that case the
gradient for a neuron in layer l depends only on the gradient of the neurons in layer
l + 1. Thus, in backpropagation, the gradients are calculated sequentially from the
output layer to the input layer, instead of calculating the gradient for a specific
variable directly from the loss function.
A feed-forward fully-connected ANN is a universal function approximator: an ar-
bitrarily complex ANN can approximate any continuous function with arbitrarily
small error, where the error can be decreased by increasing the network complexity
[8]. Of course, available computational resources and training data limits the possi-
ble network complexity in practice. A suitable network architecture that produces
accurate predictions has to be found experimentally.

2.2.3 Random Forest
Random forest is a machine learning method based on decision trees. As the name
suggests, a random forest is a multitude of different decision trees. In the binary
classification case, each decision tree produces a probability that an input vector x
belongs to class 1. The forest then produces the final probability estimate as the
average of the trees’ estimates. How decision trees work and how a forest is grown
using the training data will be discussed in the following sections.

2.2.3.1 Decision Trees

A decision tree is most easily described using a figure. An example is shown in figure
2.4. To classify the input vector x as either class 0 or class 1, the tree is followed

10



2. Theory

from the root node to a leaf node according to the condition at each non-leaf node.
Each leaf node has an estimated probability that the input belongs to class 1. When
such a node is reached this probability is the output of the decision tree. A decision
tree is not required to use all input features x1, x2, ..., xd.

yes no

< 1.3�1

yes no

≥ 0.1�5 0.7

yes no

< 0.7�10.2

0.9 0.5

Figure 2.4: Example of a decision tree. Ellipses represent non-leaf nodes, squares
represent leaf nodes. The condition shown in each non-leaf node determines which
path is followed. The probability shown in each leaf node is the output of the
decision tree if that node is reached.

2.2.3.2 Growing a Forest of Decision Trees

Growing an optimal decision tree is an NP-complete problem. Hence, the algorithms
used to grow decision trees are approximations. It is common to use a greedy
algorithm for this. The algorithm builds the tree recursively from the root, and at
each node selects the condition that is currently optimal (although not necessarily
optimal for the whole tree). Optimality is measured either as maximum information
gain or minimal expected error rate (Gini impurity). At each node, the training data
are split according to the node condition so that the children are created using only
the split data. Decision trees grown this way however tend to have less accuracy
than other models and to be unstable to small changes in the training data. Growing
many decision trees as part of a forest is a way to solve both problems.
In a Random Forest, many trees are grown and their predictions are averaged.
Randomness is introduced to ensure that the trees are different from each other, since
given the same data the greedy algorithm would produce identical trees. Random
Forests grow individual trees based on random subsets of both the training data and
the training data features. Since the trees get to see different parts of the training
data, they will learn to identify different patterns. While each pattern might not be
as strong a predictor as the strongest patterns in the training data, taken together
they often constitute an accurate and robust classifier.
All the discussed machine learning methods take d-dimensional vectors of numbers
as input. Text, composed of words and punctuation, cannot be readily represented
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as such vectors. The field of NLP has developed methods of representing text as
vectors.

2.3 Natural Language Processing
Many techniques and methods for NLP have been developed. Two of the simplest
ones are one-hot word vectors and bag of words. Another method is word embeddings.

2.3.1 One-Hot Word Vectors
A one-hot vector is a vector of n binary numbers x ∈ {0, 1}n where exactly one
element is 1 and the others are 0. Such vectors can be used to represent individual
words. If n is the number of unique words in a corpus of texts T and each word has
a unique index 1 ≤ i ≤ n (e.g. "heart" might correspond to i = 5), the word with
index i can be represented by the vector with xi = 1 and xj 6=i = 0. The vector x can
readily be used as input to the machine learning methods described above. Several
one-hot vectors can be combined to produce a bag of words.

2.3.2 Bag of Words
Bag of words represents a specific text t in a set of corpus T by a vector x ∈ {0, 1}n.
In contrast to one-hot vectors, many elements can have the value 1. The elements
in x are determined as

xi =

1 if word i is in t
0 otherwise

. (2.8)

Clearly, however, the number of instances of a word and word order are not repre-
sented by bag of words. Also, n might become very large and some words might be
present in all texts of T , so several methods have been developed to deal with these
problems. Generally, stop words such as "a", "it", "the", "from", etc. are removed
from the texts. Words can be lemmatized, i.e. replaced with their canonical forms,
so that "sleeping" becomes "sleep", "cars" become "car", etc.
Of course, the same principle used in bag of words can be used for entities other
than words. For example, if a set of texts contain biomedical concepts, the concepts
can be extracted to create bags of concepts in the same fashion.

2.3.3 Word Embeddings
Another way is to represent the words using so-called embeddings, with vectors
x ∈ Rd. Embeddings can be created in different ways. The simplest way is using
random embeddings, where each word is assigned a random point in Rd-space, and
d is arbitrary. The primary benefit of using randomized word embeddings over one-
hot word vectors is a possible reduction of dimensionality if d < n. Randomized
word embeddings, however, are not used to represent whole texts.
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It is also possible to compute word embeddings using a data set. This is a machine
learning problem in itself. The data set from which the embeddings are computed
need not be the data set containing the words to be embedded, making word em-
beddings widely used in NLP transfer learning methods.

2.4 Transfer Learning
Transfer learning refers to the practice of transferring knowledge learned by solving
a task (the source task) on a data set (the source data set) to solving another task
(the target task) on another data set (the target data set). For example, a model
trained to recognize cats in images will probably have learned patterns useful for
recognizing dogs. Transfer learning has garnered lots of interest and been used in
many different settings the past decades [9]. Two methods of transfer learning for
NLP will be discussed in this section: word2vec and the newer Bidirectional Encoder
Representations from Transformers (BERT).

2.4.1 word2vec
word2vec is a technique to construct vector representations (embeddings) of words
[10]. It uses either of two source tasks: Continuous Bag Of Words (CBOW) or
Continuous Skip-Gram, on a source data set consisting of texts. CBOW is the task
of predicting a word given a bag of words containing its surrounding words. For
example, given the sentence "the cat is on the mat", the task could be to predict the
word "cat" given a bag of the words "the", "is", "on", and "mat" (assuming that stop
words have not been removed). Skip-gram, conversely, predicts the surrounding bag
of words given a single word. For example, the task could be to predict the bag of
words "the", "is", "on", and "mat", from the word "cat". Thus, words which occur
in the same contexts will get similar embeddings. These tasks are achieved using a
feed-forward fully-connected ANN with one hidden layer. Which of the two tasks
achieve the best performance has to be found experimentally. After the network has
been trained, the embeddings are extracted from the parameters of the network.
It was found that word2vec was able to learn both syntactic and semantic relation-
ships between words. When trained on large amounts of general text, it was for
instance able to learn that

vector(”biggest”)− vector(”big”) + vector(”small”) ≈ vector(”smallest”)

and

vector(”king”)− vector(”man”) + vector(”woman”) ≈ vector(”queen”) .

Of course, the techniques used by word2vec are applicable to other kinds of entities
than just words. As long as an entity occurs in a context, the word2vec approach is
applicable. In this thesis, word2vec embeddings of biomedical concepts will be used,
which have learned biomedical relationships.
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2.4.2 Bidirectional Encoder Representations from
Transformers

BERT is another technique that can be used for transfer learning in NLP [11].
In contrast to word2vec, BERT is not primarily designed to produce word vector
representations, although such word vectors can be extracted from a trained BERT
model. Rather, an ANN is trained on the source task on the source data set, and
then the whole ANN is transferred to the target task on the target data set. Only
the output layer is replaced by a task-specific output layer. The knowledge learned
from the source data is encompassed by the ANN parameters.
BERT is trained on two source tasks. In the first a fraction of the words in a sentence
are masked and the task is to predict which those words are. The second task is
to predict the next sentence after a given sentence. Thus, BERT is designed to be
trained on general text, and is not suitable to train using only concepts.
The BERT ANN without an output layer is shown in figure 2.5. It consists of an
embedding layer (which produces embeddings suitable for the rest of the ANN), and
a number of transformer encoder layers. The transformer encoder layer learns to
encode the inputs. An output layer that makes use of the output of the transformer
encoder layers has to be added for each specific task. BERT does not consist of
only fully-connected layers but is based on transformers [12]. It is is a much more
complex model than the relatively simple word2vec, and the details will be omitted
here.

Transformer
encoder

Transformer
encoder

Transformer
encoder

Embedding
layer

Token 1

Token 2

Token n

Output 1

Output 2

Output n

··· ···

Figure 2.5: The BERT ANN architecture. There are a variable number of trans-
former encoder layers. Output from the transformer encoders should be fed into a
task-specific output layer.

BERT takes tokens as input, where tokens are either words or sub-word sequences
(for example "playing" could be represented by the tokens "play" and "##ing"). All
tokens in the sentence are used when encoding a single token, resulting in contextu-
alized encodings, i.e. a token will have different encodings when occuring in different
contexts. BERT does not have the same limitations as word2vec does: it takes both
a larger context and word sequence into account.
Although not designed to produce fixed word vector embeddings, the authors note
that it is possible to extract token embeddings from the output of the transformer-
encoder layers [11]. This is done by inputting only the tokens for the target word
to the ANN and extracting the output of one or several encoder layers. Through
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experimentation it was found that in a network with 12 encoder layers the concate-
nated output of the last four layers yields the best embeddings, and the sum of the
last four layers perform almost as good while benefiting from a large reduction in
dimensionality. Embeddings of sequences of tokens can be procured by taking the
mean value of each feature of the token embeddings.
Some of BERT’s power is lost when a fixed sequence embedding is extracted since
the context is omitted. However, because of the different source tasks, model com-
plexity, and the number of surrounding words used when training the encoders, such
extracted embeddings can be expected to perform better than similar word2vec em-
beddings [11].

2.5 Machine Learning Training Practices
In this section some common practices used to solve challenges posed when training
machine learning models are discussed.

2.5.1 Data Set Selection
One of the most important aspects determining the performance of a machine learn-
ing method is the amount and quality of available data. A machine learning model
learns to make accurate predictions by detecting patterns in the data. Obviously
those patterns must be present in the training data and be distinguishable from
noise. The performance of machine learning models are often primarily limited by
the available data.
Training data should be collected uniformly from the correct distribution. For ex-
ample, if the problem is to recognize photographs of cats, photographs of all kinds
of cats, taken from all kinds of different distances, under different lighting condi-
tions and camera rotations, etc. would be the ideal, although probably impossible
in practice. A sample of common kinds of cat photographs would have to suffice,
which means that the model likely would have worse performance on uncommon
kinds of cat photographs.
In the health care case, patient data are often only available from a single or a few
hospitals and departments. Data from different hospitals and departments will have
more or less different patterns, and models trained on data from one source will not
necessarily be generalizeable to data from another source. However, so far research
has mostly focused on developing models for data from only one or a few sources
[13].

2.5.2 Overfitting and Underfitting
Overfitting occurs when an unsuitably complex model is fitted to noisy data such
that the model learns the noise and not the patterns in the process that generated
the data. An example of this is shown in figure 2.6a, where a 5th degree polynomial
is fitted to data sampled from a 2nd degree polynomial with added noise. While
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the error for the data used to train the model is low, the error for new samples is
expected to be large.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.5

1

1.5

2

2.5

3

y

(a) 5th degree polynomial.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.5

1

1.5

2

2.5

3

y

(b) 1st degree polynomial.
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(c) 2nd degree polynomial.
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(d) 5th degree polynomial with regular-
ization.

Figure 2.6: Example of overfitting, underfitting, and regularization. The blue
dashed curve is the original 2nd degree polynomial function, the blue crosses are
samples from the original function with added noise, the red lines are different
fitted polynomial models. (a) is an example of overfitting. (b) is an example of
underfitting. (c) and (d) are examples of good fits, considering the few samples.

Underfitting, conversely, occurs when an unsuitably simple model is fitted to data
generated by a process that is too complex for the model to fit. An example is
shown in figure 2.6b, where a 1st degree polynomial is fitted to data generated from
the 2nd degree polynomial with added noise.
Underfitting is mitigated by using a more complex model that can fit the data better.
Overfitting is mitigated by using more training data (which is more difficult to fit
to), simpler models, and/or regularization techniques. The latter two are illustrated
in figures 2.6c and 2.6d, respectively.
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2.5.3 Regularization
Regularization techniques attempt to limit the complexity of a model during train-
ing. A common technique is to add a regularization term to the loss functions,
imposing a penalty on the model complexity. For example, using the logistic regres-
sion loss function L(w) from section 2.2.1,

L′(w) = L(w) + λC(w) (2.9)

where λ is a regularization penalty parameter, and C(w) is some measure of com-
plexity. Two common measures of complexity are the `1 norm C(w) = ∑

i |wi|, and
the `2 norm C(w) =

√∑
i w

2
i , both of which treat parameter magnitude as a mea-

sure of complexity. These regularization techniques can also be used for ANNs, and
any other model that optimizes a loss function. Figure 2.6d illustrates fitting a 5th
degree polynomial to data sampled from a 2nd degree polynomial with added noise
using `2 regularization.
Random forests can be regularized by limiting individual tree complexity. Since
the trees can grow very complex, leading to overfitting, the growth of the trees is
commonly limited by one or more parameters.

• Maximum depth defines the maximum depth an individual tree is allowed
to have.

• Maximum leaf nodes defines the maximum number of leaf nodes an indi-
vidual tree is allowed to have.

• Minimum split size defines the minimum train data size that must remain
after a split. The idea is that the tree should not create rules specific to only
very small amounts of training data.

The number of trees in the forest is also a parameter. In most cases, the benefit of
more trees plateaus after a certain number and does not lead to overfitting. Thus,
this parameter only has to be set "large enough".
Another regularization technique is early stopping. This technique is applicable to
iterative training algorithms. Model complexity usually increases during the training
process, which thus goes from underfitting to overfitting. Early stopping stops the
training process at the iteration of peak performance.

2.5.4 Holdout Validation and Cross Validation
Because of the possibility of overfitting, if all available data are used to train the
algorithm, there would be no way to gauge model performance on new data, which
is generally much more important than performance on training data. Therefore,
parts of the available data are used for validation rather than training. Validation
is simply measuring the performance on this validation data to get an indication of
how well the model performs on data it has not been trained on.
The simplest method of getting validation data is using a fraction of the available
data, for example 0.1 or 0.15. This is called holdout validation. Usually validation
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data are sampled randomly from the available data. The data set should be large
enough to give statistically significant results.
Another method of validating a model is cross validation. In this method the avail-
able data are split into k parts (or folds) for k-fold cross validation. The model is
then trained and validated k times, each time using a different part for validating and
the rest for training. The final validation result is then taken as the mean of the k
different validations. Cross validation gives a better gauge of the model performance
on new data but requires more computation compared to holdout validation.
The validation data are used for model and hyperparameter (e.g. the λ regulariza-
tion parameter) selection. Because of this there is a risk that the final model is also
overfitted to the validation data. It is common practice, therefore, to also reserve a
fraction of the available data, called the test data set, for final testing of the model.
The test data set should never be used before the final testing in order to avoid
influence on model and hyperparameter selection.
Validation and testing of a model however requires a suitable metric, which in many
cases is not obvious.

2.5.5 Evaluation Metrics
The most suitable metric used to evaluate a model depends on what the model will
be used for. An obvious possible metric for training algorithms with a loss function
is the loss. However, this metric is often not very useful in practice. For classification
problems the accuracy is a more intuitive metric. It is defined as

Acc = Ncorrect

N
(2.10)

where Ncorrect is the number of correctly classified samples and N is the total number
of samples. Although simple and intuitive, accuracy is not always the most useful
metric. False negatives might be more important than false positives, or vice versa,
for instance.

Predicted
Actual Positive Negative

Positive Number of True
Positives (TP )

Number of False
Positives (FP )

Negative Number of False
Negatives (FN)

Number of True
Negatives (TN)

Table 2.1: Confusion Matrix.

The number of true positives, false positives, false negatives, and true negatives can
be visualized using a confusion matrix. It is illustrated in table 2.1. Interesting
metrics that can be derived from these numbers are positive predictive value or
precision
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PPV = TP

TP + FP
, (2.11)

true positive rate or recall

TPR = TP

TP + FN
, (2.12)

and false positive rate

FPR = FP

FP + TN
. (2.13)

Another commonly used metric is F1 score, which combines precision and recall:

F1 = 2× PPV × TPR
PPV + TPR

(2.14)

Since the models discussed outputs probabilities and not predictions directly, the
threshold θ (see section 2.2.1) used to determine predictions from the probabilities
can be varied. The Receiver Operating Characteristic (ROC) curve plots TPR
versus FPR as θ is varied. An example is shown in figure 2.7. A model guessing at
random corresponds to the straight line TPR = FPR. As a model improves over
random guessing, the curve gets stretched towards the top-left corner. Selecting a
specific threshold θ corresponds to picking a point on the curve, yielding a specific
trade-off between true positive and false positive rates. A perfect model reaches the
point at the top left, i.e. TPR = 1 and FPR = 0.
The ROC curve can be reduced to a single number by taking the Area Under Curve
(AUC) of the ROC. The random guess model has 0.5 ROC AUC. The higher the
number the better the model.
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Figure 2.7: Examples of ROC curves. The more the curve bends towards the
top-left corner, the better the ROC.

2.5.6 Data Standardization
Data standardization is translating and scaling of a data set so that it has mean 0
and variance 1. That is, if xij is feature j of sample i, µj = 1

N

∑N
i=1 xij is the mean

value of feature j of all N samples, and σ2
j = 1

N

∑N
i=1(xij − µk)2 is the variance of

feature j of all N samples, then each sample is transformed by

x′ij = xij − µj√
σ2

j

. (2.15)

Data standardization tend to facilitate convergence, and some machine learning
models assume that the data are standardized. Take for instance `1 regularization
for logistic regression, which penalizes the magnitude of the parameters (C(w) =∑

i |wi|). For simplicity, assume there is only one feature xi1, and hence one regres-
sion coefficient w1. The output of the model is then p(yi = 1) = σ(w0 + w1xi1). If
feature 1 is scaled by s, w1 has to be scaled by 1/s in order for the model to make
the same prediction (since (w1/s)xi1s = w1xi1). But this changes the magnitude of
w1 and thus of the penalty incurred by that feature by the regularization. Clearly,
a lower variance implies a higher regularization penalty for a feature. Thus, if `1

(or `2) is used, the data should be standardized so that all features have similar
regularization penalties.
The mean µj and variance σ2

j are calculated only on the training data set. This is
because the validation set (and test set) are supposed to represent unknown data of
which the mean or variance are not known. When validating, however, the validation
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set (and test set) are standardized using the mean and variance from the training
set.

2.5.7 Class Imbalance
It is not seldom the case that the classes in a classification problems are imbalanced,
that is, there is not a roughly equal number of samples for each class in the data.
In the following, assume there are two classes, and that class 0 have many more
samples than class 1. If the loss function is written as the sum of the loss of the
samples

L =
N∑

i=1
li (2.16)

where li is the loss of sample i, the total loss will clearly be lower if the model
prioritizes achieving lower mean loss for class 0 than for class 1. In extreme cases,
for example when 0.99 of the data are class 0 and 0.01 are class 1, the model might
simply learn to classify all samples as class 0. But in such cases it is probably of
more practical importance to find potential class 1 samples than achieving a total
high accuracy.
A simple way of alleviating class imbalance is adding a weight to each sample loss
li according to its class.

w0 = N

N0
w1 = N

N1

where N0 is the number of class 0 samples and N1 is the number of class 1 samples.
Then, if the losses are split into l0i for class 0 losses and l1j for class 1 losses,

L′ = w0

N0∑
i=1

l0i + w1

N1∑
j=1

l1j . (2.17)

Clearly, if both classes have the same mean loss m over all their samples, the con-
tribution to the total loss of each class is the same:

L′ = N
1
N0

N0∑
i=1

l01 +N
1
N1

N1∑
j=1

l1j = Nm+Nm (2.18)

In this sense the classes are balanced in the loss function, although not in the number
of samples.

2.6 Related Work
This section presents previous work relevant to the thesis subject. A lot of work
has been done in these areas so an exhaustive treatment is beyond the scope of the
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thesis. The focus will be on the most relevant previous work, especially that whose
results the thesis makes use of.

2.6.1 Biomedical Concept Embeddings
Many different biomedical concept embeddings have been produced, in various ways
and from various sources. A survey of word embeddings, including concept-only
embeddings, can be found in [4].
In the thesis two relatively recent ones will be used, both of which have achieved
good results on concept similarity evaluations. cui2vec [14] uses an approach similar
to word2vec to create concept embeddings from medical journals (PubMed), health
insurance claims, and clinical notes, which is a larger source data set compared with
other embeddings. ClinicalBERT [15] is a BERT model trained on general text
(Wikipedia and BookCorpus) and then on clinical notes (MIMIC-III). Although the
BERT model does not directly produce embeddings, embeddings from ClinicalBERT
can be extracted as described in section 2.4.2.

2.6.2 EMR Analysis
In recent years deep learning methods (commonly defined as neural networks with
many hidden layers) have been increasingly used to analyze EMRs, see [13] for
an overview. Compared to traditional machine learning methods, such as logistic
regression and random forests, deep learning generally achieves better results and
requires less feature engineering (i.e. manually determining which data features to
use as input to the models). Much of the work has been focused on how to combine
the different kinds of EHR data, such as measurements and clinical notes, in a single
model.
The previous work most similar to this thesis is [5], where first published word2vec
concepts embeddings from journal abstracts [16] were tested against concept embed-
dings calculated from the target data set, as well as against a bag of words baseline
and recurrent neural networks for predicting mortality, inpatient admission, and
future emergency room visits. They found that both kinds of concept embeddings
had similar performance and outperformed bag of words on small data sets (125,
250 and 500 patients) but that bag of words caught up and achieved similar or even
better performance on larger data sets (1000 or more patients). The pre-trained
concept embeddings used by this study however used a much smaller data set than
cui2vec, and did not use BERT, justifying this thesis’ purpose of testing more recent
concept embeddings for similar tasks and developing methods for applying them on
Swedish EMRs.

2.6.3 Named Entity Recognition
Named Entity Recognition (NER) is the field of recognizing named entities in un-
structured text and categorising them according to some set pre-defined categories.
Such categories can be geographical places, given names, physical objects, etc. In
a biomedical context they may be disease or disorder, symptoms, body parts, etc.
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Although NER is not directly relevant to the thesis as such, some NER systems
are based on identifying pre-defined biomedical concepts in unstructured text for
which the categories are known. Being able to identify biomedical concepts in text
is a pre-requisite for embedding the concepts and using them in machine learning
models.
Several medical NER systems are based on pre-defined lists of biomedical concepts.
Most such systems use lexical analysis, such as MetaMap [17] and its less accurate
but faster variant MetaMap Lite [18], and cTAKES [19]. While this approach often
yields relatively accurate results, it is relatively slow and the lexical analysis has to be
modified for every language. Another approach, employed by Narrative Information
Linear Extraction (NILE) [20], is to shallowly match concept phrases word-by-word.
The authors found that this approach can be orders of magnitude faster than the
lexical analysis approach while still yielding comparable results. It is also language
agnostic, requiring only language-specific dictionaries (although NILE additionally
incorporates semantic analysis which is language-specific).
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Methods

This chapter describes the methods used to evaluate the benefit of using concept
embeddings when analyzing EMRs. Although many parts of an EMR contain con-
cepts, such as lists of the patient’s diagnoses and prescriptions, the majority and
widest variety of concepts can be found in the clinical notes. Section 3.1 describes
how concepts were extracted from clinical notes and embedded, and how the embed-
dings were aggregated into a single fixed-length feature vector. Section 3.2 describes
the two data sets the analysis tasks were performed on. Finally, section 3.3 de-
scribes the models used and how they were trained. The code used for MIMIC-III
is publicly available1.

3.1 Concept Extraction and Embedding
This section describes the methods used to find and extract biomedical concepts in
Swedish and English text, and embed these concepts using pre-trained embedding
vectors. All text used was pre-processed such that punctuation was removed and
all characters transformed to lower case. First the Unified Medical Language Sys-
tem (UMLS) is introduced. UMLS has term-concept mappings and is used by the
subsequent methods.

3.1.1 UMLS
There exist many different medical coding standards and terminologies. Some are
specific to certain areas, such as diagnoses or drugs, others are more general. UMLS
[21] combines over 200 terminologies and provides tools for accessing them. The
terminologies are mainly in English but also in some other languages, including
Swedish. Different terminologies contain different terms and IDs for the same
concepts. UMLS provides a global Concept Unique Identifier (CUI) (of the form
"C1234567") for each concept, and contain mappings from terminology-specific IDs
to CUIs. Thus, the CUIs of the concepts in a clinical note can be found by matching
UMLS concept terms with the text of the clinical notes.
For English text, the concept terms from Systematized Nomenclature of Medicine
Clinical Terms (SNOMED CT) were used. It is "the most comprehensive multilin-
gual clinical healthcare terminology available" and designed to be used for EMR

1https://github.com/jrrr/emr-semantic-representations
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systems [22]. Both SNOMED CT’s Preferred Terms (PT) and Synonyms (SY) were
used.
For Swedish text, in addition to the Swedish translation of SNOMED CT the trans-
lations of Medical Subject Headings (MeSH) and International Classification of Pri-
mary Care (ICPC) were used, since the Swedish version of SNOMED CT is less
comprehensive than the English one. MeSH is primarily used for indexing and
searching medical documents. ICPC is primarily used for classifying data from
health care encounters. All available terms from these sources were used.

3.1.2 Finding Concepts in Text
The method of finding and extracting concepts from text must be fast enough to
handle gigabytes of clinical notes in a reasonable time. MetaMap and MetaMap
Lite (see section 2.6) were found to be much too slow. NILE’s string matching
approach would be significantly faster. However, since NILE also uses English-
specific semantic analysis to determine whether the concepts were e.g. negated in
the text or not, modifications would have to be made to adapt it to Swedish text.
It was furthermore hypothesized that, since it is not uncommon for clinical notes
to contain misspellings, accuracy could be improved by allowing slight misspellings,
which NILE does not support. Therefore a new, language agnostic concept finder
program was developed. It uses SymSpell2 to first attempt to correct misspelled
terms, followed by string matching using hash tables similar to NILE’s approach.
An overview of the program is shown in figure 3.1. The code is publicly available3.

UMLS Term-CUI
dictionary

Clinical
note

Spell
corrected
note

CUIs
SymSpell Concept term

matching

Matching algorithm

Figure 3.1: The concept finder program.

3.1.2.1 Matching Algorithm

The first part of the matching algorithm consists of running SymSpell to correct the
spelling of the clinical notes. SymSpell corrects the spelling of a text by replacing
unknown input words by words from a dictionary if they are similar enough. In this
case, the dictionary used contains the words from the concept terms. Similarity is

2SymSpell, https://github.com/wolfgarbe/symspell
3https://github.com/jrrr/conceptfinder
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measured as edit distance, i.e. the number of removals, insertions, or substitutions
of characters required to modify one word into another. For example, the edit
distance between "heart" and "heat" is 1. SymSpell has a running time that is
independent of the number of dictionary entries, giving a fast enough performance for
this application (see the SymSpell web page for more details). It supports frequency
counts for the dictionary entries, so that if multiple dictionary entries have the
same edit distance to the input word, the most frequent dictionary entry is used.
However, since in this case the frequencies of the concept terms are unknown, the
first entry with minimum edit distance is used. The maximum edit distance used
when correcting words is a parameter and could impact the performance of the
concept finder.
After SymSpell has corrected misspelled terms, concept term matching is performed
using a tree of hash tables. The tree is built using a dictionary containing concept
terms with corresponding CUIs. An illustration is shown in figure 3.2. The illus-
trated tree was created from 5 concept terms for 4 unique concepts: "heart attack",
"mycardial infarction", "diabetes", "diabetes insipidus", and "diabetes mellitus". The
matching algorithm proceeds as follows:

1. Start at the first input word, i← 1.
2. Starting at position i find the longest possible match in the hash table tree.

Let imatch be the last word of the match found.
• If there is no match, perform step 2 with i← i+ 1.
• If there is a match, remember the match and perform step 2 with i ←
imatch + 1.

3. When there are no more input words, return all remembered matches.

"heart"

"diabetes"

"attack"

"insipidus"

"mellitus"

C0011847

C0011849

C0011848

C0027051

"myocardial"

"infarction"

Figure 3.2: Illustration of the concept finder hash table tree. The boxes are
elements of hash tables, adjacent boxes belong to the same hash table. Boxes with
rounded corners are leaf nodes containing the CUI of the parent hash table entry, if
it has any.
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3.1.2.2 Term-CUI Dictionaries

UMLS specifies which semantic group(s) a concept belongs to. Many of the groups
(e.g. "Birds") are likely irrelevant when analyzing EMRs. Thus, only concepts
belonging to any of the following groups were added to both the English and Swedish
term-CUI dictionaries:

• Disease or Syndrome
• Sign or Symptom
• Pathologic Function
• Clinical Drug
• Pharmacologic Substance
• Antibiotic

For the Swedish dictionary an additional group was added, because the Swedish
EMRs are from a psychiatric department:

• Mental or Behavioral Dysfunction
Since words may be inflected in the clinical notes, the concept finder also sup-
ports word forms. For example, "heart" and "hearts" are two forms of the same
word. These word forms are specified when building the term-CUI dictionary. This
feature is likely more important for Swedish since the definite form is marked by
inflection where in English it is marked by article ("hjärtat" corresponds to "the
heart") and therefore is a more inflected language. Because of this and the lack of a
morphological lexicon containing English word forms this feature was only used for
Swedish.
SALDO [23] was used to lookup different word forms for the Swedish concept terms.
A table was created mapping each word to its set of word forms. For example, both
"heart" and "hearts" would be mapped to the set {”heart”, ”hearts”}. Then every
word of the concept terms were replaced with the corresponding set of word forms.
It should be noted that different words can have overlapping word forms. This,
however, is not allowed in the hash tree: each entry (word form) is only allowed to
have one hash tree child. Initially it was thought to be possible to simply merge
words with overlapping word forms, but this led to each word having on average
over 5000 forms. Therefore, as a quick fix, when generating the word form lookup
table, if a word form has been previously used for another word, that word form is
not used for the current word. While potentially slightly decreasing the number of
true positives it was deemed unlikely to increase false positives.

3.1.3 Extracting Embeddings from ClinicalBERT
The method of extracting embeddings from a pre-trained BERTmodel was described
in section 2.4.2. Embeddings were extracted for the same CUIs as in the cui2vec
pre-trained embeddings, in order to compare embedding quality and not CUI cov-
erage. To extract an embedding for a concept, a single concept term is required,
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while UMLS contains many terms for each concept. However, UMLS also contains
a ranking of preference for concept terms (MRRANK.RRF), and the highest ranked
concept term was used for each CUI. Following [15], embeddings were extracted
by taking the sum of the outputs of the last 4 encoder layers when given a concept
term as input. If the concept term consisted of several tokens, each with its own
embedding, the mean of the token embeddings was taken as the concept embedding.
An illustration of this process is shown in figure 3.3. The embeddings constructed
this way will be referred to as the ClinicalBERT embeddings.

C0011847 "dia"
"##betes"

(2.4, 5.2, 2.0)
(4.8, 0.4, 1.6) (3.6, 2.8, 1.8)

Find best concept
term and convert
to BERT tokens

Extract token
embeddings from

ClinicalBERT
Compute mean

embedding

Figure 3.3: Illustration of the embedding extraction process.

3.1.4 Aggregating Concept Embeddings
The concepts found and mapped to CUIs were embedded using both cui2vec and
ClinicalBERT embeddings. However, the models require fixed-length input, while
there is a variable number of concepts in the clinical notes, as well as a variable
number of clinical notes per hospital stay. The concept embeddings had to be
aggregated into a fixed-length vector. Following [5], the concept embeddings were
aggregated using element-wise min, max, and mean, concatenated together. The
authors found that this method of aggregating worked well. This is illustrated in
figure 3.4.

min

max

mean

Concept
embedding
vectors

Figure 3.4: Illustration of aggregating multiple concept embeddings into a single
vector.
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3.2 Data Sets
Two sources of EMR data were used in this thesis. The first was the freely accessible
MIMIC-III data set, containing ICU patients and English language clinical notes.
The second was proprietary EMR data provided by Sahlgrenska University Hospital,
concerning patients admitted for addiction care and Swedish language clinical notes.
Predictions were made per hospital admission.

3.2.1 MIMIC-III
The MIMIC-III data set contains patients admitted to an ICU at Beth Israel Dea-
coness Medical Center in Boston, Massachusetts between 2001 and 2012 [6]. It
contains information about patients who during a hospital admission also stayed in
an ICU. The majority of the data pertains to the ICU stays, but there are also some
data about the hospital admission, such as time of admission and discharge and the
reason for admission. The data are de-identified to protect the patients’ privacy.
The data from MIMIC-III that was used as input to the models in this thesis are
clinical notes and physiologic measurements of 17 variables (such as blood pressure,
for a complete list see [24]). The measurements are used as a baseline, to give
an indication of the other models’ performance. Information about admission and
discharge times, whether an admission was planned or not, and whether the patient
died in hospital were additionally used to determine the classes of the inputs.
The pre-processing, extraction of measurements, and task construction were all
based on the publicly available code from [24]. The code used is published4.

3.2.1.1 Pre-Processing

The pre-processing will be briefly described here (see [24] for more details). First
several ICU stays are excluded:

1. Hospital admission with ICU transfers or multiple ICU stays.
2. ICU stays of patients younger than 18.

This resulted in 33,798 patients and 42,276 ICU stays. Note that since hospital
admissions with multiple ICU stays were excluded, there is a one-to-one relation
between hospital admissions and ICU stays, and the terms can be used interchange-
ably.

3.2.1.2 Input Features and Tasks

Several sets of input features were used:
• cui2vec embeddings: the concepts extracted from the clinical notes were

embedded and aggregated as described in section 3.1 using the cui2vec pre-
learned embeddings [14].

4https://github.com/jrrr/mimic3-benchmarks/tree/emr-semantic-representations
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• ClinicalBERT embeddings: the same as cui2vec, only using the Clinical-
BERT pre-learned embeddings [15].

• Physiological measurements: different physiological measurements taken
from the patients during the ICU stays, selected by [24]. They use 17 basic
variables, which are expanded with 6 statistics (minimum, maximum, mean,
standard deviation, skew and number of measurements), using 6 different time
ranges (first 10% of time, first 25% of time, first 50% of time, last 50% of time,
last 25% of time, last 10% of time), resulting in 714 features.

• Bag of Concepts: binary vectors were created from the concepts extracted
from the clinical notes (see section 3.1), as described in section 2.3.2.

• Bag of Words: binary vectors were created from the words in the clinical
notes after stop words were removed, as described in section 2.3.2.

Additionally, ClinicalBERT and Bag of Concepts were concatenated together in
order to discover if they contained any complementary information. ClinicalBERT
and Bag of Concepts were also concatenated with physiological measurements in
order to discover if concept embeddings are easier to combine with other data than
Bag of Concepts. Since cui2vec is likely to perform similar to ClinicalBERT in this
context, it was not used in combination with any other features due to limited time.
Two tasks were used:

• In-hospital mortality: whether the patient died during the hospital admis-
sion. This task is the same as in [24]. Only data from the first 48 hours of
the ICU stay were used. However, since only the date and not the time of
a clinical note is available in MIMIC-III, notes from the first 48 to 72 hours
(depending on the time of day of admission) were used. Stays shorter than
48 hours, containing no events before 48 hours, or with an unknown length
of stay were removed, resulting in 20,030 admissions. Of these approximately
13% resulted in in-hospital mortality.

• Unplanned readmission: whether the patient has an unplanned readmis-
sion to the hospital within 30 days of discharge. Note that this is hospital
and not ICU readmission. The task is thus to use data from the ICU stay
in order to predict hospital readmission. It would be more natural to predict
ICU readmission but MIMIC-III does not state whether ICU admissions are
planned or not. Data from the complete ICU stay were used for this task.
Approximately 6% of the admissions resulted in unplanned readmission.

3.2.1.3 Evaluation

The split into train, validation and test sets selected by [24] was used. This split has
the advantage that no patient is present in more than a single set. This ensures that
potential overfitting to certain patients does not influence validation scores. The
validation and test sets were approximately 15% of the total data, and the train set
70%. The validation set was used to select hyperparameters, and the test set was
only used to produce the final scores at the end.
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3.2.2 Swedish Addiction Care EMRs
The Swedish EMRs concern patients admitted to hospital for addiction care at
Sahlgrenska University Hospital between 2014 and 2019. In contrast to MIMIC-III,
this data set does not contain any physiological measurements. It contains data
such as patient demographics, diagnoses, prescriptions, and clinical notes. Only
the clinical notes were used. During pre-processing hospital admissions without any
clinical notes or matched concepts were removed, resulting in 9438 admissions. Since
this data set is proprietary, the code used cannot be published.

3.2.2.1 Input Features and Tasks

The input features used were the same as for MIMIC-III, except no measurements
were available:

• cui2vec embeddings: the concepts extracted from the clinical notes were
embedded and aggregated as described in section 3.1 using the cui2vec pre-
learned embeddings [14].

• ClinicalBERT embeddings: the same as cui2vec, only using the Clinical-
BERT pre-learned embeddings [15].

• Bag of Concepts: binary vectors were created from the concepts extracted
from the clinical notes (see section 3.1), as described in section 2.3.2.

• Bag of Words: binary vectors were created from the words in the clinical
notes after stop words were removed, as described in section 2.3.2.

For this data set, only one task was used:
• Early readmission: whether the patient was readmitted within 14 days of

discharge. Approximately 14% of the admissions resulted in early readmission.

3.2.2.2 Evaluation

Since this data set was relatively small, 10-fold cross validation was used. The
final scores were computed as the average of the scores from each fold, and a 95%
confidence interval was computed from the standard deviation of the folds’ scores.
No test set was used. This was motivated by the fluctuating scores of the 1/10-
sized folds. Thus, either the test set would have to be much larger, resulting in
less training data, or random effects would impact the test scores to an intolerable
degree.

3.3 Models and Training
Primarily two models were used: logistic regression and random forest, trained on
the data sets described in section 3.2. Both are simple and fast models, while still
principally different. It was believed that if neither improved by using concept
embeddings, other kinds of models would also be unlikely to do so. Furthermore,
two simple ANNs were developed to explore whether a similar but slightly more
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complex model than logistic regression would improve performance, and whether a
weighted sum of embeddings with learned weights could perform better than the
fixed embedding aggregation described in section 3.1.4.

3.3.1 Logistic Regression
scikit-learn’s5 logistic regression implementation was used to perform the logistic
regression. The lbfgs solver was used, with a stopping tolerance of 10−4. `2 reg-
ularization was used, and the parameter λ was tuned manually to optimize ROC
AUC. All training data except bag of concepts were standardized and missing values
of the MIMIC-III measurement features were imputed to the mean of that feature
in the training data set. The classes were balanced using the weighing technique
described in section 2.5.7.

3.3.2 Random Forest
scikit-learn’s random forest classifier implementation was used for the random forest
model. The forest grew 200 trees (or estimators), and the maximum number of leaf
nodes were tuned manually to optimize the ROC AUC. The classes were balanced
using weights. As above, missing measurement values in the MIMIC-III data were
imputed but no standardization was performed as this is not required for random
forests.

3.3.3 Artificial Neural Network
Finally, two ANNs were implemented. The first was a simple feed-forward fully-
connected ANN. Beginning from a single layer with a single neuron, i.e. equivalent
to logistic regression, no improvement is observed with increasing neurons and layers
during early tests.
The second consisted of an embedding layer that combined embeddings from an
input bag of concepts using learnable weights, according to the equation

x′ =
∑

i

xiwiei (3.1)

where xi are the input features, wi are the learnable weights, and ei are the concept
embeddings. This can be written more succinctly as

x′ =
(
E(x�w)T

)T
(3.2)

where � represents element-wise vector product, x and w are row vectors containing
the inputs xi and weights wi, respectively, and E is the matrix consisting of ei as
rows. However, early tests indicated that this ANN also did not improve performance
over simple logistic regression. Because of this and time constraints, both ANNs were
discontinued before the final, more elaborate testing.

5scikit-learn, https://scikit-learn.org/stable/index.html
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Both ANNs were trained using the Adam optimization algorithm, with a learning
rate of 10−3 and the `2 regularization parameter λ was tuned manually to optimize
ROC AUC. Early stopping regularization was also used, and the learned network
parameters that achieved highest ROC AUC during training was used to generate
the final metric scores.
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4
Results and Discussion

This chapter first presents the results of employing the methods described in chap-
ter 3. Apart from the models’ predictive performance, statistics of the extracted
concepts and, when meaningful, the most significant features found by logistic re-
gression are shown. Section 4.3 contains a discussion of the results, in particular in
relation to the purpose of the thesis.
The following is a short explanation of the the tables. Each row shows the results
of training and evaluating the model using the specified set of features. A plus sign
in the features tab denotes concatenation of feature vectors. λ for logistic regression
and ANN is the `2 regularization hyperparameter. MLN for random forest is the
Maximum Leaf Nodes hyperparameter. Abbreviations are used for the different
features:

• BERT denotes the ClinicalBERT embedded concepts.
• M denotes the physiological measurement variables.
• BoC denotes bag of concepts.
• BoW denotes bag of words.

All metrics except ROC AUC use a fixed decision boundary of 0.5, while ROC AUC
aggregates all possible decision boundaries. Also note that the most important
metric is ROC AUC. The hyperparameters were tuned to optimize this metric,
occasionally at the expense of other metrics.

4.1 MIMIC-III
The number of notes per hospital stay in the MIMIC-III data set is shown in figure
4.2. For each number of notes on the x-axis, the y-axis shows how many hospitals
stays that have that number of notes. The mean number of notes was 24.9 for all
time, and 10.6 for the first 48-72 hours. The number of concepts per hospital stay,
i.e. in all notes pertaining to a hospital stay, are shown in figure 4.3. The mean
number of concepts was 352.0 total in all notes, 245.3 unique in all notes, 125.0
total in the first 48-72 hours, and 88.4 in unique in the first 48-72 hours. It is the
in-hospital mortality task that only uses notes from the first 48-72 hours, while the
unplanned readmission task uses all notes.
Figure 4.1 shows the lengths of the matched concept terms when extracting the
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Figure 4.1: Concept term match
lengths on the MIMIC-III data set.
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Figure 4.2: Number of notes per hospi-
tal stay in the MIMIC-III data set.
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Figure 4.3: Number of concepts per hospital stay in the MIMIC-III data set.

concepts from the notes associated with hospital admissions. The mean length was
1.22.

4.1.1 In-Hospital Mortality
This section contains the results of predicting in-hospital mortality on the MIMIC-
III data. Table 4.1 shows the results of logistic regression, while table 4.2 shows
the results of random forest. Tables 4.3 and 4.4 show the most significant (largest
regression coefficient w, see section 2.2.1) concepts and words, respectively, found
by the logistic regression models using either bag of concept or bag of words.
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Features λ Accuracy Precision Recall F1 ROC AUC

cui2vec 10−3 0.691
0.704

0.236
0.209

0.650
0.654

0.347
0.317

0.735
0.754

BERT 10−3 0.730
0.728

0.268
0.231

0.660
0.679

0.382
0.345

0.779
0.782

M 10−4 0.784
0.793

0.345
0.305

0.721
0.709

0.467
0.426

0.845
0.851

BERT + M 10−4 0.798
0.801

0.360
0.318

0.769
0.781

0.490
0.452

0.861
0.869

BoC 10−2 0.735
0.747

0.260
0.239

0.598
0.636

0.362
0.347

0.773
0.795

BoC + M1 10−2 0.813
0.808

0.375
0.323

0.736
0.748

0.497
0.452

0.862
0.872

BoC + BERT2 10−2 0.746
0.743

0.281
0.237

0.647
0.648

0.392
0.347

0.789
0.793

BoW 10−3 0.774
0.783

0.336
0.297

0.739
0.736

0.462
0.424

0.849
0.855

Table 4.1: Logistic regression in-hospital mortality prediction results on MIMIC-
III. The first row is the score for the validation set, the second row is the score for
the test set.

1Rescaled to have a standard deviation of
√

0.01. This results in the same optimal λ as for BoC
(see section 2.5.6 for an explanation why).

2Rescaled to have a standard deviation of
√

0.1. This results in the same optimal λ as for BoC.
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Features MLN Accuracy Precision Recall F1 ROC AUC

cui2vec 500 0.870
0.894

0.415
0.480

0.072
0.114

0.122
0.185

0.726
0.748

BERT 300 0.864
0.885

0.387
0.386

0.127
0.156

0.192
0.222

0.741
0.766

M 300 0.869
0.883

0.503
0.461

0.498
0.488

0.500
0.474

0.860
0.869

BERT + M 200 0.867
0.875

0.476
0.421

0.507
0.502

0.491
0.458

0.855
0.864

BoC 300 0.841
0.867

0.365
0.377

0.352
0.393

0.359
0.385

0.772
0.803

BoC + M 750 0.886
0.902

0.601
0.571

0.272
0.277

0.374
0.373

0.858
0.863

BoC + BERT 500 0.870
0.896

0.375
0.538

0.048
0.089

0.085
0.153

0.744
0.763

BoW 100 0.800
0.813

0.342
0.305

0.567
0.570

0.427
0.397

0.804
0.812

Table 4.2: Random forest in-hospital mortality prediction results on MIMIC-III.
The first row is the score for the validation set, the second row is the score for the
test set.
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CUI Description Coefficient
C0003962 Ascites 0.20
C0024730 Mannitol 0.15
C0004238 Atrial fibrillation 0.14
C1705480 Vasopressin 0.12
C0032285 Pneumonia 0.12
C0012634 Disease 0.12
C0221423 Illness 0.12
C0013030 Dopamine 0.12
C0012359 Dilation 0.12
C0151603 Anasarca 0.11

CUI Description Coefficient
C0027497 Nausea -0.18
C0008031 Chest pain -0.13
C0016204 Flatulence -0.09
C2741638 Stress ulcer -0.09
C0030193 Pain -0.08
C1956346 Coronary artery disease -0.08
C0018681 Headache -0.08
C2364135 Discomfort -0.08
C0264956 Atheroma -0.07
C0012833 Dizziness -0.07

Table 4.3: Concepts with the largest coefficients from the bag of concepts logis-
tic regression model on in-hospital mortality. Positive coefficient implies a positive
correlation with in-hospital mortality, negative coefficient implies a negative corre-
lation.

Word Coefficient
family 3.82
dnr 3.51

ascites 3.17
metastatic 2.73

arrest 2.59
dni 2.22

worsening 2.17
expired 1.85
pts 1.79

diffuse 1.76

Word Coefficient
clear -2.85

extubated -2.50
extubation -2.48
normal -2.41
pain -2.40
sda -2.37

bradycardia -2.08
post -1.99
diet -1.86

insulin -1.72

Table 4.4: Words with the largest coefficients from the bag of words logistic regres-
sion model on in-hospital mortality. Positive coefficient implies a positive correlation
with in-hospital mortality, negative coefficient implies a negative correlation.
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4.1.2 Unplanned Readmission
This section contains the results of predicting unplanned readmission on the MIMIC-
III data. Table 4.5 shows the results of logistic regression. Table 4.6 shows the
results of random forest. Table 4.7 shows the results of the two kinds of ANN. Both
kinds of ANN use the ClinicalBERT embeddings and are described in section 3.3.3.
"2×1" contains two layers with 2 neurons and 1 neuron, respectively. "weights" uses
learnable embedding weights and then has a single layer with 1 neuron. Tables 4.8
and 4.9 show the most significant concepts and words, respectively, found by the
logistic regression models using either bag of concept or bag of words.

Features λ Accuracy Precision Recall F1 ROC AUC

cui2vec 10−4 0.646
0.642

0.095
0.084

0.557
0.591

0.162
0.147

0.648
0.655

BERT 10−4 0.681
0.677

0.109
0.096

0.590
0.614

0.185
0.166

0.683
0.689

M 10−4 0.623
0.620

0.094
0.080

0.601
0.604

0.163
0.142

0.659
0.654

BERT + M 10−4 0.701
0.699

0.115
0.102

0.579
0.607

0.192
0.174

0.709
0.705

BoC 10−3 0.708
0.719

0.115
0.105

0.560
0.581

0.190
0.178

0.692
0.697

BoC + M3 10−3 0.726
0.715

0.128
0.102

0.595
0.568

0.210
0.172

0.714
0.715

BoC + BERT4 10−3 0.712
0.712

0.112
0.103

0.535
0.581

0.186
0.174

0.687
0.695

BoW 10−4 0.739
0.740

0.129
0.115

0.573
0.601

0.211
0.194

0.722
0.727

Table 4.5: Logistic regression unplanned readmission prediction results on MIMIC-
III. The first row is the score for the validation set, the second row is the score for
the test set.

3Rescaled to have a standard deviation of
√

0.1. This results in the same optimal λ as for BoC.
4Rescaled to have a standard deviation of

√
0.1. This results in the same optimal λ as for BoC.
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Features MLN Accuracy Precision Recall F1 ROC AUC

cui2vec 300 0.931
0.942

0.086
0.233

0.014
0.045

0.023
0.076

0.656
0.651

BERT 400 0.938
0.947

0.000
0.000

0.000
0.000

0.000
0.000

0.671
0.665

M 100 0.855
0.860

0.127
0.114

0.234
0.250

0.164
0.156

0.682
0.677

BERT + M 300 0.936
0.945

0.185
0.185

0.014
0.016

0.025
0.030

0.690
0.690

BoC 100 0.786
0.793

0.126
0.118

0.421
0.455

0.194
0.187

0.675
0.684

BoC + M 200 0.916
0.923

0.203
0.150

0.128
0.104

0.157
0.123

0.697
0.703

BoC + BERT 300 0.934
0.943

0.140
0.178

0.016
0.026

0.029
0.045

0.672
0.671

BoW 500 0.939
0.948

0.000
0.000

0.000
0.000

0.000
0.000

0.703
0.703

Table 4.6: Random forest unplanned readmission prediction results on MIMIC-III.
The first row is the score for the validation set, the second row is the score for the
test set.

ANN λ Accuracy Precision Recall F1 ROC AUC

2 × 1 10−2 0.609
0.605

0.102
0.085

0.690
0.669

0.178
0.150

0.682
0.679

Weights 10−2 0.736
0.744

0.120
0.107

0.524
0.532

0.195
0.178

0.686
0.688

Table 4.7: Artificial neural network unplanned readmission prediction results on
MIMIC-III. The first row is the score for the validation set, the second row is the
score for the test set.
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CUI Description Coefficient
C0037982 Spironolactone 0.14
C0151636 Ventricular premature contractions 0.13
C0032952 Prednisone 0.12
C0018946 Subdural hematoma 0.12
C0016382 Flushing 0.11
C0025853 Metoclopramide 0.11
C0543495 Albuterol sulfate 0.11
C0009014 Clonidine 0.11
C0520679 Obstructive sleep apnea 0.10
C0016410 Folic acid 0.10

CUI Description Coefficient
C0026056 Midazolam -0.09
C0009566 Complication -0.09
C0015672 Fatigue -0.08
C0032825 Potassium chloride -0.08
C0037580 Soft tissue swelling -0.08
C0003864 Arthritis -0.08
C0002962 Angina pectoris -0.07
C0025598 Metformin -0.07
C1956346 Coronary artery disease -0.07
C0020443 Hypercholesterolemia -0.07

Table 4.8: Concepts with the largest coefficients from the bag of concepts logistic
regression model on unplanned readmission. Positive coefficient implies a positive
correlation with unplanned readmission, negative coefficient implies a negative cor-
relation.

Word Coefficient
po 2.79

donation 2.43
subdural 2.42
trach 2.31

tracheostomy 2.26
admissions 2.18

organ 2.14
ama 2.09
dka 2.05
lasix 1.92

Word Coefficient
expired -3.48
osh -3.03

comfort -2.95
family -2.63
outside -2.16
post -1.79

hospice -1.69
cmo -1.60

husband -1.59
measures -1.55

Table 4.9: Words with the largest coefficients from the bag of words logistic re-
gression model on unplanned readmission. Positive coefficient implies a positive
correlation with unplanned readmission, negative coefficient implies a negative cor-
relation.
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4.2 Sahlgrenska Univerity Hospital EMRs
The number of concepts per hospital admission in the Sahlgrenska University Hos-
pital (SU) data set is shown in figure 4.4. The mean number of concepts per stay
(excluding stays with 0 concepts) was 103.4 total and 30.3 unique. Note that the
different notes were already concatenated in the data that was made available, so
the number of notes per admission is unknown.
Figure 4.5 shows the lengths of the matched concept terms when extracting the
concepts from the notes associated with hospital admissions. The mean length was
1.08.
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Figure 4.4: Number of concepts per
hospital stay in the SU data set.
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Figure 4.5: Concept term match
lengths on the SU data set.

4.2.1 Early Readmission
This section contains the results of predicting early hospital readmission on the SU
data. Table 4.10 shows the results of logistic regression. Table 4.11 shows the results
of random forest. Tables 4.12 and 4.13 show the most significant concepts and words,
respectively, found by the logistic regression models using either BoC or BoW. Note
that some concepts, such as "psychological symptom" and "complication", are quite
general and abstract.

Features λ Accuracy Precision Recall F1 ROC AUC
cui2vec 10−4 0.593± 0.092 0.172± 0.065 0.508± 0.159 0.254± 0.077 0.568± 0.054
BERT 10−4 0.611± 0.074 0.175± 0.086 0.486± 0.170 0.256± 0.111 0.577± 0.052
BoC 10−2 0.633± 0.102 0.181± 0.081 0.468± 0.188 0.259± 0.106 0.590± 0.050
BoW 10−3 0.816± 0.056 0.261± 0.071 0.163± 0.105 0.192± 0.059 0.603± 0.038

Table 4.10: Logistic regression early readmission prediction results on SU data.
The ± denote the bounds of a 95% confidence interval.
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Features MLN Accuracy Precision Recall F1 ROC AUC
cui2vec 50 0.772± 0.053 0.183± 0.134 0.184± 0.099 0.182± 0.112 0.571± 0.054
BERT 100 0.849± 0.058 0.211± 0.222 0.032± 0.041 0.054± 0.068 0.578± 0.069
BoC 50 0.728± 0.077 0.203± 0.119 0.330± 0.185 0.249± 0.136 0.591± 0.071
BoW 25 0.858± 0.019 0.134± 0.439 0.007± 0.037 0.012± 0.055 0.576± 0.032

Table 4.11: Random forest early readmission prediction results on SU data. The
± denote the bounds of a 95% confidence interval.

CUI Description Coefficient
C0338970 Emotionally unstable personality disorder 0.38
C0038436 Post-traumatic stress disorder 0.24
C0008073 Developmental disabilities 0.24
C1290899 Self abuse 0.21
C0338986 Atypical autism 0.20
C1263839 Developmental mental disorder 0.19
C0233397 Psychological symptom 0.15
C0025859 Metoprolol 0.15
C0221480 Recurrent depression 0.15
C0064636 Lamotrigine 0.14

CUI Description Coefficient
C0001975 Alcohol -0.19
C0917801 Insomnia -0.18
C0009566 Complication -0.18
C0439857 Dependence -0.18
C0559546 Adverse reactions -0.16
C0018681 Headache -0.15
C0036341 Schizophrenia -0.13
C0011253 Delusions -0.12
C0231230 Fatigability -0.12
C2004491 Scar tissue -0.12

Table 4.12: Concepts with the largest coefficients from the bag of concepts logistic
regression model on early readmission. Positive coefficient implies a positive corre-
lation with early readmission, negative coefficient implies a negative correlation.
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Word Coefficient
välkänd 0.09

personlighetsstörning 0.08
utskrivning 0.07
personal 0.07

lvm 0.06
utskriven 0.05

pox 0.05
därifrån 0.05
senast 0.05
flertal 0.05

Word Coefficient
år -0.07

alkohol -0.07
inget -0.06

avgiftning -0.05
bruk -0.05
dricker -0.05
också -0.05

anhöriga -0.05
haft -0.05
ibland -0.05

Table 4.13: Words with the largest coefficients from the bag of words logistic regres-
sion model on early readmission. Positive coefficient implies a positive correlation
with early readmission, negative coefficient implies a negative correlation.
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4.3 Discussion

The optimized metric was ROC AUC, which was also used as the value of com-
parison. Comparing the models that use emebedded concepts, cui2vec and BERT,
against BoC that uses unembedded concepts, it can be seen that BoC consistently
outperforms the others. Clearly, then, there is no benefit of using pre-learned con-
cept embeddings in any of the models and data used. Of course, other data could
have yielded a different result. However, since the data sets used are quite different,
from different departments (intensive care and psychiatry) and different hospitals,
while still yielding similar results, it is likely that other EMR data sets would not
be much different. Thus, despite using more advanced concept embeddings, this
result is in line with the finding from [5], that concept embeddings do not improve
performance for large enough data sets.
It is unclear why the embeddings do not improve performance. The reason could
be that the pre-learned information from scientific articles, etc., are simply not very
useful in the context of EMR data. Another reason could be that the embedding
aggregation removes useful information, such as the presence and absence of in-
dividual concepts. However, combining the BERT embeddings with BoC did not
perform better than using only the BoC, implying that either such information was
not removed or it does not complement the embeddings. Also, ClinicalBERT is
pre-trained on general text and additionally on the MIMIC-III data itself, yet per-
formed better than cui2vec also on the data from SU. Since the concepts relevant
for ICU care are likely very different from those relevant for addiction care, it seems
probable that what ClinicalBERT learned from general text is more important than
what it learned from the specifically clinical text of MIMIC-III. Thus, it seems more
likely that the embeddings simply do not contain enough information useful for the
tasks.
It is also possible that the models used are not capable of extracting information
from the embeddings. However, two points speak against this possibility. Firstly,
two quite different models (logistic regression and random forests) gave similar re-
sults. For instance, in contrast to logistic regression, random forests can combine
features non-linearly. Secondly, a simple neural network, at first equivalent to logis-
tic regression, was expanded in both width and depth to increase model complexity
and introduce more non-linearities, and yet did not achieve better performance than
logistic regression. Thus, it seems unlikely that embeddings would perform better
compared to the other features if other models were used.
However, the methods developed might be useful for other purposes than producing
the best predictive models. Although producing less accurate predictions, an advan-
tage of the BoC model is that it can give more insight into the data than the BoW
model. This is especially noticeable in the SU data. The words in table 4.13 are in
many cases seemingly insignificant words (e.g. "också" - "also"), while the concepts
in table 4.12 are mostly clearly relevant and seem to give a better understanding of
which patients are readmitted early. Furthermore, the concepts and concept groups
used by the BoC model can easily be selected so that the importance of different
such groups can be investigated, using the methods developed in this thesis.
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In hindsight, it would have probably been better to use notes from the first 24-48
hours instead of the first 48-72 hours for the in-hospital mortality task. As can
be seen in table 4.4, many of the most significant words directly indicate that the
patient already died, while the task was to predict which patients would die in the
future. Since patients who died within the first 48 hours were already excluded, notes
containing these words are likely from the first 48-72 hours. However, no concepts
that indicate this seem to have been extracted, which likely explains some of BoW’s
advantage over BoC. Nevertheless, this does not affect the relative performance of
BoC and the embeddings, so the most relevant result, that embeddings are not
beneficial, should not be affected by this.
The gap between BoC and BoW could potentially be closed, or even surpassed, if
the concept extractor was improved. For instance, a known problem with identifying
concepts in clinical notes is the common use of abbreviations. This is also seen in
the results. For example, in table 4.9 "dka" (diabetic ketoacidosis) is one of the
most significant words, but this abbreviation is not part of the concept extractor
dictionary and was thus not available to the BoC model.
As it stands, the concept extraction was only evaluated by how well the extracted
concepts performed on the prediction tasks. It would be valuable to know how well
it performs in other contexts. For example the accuracy compared to a data set
of texts manually annotated with the present concepts. Such an evaluation was
not possible since no such data sets were available. Furthermore, since extracting
the concepts was the single most time consuming step, it was not possible to try
different hyperparameter values. For example, should more semantic concept groups
have been included? Or which is the optimal edit distance? However, even if the
concept extraction was improved, it is likely that the embeddings would still perform
worse than BoC.
The results would suggest that there is little promise in further research into using
pre-learned semantic representations of biomedical concepts in predictive models.
It is worth noting, however, that there is a relatively large difference between the
cui2vec and the ClinicalBERT embeddings. Indeed, the difference between them is
larger than the difference between BERT and BoC. Thus, if some other method of
pre-learning embeddings manages to improve as much as ClinicalBERT improves
on cui2vec, those embeddings would outperform BoC. Therefore there is some mo-
tivation for future work retrying embeddings if and when improved methods are de-
veloped. However, it is possible that a language model, for example BERT, trained
solely on the target language would still perform better than using such embeddings
(for example, ClinicalBERT achieved 0.768±0.027 ROC AUC on 30-day unplanned
readmission on MIMIC-III [15]).
Finally, many improvements to the somewhat rudimentary concept extractor are
possible. In particular, due to the widespread use of abbreviations in clinical notes,
a method of identifying such abbreviations would be a large improvement. Detection
of abbreviations could potentially be improved by a more careful selection of concept
terms from UMLS, or dictionaries of medical abbreviations could be used in addition
to the concept terms. It should also be tested with annotated data sets in order to
determine its performance outside of its use in predictive models, and gain insights
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into further potential improvements.
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5
Conclusion

The thesis set out to investigate whether there is any benefit of using pre-learned
semantic representations of biomedical concepts with models predicting patient out-
come from EMR data. In particular, it was to be investigated if it is possible and
beneficial to use representations learned from sources in one language on EMR data
in another language. A secondary goal was to develop the methods required to do
this. To this end, models were developed to predict patient outcome on an English
EMR data set, MIMIC-III [6] containing patients admitted to an Intensive Care
Unit, and a Swedish EMR data set, provided by Sahlgrenska University Hospital
and containing patients admitted to addiction care.
A concept extraction method was developed for English and Swedish, and which
should be easy to adapt to most languages. Two sets of publicly available pre-
learned semantic representations were tested, cui2vec [14] and ClinicalBERT [15],
and used to represent the extracted concepts. The semantic representations were
compared to several baseline models when predicting in-hospital mortality and early
or unplanned hospital readmission. It was found that using pre-learned semantic
representation provided no benefit when predicting patient outcome.
The main consequence is thus that other avenues of research should be pursued if
predictive models on EMR data are to be improved. However, if improved methods
of learning semantic representations of biomedical concepts are developed, retrying
the thesis’ methods might yield a different result.
The most significant positive contribution of the thesis is the concept extraction
method. A fast, language-agnostic (except for the required language-specific dictio-
nary) concept extractor program has been made publicly available1. This program
can be used in any context where concepts need to be extracted from a large amount
of text. In particular, it was discovered that the concept extractor can be used to
select groups of concepts used in predictive models that, although not giving the
most accurate predictions, can give useful insights into which of the selected con-
cepts are most important in that particular case. This can provide an organisation
more flexibility than a simple bag of words model.

1https://github.com/jrrr/conceptfinder
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