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Off-policy latent variable modeling for fast bandit personalization

Ludvig Liljeqvist
Viktor Truvé
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract

Medical treatments are decided based on medical history and the current symp-
toms of a patient. For chronic illnesses this can be difficult, as long-time patients
develop an amount of medical data that is hard to grasp. We propose the use of
machine-learning methods to both condense this information, and then utilize it to
recommend medical treatments. Our goal is thus to develop an efficient method for
finding optimal treatments for patients – optimized for doing this in as few rounds
of treatment as possible.
We do this in a two step process: the first step is to develop a generalist model for
treatment recommendation using a combination of a seq2seq model, and a Varia-
tional Autoencoder (VAE). The VAE condenses intricate patient information into
an encoding, and has the ability to reconstruct that information using this encoding.
We can thus consider each possible encoding as a patient type, that indicates which
treatment is best for that particular type, on average. Seq2seq adapts the VAE to
be applicable to sequential data – in our case, medical records. The second step is
to use the generalist model to produce specialized policies for individual patients,
inside a latent bandit model.
The ambition is that this solution will lead to faster personalization compared to
simpler methods, such as contextual bandits and multi-armed bandits, among oth-
ers. We present results showing that the proposed model performs better in earlier
rounds of treatment than other bandit algorithms, and also converges to a near-
optimal policy faster.

Keywords: Machine Learning, Health Care, AI, Latent Variable Models, Multi-
armed Bandits, VAE, Latent Bandit.
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1
Introduction

In the health care domain, treatment is typically recommended based on a patient’s
personal history, medical records, and symptoms. Patients with chronic illnesses go
through many rounds of treatment during their lives, and it may take a medical
professional many attempts before they find the best treatment.

Medical professionals combine their knowledge of what previous research indicates,
alongside specific knowledge gathered from examining the individual at hand to sug-
gest treatment. This practice is known as clinical decision-making. Unfortunately
there still exist cases where information gathered this way is insufficient for rec-
ommending the correct treatment. For a chronic illness like rheumatoid arthritis,
deciding the first treatment is simple; if that one fails, deciding the second is feasible.
From then on however, the evidence for choosing treatment grows sparse [Solomon
et al., 2021].

There could be many reasons why deciding a treatment is difficult. Besides the
issue where not enough information about a patient is available, there is also the
possibility that the available patient data is too extensive for a medical professional
to analyze effectively. Finally, there may exist unobserved information in that data
which also impacts the treatment outcome. Hidden information such as genotypes
and other biomarkers can have recognizable effects on the prognoses of patients – to
such a degree that subtypes of patients within a disease can be identified [De Jager,
2009, Planey and Gevaert, 2016].

The normal practice in health care therefore relies on the assumption that previous
observations and the current observation tell the professional everything they need
to know to perfectly treat patients. For problems of this category, one could utilize
offline reinforcement learning on historical data to produce a general model for pa-
tient treatment. The utilization of reinforcement learning in the health-care domain
has previously been used in many different areas [Tseng et al., 2017, Raghu et al.,
2017, Zhao et al., 2011, Guez et al., 2008, Chakraborty and Moodie, 2013]. With
such a model, patient treatment can simply be recommended based on a patient’s
similarity to previously observed patients. This method aims to produce somewhat
of a one-fits-all kind of model, assuming that whatever uniqueness observed in a
patient does not hinder their optimal treatment from being the same as that for
patients with similar traits.

1



1. Introduction

Conversely, one may consider an online reinforcement learning approach such as a
bandit algorithm [Lattimore and Szepesvári, 2020, Tennenholtz et al., 2021, Hong
et al., 2020, Slivkins, 2019]. In this instance one would make no assumptions about
other patients, and learn a personalized policy of treatment sequences from scratch
for each one. Furthermore, there exist versions of bandit algorithms which can work
with unobserved variables. Models which cater to this sort of problems are referred to
as Latent Variable Models (LVMs) [Abbi et al., 2008, Saunders et al., 2020, Kingma
and Welling, 2014, Sachdeva et al., 2019]. LVMs tackle the aforementioned fact
that important information needed for treatment suggestion may be unobserved
(latent). A benefit of combining such a model with a bandit algorithm is that
bandit algorithms are guaranteed to converge to an optimal policy under the right
circumstances [Lattimore and Szepesvári, 2020]. The problem with using a bandit
approach is that it would require performing thousands of trials on the patient before
an optimal policy is reached. This is incredibly dangerous, and not feasible.

Given that both of these approaches have shortcomings which make them unfit for
the problem we are addressing, a new method is needed. In the paper Håkansson
et al. [2020], a method for searching for near-optimal treatment methods for patients
is presented. This approach utilizes historical data to perform policy optimization to
find near-optimal treatments in as few trials as possible. In Håkansson et al. [2020],
a distribution of different treatment outcomes given the historical observations is
estimated from the data. Furthermore, Håkansson et al. assume that the possible
historical observations can be modelled by a number of discrete states. Given that
the number of different possible observable histories grows exponentially with each
treatment round, the problem of accounting for them all is NP-hard. In our ap-
proach we let this distribution remain unknown, and instead we train a model from
scratch on historical data, allowing the model to learn an estimate of the outcome
distribution on its own. This estimate is then used to predict which sequence of
treatments corresponds to the best outcomes.

In this paper we present a combination of offline learning on historical data to achieve
a general model, together with a bandit algorithm for online learning to achieve a
personalized policy. More specifically we propose an LVM that combines the logic
within a seq2seq neural network [Sutskever et al., 2014] with that of a variational
autoencoder [Kingma and Welling, 2014] for offline learning, and a latent bandit
model for online learning. The LVM identifies subtypes in a population of patients,
and learns to estimate the average outcome of treatments based on this subtype.
For each patient, the latent bandit then administers treatment according to the
specification of the LVM, and solidifies its belief of treatment outcome and subtype
for that individual.

We evaluate our work by answering the following research questions:

1. How close is the bandit’s policy to an optimal policy? / Does the bandit learn
an optimal policy?

2. How well does the LVM encapsulate patient types?

2



1. Introduction

3. Do we achieve faster personalization?

The architecture of our offline learning model, as well as the bandit is further de-
scribed in section 3.2 and the empirical study of results is presented in chapter 4.
It is worth noting that, as we limit ourselves to data generated from a simulator it
is uncertain how our model would perform in a real-world setting. We do however
still believe there are interesting insights to be gained by studying the results and
performance of our solution.
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2
Background

That statistical models can be used to optimize decision-making in health care
is an idea that has been around for some time. In Schaefer et al. [2005] it has
been demonstrated that Markov decision processes (MDPs) are a powerful technique
for finding optimal policies in stochastic decision-making. Although the lack of
electronic patient records has previously hampered the potential of MDPs in health
care settings, this is no longer the case. Today, medical data is abundant, with data
sets like GenBank and caBig [Benson et al., 2012, Fenstermacher et al., 2006]. This
has allowed the use of MDPs, AI, and other statistical approaches to flourish.

The following chapter describes underlying concepts of our solution: section 2.1
gives a brief introduction to different bandit algorithms [Slivkins, 2019, Lattimore
and Szepesvári, 2020]; section 2.2 describes the concepts relevant to latent variable
modeling; section 2.3 describes sequence-to-sequence modeling – recurrent neural
networks that turn sequential data into another kind of sequential data; lastly, sec-
tion 2.4 describes the Alzheimer’s Disease Causal Estimation Benchmark, a simula-
tor of clinical variables associated with Alzheimer’s disease.

2.1 Bandit Algorithms

A well-known reinforcement learning problem is the Multi-armed bandit. The Multi-
armed bandit is a problem in which a fixed limited set of resources must be allocated
between competing choices in a way that maximizes their expected gain. Usually,
the properties of each choice are only partially known at the time of allocation,
and may become better understood as time passes or by allocating resources to the
choice [Gittins et al., 2011, Katehakis and Veinott Jr, 1987].

The typical case for bandit algorithms is for them to be employed in online learning.
This means that they act upon data as it is generated. In the setting of medical
treatment recommendation, this translates to the bandit observing the current state
of the patient, and deciding a treatment that they receive. This prompts the gen-
eration of the next state of the patient. Bandit algorithms are also fully applicable
to offline learning. Rather than acting upon data as it arrives, in offline learning
the bandit has access to a set of static data. It is prompted to act upon the states
present in this data, and depending on the decision made, the next states are fetched
from this set. In medical treatment recommendation – when a bandit employs offline
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2. Background

learning – rather than making decisions for a patient in real time, the bandit does
so for historical patient data.

To put it simply, the most basic bandit algorithm has a fixed set of arms, i.e available
actions A. The task of the algorithm is to for each round t < T – where T is the
number of rounds performed, fixed or otherwise – choose one action a ∈ A, "play"
that action, and receive some reward Rt. The most basic form of bandit models
are those which consider independent identically distributed (IID) rewards; these
are referred to as stochastic bandits. In this case we assume that there exists a
distribution Da for each action such that every time an action is played, the reward
is sampled – independently of previous rewards – from this distribution, Rt ∼ Da.
The goal of the bandit is to learn the distribution Da, if this is successfully done the
bandit can effectively choose the action in each round which maximizes its expected
reward E[

∑T
t=1 Rt].

The question which begs to be answered is how do we select actions a such that we
can ensure that we do in fact learn Da? For this purpose there exist many different
algorithms such as explore-first, Epsilon-greedy, UCB, Thompson sampling, and
more. How a bandit chooses an action is referred to as the bandit’s policy, often
denoted π. Then, the policy that yields the highest expected reward, is known as
the optimal policy, denoted π∗. One of the possible problems with bandits is that
depending on the policy, a great number of rounds T might be required to effectively
learn the optimal policy.

In our setting we consider each patient as a separate case of the bandit-problem; we
wish to train a new bandit for each patient. Given that our actions correspond to
treatment methods, our goal is to find π∗ or at least π̂∗ ≈ π∗ in much fewer rounds
than what is common for a bandit, since we can not excessively try treatment
methods on patients.

2.1.1 Contextual bandits

A generalization of the problem above is the contextual multi-armed bandit, which
also has information about a d-dimensional feature vector X that can aid decision
making. In this case, the goal of the learner is to understand how the contexts and
rewards correlate with one another, and then to use this information to perform
the best actions. In the context of our work, the feature vector corresponds to the
medical history of a patient, which we want to relate to treatment outcome.

2.1.2 Thompson Sampling

Thompson sampling [Thompson, 1933] is an algorithm intended to tackle the exploration-
exploitation trade-off in multi-armed bandit problems. This trade-off essentially ex-
plains to what degree the bandit should perform the action it currently considers
optimal (exploit) or whether to further investigate the value of some other action
(explore).

In Thompson sampling we consider the same situation as that of a contextual bandit,

6



2. Background

where we have a set of actions A, a set of contexts X, and a set of rewards R. In
each round the algorithm receives a context x ∈ X and chooses an action a ∈ A
and receives a reward r ∈ R. The elements of Thompson sampling consists of a
likelihood function P (r | θ, a, x, ) a set Θ of parameters θ over the distribution of
r. A prior distribution P(θ) over these parameters, a history of previously observed
values in the form H = {(x, a, r)}, and finally a posterior distribution
P (θ | H) ∝ P (H | θ)P (θ). In each round the algorithm samples parameters θ∗ from
the posterior P (θ | H) and chooses an action a∗ to maximize the expected reward
given E[r | θ∗, a∗, x]. Thompson sampling relates to our work in that it can be used
to continuously reestimate the perception of a patient’s subtype. Here, subtype
takes the place of the parameters θ.

While Thompson sampling enjoys strong theoretical guarantees and worst-case sam-
ple complexity matching lower bound on regret, practical implementations typically
require hundreds of samples to identify optimal actions. To improve this further,
we can impose structural assumptions on the data generating process, which limits
the number and nature of parameters we must learn for each patient.

2.1.3 Latent Bandits

The Latent Bandit is a form of multi-armed bandit which was invented to tackle the
issue where the state information (context) is not enough to determine an optimal
action. Instead, we need to find a way to discover the latent (unknown) information,
which we then use to determine the optimal action. Especially relevant for our
project is the Model Thompson Sampling (mTS ) algorithm presented in Hong et al.
[2020]. We here assume that we have a known and fixed model θ̂ such that θ̂ = θ∗.
where θ∗ is the optimal model. We also have a prior distribution P1 over every latent
state Z. What is then utilized is a variant of the Thompson Sampling algorithm
called mTS:

Algorithm 1 mTS
Input:
Model Parameters θ̂
Prior over latent type P1(Z)
for t ← 1, . . . , T do

Pt(Z) ∝ P1(Z)
∏t−1

ℓ=1 P (Rℓ | Aℓ, Xℓ, Z; θ̂)
Sample Z ′ ∼ Pt

Select At ← argmaxa∈A µ̂(a,Xt, Z
′)

end for

The algorithm works by maintaining a posterior probability Pt = P(Z∗ = Z | Ht)
which represents the probability of a given latent state Z being the optimal state
Z∗. In our work, the latent state Z is conceptualized as the subtype of a patient.
For instance, in a patient with Alzheimer’s disease, Z can represent the level of
amyloid plaques in the brain. As amyloid plaques have a discernible effect on a
patient’s prognosis and drug responsiveness [Kinyanjui and Johansson, 2021], it is

7



2. Background

one of possibly several viable criteria of subtype. mTS considers a context that is
time-varying, denoted by Xt. µ̂ denotes the estimated average reward from choosing
an action a for a subject that has context Xt, and currently estimated latent type
Z ′.

2.2 Latent Variable Models

Latent Variable Models (LVMs) have previously been used for medical treatment
prediction [Saunders et al., 2020]. An LVM is a probabilistic model that relates a
set of observable variables – called manifest variables – to a set of latent variables.
The premise is that the disposition of latent variables gives rise to a response in the
observable ones. It is often assumed that any observed connection between manifest
variables can be eliminated once the latent variables are accounted for – though this
is not a valid limitation for our project. LVMs are central to our work, since we
implement them to identify disease subtypes.

In an LVM, the goal is to, for each subject i, identify a vector Zi = {zi1, . . . , zik}
of latent variables. In the case where the problem is the classification of i, we may
consider |Zi| = 1, so Zi = zi1 [Everett, 2013]. Since we’re working with sequential
data, e.g. a patient’s status X changes over time t, an LVM typically makes use of
the following notations:

• Ti: number of observations of a manifest variable for subject i.

• yit: observation of a manifest variable at time t for subject i.

• xit: column vector of covariates at time t for subject i.

• Zi: vector of latent variables for subject i.

In an LVM we wish to learn the conditional distributions of the manifest vector
Yi = {yi1, . . . , yiTi

}, given the covariates in Xi = {xi1, . . . , xiTi
}, and a vector Zi =

{zi1, . . . , zik} of latent variables. Concretely, the two main components of interest
are:

1. p(Yi | Zi, Xi) – The conditional distribution of manifest variables given Xi, Zi.

2. p(Zi | Xi) – The distribution of latent variables given the covariates.

Crucially, when T > 1, we assume local independence of observations: manifest
variables in Yi are conditionally independent given Xi, Zi.

2.2.1 Variational Autoencoders

A variational autoencoder (VAE) [Kingma and Welling, 2019] is a neural network,
the function of which is to compress information into some latent distribution (en-
coding), and to reconstruct it (decoding). Though we consider the VAE to be a
neural network, it is in fact comprised of two separate neural networks.

8



2. Background

Figure 2.1: A typical VAE configuration, in this case illustrating the encoding and
decoding of a digit. Image taken from [a tutorial by Danijar Hafner]

The encoder is the first network. It takes a datapoint x as input, and compresses it
into a hidden representation z. The hidden nature of z comes from the fact that its
dimensions are much smaller than those of x. The encoder is typically denoted as
qθ(z | x), as the space for z is stochastic. θ denotes the parameters of the encoder.

The decoder is the second network. Its input is the output z of the encoder. The
task of the decoder is to reconstruct the datapoint x from its hidden representation z.
The decoder is typically denoted as pϕ(x | z), where ϕ are its parameters. The goal
of the decoder then, is to minimize the difference between the original datapoint x,
and its reconstructed counterpart; how much information is lost in the conversion?

The total loss is
∑N

i=1 li for N datapoints, where

li(θ, ϕ) = −Ez∼qθ(z|xi)[log pϕ(xi | z)] +KL(qθ(z | xi) || p(z))

The first term is the reconstruction loss. It gives the decoder feedback as to how
well it reconstructs data. The second term is the Kullback-Leibler divergence, which
describes the discrepancy between the encoder’s distribution qθ(z | x), and p(z).

In terms of variational inference, the goal is to calculate posterior probability:

p(z | x) = p(x | z)p(z)
p(x)

Although intractable in this form, the posterior can be approximated with a family
of distributions qλ(z | x). λ denotes which family of distributions, e.g if q were
Gaussian it would mean λ is the mean and variance of the latent variable of each
datapoint: λxi

= (µxi
, σ2

xi
)

How well the variational posterior q(z | x) approximates the true posterior p(z | x)
can again be measured with Kullback-Leibler divergence:

KL(qλ(z | x) || p(z | x))

9
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2. Background

Because of the intractability of this function, VAE implementations find some equiv-
alent function to optimize for – one that is suitable given the context of the VAE.

There are many examples where VAEs have been used and showed promising results
in different domains of latent variable modeling [Rissanen and Marttinen, 2021,
Louizos et al., 2017, Wang and Cunningham, 2020, Sachdeva et al., 2019]. The
latent representation produced by the encoder naturally translates to the patient
subtype Z in our work. We can also utilize the reconstruction of Z performed by
the decoder to produce a prediction of treatment outcomes. The flexibility of the
neural network architecture also allows for the combination of different strategies
when using VAEs, such as combining them with recurrent neural networks, GMMs,
or to generally condition them in some ways.

2.3 Sequence-to-Sequence models

Figure 2.2: A basic seq2seq model, here applied in a chatbot. The embedding
layer converts each word in the sentence into a vector of fixed size.

On its own, a VAE does not handle sequential data. However, it is possible to make
it compatible using sequence-to-sequence models.

Sequence-to-sequence models [Sutskever et al., 2014] – commonly called seq2seq –
are a group of machine-learning methods commonly used for natural language pro-
cessing. Like VAEs, they feature an encoder-decoder structure, the difference being
that the encoder and decoder consist of several steps, while a VAE typically only
has one step for each. The intermediate steps in seq2seq have inputs leading from
the outputs of previous ones. The output of one intermediate step therefore depends
on previous ones.

With the use of recurrent methods such as long-short-term memory (LSTM) or
Gated Recurrent Units (GRUs), seq2seq turns one sequence into another. The use
of LSTM or GRUs is to solve the vanishing gradient problem – a phenomenon where
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2. Background

gradients of early elements in a sequence are lost, giving disproportional influence
to the last elements of that sequence. Machine translation is perhaps the most
intuitive application of seq2seq, but it is also commonly used in chat bots, text
summarization, and image captioning.

Since medical records are sequential in nature, seq2seq models are also applicable
to our work. Using a VAE, rather than encoding and reconstructing single patient
states and treatment outcomes, we wish to do so for entire sequences of treatment.
By thus employing a seq2seq model with a VAE in the middle, we make this possible.

2.4 ADCB

The Alzheimer’s Disease Causal estimation Benchmark [Kinyanjui and Johansson,
2021] or ADCB fits a longitudinal causal model of patient variables to real data.
As such it combines the strength of data-driven simulators with those of hand-
crafted components. It features tunable parameters for changing the properties of
the system, affecting the difficulty of the benchmark. We use ADCB as a simulator
of synthetic patient data – data which is used to train the neural networks of our
solution.

Figure 2.3: Assumed causal structure of ADCB at a single time point at baseline.
Each arrow indicates a causal dependency; the color represents how the mechanism
was determined.

Each generated data point features a fixed number of columns. In figure 2.3, these
columns can be observed: each white box with a solid black border is such a col-
umn; the arrows between boxes indicate how features depend on eachother. The
columns include universal features such as race and sex, but also medical ones such
as diagnosis DX and treatment effect Y , among others. Some features are less ob-
vious: ADAS is a score between 0-83, where higher scores indicate worse cognitive
function; PTau and Tau are levels found in the cerebrospinal fluid that indicate
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2. Background

neuronal degeneration; FDG is a measurement of cell metabolism, where cells af-
fected by Alzheimer show reduced metabolism; AV 45 is one measurement of amyloid
plaques in the brain. Further information regarding how data is fit can be found in
Kinyanjui and Johansson [2021].
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3
Method

The goal of our project is to develop an efficient method for finding optimal treat-
ment for patients. We wish to accomplish this in two steps:

Historical Data

General Model

New Patient

Specialized Policy
iiiiii

Z = ?
Z = 0Z = 0Z = 1Z = 1

Z = 1Z = 1Z = 0Z = 0 Z = 0Z = 0 Z = 1Z = 1

Z = 0Z = 0

Z = 0Z = 0

Z = 1Z = 1Z = 0Z = 0Z = 0Z = 0Z = 0Z = 0Z = 0Z = 0 Z = 1Z = 1

Z = 1Z = 1

Z = 1Z = 1Z = 1Z = 1
Z = 1Z = 1

Figure 3.1: In the historical data we have access to patients who have received
multiple rounds of treatment. We train a model offline on this data, allowing the
model to learn about how different treatments affect patients without having to
actually subject a new patient to potentially poor treatments. The model utilizes
these observations to group the patients into different subtypes (0/1 or Red/Blue in
the Figure). Now whenever a new patient arrives, the model can use its understand-
ing gained from previously observed patients to efficiently categorize a new patient,
without needing as many rounds of treatment before an optimal treatment is found.

i) Train a sequential model off-policy, on historical data. This will help us find a
generalization of different patients – how do patients respond to a particular
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3. Method

treatment, on average? We believe that we may be able to identify the average
effect of treatments should we be able to identify the patient subtype (Z).
With the trained model in place we can use the model’s prediction of any new
patient’s subtype to suggest an initial treatment method.

ii) For each patient, utilize the trained model in a latent bandit to recommend
treatments. Using the information from the general model along with the new
information gained from performing treatments, we learn a specialized policy
that suggests treatments which are tailored to the conditions of individual
patients, we also learn this new policy faster than if we had started with a
blank slate for each new patient.

We assume that each patient has a latent type Z. Within a set of patients, there
may exist subpopulations between which disease prognoses differ considerably; Z
describes to which of these subpopulations the patient belongs. We therefore assume
there is a causal relation between Z and treatment outcome, as well as between
Z and the medical attributes of the patient. In i) we aim to identify which Z
exist in a population of patients, and how they affect treatment outcome. This
yields a general model for each Z. In ii) we wish to – for each patient – use
this knowledge to recommend further treatments, while simultaneously obtaining a
better understanding of Z.

To describe our work, we use the following notation: A patient has a particular
feature tensor of medical attributes X. This tensor may contain data regarding the
patient’s general status, such as age and education, but naturally also the current
symptoms of the patient. Much of the data in X, symptoms included, change over
time – usually when treatment is performed. Therefore, we instead denote the
attributes as Xt – the medical attributes of the patient at time step t. We refer to
Xt as the context. Xt helps us in identifying Z, but it also partially helps us with
identifying the optimal treatment A∗. This means that with only Xt we still require
multiple rounds of treatments in order to identify the optimal treatment. In other
words, Xt does not identify the optimal treatment alone, but rather help us with
identification of Z.

In a latent bandit setting we think of medical treatments as actions A. An action
At corresponds to the medical treatment performed at time step t. A is the set
of different treatments available {1,2,...,K}, such that for any action A performed,
A ∈ A. When a treatment is performed it yields some sort of change – good or bad
– in the status of the patient. In a latent bandit we refer to this treatment outcome
as the reward Rt from taking an action At.

At time step t for each patient, there is for every i < t a tuple (Xi, Ai, Ri) denoting
the context, action, and reward at i. The tuples combine to build a history Ht:

Ht = {(X1, A1, R1), . . . , (Xt−1, At−1, Rt−1), Xt}

As is typical of a bandit model, we wish to maximize the cumulative reward (3.1),
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or equivalently, minimize the cumulative regret (3.2) of performing actions.

maximizeE[
T∑
t=1

Rt] (3.1)

minimizeE[
T∑
t=1

R∗]− E[
T∑
t=1

Rt] (3.2)

R∗ denotes the reward from performing the action which yields the highest expected
reward. Regret is simply the measurement of how far away an action is from the
optimal one. In that sense, should we choose the optimal action, the regret would
be 0. In a regular contextual bandit setting, the bandit is trained to learn the
probability P (R | X,A), where X denotes a context tensor which may or may not
be dependent on time. In the time dependent case, this would instead be denoted
P (Rt | Xt, At). Assuming that each previously observed action, context, and reward
needs to be accounted for when deciding on an action, what we are after is the
distribution P(Rt | Ht).

Estimating this distribution can become intractable if the history becomes too long
to efficiently summarize. In our approach, we condense the history into a fixed
unobserved variable Z, which we believe impacts the context and reward for each
time step. If we can identify P (Z | Ht) we can sample Z ′ from that distribution and
instead only compute the probability P (Rt | Xt, At, Z

′), we would find ourselves in a
setting identical to the latent bandit. However, as P (Z | Ht) still relies on the entire
history it might seem we would experience the same computational difficulties as in
the regular case, we avoid this by utilizing the encoder from a VAE to provide us
with Z ′ ∼ P (Z | Ht), and the decoder of this VAE to obtain E[Rt | Xt, At, Z

′)]

At our disposal, we have synthetic data generated from a simulator, which itself
contains representations of the latent types we wish to model with an LVM, or
rather use in a comparison with our results. We find that Alzheimer’s disease is
suitable for study due to the fact that it is a long-lasting illness where many steps
of treatment are performed.

3.0.1 Data

The data is generated from the aforementioned simulator ADCB which is causal
estimation benchmark for Alzheimer disease. With data from this simulator we can
restrict the model to the simplest of circumstances, while utilizing the simulator’s
clearly defined features. Most importantly, the simulator gives us access to outcome-
data for any given treatment, alongside any given context. This is something which
we cannot obtain from real-world data. How we use the data is further explained in
3.2.3.
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3.1 Evaluation

As previously mentioned, we will be using simulated data for evaluation of our
model. The main reason for this is the problem that would arise should we have
utilized real-world data directly. If we were to use real-world data the bandit may
suggest a treatment which is not present in the data, in that case we would have no
way to evaluate the quality of the recommendation. Evaluating the model is not as
simple as just measuring the accuracy, since there may be many different aspects
of the model to consider. For our evaluation, we choose to focus on three different
aspects:

1. How close is the bandit’s policy to an optimal policy? / Does the
bandit learn an optimal policy?

2. How well does the LVM encapsulate patient types?

3. Do we achieve faster personalization?

To answer 1. we will compare the treatment-suggestions of our model to the
treatment-suggestions from other bandit algorithms. Specifically we will compare
the model with a regular Multi-Armed Bandit, a Linear Contextual Bandit, and a
bandit with a perfect model.

To estimate 2. we will compare the different values of Z to the different latent
variables present in the simulator. Are the patients grouped in a similar manner to
those in the simulator?

We can measure 3. by the number of actions the bandit has to take before converging
to some policy.

3.2 Process

This section describes the suggested model: the algorithm we intend to use for our
bandit, as well as our latent variable model. We describe these as two stages:

1. VAE stage - An LVM is fit to historical data. This is done using a sequential
adaptation of VAEs.

2. Bandit stage - For each patient, a latent bandit model is learned using the
LVM as basis. Using a modified version of the mTS algorithm, this assumes
a causal structure between variables. An overview of this structure can be
observed in Figure 3.2:

3.2.1 SEQ-GSM

After data preprocessing, which simply consists of computing the standard score
of the features which contains continuous values, we train a model which we will
henceforth refer to as a Sequential Gumbel-softmax Variational Autoencoder (SEQ-
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Figure 3.2: We assume a causal structure as illustrated above. Arrows indicate a
causal relationship between variables. The dashed line around Z is to denote that
it is a latent variable.

GSM ). The model is a neural network which combines the logic inside a typical VAE,
with that of the recurrent structure found in seq2seq models. The architecture of
the model can be seen in Figure 3.3.

A typical VAE would feature a single encoder-decoder which data is processed
through; this is useful in domains such as image generation, but insufficient for
sequential data such as treatment effects over time. In this project we are work-
ing with sequential data in the form of medical treatments and outcomes, and the
goal of the model is to efficiently learn to estimate the latent variable Z, which is
accomplished by the following encoding-decoding process:

Encoding

The goal of the encoding process is to compress the information from every tuple
(Xi, Ai, Ri) in a sequence Ht = {(X0, A0, R0), . . . , (Xt−1, At−1, Rt−1), Xt} which will
then be used to estimate the value of the latent variable. Each Xi ∈ Ht has F
features. The architecture of the encoder consists of a fully connected layer Xi →
FC(300), a ReLu activation function, and a GRU, (300, 300) → (300, 300). The
GRU itself creates two outputs, one which we will disregard in each time step, and
one which will be used as input for the next encoding layer. The last act of the
encoder is to transform the output into a tensor of size B×K, where B is the batch
size and K is the upper limit of values that Z can assume. Z is used as input for
the decoder.
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GRU

GRU GRUGRU
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htht
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GSM

Encoder
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Z

Figure 3.3: Architecture of the neural network used in the SEQ-GSM VAE.

Gumbel-softmax

Using the features currently available, the encoder produces an estimate of Z, the
certainty of which may be lesser or greater. We consider this estimate to be some
categorical distribution P, from which we sample the discrete variable Z. This
introduces a problem in the context of neural networks, since backpropagation is
not possible for stochastic or discrete processes. If we consider P to be continuous,
we can approximate its samples to a discrete space post hoc. The distribution is
stochastic, but with the use of Gumbel-softmax introduced in Jang et al. [2016], we
can reparameterize P so that it becomes differentiable.

Figure 3.4 features a visual representation of how Gumbel-softmax works. We can
observe the log probabilities logαi of P in the bottom left corner. These are deter-
ministic, and compatible with backpropagation. The log probabilities are combined
with noise Gi; these are sampled from the Gumbel distribution – described in Gum-
bel [1941] – and are thus stochastic. This linear combination is run through the
softmax function to retrieve the class with the greatest probability. We can use the
added factor λ to control how closely the Gumbel-softmax distribution resembles P.

Decoding

The goal of the decoding process is to use the information about the latent variable
to try and reconstruct the sequence Ht – The motivation behind this being that the

18



3. Method

Figure 3.4: The reparameterization trick recasts the distribution into a linear
combination of probabilities. Image taken from Jang et al. [2016]

more accurately we can reconstruct treatment outcomes, the easier it becomes to
recommend the treatment that corresponds to the best outcome. The architecture
of the decoder consists of a combination of eleven linear layers, which use-cases are
described more precisely below, and a GRU. Unlike in the encoder, in the decoder it
is the first part that stands out, since it is here the B ×K tensor is passed through
a linear layer to create the hidden state, a B×300 tensor ht. A concatenated tensor
[ht,X̂t] is passed through several parallel linear layers, where each linear layer is
intended to represent a different treatment A ∈ A. These linear layers each produce
a B × 1 tensor, corresponding to some treatment outcome R̂t(A).

To explain why we do not pass the treatment indicator (A) as part of input to
the decoder we refer to the paper Shalit et al. [2017]. In the proposed model from
the paper (TARNet), the treatment indicator is not passed as a feature either, but
rather parallel linear layers are used to represent the different possible treatments.
The motivation behind this is that if the treatment indicator is passed as a feature
alongside all other potentially high-dimensional features, it’s impact on the outcome
may be minimal, or lost entirely. To circumvent this, we use separate layers to
perform distinct predictions for each treatment, ensuring that the effect of different
treatments is not lost among the other features of the data.

Finally, the decoder at each step returns a triplet consisting of R̂t which is a tensor
of each predicted outcome R̂t(A)A∈A, X̂t, and ht. The next decoder step uses ht as
its hidden state and a tensor [X̂t] as input.
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Loss

We measure the loss of our reconstructions by calculating the mean-square error
(MSE). However, as mentioned above we reconstruct the entire outcome tensor R̂t

for each possible action, but since only one action is observed at a time we calculate
the loss by onehotting this tensor such that our outcome-loss tensor can be defined as
Ly =

[
(Rt − R̂t)

2
]
· [0 if A ̸= a else 1 for A ∈ A] where a denotes the observed action.

The loss is calculated similarly for each feature f ∈ Xt such that Lx =
∑[

(f − f̂)2
]
.

The final loss is then simply: L = Lx + Ly

3.2.2 Multi-Armed Bandit with Thompson Sampling

Once the SEQ-GSM has been trained, we move on to the bandit stage where we
employ mTS [Hong et al., 2020]. This is a loop of using Thompson sampling to obtain
Z from a prior distribution, and taking the best action available given this sample
of Z. Lastly, from the treatment outcome, a posterior distribution is calculated –
this posterior will serve as the prior in the next iteration.

Although we apply mTS, we deviate somewhat from its standard setup in our as-
sumption of relationships between variables. This can be observed in Figure 3.5.
More precisely we assume that the Xt−1 impacts Xt, and also that Z impacts Xt at
every timestep t = {0,1,2,...,T}.

Figure 3.5: Expanding upon the structure described in Figure 3.2, we can describe
the relationships necessary to perform mTS. The red arrows describe relationships
that are not present in typical mTS.

At each iteration of mTS, we rely on a prior distribution P (Z) of the latent variable.
Starting off, we know nothing of the patient; at this point P (Z) is simply the

20



3. Method

generalized model obtained from the VAE stage. As the iterations go on the bandit
will specialize, and this distribution will be updated to better reflect our certainty
of Z. We wish to find a posterior distribution P (Z | Ht) conditioned on a patient’s
history Ht = {(X0, A0, R0), . . . , (Xt−1, At−1, Rt−1), Xt}. Here, there is a decision to
be made regarding how this should work:

i) Like in mTS, we could use the decoder to model the entire history; using
Bayes’ rule:

P (Z | Ht) =
P (Ht | Z)P (Z)

P (Ht)

Since P (Z) is given, and P (Ht) can be eliminated on account of normalization,
we can find the posterior P (Z | Ht) by computing the likelihood P (Ht | Z).
Using the expanded causal structure from figure 3.5, we can model the entire
history:

P (Ht | Z) ∝ P (Z)

[
t−1∏
ℓ=0

P (Xℓ | Z)P (Rℓ | Xℓ, Aℓ, Z)

]
P (Xt | Xt−1, Z) (3.3)

Using the decoder we could estimate each factor of this likelihood. However,
the number of factors are great; there would be a degree of uncertainty in each
estimation, and since each factor depends on the last, this uncertainty would
be compounded into the final product.

ii) Alternatively, we could estimate P (Z | Ht) directly using the encoder.

We have decided to use ii), since the fewer steps involved means it is less compu-
tationally intensive, and likely more accurate. Sampling from the posterior yields
a new estimate Z ′ ∼ P (Z | Ht). With Xt and Z ′ as context, the decoder now
estimates the best action:

At ← argmax
a

E [Rt | At = a, Z ′, Xt]

The action taken At yields a reward Rt, which leads us to the next iteration of the
loop with updated history Ht+1 = Ht ∪ {(Xt, At, Rt), Xt+1}. An overview can be
observed in algorithm 2:

Algorithm 2 mTS with estimated posterior
Input:
Prior over latent type P (Z)
Ht := {(X0, A0, R0), (X1, A1, R1), (X2, A2, R2), . . . , (Xt−1, At−1, Rt−1), Xt}
for t ← 1, . . . , T do

Sample Z ′ ∼ P̂ (Z | Ht)
Select At ← argmaxa E(Rt | At = a, Z ′, Xt)
Update prior P (Z) = P̂ (Z | Ht)

end for
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3.2.3 Data Pipeline

Our data pipeline (Figure 3.6) consists of generating a set amount of patients (N)
with a fixed horizon (T) on which the VAE will be trained. We let N = 10000 and
T = 6 for the VAE. This means that we generate 10000 patients – each receiving
6 rounds of treatment. During training of the VAE we let this sequence length
be chosen randomly between 2 and 6. This decision was made as to not let the
model be trained on sequences of just a single length, as that might lead to poor
performance in earlier stages of treatment suggestions. These 10000 patients are
split intro three separate datasets for training, validation, and testing, in a 60/20/20
randomly selected split of the data. The training set is used to update the model.
The loss observed in the validation set is used to determine if we need early stopping
after τ epochs to prevent overfitting the model, and the loss from the test set is how
we estimate performance of the model.

To test the models in a bandit setting we generate a new set of 10000 patients, split
into a test set and validation set. The test set is used to compare how the VAEs
with different hyper-parameters perform, from which the best performing VAE is
chosen. This is done by looking at the average regret achieved by the VAEs over
a fixed amount of bandit runs. After the best performing VAE from the test set is
chosen we use the validation set to compare this VAE with other algorithms which
is then presented as results.

22



3. Method

Train Test Validation

Simul
ator

N = 10000

N = 10000
VAE Loss

Validation Test

Bandits

K Results

Figure 3.6: Data generation pipeline - Two separate datasets with 10000 patients
each are created. One to be used for the VAE, and one to be used for the bandit.
The VAE data is used to determine early stopping, measure reconstruction loss, and
to update the weights in the network. The bandit dataset is used for determining a
suitable K and to compare the model with other bandit algorithms.
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4
Results

In the following two chapters we address the questions presented in section 3.1. Here
in chapter 4 we will present results necessary to answer the questions, and interpret
their meaning. In chapter 5 we will talk further about these questions, and discuss
our project in a broader context.

4.1 Reconstruction

Since the core of our model is composed of a VAE – the function of which is to
reconstruct data from an encoding – the first part of evaluation revolved around how
well we could reconstruct the data from the simulator. As we know, the simulator
data consists of sequential data of a specified length for each patient. One data
point in a sequence can be seen as a vector [At, Xt, Rt]. The encoder produces a
prediction Ẑ which it passes on to the decoder, and the goal of the decoder is to
reconstruct [Xt, Rt] such that the output of the decoder [X̂t, R̂t] ≈ [Xt, Rt].

4.1.1 Comparing models in terms of loss

Two of the hyper-parameters of the model are the most significant in terms of
comparing models between one another. The first comparison is made between
models using a continuous latent space, and models using a discrete latent space.
The second parameter is the size of the latent space. Instead of exhaustive testing
we investigated models with sizes K = [2, 10, 100, 200, 500, 1000]. Comparing the
models in Figure 4.1 with the models in Figure 4.2 we see that for both continuous
and discrete K = 2 the models perform about equally in terms of loss; however, for
any K larger than that the continuous models outperform the discrete models. The
large gap between training loss and testing/validation loss is nothing unexpected.
Given that we are in a regression setting the training loss can become very small
if the model starts to learn the noise that is present in the data. As we will not
learn the noise for the test- and validation-set, the validation- and test-loss will be
higher. Furthermore, there may be features in the context which are not realistic
to accurately predict as there may not exist a causal relation between them. Such
features will also add to the gap between the different losses.
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Figure 4.1: For the discrete models present in this figure we can see that the
training and validation loss remain relatively unchanged.

Figure 4.2: For the continuous models present in this figure we can see that the
training and validation loss change steadily for more epochs than in the discrete
case, and that they also reach a lower minimum of training loss as well as validation
loss.
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4.2 Bandit Performance

When evaluating bandit performance we first look at whether or not the bandit
converges to some policy, and second if that policy is equivalent to or similar to an
optimal policy.

4.2.1 Comparing models in terms of regret

Given that the goal of the project is not to minimize the loss acquired by the models,
but rather to find a model which performs as well as possible in a bandit setting,
we further compared the average regret when running the bandit using the different
trained VAEs as models.

The discrete models achieved very similar average regret for every model except
the one that was trained with K = 2 which can be seen in Figure 4.3. The same
comparison for the continuous models showed more promising results as evident in
Figure 4.4. Here we see that K = 1000 and K = 500 significantly outperform the
other models.

We believe this change in performance arises from the fact that for a larger latent
space, the model can capture more features present in the context, rather than just
trying to estimate Z. This means that the Ẑ used as decoder input, likely contains
more information about the individual than the discrete Z in the simulator could do
on it’s own. Given that there still exists a lot of variance between the features present
in the context, this sort of dimension increase could possibly capture such variance,
therefore making the model more personalized. With this in mind, we choose to
focus on of continuous models with a large latent space for policy comparison.

4.2.2 Policy

For policy evaluation we present five different algorithms. A Multi-armed Bandit
(MAB) [Lattimore and Szepesvári, 2020] with Thompson Sampling (TS) [Agrawal
and Goyal, 2012], a Linear Contextual Bandit (LCB) [Lattimore and Szepesvári,
2020] with TS [Agrawal and Goyal, 2012], a perfect model mTS, and two versions of
our proposed learned model mTS. The first version of the learned model mTS algo-
rithm is the estimated posterior mTS-algorithm (Algorithm 2). We also introduce
a second version of the algorithm, which is identical in the encoding process but
differs in the decoding process. In the first version of Algorithm 2 we only utilize
the context for the current timestep and perform one step of decoding to perform
prediction, whereas in the second version we run the decoder on all of the previous
witnessed data and use the predictions from the last timestep. What we can ob-
serve in Figure 4.5 is that the first version of the algorithm strongly outperforms
the second version, and that the second approach in fact seems to become worse the
longer the history becomes. This indicates that while the encoder flourishes from a
longer history to accurately reconstruct Z; the decoder performs best using only the
currently observed context. We also observe that after 100 rounds of treatments the
LCB has yet to come anywhere near the optimal policy, and that it is outperformed
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Figure 4.3: Average regret for 100 different bandit runs using VAEs trained with
different discrete latent space sizes K.

Figure 4.4: Average regret for 100 different bandit runs using VAEs trained with
different continuous latent space sizes K.
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by the MAB.

Figure 4.5: Average instantaneous regret for 500 bandit runs over 100 rounds of
treatment.

We realized a possible reason for the MAB outperforming the LCB is that LCB takes
into account the time-varying context Xt. Given that we know from the simulator
that the context cancels out when comparing the reward between different actions
the algorithm will struggle with time-varying context, increasing the time necessary
to learn the optimal policy. To account for this, we investigated a version of LCB
which only considers the context at timestep 0 (X0) and observed the following
results (Figure 4.6). It is difficult to determine which comparison of LCB and
learned model mTS is the most fair, given that knowing that the context does not
impact the reward is not granted, but rather comes from an engineering aspect of
how the simulator works. In both cases however we can still see that our proposed
model outperforms the LCB and MAB in early treatment rounds, and that it also
converges to the optimal policy faster.

4.3 Encapsulation of patient types

As we have access to the latent types present in the simulator for every patient,
we wanted to find a way to compare how the simulator groups patients, with how
our model groups patients. Given that the some of the versions of the model we
proposed uses a latent space of sizes up to a 1000, and also versions which utilizes
a continuous latent variable, we decided to look at t-stochastic neighbor embedding
(T-SNE) [Van der Maaten and Hinton, 2008] as a way to verify if the model produces
reasonable clusters or not. We decided to look at the T-SNE projection for the
posterior in the last timestep of treatment for 10000 patients from the simulator,
using the simulator latent variable as the labels [0, 1], and our posterior as data,
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Figure 4.6: Average instantaneous regret for 500 bandit runs over 100 rounds of
treatment with LCB using only context X0

we can investigate if our considerably larger latent space can be compressed into a
much smaller one. using a version of our trained model with a continuous latent
space of size 500 we observed the following result in Figure 4.7. Furthermore we
investigated how the posterior changes over time by investigating how the data
would be clustered for T = 1 to get an idea of whether or not we actually infer
something over time, or if the same clusters would be evident before the bandit
has started trying treatments. We compared this with looking at clusters obtained
by looking at the posterior for T = 6, which is the horizon-length for our trained
models. Comparing the clusters in Figure 4.8 we can see that the data is indeed not
clustered initially but rather appears somehow random, whereas by timestep 6 the
data does appear to have formed a cluster similar to that for T = 100.

After observing the clusters from the T-SNE projections we can see that the model
seems to divide the data into a higher number of clusters than the number present
in the simulator (2). It is uncertain as to why there are more than 2 clusters
but there are many reasons as to why this could happen. One possibility is that
features of the data are captured which lowers the variance from context between
patients, essentially dividing the Zs in the simulator into smaller subsets, capturing
information about the subtype, the context, and the outcomes. This would come as
a result of the fact that the encoder in the VAE, and therefore the estimated latent
space, has an incentive to reconstruct both the context and the outcomes.
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Figure 4.7: T-SNE projection for a continuous latent space of size 500, indicating
clearly clustered data.

(a) Projection for T = 1 for full
bandit dataset.

(b) Projection for T = 6 for full
bandit dataset.

Figure 4.8: Comparison of projection of posterior for Z for different rounds of
treatment.
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5
Discussion

In this chapter we discuss our achieved results, elaborate on what future work we
believe could be made by expanding on our research, and finally we present our
conclusions.

5.1 Correlation between VAE-Loss & Bandit Per-
formance

Comparing the L-MTS models with different latent spaces with each other our ini-
tial hypothesis was that the lower loss in the VAE, the lower the regret would be
for the bandit. We can determine that the continuous models with a large latent
space outperforms the discrete models both in terms of loss and in bandit perfor-
mance. However, some of the continuous models which achieved a lower loss than
the discrete models still performed roughly equally in the bandit setting. The most
reasonable explanation for this deviation between loss and regret should be what fea-
tures are most accurately reconstructed. Different latent spaces may lead to better
reconstruction of separate variables. A model which very precisely reconstructs the
context but is awful at reconstructing outcomes will lead to a very poor-performing
model in terms of regret, but may still have very good results in terms of loss. Con-
sequently, it is hard to determine how well a model will perform in a bandit setting
by only observing the total loss measured from the offline setting.

5.2 Effects of overparameterization

Our initial presumption was that a suitable value of K would be 2. This was based
on the idea that a patient having a high or low degree of amyloid plaques in the brain
has a considerable effect on both their prognosis, and which treatment is considered
the best [Kinyanjui and Johansson, 2021]. Despite this, the models of ours that best
fit the data are the ones that have a far greater value of K, as seen in figures 4.1
and 4.2. In addition, these models specialize faster for individual patients, as seen
in figures 4.3 and 4.4.

It is possible that the figures suggest our solution has managed to identify a con-
crete number of latent types greater than what we initially expected. It is also
likely that the improved performance observed in models with greater K is due to
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the phenomenon of overparameterization: a neural network that has oversized pa-
rameters often tends to perform better on unseen test data compared to one using
parameters more ’normal’ in size. A neural network of this type is also typically
easier to optimize (even getting the training loss low that is). This usually comes
with the caveat that overparameterized models take longer to identify relationships
than normal models do – assuming that the normal models are able to identify these
relationships in the first place. This is a point of interest for our project, since being
efficient in the identification of good treatments is our goal.

Is this caveat present in our models? If it were, we would see that, at early phases
of treatment, models using too great a K have a clear increase in bandit regret
compared to ones using a lower K. Let us consider the first few actions taken by
models – with discrete and continuous K – in figures 4.3 and 4.4, respectively.

The distinction between discrete and continuous K is an important one, since the
number of possible real numbers in [0, K] is far greater than the number of of integers
in that interval. The discrete Kd = 2 is among the worse performers early. This is
within the realm of plausiblility, since it is difficult for a neural network to identify
relationships in such a small space. Meanwhile, the continuous Kc = 500 is clearly
the worst early on in terms of performance. This would suggest that Kc < 500 are
better at identifying near-optimal treatments quickly, and thus more suitable for our
goals. However, this is contradicted by Kc = 1000. Early, it has a performance on
par with smaller K, despite its size. The reason for this is unclear, but it could be
that Kc = 500 strikes an unfortunate balance of both being too simple to identify
complex relationships, and too overparameterized to perform well. At any rate,
overparameterization seems to carry no downside in our project, with Kc = 1000
being the best both short-term and long-term.

5.3 Ethics

We have made delimitations for our solution in order to make it attainable. Although
such delimitations can be a minor hurdle in other fields, in health care they are more
often detrimental to the applicability of the product. For instance, we consider
immediate treatment reward to be the sole metric for success, and we assume that
this treatment effect remains constant in time; this, despite the fact that long-
term well-being may be considered more important, and may be affected by factors
relating to treatment effect. The effect of medications may change gradually with
continued use, and also come with side-effects that are not so easily quantified.

Our delimitations have allowed us to achieve something of substance despite the
project being quite limited in scope, but it also means that further work is required
to make our solution practical; it must adhere to standards of medicine in order to
ensure that the well-being of patients is not compromised.
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5.4 Future Work & Conclusion

We ended our project by investigating the feasibility of what we referred to as a
Simple Decoder. This model would be equivalent to the proposed one with the
exception that the decoder disregards context and only utilizes the predicted Ẑ as
decoder-input and only reconstructs the outcomes R̂t. We only managed to produce
a version of this model which converged to a single action at all times. Such a model
should realistically be able to learn the optimal policy given that the context does
not impact the reward, therefore future work could include further investigating
such an approach.

Another area of future work would be to investigate utilizing the the approach from
this project, which is a model with a large continuous latent space, to further train
a model with a small discrete latent space. This practice is called distilling a neural
network [Hinton et al., 2015]. The purpose of the method is that a smaller latent
space should reduce the complexity of the model, which might have a positive impact
on performance (execution time).

Other areas of future work could include looking at a different disease than Alzheimer,
given that the model itself has no constraints for focusing on this disease in partic-
ular. Such diseases would of course preferably be those which also require several
steps of treatment, one such disease which immediately comes to mind is Cancer.
There are of course many other diseases requiring multiple rounds of treatment for
which our proposed model could potentially be applicable. Which those diseases
might be remains to be investigated.

Furthermore, more research definitely needs to be done on real data, rather than
synthetic. Nevertheless, given that one can not find observations for different treat-
ments to the same extent in real data nor experiment on real patients, such work
becomes increasingly difficult.

One could also experiment with imputing data, given that we generate the data we
always have perfect information about patients, in the real world that is not typically
the case. One could simply try imputing data points at random to make sure that
the model still learns an optimal policy. Nevertheless, this type of research would
become most interesting in the bandit setting, with the objective of investigating if
we can still perform good treatments with missing data.

We believe that we have demonstrated results which answer all of our research
questions. Firstly, we can conclude that the proposed model does in fact learn a
policy which is optimal, or at least very close to optimal. Secondly, we can observe
distinguishable clusters when using T-SNE, which we believe shows that the LVM
does perform patient encapsulation. Thirdly, as we could clearly observe a faster
convergence time for our proposed algorithm than the other bandit algorithms, we
see that faster personalization has been achieved. Finally, we believe that we have
shown that there is a benefit of utilizing a learned model in the domain of finding
optimal treatments efficiently, which is what we set out to investigate.
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