

Energy Evaluation of a 5- and a 7-Stage
Processor Pipeline Across Nominal and
Near-Threshold Supply Voltages
Master’s Thesis in Embedded Electronic System Design

Arpad Jokai

Chalmers University of Technology
Department of Computer Science and Engineering
Gothenburg, Sweden 2015

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial pur-
pose make it accessible on the Internet. The Author warrants that he is the author to
the Work, and warrants that the Work does not contain text, pictures or other material
that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example
a publisher or a company), acknowledge the third party about this agreement. If the
Author has signed a copyright agreement with a third party regarding the Work, the
Author warrants hereby that he has obtained any necessary permission from this third
party to let Chalmers University of Technology and University of Gothenburg store the
Work electronically and make it accessible on the Internet.

Energy Evaluation of a 5- and a 7-Stage Processor Pipeline Across Nominal and Near-
Threshold Supply Voltages

Arpad Jokai

c© Arpad Jokai, June 2015
Supervisor: Per Larsson-Edefors
Examiner: Sven Knutsson

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Gothenburg
Sweden
Telephone + 46 (0) 31-772 1000

Department of Computer Science and Engineering
Gothenburg, Sweden 2015

Abstract

Pipelined architectures have been used in commercial processors for the last three decades,
achieving significant speedups over non-pipelined processors. Besides architectural ad-
vancements, CMOS technology scaling has improved the performance of hardware by
offering decreasing transistor switching delays in every new technology generation. Tech-
nology scaling, however, is inextricably linked to supply voltage (VDD) scaling. The
downside of VDD scaling is that the performance of a particular technology generation
degrades with lower VDDs. On the other hand, reduction of the VDD decreases the switch-
ing power dissipation, which, due to its quadratic dependence on the VDD, reduces faster
than the performance degrades. Since there is a plethora of design dimensions to this
problem, processor pipelines considering both performance, power, and, consequently,
energy metrics are very complex to design.

In this thesis a five- and a seven-stage pipeline are investigated, with respect to metrics
such as timing, power, and energy. Evaluations are made in the nominal VDD domain,
in which the five-stage pipeline is considered as a baseline to which the seven-stage one
is compared with different branch target buffer (BTB) implementations. Assessments in
the near-threshold VDD domain are carried out as well, in which the seven-stage design
is synthesized using nominal-VDD gate libraries then mapped to libraries recharacterized
for near-threshold VDDs. Five different EEMBC benchmarks are used to compare the
efficiency of configurations over algorithms with different requirements.

In the nominal, 1.1-V VDD domain at a 65-nm process the most energy-efficient seven-
stage pipeline design dissipates 20 µW while running at 650 MHz at the worst-case
process corner. At the lowest available VDD of 0.4 V in the near-threshold domain,
the same design consumes only 0.035 µW at 13.7 MHz at the typical process corner.
The most timing critical paths are also reported, and found to be located toward the
instruction and data caches’ input ports. In spite of the decreasing power dissipation,
energy consumption is expected to decrease only down to a certain VDD and then start
increasing again due to the increase in execution times and leakage energy. Considering
the trends throughout the thesis’ results and in other works, it is concluded that the
optimal energy point for the seven-stage design is around the 350-mV VDD mark.

Acknowledgements

Besides my supervisor, Per Larsson-Edefors, who provided all the information and guid-
ance I needed, I would like to thank Alen Bardizbanyan for his support of the tools and
valuable input on technical issues, Daniel Moreau for his help with generating power and
energy numbers, and Sven Knutsson for his feedback on the report.

Arpad Jokai, Gothenburg, Sweden, June 16, 2015

Contents

1 Introduction 1
1.1 Low-power pipelines . 1
1.2 Project background . 2
1.3 Goals . 2
1.4 Scope . 2
1.5 Limitations . 3
1.6 Report outline . 4

2 Theory 5
2.1 Pipelining basics . 5
2.2 Caches . 8
2.3 Branch prediction . 10
2.4 Static and dynamic power . 11
2.5 Energy . 13
2.6 Near-threshold operation . 14

3 Evaluation methods 16
3.1 Five-stage pipeline . 16
3.2 Seven-stage pipeline . 18
3.3 Benchmarks . 20
3.4 Tools . 20

4 Instruction cache design 22
4.1 Memory interface . 23
4.2 Datapath . 24

4.2.1 Line replacement logic . 24
4.2.2 Directory and data memory blocks 24
4.2.3 Comparator . 25
4.2.4 Multiplexer . 25
4.2.5 Registers . 26

i

CONTENTS

4.3 Controller . 26
4.3.1 Flush state . 26
4.3.2 Tag compare state . 27
4.3.3 Instruction word replace state . 28

5 Results and discussion 31
5.1 Nominal voltage . 31

5.1.1 Performance and execution time 31
5.1.2 Power and energy . 33
5.1.3 Pipeline area . 35
5.1.4 Cache power . 36

5.2 Near-threshold voltage . 37
5.2.1 Power . 38
5.2.2 Leakage power . 39
5.2.3 Energy . 41
5.2.4 Critical path with timing constraint 43
5.2.5 Critical path without timing constraint 45

5.3 Future work . 45

6 Conclusion 47

Bibliography 51

A Nominal voltage results 52

B Low-voltage results 56
B.1 32-entry FF-based BTB . 57
B.2 128-entry SRAM-based BTB . 59
B.3 128-entry FF-based BTB . 61

C Critical paths 63
C.1 128-entry FF-based BTB . 64
C.2 128-entry SRAM-based BTB . 66

ii

1

Introduction

N
owadays microprocessors are commonly used in embedded platforms, e.g.
wearables, handheld gaming devices, and smartphones [1]. In such devices,
battery life and performance are equally important, therefore special measures
have to be taken during design and implementation.

Besides technological and architectural advancements, one of the most effective ap-
proaches to moderate power consumption in low-throughput applications is to decrease
the supply voltage (VDD). Previous work in the area and their different approaches are
described in this project. Although several low-voltage processor pipelines have been pre-
sented, to the best of the author’s knowledge a pipeline study in the near-threshold VDD

domain is yet to be published, and it could foster further discussion and development of
the subject.

1.1 Low-power pipelines

Architectures of simple central processing unit (CPU) pipelines (compared to those of
performance-oriented CPUs) have the advantages of sufficient performance on an em-
bedded scale while their energy consumption still allows them to be used in portable
devices. For these pipelines acceptable power requirements are present even at nominal
VDDs. Pipeline configurations in commercial embedded CPUs and microcontrollers often
have the following in common: in-order program execution is applied and instructions
are issued one at a time [2] [3] [4].

Works have been published recently on both in-order [5] and single-issue program ex-
ecution [6]. These elaborate on the lower design complexity, higher energy efficiency,

1

1.2. PROJECT BACKGROUND CHAPTER 1. INTRODUCTION

and increased instruction dependency compared to their respective counterparts (i.e.
out-of-order and superscalar execution).

1.2 Project background

Prior to the commencement of this project, work had been carried out at the Department
of Computer Science and Engineering at Chalmers University of Technology to design
five- and seven-stage pipelines [7] [8]. They comply with the simplistic design principles
outlined above, i.e. they are in-order and single-issue, which make them candidates for
lightweight embedded platforms. However, thorough simulations and energy evaluation
had not been done. Instruction and data cache behavior had only been provided by
the testbenches during verification and simulations. To enhance the accuracy of energy
assessment, a generic two-cycle instruction cache’s design and integration is included in
this project. Instruction cache implementation is simpler than data cache implementa-
tion, but the proportion of their energy values show close resemblance as far as their
parameters are identical (associativity, data width, etc.).

One-cycle instruction and data caches had also been implemented prior to this project [9],
which were used as inspiration during the design of the two-cycle instruction cache.

1.3 Goals

The thesis aims to determine the connection between the number of pipeline stages
and the designs’ energy efficiency at nominal and near-threshold VDDs. Different mem-
ory architectures for the branch target buffer (BTB) within the processor pipelines are
evaluated as well.

Another goal is to identify the consequences in performance and power consumption of
decreasing the VDD of several seven-stage pipeline designs. As far as voltage scaling is
concerned, some pipeline stages and blocks are expected to slow down more dramatically
than others. One of the thesis’ goals is to identify the location of the critical path across
near-threshold VDDs.

To evaluate and compare the effects of computing in the super- and near-threshold
regions, the pipeline designs are to be mapped and synthesized to different cell libraries.
Nominal and near-threshold libraries are available at the department.

1.4 Scope

This work concentrates on the characteristics of pipelines designed at Chalmers Univer-
sity of Technology with little emphasis on their memory subsystems. For this reason,

2

1.5. LIMITATIONS CHAPTER 1. INTRODUCTION

cache access optimization (exploiting temporal or spatial locality within the caches) is
not implemented.

The once clear borderline between reduced instruction set computer (RISC) and com-
plex instruction set computer (CISC) instruction set architectures (ISAs) has been ob-
scured throughout the last few years. According to a study on different instruction sets
”The presence or absence of specializations such as floating point and single instruction
multiple data (SIMD) support, on one ISA over the other, are the primary ISA differ-
entiators for performance and energy” [10]. CPU choices in the embedded domain have
historically been dominated by the RISC ISA, which is typically characterized by fixed-
length instructions with simple encoding. However, the high-performance x86 CISC ISA
(complex, multicycle instructions) has recently been used in some low-power mobile ap-
plications recently, but, as this cannot be perceived as a trend, this work only concerns
MIPS I in low-power embedded processors.

1.5 Limitations

The available memories with the lowest VDD are characterized for 0.95 V, while gate
libraries are provided down to 0.4 V at the department. This, however, limits the
evaluation to the near-threshold voltage domain. Although higher VDD for the memory
elements than for logic cells means higher threshold voltage and less leakage, it requires
voltage level shifters that use additional area and power. Such level shifters are not
included in the near-threshold evaluation throughout this project, which means that the
results from the design which implements a static random-access memory (SRAM)-based
BTB in the near-threshold domain have to be treated with caution.

The recharacterized low-voltage libraries do not contain area values, therefore silicon
real estate was not considered during low-voltage analysis. The recharacterized clock
libraries lack clock gating cells, so regular latches were used by the synthesis tool for this
purpose.

The NCSIM tool from Cadence was used for simulation, verification, and switching ac-
tivity interchange format (SAIF) file generation, which is necessary for obtaining power
and energy values, see Section 3.4. However, SAIF file generation requires logic simula-
tion, which was only possible to carry out down to a clock period of 1.3 ns. Some design
configurations managed speeds higher than that, which resulted in incorrect SAIF files.
For this reason, 1 V is presented as the highest voltage in Section 5.2. The design with a
32-entry BTB reached a lower clock period than 1.3 ns even with a VDD of 1 V, therefore
the highest voltage with which a SAIF file was possible to obtain was 0.95 V for that
implementation.

Placing and routing and manufacturing integrated circuits are inevitably part of the de-
sign flow. This work, however, focuses on design decisions at the microarchitecture level
and their consequences due to the complexity of the aforementioned design steps.

3

1.6. REPORT OUTLINE CHAPTER 1. INTRODUCTION

1.6 Report outline

The document is organized as follows. The theory relevant to this project is presented
in Chapter 2. The tools and evaluation methods are described in Chapter 3. The
instruction cache’s design is presented in Chapter 4. Evaluation results are interpreted
and further improvement possibilities are pointed out in Chapter 5. The project is
concluded in Chapter 6.

4

2

Theory

This chapter presents the theory relevant to this project. The following topics are dis-
cussed: temporal parallelism in microprocessors also known as pipelining, cache imple-
mentations, power and energy components of integrated circuits, and the motivation and
effects of using near- and subthreshold supply voltages (VDDs).

2.1 Pipelining basics

Pipelining is a technique which aims to increase the speed of a system. It has been shown
that a system’s speed is directly proportional to the latency and throughput of the data
processed by it [11]. Low latency is preferred since the less time an instruction spends in
the system the fewer dependencies it might cause, while higher throughput is beneficial
as throughput determines the system’s speed. Latency and throughput are contradictory
in the sense that actions that improve one degrade the other. Consequently, different
approaches put emphasis on different speed characteristic, based on which one matters
the most for the application at hand. In general-purpose computing, throughput has been
more important than latency. Throughput can be improved by exploiting instruction-
level parallelism (ILP), i.e., doing multiple tasks at the same time.

Parallelism can be divided into spatial and temporal parallelism. The former means
that more computations are done by increased computational resources, while the latter
aims to divide the existing computational resources into discrete steps which are utilized
simultaneously by different instructions. Spatial parallelism has the benefit of increasing
throughput with little or no impact on latency. On the downside, spatial parallelism
requires additional hardware resources and increased silicon real-estate. In contrast,
temporal parallelism increases throughput while sacrificing latency. However, temporal

5

2.1. PIPELINING BASICS CHAPTER 2. THEORY

parallelism does not require additional hardware besides additional registers between the
stages and control logic, which is sparse compared to that of the datapath.

Temporal parallelism, or as commonly referred to, pipelining, is a concept which has been
implemented in most processors for the last three decades [12]. Pipelining is implemented
by dividing the computational logic into multiple stages; the execution time of one stage
is substantially less than that of all the stages (even if the pipeline registers’ delay is
accounted for) [11]. This results in lower execution time for the pipelined processor, since
both the single-cycle and pipelined processors execute (approximately) one instruction
per cycle and the cycle time is lower for the pipelined processor. Figure 2.1 shows
an example of dividing the logic into five stages by identifying the different steps an
instruction goes through before it is retired. The additional registers between the stages
to separate them from each other are also shown.

Datapath

I/D$

IF ID MEM WBEX

Hazard
Detection

Mult1 Mult2

Figure 2.1: Microarchitectural overview of the five-stage pipeline. The five stages are
instruction fetch (IF), decode (ID), execute (EX), memory access (MEM), and write back
(WB).

One might ask how it is possible to execute the same amount of instruction in less time.
The discrete stages in a pipelined CPU allow for temporal parallelism which results in
several instructions being executed at the same time. If the datapath’s logic is evenly
distributed among the different pipeline stages, the execution time of one stage becomes
the single-cycle processor’s execution time divided by the number of stages. Ideally,
pipelined processors would finish executing an instruction every cycle leading to an
instruction per cycle (IPC) count of one. The theoretical instruction sequence is shown
in Figure 2.2 for a five-stage pipeline.

In reality, pipelined processors do not achieve a perfect IPC in most cases since branches
introduce control hazards and some data hazards introduce no-operation (NOP) instruc-
tions. Deeper pipelining increases the occurrence both of the aforementioned hazards
making the control path more complex and increasing the occurrence of NOPs. There
are many techniques that aim to alleviate the negative effects of hazards on the IPC
metric, such as data forwarding and branch prediction, that together with decreased
cycle time result in a faster processor. Since adding more stages further decreases the

6

2.1. PIPELINING BASICS CHAPTER 2. THEORY

IF

IF

IF

ID

ID

ID

EX ME

EX

EX

WB

ME

ME

WB

WB

IF

IF

ID

ID

EX

EX ME

ME

WB

WB

Inst 1

Inst 5

Inst 4

Inst 3

Inst 2

Cycle2 3 4 5 6 7 8 91

Figure 2.2: Instruction sequence in an ideal five-stage pipeline comprising the instruction
fetch, decode, execute, memory access, and write back stages. The first five instructions are
shown as they are executed in nine cycles. An instruction is retired in every cycle after the
forth cycle, therefore the total execution time is significantly less than that of a single-cycle
processor due to the decreased cycle time. After the fourth cycle all pipeline stages are
utilized, as shown by the figure.

logic per stage, but increases the number of dependencies at the same time, there is a
minimum in execution time at a specific number of pipeline stages. This number, how-
ever, is dependent on the architecture and the specific program being executed, therefore
there is no way to determine a general optimal number of pipeline stages. For example,
Figure 2.3 shows that 11 is the optimal number of stages in Example 7.11 in the Digital
Design and Computer Architecture textbook [11].

Figure 2.3: The relation of the pipeline stages’ number to the cycle and instruction
times [11].

As explained, pipelining is a technique that mainly increases performance. Historically,
processor pipelines grew deep to exploit the available ILP in the running instruction
stream. However, it became apparent that ILP is limited and deeper pipelines resulted

7

2.2. CACHES CHAPTER 2. THEORY

in marginally higher performance while significantly increased power dissipation. Ap-
proaching the power wall, a practical upper limit on power dissipation, and the advent
of handheld devices made energy efficiency a major design goal [13]. The design space
became more complex as performance and energy efficiency on most occasions warrant
different design choices.

2.2 Caches

For reasons of mainly economy, the main (RAM) and secondary (disk) memories are
based on different technologies which are substantially slower than the technology on
which the processor is based. To bridge the speed difference between the low-level
memories and the CPU, several levels of caches are implemented. Figure 2.4 shows the
memory organization. Levels one and two are usually found on-chip, while level three
and lower (if exist), the RAM and the disk are often located off-chip [14].

CPU
Registers

Level-1 Cache

Level-2 Cache

Physical RAM
(Main Memory)

Disk
(Virtual Memory, Hard Drive)

Si
ze

Sp
e

ed
, $

/B
it

Figure 2.4: Usual memory hierarchy in computers.

Figure 2.5 shows the common architectural representation of cache memories. When the
instruction pointed to by the program counter cannot be found in the level-one cache,
the CPU attempts to find it in lower-level caches, then finally fetches it from the main
instruction memory. Subsequently, the instruction is stored in the level-one cache along
with surrounding instructions, whose number depends on the amount of words stored in
a cache line in a single way. After the requested instruction is stored in the cache, it is
also supplied to the pipeline, which can continue its normal operation. In the case when
the instruction can be found in the cache (a hit happens, denoted by the hit signal),
the pipeline does not have to suspend its regular program execution, since the requested
instruction is supplied by the cache on time.

8

2.2. CACHES CHAPTER 2. THEORY

TAG INDEX INSTR. OFFS. BYTE OFFSET

V TAG DATA

V & TAG

= 1 & TAG

 1

HIT

MUX1

INSTRUCTION

MUX2

MISS

Figure 2.5: Common depiction of a cache memory. Two-cycle memory access is maintained
if the registers (shown in purple) are present.

Due to the caches’ concept, their content has to be updated continuously. When a
miss happens new data are brought in and a victim entry, which gets overwritten, has
to be selected. This opens up the possibilities of differently mapped caches. In case
of direct mapping, every memory location has a specific entry in the cache where it
can be stored. This increases the access speed, but can degrade performance if a lot
of frequently used memory addresses are mapped to the same entry. To alleviate the
performance degradation, set-associative caches are used, in which every memory address
has a number of entries where they can be stored. The usual number of such entries is
four or eight, and the sections containing the different entries in the cache memory are
called ways. Regardless of the number of ways, a match can only occur in a single way
(hit), or in none of the ways (miss).

Different replacement policies are available to determine the way in which the newly
fetched data should be stored in case of a miss. These usually trade performance for
simplicity, which translate to area requirement and power dissipation. Such algorithms
are least recently used, first in first out, pseudo-least recently used, etc. The algorithms
use a table to keep track of the order in which the ways have been accessed. On a hit
the table is modified to represent the current state of the access order; on a miss the
table is read and the way enable signals are set to replace the line in the way which has
been determined by the replacement policy.

To address the cache memory, the program counter is divided into four parts as seen

9

2.3. BRANCH PREDICTION CHAPTER 2. THEORY

on the top of Figure 2.5. When the program counter’s value changes, the corresponding
instruction has to be supplied for the processor. To determine if the instruction is present
in the cache or the request missed and lower-level memory access is needed, the tag bits
of the program counter have to be compared to those of each way’s directory memory
block.

The comparator’s other function is to check if the addressed cache line has already been
used (contains valid data), or if it is in the base state after cache initialization. To make
this check possible, an additional flag bit is assigned to every cache line, and set to
zero together with all tag bits on initialization. When a miss occurs and a cache line is
populated with new instruction from the main memory, the valid bit is set to one. The
comparator is shown in red in Figure 2.5.

In some cache memory illustrations, such as in Figure 2.5, the selection of the referenced
data is depicted as a series of two multiplexers in case of a hit. In these figures, the
first multiplexer is usually responsible for selecting the line of the way in which the hit
occurred out of the lines of all ways addressed by the index bits. These data lines,
therefore, contain as many data words as specified by the design to reside in a single
line in one way. The second multiplexer is controlled by the instruction offset bits of the
current address in the program counter, and yields the referenced data word, which is
one of the words found in the line specified by the first multiplexer. Another option is
that the multiplexer which selects the correct word in a line (based on the offset bits)
acts before the one that selects the way in which the hit occurred: in this case the
first-level multiplexers would have to be implemented as many times as the count of
ways in the design. On the other hand, the second multiplexer would have to handle
significantly less amount of signals, which could make up for the energy increase caused
by the multiple instantiation of the first multiplexer.

2.3 Branch prediction

Conditional operations are one of the most common instructions in all programs, which
is unfortunate as deciding at which address the execution should continue depends on
whether the branch is taken or not taken. This decision, on the other hand, might be
delayed depending on the condition variable’s availability. In some cases of simplistic
pipelines the compiler can schedule instructions in a way that allows the architecture
to deal with other operations until the condition is evaluated and the branch target
address is computed (in case the branch is taken, otherwise execution continues from
PC+4). In other cases, however, e.g. for deeper pipelines, the amount of instructions
the compiler would have to schedule in advance is too high, therefore other solutions
have to be explored.

A powerful option to avoid delays caused by evaluating the branch condition variable
is branch prediction [14]. The prediction can be static, in which branches are always

10

2.4. STATIC AND DYNAMIC POWER CHAPTER 2. THEORY

predicted taken or not taken, or dynamic, in which the history of the branches is stored
in hardware or software and the prediction is made accordingly. However, branch tar-
get address calculation has to be performed and causes a delay in fetching the next
instruction when a branch is predicted taken. To mitigate the delay caused by branch
address calculation, the target addresses of the most recent branches are stored in a
structure called branch target buffer (BTB). The BTB is essentially a simple cache, and
as such its architecture is similar to that of instruction and data caches as shown in
Figure 2.6.

TAG INDEX

TAG TARGET ADDRESS

MISS

= HIT If HIT Then
PC REG:=TARGET ADDRESS

Figure 2.6: The operation of the branch target buffer (BTB).

The effectiveness of a BTB is mostly determined by its size, the more entries it holds,
the higher the chance the requested branch target address is stored. In case the address
is not present, the address has to be calculated while the fetch sequence is stalled. On
the downside, the more entries a BTB comprises the bigger it becomes which directly
translates into higher power dissipation. To explore the design space different sizes of
BTBs have to be simulated to find the one that yields optimal performance along with
reasonable power consumption.

In this study, the five-stage pipeline uses a branch delay slot, while the seven-stage
pipeline has to use branch prediction in order to maintain sufficient performance.

2.4 Static and dynamic power

When an electronic device is operating, it dissipates power. During idle time, i.e. when
the transistors in the device are not switching, its power dissipation is defined by leakage.
Leakage power is commonly referred to as static power. Static power is still present when
the device operates normally, since any transistor can stay nominally off for a number

11

2.4. STATIC AND DYNAMIC POWER CHAPTER 2. THEORY

of cycles, throughout which it leaks. During normal operation though, dynamic, or
switching, power also contributes to the total dissipation [15].

Leakage power is defined as the product of the VDD and the leakage current as shown by
Equation 2.1. The leakage current consists of subthreshold (Equation 2.2) and gate-oxide
leakage (Equation 2.3) [16]. Reducing the VDD decreases subthreshold leakage power,
but it also degrades performance, while using high-κ insulators mitigates the gate-oxide
leakage without having to increase the oxide thickness, which would restrict technology
scaling.

Pstatic = VDD · Ileak = VDD · (Isub + Iox) (2.1)

Isub = K1We
− Vth

nVT

(
1− e−

VDD
VT

)
(2.2)

Iox = K2W

(
VDD
Tox

)2

e
−BTox

VDD (2.3)

In the equations VDD is the supply voltage, K1, K2, n, and B are experimentally derived,
W is the gate width, VT is the thermal voltage, Vth is the threshold voltage, and Tox is
the oxide thickness.

In a complementary metal-oxide-semiconductor (CMOS) circuit short-circuit power oc-
curs when both the P and N networks are conducting, which creates a direct path from
VDD to VSS. As such, its duration depends on the circuit’s rise and fall times, which
are substantially lower for present day nodes than those of their predecessors due to the
well-known benefits of technology scaling. For this reason, short circuit power does not
play a significant role in today’s devices’ power consumption.

Switching power dissipation is caused by charging and discharging the load capacitances
on the output. Equation 2.4 is widely used and it presents the relation between switching
power (Pswitching) and supply voltage (VDD), frequency (f), load capacitance (Cload), and
switching activity (α).

Pswitching = αf · Cload · VDD2 (2.4)

Equation 2.5 shows the connection between the different power components.

Ptotal = Pstatic + Pdynamic = Pstatic + Pswitching (2.5)

The leakage to active power ratio of a device depends on several factors, such as workload
and VDD. Influence of these factors are analyzed in further detail in Chapter 5.

12

2.5. ENERGY CHAPTER 2. THEORY

2.5 Energy

Section 2.4 shows that reducing the VDD reduces power consumption, some components’
dissipation decreases quadratically, while that of others’ decreases exponentially. At the
same time, however, it reduces maximum clock frequency hence increases execution time,
according to the relation in Equation 2.6 [16].

f ∝ (VDD − Vth)α

VDD
(2.6)

Due to its exponential nature, the nominator outgrows the denominator therefore higher
VDDs result in higher frequencies, assuming that the threshold voltage is fixed. (α is an
experimentally derived constant that is dependent on the technology node. It was 1.3
at the time when the article was published.)

The voltage dependency of frequency and power dissipation results in a trade off between
these two metrics. To apprehend their combined variance, the total energy consumed
by a device during a specific program execution can be used, as explained in this sec-
tion.

Equation 2.7 shows the expression of total energy dissipated during a time interval of T
in terms of power and time.

Etotal =

∫ t0+T

t0

P (t)dt (2.7)

If an average power value is available, then the expression is simplified to that of Equa-
tion 2.8.

Etotal = Pavg · T (2.8)

Total energy takes into account not only the power the device dissipates during program
execution, but also the time during which the dissipation takes place. Consequently,
energy can serve as a metric to compare different configurations that execute the same
benchmark regardless the nature of their differences, such as architecture, VDD, or a
combination of these.

Figure 2.7 displays the total, leakage, and dynamic (active) energy values of a chain of
50 inverters as a function of VDD in 0.13-µm technology [17]. Dynamic energy reduces
quadratically with VDD while leakage energy increases, which together create a minimum
point in total energy consumption.

13

2.6. NEAR-THRESHOLD OPERATION CHAPTER 2. THEORY

Figure 2.7: Energy components as a function of VDD. At the leftmost point of the graph,
total energy has the highest value followed by leakage energy, while active energy has the
lowest [17].

2.6 Near-threshold operation

There are several design techniques which can curb the power consumption of an elec-
tronic device. When the application has a low or medium throughput requirement, one
of the most effective approaches is to decrease the VDD since that reduces the switching
power quadratically. The theory and effects of this method are available and different
examples have been published. These articles explore voltage levels such as the 400-mV
borderline between the super- and subthreshold regions [18], the 360-mV minimum en-
ergy point of a sensor processor design [17], and describe operation below 200 mV with
a proper body biasing technique [19]. It has also been shown that the optimal operating
point for the energy-delay product does not necessarily have to be in the subthreshold
region. In the near- and super-threshold domains, active gates perform the computations
faster, therefore yield less leakage energy per computation [20].

Subthreshold voltages can be used not only in computational units, but they are sufficient
for other building blocks, such as memories. Traditionally, more than six transistors had
been used to account for higher noise margins in low-voltage applications, but it has
been shown that six transistors are enough in the subthreshold domain if they are sized
appropriately [21].

Memory components have lower switching activity than the logic, therefore leakage has
a higher impact on their energy consumption. For this reason higher threshold voltages
are commonly utilized in the memory designs, which, at the same time, require higher
VDDs. Higher voltages also help to lower the risk of the most significant failure causes in

14

2.6. NEAR-THRESHOLD OPERATION CHAPTER 2. THEORY

static random-access memories (SRAMs), i.e. insufficient noise margins and hold time
violations [22]. On the other hand, switching power and energy scales quadratically
with the VDD, therefore a lower VDD is more beneficial in circuits in which the switching
power is the main contributor to the total power. This pattern can be observed in some
previous work: in a multi-core CPU study, 0.37 V for the core and 0.64 V for the level-
one caches proved to be the most energy-efficient configuration [23], while 0.28 and 0.4
V were used as VDD for the logic and the memory respectively in an energy-efficient
subthreshold processor design [17].

Another technique which can be used to accommodate the momentary needs of an ap-
plication is dynamic voltage scaling (DVS). DVS modifies the VDD during the operation
of the circuit; when high performance is required the voltage is increased, otherwise a
lower value is used. Examples of DVS are presented in various papers. In a 65-nm 32-bit
subthreshold processor DVS is used to satisfy temporarily higher performance require-
ments during run time [22]. Another example is a 90-nm CPU design, which implements
panoptic (all-inclusive) DVS, thereby eliminates spatial (different components at differ-
ent voltages) and temporal (speed of a component’s VDD change) granularity [24].

VDD is not the only parameter that can be adjusted during run time. It has been argued
that in the subthreshold domain dynamic frequency scaling is a more viable approach
to fight process variability than DVS [17].

To moderate out-of-service parts’ energy consumption, clock and power gating are gener-
ally used. The clock gating technique turns off the clock of unutilized parts, thereby they
do not switch, which brings down their power consumption only to that of the leakage.
A more radical method is power gating; shutting down unused parts by turning off their
power supply. Although power gating completely removes the power consumption of a
module, it is not as frequently used as clock gating as powering up and down building
blocks take more cycles than enabling their clock signal. In most cases additional logic
and memory elements are required to temporarily store the state of the unpowered unit.
For these motives power gating is only used for blocks that are utilized infrequently,
e.g. a floating point unit which is only used for some applications of a general-purpose
processor.

Another application for power gating is architectural duplication, in which the same
block is implemented twice in hardware, therefore in case of a fault the dysfunctional
block’s power is turned off while the spare one is powered and put into use. This
method is used among others in the paper Process Variation in Near-Threshold Wide
SIMD Architectures [25].

In this project, clock gating is enabled during synthesis, but power gating is not present
as all modules of the pipelines are used throughout program execution. Dynamic voltage
and frequency scaling are not implemented either, but the effects of modifying the VDD

are investigated and described.

15

3

Evaluation methods

The pipelines used for evaluation are presented in Section 3.1 and Section 3.2. Section 3.3
describes the benchmarks applied from the EEMBC suite, while Section 3.4 summarizes
the tools for verification, synthesis, and power analysis.

3.1 Five-stage pipeline

The five-stage pipeline implements an integer subset of the 32-bit MIPS I instruction
set architecture (ISA) first used in the R2000 microarchitecture, which was released in
1985 [26]. Microprocessor without Interlocked Pipeline Stages (MIPS) is a family of
32-bit (later expanded to 64-bit) processors used primarily for embedded applications,
such as network routers, PDAs, and portable gaming consoles. All MIPS processors are
classified as reduced instruction set computers (RISCs).

The implemented microarchitecture features around 50 instructions including different
branches, logic, and memory instructions. It features 32 general-purpose 32-bit registers.
This microarchitecture does not include a floating-point unit for floating-point opera-
tion support, which is motivated by the targeted embedded market where floating-point
operations are usually replaced by fixed-point calculations.

Figure 2.1 shows an overview of the microarchitecture. In the IF stage, instructions are
read from the instruction cache from an address pointed to by the program counter (PC)
register, which is periodically updated to point to subsequent instructions or to a branch
target address. In the ID stage the register file is accessed and control signals for later
stages are set based on the instruction. Branch instructions are solved in the ID stage,
but by the time they are resolved the next instruction has already been fetched. To
avoid this problem a delayed branch slot is scheduled by the compiler. When a branch

16

3.1. FIVE-STAGE PIPELINE CHAPTER 3. EVALUATION METHODS

instruction is detected, the compiler attempts to move a subsequent instruction before
the branch therefore making use of the cycle which would be left unutilized waiting for the
branch condition’s outcome. In the EX stage arithmetic or logic operations are executed
in an arithmetic logic unit (ALU). A dedicated two-stage combined multiplication unit
is also available, spanning the EX and MEM stages. In the MEM stage, loads and stores
access the data cache. Finally, in the WB stage, results are written back to the register
file.

A hazard detection unit, which physically resides in the decode stage but is shown
separately in Figure 2.1, detects any potential data conflicts and stalls the pipeline by
stopping the instruction fetch sequence. The cache also produces a stall signal, which
is asserted upon a cache miss. In contrast to the hazard stall, the cache miss stalls the
entire pipeline as shown in Figure 2.1.

As of now the microarchitecture does not support exceptions, but this does not affect
the validity of the results. Exceptions are only necessary to support I/O and recover
from errors (invalid opcode etc.), and system calls, which events are uncommon by
design.

The included multiplier is the DW mult pipe DesignWare Building Block IP provided by
Synopsys [27]. The multiplier is pipelined internally within two stages, which increases
the latency of the unit but also improves its timing characteristics.

On-chip caches were not included in the original R2000 design, but, as Figure 2.1 shows,
an instruction and a data cache are added. These caches are separate from each other ac-
cording to the Harvard architecture for higher performance. Both caches’ size is 8 kB and
use two-way associativity with least-recently-used (LRU) replacement policy to increase
hit rates. Static random-access memory (SRAM) macros from ST Microelectronics were
used for the caches [28]. A write-through scheme is utilized to ensure coherence in the
memory hierarchy [9]. Figure 3.1 shows an overview of the memory hierarchy.

Pipeline

I$

D$

Memory
Controller

External
Memory

Figure 3.1: Memory hierarchy of the five-stage pipeline. The instruction and data caches
are featured between the pipeline and the memory controller.

The data cache is available for read and write accesses, while the instruction cache only
serves reads. However, the instruction cache still needs to access external memory on
cache fills and in case of a cache miss. The two caches share one memory bus to the
external memory and a memory controller orchestrates which one of the caches is allowed
to access the external memory.

17

3.2. SEVEN-STAGE PIPELINE CHAPTER 3. EVALUATION METHODS

3.2 Seven-stage pipeline

The architecture of the seven-stage pipeline resembles that of the five-stage one. How-
ever, the instruction fetch and memory access stages are split into two, therefore making
the pipeline comprise a total of seven stages. Figure 3.2 shows the block diagram of
the seven-stage pipeline. The instruction fetch was selected on the basis that it accesses
memory (instruction cache), thus it constituted the critical path in the five-stage pipeline.
The memory access stage was selected due to the similarities with the instruction fetch,
as it accesses the data cache. Initially the development method was to expand the ex-
isting five-stage pipeline by dividing the aforementioned stages, but later this strategy
changed and the seven-stage pipeline was built from scratch [7] [8].

IF2 ID EX MEM1IF1

Branch predictor

Hazard

detection
Mult1 Mult2 Mult3

MEM2 WB

Figure 3.2: Microarchitectural overview of the seven-stage pipeline. The instruction fetch
and memory access stages are split into two as indicated by their numbering.

There are three major differences in the seven-stage design compared to the five-stage
pipeline: 1) The DesignWare multiplier block is split into three stages as the memory
access stage is divided into two, 2) a branch prediction mechanism is added to mitigate
the immediate consequences of conditional operations (i.e. not knowing their outcome),
and 3) caches are not included in the design, the instructions are fetched from the main
(ideal) memory directly. Branch prediction was added to the seven-stage pipeline design
out of necessity. With the additional pipeline stages it is unfeasible to rely on delayed
branch slots since the compiler cannot handle the task of scheduling the increased number
of instructions (compared to the five-stage case) after a branch. Thus, not devoting any
resources to branch resolution would result in an unacceptable performance loss due to
stall cycles on every branch.

Unlike the five-stage pipeline’s case, the seven-stage design implements two-cycle memory
access due to its two instruction fetch and memory access stages, which make both
the instruction and data caches’ implementation more cumbersome. To avoid increased
synthesis and simulation times no caches are included in the seven-stage pipeline’s design.
Estimations of the seven-stage pipeline’s cache energy are further discussed in Chapter 5.
Figure 3.3 shows the timing diagram of the first seven instructions during ideal program
execution. Due to the increased number of stages, one instruction’s execution takes
more cycles than in the five-stage case. However, after the seventh cycle an instruction
is always retired, which allows for higher throughput thanks to the decreased cycle

18

3.2. SEVEN-STAGE PIPELINE CHAPTER 3. EVALUATION METHODS

time.

IF1 IF2

IF1

IF1

EX

IF2

IF2

ME1 ME2ID WB

ID

ID EX

EX

ME1

ME1 ME2

ME2

WB

WB

IF1 IF2 ID EX ME1 ME2 WB

IF1 IF2 ID EX ME1 ME2 WB

IF1 IF2 ID EX ME1 ME2 WB

IF1 IF2 ID EX ME1 ME2 WB

Cycle2 3 4 5 6 7 8 91 10 11 12 13

Inst 1

Inst 5

Inst 4

Inst 3

Inst 2

Inst 7

Inst 6

Figure 3.3: Instruction sequence in a seven-stage pipeline.

Instead of caches, the seven-stage pipeline uses the main memory (ideal with one-cycle
access time) directly, which would favor the seven-stage pipeline in a direct performance
and energy comparison between the pipelines. However, to create a level playing field,
stall cycles due to cache misses were subtracted from the five-stage pipeline’s execution
time and cache energy was removed from the energy results. The temporary addition
of the unoptimized two-stage instruction cache to the seven-stage pipeline marginally
increased its critical path and forced an approximately 10% lower clock frequency. This,
however, does not invalidate the fact that the seven-stage design outperforms the five-
stage one.

The fastest (in terms of executed cycles) seven-stage pipeline implementation with branch
target buffer (128-entry mapped to SRAM-based memory) and the one without branch
target buffer (BTB) were included in the cycle count and total execution time graphs
to point out the true gains of moving to the seven-stage configuration from the five-
stage one. In later comparisons the latter was excluded and power and energy metric
evaluations were made at the same clock rates for all designs as motivated above. Both
the 32- and 128-entry BTBs were implemented as flip-flops (FF) or mapped to a SRAM
(SR) library provided by ST Microelectronics [28]. (The size and technology selections
were controlled by values in the branch predictor’s constant collection.) The evaluation
of different benchmark applications with both flip-flop and SRAM configurations allowed
discussion about the speed-power trade-offs of the two memory types and sizes.

Table 3.1 lists the lowest cycle times at which the different designs were possible to
synthesize. Even though most of the implementations could achieve higher speeds, all the
seven-stage designs were synthesized with a cycle-time of 1.63 ns to get a fair comparison
between BTB sizes (32 and 128 entries) and technologies (SRAMs and flip-flops).

19

3.3. BENCHMARKS CHAPTER 3. EVALUATION METHODS

Table 3.1: Minimum cycle times at worst-case library conditions

Design Cycle-time (ns)

5sp 16kB 4-way L1 I/D$ 2.30

7sp 32BTB FF 1.53

7sp 32BTB SRAM 1.36

7sp 128BTB FF 1.63

7sp 128BTB SRAM 1.35

7sp without BTB 1.29

3.3 Benchmarks

Benchmarks from the EEMBC suite were selected to evaluate the design. EEMBC
is a collection of benchmarks that are built on objective, clearly defined application-
based criteria. More importantly, the EEMBC benchmarks reflect real-world applica-
tions [29]. From the suite the benchmarks autocorrelation, convolutional encoder, fast
Fourier transform, RGB to CMYK, and Viterbi decoder are used. The benchmarks were
selected on the basis that they are commonly used when evaluating embedded proces-
sors. Furthermore, they are lightweight and test basic functionality of the processor
rather than relying on system calls, etc. Other benchmark suites such as SPEC [30] and
MiBench [31] were considered, but these suites are heavier, which makes them ungainly
to use while running RTL verification and power analysis. Also, MiBench and SPEC
require support for system calls, which are not supported in neither of the processor
pipelines as mentioned in Section 3.1.

3.4 Tools

This section describes the tools used for verification, synthesis, and power evaluation.
The RTL code was compiled and verified with Cadence NCSIM. The design was aug-
mented with an ideal memory module that loaded the EEMBC benchmarks into the
design and a logic simulation testbench verified the output from the design.

After verification, Synopsys Design Compiler was used to synthesize the design to pro-
duce a netlist. The synthesis effort was set to ultra-high and automatic clock gating
was enabled. The tool was also instructed to only use special clock cells for the clock
network and not for the datapath’s logic.

In the nominal supply voltage (VDD) domain, the designs were synthesized to libraries
characterized for 65-nm process, low-power, and low-threshold-voltage. The evaluations
were made in the worst-case process corner, with a 1.1-V VDD and 125-◦C ambient

20

3.4. TOOLS CHAPTER 3. EVALUATION METHODS

temperature.

For graphs with varying VDD values on their x-axis, 65-nm process, low-power, and
low-threshold-voltage libraries were used also. However, the evaluations were carried
out at the typical process corner with VDDs ranging from 1 down to 0.4 V and a fixed
temperature of 25 ◦C.

The reason for using different process corners in the nominal and near-threshold VDD

domains is that the switching activity file generation only worked correctly for clock
periods over 1250 ps. Seven-stage pipeline designs with 1.2-V VDD would have been able
to reach clock cycles below that value, therefore power and energy numbers could not
have been extracted for them.

NCSIM was also used to conduct a Switching Activity Interchange Format (SAIF) file
generation. SAIF files contain realistic switching activities for nodes within the design,
and they were created based on the aforementioned benchmarks and the cycle times
obtained in the synthesis phase.

Cadence PrimeTime was used to generate power reports based on the obtained SAIF file
and the synthesized netlist. The designs were mapped to different technology libraries
during this phase ranging from 1.2 down to 0.4 V with characterization describing worst-
case and nominal process corners.

PrimeTime reports power results in line with the power component structure outlined
in Section 2.4. Switching and leakage power are listed for the building blocks of the
design.

21

4

Instruction cache design

In the five-stage pipeline, the instruction fetch and memory access stages have been
identified critical with regards to timing, because the instruction and data caches are
accessed in these stages. Dividing the timing critical stages is expected to decrease
their execution time, but it also requires dividing the caches that are accessed in these
stages. To be able to extract accurate power values, implementation of a two-cycle
instruction cache, which would project power values for the data cache as well based on
Section 5.1.4, has been started. These design experiences are useful during the evaluation
of the seven-stage pipeline, even though the instruction cache is not complete due to time
limitations.

The instruction cache’s design at its current state is described in this chapter. The cache
is located between the main instruction memory and the instruction fetch stages of the
pipeline, as shown in Figure 4.1.

The cache is connected to main memory through an interface, which comprises two
registers. The cache itself consists of the directory (holding tags) and data (holding
instruction words) memory blocks, the controller, the logic responsible for line replace-
ment, and additional blocks such as registers, multiplexers, and comparators. During
instantiation a number of values can be set to customize the cache’s architecture. Ta-
ble 4.1 and Table 4.2 summarize the cache’s generics with their default values and the
internal values that are calculated based on the generic constants.

The cache can be implemented as direct mapped, or with two- or four-way set associativ-
ity. The instruction cache’s building blocks are presented in the following sections.

22

4.1. MEMORY INTERFACE CHAPTER 4. INSTRUCTION CACHE DESIGN

not(Way Enable)

Dir 0

Dir 1

Dir 2

Dir 3

Main Mem Data Rdy

Data 0

Data 1

Data 2

Data 3

IF1 IF2

Figure 4.1: The instruction cache’s datapath. The datapath is split into two stages to
comply with the 7-stage pipeline’s architecture.

Table 4.1: Generics with default values.

Generic Default Value

Cache size in kB 2

Associativity 4

Address (PC) width 32

Number of instructions per line in a way 4

Data (instruction) width 32

4.1 Memory interface

To account for the speed difference of the level-one cache and the lower-level caches
(main memory in this case), registers are placed between the instruction cache and the
main memory. One of the registers contains the data supplied by the main memory,
while the other one contains a valid signal, which is set by the main memory in parallel
with writing the data in the data register. The cache memory periodically reads the
valid register and retrieves the data from the data register accordingly.

23

4.2. DATAPATH CHAPTER 4. INSTRUCTION CACHE DESIGN

Table 4.2: Calculated constants based on generics.

Constant Formula Value

Tag length
Address (PC) width− Index width−

23
−Offset (instr)−Offset (byte)

Index length

log2[1024 · Cache size in kB/
5/(Associativity ·Data (instruction) width/8·

·Number of instructions per line in a way)]

Offset (instr) log2(Number of instructions per line in a way) 2

Offset (byte) log2(Data (instruction) width/8) 2

4.2 Datapath

Instruction caches do not have to modify data in main memory, since the instruction
words are simply fetched and executed in the pipeline based on the PC’s value without
any changes. Therefore the datapath has only one direction, from the main memory
through the instruction fetch stages to the directory and data memory blocks of the
cache.

4.2.1 Line replacement logic

The cache uses a pseudo-least-recently-used line replacement policy. Due to the sub-
stantially simpler algorithm [32], which translates to fewer hardware components, the
pseudo-LRU consumes less energy than the LRU policy.

4.2.2 Directory and data memory blocks

Application and supplementary data, instruction words and tag bits in this case, are
stored in memory blocks implemented within the cache. The number of both the tag
and data memory blocks is equal to the number of ways, and each tag corresponds
to one data block. The index bits are used to address the tag blocks, therefore the
number of lines (sets) in each tag memory is equal to 2index width. From an architectural
point of view, the data blocks contain this amount of sets as well, but one set usually
comprises more than one data word in a line. For this reason, the width of a data block
is set to that of one instruction, resulting in a total number of lines of 2index width times
Instructions per line in a way, i.e. the theoretical number of lines multiplied by the
amount of instructions in a line per way. Figure 4.2 presents this organization.

To motivate this, consider the following. If the data blocks’ width was set to the width of
as many instructions as reside in a single set, then the incoming data from main memory

24

4.2. DATAPATH CHAPTER 4. INSTRUCTION CACHE DESIGN

Tag 0

Tag 1

Tag 2

Tag 2Index width-1

Set 0 Word 0

Set 0 Word 1

Set 0 Word N

Set 1 Word 0

Set 1 Word 1

Set 1 Word N

Set 2 Word 0

Set 2Index width-1 Word N

Set 0 Word 1 Set 0 Word N

Set 1 Word 1 Set 1 Word N

Set 2 Word 1 Set 2 Word N

Figure 4.2: Implemented instruction cache memory block organization. The number of
data words per line in a way is denoted by N.

(sent word by word) would have to be buffered until enough have been sent to fill a whole
set, which would increase replace time and complicate the hardware. In the proposed
solution, words can be written into the correct position one by one as they arrive from
main memory by concatenating the index and block offset bits.

4.2.3 Comparator

The comparators serve the function of determining hits in a way by comparing the PC’s
and the directory memory blocks’ tag bits and checking the valid bit. The unnecessary
implementation of components is avoided by concatenating a ’1’ in front of the PC’s
value, and comparing this extended value with the directory memory block’s bits, which
comprise the valid bit and the tag bits corresponding to the data stored in the respective
data memory block line.

4.2.4 Multiplexer

Rather than the conventional solution specified in Section 2.2, only one multiplexer is
necessary in this design due to the memory blocks’ structure described in Section 4.2.2.
The data memory blocks’ organization abolishes the need of having the multiplexer which
selects the required instruction from the line in which the hit occurred. This multiplexer
would be controlled by the instruction offset bits, which in this design are concatenated
with the index bits instead and address the data memory block. The memory block in
turn returns one instruction word only. This behavior results in associativity number of
instructions being returned (one by each way’s data block), and the implemented single
multiplexer controlled by each way’s individual hit signal selects the correct word.

25

4.3. CONTROLLER CHAPTER 4. INSTRUCTION CACHE DESIGN

4.2.5 Registers

The registers are shown in purple in Figure 2.5 and between the two instruction fetch
stages in Figure 4.1. The seven-stage pipeline’s architecture contains two instruction
fetch stages, therefore the instruction cache has to be implemented in a way which
enables two-cycle memory access. To comply with this requirement, after requesting the
instruction words from the data memory blocks, each way’s addressed instruction and
their respective hit signals are registered. The overall hit signal and the way’s (in which
a hit occurred) data are determined by an OR-gate and a multiplexer during the second
clock cycle.

4.3 Controller

The controller block is responsible for orchestrating the operation of the cache memory.
It works in cooperation with the memory blocks’ input multiplexer and organizes the
execution and flow of its three different states, namely flush, tag compare, and instruction
word replace. The controller’s, pseudo-LRU table’s, and input multiplexer’s relation is
shown in Figure 4.3, while the controller’s state machine is depicted in Figure 4.4.

LRU

MUX

Ctrl

Way En

Rd/nWr

Index

Cntr Flush Addr

Tag

Flush Dir

TAG_CMP state

Tag

Index

Rd/nWr

Way En Tag

Way En Data

IndexLRU

IndexCtrl
TagIn

Rd/nWr
WayEn

Flush TAG_CMP

Figure 4.3: Connections between the pseudo-LRU, controller, and memory input multi-
plexer blocks, which formulate the way enable and read or write signal generation for the
directory and data memory blocks.

4.3.1 Flush state

Whenever a reset happens, the instruction cache has to be flushed not to corrupt the
upcoming operation by signaling false hit events. Two operations are carried out during
a flush: every bit of the directory memory blocks are set to zero and the pseudo-LRU

26

4.3. CONTROLLER CHAPTER 4. INSTRUCTION CACHE DESIGN

when cntr == 2index width

TagCmpFlush MemRead

when hit == 0

when cntr == associativitywhen reset == 0

when reset == 0

Figure 4.4: State machine of the instruction cache controller. Marked transition conditions
do not include external ones, such as main memory busy signal or external stall request.

table’s bits are set in a way that the incoming data chunk will be placed in way number
one on the first access. Since each directory memory block receives the same address
(index bits) and all of them can be enabled and written at the same time, as well as
the pseudo-LRU table, the initialization of these memories is done simultaneously, and
takes 2index width clock cycles.

When the flush sequence is initiated by a reset, the controller signals to the memory
blocks’ input multiplexer that all directories should be enabled and written at the same
time (this only occurs during flush), and increments a counter which acts as the address
for the directory blocks and the pseudo-LRU table from 0 to 2index width − 1.

One could suggest setting solely the valid bits of the directories to zero, which would
result in correct operation. However, resetting the cache only happens once prior to
normal operation, therefore this tradeoff between energy increase and design simplicity
motivates the decision to clear the whole directory.

4.3.2 Tag compare state

The cache stays in tag compare state during normal operation when the requested in-
structions can be found in one of the data memory blocks. In this state all directory and
data memory blocks are enabled and read (not written) to compare tag bits of the direc-
tories and the PC, and output the addressed data word. Supplying correct instructions
from the data memory blocks and keeping the pseudo-LRU table updated is ensured by
the datapath components in tag compare state. Figure 4.5 shows how the tag compare
state is entered and left immediately due to a miss detection after flushing the cache has
completed.

27

4.3. CONTROLLER CHAPTER 4. INSTRUCTION CACHE DESIGN

Clk

State F l u s h T C T C M R

A2Dir 3 0 3 1 0

PCIn 0

Hit

A2MM 0

DFMM D 0

Rdy

A2DM 0

R/nW

En

Cntr 3 0 3 1 3 2 0

Figure 4.5: Transient tag compare state after flush.

4.3.3 Instruction word replace state

When a miss is signaled by the datapath and detected by the controller, tag comparison
gets suspended and the requested instruction accompanied by neighboring instructions
(to fill a whole cache line) is brought into the cache from the main memory. A transfer
counter is set to count from zero to the number of instructions per cache line to handle
and monitor and the state of the memory transfer. In each cycle the controller outputs
the address for the main memory based on the PC and the transfer counter, and the
address to the data memory block based on the index part of the PC and the transfer
counter. The write signals for the directory and memory blocks are set by the controller,
while the enable signal for the directory and data block in which the line is to be replaced
is determined and set by the pseudo-LRU block. When the transfer counter reaches its
maximum value, the controller waits until the last ready signal arrives from the main
memory signaling the termination of the whole line’s transaction, then the controller
goes back to the tag compare state and continues operation.

Normally, the PC would have to be reverted to its previous value after a miss, since

28

4.3. CONTROLLER CHAPTER 4. INSTRUCTION CACHE DESIGN

on entering the tag compare state its value would be incremented, even though the
previous address had not taken effect as it was not found in cache, hence the miss.
Figure 4.1 shows a solution to this problem, by placing the instruction which caused
the miss immediately in the corresponding register during main memory access while
also setting the way’s hit signal to one. With this modification the cache is able to
supply the instruction during the last cycle of the main memory access sequence, and
tag comparison can be continued with the subsequent PC value. Waveforms for cache
line replacement are shown in Figure 4.6 and Figure 4.7 for ideal (zero wait cycles) and
non-ideal (e.g. one wait cycle) main memories, respectively.

Clk

State T C M R M R M R M R T C

PCIn A 1 A x 1

Hit

A2MM A 0 A 1 A 2 A 3

DFMM D 0 D 1 D 2 D 3

Rdy

A2DM A 1 ’ A 0 ’ A 1 ’ A 2 ’ A 3 ’ A 1 ’ A x 1

R/nW

En

Cntr 0 1 2 3 4 0

Figure 4.6: Ideal main memory access, instruction words are fetched when the address is
received.

29

4.3. CONTROLLER CHAPTER 4. INSTRUCTION CACHE DESIGN

Clk

State T C M R M R M R M R M R M R M R M R T C

PCIn A 1 A x 1

Hit

A2MM A 0 A 1 A 2 A 3

DFMM D 0 D 1 D 2 D 3

Rdy

A2DM A 1 ’ A 0 ’ A 1 ’ A 2 ’ A 3 ’ A 1 ’ A x 1

R/nW

En

Cntr 0 1 2 3 4 0

Figure 4.7: Non-ideal main memory access, instruction words are fetched one cycle after
the address is received.

30

5

Results and discussion

In this chapter the results from the five-stage and seven-stage pipelines and their com-
parison are presented and discussed. The advantages of adding a branch target buffer
(BTB) and its size and implementation variation are evaluated. Most of the values are
visualized in figures for a better understanding, but the exact numbers are organized in
tables and presented in Appendix A and Appendix B for the nominal and low-voltage
evaluations, respectively.

The data presented in the following sections are post-synthesis only. The results after
place and route, especially area and power results for logic cell portions, would differ
from the ones presented here. Nevertheless, these results provide a good basis to compare
the performance and energy efficiency of the five-stage and different seven-stage pipeline
designs.

5.1 Nominal voltage

This section presents the performance, power, energy, and area results obtained in the
nominal supply voltage (VDD) domain.

5.1.1 Performance and execution time

Figure 5.1 shows the cycle counts for the five-stage baseline, a seven-stage pipeline with-
out BTB, and a seven-stage pipeline with BTB, for the autocorrelation, convolutional
encoder, fast Fourier transform, RGB to CMYK, and Viterbi decoder benchmarks.

31

5.1. NOMINAL VOLTAGE CHAPTER 5. RESULTS AND DISCUSSION

The cycle count of the seven-stage pipeline without the BTB is between 10-25% higher
than that of the baseline. In contrast, the seven-stage pipeline with BTB achieves cy-
cle counts close to the baseline. Somewhat unexpected is the fact that the seven-stage
pipeline has less hazard cycles than the baseline in all benchmarks except in autocorre-
lation. Instead, as theory predicts, the seven-stage pipeline was expected to consistently
produce more hazard cycles caused by the higher number of data dependencies. The
explanation for this is likely the branch prediction in the seven-stage pipeline, which
removes some of the hazards related to branches. These hazards are also removed in the
seven-stage design without BTB, which also uses branch prediction. The only modifi-
cation is that the BTB’s memory unit is bypassed, therefore a target address is never
found for any branch instruction. Since a branch is predicted taken when a branch
instruction is fetched, the branch direction predictor predicts taken, and the target ad-
dress is available in the BTB, the branch predictor always predicted not taken in this
case [8].

Autocorrelation on the other hand is likely less branch intensive, putting more emphasis
on computation. Furthermore, there is a difference in execution cycles as well which is
likely due to branch miss-predictions (not categorized as hazard stalls), which are costly
in terms of cycles.

5sp noBTB 128BTB

C
y
c
le

s

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

A
u
to

A
u
to

A
u
to

C
o
v
e
n

C
o
v
e
n

C
o
v
e
n

F
F

T F
F

T

F
F

T

R
G

B
C R
G

B
C

R
G

B
CV
it
e
rb

i

V
it
e
rb

i

V
it
e
rb

i
Execution Hazard

Figure 5.1: Program execution cycle count and hazard stall cycles for the selected bench-
marks across three different configurations.

In Figure 5.2 the cycle times of the aforementioned implementations are also taken into
account. The stall time overhead is also displayed. As expected, the seven-stage pipeline
consistently outperforms the five-stage baseline. The expected linear speedup for the
seven-stage pipeline due to the increase in clock rate can also be observed. Since the
seven-stage pipeline remains single-issue and in-order, this is all that could be achieved.

32

5.1. NOMINAL VOLTAGE CHAPTER 5. RESULTS AND DISCUSSION

The benefit of the added BTB can be observed, which allows the enhanced seven-stage
pipeline to consistently outperform the pipeline without BTB even though the latter has
a shorter cycle-time.

5sp noBTB 128BTB

E
x
e
c
u
ti
o
n
 t
im

e
 (

u
s
)

0

100

200

300

400

500

600

700
Execution Hazard

Figure 5.2: Program execution time and time spent in stall cycles due to hazards across
the five configurations for the selected benchmarks. The benchmarks are (from left to right):
autocorrelation, convolutional encoder, fast Fourier transform, RGB to CMYK, and Viterbi
decoder.

5.1.2 Power and energy

Having established the need for appropriate branch prediction by the addition of a
BTB to achieve higher performance, power and energy evaluation can be made. As
explained in Chapter 2 two different sizes and technologies for the BTB were selected.
The configurations’ power consumption varies as shown in Figure 5.3. This is due to
the fact that static random-access memories (SRAMs) dissipate more power than their
flip-flop-based memory counterparts of the same size.

Most of the logic blocks’ ratio to the total power consumed by a benchmark on a par-
ticular processor configuration shows a pattern independent of the benchmark and im-
plementation at hand, which is due to the simplistic nature of the EEMBC benchmarks.
(If the benchmarks fully utilized the available BTB entries, the units’ power dissipation
would differ between the configurations.)

The most power is dissipated in the instruction decode stage because it includes the
power-hungry register file. The decode stage is then followed by the execute stage, while
the instruction fetch and memory stages consume smaller amounts of power. However,

33

5.1. NOMINAL VOLTAGE CHAPTER 5. RESULTS AND DISCUSSION

the multiplier’s relative power consumption is dependent on the benchmark, it dissipates
more power for the autocorrelation and fast Fourier transform benchmarks than for the
others.

No major difference between the 32- and 128-entry SRAM based BTB is apparent,
which can be explained by the way SRAM memories are designed. SRAM memories
are designed to exhibit only minor differences in terms of power dissipation and timing
between different sizes, especially for relatively small capacities with the same multiplexer
factors.

Lastly, it is important to note that the SRAM-based branch predictor unit also includes
wire capacitance and proper sizing of transistors since a placed and routed memory macro
from ST is used. The relative contribution of the SRAM BTB is expected to decrease
once the whole design is brought through place and route and wire capacitances are
accounted for in the pipeline logic as well.

32FF 32SRAM 128FF 128SRAM 5sp

P
o
w

e
r

(u
W

)

0

5

10

15

20

25

30

35
IF ID EX MEM&WB MULT BPR

Figure 5.3: Power consumption broken down to building blocks across the five configura-
tions for the selected benchmarks. The benchmarks are (from left to right): autocorrelation,
convolutional encoder, fast Fourier transform, RGB to CMYK, and Viterbi decoder.

The energy plot in Figure 5.4 offers no real surprises besides shifting the graph towards
benchmarks with higher execution time. All of the seven-stage pipelines are less energy
efficient than the baseline. The SRAM configurations come out as the worst in terms of
energy followed by the flip-flop based configurations.

Work had been carried out before this project to identify the characteristics of branch
predictors with different BTB sizes [33]. It had used SimpleScalar, which is capable
of executing benchmarks of higher complexity, with embedded benchmarks from the

34

5.1. NOMINAL VOLTAGE CHAPTER 5. RESULTS AND DISCUSSION

32FF 32SRAM 128FF 128SRAM 5sp

E
n
e
rg

y
 (

p
J
)

0

2,000

4,000

6,000

8,000

10,000

12,000

A
u

to

A
u

to

A
u

to

A
u

to

A
u

toC
o

v
e

n

C
o

v
e

n

C
o

v
e

n C
o

v
e

n

C
o

v
e

nF
F

T

F
F

T

F
F

T

F
F

T

F
F

T

R
G

B
C

R
G

B
C

R
G

B
C R

G
B

C

R
G

B
C

V
it
e

rb
i

V
it
e

rb
i

V
it
e

rb
i

V
it
e

rb
i

V
it
e

rb
i

Figure 5.4: Energy consumption of the five configurations.

MiBench suite. This study concluded that a 32-entry direct-mapped BTB results in a
11.8% cycle count increase over the same seven-stage design with an ideal branch predic-
tor, which always predicts correctly whether a branch is taken or not taken. However,
the same evaluation with a 128-entry direct-mapped BTB resulted in only a 9.2% cycle
count increase over the same design with an ideal branch predictor, which proves that a
bigger BTB has its benefits.

5.1.3 Pipeline area

The area requirements of the five-stage pipeline and the four seven-stage configurations
after synthesis are displayed in Figure 5.5. The seven-stage pipeline’s two flip-flop-
based implementations use up almost identical amount of area for their logic, and the
128-entry design’s BTB is four times as big as that of the 32-entry one. The SRAM-
based implementations do not show similar patterns. The BTB is less than two times
bigger in the 32-entry configuration because SRAMs offer much higher density than
flip-flops.

Looking only at the pipeline area it can be seen that the five-stage baseline’s area is
around 20-30% lower than those of the seven-stage pipeline configurations. This is
motivated by the fact that the seven-stage pipelines comprise additional registers due to
the split instruction fetch and memory access stages, which constitute this area overhead.
The three-stage multiplier in the seven-stage pipeline is also around 15% bigger than
the two-stage multiplier in the five-stage pipeline. The 128-entry SRAM-based design’s
logic area is slightly smaller than that of the other three seven-stage designs. This can

35

5.1. NOMINAL VOLTAGE CHAPTER 5. RESULTS AND DISCUSSION

be explained by the variation of the outcomes of the heuristic algorithms used by the
synthesis tool.

Lastly, the branch predictor’s relative contribution to total area is expected to decrease
once the designs are brought through place and route. As mentioned, the memory
macros from ST are placed and routed, which means that wire area is included in the
BTB. In contrast, the pipeline is not placed and routed and the reported area disregards
wires.

32FF 32SRAM 128FF 128SRAM 5sp

A
re

a
 (

u
m

^2
)

0

20,000

40,000

60,000

80,000

100,000

120,000
Pipeline BTB

Figure 5.5: Area of the five- and seven-stage pipeline configurations including the BTB.

5.1.4 Cache power

Figure 5.6 shows the power dissipation distribution in the five-stage pipeline across the
different benchmarks. The conclusion can be drawn that on average the instruction
cache consumes six times the power of the data cache, which is due to the fact that
the instruction cache is accessed in the vast majority of the cycles. The data cache,
however, is only accessed on load and store operations, otherwise the correct data are
fetched from and saved in the register file. Note that the caches are not optimized to
exploit the locality of the accesses, which explains the higher power consumption in the
caches. There are many well-known way-determination/prediction techniques that can
be applied to reduce the power dissipation of caches. A reduction in power dissipation
is expected once the caches are optimized.

As the two-cycle instruction cache is a work in progress for the seven-stage pipeline, the
proportion of power dissipated in the logic, instruction, and data caches can be projected
to the seven-stage pipeline’s case. The data cache can be predicted to also use one sixth
of the instruction cache’s power, therefore the accurate total power consumption can be
estimated without actually implementing the data cache.

36

5.2. NEAR-THRESHOLD VOLTAGE CHAPTER 5. RESULTS AND DISCUSSION

Auto Conven FFT RGBC Viterbi

P
o
w

e
r

(u
W

)

0

10

20

30

40

50

60

70
Pipeline I$ D$

Figure 5.6: Power dissipated by the instruction and data cache as well as the logic of the
five-stage pipeline.

5.2 Near-threshold voltage

This section interprets the power, energy, and timing results from the low-voltage do-
main. Three different configurations of the seven-stage pipeline are compared: two with
128-entry BTB, one of which is mapped to SRAM and the other to flip-flops, while the
third one includes a 32-entry BTB mapped to flip-flops. All three designs are synthesized
at 1.2 V for the logic and 0.95 V for the BTB mapped to SRAM; their datapath logic
and flip-flop-based memories are later mapped to eight different libraries recharacterized
for lower voltages. Table 5.1 shows the minimum clock periods for the three designs
across the different voltages.

Table 5.1: Minimum cycle times at nominal library conditions

1.2 V 1 V 0.95 V 0.8 V 0.6 V 0.55 V 0.5 V 0.45 V 0.4 V

7sp 32BTB FF 0.81 ns 1.20 ns 1.3 ns 1.9 ns 5.6 ns 8.9 ns 15.4 ns 31 ns 73 ns

7sp 128BTB FF 0.90 ns 1.25 ns 1.4 ns 2.1 ns 7.0 ns 10.0 ns 17.0 ns 34 ns 78 ns

7sp 128BTB SRAM 1.82 ns 2.60 ns 2.8 ns 4.4 ns 12.7 ns 19.6 ns 33.4 ns 67 ns 159 ns

For the low-voltage evaluations only the autocorrelation and fast Fourier transform
benchmarks from EEMBC were used. This is motivated by the fact that these two
benchmarks show the same trends as in the nominal voltage case discussed in Section 5.1,
therefore no further investigation was necessary.

37

5.2. NEAR-THRESHOLD VOLTAGE CHAPTER 5. RESULTS AND DISCUSSION

5.2.1 Power

Figure 5.7, Figure 5.8, and Figure 5.9 show the total power values throughout the avail-
able voltage libraries. Due to the speed difference between the SRAM- and the flip-
flop-based BTB, the clock cycles of the designs at the different voltages show a two-fold
increase for the SRAM-based solution. This results in two times less total power as
Equation 2.4, which describe the switching power, projects. (Section 5.2.2 points out
that the power dissipation is dominated by the active power, since the whole design
is utilized to some extent dependent on the benchmark during the time period of the
evaluation, i.e. no parts are idle for an extended time interval.)

Supply voltage except for BTB (V)

1 0.95 0.8 0.6 0.55 0.5 0.45 0.4

P
o

w
e

r
(u

W
)

0

5

10

15

20

25
IF1_AUT IF2_AUT ID_AUT EX_AUT MEM1_AUT MEM2_AUT Mult_AUT BPr_AUT

IF1_FFT IF2_FFT ID_FFT EX_FFT MEM1_FFT MEM2_FFT Mult_FFT BPr_FFT

Figure 5.7: Power dissipated by the different modules of the seven-stage pipeline with a
128-entry SRAM-based BTB at 0.95 V VDD for the BTB and across eight different voltages
for the datapath logic.

On the other hand, the 128- and 32-entry flip-flop-based BTB designs’ power values
show close resemblance as far as the datapath logic is considered. The most power is
dissipated during instruction decode, due to the fact that the register file is located in
this stage and memories consume larger amounts of power than logic due to their size.
The second and third most power consuming units are the multiplier and and execute
(where the ALU is located) because of the extended amount of logic they contain to
execute their respective computations. The least power consuming modules are the two
instruction fetch and memory access stages, because the design does not contain the
instruction and data caches.

38

5.2. NEAR-THRESHOLD VOLTAGE CHAPTER 5. RESULTS AND DISCUSSION

Supply voltage (V)

1 0.95 0.8 0.6 0.55 0.5 0.45 0.4

P
o

w
e

r
(u

W
)

0

5

10

15

20

25
IF1_AUT IF2_AUT ID_AUT EX_AUT MEM1_AUT MEM2_AUT Mult_AUT BPr_AUT

IF1_FFT IF2_FFT ID_FFT EX_FFT MEM1_FFT MEM2_FFT Mult_FFT BPr_FFT

Figure 5.8: Power dissipated by the different modules of the seven-stage pipeline with a
128-entry flip-flop-based BTB across eight different VDDs.

Supply voltage (V)

1 0.95 0.8 0.6 0.55 0.5 0.45 0.4

P
o

w
e

r
(u

W
)

0

5

10

15

20

25
IF1_AUT IF2_AUT ID_AUT EX_AUT MEM1_AUT MEM2_AUT Mult_AUT BPr_AUT

IF1_FFT IF2_FFT ID_FFT EX_FFT MEM1_FFT MEM2_FFT Mult_FFT BPr_FFT

Figure 5.9: Power dissipated by the different modules of the seven-stage pipeline with a
32-entry flip-flop-based BTB across seven different VDDs. Results for 1 V are not available
because a SAIF file could not be generated at that speed.

5.2.2 Leakage power

Figure 5.10, Figure 5.11, and Figure 5.12 show the leakage power in the different designs
throughout the recharacterized low-VDD libraries. Leakage scales at a lower pace than
the total power, since the total power is dominated by switching, which is quadratically
dependent on the VDD, while leakage scales linearly.

39

5.2. NEAR-THRESHOLD VOLTAGE CHAPTER 5. RESULTS AND DISCUSSION

It is also visible that the leakage power is fairly independent of the benchmark, rather
it varies with the implementation and VDD at hand.

Supply voltage except for BTB (V)

1 0.95 0.8 0.6 0.55 0.5 0.45 0.4

P
o

w
e

r
(n

W
)

0

5

10

15

20

25

30

35

40

45
IF1_AUT IF2_AUT ID_AUT EX_AUT MEM1_AUT MEM2_AUT Mult_AUT BPr_AUT

IF1_FFT IF2_FFT ID_FFT EX_FFT MEM1_FFT MEM2_FFT Mult_FFT BPr_FFT

Figure 5.10: Leakage power dissipated by the different modules of the seven-stage pipeline
with a 128-entry SRAM-based BTB at 0.95 V VDD for the BTB and across eight different
voltages for the datapath logic.

Supply voltage (V)

1 0.95 0.8 0.6 0.55 0.5 0.45 0.4

P
o

w
e

r
(n

W
)

0

5

10

15

20

25

30

35

40

45
IF1_AUT IF2_AUT ID_AUT EX_AUT MEM1_AUT MEM2_AUT Mult_AUT BPr_AUT

IF1_FFT IF2_FFT ID_FFT EX_FFT MEM1_FFT MEM2_FFT Mult_FFT BPr_FFT

Figure 5.11: Leakage power dissipated by the different modules of the seven-stage pipeline
with a 128-entry flip-flop-based BTB across eight different VDDs.

Comparing the branch predictor’s leakage power across the different platforms it can
be seen that the flip-flop-based memories dissipate substantially more power than their
SRAM-based counterparts. This is due to the fact that SRAM cells are optimized for

40

5.2. NEAR-THRESHOLD VOLTAGE CHAPTER 5. RESULTS AND DISCUSSION

Supply voltage (V)

1 0.95 0.8 0.6 0.55 0.5 0.45 0.4

P
o

w
e

r
(n

W
)

0

5

10

15

20

25

30

35

40

45
IF1_AUT IF2_AUT ID_AUT EX_AUT MEM1_AUT MEM2_AUT Mult_AUT BPr_AUT

IF1_FFT IF2_FFT ID_FFT EX_FFT MEM1_FFT MEM2_FFT Mult_FFT BPr_FFT

Figure 5.12: Leakage power dissipated by the different modules of the seven-stage pipeline
with a 32-entry flip-flop-based BTB across seven different VDDs. Results for 1 V are not
available because a SAIF file could not be generated at that speed.

memory behavior requirements, while flip-flops are optimized to be used as logic.

It can also be seen that among the modules of the datapath the proportion of leakage
power is the same as that of the total power, except for the execute stage, whose leakage is
relatively less. This is probably due to the fact that it contains fewer registers compared
to the decode stage, which has the register file, and the multiplier, which has three stages
therefore three times more pipeline registers.

5.2.3 Energy

Figure 5.13, Figure 5.14, and Figure 5.15 show the energy dissipated during the execu-
tion of the autocorrelation and fast Fourier transform benchmarks in the three different
designs and across the available voltage libraries. It has been shown in Section 5.1.2 that
in line with Equation 2.8 benchmarks with higher execution times take more energy to
execute than benchmarks that finish faster but consume similar amounts of power.

The energy graphs show the highest energy values for the 128-entry SRAM-based solu-
tion due to its increased cycle and, consequently, execution time caused by the slower
SRAM.

For the two flip-flop-based solutions, however, only a 5 to 15% difference is marked.
This could be predicted by the slightly lower values of both the clock period and total
power in the 32-entry case, which are the consequence of the four times smaller size of
the BTB.

41

5.2. NEAR-THRESHOLD VOLTAGE CHAPTER 5. RESULTS AND DISCUSSION

Supply voltage except for BTB (V)

1 0.95 0.8 0.6 0.55 0.5 0.45 0.4

E
n
e
rg

y
 (

n
J
)

0

1

2

3

4

5

6

7
Energy_AUT Energy_FFT

Figure 5.13: Total energy dissipated by the seven-stage pipeline with a 128-entry SRAM-
based BTB at 0.95 V VDD for the BTB and across eight different voltages for the datapath
logic.

Supply voltage (V)

1 0.95 0.8 0.6 0.55 0.5 0.45 0.4

E
n
e
rg

y
 (

n
J
)

0

1

2

3

4

5

6

7
Energy_AUT Energy_FFT

Figure 5.14: Total energy dissipated by the seven-stage pipeline with a 128-entry flip-flop-
based BTB across eight different VDDs.

42

5.2. NEAR-THRESHOLD VOLTAGE CHAPTER 5. RESULTS AND DISCUSSION

Supply voltage (V)

1 0.95 0.8 0.6 0.55 0.5 0.45 0.4

E
n
e
rg

y
 (

n
J
)

0

1

2

3

4

5

6

7
Energy_AUT Energy_FFT

Figure 5.15: Total energy dissipated by the seven-stage pipeline with a 32-entry flip-flop-
based BTB across seven different VDDs. Results for 1 V are not available because a SAIF
file could not be generated at that speed.

Another interesting observation that can be made based on the energy graphs is that,
unlike in the power values’ case, the decrease in the results slows down as the 0.4-V end of
the scale is approached. Unfortunately, 0.4 V was the lowest available library, but based
on the trends in previous work [17] [23] [34] the energy can be expected to start increasing
below 0.35 V and it can be concluded that the minimum energy point of the seven-stage
pipeline is around 350-400 mV regardless of the BTB’s size and technology.

5.2.4 Critical path with timing constraint

To obtain the minimum clock periods at the different voltages, the netlist synthesized
at 1.2 V was mapped to the available libraries to find the lowest possible clock period.
After mapping, the critical path of the designs were reported by Design Compiler. Fig-
ure 5.16, Figure 5.17, Figure 5.18, and Figure 5.19 highlight the change in the location
of the critical path in the 32-entry flip-flop-based configuration for the mappings at dif-
ferent voltages. The same process in the 128-entry flip-flop- and SRAM-based designs is
displayed in Appendix C.

As the VDD is decreased the design is expected to slow to down. This has been confirmed
by the clock periods, but the figures above show that the different building blocks’ speed
do not decrease at the same rate.

To understand the differences between the critical path locations it has to be noted that

43

5.2. NEAR-THRESHOLD VOLTAGE CHAPTER 5. RESULTS AND DISCUSSION

IF2 ID EX MEM1IF1

Branch predictor

Hazard

detection
Mult1 Mult2 Mult3

MEM2 WB

Figure 5.16: Critical path location in the 32-entry flip-flop-based BTB pipeline design at
1.2 V VDD.

IF2 ID EX MEM1IF1

Branch predictor

Hazard

detection
Mult1 Mult2 Mult3

MEM2 WB

Figure 5.17: Critical path location in the 32-entry flip-flop-based BTB pipeline design at
1.1, 1.0, 0.95, and 0.8 V VDDs.

IF2 ID EX MEM1IF1

Branch predictor

Hazard

detection
Mult1 Mult2 Mult3

MEM2 WB

Figure 5.18: Critical path location in the 32-entry flip-flop-based BTB pipeline design at
0.6, 0.55, 0.5, and 0.45 V VDDs.

not all the connections are displayed in the pipeline diagram to avoid obscuring the
figures. The branch predictor has connections to the first instruction fetch stage, as it
gets the program counter and the current instruction from there. The multiplier itself
can constitute the critical path as is the case for 1.1 down to 0.8 and 0.4 V, because it
has the same stall input directly from the memory as all the other stages.

It is shown that the critical path starts in the first instruction fetch stage, goes through
its output register then ends in the branch predictor. This is caused by the large amount
of flip-flops that form the memory in the BTB. When the voltage is decreased, the critical
path moves to the units which contain more logic, namely the multiplier IP block and

44

5.3. FUTURE WORK CHAPTER 5. RESULTS AND DISCUSSION

IF2 ID EX MEM1IF1

Branch predictor

Hazard

detection
Mult1 Mult2 Mult3

MEM2 WB

Figure 5.19: Critical path location in the 32-entry flip-flop-based BTB pipeline design at
0.4 V VDD.

the execute stage, which contains the ALU.

5.2.5 Critical path without timing constraint

Another approach to locate the true critical path of a design is to synthesize it without
any timing constraint. This way any optimizations by the tool are avoided, e.g. high-
fan-out gates along the previously identified critical path are not inserted.

For this reason, the design with the 32-entry flip-flop-based BTB was synthesized to the
available ten VDDs from 1.2 down to 0.4 V without timing constraints. Subsequently, the
ten most critical paths were reported, among which two different paths were identified.
One of the paths was from the forwarding unit of the ID through the address generation
unit of the execute stage to the data memory address output, while the other one was
located from the program counter register to the instruction memory address output.
This means that even without the presence of the caches, their input ports constitute
the critical path, therefore splitting the instruction fetch and memory access stages was
a good choice to increase clock frequency.

5.3 Future work

Once the instruction cache’s implementation is completed, more accurate comparisons
will be made between the five- and the seven-stage pipelines. To make the operating
circumstances identical, the two-cycle data cache has to be implemented as well. As the
addition of the instruction cache in its current state only resulted in an approximately
10% increase in the clock period, the results can be trusted as they are.

Obtaining area numbers for the recharacterized low-voltage libraries would enable finding
the trend in the area requirement of the same design through decreasing VDDs.

Another improvement is to either fix the problem in connection with the SAIF file
generation or choose a tool that is able to create files below 1250-ps cycle times. This

45

5.3. FUTURE WORK CHAPTER 5. RESULTS AND DISCUSSION

way the nominal VDD power and energy results could be compared to the near-threshold
domain ones, which could also lead to interesting conclusions.

46

6

Conclusion

When the five-stage pipeline was compared to several seven-stage implementations,
the seven-stage pipelines with and without proper branch prediction had higher cycle
counts than the five-stage pipeline across the different benchmarks. However, when cycle
time was also accounted for the seven-stage configurations outperformed the five-stage
one.

The five-stage pipeline consumed the smallest amount of power per cycle due to its
smaller size, the seven-stage designs with 32- and 128-entry flip-flop-based branch target
buffers (BTBs) were more power-hungry, and the designs implementing static random-
access memory (SRAM)-based BTBs were the most power inefficient. This might change
in a post place and route evaluation. In contrast, the SRAM-based designs were more
area efficient than the flip-flop-based ones.

When it came to energy, the five-stage pipeline was more effective than the seven-stage
ones. In the different seven-stage implementations (similarly to the power results) the
energy consumption was mostly dependent on the BTBs’ technology, i.e. SRAM or
flip-flop.

To conclude, the main goal to identify the connection between the number of pipeline
stages and the designs’ performance and power metrics was reached. The seven-stage
pipelines’ performance increase came at a cost of higher power and energy consumption,
therefore the appropriate architecture choice depends on whether high-performance or
low-power execution is given higher priority. For simple applications, a 32-entry BTB
proved to be sufficient. When it came to the BTB’s technology, SRAM-based cells took
up less area while flip-flop-based ones were more energy efficient.

In the near-threshold domain a substantial decrease in power consumption was observed.
This came at the cost of increased cycle times, which implies that as long as performance

47

CHAPTER 6. CONCLUSION

is sacrificable, as is the case for several embedded applications, operating in the near-
threshold supply voltage (VDD) domain is a viable approach. The combined effect of
these two metrics, resulted in decreased energy numbers, whose lowest value was shown to
be at 400-mV end of the available VDD scale for the seven-stage pipeline configurations.
The design with the 32-entry flip-flop-based BTB proved to be the most energy-efficient
is this domain, due to its four times smaller BTB, that resulted in less leakage power
than its 128-entry counterparts.

The timing critical paths of the design with the 32-entry flip-flop-based BTB were shown
to be located in the forwarding unit of the instruction decode stage through the address
generation unit of the execute stage to the data memory address output of the pipeline
and from the program counter register to the instruction memory address output of the
pipeline. This confirms that it was a good decision to split the instruction fetch and
memory access stages, since the inputs of the instruction and data caches are parts of
timing critical paths.

48

Bibliography

[1] ARM Markets. http://www.arm.com/markets/index.php. Accessed: 2015-04-06.

[2] Cortex-M Series. http://www.arm.com/products/processors/cortex-m/index.

php. Accessed: 2015-04-20.

[3] DesignWare ARC 600 Processor Core Family. http://www.synopsys.com/IP/

ProcessorIP/ARCProcessors/ARC600. Accessed: 2015-04-20.

[4] DesignWare ARC EM Processor Core Family. http://www.synopsys.com/IP/

ProcessorIP/ARCProcessors/ARCEM. Accessed: 2015-04-20.

[5] M. B. Breughe et al. Mechanistic Analytical Modeling of Superscalar In-Order
Processor Performance. ACM Transactions on Architecture and Code Optimization,
11(4), December 2014.

[6] H. Y. Cheah et al. On Data Forwarding in Deeply Pipelined Soft Processors.
In ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
February 2015.

[7] Christoffer Fougstedt, Jesper Johansson. Design of a 7-stage MIPS R2000 Compliant
Processor Pipeline. Chalmers University of Technology, February 2014.

[8] Karthik Manchanahalli Rajendra Prasad. Implementation and Verification of a
7-Stage Pipeline Processor. Master’s thesis, Institutionen för data- och informa-
tionsteknik, Chalmers University of Technology, 2015. 52.

[9] Vahid Saljooghi, Alen Bardizbanyan, Magnus Själander, and Per Larsson-Edefors.
Configurable RTL model for level-1 caches. In Proc. IEEE NORCHIP Conf.,
November 2012.

[10] Emily Blem et al. ISA Wars: Understanding the Relevance of ISA being RISC or
CISC to Performance, Power, and Energy on Modern Architectures. ACM Trans-
actions on Computer Systems, 33(1), March 2015.

49

http://www.arm.com/markets/index.php
http://www.arm.com/products/processors/cortex-m/index.php
http://www.arm.com/products/processors/cortex-m/index.php
http://www.synopsys.com/IP/ProcessorIP/ARCProcessors/ARC600
http://www.synopsys.com/IP/ProcessorIP/ARCProcessors/ARC600
http://www.synopsys.com/IP/ProcessorIP/ARCProcessors/ARCEM
http://www.synopsys.com/IP/ProcessorIP/ARCProcessors/ARCEM

BIBLIOGRAPHY BIBLIOGRAPHY

[11] Sarah Harris David Harris. Digital design and computer architecture. Elsevier, 2013.

[12] Joseph Fisher Ramakrishna Rau. Instruction-Level Parallel Processing: History,
Overview, and Perspective. The Journal of Supercomputing, 7(1-2):9–50, 1993.

[13] Vikas Agarwal et al. Clock Rate Versus IPC: The End of the Road for Conventional
Microarchitectures. ACM, 28(2), 2000.

[14] Michel Dubois et al. Parallel Computer Organization and Design. Cambridge, 2012.

[15] Synopsys. PrimeTime PX: Methodology for Power Analysis, August 2006. Version
1.2.

[16] Nam Sung Kim et al. Leakage Current: Moore’s Law Meets Static Power. Computer,
IEEE, 36(12), December 2003.

[17] Bo Zhai et al. Energy-Efficient Subthreshold Processor Design. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 17(8), August 2009.

[18] Yu Pu et al. An Ultra-Low-Energy Multi-Standard JPEG Co-Processor in 65 nm
CMOS With Sub/Near Threshold Supply Voltage. IEEE Journal of Solid-State
Circuits, 45(3), March 2010.

[19] Scott Hanson et al. Exploring Variability and Performance in a Sub-200-mV Pro-
cessor. IEEE Journal of Solid-State Circuits, 43(4), April 2008.

[20] Bo Marr et al. Scaling Energy Per Operation via an Asynchronous Pipeline. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 21(1), January 2013.

[21] Srinivasa R. Sridhara et al. Microwatt Embedded Processor Platform for Medical
System-on-Chip Applications. IEEE Journal of Solid-State Circuits, 46(4), April
2011.

[22] Sven Lutkemeier et al. A 65 nm 32 b Subthreshold Processor With 9T Multi-Vt
SRAM and Adaptive Supply Voltage Control. IEEE Journal of Solid-State Circuits,
48(1), January 2013.

[23] Bo Zhai et al. Energy Efficient Near-threshold Chip Multi-processing. ISLPED ’07,
August 2007.

[24] Kyle Craig et al. A 32 b 90 nm Processor Implementing Panoptic DVS Achiev-
ing Energy Efficient Operation From Sub-Threshold to High Performance. IEEE
Journal of Solid-State Circuits, 49(2), February 2014.

[25] Sangwon Seo et al. Process Variation in Near-Threshold Wide SIMD Architectures.
DAC ’12, June 2012.

[26] MIPS32 Architecture. http://www.imgtec.com/mips/architectures/mips32.

asp. Accessed: 2015-06-12.

50

http://www.imgtec.com/mips/architectures/mips32.asp
http://www.imgtec.com/mips/architectures/mips32.asp

BIBLIOGRAPHY

[27] Stallable Pipelined Multiplier. https://www.synopsys.com/dw/ipdir.php?c=DW_
mult_pipe. Accessed: 2015-06-11.

[28] ST Microelectronics. C65LP ST SPHS Memories, April 2009. Version 3.1.

[29] EEMBC. https://www.eembc.org/about/. Accessed: 2015-06-01.

[30] SPEC. https://www.spec.org/benchmarks.html. Accessed: 2015-06-01.

[31] Guthaus et al. MiBench: A free, commercially representative embedded bench-
mark suite. In Workload Characterization, 2001. WWC-4. 2001 IEEE International
Workshop on, pages 3–14. IEEE, 2001.

[32] Pseudo-LRU cache replacement. http://people.cs.clemson.edu/~mark/464/p_

lru.txt. Accessed: 2014-12-11.

[33] Fredrik Brosser, Karthik Prasad. Evaluating Branch Predictor Configurations for a
MIPS-Like Pipeline. Chalmers University of Technology, March 2014.

[34] Anantha Chandrakasan Alice Wang. A 180-mV Subthreshold FFT Processor Using
a Minimum Energy Design Methodology. IEEE Journal of Solid-State Circuits,
40(1), January 2015.

51

https://www.synopsys.com/dw/ipdir.php?c=DW_mult_pipe
https://www.synopsys.com/dw/ipdir.php?c=DW_mult_pipe
https://www.eembc.org/about/
https://www.spec.org/benchmarks.html
http://people.cs.clemson.edu/~mark/464/p_lru.txt
http://people.cs.clemson.edu/~mark/464/p_lru.txt

A

Nominal voltage results

52

APPENDIX A. NOMINAL VOLTAGE RESULTS

Table A.1: Minimum clock periods and corresponding frequencies of the different designs

LPLVT 5SP 7SP32FF 7SP32SRAM 7SP128FF 7SP128SRAM 7SPNoBTB

Clock period (ns) 2.30 1.53 1.36 1.63 1.35 1.29

Clock frequency (MHz) 435 654 735 613 741 775

Table A.2: Area of the different designs (5SP @ 2.3 ns, 7SPs @ 1.63 ns)

LPLVT 5SP 7SP32FF 7SP32SRAM 7SP128FF 7SP128SRAM

Total area (um2) 38104.0 66027.0 62041.2 102052.6 63479.3

BTB area (um2) - 12698.4 9459.3 48985.6 17532.6

Table A.3: Seven-stage pipeline values with 32-entry flip-flop-based branch target buffer
synthesized at 1.63 ns

LPLVT Autocorr Conven FFT RGBCMY Viterbi

Cycle count 209171 208183 162656 198321 290833

Of which hazards 16615 8227 8772 1055 19561

Execution time (us) 340.9 339.3 265.1 323.3 474.1

Total power (uW) 22.1 18.5 19.7 18.2 16.8

Table A.4: Seven-stage pipeline values with 32-entry SRAM-based branch target buffer
synthesized at 1.63 ns

LPLVT Autocorr Conven FFT RGBCMY Viterbi

Cycle count 209171 208183 162656 198321 290833

Of which hazards 16615 8227 8772 1055 19561

Execution time (us) 340.9 339.3 265.1 323.3 474.1

Total power (uW) 30.9 26.8 28.1 26.4 25.3

53

APPENDIX A. NOMINAL VOLTAGE RESULTS

Table A.5: Seven-stage pipeline values with 128-entry flip-flop-based branch target buffer
synthesized at 1.63 ns

LPLVT Autocorr Conven FFT RGBCMY Viterbi

Cycle count 209186 208207 162677 198312 290857

Of which hazards 16711 8323 8868 1151 19657

Execution time (us) 341.0 339.4 265.2 323.2 474.1

Total power (uW) 22.7 19.1 20.2 18.6 17.0

Table A.6: Seven-stage pipeline values with 128-entry SRAM-based branch target buffer
synthesized at 1.63 ns

LPLVT Autocorr Conven FFT RGBCMY Viterbi

Cycle count 209186 208207 162677 198312 290857

Of which hazards 16711 8323 8868 1151 19657

Execution time (us) 341.0 339.4 265.2 323.2 474.1

Total power (uW) 30.3 26.4 27.5 25.9 24.9

Table A.7: Seven-stage pipeline values with 128-entry SRAM-based branch target buffer
synthesized at 1.35 ns

LPLVT Autocorr Conven FFT RGBCMY Viterbi

Cycle count 209186 208207 162677 198312 290857

Of which hazards 16711 8323 8868 1151 19657

Execution time (us) 282.4011 281.07945 219.61395 267.7212 392.65695

Total power (uW) 11.4 7.4 8.7 7.4 6.9

Table A.8: Seven-stage pipeline values with no branch target buffer synthesized at 1.29 ns

LPLVT Autocorr Conven FFT RGBCMY Viterbi

Cycle count 260630 230842 179873 220071 313678

Of which hazards 16711 8323 8868 1151 19657

Execution time (us) 336.2 297.8 232.0 283.9 404.6

54

APPENDIX A. NOMINAL VOLTAGE RESULTS

Table A.9: Five-stage pipeline values synthesized at 2.30 ns

LPLVT Autocorr Conven FFT RGBCMY Viterbi

Cycle count 192609 200648 149886 194997 270257

Of which hazards 2426 29335 10309 27752 13031

Execution time (us) 443.0 461.5 344.7 448.5 621.6

Total power (uW) 11.4 7.4 8.7 7.4 6.9

Table A.10: Stage-by-stage and total power and total energy values for the different im-
plementations

of entries Mem type Benchmark IF ID EX MEM mult BPr Total power (uW) Total energy (pJ)

32 FF AUT 1.90 7.18 3.96 1.25 2.44 5.72 22.4 7637.3

Conven 2.02 5.99 3.70 0.95 0.08 6.34 19.1 6481.4

FFT 1.99 6.40 3.85 1.04 0.84 6.14 20.3 5382.1

RGBCMY 2.10 5.87 3.62 0.90 0.01 6.10 18.7 6045.0

Viterbi 1.83 5.83 3.18 1.00 0.07 5.31 17.2 8153.8

32 SRAM AUT 1.89 7.16 3.91 1.26 2.31 14.10 30.6 10433.0

Conven 1.99 6.02 3.60 0.95 0.07 14.50 27.1 9196.1

FFT 1.96 6.45 3.71 1.05 0.81 14.30 28.3 7503.2

RGBCMY 2.08 5.91 3.58 0.89 0.06 14.30 26.8 8663.5

Viterbi 1.80 5.90 3.08 1.01 0.06 13.50 25.4 12041.1

128 FF AUT 1.88 6.94 3.85 1.29 2.61 6.09 22.7 7740.1

Conven 2.03 5.89 3.57 0.97 0.07 6.60 19.1 6482.1

FFT 1.99 6.27 3.71 1.07 0.87 6.32 20.2 5356.3

RGBCMY 2.09 5.73 3.54 0.91 0.06 6.20 18.6 6012.4

Viterbi 1.82 5.84 3.05 1.03 0.06 5.19 17.0 8059.6

128 SRAM AUT 1.87 6.96 3.66 1.25 2.56 14.00 30.3 10331.5

Conven 2.00 5.82 3.36 0.95 0.06 14.20 26.4 8959.6

FFT 1.95 6.26 3.50 1.05 0.84 13.90 27.5 7292.0

RGBCMY 2.07 5.69 3.28 0.89 0.05 14.00 25.9 8372.1

Viterbi 1.79 5.83 2.94 1.00 0.05 13.30 24.9 11805.0

5-stage AUT 0.83 5.48 2.79 0.58 2.16 - 11.8 5245.1

Conven 0.79 4.04 1.92 0.33 0.02 - 7.1 3272.9

FFT 0.79 4.57 2.19 0.39 0.86 - 8.8 3032.7

RGBCMY 0.82 3.98 1.90 0.31 0.35 - 7.4 3302.3

Viterbi 0.68 4.08 1.83 0.40 0.02 - 7.0 4352.5

55

B

Low-voltage results

56

B.1. 32-ENTRY FF-BASED BTB APPENDIX B. LOW-VOLTAGE RESULTS

B.1 32-entry FF-based BTB

Table B.1: Stage-by-stage and total power and total energy values for the 32-entry imple-
mentation at the different voltages with the autocorrelation benchmark

Voltage IF1 IF2 ID EX MEM1 MEM2 mult BPr Total power (mW) Total energy (pJ)

0.95 6.24E-04 5.84E-04 4.62E-03 2.29E-03 4.01E-04 3.41E-04 1.48E-03 2.71E-03 1.31E-02 3.56E+03

0.8 2.96E-04 2.78E-04 2.17E-03 1.07E-03 1.91E-04 1.61E-04 6.88E-04 1.25E-03 6.11E-03 2.43E+03

0.6 5.50E-05 5.17E-05 4.01E-04 1.96E-04 3.57E-05 2.98E-05 1.26E-04 2.26E-04 1.12E-03 1.31E+03

0.55 2.89E-05 2.72E-05 2.11E-04 1.03E-04 1.88E-05 1.57E-05 6.67E-05 1.20E-04 5.93E-04 1.10E+03

0.5 1.37E-05 1.29E-05 9.97E-05 4.86E-05 8.91E-06 7.40E-06 3.15E-05 5.46E-05 2.78E-04 8.96E+02

0.45 5.50E-06 5.16E-06 4.02E-05 1.96E-05 3.59E-06 2.97E-06 1.28E-05 2.25E-05 1.12E-04 7.26E+02

0.4 1.87E-06 1.75E-06 1.36E-05 6.63E-06 1.25E-06 1.01E-06 4.42E-06 7.08E-06 3.77E-05 5.76E+02

Table B.2: Stage-by-stage and total leakage power for the 32-entry implementation at the
different voltages with the autocorrelation benchmark

Voltage IF1 IF2 ID EX MEM1 MEM2 mult BPr Total leakage power (mW)

0.95 3.84E-07 2.56E-07 5.22E-06 2.25E-06 2.32E-07 2.38E-07 5.27E-06 6.64E-06 2.05E-05

0.8 2.12E-07 1.43E-07 2.89E-06 1.23E-06 1.30E-07 1.32E-07 2.86E-06 3.63E-06 1.12E-05

0.6 8.79E-08 6.04E-08 1.21E-06 4.98E-07 5.48E-08 5.48E-08 1.15E-06 1.49E-06 4.61E-06

0.55 6.91E-08 4.77E-08 9.51E-07 3.89E-07 4.32E-08 4.31E-08 9.01E-07 1.17E-06 3.61E-06

0.5 5.37E-08 3.72E-08 7.41E-07 3.01E-07 3.38E-08 3.35E-08 6.95E-07 9.05E-07 2.80E-06

0.45 4.12E-08 2.87E-08 5.69E-07 2.29E-07 2.60E-08 2.57E-08 5.29E-07 6.92E-07 2.14E-06

0.4 3.10E-08 2.18E-08 4.31E-07 1.72E-07 1.97E-08 1.94E-08 3.96E-07 5.21E-07 1.61E-06

Table B.3: Stage-by-stage and total power and total energy values for the 32-entry imple-
mentation at the different voltages with the fast Fourier transform benchmark

Voltage IF1 IF2 ID EX MEM1 MEM2 mult BPr Total power (mW) Total energy (pJ)

0.95 6.29E-04 6.01E-04 3.98E-03 2.26E-03 3.68E-04 2.67E-04 5.11E-04 2.95E-03 1.16E-02 2.45E+03

0.8 2.98E-04 2.86E-04 1.87E-03 1.06E-03 1.76E-04 1.27E-04 2.39E-04 1.36E-03 5.42E-03 1.68E+03

0.6 5.54E-05 5.31E-05 3.46E-04 1.94E-04 3.28E-05 2.35E-05 4.44E-05 2.46E-04 9.96E-04 9.07E+02

0.55 2.92E-05 2.79E-05 1.82E-04 1.02E-04 1.73E-05 1.23E-05 2.36E-05 1.30E-04 5.26E-04 7.62E+02

0.5 1.38E-05 1.32E-05 8.61E-05 4.81E-05 8.20E-06 5.84E-06 1.13E-05 5.93E-05 2.46E-04 6.16E+02

0.45 5.54E-06 5.31E-06 3.47E-05 1.93E-05 3.30E-06 2.35E-06 4.78E-06 2.44E-05 9.98E-05 5.03E+02

0.4 1.89E-06 1.81E-06 1.18E-05 6.55E-06 1.15E-06 8.03E-07 1.76E-06 7.67E-06 3.35E-05 3.98E+02

57

B.1. 32-ENTRY FF-BASED BTB APPENDIX B. LOW-VOLTAGE RESULTS

Table B.4: Stage-by-stage and total leakage power values for the 32-entry implementation
at the different voltages with the fast Fourier transform benchmark

Voltage IF1 IF2 ID EX MEM1 MEM2 mult BPr Total leakage power (mW)

0.95 3.83E-07 2.57E-07 5.23E-06 2.25E-06 2.29E-07 2.42E-07 5.07E-06 6.62E-06 2.03E-05

0.8 2.11E-07 1.44E-07 2.90E-06 1.22E-06 1.28E-07 1.34E-07 2.75E-06 3.62E-06 1.11E-05

0.6 8.78E-08 6.07E-08 1.21E-06 4.96E-07 5.41E-08 5.56E-08 1.12E-06 1.49E-06 4.57E-06

0.55 6.90E-08 4.79E-08 9.53E-07 3.88E-07 4.27E-08 4.37E-08 8.74E-07 1.17E-06 3.59E-06

0.5 5.36E-08 3.74E-08 7.43E-07 3.00E-07 3.34E-08 3.40E-08 6.76E-07 9.03E-07 2.78E-06

0.45 4.11E-08 2.88E-08 5.71E-07 2.29E-07 2.57E-08 2.61E-08 5.15E-07 6.91E-07 2.13E-06

0.4 3.10E-08 2.18E-08 4.32E-07 1.72E-07 1.95E-08 1.97E-08 3.86E-07 5.20E-07 1.60E-06

58

B.2. 128-ENTRY SRAM-BASED BTB APPENDIX B. LOW-VOLTAGE RESULTS

B.2 128-entry SRAM-based BTB

Table B.5: Stage-by-stage and total power and total energy values for the 128-entry SRAM-
based implementation at the different voltages with the autocorrelation benchmark

Voltage IF1 IF2 ID EX MEM1 MEM2 mult BPr Total power (mW) Total energy (pJ)

1.0 3.64E-04 3.83E-04 2.80E-03 1.24E-03 2.77E-04 2.51E-04 1.32E-03 5.15E-03 1.18E-02 6.42E+03

0.95 2.42E-04 2.51E-04 1.83E-03 8.14E-04 1.86E-04 1.53E-04 8.91E-04 4.57E-03 8.94E-03 5.24E+03

0.8 1.07E-04 1.11E-04 8.07E-04 3.57E-04 8.26E-05 6.75E-05 3.87E-04 2.82E-03 4.74E-03 4.36E+03

0.6 2.04E-05 2.12E-05 1.53E-04 6.74E-05 1.57E-05 1.28E-05 7.27E-05 9.49E-04 1.31E-03 3.48E+03

0.55 1.11E-05 1.15E-05 8.33E-05 3.66E-05 8.55E-06 6.93E-06 3.95E-05 6.11E-04 8.09E-04 3.32E+03

0.5 5.34E-06 5.54E-06 4.01E-05 1.76E-05 4.12E-06 3.33E-06 1.90E-05 3.57E-04 4.52E-04 3.16E+03

0.45 2.22E-06 2.15E-06 1.62E-05 7.08E-06 1.66E-06 1.34E-06 7.71E-06 1.76E-04 2.14E-04 3.02E+03

0.4 7.61E-07 7.38E-07 5.60E-06 2.44E-06 5.82E-07 4.62E-07 2.67E-06 7.44E-05 8.76E-05 2.91E+03

Table B.6: Stage-by-stage and total leakage power values for the 128-entry SRAM-based
implementation at the different voltages with the autocorrelation benchmark

Voltage IF1 IF2 ID EX MEM1 MEM2 mult BPr Total power (mW)

1.0 3.97E-07 3.22E-07 5.83E-06 1.81E-06 2.96E-07 2.68E-07 3.78E-06 2.14E-06 1.48E-05

0.95 3.06E-07 2.41E-07 4.35E-06 1.47E-06 2.32E-07 2.17E-07 3.09E-06 1.67E-06 1.16E-05

0.8 1.71E-07 1.35E-07 2.43E-06 8.11E-07 1.30E-07 1.21E-07 1.69E-06 9.44E-07 6.43E-06

0.6 7.18E-08 5.75E-08 1.03E-06 3.37E-07 5.48E-08 5.07E-08 6.92E-07 4.21E-07 2.71E-06

0.55 5.66E-08 4.55E-08 8.11E-07 2.65E-07 4.32E-08 4.00E-08 5.42E-07 3.41E-07 2.14E-06

0.5 4.42E-08 3.56E-08 6.34E-07 2.06E-07 3.38E-08 3.12E-08 4.20E-07 2.76E-07 1.68E-06

0.45 3.40E-08 2.74E-08 4.89E-07 1.58E-07 2.60E-08 2.40E-08 3.21E-07 2.23E-07 1.30E-06

0.4 2.58E-08 2.08E-08 3.71E-07 1.19E-07 1.97E-08 1.82E-08 2.41E-07 1.81E-07 9.97E-07

Table B.7: Stage-by-stage and total power and total energy values for the 128-entry SRAM-
based implementation at the different voltages with the fast Fourier transform benchmark

Voltage IF1 IF2 ID EX MEM1 MEM2 mult BPr Total power (mW) Total energy (pJ)

1.0 3.82E-04 4.11E-04 2.53E-03 1.19E-03 2.54E-04 1.88E-04 3.82E-04 5.28E-03 1.06E-02 4.48E+03

0.95 2.49E-04 2.66E-04 1.65E-03 7.86E-04 1.71E-04 1.20E-04 2.58E-04 4.63E-03 8.13E-03 3.70E+03

0.8 1.11E-04 1.18E-04 7.27E-04 3.44E-04 7.60E-05 5.31E-05 1.13E-04 2.84E-03 4.39E-03 3.14E+03

0.6 2.11E-05 2.24E-05 1.38E-04 6.50E-05 1.45E-05 1.01E-05 2.15E-05 9.51E-04 1.24E-03 2.56E+03

0.55 1.21E-05 1.21E-05 7.50E-05 3.53E-05 7.87E-06 5.47E-06 1.18E-05 6.12E-04 7.71E-04 2.46E+03

0.5 5.50E-06 5.85E-06 3.62E-05 1.70E-05 3.80E-06 2.63E-06 5.78E-06 3.57E-04 4.33E-04 2.35E+03

0.45 2.21E-06 2.35E-06 1.47E-05 6.84E-06 1.53E-06 1.06E-06 2.45E-06 1.76E-04 2.07E-04 2.27E+03

0.4 7.64E-07 8.06E-07 5.07E-06 2.36E-06 5.38E-07 3.69E-07 9.32E-07 7.42E-05 8.51E-05 2.20E+03

59

B.2. 128-ENTRY SRAM-BASED BTB APPENDIX B. LOW-VOLTAGE RESULTS

Table B.8: Stage-by-stage and total leakage power values for the 128-entry SRAM-based
implementation at the different voltages with the fast Fourier transform benchmark

Voltage IF1 IF2 ID EX MEM1 MEM2 mult BPr Total power (mW)

1.0 3.95E-07 3.21E-07 5.86E-06 1.81E-06 2.93E-07 2.73E-07 3.73E-06 2.14E-06 1.48E-05

0.95 3.06E-07 2.42E-07 4.35E-06 1.46E-06 2.29E-07 2.21E-07 3.03E-06 1.68E-06 1.15E-05

0.8 1.71E-07 1.36E-07 2.43E-06 8.08E-07 1.28E-07 1.23E-07 1.66E-06 9.47E-07 6.40E-06

0.6 7.20E-08 5.78E-08 1.03E-06 3.36E-07 5.41E-08 5.14E-08 6.84E-07 4.22E-07 2.71E-06

0.55 5.68E-08 4.57E-08 8.12E-07 2.64E-07 4.27E-08 4.05E-08 5.36E-07 3.42E-07 2.14E-06

0.5 4.43E-08 3.57E-08 6.35E-07 2.05E-07 3.34E-08 3.15E-08 4.16E-07 2.77E-07 1.68E-06

0.45 3.41E-08 2.76E-08 4.90E-07 1.58E-07 2.57E-08 2.43E-08 3.18E-07 2.24E-07 1.30E-06

0.4 2.58E-08 2.09E-08 3.72E-07 1.19E-07 1.95E-08 1.84E-08 2.39E-07 1.81E-07 9.96E-07

60

B.3. 128-ENTRY FF-BASED BTB APPENDIX B. LOW-VOLTAGE RESULTS

B.3 128-entry FF-based BTB

Table B.9: Stage-by-stage and total power and total energy values for the 128-entry flip-
flop-based implementation at the different voltages with the autocorrelation benchmark

Voltage IF1 IF2 ID EX MEM1 MEM2 mult BPr Total power (mW) Total energy (pJ)

1.0 8.39E-04 8.37E-04 6.38E-03 3.09E-03 5.80E-04 5.28E-04 2.58E-03 6.46E-03 2.13E-02 5.57E+03

0.95 5.34E-04 5.23E-04 4.00E-03 1.93E-03 3.72E-04 3.07E-04 1.65E-03 4.19E-03 1.35E-02 3.95E+03

0.8 2.47E-04 2.42E-04 1.84E-03 8.83E-04 1.73E-04 1.41E-04 7.48E-04 1.88E-03 6.16E-03 2.71E+03

0.6 4.06E-05 3.98E-05 3.01E-04 1.44E-04 2.85E-05 2.31E-05 1.21E-04 3.04E-04 1.00E-03 1.46E+03

0.55 2.38E-05 2.33E-05 1.76E-04 8.42E-05 1.67E-05 1.35E-05 7.11E-05 1.79E-04 5.88E-04 1.23E+03

0.5 1.14E-05 1.12E-05 8.48E-05 4.03E-05 8.07E-06 6.50E-06 3.41E-05 8.49E-05 2.81E-04 9.99E+02

0.45 4.63E-06 4.54E-06 3.44E-05 1.63E-05 3.27E-06 2.63E-06 1.39E-05 3.53E-05 1.15E-04 8.18E+02

0.4 1.62E-06 1.58E-06 1.20E-05 5.69E-06 1.17E-06 9.21E-07 4.88E-06 1.16E-05 3.94E-05 6.43E+02

Table B.10: Stage-by-stage and total leakage power values for the 128-entry flip-flop-based
implementation at the different voltages with the autocorrelation benchmark

Voltage IF1 IF2 ID EX MEM1 MEM2 mult BPr Total power (mW)

1.0 4.75E-07 3.40E-07 6.34E-06 2.44E-06 2.96E-07 2.61E-07 6.11E-06 2.53E-05 4.16E-05

0.95 3.70E-07 2.55E-07 4.77E-06 1.98E-06 2.32E-07 2.12E-07 4.97E-06 1.91E-05 3.19E-05

0.8 2.05E-07 1.42E-07 2.65E-06 1.08E-06 1.30E-07 1.18E-07 2.69E-06 1.05E-05 1.75E-05

0.6 8.56E-08 6.01E-08 1.11E-06 4.41E-07 5.48E-08 4.96E-08 1.09E-06 4.30E-06 7.19E-06

0.55 6.74E-08 4.75E-08 8.79E-07 3.45E-07 4.32E-08 3.91E-08 8.48E-07 3.37E-06 5.64E-06

0.5 5.25E-08 3.71E-08 6.86E-07 2.67E-07 3.38E-08 3.05E-08 6.54E-07 2.62E-06 4.38E-06

0.45 4.03E-08 2.86E-08 5.28E-07 2.04E-07 2.60E-08 2.35E-08 4.98E-07 2.00E-06 3.35E-06

0.4 3.05E-08 2.17E-08 4.00E-07 1.53E-07 1.97E-08 1.78E-08 3.72E-07 1.51E-06 2.52E-06

Table B.11: Stage-by-stage and total power and total energy values for the 128-entry flip-
flop-based implementation at the different voltages with the fast Fourier transform bench-
mark

Voltage IF1 IF2 ID EX MEM1 MEM2 mult BPr Total power (mW) Total energy (pJ)

1.0 8.80E-04 8.93E-04 5.68E-03 2.93E-03 5.31E-04 3.99E-04 8.66E-04 6.68E-03 1.89E-02 3.84E+03

0.95 5.51E-04 5.50E-04 3.55E-03 1.84E-03 3.42E-04 2.43E-04 5.53E-04 4.33E-03 1.20E-02 2.73E+03

0.8 2.55E-04 2.55E-04 1.63E-03 8.42E-04 1.59E-04 1.12E-04 2.51E-04 1.95E-03 5.46E-03 1.87E+03

0.6 4.18E-05 4.19E-05 2.67E-04 1.37E-04 2.63E-05 1.84E-05 4.11E-05 3.15E-04 8.89E-04 1.01E+03

0.55 2.45E-05 2.45E-05 1.57E-04 8.03E-05 1.54E-05 1.08E-05 2.43E-05 1.86E-04 5.22E-04 8.49E+02

0.5 1.18E-05 1.18E-05 7.54E-05 3.85E-05 7.43E-06 5.19E-06 1.18E-05 8.79E-05 2.50E-04 6.91E+02

0.45 4.77E-06 4.77E-06 3.06E-05 1.56E-05 3.01E-06 2.10E-06 4.97E-06 3.65E-05 1.02E-04 5.64E+02

0.4 1.67E-06 1.67E-06 1.07E-05 5.44E-06 1.08E-06 7.38E-07 1.85E-06 1.19E-05 3.50E-05 4.44E+02

61

B.3. 128-ENTRY FF-BASED BTB APPENDIX B. LOW-VOLTAGE RESULTS

Table B.12: Stage-by-stage and total leakage power values for the 128-entry flip-flop-based
implementation at the different voltages with the fast Fourier transform benchmark

Voltage IF1 IF2 ID EX MEM1 MEM2 mult BPr Total power (mW)

1.0 4.73E-07 3.39E-07 6.37E-06 2.43E-06 2.93E-07 2.67E-07 5.87E-06 2.53E-05 4.13E-05

0.95 3.70E-07 2.56E-07 4.77E-06 1.97E-06 2.29E-07 2.15E-07 4.77E-06 1.91E-05 3.17E-05

0.8 2.05E-07 1.43E-07 2.65E-06 1.08E-06 1.28E-07 1.20E-07 2.59E-06 1.05E-05 1.74E-05

0.6 8.57E-08 6.04E-08 1.12E-06 4.40E-07 5.41E-08 5.02E-08 1.05E-06 4.31E-06 7.17E-06

0.55 6.74E-08 4.77E-08 8.80E-07 3.44E-07 4.27E-08 3.96E-08 8.23E-07 3.38E-06 5.62E-06

0.5 5.25E-08 3.73E-08 6.86E-07 2.67E-07 3.34E-08 3.09E-08 6.36E-07 2.62E-06 4.36E-06

0.45 4.03E-08 2.87E-08 5.29E-07 2.04E-07 2.57E-08 2.38E-08 4.84E-07 2.01E-06 3.35E-06

0.4 3.05E-08 2.18E-08 4.01E-07 1.53E-07 1.95E-08 1.80E-08 3.63E-07 1.51E-06 2.52E-06

62

C

Critical paths

63

C.1. 128-ENTRY FF-BASED BTB APPENDIX C. CRITICAL PATHS

C.1 128-entry FF-based BTB

IF2 ID EX MEM1IF1

Branch predictor

Hazard

detection
Mult1 Mult2 Mult3

MEM2 WB

Figure C.1: Critical path location in the 128-entry flip-flop-based BTB pipeline design at
1.2 V VDD.

IF2 ID EX MEM1IF1

Branch predictor

Hazard

detection
Mult1 Mult2 Mult3

MEM2 WB

Figure C.2: Critical path location in the 128-entry flip-flop-based BTB pipeline design at
1.1 and 1.0 V VDDs.

IF2 ID EX MEM1IF1

Branch predictor

Hazard

detection
Mult1 Mult2 Mult3

MEM2 WB

Figure C.3: Critical path location in the 128-entry flip-flop-based BTB pipeline design at
0.95 and 0.8 V VDDs.

64

C.1. 128-ENTRY FF-BASED BTB APPENDIX C. CRITICAL PATHS

IF2 ID EX MEM1IF1

Branch predictor

Hazard

detection
Mult1 Mult2 Mult3

MEM2 WB

Figure C.4: Critical path location in the 128-entry flip-flop-based BTB pipeline design at
0.6 and 0.55 V VDDs.

IF2 ID EX MEM1IF1

Branch predictor

Hazard

detection
Mult1 Mult2 Mult3

MEM2 WB

Figure C.5: Critical path location in the 128-entry flip-flop-based BTB pipeline design at
0.5 and 0.45 V VDDs.

IF2 ID EX MEM1IF1

Branch predictor

Hazard

detection
Mult1 Mult2 Mult3

MEM2 WB

Figure C.6: Critical path location in the 128-entry flip-flop-based BTB pipeline design at
0.4 V VDD.

65

C.2. 128-ENTRY SRAM-BASED BTB APPENDIX C. CRITICAL PATHS

C.2 128-entry SRAM-based BTB

IF2 ID EX MEM1IF1

Branch predictor

Hazard

detection
Mult1 Mult2 Mult3

MEM2 WB

Figure C.7: Critical path location in the 128-entry SRAM-based BTB pipeline design at
1.2 V VDD.

IF2 ID EX MEM1IF1

Branch predictor

Hazard

detection
Mult1 Mult2 Mult3

MEM2 WB

Figure C.8: Critical path location in the 128-entry SRAM-based BTB pipeline design at
1.1 and 1.0 V VDDs.

IF2 ID EX MEM1IF1

Branch predictor

Hazard

detection
Mult1 Mult2 Mult3

MEM2 WB

Figure C.9: Critical path location in the 128-entry SRAM-based BTB pipeline design at
0.95, 0.8, 0.6 and 0.55 V VDDs.

66

C.2. 128-ENTRY SRAM-BASED BTB APPENDIX C. CRITICAL PATHS

IF2 ID EX MEM1IF1

Branch predictor

Hazard

detection
Mult1 Mult2 Mult3

MEM2 WB

Figure C.10: Critical path location in the 128-entry SRAM-based BTB pipeline design at
0.5, 0.45, and 0.4 V VDDs.

67

	Introduction
	Low-power pipelines
	Project background
	Goals
	Scope
	Limitations
	Report outline

	Theory
	Pipelining basics
	Caches
	Branch prediction
	Static and dynamic power
	Energy
	Near-threshold operation

	Evaluation methods
	Five-stage pipeline
	Seven-stage pipeline
	Benchmarks
	Tools

	Instruction cache design
	Memory interface
	Datapath
	Line replacement logic
	Directory and data memory blocks
	Comparator
	Multiplexer
	Registers

	Controller
	Flush state
	Tag compare state
	Instruction word replace state

	Results and discussion
	Nominal voltage
	Performance and execution time
	Power and energy
	Pipeline area
	Cache power

	Near-threshold voltage
	Power
	Leakage power
	Energy
	Critical path with timing constraint
	Critical path without timing constraint

	Future work

	Conclusion
	 Bibliography
	Nominal voltage results
	Low-voltage results
	32-entry FF-based BTB
	128-entry SRAM-based BTB
	128-entry FF-based BTB

	Critical paths
	128-entry FF-based BTB
	128-entry SRAM-based BTB

