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ABSTRACT 

Orthotropic steel deck bridges consist of a thin deck plate, supported by longitudinal 
stiffeners, main girders and transversal stiffeners. The system is commonly used 
because it has several advantages in bridge design. Most bridges today are designed 
using Finite element software, however the complexity of orthotropic steel deck 
bridges implies some challenges when it comes to FE-modelling.  

The purpose of this thesis was to investigate suitable ways of approaching the 
complexity of orthotropic steel decks using FE-software, and to find simple, yet 
accurate modelling techniques. To achieve this, two different approaches were used to 
model an orthotropic steel deck bridge, one which is a detailed shell model, and one 
which smears out the stiffness of the longitudinal stiffeners and uses a much less 
demanding equivalent plate.  

An equivalent 2D orthotropic plate was created by calculating membrane, flexural and 
shear rigidities of the deck plate, together with its longitudinal stiffeners. These 
rigidities were implied in the FE software Brigade Plus using the option General shell 
stiffness, which allows the user to create a plate without thickness, but using only 
rigidities. Section forces and normal stresses from this method were compared with 
the ones extracted from the detailed shell model, and found to correspond well in 
many cases, which means that the 2D orthotropic plate is a promising model to use in 
design.  

A parallel study investigated whether it is possible to model slender structural parts by 
reducing elements in cross section class 4, within the FE-model. Slender parts were 
modelled by using lamina material in the parts to be reduced, which have reduced 
stiffness in the buckling direction. 

Using lamina material to reduce parts in cross section class 4 was proved to be 
possible, and a theoretically correct behaviour was shown. However, the method was 
very time consuming and not practical to use in bridge design. 

Key words: Orthotropic steel deck bridges, Bridage Plus, Abaqus, Equivalent plate, 
Finite element modelling, Trapezoidal ribs 
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Finit elementdimensionering av stålbroar med ortotropa däck 

Examensarbete inom masterprogrammet  Structural Engineering and Building 
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HENRIK WALLERMAN 
Institutionen för bygg- och miljöteknik 
Avdelningen för Konstruktionsteknik 
Stål- och träbyggnad 
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SAMMANFATTNING 

Stålbroar med ortotropa däck består av en tunn däckplatta, uppstyvad med 
longitudinella avstyvare, huvudbalkar och transversella avstyvare. Systemet används 
ofta eftersom det har många fördelar i brodimensionering. De flesta broar idag 
dimensioneras med hjälp av finit elementmodellering, men komplexiteten i stålbroar 
med ortotropa däck medför vissa problem i FE-modelleringen. 

Syftet med denna rapport var att undersöka lämpliga sätt att angripa kompexiteten hos 
stålbroar med ortotropa däck i FE-program, och att hitta enkla men samtidigt 
noggranna modelleringstekniker. För att uppnå detta studerades två olika angreppssätt 
för att modellera stålbron. Det första är en detaljerad skalmodell, och det andra smetar 
ut de longitudinella avstyvarnas styvhet och använder en mindre datakrävande 
ekvivalentplatta. 

En ekvivalentplatta skapades genom att beräkna drag-, böj- och skjuvstyvhet för 
däckplattan tillsammans med de longitudinella avstyvarna. Dessa styvheter användes i 
FE-programet Brigade Plus med hjälp av alternativet General shell stiffness, vilket 
tillåter användaren att skapa en platta genom att bara ange styvheter och ingen 
tjocklek. Sektionskrafter och normalspänning från denna modell jämfördes med de 
som togs från den detaljerade skalmodellen, och de överensstämde väl i många fall, 
vilket betyder att den ekvivalenta plattan är en lovande modell för att använda i 
design. 

En parallell studie undersökte om det är möjligt att modellera slanka stålelement 
genom att reducera element i tvärsnittsklass 4 i FE-modellen. De slanka elementen 
modellerades med materialegenskapen ”Lamina” i den delen som ska reduceras bort, 
med reducerad styvhet i bucklingsriktningen. 

Att använda materialegenskapen ”Lamina” för att reducera element i tvärsnitsklass 4 
visade sig vara möjligt och ett teoretiskt korrekt beteende uppvisades. Metoden visade 
sig dock vara mycket tidsödande och inte praktisk i brodimensionering.  

Nyckelord: Stålbroar, ortotropa däck, Brigade Plus, Abaqus, ekvivalentplatta, Finit 
elementmodellering, avstyvande kanal 
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Notations 
Roman upper case letters 

𝐴 Area 

𝐴𝑎 Area of stiffener 

𝐴𝑏 Area of stiffener 

𝐴𝑒𝑒𝑒 Effective area of stiffener 

𝐴𝑠𝑠 Area of stiffener, reduced due to shear effects 

𝐷 Rigidity  

𝑫 Rigidity matrix 

𝐷𝑎𝑎 Average torsional rigidity 

𝐷𝑖𝑖 Entries in the rigidity matrix 

𝑫𝑠ℎ𝑒𝑒𝑒 Shear rigidity matrix 

𝐷𝑠𝑠 Shear rigidity in x-direction 

𝐷𝑠𝑠 Shear rigidity in y-direction 

𝐷𝑥𝑥 Flexural rigidity in x-direction 

𝐷𝑥𝑥,𝑟𝑟𝑟 Reduced flexural rigidity in x-direction 

𝐷𝑥𝑥 Torsional rigidity 

𝐷𝑦𝑦 Torsional rigidity 

𝐷𝑦𝑦 Flexural rigidity in y-direction 

𝐷𝑣 Flexural rigidity 

𝐸 Young’s modulus 

𝐸𝑥 Young’s modulus in x-direction 

𝐸𝑦 Young’s modulus in y-direction 

𝐺 Shear modulus 

𝐺𝑥𝑥 Shear modulus in xy-plane 

𝐺𝑥𝑥 Shear modulus in xz-plane 

𝐺𝑦𝑦 Shear modulus in yz-plane 

𝐼 Second moment of area 

𝐼𝑡 Polar moment of inertia 

𝐼𝑦 Second moment of area around x-axis 

𝐾𝑖𝑖 Shear rigidity 

𝐾𝑠𝑠 Shear stiffness 

𝐿 Length of beam 
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𝑀 Bending moment 

𝑀𝑚𝑚𝑚 Maximum bending moment 

𝑁 Normal force 

𝑁𝑚𝑚𝑚 Minimum normal force 

𝑃 Point load 

𝑃𝐴 Point load 

𝑃𝐵 Point load 

𝑃𝑐𝑐 Critical buckling load 

𝑄 Distributed load 

𝑉ℎ Horizontal shear force 

𝑉𝑚𝑚𝑚 Maximum magnitude of shear force 

𝑉𝑣 Vertical shear force 

𝑌 Initial scaling modulus 
 

Roman lower case letters 

𝑎 Critical length of column 

𝑎 Width of stiffener 

𝑏 Width of plate 

𝑏 Width of stiffener 

𝑏0 Distance between longitudinal stiffeners 

𝑏1 Distance between webs of longitudinal stiffener 

𝑏𝑏𝑏𝑏 Width of bottom flange of longitudinal stiffener 

𝑏𝑒 Effective width of a plate 

𝑏𝑖 Width of component of longitudinal stiffener 

𝑏𝑤𝑤𝑤 Height of web of longitudinal stiffener 

𝑑𝑥𝑥 Membrane rigidity x-direction 

𝑑𝑣 Membrane rigidity 

𝑑𝑦𝑦 Membrane rigidity y-direction 

𝑑𝑥𝑥 Membrane rigidity xy-plane 

𝑓𝑦 Yield strength 

ℎ𝑤 Height web 

ℎ𝑤,𝑒𝑒𝑒 Height web, effective 

𝑖𝑎𝑎 Average torsional moment of inertia 

𝑖𝑥𝑥 Torsional moment of inertia 
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𝑖𝑦𝑦 Torsional moment of inertia 

𝑘 Boundary condition factor for plate 

𝑚𝑥𝑥 Bending moment in x-direction 

𝑚𝑥𝑥,1 Reduced bending moment in x-direction 

𝑚𝑥𝑥 Twisting moment  

𝑚𝑦𝑦 Twisting moment  

𝑚𝑦𝑦 Bending moment in y-direction  

𝑛𝑥𝑥 Membrane force in x -direction 

𝑛𝑥𝑥 Membrane force in xy -plane 

𝑛𝑦𝑦 Membrane force in yx -plane 

𝑛𝑦𝑦 Membrane force in y -direction 

𝑡 Thickness of plate 

𝑡𝑏𝑏𝑏 Thickness of bottom flange of longitudinal stiffeners 

𝑡𝑒𝑒 Thickness of equivalent plate 

𝑡𝑖 Thickness of component of longitudinal stiffeners 

𝑡𝑡𝑡𝑡 Thickness of top flange of longitudinal stiffeners 

𝑡𝑤𝑤𝑤 Thickness of web of longitudinal stiffeners 

𝑣𝑥 Vertical force 

𝑤 Lateral deflection 

𝑥 Length variable 

𝑦 Length variable 

𝑧 Length variable 

 
Greek letters 

𝛼𝑐𝑐 Minimum load amplifier 

𝛼𝑢𝑢𝑢,𝑘 Minimum load amplifier 

𝛽 Reduction factor for shear lag 

𝛾𝑖𝑖 Shear strain in ij-direction 

𝛾𝑀1 Partial safety factor 

𝛾𝑥𝑥 Shear angle 

𝛿 Deflection 

𝜖 Strain 

𝜖𝑖𝑖 Strain in ij-direction 

𝜖𝑥𝑥 Strain in x-direction 
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𝜖𝑦𝑦 Strain in y-direction 

𝜅𝑥𝑥 Curvature in x-direction 

𝜅𝑦𝑦 Curvature in y-direction 

𝜈 Poisson’s ratio 

𝜌 Reduction factor for buckling 

𝜌𝑥 Reduction factor in x-direction 

𝜌𝑥𝑥 Torsional curvature 

𝜌𝑧 Reduction factor in z-direction 

𝜎 Normal stress 

𝜎𝑐𝑐 Critical normal stress 

𝜎𝑔𝑔𝑔𝑔𝑔𝑔 Normal stress from global effects 

𝜎𝑖𝑖 Normal stress in ij-direction 

𝜎𝑙𝑙𝑙𝑙𝑙 Normal stress from local effects 

𝜎𝑚𝑚𝑚 Maximum normal stress 

𝜎𝑡𝑡𝑡𝑡𝑡 Total normal stress from global and local effects 

𝜎𝑥,𝐸𝐸 Design normal stress in x-direction 

𝜎𝑦,𝐸𝐸 Design normal stress in y-direction 

𝜏𝐸𝐸 Design shear stress 

Φ Rotational angle 

𝜒𝑤 Reduction factor due to shear 
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1 Introduction 
In the 1930s in Germany a new bridge deck system was invented. This new system 
had many advantages such as low self-weigh and a slender structure. The system is 
today called orthotropic steel deck, shortened OSD, and it generally consists of a steel 
plate stiffened by longitudinal stiffeners. This means that the bridge deck will have 
different properties in the longitudinal and the transverse direction, hence the name, 
which is a combination of the words orthogonal and anisotropic (US Department of 
Transportation, 2012). 

OSD bridges are frequently used today and the system is especially favourable in 
movable bridges and bridges with long spans. The system is for instance employed in 
the Akashi Kaikyō Bridge, which has the longest main span of any suspension bridge 
in the world (Chatterjee, 2003). 

In moveable bridges the system is favourable mainly because of its lightweight, which 
means that less power is needed to lift and lower the bridge deck and that smaller 
ballast counterweights are needed. Another considerable advantage is that the 
orthotropic bridge deck has a good load carrying capacity also in an upright position 
(US Department of Transportation, 2012). 

In OSD bridges structural elements have more than one purpose, which makes the 
structure complex to analyse. For example, the deck plate is both transferring the 
wheel loads to the longitudinal stiffeners and working as a top flange for all 
longitudinal and transversal stiffeners, as well as for the main girders (US Department 
of Transportation, 2012). This makes all structural elements work together in a 
complex way. 

Today, bridges are usually designed with the help of the finite element method with 
the intention to capture the behaviour of the structure as a whole. The complexity of 
steel bridges with orthotropic decks however, implies some challenges when it comes 
to the FE-modelling. This has led to different models being used for different design 
purposes, and complementary hand calculations are needed. By doing so, the accuracy 
of the design might be compromised, and the initial purpose of using the finite 
element method is lost. 

The questions that arise are, which models are the most suitable and accurate for 
different applications, in which ways can design rules be considered within the FE-
model to avoid hand calculations, and whether it is possible to consider all aspects in 
one unifying model and achieve reasonable results? 

 

1.1 Purpose and aim 
The purpose of this Master’s thesis is to study some of the problems that can be 
encountered when modelling OSD bridges with finite element method and investigate 
suitable ways of approaching these problems. The purpose is also to find simple, yet 
accurate modelling techniques to facilitate engineering work. 

The aim of the Master’s thesis project is to find an approach on how orthotropic steel 
deck bridges can be modelled with linear finite element method. Another aim is to 
investigate cases with very slender structural parts, and how this may be considered 
when performing design on the basis of linear finite element modelling, in order to 
save computational time. 
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1.2 Limitations 
The thesis work is limited to performing FE-analyses of only one OSD bridge and for 
the purpose of design in the ultimate limit state. Also, the investigation of alternative 
modelling techniques is limited to the bridge deck and to some extent, the transversal 
stiffeners. Thus, the rest of the structure is kept more or less similar in comparisons. 

The load cases examined are based on traffic loads in Eurocode but are simplified by 
isolating a single wheel load. The structure will only be analysed with reference to 
static behaviour which means that no dynamic effects will be treated. 

 

1.3 Method 
The project consists of two parts. A literature study is performed to investigate the 
structural behaviour of orthotropic steel deck bridges including regulations and 
demands according to Eurocode FE-analyses of an OSD bridge is then made to 
compare different modelling techniques and their adequacy. To perform FE-
modelling, different handbooks are examined explaining different aspects in 
modelling, both generally and for OSD bridges. Master theses, scientific reports and 
design codes are some of the literature that has been studied. 

The FE-analyses are carried out in the FE-software Brigade Plus (Abaqus). In order to 
compare the two methods, different models are created and analysed. In the first 
model the geometry will be modelled with correct dimensions and high detail level 
using shell elements. In the second, more simplified analysis, shell elements will also 
be used but with an equivalent orthotropic shell for the deck. The stiffness of this 
equivalent plate corresponds to the actual steel plate itself, together with the stiffness 
of the longitudinal stiffeners smeared out. For these two different models stresses and 
sectional forces will be compared to find out if the simplified model can be justified 
in order to save computational time. 

The comparison will be used to state recommendations in design for orthotropic steel 
bridge decks that could be used in practice when designing new bridges. 
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2 Orthotropic Steel Deck Bridges 
An orthotropic steel deck generally consists of a steel plate with welded stiffeners in 
two mutually perpendicular directions. The longitudinal stiffeners are sometimes 
referred to as ribs, and the transversal stiffeners as cross beams, or floor beams. Main 
girders in the longitudinal direction support the entire deck. The principal layout of an 
OSD bridge can be seen in Figure 2.1. Different structural members in the two 
orthogonal directions mean that the deck has anisotropic stiffness, i.e. the system is 
orthogonal-anisotropic which is shortened ‘orthotropic’. 

 
Figure 2.1 Principal layout of an orthotropic bridge deck (Karlsson, 2015). 

The OSD is an efficient and economic system because the deck acts as top flange for 
the longitudinal and the transversal stiffeners as well as for the main girders (US 
Department of Transportation, 2012). This means that material is saved and it also 
increases the rigidity of the deck. 

There are two main types of OSD bridges; Plate girder bridges and box girder bridges 
(US Department of Transportation, 2012). The original OSD bridges, constructed in 
the 1930s, where of the former type and were called “battledeck floor”, see Figure 
2.2. 
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Figure 2.2 Plate girder deck. 

Box girder bridges provide a bottom lateral bracing system for the bridge cross 
section, which gives the deck more torsional stiffness (US Department of 
Transportation, 2012). The box girder represents a simple way to handle horizontal 
wind loads. The box girder also reduces asymmetrical deflections of the deck, caused 
by asymmetrical loads. Another advantage of the box girder is that it provides a 
natural platform from where routine inspections can take place without disturbing the 
traffic. A box girder can be divided into three categories: the single-cell box, see 
Figure 2.3, the multi-cell box, see Figure 2.4, and a box with struts that support a 
cantilever deck, see Figure 2.5 (Mangus, 2000). 

 
Figure 2.3 Single-cell box girder deck. 

 

 
Figure 2.4 Multi-cell box girder bridge. 

 

 
Figure 2.5 Box girder deck with struts supporting cantilever deck. 
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2.1 Structural components of OSDs 
2.1.1 Wearing surface 
The wearing surface on the OSD deck can be made from concrete, bitumen or 
polymer material (US Department of Transportation, 2012). The main purpose of the 
wearing surface is to provide a skid resistant surface that gives a good ride quality. 
The wearing surface, however, also protects the deck from corrosion. The wheel 
pressure on the deck is often assumed to disperse at an angle of 45º in all directions 
through a bituminous layer. To be on the safe side, this dispersion is sometimes 
neglected, because it may be lost in higher temperatures when the wearing surface 
softens (US Department of Transportation, 2012). It is also possible that the wearing 
surface will be replaced by a thinner one in the future which means that the pressure 
area from the wheel loads will be smaller, hence the pressure gets higher. 

 

2.1.2 Deck plate 
The deck plate of an OSD consists of a thin steel plate, which transfers the load to the 
ribs. As mentioned, the plate often acts as a common top flange for the stiffeners and 
for the main girders. The minimum thickness of the deck plate today is 14-16 mm; 
this is mainly due to the sensitivity to fatigue (US Department of Transportation, 
2012). 

 

2.1.3 Longitudinal stiffeners 
Longitudinal stiffeners, also known as ribs, are mainly needed to provide supports for 
the slender deck plate. Two other functions of the longitudinal stiffeners are to 
increase the flexural rigidity of the cross section, and to help distribute the load to the 
transversal cross beams (US Department of Transportation, 2012). The most common 
practice is that they are continuous over the length of the deck, which means that cut-
outs need to be made in the cross beams. The ribs can be either open or closed, as 
seen in Figure 2.6. 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2015:112 6 

 
Figure 2.6 Types of longitudinal stiffeners. 

The open ribs are simple to fabricate and are easily spliced in the field (AISC, 1963). 
They are also accessible for inspection and maintenance. Because of their simple 
geometry they provide a simpler analysis, therefore they were popular in the pre-
computer era. The main disadvantage of the open longitudinal stiffeners is that they 
have essentially no torsional capacity (Mangus, 2000). The open ribs also have very 
little load distribution capacity in the transverse direction, which means that more 
longitudinal stiffeners are needed (AISC, 1963). Since no load is transferred 
transversally all load will go to the cross beams which then will be subjected to a 
greater load if the span is not reduced, this means that the cross beams need to be 
spaced much closer. Thus, a solution with open ribs requires a great deal of material. 

The closed ribs are advantageous to use because of their high torsional rigidity (AISC, 
1963). They also possess a good load distribution capacity in the transverse direction, 
which in turn means that fewer longitudinal stiffeners are needed, and the spacing 
between the transversal cross beams can be longer. This also reduces the dead weight 
of the structure. The main disadvantages of the closed ribs are that they are more 
difficult to fabricate and that the deck becomes more complex to analyse because of 
more interaction between the parts of the deck (AISC, 1963). 

Another advantage with closed ribs is that there is less surface area that needs to be 
protected against corrosion, than in a system with open stiffeners (Mangus, 2000). 
Furthermore, fewer welds are needed in closed ribs than in open ones, as illustrated in 
Figure 2.7. The weld between the longitudinal stiffeners and the deck plate is of great 
interest because, depending on the number of stiffeners, the total length of this weld 
can be as much as 50 times the length of the deck (US Department of Transportation, 
2012). 
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Figure 2.7 Amount of welding required in open and closed ribs (Karlsson, 2015). 

The most commonly used stiffener today is the closed trapezoidal rib (Kolstein, 
2007). This type of stiffener gives the highest torsional rigidity. The U-shaped rib has 
a rounded bottom which gives less stress concentration, but the torsional rigidity of 
this rib type is much less than that of the trapezoidal ribs (AISC, 1963). Open ribs are 
still sometimes used to stiffen box girder webs and bottom flanges (US Department of 
Transportation, 2012). They can also be used in curved bridges, where it is difficult to 
use closed ribs. 

The current trend is to use longer spans of the longitudinal stiffeners (US Department 
of Transportation, 2012). However, this means that the stiffeners need to be higher, 
which leads to larger cut-outs in the web of the transversal stiffeners. This can lead to 
problems with the shear capacity of the transversal stiffener. 

 

2.1.4 Transversal stiffeners 
The transversal stiffener, also called cross beam or floor beam, is normally an 
inverted T-section, which is welded to the deck plate (AISC, 1963). As mentioned 
before, the plate acts as a top flange for the cross beam. The main functions of the 
cross beam are to transfer the load transversally to the main girders and to provide 
support to the ribs (US Department of Transportation, 2012). 

In the cross beam there are often cut-outs for the longitudinal stiffeners. These are 
often made larger than the ribs in order to reduce the stress concentration at the 
intersection (US Department of Transportation, 2012). These cut-outs, however, have 
a substantial impact on the moment and shear capacity of the cross beam, which must 
be taken into account. 
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2.2 Structural behaviour of OSDs 
More or less all structures that exist are an assembly of different structural element 
such as beams, columns and plates. Those elements contribute to the complete 
behaviour of the whole structure in a complex way. For most applications it has been 
shown that it is conservative in design (on the safe side) to treat each element as 
independent of each other and therefore be able to design all elements individually 
(US Department of Transportation, 2012). This approach is simple and often used in 
design. 

For OSD bridges the elements are linked together in a more complex way, and the 
same structural elements can fulfil more than one function. As mentioned before, the 
plate serves as load distributer between the ribs as well as top flange for ribs, cross 
beams and main girders. Due to this complex interaction the approach above is not 
accurate and the structural elements cannot be treated individually for true response. 

Figure 2.8 illustrates how a concentrated load is transferred to the main girders. The 
load is applied at the deck plate which transfers the load between the ribs. The ribs 
transfer the load to the cross beams which distribute the load between the main 
girders. 

 
Figure 2.8 Load path through the OSD bridge (Karlsson, 2015). 

To be able to perform accurate hand calculations and describe the complex structural 
behaviour of OSDs it has been proposed that the whole system is divided into 
subsystems. These subsystems are assumed to act independent of each other and 
therefore the effects of the different subsystems are possible to add by superposition 
(US Department of Transportation, 2012). The possibility to use superposition is 
based on the assumption that the linear relation between the load and stresses are not 
affected by the interaction of the single systems (AISC, 1963). 

In Section 2.2.1 to Section 2.2.7 follows an explanation of the seven subsystems that 
are presented and used by US Department of Transportation, (2012). 

 

2.2.1 Subsystem 1, local deck plate deformation 
The deck plate should, in this subsystem, only transfer the applied wheel load to the 
adjacent rib walls (US Department of Transportation, 2012). The load is transferred 
through deck plate bending. Figure 2.9 illustrates how the deck plate is deforming 
when a concentrated load is applied over a rib. 
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Figure 2.9 Local deformation of deck plate (Karlsson, 2015). 

 

2.2.2 Subsystem 2, panel deformation 
Panel deformation is a phenomenon that occurs due to the fact that ribs share the same 
top flange and therefore they cannot act independently. A concentrated load that is 
applied at the deck plate will be distributed to the nearby ribs, as described in previous 
section, but due to the common top flange also ribs that are not loaded will deflect. 
This effect reduces stresses in the loaded ribs but add stresses to the unloaded ones 
(US Department of Transportation, 2012). The panel deformation is illustrated in 
Figure 2.10 where it can be seen how all ribs deflect together. 

 
Figure 2.10 Panel deformation of deck plate (Karlsson, 2015). 

 

2.2.3 Subsystem 3, longitudinal flexure of the ribs 
Ribs are constructed continuous over cross beams and the fact that cross beams 
deflect when loaded must be considered. To take this flexure into consideration the 
ribs are modelled as continues over discrete flexible supports. In this model it is 
assumed that cross beams are simply supported between rigid main girders and will 
deflect when loaded (US Department of Transportation, 2012). Ribs close to main 
girders will have almost rigid supports since the cross beams have smaller deflection 
close to its supports. Contrariwise, ribs close to the mid span of the cross beam will be 
supported by springs. These two different cases are shown in Figure 2.11, where the 
deformed shapes of the ribs are illustrated. The effect of the cross beam flexure will 
increase the positive span moments and decrease the negative support moments 
compared to the ideal case where the cross beams are rigid (US Department of 
Transportation, 2012). 
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Figure 2.11 Support conditions for longitudinal stiffeners at different location 

(Karlsson, 2015). 

 

2.2.4 Subsystem 4, cross beam in-plane bending 
As mentioned before, the ribs are constructed as continuous over the cross beams. 
This will generate cut-outs in the cross beam cross-section where the rib is passing 
through. Because of this the geometry of the cross beam will vary, which complicates 
hand-calculations of in-plane stresses from bending and shear. US Department of 
Transportation (2012) state that it is recommended to model the whole cross beam 
using FE-analysis. Figure 2.12 shows the deformed shape of a cross beam subjected 
to in-plane stresses. 

 
Figure 2.12 In-plane bending of cross beam (Karlsson, 2015). 

  

2.2.5 Subsystem 5, cross beam distortion 
At cross beam and rib intersection, three different effects occur that affect the local 
stresses in the cross beam. The local mechanisms at these intersections are: Out-of-
plane distortion from bending of ribs, distortion of rib walls due to shear forces and 
distortion of ribs due to uneven deflection. 
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In Figure 2.13, it is illustrated how the cross beam will distort out-of-plane due to 
bending of the ribs that passes through. As can be seen by the dashed lines, the 
distortion is highest at the intersection between the cross beam and the ribs, which 
causes the cross beam to twist (US Department of Transportation, 2012). 

 
Figure 2.13 Effects on cross beam from bending of ribs (Karlsson, 2015). 

The second effect is causing a horizontal distortion of the rib walls, which is 
illustrated in Figure 2.14, since horizontal shear forces are acting on the walls. These 
horizontal shear forces are always present when a structure is loaded vertically (US 
Department of Transportation, 2012). The stress concentrations that appear are 
dependent on whether the cut-outs are larger or equal in size than the rib passing 
through. According to US Department of Transportation (2012) the highest stress 
concentration in the cross beam is generated in this case since the tooth, i.e. the part of 
the cross beam between the cut-outs, is weaker in plane. 

 
Figure 2.14 Horizontal distortion of cross beam due to horizontal shear forces. 

There will also be a vertical distortion in the rib walls in the case when a wheel load is 
applied eccentrically over the rib as illustrated in Figure 2.15. This distortion is due to 
the uneven vertical displacement of the deck plate and will cause stress concentrations 
at the point where the deck plate connects to the rib wall (US Department of 
Transportation, 2012). 
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Figure 2.15 Vertical distortion of cross beam due to wheel load. 

 

2.2.6 Subsystem 6, rib distortion 
If a concentrated load is applied in the mid-span between two cross beams and is 
eccentric about the axis of the rib, the rib will twist around its rotational centre (US 
Department of transportation, 2012). Since the intersection between rib and cross 
beam will be a fixed or partially fixed boundary, depending on how large cut-outs are 
used, there will be high stress concentrations in the welds where the twisting is 
restrained. Figure 2.16 illustrates how the ribs are distorted when loaded. 

 
Figure 2.16 Distortion of ribs when loaded (Karlsson, 2015). 

 

2.2.7 Subsystem 7, global behaviour 
The global system describes the displacement of the main girders as well as the 
behaviour as a whole when no local effect is taking place. In this system it is possible 
to use conventional methods to determine stresses and strains in the structure (US 
Department of Transportation, 2012). Figure 2.17 shows global bending of the OSD 
bridge. 
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Figure 2.17 Global bending of the OSD (Karlsson, 2015). 

 

2.3 Examples of design praxis and their limitations 
In conventional bridge design most of the local effects described above are 
disregarded, and the bridge is designed with regard to global effects. In the design of 
OSDs the global behaviour can be simplified and the load can be followed from top to 
bottom through the different components. Each component is analysed separately 
with regards to its loads and structural capacity. 

 

2.3.1 Deck plate 
The main load that needs to be taken into account when designing the deck plate is the 
vertical component of the wheel load. This load can be converted into a transversal 
line load over the width of the load, and the plate is then analysed as a beam. The 
webs of the longitudinal stiffeners are in this model seen as rigid supports. 

 

2.3.2 Longitudinal stiffeners 
The longitudinal stiffeners are modelled as continuous beams, with an effective part 
of the plate as top flange. The governing load is, as for the deck plate, the traffic load 
from a single wheel, which is usually placed centrically over the rib. In reality the 
load will distribute to adjacent ribs, but in hand calculations this effect is disregarded, 
which is a simplification on the safe side. 

The ribs are supported by the cross beams and, as mentioned before, the cross beams 
can be modelled either as rigid supports or as springs. The spring stiffness is 
calculated by looking at the deflection in the mid span of the cross beam when the 
beam is loaded by a unit force, P=1 N. This is a simplification on the safe side, as this 
does not take into account the position of the rib. The closer the ribs are to the main 
girders the less the deflection will be and thus the higher the stiffness of the cross 
beam is, see Figure 2.18. 
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Figure 2.18 Model to calculate stiffness of the cross beams. 

 

2.3.3 Transversal stiffeners 
The main load acting on the transversal stiffeners is the reaction force coming from 
the longitudinal stiffeners, which should be transferred to the main girders. However, 
load applied on the deck plate close to the cross beams will go directly to the cross 
beams, and not through the ribs. 

The cross section of the cross beam will include an effective part of the deck plate as 
top flange. The cut outs are taken into account by removing a section corresponding 
to the height of the cut out from the cross section, see Figure 2.19. 

 
Figure 2.19 Effective height of the web of the cross beam. 

The cross beam will have different boundary conditions depending on what type of 
OSD bridge is used (plate girder bridge, box girder bridge, etc.). For the case of a 
plate girder bridge the cross beam may be studied in two different parts. The first is 
the cantilever part, outside the main girders, which is modelled as a cantilever beam 
with a fixed support at the connection to the main girder. The second part of the cross 
beam is the internal part between the main girders. This can be modelled as a frame in 
three parts with the cross beam as the horizontal top part and the two main girders as 
vertical sections of the frame. The boundary conditions used at the bottom of the main 
girders are one pinned support and one roller support. 

 

2.3.4 Main girders 
All the load acting on the bridge will be transferred to the main girders. As most of 
the load will be transferred to the main girders through the cross beams the reaction 
force from the cross beams may be applied as point loads on the main girder. 
However, to simplify calculations a distributed load may be used instead of 
calculating reaction forces from the cross beams. As seen in Figure 2.20 and Figure 
2.21, the difference in bending moment will be small between the two cases, 
especially when there are many cross beams present. 
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Figure 2.20 Bending moment in a beam on three supports, loaded with distributed 

load (solid line) and point loads (dashed line).  

 

 
Figure 2.21 Bending moment in a beam on seven supports, loaded with distributed 

load (solid line) and point loads (dashed line). 

 

2.4 Design of OSD bridges according to Eurocode 
Eurocode presents two different approaches for designing slender plated structures in 
steel, using analytical methods, in ULS. The first is the effective width method, where 
the cross sectional area is reduced, and the second is the reduced stress method, where 
the strength is reduced instead. Eurocode also gives guidelines for FE-modelling 
considering different types of analysis, which will be presented in Section 2.4.4. 

In Eurocode two major phenomena are taken into consideration: shear lag and 
buckling. These phenomena will be explained below. 
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2.4.1 Phenomena in plated steel structures 
2.4.1.1 Shear Lag 
In-plane shear flexibility leads to a non-uniform distribution of bending stress across 
the width of the flange. This means that the stress in the flange just above the web is 
greater than expected from gross section analysis, and that the stress in the remote 
part of the flange is lower than expected (Hendy, 2007). This is illustrated in Figure 
2.22. Analysing the exact state of stress is a complex problem, which depends on 
several factors, such as the loading configuration, the stiffening to the flanges, and 
plasticity that might occur. In SLS the state of stress can be analysed using a linear 
FE-analysis, but in ULS a non-linear analysis is required since plasticity usually 
occurs. 

 
Figure 2.22 Effect of shear lag for normal stress distribution. 

 

2.4.1.2 Buckling 
One of the main issues when designing steel structures is buckling. When a plate is 
slender, there is a risk of buckling to occur. 

The post-buckling or post-critical behaviour of a plate differs from a column. When a 
column reach the buckling load it will collapse but a plate will still have a 
considerable load carrying capacity after buckling (Åkesson, 2005). Figure 2.23 
illustrates the post-critical behaviour for both plates and columns. A plate needs to be 
supported on three or more edges to show post-critical capacity. 
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Figure 2.23 Post-critical stress-deflection curves for plates and columns. 

A rectangular plate with post-critical capacity will, after buckling, restrain the out-of-
plane deformation by membrane action (Åkesson, 2005). This membrane action will 
cause transversal tension forces, which limit the magnitude of the deformation. The 
plate will still be able to carry load through the stiffer edge strips while the mid part 
loses most of its stiffness. Figure 2.24 illustrates how stresses are transferred through 
the plate before and after buckling. 

 
Figure 2.24 Stress transfer before and after buckling, negative signs are 

compression, positive are tension. 

According to Euler the buckling load for a column is described by equation 2.1 where 
the last part is a correction factor for if the column is wide, like a plate, and 𝑎 is the 
critical length of the column. 
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𝑃𝑐𝑐 = 𝜋2∙𝐸∙𝐼
𝑎2

∙ 1
(1−𝜈2)

        (2.1) 

If the second moment of area is inserted into equation 2.1, the critical buckling stress 
can be expressed as shown in equation 2.2. This equation can be used for a plate that 
is supported on two edges since it will act as a column. 

𝜎𝑐𝑐 = 𝜋2∙𝐸

12∙(1−𝜈2)∙�𝑎𝑡�
2        (2.2) 

However, for a plate with post critical capacity the critical buckling stress is expressed 
according to equation 2.3, where 𝑏 is the width of the plate. 

𝜎𝑐𝑐 = 𝑘 ∙ 𝜋2∙𝐸

12∙(1−𝜈2)∙�𝑏𝑡�
2        (2.3) 

The difference between the column-like plate (equation 2.2) and a plate supported on 
three or more edges (equation 2.3) is that the buckling stress is dependent on the 
width and not the length for a plate-like plate. The factor k takes the boundary 
conditions for the plate into consideration. 

 

2.4.2 Effective width method 
The effective width method is the most commonly used method today. It accounts for 
the capacity of the cross section after a normal stress buckle has occurred (also 
referred to as post-critical capacity), by removing parts of the cross section where the 
buckle is assumed to occur. The capacity is then given by a linear stress distribution 
across the reduced cross section, with the maximum stress equal to the yield strength. 
The method is presented in EN1993-1-5, Section 4. 

In the effective width method, the bending moment and shear forces are mainly 
carried by one part of the cross section (flange or web), which means that the stress 
distribution over the cross section is not linear. After buckling there will be a 
redistribution of stresses to the stiffer edges which will buckle when the stress in those 
edge stripes reach the yield strength (Al-Emrani, 2013). Thus, the critical buckling 
stress equation (equation 2.3) is set equal to the yield strength and equation 2.4 is 
received. 

𝑓𝑦 = 𝑘 ∙ 𝜋2∙𝐸

12∙(1−𝜈2)∙�𝑏𝑒𝑡 �
2         (2.4) 

From this equation the effective width can be solved and by using Poisson’s ratio 
equal to 0.3, which is normal for steel, equation 2.5 is received. 

𝑏𝑒 = 0.95 ∙ �
𝐸∙𝑘
𝑓𝑦
∙ 𝑡        (2.5) 

By studying equation 2.5 it can be seen that the effective width is inversely 
proportional to the yield strength, which means that the higher the quality of the steel 
is, the lower the effective width becomes. This means that when the yield strength is 
increased the effective width must be reduced to compensate this, otherwise there will 
not be higher stresses in the edges. Another aspect is that the effective width is not 
dependant on the actual width of the plate. This means that it is no use of increasing 
the width of the plate to get a higher ultimate capacity (Åkesson, 2005). 
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In Eurocode the effective width is calculated by dividing the cross section into 
subpanels, which are individually analysed for cross section class. If a sub panel is 
found to be in cross section class 4, which means that the panel is slender and there is 
a risk of buckling, an effective width is calculated by applying the reduction factor 𝜌 
to the width of the subpanel. 

As was discussed in Section 2.4.1.2 plates can have a significant post critical strength. 
Therefore the structural members may be checked for both plate-like and column-like 
buckling. Because of the post critical strength, the critical stress for plate-like 
behaviour is always higher than that for column-like behaviour (Beg, 2010). Since the 
actual behaviour often is somewhere between those behaviours, EN1993-1-5 suggests 
a formula for a reduction factor due to buckling which is an interpolation between the 
plate-like and column-like buckling (Johansson, 2007). 

 

2.4.2.1 Main girder 
The main girder uses the stiffened plate as its top flange. However due to the effect of 
shear lag the whole plate cannot be utilized as flange. EN1993-1-5 takes this into 
account by calculating an effective width of the top plate due to shear lag. The 
effective width is calculated by multiplying the reduction factor 𝛽 with the width of 
the plate. 

Having established the effective cross section of the main girder, the main girder can 
be analysed for bending and shear (Beg, 2010). For bending, the normal stress is 
calculated using Navier’s equation, which is compared to the yield strength. 

For shear, the capacity may need reduction due to shear buckling depending on the 
web slenderness. If shear buckling needs to be considered the shear resistance of the 
web is reduced by the reduction factor 𝜒𝑤. To obtain the reduction factor the critical 
buckling stress and the slenderness need to be calculated. Shear resistance 
contribution from the flanges may be added to the shear resistance from the web, this 
is however often neglected in bridge design as the contribution is very small and extra 
checks for the welds between the flange and web need to be performed (Beg, 2010). 
Finally an interaction check between shear force and bending moment needs to be 
performed. 

 

2.4.2.2 Stiffeners 
As for the main girders the stiffeners needs to be checked for buckling. However, the 
stiffeners should also be checked for torsional buckling. EN1993-1-5 proposes two 
simplified checks, one when warping stiffness is neglected (open flat or bulb cross 
sections), and one when warping stiffness is considered (open T and L sections, and 
closed sections). Eurocode states however that a more advanced method of analysis 
may be used. 

As mentioned before the top plate acts as top flange not only for the main girder, but 
also for the stiffeners. EN1993-1-5 states how the effective cross section of the 
stiffener should be calculated, where the width of the top plate depends on the 
thickness of the top plate and the yield strength of the steel. 
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2.4.3 Reduced stress method 
EN 1993-1-5 Section 10 gives an alternative design approach - the reduced stress 
method. This method assumes a linear stress distribution over the whole cross section, 
up to the stress limit of the panel that buckles first. Until this limit is reached the cross 
section is fully effective with regard to buckling (Beg, 2010). This means that the 
weakest element governs the whole cross section capacity, and usually the cross 
section has to be strengthened, which often makes this method less economic. 

The method is based on an approach found in the German standard and it is 
advantageous since it correlates well with linear FE-analysis (Braun, 2012). However, 
Johansson (2009) recognises that the method needs to be improved to allow stress 
redistribution between panels, and that the verification format should be revised 
because it only is valid for stocky plates. Braun (2012) suggests an improvement for 
the verification format, which is less conservative than the original method in EN 
1993-1-5. In the Swedish national Annex, the reduced stress method is not 
recommended to be used today. 

 

2.4.3.1 Calculation approach 
The first step when using this method is to calculate the equivalent design stress, 
according to von Mises (Beg, 2010). Based on the equivalent stress the minimum load 
amplifier, 𝛼𝑢𝑙𝑡,𝑘, for the design loads to reach the resistance in the most critical point 
of the plate, can be calculated. The load amplifier for the design loads to reach the 
elastic critical load of the plate, 𝛼𝑐𝑐, may be calculated using either hand-calculations 
or appropriate software. The value of 𝛼𝑐𝑐 corresponds to a certain eigenmode, and it 
has to be evaluated which eigenmode (and thus which value of 𝛼𝑐𝑐) corresponds to 
global buckling and which correspond to local buckling. The slenderness can then be 
calculated from the load amplifiers, with respect to both global and local buckling. 

Having established the slenderness, the reduction factor for buckling 𝜌 is determined 
in the same way as for the effective width method. A reduction factor for local 
buckling and a reduction factor for global buckling, which takes into account column 
like and plate like behaviour, is calculated, and the lower of the two may be chosen as 
the final reduction factor. A reduction factor with respect to shear buckling resistance 
𝜒𝑤 is calculated for both local and global behaviour, and the smallest one of the two is 
chosen. If transverse stress is present, reduction factors has to be calculated in this 
direction as well. 

Finally the resistance is verified according to EN 1993-1-5 Section 10 using a formula 
based on the von Mises criteria: 

� 𝜎𝑥,𝐸𝐸
𝜌𝑥𝑓𝑦 𝛾𝑀1⁄ �

2
+ � 𝜎𝑧,𝐸𝐸

𝜌𝑧𝑓𝑦 𝛾𝑀1⁄ �
2
− � 𝜎𝑥,𝐸𝐸

𝜌𝑥𝑓𝑦 𝛾𝑀1⁄ � � 𝜎𝑧,𝐸𝐸
𝜌𝑧𝑓𝑦 𝛾𝑀1⁄ � + 3 � 𝜏𝐸𝐸

𝜒𝑤𝑓𝑦 𝛾𝑀1⁄ �
2
≤ 1  (2.6) 

 

2.4.4 Finite element modelling 
This section presents and describes the recommendations of Eurocode for FE-
analysis, which are given in EN 1993-1-5 Annex C. Today FE-analysis of steel 
structures has become widely used by designers since FE-software have become more 
user–friendly (Beg, 2010).  However, FE-modelling is still a new method compared to 
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conventional approaches of designing and that is the reason why Eurocode only 
present recommendations and not fully developed guidelines (Johansson, 2007). 

FE-analysis can be used for different purposes and problems. It is important to choose 
an appropriate detail level to avoid unnecessary complexity and computer effort. The 
model should give accurate results with the smallest amount of computer power used. 

The most common applications of FEM for plated structures are listed in Table 2.1 
and these are the one presented in Eurocode. Among these the first one is the most 
commonly used today by civil engineers. 

Table 2.1 Assumptions for FEM modified from Table C.1 in EN 1993-1-5. 

Analysis Material 
behaviour 

Geometric 
behaviour 

Initial 
imperfections Example of use 

First order 
linear elastic Linear Linear No 

Elastic shear lag 
effect, elastic 
resistance 

First order 
linear plastic Non-linear Linear No 

Plastic 
resistance in 
ULS 

Critical 
buckling 
modes 

Linear Non-linear No 
Critical plate 
buckling load, 
buckling modes 

Second order 
linear-elastic Linear Non-linear Yes 

Elastic plate 
buckling 
resistance 

Non-linear Non-linear Non-linear Yes 
Elastic-plastic 
resistance in 
ULS 

If a non-linear response is to be used the designer needs to consider if and how initial 
imperfection should be treated in the model. The designer must also decide how the 
material non-linearity is to be modelled. These two aspects will be described below. 
 

2.4.4.1 Initial Imperfections 
In some non-linear analysis it is important to take initial imperfections into 
consideration since these will strongly affect the result due to second order effects. 

There are two different types of initial imperfections: geometric imperfections and 
residual stresses. Geometric imperfection is a result from tolerances in both 
fabrication and construction. In FE analysis these imperfections are modelled as an 
initial deformation (Beg, 2010). Annex C of EN 1993-1-5 recommends that the initial 
deformation should be based on the critical buckling mode with amplitude equal to 
80 % of the fabrication tolerances. To get the critical buckling mode a linear buckling 
analysis can be used in an FE-software, which gives the shape of the buckling mode. 
This shape can then be scaled to proper amplitude according to Eurocode (Johansson, 
2007). 

For simple cases, the critical buckling mode is easy to determine, but for complicated 
problems, the critical buckling mode may not be clear. In those cases it might be more 
useful to use, instead of numerical solutions, previous knowledge of which buckling 
modes that are possible and critical (Johansson, 2007). 
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Residual stresses are self-equilibrated stresses that exist in all plates of the structure 
(Beg, 2010). These stresses come from the fabrication process when the plate is 
subjected to rolling or welding. It is difficult to model residual stresses since they vary 
both systematically and randomly (Johansson, 2007). For example, residual stresses 
from welding depends on both heat input and weld size, and investigations have 
shown that the resulting residual stresses vary considerably (Johansson, 2007). 

Annex C of EN 1993-1-5 propose that an equivalent imperfection is used where 
additional amplitude is added to the geometrical imperfection, to take the residual 
stresses in consideration. This simplified approach works well for buckling of 
columns but for plate buckling this method has been proved to be over-conservative 
(Johansson, 2007). Modern FE-software have built in tools to add residual stresses in 
each part of the structure. This method is recommended since the effects of residual 
stresses and geometrical imperfections in many cases are different (Beg, 2010). 

It is not obvious how the magnitude of the initial imperfections should be chosen to 
give reliable results. The recommendations in Eurocode tend to be rather conservative 
and the resistance have been shown to be more than 15 % smaller compared to 
analytical solutions (Johansson, 2007). It is therefore likely that further studies will 
lead to improved recommendations. 

 

2.4.4.2 Material Properties 
The easiest and mostly used material model is a linear-elastic relationship where the 
material is assumed to be linear-elastic independent of the state of stress. Linear-
elastic material properties are illustrated in Figure 2.25. This model can be used for 
linear problems where yielding is not of interest. 

 
Figure 2.25 Linear-elastic material behaviour. 

For non-linear material properties, Eurocode presents four different uniaxial stress-
strain relations that can be used in design: 

• a1) Neglected strain hardening and horizontal yielding plateau. 
• a2) Neglected strain hardening and slightly inclined yielding plateau. 
• b1) Strain hardening and inclined yielding plateau. 
• b2) Non-linear strain hardening 

These four options are visualized in Figure 2.26. 
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Figure 2.26 Different material models for non-linear analysis modified from Figure 
C.2 in EN 1993-1-5. 

Among these, option a1) is the easiest model where strain hardening is neglected and 
the yield plateau is horizontal. However, this approach can cause numerical problems 
when modelling with FEM (Beg, 2010). To get numerical stability it is possible to use 
option a2) where the yield plateau has a very small slope. Both option a1) and a2) are 
modelled with more or less horizontal yield plateaus, which means continuous strains. 
This is of course a simplification of the real behaviour, which is discontinuous at the 
plateau. 

When the yield plateau is modelled continuous the bending stiffness, after yielding 
starts, will be underestimated (Johansson, 2007). This will lead to a prediction where 
local buckling occurs too early. One way to solve this problem is to use option b1), 
where the yield plateau is neglected. With this method, correct resistance will be 
received but the deformation capacity will be underestimated (Johansson, 2007). 

The most accurate model is option b2) where the real stress-strain behaviour from 
tests is used. The difference between the two curves is that the solid curve includes 
the reduction of area that takes place when the specimen is elongated but the dashed 
curve calculates stresses for the initial area (Beg, 2010). 
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3 Design with Linear Finite Elements 
3.1 Introduction to FEM 
This section will describe some aspects that are important to take in consideration 
when creating a FE model. These aspects will strongly affect the accuracy of the 
result.  
 

3.1.1 Element types 
When using FE software it is important to choose an element type that is appropriate 
to describe the specific problem. There are three categories of elements that can be 
used in the analysis: structural elements, continuum elements and special elements. 
These element types are illustrated in Figure 3.1. Structural elements resemble actual 
fabricated members such as cables, bars, beams and shells (Broo, 2008). Continuum 
elements are a decomposition of a continuum structure and can be used in two or 
three dimensions. Continuum elements have three degrees of freedom per node, 
which are all translations, while structural elements such as shells have six degrees of 
freedom which include both rotations and translations (Austrell, 2004). The last 
category is special elements which are used for modelling connections between 
elements. Spring elements, contact elements and interface elements are examples of 
special elements (Broo, 2008). 

 
Figure 3.1 a) Structural elements e.g. beam elements and shell elements. b) 

Continuum elements in two or three dimensions. c) Special elements 
e.g. springs and dampers. 
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Some element types can have different accuracy depending on if results are 
interpolated linearly or with higher order between the nodes of the elements. The 
difference is what kind of shape functions that are used to describe the elements, 
linear or higher order (Ottosen, 1992). Figure 3.2 illustrates these different shape 
functions. By using higher order functions the computation time could be reduced 
since the number of elements required to describe the structural behaviour may be 
less. But, if the same number of elements is used the computation time will increase 
since more complex shape functions are used. 

 
Figure 3.2 Difference between linear and higher order elements for a four node 

element. 

One way to reduce the running time is to use reduced numerical integration, which 
uses lower-order integration when establishing the stiffness matrix (Ellobody, 2014). 
The mass and load matrices are still integrated exactly. Figure 3.3 illustrates the 
difference between full and reduced integration. 

 
Figure 3.3 Difference between full and reduced integration. 

  

3.1.2 Mesh sizing 
The choice of mesh size is a very important aspect in the FE-analysis. The mesh 
should be chosen so that the result is sufficiently accurate with the shortest possible 
running time. To start with, the designer needs to define if the analysis should be 
carried out for the whole bridge or for individual bridge components. If the whole 
bridge is modelled with the exact geometry of each detail, the model will become 
very large and it might be impossible to run the analysis (Ellobody, 2014). One 
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possibility is to create one main model that describes the global behaviour of the 
bridge and then local sub-models can be created to study the behaviour of individual 
details (Ellobody, 2014). 

 

3.2 Alternative modelling techniques for OSDs 
When creating a detailed shell model all the structural elements are modelled as in 
reality. This method requires little pre-processing work, but it is time consuming to 
create and to run. To simplify the FE-modelling, the deck plate with its longitudinal 
stiffeners may be replaced by an equivalent orthotropic plate by smearing out the 
stiffness of the longitudinal stiffeners over the whole plate. This method can reduce 
the running time considerably for the FE-model since the mesh can be coarser when 
the level of detail is lower. The equivalent plates, however, requires more pre-
processing work to calculate the equivalent stiffness of the plate. 

The orthotropic properties may be implemented either in the geometry or in the 
rigidity of the plate. Both these methods will be evaluated in this thesis. Alternative 1 
implements the e orthotropic properties in the geometry, and is an equivalent plate 
using lamina material. Alternative 2 is an equivalent 2D orthotropic plate, which 
implements the orthotropic properties in the rigidities instead. 

For the calculations of the equivalent stiffness the directions of the axes and width and 
area of the stiffeners are defined as in Figure 3.4. 

 
Figure 3.4 Parameters used in calculations for equivalent stiffness. 

 



 
 
 

CHALMERS Civil and Environmental Engineering, Master’s Thesis 2015:112 27 

3.2.1 Alternative 1: Equivalent plate using lamina material 
One approach to model the bridge is to create a plate with orthotropic material 
properties, called lamina. In the longitudinal direction this can be done by keeping 
Young’s modulus, 𝐸𝑦 , at the original value and calculating a thickness of an 
equivalent plate, 𝑡𝑒𝑒, which gives the same second moment of area as the original 
plate together with its longitudinal stiffeners. 

Since the thickness of the plate now is decided, Young’s modulus needs to be 
changed to a fictive value in the transverse direction in order to keep the flexural 
rigidity at the correct value. To calculate the rigidity in the transverse direction, the 
stiffener with its part of the top plate is modelled as a simply supported beam in the 
transverse direction. The beam is loaded with equal bending moments in each end, see 
Figure 3.5. 

 
Figure 3.5 Model used to calculate the transverse rigidity. 

The rotation at the edge, 𝜙, can be calculated using simple 2D beam software. From 
elementary cases the transverse flexural rigidity, 𝐷𝑥𝑥 , can for a simply supported 
beam be obtained by: 

𝜙 = 𝐿
3∙𝐷𝑥𝑥

∙ 𝑚𝑥𝑥 + 𝐿
6∙𝐷𝑥𝑥

∙ 𝑚𝑥𝑥       (3.1) 

In this equation, the first term represents the rotation caused by a bending moment at 
the support of interest, and the second term represents the rotation caused by a 
bending moment at the other support. From equation (3.1) an equation for the flexural 
rigidity is obtained: 

𝐷𝑥𝑥 = 𝐿
2∙𝜙

∙ 𝑚𝑥𝑥        (3.2) 

Since the thickness of the equivalent plate is the same in both directions, a fictive 
Young’s modulus in the transverse direction can now be calculated: 

𝐸𝑥 = 𝐷𝑥𝑥
𝐼

         (3.3) 
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This method, however, only works if an isolated plate is studied and if only bending is 
of interest. Consequently, for a case where the equivalent plate represents the top 
flange of a bridge, this method is not valid. The second moment of area is kept 
constant with regard to the local centre of gravity of the plate, but since the cross 
sectional area of the plate changes, the second moment of area with regard to a global 
centre of gravity would also change, e.g., in the case of a flange resting on girders. 

 

3.2.2 Alternative 2: Equivalent 2D orthotropic plate 
To avoid the problems described above, of using equivalent thickness and fictive 
values of Young’s Modulus, is to define different cross section properties in the two 
directions. In Brigade Plus it is possible to choose “General shell stiffness” when 
creating sections. Using this option means that no thickness of the member needs to 
be chosen, but instead the rigidity of the member is chosen according to equation 3.4: 

⎣
⎢
⎢
⎢
⎢
⎡
𝜎𝟏𝟏
𝜎𝟐𝟐
𝜎𝟑𝟑
𝜎𝟏𝟏
𝜎𝟏𝟏
𝜎𝟐𝟐⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
𝐷11 𝐷12 𝐷13 𝐷14 𝐷15 𝐷16

 𝐷22 𝐷23 𝐷24 𝐷25 𝐷26
  𝐷33 𝐷34 𝐷35 𝐷36
   𝐷44 𝐷45 𝐷46
 𝑠𝑠𝑠   𝐷55 𝐷56
     𝐷66⎦

⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡
𝜖𝟏𝟏
𝜖𝟐𝟐
𝜖𝟑𝟑
𝛾𝟏𝟏
𝛾𝟏𝟏
𝛾𝟐𝟐⎦

⎥
⎥
⎥
⎥
⎤

    (3.4) 

The top left corner of the rigidity matrix in equation 3.4 (enclosed by a solid box) 
represents membrane rigidity, and the bottom right corner (enclosed by a dashed box) 
represents flexural rigidity. Since there is no direct relation between membrane and 
flexural action the top right corner (as well as the bottom left corner, due to 
symmetry) contains zeroes. Thus, the rigidity matrix becomes: 

𝑫 =

⎣
⎢
⎢
⎢
⎢
⎡
𝐷11 𝐷12 𝐷13 0 0 0

 𝐷22 𝐷23 0 0 0
  𝐷33 0 0 0
   𝐷44 𝐷45 𝐷46
 𝑠𝑠𝑠   𝐷55 𝐷56
     𝐷66⎦

⎥
⎥
⎥
⎥
⎤

     (3.5) 

It is also possible to add transverse shear stiffness, 𝐾11, 𝐾12 and 𝐾22. If these are not 
specified by the user, they are calculated automatically by Brigade Plus as (Dassault 
Systèmes, 2007): 

𝐾11 = 𝐾22 = �1
6

(𝐷11 + 𝐷22) + 1
3
𝐷33� 𝑌,    𝐾12 = 0    (3.6) 

Here, Y is the initial scaling modulus used in Brigade Plus (Dassault Systèmes, 2007). 

The stiffness matrix is divided into two parts, one for membrane action (axial 
rigidity), and one for flexural action (bending rigidity). The stiffness matrix for 
membrane action is defined as: 

�
𝑛𝑥𝑥
𝑛𝑦𝑦
𝑛𝑥𝑥

� = �
𝑑𝑥𝑥 𝑑𝑣  
𝑑𝑣 𝑑𝑦𝑦  
  𝑑𝑥𝑥

� �
𝜖𝑥𝑥
𝜖𝑦𝑦
𝛾𝑥𝑥

�      (3.7) 
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Membrane forces in equation (3.6) are described below in Figure 3.6. 

 
Figure 3.6 Direction of membrane forces. 
The stiffness matrix for bending is defined as: 

�
𝑚𝑥𝑥
𝑚𝑦𝑦
𝑚𝑥𝑥

� = �
𝐷𝑥𝑥 𝐷𝑣  
𝐷𝑣 𝐷𝑦𝑦  

  𝐷𝑥𝑥
� �
𝜅𝑥𝑥
𝜅𝑦𝑦
𝜌𝑥𝑥

�      (3.8) 

Moments above are defined as in Figure 3.7. 

 
Figure 3.7 Direction of the moments. 

However, since the torsional rigidity in an orthotropic deck differs in the x- and y- 
direction, 𝐷𝑥𝑥 ≠ 𝐷𝑦𝑦, the term 𝐷𝑥𝑥 is replaced by 𝐷𝑎𝑎 representing the average of the 
two terms, which gives the stiffness matrix for bending of an orthotropic plate as: 

�
𝑚𝑥𝑥
𝑚𝑦𝑦
𝑚𝑥𝑥

� = �
𝐷𝑥𝑥 𝐷𝑣  
𝐷𝑣 𝐷𝑦𝑦  
  𝐷𝑎𝑎

� �
𝜅𝑥𝑥
𝜅𝑦𝑦
𝜌𝑥𝑥

�      (3.9) 

Putting equation (3.7) and equation (3.9) together means that the input matrix from 
equation (3.5) to use in General shell stiffness in Brigade Plus will be: 
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𝑫 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑑𝑥𝑥 𝑑𝑣 0 0 0 0

 𝑑𝑦𝑦 0 0 0 0
  𝑑𝑥𝑥 0 0 0
   𝐷𝑥𝑥 𝐷𝑣 0
 𝑠𝑠𝑠   𝐷𝑦𝑦 0
     𝐷𝑎𝑎⎦

⎥
⎥
⎥
⎥
⎥
⎤

     (3.10) 

 

3.2.2.1 Membrane rigidity 
For a homogenous isotropic plate, the membrane rigidity is defined as: 

𝑫 = 𝐸∙𝑡
1−𝜈2

�
1 𝜈 0
𝜈 1 0
0 0 1

2
(1 − 𝜈)

�       (3.11) 

In the case of an orthotropic plate, the effect of the stiffeners needs to be added to the 
rigidity (Blaauwendraad, 2010): 

𝑫 = 𝐸∙𝑡
1−𝜈2

�
1 𝜈 0
𝜈 1 0
0 0 1

2
(1 − 𝜈)

� + �
𝐸 ∙ 𝐴𝑎 𝑎⁄ 0 0

0 𝐸 ∙ 𝐴𝑏 𝑏⁄ 0
0 0 0

�   (3.12) 

Here, 𝐴𝑎 and 𝐴𝑏 represent the area of the stiffeners in the x- and y-directions, and a 
and b represents the width of the stiffeners including its part of the top plate, see 
Figure 3.4. In this case, only the stiffeners in the y-direction will be included in the 
equivalent plate, since the stiffeners in the x-direction (the cross beams) are situated to 
far apart, which means that it is not reasonable to smear out their stiffness. Thus, the 
final membrane rigidity matrix will be: 

𝑫 = 𝐸∙𝑡
1−𝜈2

�
1 𝜈 0
𝜈 1 0
0 0 1

2
(1 − 𝜈)

� + �
0 0 0
0 𝐸 ∙ 𝐴𝑏 𝑏⁄ 0
0 0 0

�    (3.13) 

 

3.2.2.2 Flexural rigidity 
The flexural rigidity for an orthotropic plate is considerably more complicated to 
calculate than the membrane rigidity. As seen in equation (3.12) the effect of the 
stiffeners is simply added to the rigidity of a homogenous plate for membrane rigidity. 
However, for flexural rigidity each entry in the rigidity matrix (equation 3.9) needs to 
be calculated separately. 

The transverse flexural rigidity, 𝐷𝑥𝑥, is calculated as described in Section 3.2.1 and 
the flexural rigidity in the longitudinal direction, 𝐷𝑦𝑦, is calculated by looking at the 
second moment of area of a stiffener: 

𝐷𝑦𝑦 = 𝐸∙𝐼𝑦
𝑏

         (3.14) 

In this equation, 𝐼𝑦 is the second moment of area of one longitudinal stiffener together 
with its part of the top plate, and b is the width of the same structure. 

The term 𝐷𝑣  in the flexural rigidity matrix represents rigidity due to lateral 
contraction. To calculate this term, a bending moment is applied to a stiffener as; the 
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same method used in Figure 3.5. Application of this bending moment leads to a 
smaller sectional moment, mxx,1, in the top flange between the webs of the stiffener. 
By calculating an average bending moment, a reduced rigidity in the x-direction can 
be calculated (Blaauwendraad, 2010): 

𝐷𝑥𝑥,𝑟𝑟𝑟 = 𝑏0∙𝑚𝑥𝑥+𝑏1∙𝑚𝑥𝑥,1
𝑏∙𝑚𝑥𝑥

∙ 𝐷𝑥𝑥      (3.15) 

Here, the widths are as in Figure 3.8.  

 
Figure 3.8 Model used to calculate the reduced transverse rigidity. 

Having established the reduced rigidity, the effect of lateral contraction can be 
calculated: 

𝐷𝑣 = 𝜈 ∙ 𝐷𝑥𝑥,𝑟𝑟𝑟        (3.16) 

The final term, 𝐷𝑎𝑎, is calculated using the average torsional moment of inertia, 𝑖𝑎𝑎 
(Blaauwendraad, 2010): 

𝐷𝑎𝑎 = 𝐺 ∙ 𝑖𝑎𝑎
2

         (3.17) 

The average torsional moment of inertia, 𝑖𝑎𝑎 , is defined by the equation 
(Blaauwendraad, 2010): 

𝑖𝑎𝑎 = 1
2
∙ �𝑖𝑥𝑥 + 𝑖𝑦𝑦�        (3.18) 

The torsional moments of inertia may be calculated by the equations: 

𝑖𝑥𝑥 = 1
6
∙ 𝑡𝑡𝑡𝑡3         (3.19) 

𝑖𝑦𝑦 = 1
𝑏
∙ �𝐼𝑡 + 𝑡𝑡𝑡𝑡3∙𝑏

6
+ 𝑡𝑏𝑏𝑏3∙𝑏𝑏𝑏𝑏

3
+ 2 ∙ 𝑡𝑤𝑤𝑤

3∙𝑏𝑤𝑤𝑤
3

�    (3.20) 

Here, 𝐼𝑡 is the polar moment of inertia, which is defined by: 

𝐼𝑡 = 4∙𝐴2

∑𝑏𝑖
𝑡𝑖

,      𝑖 = 1,2,3,4       (3.21) 

In this equation, 𝑏𝑖 is the length of the four walls of the stiffener, 𝑡𝑖 their thickness, 
and A is the area enclosed by the four walls, see Figure 3.9. 
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Figure 3.9 Geometry for calculating polar moment of inertia. 

 

3.2.2.3 Shear rigidity 
To calculate the shear rigidity in the x-direction, one longitudinal stiffener is modelled 
as a beam loaded by a vertical force 𝑣𝑥 at each end, see Figure 3.10. The deflection δ 
is analysed using simple 2D beam software. 

 
Figure 3.10 Model to calculate shear stiffness. 

Having established the deflection, the shear stiffness of the stiffener can be calculated 
using the equation: 

𝐾𝑠𝑠 = 𝑣𝑥
𝛿

         (3.22) 

The shear rigidity, 𝐷𝑠𝑠, is obtained from: 
𝑏3

12𝐷𝑥𝑥
+ 𝑏

𝐷𝑠𝑠
= 1

𝐾𝑠𝑠
        (3.23) 

In the y-direction the shear rigidity is calculated with the formula: 

𝐷𝑠𝑠 = 𝐺 ∙ 𝐴𝑠𝑠
𝑏

         (3.24) 

Here, b is as before, and 𝐴𝑠𝑠 is the cross sectional area of the stiffener reduced by a 
shear factor (Blaauwendraad, 2010). The shear factor is chosen according to 
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Cowper (1966) and simplified to a thin-walled box section. This means that the 
outstanding parts of the top flange and the inclination of the webs are neglected. 
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4 Case Study of an OSD bridge 
In the case study two approaches for modelling an OSD bridge are investigated. In the 
first approach – the detailed shell model – the bridge will be modelled with highest 
level of detail possible, using shell elements. For the second approach – the equivalent 
2D orthotropic plate – the stiffness of the longitudinal stiffeners will be smeared out 
and an equivalent plate, resting on transversal stiffeners and main girders is 
investigated. For these two different models stresses and sectional forces will be 
compared to find out if the equivalent plate can be used in bridge design. 

The case study will also investigate the possibility to reduce parts in cross section 
class 4 within the FE model. The hypothesis investigated is whether it is possible to 
extract stresses directly from the FE model, since the model has already been reduced 
according to Eurocode. This study also serves to compare the method of extracting 
normal stresses directly from FEM and the method of extracting sectional forces to 
calculate the normal stresses. 

 

4.1 Geometry of the bridge 
By studying different bridge designs, the geometry for the case study is chosen 
according to Figure 4.1. A reasonably simple geometry is sought for, which means 
that a plate girder deck is chosen. The length of the bridge is chosen to 30 meters, 
which will give realistic proportions in relation to the chosen cross-section. The span 
between the cross beams is set to 3 m. 

 
Figure 4.1 Cross-section for case study. Measurements given in mm. 

 

 

 

 

 

 

 



 
 
 

CHALMERS Civil and Environmental Engineering, Master’s Thesis 2015:112 35 

The dimensions of the ribs are shown in Figure 4.2. 

 
Figure 4.2 Dimensions of the ribs. 

Member thicknesses are given in Table 4.1 and these are chosen to give desirable 
slenderness for all parts. 

Table 4.1 Member thicknesses for all structural elements. 

Member Thickness [mm] 
Deck plate 16 
Ribs 4 
Main girder web 12 
Main girder flange 25 
Cross beam web 10 
Cross beam flange 20 

The geometry of the longitudinal stiffener is chosen to be in cross section class 4 
which will cause a reduction of the cross section according to Eurocode. To avoid 
extensive calculations other parts are designed to not be in cross section class 4. Cross 
section classes for the structural parts of interest are reported in Table 4.2. 

Table 4.2 Cross section classes for structural members. 

Part Type Cross Section Class 
Deck plate between stiffener Internal compression part 1 
Web of longitudinal stiffener Internal compression part 4 
Bottom flange of longitudinal 
stiffener Internal compression part 4 

Web of main girder Internal compression and 
bending part 3 

 

4.2 Finite element modelling 
The FE model is established by creating different parts that are assembled together to 
form the bridge model. All parts are connected with the assumption that they are 
perfectly fixed to each other. The FE model of the bridge is illustrated in Figure 4.3. 
The marked section of the bridge is where the loads, which are described in Section 
4.2.2, are placed. 
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Figure 4.3 Bridge geometry in FE-model. The marked section is where the wheel 

loads are placed. 

All parts are assigned isotropic material properties, for the detailed shell model, with 
Young’s modulus 210 GPa and Poisson’s ratio 0.3. All analyses performed are linear 
elastic which means that yielding and other non-linear effects are not of interest. 
Therefore, no other material parameters are needed to describe the material. For the 
alternative modelling techniques described in Section 3.2 properties and rigidities will 
be chosen according to the theories of that section. 
 

4.2.1 Boundary conditions 
Creating boundary conditions is an important part in FE-modelling where mistakes 
are sometimes made. The case study is a simply supported bridge which should be 
supported at the bottom flange of the main girders. If the support is applied in only 
one node the stresses at that node will be large and there is a risk that some elements 
show an unrealistic behaviour due to these high forces. Figure 4.4 illustrates how 
elements located close to the supported node will distort and deflect unrealistically. 
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Figure 4.4 Unrealistic deflection of elements at support. 

One way around this effect is to include parts outside the theoretical span of 30 
meters. In this case the bridge is extended by 150 mm in each direction which will 
create supports at each side with the assumed area of 300x400 mm at the bottom 
flange, where 400 mm is the width of the flange. Boundaries are placed at a reference 
node below the support which is connected to the supported area in order to lock the 
whole surface. The coupling condition used is that the surface is not allowed to move 
vertically in relation to the reference node. With this measure, local unrealistic 
deflection of elements is avoided. Figure 4.5 illustrates how the surface is connected 
to the reference node. 

 
Figure 4.5 Coupling condition at each support. 

 

4.2.2 Loads 
In the case study, wheel loads are applied according to Eurocode as a concentrated 
load of 300 kN distributed over a square of 400x400 mm. This results in a uniform 
pressure of 1 875 kN/m2 which is used in the FE-model. For the case study, seven 
different load cases will be considered which are described below. Six load cases 
represent a single wheel load, which in all cases are placed at or between the cross 
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beams in the middle of the bridge. Load case 5 is not pictured but represents a 
uniform load of 10 kN/m2 over the whole deck plate, which is approximately the 
distributed traffic load used in bridge design. 

Load case 1 and 2 represent a wheel load placed centrically over the rib closest to the 
middle of the main girders, see Figure 4.6. 

 
Figure 4.6 Load case 1 and 2. The thick lines parallel to the ribs represent the 

main girders. Note that the figure only shows one span between two 
cross beams. 

Load case 3 and 4 represent a wheel load placed eccentrically over the rib closest to 
the middle of the main girders, see Figure 4.7. 

 
Figure 4.7 Load case 2 and 3. The thick lines parallel to the ribs represent the 

main girders. Note that the figure only shows one span between two 
cross beams. 

Load case 6 and 7 represent a wheel load placed centrically over the rib closest to the 
main girder, see Figure 4.8. 
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Figure 4.8 Load case 6 and 7. The thick lines parallel to the ribs represent the 

main girders. Note that the figure only shows one span between two 
cross beams. 

A gravity force is also applied at all members with the steel density of 7 850 kg/m3. 

 

4.2.3 Free Body Cut 
Free Body Cut is a feature in Brigade Plus which makes it possible to receive 
sectional forces for solid and shell elements for a combination of structural parts, e.g. 
a bridge cross section. For a specific state of stress, the software translates the stresses 
into a combination of moments, normal forces and shear forces. 

Free Body Cuts are created by choosing the section which should be included in the 
calculation by picking the faces or edges, depending on if the section is modelled by 
solids or shells. A maximum number of cuts should be chosen and also how many 
elements that should be skipped between each cut. Worth mentioning is that the Free 
Body Cuts are mesh dependent which means that if the mesh is changed the Free 
Body Cuts must be redefined. 

 

4.3 Detailed shell model 
The first approach involves a detailed shell model. In this approach no geometrical 
simplifications are made, and the bridge is modelled as close to reality as possible. 
From this model sectional forces will be extracted using the Brigade Plus option Free 
Body Cut, described in Section 4.2.3. The sectional forces are used to calculate 
normal stresses, which are used in reduction of the cross section, and in comparison 
with other approaches. 

 

4.3.1 Mesh 
To verify that the density of the mesh is adequate a convergence study is performed 
by changing the mesh size and examining how this affects the result of the analysis, 
see Figure 4.10. For each mesh size, stresses are extracted from the bridge. It is 
important that it is the same point that results are extracted from and therefore the 
intersection between main girder and flange is chosen in mid span, see Figure 4.9.  
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Figure 4.9 Point where normal stress is extracted for the convergence study. 

By this study it is decided that the number of elements should be at least 120 000, 
which gives an approximate global mesh size of 70 mm. However, to ensure that 
every component have enough elements a smaller mesh size needs to be chosen. A 
global size of 25 mm is chosen to ensure that there are enough elements in the web of 
the ribs. This mesh size also gives an evenly distributed mesh which is required when 
extracting results in a later stage. 

 
Figure 4.10 Convergence study for detailed shell model. Numbers next to a dot in 

the graph represent number of elements. 

 

4.3.2 Verification of model 
For verification of the model hand calculations are made and stresses compared with 
FE-results. A uniform pressure of 10 kN/m2 is applied over the whole deck plate. 
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Verification is an important topic since the model needs to have a realistic behaviour. 
To verify the model, the deflection in mid span is compared with hand calculations. 
The model for hand calculations is illustrated in Figure 4.11. 

 
Figure 4.11 Model for hand calculations for deflection and stress analysis.  

To calculate the global deflection by hand one main girder is analysed with its 
effective width of the top flange. The load is thus equal to the distributed load on half 
the bridge, and the self-weight of half of the bridge. The effective width is due to the 
shear lag effect and is calculated according to EN-1993-1-5. The final cross section is 
presented in Figure 4.12, see Appendix B2.1 for calculations. 

  
Figure 4.12 Effective width for main girder due to shear lag. Measurements given 

in mm. 

The deflection from hand calculations is then compared to the FE-model, the 
comparison is presented in Table 4.3. 
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Table 4.3 Deflections in midspan, comparison. 

 Hand 
Calculations FE-model 

Deflection 𝛿 = 71.67 𝑚𝑚 𝛿 = 74.76 𝑚𝑚 

Difference 4.3 % 

This error is quite large, which can depend on many parameters, such as shear 
deformations. To be able to draw conclusion a small study on an I-beam, with 
geometry as in Figure 4.13 (same geometry as the main girder of the case study), is 
performed. 

 
Figure 4.13 I-beam cross section for deflection study. Measurements given in mm. 

Hand calculations used in the verification step rely on Euler-Bernoulli beam theory 
which works well for beams with a high span to height ratio. For the main girder in 
the bridge, the ratio is quite good, but there could be some shear deformation which is 
not accounted for in the Euler-Bernoulli theory. Timoshenko’s beam theory, which 
takes shear deformations into consideration, is tested to see if the results can be 
improved, see Appendix C for calculations of the Timoshenko beam. In Table 4.4, 
different ways of calculating the deflection is compared and it can be seen that the 
best agreement is achieved when Timoshenko theory is used with beam elements 
(FEM). When Timoshenko theory is used in hand calculations, the results also get 
closer to the shell elements model. 
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Table 4.4 Deflection study for I-beam 

Method Deflection [mm] Difference from 
Shell elements 

Shell elements (FEM) 13.71 - 
Beam elements, Timoshenko (FEM) 13.73 0.2 % 
Beam elements, Euler-Bernoulli 
(FEM) 13.39 2.4 % 

Hand calculation, Euler-Bernoulli 13.39 2.4 % 
Hand calculation, Timoshenko 13.54 1.3 % 

 
From the I-beam study, it is concluded that it is the shear deformations which give 
rise to the observed difference in deflection according to Table 4.3. Therefore, instead 
of deflection, normal stresses in the main girders are used to verify the model. The 
results are presented in Table 4.5. Here, the difference is quite small, and therefore it 
is verified that the model behaves correctly. 

Table 4.5 Maximum normal stress in main girder for I-beam and full bridge 
section. 

 Hand 
calculations FE model Difference 

Bridge section 185.96 MPa 182.22 MPa 2.0 % 
I-beam (Shell elements) 22.49 MPa 22.20 MPa 1.3 % 

 

4.4 Equivalent 2D orthotropic plate 
The equivalent plate is created using “General shell stiffness” in Brigade Plus. This 
option allows the user to define shell elements stiffness directly, instead of defining 
engineering material constants and a shell thickness. 

The rigidity for the plate used in the case study, including the longitudinal stiffeners, 
is calculated according to Section 3.2.2, see Appendix B4 for calculations. The input 
rigidity matrix becomes: 

𝑫 =

⎣
⎢
⎢
⎢
⎢
⎡3.692 ∙ 109 1.108 ∙ 109 0 0 0 0

 4.602 ∙ 109 0 0 0 0
  1.292 ∙ 109 0 0 0
   7.317 ∙ 104 2.151 ∙ 104 0
 𝑆𝑆𝑆   1.945 ∙ 107 0
     2.275 ∙ 106⎦

⎥
⎥
⎥
⎥
⎤

 

The input for shear used is: 

𝑫𝒔𝒔𝒔𝒔𝒔 = �7.706 ∙ 105 0
0 2.351 ∙ 108

� 

Brigade Plus does not use units, but here the unit for the membrane rigidity (top left 
part of D) and the shear rigidity is 𝑃𝑃 ∙ 𝑚2 𝑚⁄ , and the units for the flexural rigidity 
(bottom right part of D) is 𝑃𝑃 ∙ 𝑚4 𝑚⁄ . 
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4.4.1 Verification of the equivalent plate 
To verify the equivalent plate, tests are conducted. The deck plate from the detailed 
shell model with its longitudinal stiffeners is compared with the equivalent plate using 
lamina, see Section 3.2.1 and the equivalent 2D orthotropic plate introduced in 
Section 3.2.2, both with the calculated values for the shear rigidity and with the 
default values from Brigade Plus, see equation 3.6. 

To test the axial rigidity the plates are subjected to a line load first on the short side to 
test the longitudinal rigidity and then on the long side to test the transverse rigidity, 
see Figure 4.14.  

 
Figure 4.14  Models used to test the axial rigidity of the plates. 

The in plane deflections can be seen in Table 4.6. 

Table 4.6 In plane deflection for the four different plates. 

 Longitudinal deflection,  
load on short side 

Transverse deflection,  
load on long side 

Detailed deck plate 0.064 mm 0.016 mm 
Equivalent plate 0.065 mm 0.016 mm 
Equivalent plate, default shear 
rigidity 0.065 mm 0.016 mm 

Equivalent plate using lamina 0.014 mm 0.733 mm 

As was discussed in Section 3.2.1 it is clear that the equivalent plate using lamina 
does not preserve its membrane rigidity, and the plate is thus not studied further. 

To test the bending rigidities in the two directions, the plates are subjected to a 
uniform load and supported on the short and long sides respectively. The plate is 
tested both simply supported and fully fixed, see Figure 4.15. 

 
Figure 4.15 Boundary conditions used to test the bending rigidity of the plates. 
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The maximum deflection for the different cases is compared, see Table 4.7. 

Table 4.7 Out of plane deflection for the three remaining plates. 

 
Supported on short side Supported on long side 

Fully fixed Simply 
supported Fully fixed Simply supported 

Detailed deck plate 1.087 m 5.437 m 0.423 m 2.110 m 
Equivalent plate 1.091 m 5.440 m 0.521 m 2.372 m 
Equivalent plate, 
default shear rigidity 1.087 m 5.433 m 0.462 m 2.311 m 

In the longitudinal direction (plate supported on the short side) the deflections are 
very similar. This is expected since in this direction the calculation for the rigidities is 
a straight forward cross section analysis. However, in the transverse direction 
(supported on the long side) the deflections differ a bit. In this direction the 
calculation for the rigidities involves separate beam analysis, which means that the 
margin of error is larger. 

To examine how the equivalent plates distribute the load in comparison with the plate 
with longitudinal stiffeners, a point load is placed on the plates and the reaction forces 
are extracted at the supported edge. Because of the longitudinal stiffeners in the 
detailed plate, the stiffness of this plate varies locally, which means that the reaction 
forces vary locally. This makes the reaction forces hard to compare with the 
equivalent plates, which have homogenous stiffness, see Figure 4.16. 

 
Figure 4.16 Reaction forces on the short side for the detailed plate and an 

equivalent plate. 

To be able to see a global behaviour, the extracted reaction forces are summed over 
the lengths of the long and short supports respectively and then compared, see Figure 
4.17 and Figure 4.18. This will show how the plates distribute the load transversally. 
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Figure 4.17 Summed reaction forces along short side. 
 

 
Figure 4.18 Summed reaction forces along long side 

The tests show that the 2D orthotropic plate shows behaviour very similar to that of 
the detailed deck plate, and is a reasonable model to test on the full bridge. 

From the tests it is difficult to determine which of the two ways to calculate the shear 
rigidity is the most appropriate. However, because the load distribution behaviour of 
the model with hand calculated shear rigidity is slightly closer to the detailed deck 
plate, this first option is chosen for the case study. 



 
 
 

CHALMERS Civil and Environmental Engineering, Master’s Thesis 2015:112 47 

4.4.2 Bridge with equivalent plate 
The bridge with equivalent plate is modelled using shell elements for the main girders 
and the transverse stiffeners, and General shell stiffness for the deck plate, using the 
rigidity data presented in Section 4.4. Since the plate now lacks the longitudinal 
stiffeners, the transverse stiffeners are modelled without cut outs so that it will 
provide continuous support for the plate, as in reality. The height of the transverse 
stiffeners is chosen to the original height minus the height of the longitudinal 
stiffeners (see Figure 2.19). 

The equivalent plate is placed at the centre of gravity of the original bridge deck with 
its longitudinal stiffeners, in order to preserve the neutral axis. This means that the 
main girder will go above the equivalent plate. However, the part of the main girder 
above the equivalent plate is very small, and thus neglected, see Figure 4.19. 

 
Figure 4.19 The equivalent plate is place in the centre of gravity of the original 

plate, and the outstanding part of the main girder is neglected. 

Because the equivalent bridge model is much less detailed a coarser mesh is chosen. 
A convergence study, according to the same procedure as in Section 4.3.1 is 
performed, see Figure 4.20, which shows that approximately 35 000 elements are 
sufficient. This gives a global mesh size of 100 mm, which is used for the whole 
bridge. 

 
Figure 4.20 Convergence study of bridge with equivalent plate. Numbers next to a 

dot in the graph represent number of elements. 
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4.5 Reduced Cross Section 
Normally, design of members in cross section class 4 with FEM, is based on the 
moment distribution with the unreduced cross section. This moment distribution is 
then used to calculate the state of stress, which in turn is used to reduce the 
compressed parts of the cross section, in accordance with the effective width method 
(described in Section 2.4.2). The same moment distribution is used to verify that the 
reduced cross section withstands the loads. This procedure demands both FE-
modelling and hand calculations. If the cross section could be reduced in the FE-
model directly, the extra hand calculations would not be necessary. 

The reduced section should be able to transfer shear but the normal stress capacity 
should be zero in the reduced area. In the FE-model this is achieved by changing the 
material data for the reduced area. To be able to have different properties in different 
direction lamina material properties is used, see Table 4.8. Young’s modulus in the 
longitudinal direction should be close to zero (equal to zero is not allowed in Brigade 
Plus) to avoid normal stress distribution into the reduced part. Poisson’s ratio is equal 
to zero because otherwise the expansion in perpendicular direction will be infinitely 
large due to the low stiffness. Since the desire is not to change the material in any 
other way than to reduce it due to buckling, it is assumed that the shear modulus of 
the reduced parts remains at the original value. 

Table 4.8 Material properties for reduced members. 

Ex Ey υ Gxy Gxz Gyz 
210 GPa 1 Pa 0 81 GPa 81 GPa 81 GPa 

The material directions used in Table 4.8 are explained by Figure 4.21. The y-axis is 
located along the length of the bridge while the x-axis is along the width. 

 
Figure 4.21 Material orientation for bridge deck. 
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4.5.1 Reduced I-beam 
To verify the reducing method a simple I-beam is studied which has geometry 
according to Figure 4.22 with the web in cross section class four. The section is 
reduced according to Eurocode’s effective width method, see Appendix C for detailed 
calculations. The reduced cross section is presented in Figure 4.22. 

 
Figure 4.22 I-beam before reduction and after reduction. Dimensions given in mm. 

To verify this method both normal stress distributions before and after reduction is 
compared with each other as well as with hand calculations. Figure 4.23 and Figure 
4.24 shows how the normal stress distribution is affected by the reduction made in the 
FE-model. It is clear that the reduced part does not take any load in the longitudinal 
direction since the normal stress here is zero, and the stress distribution in the 
unreduced parts is linear. This behaviour is theoretically correct, and therefore the 
method seems to be promising to try on the full case study. 
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Figure 4.23 Normal stress for unreduced I-beam. 

 

 
Figure 4.24 Normal stress for reduced I-beam. 
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In addition to the theoretically correct behaviour, seen in Figure 4.24, the magnitude 
of the stresses from FE-model, both before and after reduction, correlates well with 
the hand calculated values. A comparison between stresses can be seen in Table 4.9. 

Table 4.9 Comparison of stresses from hand calculation and FE model. 

 Hand 
calculations FE model Difference 

Unreduced Top=Bottom -22.49 MPa -22.26 MPa 1.0 % 

Reduced 
Top -23.63 MPa -23.39 MPa 1.0 % 
Bottom 22.39 MPa 22.10 MPa 1.3 % 

 
A small difference can be seen in Table 4.9, which could be explained by the slight 
deviation at the edges, which can be seen in Figure 4.23 and Figure 4.24. This could 
be explained by the fact that the extracted normal stress for each node is averaged by 
the FE software. 

The shear stress is also compared for the unreduced and reduced I-beam. In theory the 
shear stress distribution should be the same for the two I-beams. However, Figure 
4.25 shows that the shear stress distribution changes when adding the reduced part to 
the I-beam. 

 
Figure 4.25 Shear stress comparison between unreduced and reduced I-beam. 
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It can be observed that the shear stress does not increase over the reduced part, which 
is an unwanted effect. However, the shear stress distribution is still similar compared 
to the unreduced I-beam, even though the behaviour has a small difference. 

4.5.2 Redistribution of moment 
As mentioned before, the design of a member in cross section class 4 is made based 
on the moment distribution acquired with unreduced cross sections. For more accurate 
calculations the change of moment distribution due to the reduction of cross sections 
is investigated, and a second reduction is made based on the new moment distribution. 
The cross section chosen for this study differs from the case study, since high 
slenderness, and thus large reduction, is sought for. The cross section for the study is 
illustrated in Figure 4.26 together with the reduced sections. The cross section in the 
middle is used in the spans and the right one over the supports. 

 
Figure 4.26 Cross section for rib in stress redistribution study (CS for Cross 

Section). 

The rib is continuous with three spans of 3 meters, which is illustrated in Figure 4.27. 
The figure also shows in which regions the reduced sections are used in the second 
analysis. 

 
Figure 4.27 Calculation model for rib on four supports. 

Figure 4.28 shows the two cases of moment distributions for unreduced and reduced 
cross sections. The difference between them is not distinguishable in the diagram. 
Therefore, Figure 4.29 is used to quantify the difference between them along the span. 
It is clear that the difference is very small and that it is reasonable to use the 
unreduced moment distribution for analysis. 
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Figure 4.28 Moment distribution before and after that the section has been 

reduced. 

 

 
Figure 4.29 Difference in moment distribution between unreduced and reduced 

cross section. 

 

4.5.3 Reduced bridge section 
The procedure with reducing the cross section of the bridge within the FE-model is 
illustrated in Figure 4.30. First, the bridge is modelled with a gross cross section. A 
linear finite element analysis gives bending moments and normal forces. These 
sectional forces are used to calculate an effective area according to Eurocode which is 
inserted back into the FE-model and a new analysis is made. This will result in a 
model where stresses can be extracted directly. 
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Figure 4.30 The procedure for reducing the cross section in the FE-model, which 

results in a possibility to read stresses directly from the FE model. 

All structural members in cross section class 4 are reduced in accordance with 
Eurocode, see Appendix B3.3. The sections in the FE-model are reduced with the 
approach used in Section 4.5.1. The reduction is made with the assumption that all 
compressed parts are uniformly compressed to avoid extensive calculations and 
different reduction for each section. Figure 4.31 illustrates the partitioning of the 
stiffeners in the FE-model. 

 
Figure 4.31 Partitions created in the longitudinal stiffeners. 

Depending on load case, parts will vary between being in compression and in tension. 
Since the number of load cases for a bridge is vast it will not be possible to reduce the 
FE-model for each load case. Therefore, it is simplified to a case where all parts in 
cross section class 4, which for any load case is in compression, are reduced. This is 
an assumption on the safe side. 
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The mesh used for the reduced bridge section is the same as used in the unreduced 
detailed shell model, since the geometry is the same, see Section 4.3.1. 

It should be noted that, unlike the I-beam example, the deck experience biaxial 
stresses from bending in both directions and that the reduced web is also loaded in 
bending out of plane. The effect of this is not examined in this thesis. 
 

4.6 Hand calculations 
Having extracted the bending moment, M, and the normal force, N, from the 
unreduced FE-models, the normal stresses in the longitudinal stiffeners are calculated, 
using Navier’s formula: 

𝜎 = 𝑀
𝐼
∙ 𝑧 + 𝑁

𝐴
         (4.1) 

Since the sectional forces are extracted for a longitudinal stiffener with associated 
deck plate, the neutral axis is situated at the local centre of gravity of the stiffeners. 
This means that, z, is the distance from the neutral axis to the point of interest for 
stress calculation within the stiffener, see Figure 4.32. The second moment of area, I, 
and the cross section area, A, are also for the stiffener locally. The global normal 
stress is calculated for the top and bottom of the longitudinal stiffener by using 
sectional forces extracted from the unreduced FE models of the detailed shell model, 
and the equivalent plate. 

For some load cases, the normal stresses in the longitudinal stiffeners are also 
calculated without the use of the FE-models. To receive the global normal stress the 
bending moment is calculated along the bridge, and the stress is calculated according 
to Navier’s formula, see equation 4.1. This time, the second moment of area is for the 
full bridge cross section. The distance to the neutral axis is now the distance from the 
top and bottom of the longitudinal stiffener to the centre of gravity for the whole 
bridge. This is done in order to verify the results from the FE models. 

As discussed in Section 2.2.3, the transverse stiffeners can be represented either as 
rigid supports or as spring supports, in hand calculations. Thus, the local bending 
moments are calculated by modelling one longitudinal stiffener in both ways, and 
then the normal stress is calculated using Navier’s formula. The stiffness of the 
springs is calculated according to the method described in Section 2.3.2. The total 
normal stress for the longitudinal stiffener is finally calculated by adding the global 
effects to the local effects, see Figure 4.32. 
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Figure 4.32 Stress calculation from local and global effects. 
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5 Results 
For designing longitudinal stiffeners, sectional forces needs to be extracted from the 
unreduced FE model. Section 5.1 presents a comparison between the sectional forces 
that are received, both from the detailed shell model and the equivalent plate model. 

Section 5.2 presents normal stresses for a reduced cross section of the longitudinal 
stiffeners. The normal stresses are extracted in two different ways. For the unreduced 
detailed shell model the extracted sectional forces are used in hand calculations on a 
reduced cross section to obtain the normal stresses. In the reduced detailed shell 
model, where the cross section has been reduced within the model, the normal stresses 
are extracted directly from the model. 

The comparisons made in Section 5.1 and Section 5.2 are illustrated in Figure 5.1 
below. 

 
Figure 5.1 Flow chart for comparisons made in Chapter 5. 

The stresses and sectional forces are, for load case 1-5, extracted for the loaded rib 
closest to the middle of the main girders. For load case 6-7, the stresses and sectional 
forces are extracted for the loaded rib closest to the main girder. The wheel loads 
presented in Section 4.2.2 are presented again in Figure 5.2. 

 
Figure 5.2  Load cases presented in Section 4.2.2. 
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5.1 Equivalent plate approach 
For the equivalent plate model, nodal sectional forces are extracted and integrated 
over the width of a longitudinal stiffener to obtain the sectional forces that act over a 
fictive stiffener, see Figure 5.3. 

 
Figure 5.3 Schematic figure of how the sectional forces are extracted using Free 

Body Cut for the detailed shell model (top), and using nodal forces and 
integration for the equivalent plate (bottom). 
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5.1.1 Results for equivalent plate approach 
Bending moment 
The bending moments, obtained by integration of nodal moments, for the six load 
cases with wheel loads are presented in Figure 5.4. The wheel loads are the most 
interesting to study in terms of local effects on the rib. 

 
Figure 5.4  Moment distributions for load cases with wheel load. Solid line 

represents the detailed shell model, and dashed line represents the 
equivalent plate model. 

The resulting maximum moments are presented in Table 5.1. The difference between 
the two approaches varies depending on the load position. The maximum moment for 
the first five load cases differ between 3-11 %. However, for load case 6 and 7, where 
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the wheel load is applied over the rib closest to the main girder, the difference 
becomes larger. This higher difference might be because the rib at the main girder 
distorts and twists a lot more, giving rise to a different behaviour, whereas the rib in 
the middle mostly deflects vertically. 

Table 5.1 Maximum moments. Moments are given in kNm. The calculated 
difference is how much the equivalent plate model differs from the 
detailed shell model. 

Load 
case 

Detailed shell model   Equivalent plate model Difference 
Mmax Mmax Mmax 

1 13.6 14.2 +4.3 % 
2 113.4 105.7 -7.3 % 
3 11.1 12.4 +10.6 % 
4 74.8 70.7 -5.8 % 
5 11.9 11.6 -3.3 % 
6 12.3 9.5 -29.1 % 
7 79.9 90.3 +11.4 % 
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Normal force 
The normal force distribution for the six load cases with wheel loads are presented in 
Figure 5.5. 

 
Figure 5.5  Normal force distributions for load cases with wheel load. Solid line 

represents the detailed shell model, and dashed line represents the 
equivalent plate model. 

The resulting highest compressive normal forces are presented in Table 5.2. The 
normal forces correlate well for load cases where the load is applied on the cross 
beams, and there are less local effects from the rib. When load is applied in a span the 
normal force in the detailed shell model is much higher than for the equivalent plate 
model. These deviations will be evaluated in Section 5.1.2. 
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Table 5.2 Highest compressive normal forces. Normal forces are given in kN. 
The calculated difference is how much the equivalent plate model 
differs from the detailed shell model. 

Load 
case 

Detailed shell model  Equivalent plate model Difference 
Nmin Nmin Nmin 

1 -271.7 -280.6 -3.2 % 
2 -355.5 -282.2 +26.0 % 
3 -274.0 -283.2 +3.2 % 
4 -308.1 -285.1 +8.1 % 
5 -602.7 -604.3 -0.3 % 
6 -354.9 -353.9 +0.3 % 
7 -407.3 -335.8 +21.3 % 
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Shear force 
The shear force distribution for the six load cases with wheel loads are presented in 
Figure 5.6. 

 
Figure 5.6  Shear force distributions for load cases with wheel load. Solid line 

represents the detailed shell model, and dashed line represents the 
equivalent plate model. 

The general behaviour of the shear force correlates well between the equivalent plate 
and the detailed shell model for all load cases, which can be seen in Figure 5.6. 
However in Table 5.3, it can be seen that the difference between the maximum values 
varies from load case to load case. 
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Table 5.3 Maximum absolute values of shear force. Shear forces are given in kN. 
The calculated difference is how much the equivalent plate model 
differs from the detailed shell model. 

Load 
case 

Detailed shell model  Equivalent plate model Difference 
Vmax Vmax Vmax 

1 140.1 125.4 -11.7 % 
2 143.1 139.5 -2.6 % 
3 68.4 39.9 -71.4 % 
4 77.3 73.9 -4.6 % 
5 13.3 11.0 -20.9 % 
6 139.4 137.6 -1.3 % 
7 131.0 139.8 +6.3 % 

The correlation is not so good for load case 1 and 3 were the load is applied over a 
cross beam and also for load case 5 which is a uniform load. To examine the 
difference in the shear force, the three load cases with the wheel load placed at the 
cross beam are zoomed in, see Figure 5.7. 

 
Figure 5.7 Zoomed in shear distribution curves for load cases with wheel load at 

cross beam. Solid line represents the detailed shell model, and dashed 
line represents the equivalent plate model. 

It should be noted that at loads and reaction forces there should be two values for the 
shear force, since the shear force will shift the same amount as the load or reaction 
force. This is not the case for the detailed shell model, since the shear force is 
extracted using Free Body Cut, which only gives one value for each cut. This means 
that the shifts in the shear force for the detailed shell model are spread out over a few 
elements. In Figure 5.7 this can be seen in the mismatch of the top values between the 
two methods. 

The reasons for the deviation in shear force, seen in Figure 5.6, can be either that 
some local effects are missing in the equivalent model, since the stiffness is smeared 
out, or that the shear rigidity is wrong. The shear factor, which is used to calculate 
shear rigidity, is a shape factor that is not straight forward to calculate and different 
scientists have published different approaches (Cowper, 1966). However, since the 
other values correlate well it might not be this factor that causes the error. 
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Moment, normal force and shear distributions for all load cases are presented in a 
larger scale in Appendix A. 

 

5.1.2 Evaluation of equivalent plate approach 
The results in Section 5.1.1 show an expected behaviour for the bending moment and 
the shear force for all load cases. Both methods give the same behaviour, and most 
maximum values correlate well, however for the normal force a greater deviation is 
observed. 

The normal force for the rib comes from global bending of the bridge, thus the 
theoretical behaviour is a parabolic shape which follows the bending moment 
distribution of the main girders. Figure 5.8 shows a closer view of the normal force 
distribution for load case 1, for the detailed shell model, the equivalent plate model 
and hand calculation, which are based on global bending moment. 

 
Figure 5.8 Normal force distribution for load case 1. 

It can be seen in Figure 5.8 that the extracted normal force from the two FE models 
(detailed shell model and equivalent plate model), deviate in behaviour from the 
theoretical behaviour represented by the hand calculations. 

It can be observed that the deviations in behaviour occur at the cross beams. This is 
due to two effects. The first one is the rotation of the cross beams. The cross beams 
can be seen as fixed at the main girders, and will, because of the global deflection of 
the plate, rotate rather than just deflect vertically, see Figure 5.9. 
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Figure 5.9 The cross beams are seen as fixed at the main girders, and will thus 

rotate around its axis, causing extra normal force. The figure on the 
top shows a case where load is applied between two cross beams and 
the bottom figure shows a case where load is applied to the cross beam 
in the middle of the bridge. 

This effect causes extra normal force in the plate, since the centre of gravity of the 
cross beams is not placed at the centre of gravity of the plate. If this would have been 
the case, the rotation would not cause the cross beams to compress the plate, see 
Figure 5.10. 

 
Figure 5.10 The rotation of the cross beam, which gives rise to extra normal force. 

The figure on the left shows a case where the centre of gravity of the 
plate and of the cross beam coincide, and no extra normal force is 
created. In the figure on the right the centres of gravity do not 
coincide, and an extra normal force is created. 
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The second effect causing local variation of the normal force, is the in plane 
deflection of the cross beams. This causes the plate to deflect transversally, which can 
be seen in Figure 5.11. 

 
Figure 5.11 The deck plate, with cross beams seen from above. The cross beams 

deflect, which causes a transversal contraction of the plate, causing 
extra normal force in the plate. 

The transversal deflection causes stresses in the transverse direction. Due to the effect 
of lateral contraction, the transversal stresses cause stresses in the longitudinal 
direction. This effect causes tension in the plate over the cross beams, which in turn 
causes the reduction of the compressive normal force. 

The effects described above, explain the behaviour of the normal force, when the load 
is placed at a cross beam. However, when the load is applied between two cross 
beams a greater deviation of the behaviour between the detailed shell mode and the 
equivalent plate model can be observed. Load case 2, which shows the greatest 
deviation, is shown again in Figure 5.12, together with a hand calculated normal force 
distribution.  
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Figure 5.12 Normal force distribution for load case 2. 

It is observed that the normal force for the equivalent plate has a maximum value 
close to the hand calculated value, and that the effect of the deflection of the cross 
beams, described above, can be seen at the two cross beams closest to the applied 
wheel load. The behaviour of the detailed shell model, however, cannot be explained 
by this effect, and an explanation for the great decrease of the normal force at the 
wheel load has not been found. 

It is observed that the calculated normal stresses, seen in Figure 5.13 (top flange of 
the rib) and Figure 5.14 (bottom flange of the rib), correlate fairly well. In these two 
figures, the normal stress has been calculated by extracting sectional forces and then 
calculating the stresses using Navier’s formula for the detailed shell model and the 
equivalent plate. The hand calculations are performed by calculating the bending 
moment from a beam model, supported on springs, and the normal force from global 
bending of the bridge, according to the method described in Section 4.6. 
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Figure 5.13  Normal stress distribution in the top plate of the loaded rib for load 

case 2. 

 
Figure 5.14  Normal stress distribution in the bottom plate of the loaded rib for load 

case 2. 
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The difference between the two models probably comes from the erratic behaviour of 
the normal force from the detailed shell model. Hand calculated normal stresses are 
also added to compare with these two approaches. It can be observed that the hand 
calculated stress is higher than both the detailed shell model and the equivalent plate 
model. This is expected since hand calculations do not take any transverse load 
distribution into account. In the hand calculations the loaded rib is seen as an isolated 
beam which takes the whole wheel load. It can be observed that the equivalent plate is 
much closer to the detailed shell model than the simplified hand calculations. 

The approach to simplify the deck plate to an equivalent plate seems to have potential. 
Even though the amplitudes vary between the models depending on load position, the 
overall structural behaviour of the equivalent plate follows the behaviour of the 
detailed shell model.  

 

5.2 Reduced cross section 
In this section, the reduced section will be analysed using two different approaches. In 
the first approach, sectional forces have been extracted from the detailed shell model 
by the Brigade Plus tool Free Body Cut. Free Body Cut provides sectional forces 
which are used to calculate stresses for a reduced cross section of a rib. This approach 
means that the normal stresses will be uniform over the width of the rib, thus the 
transversal variation of the normal stresses is lost. This is an approach used in design, 
which is why these normal stresses are compared with normal stresses extracted 
directly from a model with reduced cross section, i.e. the second approach. In the 
second approach, the cross section has been reduced within the FE model, with the 
assumption of uniform compression. A linear finite element analysis in then executed 
with the reduced cross section and maximum stresses are extracted for the top and 
bottom of the rib, directly from the model. 

  



 
 
 

CHALMERS Civil and Environmental Engineering, Master’s Thesis 2015:112 71 

5.2.1 Results for reduced cross section 
Normal stress in top flange of the loaded rib 
For the load cases with a wheel load, the normal stress distributions in the top of the 
loaded rib are presented in Figure 5.15. The calculated normal stresses in the top of 
the rib from sectional forces extracted from the detailed shell model, using Free Body 
Cut, are compared with the stresses extracted directly from the reduced cross section 
model. 

 
Figure 5.15 Normal stress distributions in the top of the rib for load cases with 

wheel load. Solid line represents the calculated stress from sectional 
forces extracted from the unreduced detailed shell model, and dashed 
line represents stresses extracted directly from the reduced detailed 
shell model. 

Table 5.4 presents the greatest normal stresses for both approaches. For all load cases 
the stresses extracted from the reduced detailed shell model corresponds well with the 
calculated values from the unreduced model, which can be seen in Table 5.4. 
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Table 5.4 Highest compressive normal stresses in the top plate of the loaded rib. 
The calculated difference is how much the reduced detailed shell model 
differs from the unreduced detailed shell model. 

[MPa] 
Unreduced 
detailed shell 
model 

Reduced detailed 
shell model Difference 

Load case Top (Min) Top (Min)  
1 -30.4 -29.2 +3.9% 
2 -68.4 -66.5 +2.8% 
3 -29.6 -28.4 +4.1% 
4 -59.2 -56.8 +4.1% 
5 -59.3 -57.5 +3.0% 
6 -42.4 -40.0 +5.7% 
7 -65.2 -61.1 +6.3% 
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Normal stress in bottom flange of the loaded rib 
The normal stresses in the bottom of the loaded rib for both approaches are presented 
in Figure 5.16. 

 
Figure 5.16 Normal stress distributions in the bottom of the rib for load cases with 

wheel load. Solid line represents the calculated stress from sectional 
forces extracted from the unreduced detailed shell model, and dashed 
line represents stresses extracted directly from the reduced detailed 
shell model. 

Table 5.5 presents the highest compressive and tensile normal stresses in the bottom 
flange of a rib. The correlation between the two approaches for the top of the rib is 
much better than the correlation in the bottom of the rib, where the reduction is. The 
behaviour and the extreme values are in many cases comparable. 
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Table 5.5 Highest compressive and tensile normal stresses in the bottom plate of 
the loaded rib. The calculated difference is how much the reduced 
detailed shell model differs from the unreduced detailed shell model. 

[MPa] Unreduced detailed 
shell model 

Reduced detailed shell 
model Difference 

Load 
case 

Bottom 
(Max) 

Bottom 
(Min) 

Bottom 
(Max) 

Bottom 
(Min) Max Min 

1 40.6 -29.6 26.3 -29.9 -35.2% +1.0% 
2 523.2 -239.1 481.0 -231.9 -8.1% -3.0% 
3 28.8 -27.2 20.8 -28.0 -27.8% +2.9% 
4 331.0 -157.1 410.6 -194.9 +24.0% +24.1% 
5 23.1 -33.2 20.8 -44.6 -10.0% +34.3% 
6 21.9 -27.4 11.4 -28.3 -47.9% +3.3% 
7 353.8 -159.7 313.4 -151.7 -11.4% -5.0% 

The normal stresses can be seen in a larger scale in Appendix A. 

 

5.2.2 Evaluation of reduced cross section 
It can be seen from Figure 5.15 and Figure 5.16 that the stresses in the top of the rib 
correspond very well, but differ in the bottom. In the top of the cross section the rib 
has not been reduced, which might explain that the approaches correspond well there. 

To investigate the deviation, the extraction of the normal stresses from the reduced 
detailed shell model is examined. The normal stresses extracted, are taken along a 
path in the middle of the top plate of the stiffener, and in the middle of the unreduced 
part of the bottom flange of the stiffener, see Figure 5.17. 

 
Figure 5.17 Stress extraction points for reduced cross section. 

The normal stresses should vary transversally across the longitudinal stiffener, mainly 
because of the effects of shear lag, see Section 2.4.1.1. Figure 5.18 and Figure 5.19 
show how the normal stress varies across the width of the top of the rib, for load cases 
1 and 2 respectively. In these figures the longitudinal normal stress is plotted over the 
width of the rib at the section under the wheel load. 
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Figure 5.18 Normal stress variation across the width of the top plate of the loaded 

rib for load case 1, from the reduced model. Values extracted at the 
centre of the wheel load. 

 
Figure 5.19 Normal stress variation across the width of the top plate of the loaded 

rib for load case 2, from the reduced model. Values extracted at the 
centre of the wheel load. 

The behaviour seen above is an expected shear lag behaviour. In Figure 5.18 the 
normal stresses decrease at the webs of the rib. The compression comes from global 
effects, but locally over the cross beam, which acts as a support, the top plate is in 
tension. This means that a decrease in compression represents an increase in tension, 
which explains the behaviour. 

As seen in Figure 5.17 the stresses for the top plate are extracted from a path in the 
middle of the cross section. In Figure 5.18 and Figure 5.19 it can be seen that 
extracting these values means that the extracted value is close to an average value 
over the width of the rib. Free Body Cut calculates the resultant forces and moments 
over the whole cross section, which means that the stresses calculated from these 
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sectional forces will represent a case where the stress is uniform across the rib. This 
means that the value from Free Body Cut also should represent an average value over 
the rib. This explains why the normal stresses in the top of the cross section are very 
similar. 

In the bottom of the cross section the stresses cannot be extracted in the middle of the 
cross section, because of the reduction, and is therefore extracted along a path near the 
edge of the bottom flange (see Figure 5.17). To examine the difference in the normal 
stresses in the bottom of the cross section, the transversal variation of the normal 
stresses for the bottom of the rib are plotted in Figure 5.20, Figure 5.21, Figure 5.22 
and Figure 5.23. 

As can be seen in Figure 5.16 the stresses for load case 2 correspond well even for the 
bottom flange of the cross section, and Figure 5.20 shows that the transversal normal 
stress variation is very small, which again means that the extracted value is 
reasonable. 

 
Figure 5.20 Normal stress distribution across the width of the bottom flange of a 

rib for a reduced cross section, load case 2, from the reduced model. 
Values extracted at the centre of the wheel load. 

In Figure 5.16 it was observed that, for load case 4, normal stresses extracted directly 
from the reduced detailed shell model were larger than the ones calculated from Free 
Body Cut. In Figure 5.21 below, it can be seen that the transverse distribution of the 
normal stresses vary greatly. Load case 4 represents a case where the load is placed 
eccentrically over the rib, which explains this behaviour. The stresses have been 
extracted along a path to the right of the reduced part. This explains the over 
estimation of the stresses seen for load case 4. 
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Figure 5.21 Normal stress distribution across the width of the bottom flange of a 

rib for a reduced cross section, load case 4, from the reduced model. 
Values extracted at the centre of the wheel load. 

It can be observed that the normal stress for load cases where the wheel load is placed 
at a cross beam varies more between the calculated normal stress and the directly 
extracted normal stress in the bottom flange of the rib. To examine this, the 
transversal distribution of the normal stress is plotted for load case 3 and 6, see Figure 
5.22 and Figure 5.23. 

 
Figure 5.22 Normal stress distribution across the width of the bottom flange of a 

rib for a reduced cross section, load case 3, from the reduced model. 
Values extracted at the centre of the wheel load. 
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Figure 5.23 Normal stress distribution across the width of the bottom flange of a 

rib for a reduced cross section, load case 6, from the reduced model. 
Values extracted at the centre of the wheel load. 

As was observed for load case 4, it can again be seen that the transversal distribution 
of the normal stress varies, and that the normal stresses extracted to the right of the 
reduced part, might not be representative, which explains the difference in the normal 
stress distribution observed in Figure 5.16. 

To examine whether the reduced rib has a similar behaviour as the unreduced rib, 
deformation figures for reduced and unreduced ribs are compared. Figure 5.24 shows 
the deformed rib for load case 2, under the wheel load, and Figure 5.25 shows the 
deformed rib for load case 4, under the wheel load. 

 
Figure 5.24 Deformed rib for load case 2, under the wheel load (magnified 50 

times). Figure on the left shows the unreduced cross section and figure 
on the right shows the reduced cross section. 
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Figure 5.25 Deformed rib for load case 4, under the wheel load (magnified 30 

times). Figure on the left shows the unreduced cross section and figure 
on the right shows the reduced cross section. 

Figure 5.24 and Figure 5.25 implies that the behaviour of the rib is the same for both 
the reduced and unreduced case, although the reduced rib deforms slightly more than 
the unreduced. This means that the reduction of the cross section does not greatly 
affect the distortion of the cross section, which is a desirable property. 
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6 Discussion 
Equivalent plate 
The calculations of different stiffness used for General Shell Stiffness is executed 
according to one specific method and some smaller simplifications have been made. 
There is room for refinement which might affect the result and bring the two 
approaches closer. The representation of other structural elements such as cross beams 
has in this case study been simplified. Further studies on how this affects the results 
might lead to improved correlation between amplitudes. 

For the case study used in this thesis it was observed that the shear rigidity calculated 
by Brigade Plus gave results which in some cases were slightly better, and in other 
cases slightly worse than the hand calculated shear rigidity. It might therefore not be 
necessary to hand calculate the shear rigidity, but instead use the default values in 
Brigade Plus. However, it should be noted that only one specific geometry was 
investigated, and that for other geometries the shear rigidity might matter more. 

It was surprising that the normal force behaviour, which often is easy to capture, was 
the most deviating behaviour. The normal force comes from global bending of the 
bridge, which should result in a parabolic shape of the normal force distribution. The 
small local effects at cross beams can be explained, but the great deviation in the span 
between two cross beams for the detailed shell model cannot. It is possible that Free 
Body Cut, which is used to extract the sectional forces for the detailed model, has 
misinterpreted the state of stress, or that this is a local effect which is not captured by 
the equivalent plate method. 

Reduced Plate 
The intention of reducing the detailed shell model within the FE model was to enable 
the possibility to extract stresses directly from the reduced FE model and be able to 
compare it to the yield stress to decide the utilization. However, as mentioned in 
Section 5.2.2, it has been shown that comparing hand calculated stresses with stresses 
extracted directly from the FE models might be problematic, because of transverse 
stress deviations. 

In order to draw definite conclusions on the modelling of slender parts it is necessary 
to investigate the effects of the reduction further. It was shown that the desired 
behaviour for the longitudinal normal stress was found when examining an I-beam. 
However, other effects of the reduction were in this thesis not thoroughly investigated 
before the method was employed in the full bridge model, which means that the 
deviation in stress observed is difficult to interpret. It should be noted that other 
effects, such as the biaxial state of stress should be investigated on a smaller scale to 
verify the method, before using it on a full scale bridge. 

Extracting stresses and sectional forces 
When extracting stresses and sectional forces from the FE model it is very important 
to consider the material direction, and to be aware of the different element direction in 
the different parts. In the case study, the top plate and the transversal stiffeners have 
element directions perpendicular to each other. This means that when extracting 
stresses or sectional forces along a path, two values will be given at the intersection 
between the two parts, one which is the desired value and one which is a value for the 
transversal stiffener in the perpendicular direction. This problem is especially present 
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when extracting shear forces, since in some cases as many as five values were given 
in an intersection between the plate and a transverse stiffener. This means that some 
post-processing work is needed to analyse which values need to be excluded. This 
problem could be avoided if it would be possible to choose element directions so that 
they correlate with each other in all structural elements in the bridge. 

It is important to note that when extracting stresses form shell elements in FE 
software, the stresses are extracted from either the integration point at the top of the 
shell, or the one at the bottom of the shell. This will include unwanted local effects of 
bending stresses. In order to obtain the membrane stress, an average value of the 
stress at the bottom of the shell and the stress at the top of the shell needs to be 
calculated. 

Free Body Cut 
Using the Free Body But option in Brigade Plus entails some difficulties. To be able 
to extract values along the bridge, a section is chosen, and a direction in which the 
cuts are taken is also chosen. It is vital that the mesh in this direction is even, because 
otherwise the path might deviate from the desired path. In the case study this meant 
that a very fine mesh had to be used, which prolonged the running time considerably. 
The Free Body Cuts themselves also significantly increased the running time of the 
analysis, so to be able to use this method in practice, it is important to use fairly large 
intervals between the cuts, but small enough intervals to capture the behaviour. 
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7 Conclusions 
Equivalent plate 
It has been shown that the equivalent plate using lamina material is not a good 
method. The flexural rigidity of the equivalent plate is kept constant, but the 
membrane rigidity is changed so the overall behaviour of this plate is not realistic. 

The equivalent 2D orthotropic plate, which uses General shell stiffness, is however a 
promising model to use in design. It has been seen that the behaviour of this plate 
follows the behaviour of the detailed shell model reasonably well. It is also a much 
less time consuming method and a much coarser mesh can be used.  

When modelling the OSD bridge using an equivalent plate, the moment distribution, 
the deflection, and the global behaviour are captured well, but some local effects are 
missed. These effects are for instance the shear lag of the ribs, and the decrease in 
normal force when the load is placed between two cross beams. The results are 
however sufficiently close to the detailed shell model that it is reasonable to use this 
method in preliminary design of an OSD bridge, and, with further research, use in 
detailed design. 

Slender Parts 
By using lamina material it is possible to model slender steel parts that need to be 
reduced in the FE software. The normal stress behaviour of an individual part in cross 
section class 4 follows the theoretical normal stress behaviour of a part which has 
been reduced according Eurocode. 

However, no definite conclusions can be drawn about the behaviour of the reduced 
bridge model. The normal stress distribution differs a bit from the calculated normal 
stress, but it is difficult to interpret because of the complexity of a full OSD bridge 
model. 

Even if this method is further investigated and found to give good results, it is still a 
very time consuming task to partition all the cross section class 4 parts in an 
orthotropic steel deck bridge. Moreover, because numerous load cases need to be 
considered in bridge design, the parts to be reduced are not always in compression. 
When the parts are in bending or tension they should be reduced differently, or not at 
all. 

The factors mentioned above mean that this method is not realistic in bridge design, 
but it could be interesting to look at in research or when few parts of the structure will 
be reduced, or if the procedure in the future is included in the software. 

Further studies 
In the case study, seven different load cases were used, each of which contained 
isolated wheel loads or a uniform load, and thus no combinations of traffic loads were 
looked at. This means that the actual design of the OSD bridge was not considered in 
this thesis, but only the specific behaviour of the chosen load cases was studied. In a 
further study the equivalent plate could be looked at from a design point of view, to 
investigate the behaviour when subjected to load cases used in design of bridges. 

When using the equivalent plate the geometry of the plate is changed. This means that 
the main girders and the transversal stiffeners also need to be changed. In a further 
study it could be investigated the best way to model the main girders and the 
transversal stiffeners and also how to model the connection to the plate. 
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The effects of the shear rigidity for the equivalent plate have not been thoroughly 
investigated in this thesis. The effects of the shear factor, which in this thesis has been 
simplified, should be investigated further. 

For the normal force behaviour, some of the local deviations from the hand calculated 
distribution has been explained. However, the great decrease in normal force seen in 
the detailed shell model in the span between cross beams has not been explained. In 
order to find out if this behaviour comes from errors in the extraction of the normal 
force, or from local effects of the detailed shell model, further research is needed. 

One of the most important aspects in bride design is fatigue analysis. A further 
investigation regarding the equivalent plate is to see if it could be used in fatigue 
analysis. One of the main problems to tackle when it comes to fatigue design using an 
equivalent plate is that the rib closest to the main girder often is the deciding rib in 
fatigue analysis, and in the equivalent plate method used in this thesis, this is the rib 
which deviates the most from the detailed shell model. 

The method of reducing slender parts within the FE model seems to have promise. 
However, only a few effects of the reduction were in this thesis examined before the 
method was performed on the full bridge model. In order to verify that this method 
works it is necessary to look at other effects of the method, such as the effect of 
biaxial stress. It is advisable to study these effects further on a smaller scale in order 
to isolate specific effects and draw definite conclusions. 
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Appendix A – Results 
In this Appendix, all the results from the tests and calculations are presented. For each 
load case normal force, bending moment, shear force and normal stresses are 
presented. The stresses and sectional forces are extracted both from the detailed shell 
model, the reduced detailed shell model and the equivalent shape orthotropic plate.   
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A1 Load Case 1 
Load case 1 is a wheel load applied centrically over the mid rib at a cross beam, see 
Figure A.1  

 

Figure A.1 Load case 1. The thick lines parallel to the ribs represent main girders. 

Sectional forces from detailed shell model are extracted using Free Body Cut and for 
the equivalent plate model nodal forces are integrated to receive the sectional forces.  

 

Figure A.2 Moment distribution for load case 1 for the middle rib. 
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Figure A.3 Normal force distribution for load case 1 for the middle rib. 
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Figure A.4 Shear force distribution for load case 1 for the middle rib. 

For the detailed shell model and the equivalent plate model normal stresses are 
received by extracting moments and normal forces which are used to calculate the 
normal stress in the reduced cross section. For the reduced detailed model the cross 
section is reduced within the model. Normal stresses are therefore extracted directly 
from the FE model. 
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Figure A.5 Normal stress distribution for load case 1 at top plate of middle rib 
(reduced cross section). 
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Figure A.6 Normal stress distribution for load case 1 at bottom plate of middle rib 
(reduced cross section). 
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A2 Load Case 2 
Load case 2 is a wheel load applied centrically over the mid rib at the span between 
the mid cross beams, see Figure A.7. 

 

Figure A.7 Load case 2. The thick lines parallel to the ribs represent main girders. 

Sectional forces from detailed shell model are extracted using Free Body Cut and for 
the equivalent plate model nodal forces are integrated to receive the sectional forces.  

 

Figure A.8 Moment distribution for load case 2 for the middle rib. 
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Figure A.9 Normal force distribution for load case 2 for the middle rib. 
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Figure A.10 Shear force distribution for load case 2 for the middle rib. 

For the detailed shell model and the equivalent plate model normal stresses are 
received by extracting moments and normal forces which are used to calculate the 
normal stress in the reduced cross section. For the reduced detailed model the cross 
section is reduced within the model. Normal stresses are therefore extracted directly 
from the FE model. 
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Figure A.11 Normal stress distribution for load case 2 at top plate of middle rib 
(reduced cross section). 
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Figure A.12 Normal stress distribution for load case 2 at bottom plate of middle rib 
(reduced cross section). 
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A3 Load Case 3 
Load case 3 is a wheel load applied eccentrically between two ribs at the mid cross 
beams, see Figure A.13. 

 

Figure A.13 Load case 3. The thick lines parallel to the ribs represent main girders. 

Sectional forces from detailed shell model are extracted using Free Body Cut and for 
the equivalent plate model nodal forces are integrated to receive the sectional forces.  

 

Figure A.14 Moment distribution for load case 3 for the middle rib. 
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Figure A.15 Normal force distribution for load case 3 for the middle rib. 
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Figure A.16 Shear force distribution for load case 3 for the middle rib. 

For the detailed shell model and the equivalent plate model normal stresses are 
received by extracting moments and normal forces which are used to calculate the 
normal stress in the reduced cross section. For the reduced detailed model the cross 
section is reduced within the model. Normal stresses are therefore extracted directly 
from the FE model. 
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Figure A.17 Normal stress distribution for load case 3 at top plate of middle rib 
(reduced cross section). 
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Figure A.18 Normal stress distribution for load case 3 at bottom plate of middle rib 
(reduced cross section). 
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A4 Load Case 4 
Load case 4 is a wheel load applied eccentrically between two ribs at the span 
between the two mid cross beams, see Figure A.19. 

 

Figure A.19 Load case 4. The thick lines parallel to the ribs represent main girders. 

Sectional forces from detailed shell model are extracted using Free Body Cut and for 
the equivalent plate model nodal forces are integrated to receive the sectional forces.  

 

Figure A.20 Moment distribution for load case 4 for the middle rib. 
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Figure A.21 Normal force distribution for load case 4 for the middle rib. 
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Figure A.22 Shear force distribution for load case 4 for the middle rib. 

For the detailed shell model and the equivalent plate model normal stresses are 
received by extracting moments and normal forces which are used to calculate the 
normal stress in the reduced cross section. For the reduced detailed model the cross 
section is reduced within the model. Normal stresses are therefore extracted directly 
from the FE model. 
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Figure A.23 Normal stress distribution for load case 4 at top plate of middle rib 
(reduced cross section). 
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Figure A.24 Normal stress distribution for load case 4 at bottom plate of middle rib 
(reduced cross section). 
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A5 Load Case 5 
Load case 5 is a uniformly distributed load which is applied over the whole deck 
plate. Sectional forces from detailed shell model are extracted using Free Body Cut 
and for the equivalent plate model nodal forces are integrated to receive the sectional 
forces.  

 

Figure A.25 Moment distribution for load case 5 for the middle rib. 
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Figure A.26 Normal force distribution for load case 5 for the middle rib. 
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Figure A.27 Shear force distribution for load case 5 for the middle rib. 

For the detailed shell model and the equivalent plate model normal stresses are 
received by extracting moments and normal forces which are used to calculate the 
normal stress in the reduced cross section. For the reduced detailed model the cross 
section is reduced within the model. Normal stresses are therefore extracted directly 
from the FE model. 
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Figure A.28 Normal stress distribution for load case 5 at top plate of middle rib 
(reduced cross section). 
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Figure A.29 Normal stress distribution for load case 5 at bottom plate of middle rib 
(reduced cross section). 

For load case 5 normal stresses are also calculated with hand calculations both for the 
top plate and the bottom plate. The hand calculated values are compared to the 
detailed shell model. Hand calculated stresses are preformed both with the assumption 
that the cross beams work as rigid supports and the assumption that the cross beams 
deflect and act as springs. 
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Figure A.30 Normal stress distribution for load case 5 at top plate of middle rib 
(reduced cross section). 
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Figure A.31 Normal stress distribution for load case 5 at top plate of middle rib 
(reduced cross section). 
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Figure A.32 Normal stress distribution for load case 5 at bottom plate of middle rib 
(reduced cross section). 
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Figure A.33 Normal stress distribution for load case 5 at bottom plate of middle rib 
(reduced cross section). 
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A6 Load Case 6 
Load case 6 is a wheel load applied centrically over the rib closest to the main girder. 
The load is applied at the mid cross beam, see Figure A.34. 

 

Figure A.34 Load case 6. The thick lines parallel to the ribs represent main girders. 

Sectional forces from detailed shell model are extracted using Free Body Cut and for 
the equivalent plate model nodal forces are integrated to receive the sectional forces.  

 

 

Figure A.35 Moment distribution for load case 6 for the rib closest to the main 
girder. 
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Figure A. 36 Normal force distribution for load case 6 for the rib closest to the main 
girder. 
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Figure A.37 Shear force distribution for load case 6 for the rib closest to the main 
girder. 

For the detailed shell model and the equivalent plate model normal stresses are 
received by extracting moments and normal forces which are used to calculate the 
normal stress in the reduced cross section. For the reduced detailed model the cross 
section is reduced within the model. Normal stresses are therefore extracted directly 
from the FE model. 
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Figure A.38 Normal stress distribution for load case 6 at top plate of the rib closest 
to the main girder (reduced cross section). 
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Figure A.39 Normal stress distribution for load case 6 at bottom plate of the rib 
closest to the main girder (reduced cross section). 

  



A-35 
 

A7 Load Case 7 
Load case 7 is a wheel load applied centrically over the rib closest to the main girder. 
The load is applied in the span between the two mid cross beams, see Figure A.40. 

 

Figure A.40 Load case 7. The thick lines parallel to the ribs represent main girders. 

Sectional forces from detailed shell model are extracted using Free Body Cut and for 
the equivalent plate model nodal forces are integrated to receive the sectional forces.  

 

Figure A.41 Moment distribution for load case 7 for the rib closest to the main 
girder. 
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Figure A.42 Normal force distribution for load case 7 for the rib closest to the main 
girder. 
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Figure A.43 Shear force distribution for load case 7 for the rib closest to the main 
girder. 

For the detailed shell model and the equivalent plate model normal stresses are 
received by extracting moments and normal forces which are used to calculate the 
normal stress in the reduced cross section. For the reduced detailed model the cross 
section is reduced within the model. Normal stresses are therefore extracted directly 
from the FE model. 
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Figure A.44 Normal stress distribution for load case 7 at top plate of the rib closest 
to the main girder (reduced cross section). 
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Figure A.45 Normal stress distribution for load case 7 at bottom plate of the rib 
closest to the main girder (reduced cross section). 



Appendix B – Hand Calculations, Case Study 
In this Appendix the hand calculations connected with the case study are presented. 
Calculations presented include verification of the model, reduction of the cross 
section according to Eurocode, as well as normal stress calculations. The normal 
stress calculations are performed both using only hand calculations and using the 
sectional forces extracted using the FE software. 
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B1 Indata
Material Properties 

fy 355MPa Yield strength

E 210GPa Young's modulus

ν 0.3 Poisson's ratio

ρ 7850
kg

m
3

 Density

Geometry 

Figure B1.1 Cross section of the case study.

ltot 30m Length of bridge

hw 1500mm Height main girder, web

tw 12mm Thickness main girder, web

tf 25mm Thickness bottom flange of main girder

bf 400mm Width bottom flange of main girder

tp 16mm Thickness plate

hs 200mm Height stiffener, web
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bs.top 300mm Width stiffener, top

bs.bot 250mm Width stiffener, bottom

ts 4mm Thickness stiffener

Length stiffener, web
ls hs

2 bs.top bs.bot

2









2

 0.202 m

ds 300mm Distance between stiffeners

nstiff 10 Number of longitudinal stiffeners

nCB 11 Number of transversal stiffeners

btot nstiff bs.top ds  6 m Width of deck

Figure B1.2 Cross section of the transversal stiffener.

hw.CB 600mm Height cross beam, web

tw.CB 10mm Thickness cross beam, web

tf.CB 20mm Thickness bottom flange of cross beam
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bf.CB 250mm Width bottom flange of cross beam

dcross 3m Distance between cross beams

zCG 353.54mm Centre of gravity for full cross section
(from top), calculated using AutoCAD

Second moment of area for full cross
section, calculated using AutoCADIy 53095627213.07mm

4


Area for full cross section, calculated
using AutoCADA 178000.00mm

2


Loads 

gself ρ A g 13.703
kN

m
 Self weight of cross section

Area of web of cross beam, excluding
the cut-outs, calculated using
AutoCAD

ACB.w.real 3036925mm
2



Figure B1.3 Area of cross beam web.

VCB ACB.w.real tw.CB bf.CB tf.CB btot Volume of cross beam

Gself.CB nCB VCB ρ g 51.121 kN Weight of cross beam

Smeared out self weight of the cross
beamsgself.CB.smeared

Gself.CB

ltot
1.704

kN

m


Q 10
kN

m
2

 Load acting on bridge

Total distributed load on bridge
q Q btot gself gself.CB.smeared 75.407

kN

m

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B2 Verification

B2.1 Effective width of main girder with respect to shear lag

Calculations are performed according to EN-1993-1-5, section 3.2.1.

Effective length is set, according to EN
1993-1-5, section 3.2.1, to the whole
length of the bridge, since this is the
distance between the zero moment
sections.

Le ltot 30 m

b0.cant 2 bs.top 2 ds 1.2 m

EN-1993-1-5, Figure 3.2

b0.mid

btot

2
b0.cant 1.8 m

Figure B2.1 Calculation of effective width due to shear lag.

Asl.i ts 2ls bs.bot  2.612 10
3

 m
2

 Area of one stiffener

Figure B2.2 Area of one stiffener.
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Asl.cant 2 Asl.i 5.225 10
3

 m
2


EN-1993-1-5, Figure 3.2

Asl.mid 3 Asl.i 7.837 10
3

 m
2



α0.cant 1
Asl.cant

b0.cant tp
 1.128

EN-1993-1-5, Table 3.1

α0.mid 1
Asl.mid

b0.mid tp
 1.128

κcant

α0.cant b0.cant

Le
0.045

EN-1993-1-5, Table 3.1

κmid

α0.mid b0.mid

Le
0.068

βcant
1

1 6.4 κcant
2


0.987

EN-1993-1-5, Table 3.1

βmid
1

1 6.4 κmid
2


0.972

beff.cant βcant b0.cant 1.185 m
EN-1993-1-5, Equation 3.1

beff.mid βmid b0.mid 1.749 m

beff beff.mid beff.cant 2.933 m

Ihalf 26420192820.89mm
4

 Second moment of area for one main
girder with effective width of plate as
top flange, calculated using AutoCAD:

zCG.Main 357.69mm Centre of gravity for the effective section 
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B2.2 Global behaviour

Maximum global deflection for the bridge
δmax.half

5
q

2
 ltot

4


384 E Ihalf
71.672 mm

Maximum global moment in half the
bridgeMmax.half

q

2
ltot

2


8
4.242 10

3
 kN m

σtop.half

Mmax.half

Ihalf
zCG.Main tp 

Maximum tensile stress at the top of the
main girder.

σtop.half 54.857 MPa

σbot.half

Mmax.half

Ihalf
tp hw zCG.Main 

Maximum compressive stress at the
bottom of the main girder.

σbot.half 185.961 MPa

B2.3 Effective width, transversal stiffeners

ε
235MPa

fy
0.814 EN1993-1-1 Table 5.2

beff.CB

tw.CB

2
15 ε tp 0.2 m EN-1993-1-5, Section 9.1

Figure B2.3 Effective width for transversal stiffener.
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LCB 6 bs.top 6 ds 3.6 m

Figure B2.4 Effective length for transversal stiffener.

Height of effective web of cross beam (removing the cut-outs):

hCB.av hw.CB hs 0.4 m

Figure B2.5 Effective height for transversal stiffener.

Centre of gravity for the cross beam with its effective part of the top flange as web:

zCG.CB

2beff.CB tp
tp

2
 hCB.av tw.CB tp hw.CB hCB.av

hCB.av

2












bf.CB tf.CB tp hw.CB
tf.CB

2














2beff.CB tp hCB.av tw.CB bf.CB tf.CB


zCG.CB 0.314 m

B-7



Figure B2.6 Transversal stiffener.

Second moment of area for the effective cross beam:

ICB

2beff.CB tp
3



12
2 beff.CB tp zCG.CB

tp

2










2



tw.CB hCB.av
3



12
tw.CB hCB.av tp hw.CB hCB.av

hCB.av

2
 zCG.CB









2





bf.CB tf.CB
3



12
bf.CB tf.CB tp hw.CB

tf.CB

2
 zCG.CB









2







ICB 1.182 10
9

 mm
4



Deflection per unit force, when applying point load centrically:

FCB

LCB
3

48 E ICB
3.916 10

9


m

N


Stiffness of the cross beam:

KCB
1

FCB
2.554 10

5


kN

m

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B2.4 Stress in longitudinal stiffener

In hand calculations for the longitudinal stiffeners two cases are compared. One where
the cross beams are modelled as rigid supports and one where the cross beams are
modelled as spring supports. Bending moment is analysed using the software
GOBeam.

Top flange of the longitudinal stiffener, accoring to EN1993-1-5, clause 9.1: 

beff.stiff 15 ε tp
ts

2
 0.197 m  > 

bs.top

2
0.15 m

=> Top flange of longitudinal stiffener taken as cc-distance between stiffeners.

Cross sectional data calculated using AutoCAD

zstiff.CG 39.21mm Centre of gravity for longitudinal stiffener

Second moment of area for longitudinal
stiffenerIstiff.y 55585098.53mm

4


Astiff 12200.00mm
2

 Area of longitudinal stiffener

For load case 6 and 7, only half the outstanding top flange on the side of the
main girder is included.

Centre of gravity for longitudinal stiffener
zstiff.CG.LC67 42.57mm

Second moment of area for longitudinal
stiffenerIstiff.y.LC67 54282238.60mm

4


Astiff.LC67 11016.00mm
2

 Area of longitudinal stiffener

Figure B2.7 Width and area for longitudinal stiffener.
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gstiff Astiff ρ g 0.939
kN

m
 Self weight of one longitudinal stiffener

Centre-to-centre distance of the
longitudinal stiffenerssrib ds bs.top 0.6 m

qrib Q srib gstiff 6.939
kN

m
 Total load acting on the longitudinal

stiffener

B2.4.1 Stress from global effects 

R1

q ltot

2
1.131 10

3
 kN Reaction force, whole bridge

R2 R1 1.131 10
3

 kN

Figure B2.8 Calculation model for whole bridge.

xGoBeam
0

0,000001

0,15

0,3

0,45

0,6

0,75

0,9

1,05

1,2



x-values used by GoBeam.

x xGoBeam m

Total bending moment for half cross
sectionMglobal

R1

2
x

q

2
x

2


2

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Stress in bottom of the longitudinal stiffener due to global effects:

σbot.global

Mglobal

Ihalf
tp hs zCG.Main 

Stress in top of the longitudinal stiffener due to global effects:

σtop.global

Mglobal

Ihalf
zCG.Main 

B2.4.2 Longitudinal stiffener with spring support

Figure B2.9 Calculation model for longitudinal stiffener, with spring supports.

Mspring.GoBeam
0,00

0,00

1,16

2,17

3,02

3,71

4,25

4,63

4,85

4,92



Bending moment calculated using
GoBeam.

Mspring Mspring.GoBeam kN m

Stress at the top of the longitudinal stiffener due to local effects.

σtop.spring

Mspring

Istiff.y
zstiff.CG 

Stress at the bottom of the longitudinal stiffener due to local effects:

σbot.spring

Mspring

Istiff.y
hs tp zstiff.CG 
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Total stress in the longitudinal stiffener (global and local effects):

σbot.tot.spring σbot.spring σbot.global

σtop.tot.spring σtop.spring σtop.global

B2.4.3 Longitudinal stiffener, simply supported

Figure B2.10 Calculation model for longitudinal stiffener, simply supported.

Msimply.GoBeam
0,00

0,00

1,15

2,15

2,99

3,68

4,21

4,58

4,79

4,85



Bending moment calculated using
GoBeam.

Msimply Msimply.GoBeam kN m

Stress at the top of the longitudinal stiffener due to local effects.

σtop.simply

Msimply

Istiff.y
zstiff.CG 

Stress at the bottom of the longitudinal stiffener due to local effects.

σbot.simply

Msimply

Istiff.y
hs tp zstiff.CG 
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Total stress in the longitudinal stiffener (global and local effects):

σbot.tot.simply σbot.simply σbot.global

σtop.tot.simply σtop.simply σtop.global

B2.4.4 Difference between simply supported and spring supports

σdiff.top σtop.tot.spring σtop.tot.simply

σdiff.bot σbot.tot.spring σbot.tot.simply

0 10 20 30
4 10

5

2 10
5

0

2 10
5

4 10
5

6 10
5

σdiff.top

σdiff.bot

x

Figure B2.11 Difference in normal stress when modelling the supports as
springs and non-yielding.
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B2.5 Deflection for longitudinal stiffener

Deflection for a longitudinal stiffener (local effects) calculated using GoBeam, for both
the case with rigid supports and the case with spring supports.

Figure B2.12 Calculation models for longitudinal stiffener.

δsimply.GoBeam
0,000

0,000

-0,058

-0,113

-0,164

-0,210

-0,248

-0,278

-0,300

-0,312

 δspring.GoBeam
-0,032

-0,032

-0,094

-0,153

-0,208

-0,258

-0,300

-0,334

-0,359

-0,375



δsimply δsimply.GoBeam mm δspring δspring.GoBeam mm

0 10 20 30
4 10

4

3 10
4

2 10
4

1 10
4

0

1 10
4

δsimply

xFigure B2.13 Deflection for the longitudinal stiffener, transversal stiffeners
modelled as non-yielding supports.
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4 10

4

3 10
4

2 10
4

1 10
4

0

δspring

x

Figure B2.14 Deflection for the longitudinal stiffener, transversal stiffeners
modelled as spring supports.

Deflection of the bridge due to global effects.

δglobal.half

ltot
4 q

2


24 E Ihalf

x

ltot
2

x
3

ltot
3


x

4

ltot
4


























min δglobal.half  71.672 mm

0 10 20 30
0.08

0.06

0.04

0.02

0

δglobal.half

x
Figure B2.15 Global deflection for the bridge.
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Total deflection of a longitudinal stiffener due to local and global effects.

δtot.spring δspring δglobal.half

δtot.simply δsimply δglobal.half

0 10 20 30
0.08

0.06

0.04

0.02

0

δtot.simply

x
Figure B2.16 Deflection for a longitudinal stiffener including global effects,
transversal stiffeners modelled as non-yielding supports.

0 10 20 30
0.08

0.06

0.04

0.02

0

δtot.spring

x
Figure B2.17 Deflection for a longitudinal stiffener including global effects,
transversal stiffeners modelled as springs.

min δtot.spring  0.071754 m

min δtot.simply  0.071672 m
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B3 Detailed Shell Model

B3.1 Section forces from Free Body Cut

Bending moment and normal force for one longitudinal stiffener are calculated using
the Free Body Cut tool in Brigade.

Figure B3.1 Extraction of sectional forces for the detailed shell model.

Wheel load placed centrally over rib, at cross beam (Load case 1): 

 

Figure B3.2 Load case 1.

xrib.in

Mrib.CB.in

Nrib.CB.in













0 0,287308 ‐7,48924

0,075 0,799168 ‐173,61

0,15 11,172 ‐650,878

0,225 ‐77,2068 ‐1591,31

0,3 ‐163,713 ‐2645,58

0,375 ‐248,946 ‐3844,33

0,45 ‐332,83 ‐5183,43

0,525 ‐414,877 ‐6645,01

0,6 ‐494,579 ‐8210,76

0,675 ‐571,449 ‐9863,39


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Wheel load placed centrally over rib, between cross beams (Load case 2): 

 

Figure B3.3 Load case 2.

Mrib.span.in

Nrib.span.in





 0,28924 ‐7,12383

1,00525 ‐165,078

10,371 ‐620,792

‐77,7187 ‐1529,22

‐163,695 ‐2543,8

‐248,171 ‐3695,25

‐331,095 ‐4980,31

‐412,006 ‐6382,04

‐490,421 ‐7883,02

‐565,879 ‐9466,77


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Wheel load placed between two ribs, at cross beam (Load case 3): 

 

Figure B3.4 Load case 3.

Mrib.CB.between.in

Nrib.CB.between.in





 0,284499 ‐7,61874

0,703066 ‐176,896

11,076 ‐661,015

‐77,1838 ‐1608,29

‐163,672 ‐2672,56

‐248,966 ‐3883,75

‐332,97 ‐5237,17

‐415,183 ‐6714,49

‐495,083 ‐8297,07

‐572,177 ‐9967,35


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Wheel load placed between two ribs, between cross beams (Load case 4). 

 

Figure B3.5 Load case 4.

Mrib.span.between.in

Nrib.span.between.in





 0,287551 ‐7,23506

0,92623 ‐167,925

10,2951 ‐629,559

‐77,696 ‐1543,57

‐163,664 ‐2566,52

‐248,201 ‐3728,49

‐331,239 ‐5025,69

‐412,305 ‐6440,82

‐490,908 ‐7956,17

‐566,577 ‐9555,01



Uniform load acting on the whole deck (Load case 5):

Mrib.uniform.in

Nrib.uniform.in





 0,569452 ‐18,2114

‐2,63247 ‐417,188

‐73,8728 ‐1723,55

‐718,22 ‐4824,19

‐1327,46 ‐8072,83

‐1905,6 ‐11638,7

‐2453,73 ‐15548,9

‐2970,99 ‐19765,9

‐3456,25 ‐24245

‐3908,37 ‐28941,8



B-20



Wheel load placed centrally over edge rib, at cross beams  (Load case 6):

 

Figure B3.6 Load case 6.

Medgerib.CB.in

Nedgerib.CB.in





 0,925598 ‐62,8477

‐14,5544 ‐1117,89

24,8679 ‐2907,71

43,7848 ‐3346,59

51,042 ‐4196,81

49,6068 ‐5341,53

40,8511 ‐6709,43

24,315 ‐8285,89

‐0,18114 ‐10058,5

‐32,4937 ‐12013,9


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Wheel load placed centrally over edge rib, between cross beams  (Load case 7):

 

Figure B3.7 Load case 7.

Medgerib.span.in

Nedgerib.span.in





 0,878351 ‐59,5061

‐13,6361 ‐1058,22

23,1241 ‐2751,54

39,5748 ‐3147,69

45,049 ‐3938,42

42,3654 ‐5012,05

32,8594 ‐6299,59

16,1047 ‐7786,48

‐8,06423 ‐9460,45

‐39,5119 ‐11308,5



xrib xrib.in m

Mrib.CB Mrib.CB.in N m

Mrib.span Mrib.span.in N m

Mrib.CB.between Mrib.CB.between.in N m

Mrib.span.between Mrib.span.between.in N m

Mrib.uniform Mrib.uniform.in N m

Medgerib.CB Medgerib.CB.in N m

Medgerib.span Medgerib.span.in N m
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Nrib.CB Nrib.CB.in N

Nrib.span Nrib.span.in N

Nrib.CB.between Nrib.CB.between.in N

Nrib.span.between Nrib.span.between.in N

Nrib.uniform Nrib.uniform.in N

Nedgerib.CB Nedgerib.CB.in N

Nedgerib.span Nedgerib.span.in N

B3.2 Stress in longitudinal stiffener

Distance from top of the plate to bottom
of the longitudinal stiffener. zbot tp hs

ts

2
 0.218 m

Figure B3.8 Points where normal stress is calculated.

Stress in rib, load placed centrally over rib, at CB (Load case 1)

σrib.CB.top

Mrib.CB

Istiff.y

tp

2
zstiff.CG










Nrib.CB

Astiff


σrib.CB.bot

Mrib.CB

Istiff.y
zbot zstiff.CG 

Nrib.CB

Astiff

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Stress in rib, load placed centrally over rib, between CBs (Load case 2)

σrib.span.top

Mrib.span

Istiff.y

tp

2
zstiff.CG










Nrib.span

Astiff


σrib.span.bot

Mrib.span

Istiff.y
zbot zstiff.CG 

Nrib.span

Astiff


Stress in rib, load placed between two ribs, at CB (Load case 3)

σrib.CB.between.top

Mrib.CB.between

Istiff.y

tp

2
zstiff.CG










Nrib.CB.between

Astiff


σrib.CB.between.bot

Mrib.CB.between

Istiff.y
zbot zstiff.CG 

Nrib.CB.between

Astiff


Stress in rib, load placed between two ribs, between CB (Load case 4)

σrib.span.between.top

Mrib.span.between

Istiff.y

tp

2
zstiff.CG










Nrib.span.between

Astiff


σrib.span.between.bot

Mrib.span.between

Istiff.y
zbot zstiff.CG 

Nrib.span.between

Astiff


Stress in rib, uniformly distributed load (Load case 5)

σrib.uniform.top

Mrib.uniform

Istiff.y

tp

2
zstiff.CG










Nrib.uniform

Astiff


σrib.uniform.bot

Mrib.uniform

Istiff.y
zbot zstiff.CG 

Nrib.uniform

Astiff

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Stress in rib, load placed centrally over edge rib, at cross beams  (Load case 6)

σedgerib.CB.top

Medgerib.CB

Istiff.y.LC67

tp

2
zstiff.CG.LC67










Nedgerib.CB

Astiff.LC67


σedgerib.CB.bot

Medgerib.CB

Istiff.y.LC67
zbot zstiff.CG.LC67 

Nedgerib.CB

Astiff.LC67


Stress in rib, load placed centrally over edge rib, between cross beams  (Load case 7)

σedgerib.span.top

Medgerib.span

Istiff.y.LC67

tp

2
zstiff.CG.LC67










Nedgerib.span

Astiff.LC67


σedgerib.span.bot

Medgerib.span

Istiff.y.LC67
zbot zstiff.CG.LC67 

Nedgerib.span

Astiff.LC67

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B3.3 Check of cross section class

Cross section class is checked for the different components according to EN1993-1-1

EN1993-1-1 Table 5.2
ε

235MPa

fy
0.814

B3.3.1 Web of main girder 

Figure B3.9 Normal stress distribution in main girder.

Subjected to bending

Load 1: Stress in main girder, load placed centrally over rib, at CB

σ1.1 28.00MPa

σ2.1 80.03 MPa

ψ1

σ2.1

σ1.1
2.858

Load 2: Stress in main girder, load placed centrally over rib, between CBs

σ1.2 25.68MPa

σ2.2 77.35 MPa

ψ2

σ2.2

σ1.2
3.012
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Load 3: Stress in main girder, load placed between two ribs, at CB

σ1.3 24.91MPa

σ2.3 72.79 MPa

ψ3

σ2.3

σ1.3
2.922

Load 4: Stress in main girder, load placed between two ribs, between CB

σ1.4 24.91MPa

σ2.4 72.79 MPa

ψ4

σ2.4

σ1.4
2.922

Load 5: Stress in main girder, uinformly distributed load

σ1.5 56.61MPa

σ2.5 186.51 MPa

ψ5

σ2.5

σ1.5
3.295

Load 6: Stress in rib, load placed centrally over edge rib, at cross beams

σ1.6 54.26MPa

σ2.6 121.58 MPa

ψ6

σ2.6

σ1.6
2.241

Load 7: Stress in rib, load placed centrally over edge rib, between cross
beams

σ1.7 36.37MPa

σ2.7 116.13 MPa

ψ7

σ2.7

σ1.7
3.193

B-27



Worst case:

ψw max ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 ψ7  2.241

hw

tw

ε 1 ψw  ψw
31.671  < 62

Not in class 4.

B3.3.2 Plate

Subjected to compression 

Internal part

ds

tp ε
23.045  < 33 Cross section class 1

External part

ds

2

tp ε
11.523  < 14 Cross section class 3

B3.3.3 Longitudinal stiffener

Assumed to be subjected to uniform compression

Web 

ls

ts ε
61.932  > 42 Cross section class 4

Bottom flange 

bs.bot

ts ε
76.818  > 42 Cross section class 4
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B3.3.4 Reduction of bottom flange of stiffener

ψ 1

EN1993-1-5, Table 4.1
Assumed to be uniformely compressed.

kσ 4.0

λp.bot

bs.bot

ts

28.4 ε kσ
1.352 EN1993-1-5, Section 4.4

ρbot

λp.bot 0.055 3 ψ( )

λp.bot
2

0.619

EN1993-1-5, Equation 4.2

beff.bot ρbot bs.bot 0.155 m

be1.bot 0.5 beff.bot 0.077 m EN1993-1-5, Table 4.1

be2.bot 0.5 beff.bot 0.077 m

Figure B3.10 Reduction of bottom flange of longitudinal stiffener.
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B3.3.5 Reduction of web of stiffener

ψ 1
EN1993-1-5, Table 4.1
Assumed to be uniformely compressed.

kσ 4

λp.web

ls

ts

28.4 ε kσ
1.09 EN1993-1-5, Section 4.4

ρweb

λp.web 0.055 3 ψ( )

λp.web
2

0.732

EN1993-1-5, Equation 4.2

beff.web ρweb ls 0.148 m

be1.web 0.5 beff.web 0.074 m EN1993-1-5, Table 4.1

be2.web 0.5 beff.web 0.074 m

Figure B3.11 Reduction of web of longitudinal stiffener.
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B3.4 Stress in reduced longitudinal stiffener

Cross sectional data calculated using AutoCAD

Second moment of area for reduced
longitudinal stiffener.Istiff.y.red 40256214.72mm

4


Centre of gravity for reduced longitudinal
stiffener.zstiff.CG.red 30.52mm

Area of reduced longitudinal stiffener.
Astiff.red 11402.92mm

2


Figure B3.12 Area and centre of gravity of longitudinal stiffener.

For load case 6 and 7, only half the outstanding top flange on the side of the
main girder is included.

Second moment of area for reduced
longitudinal stiffener.Istiff.y.red.LC67 40057609.56mm

4


Centre of gravity for reduced longitudinal
stiffener.zstiff.CG.red.LC67 33.41mm

Astiff.red.LC67 10236.86mm
2

 Area of reduced longitudinal stiffener.
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B3.4.1 Hand calculations

Hand calculations are performed both with the assumption that the cross beams
are spring supports and rigid supports.

Figure B3.13 Calculation models for longitudinal stiffener.

σtop.spring.red

Mspring

Istiff.y.red
zstiff.CG.red 

σbot.spring.red

Mspring

Istiff.y.red
hs tp zstiff.CG.red 

σtop.simply.red

Msimply

Istiff.y.red
zstiff.CG.red 

σbot.simply.red

Msimply

Istiff.y.red
hs tp zstiff.CG.red 

σtop.spring.red.tot σtop.spring.red σtop.global

σbot.spring.red.tot σbot.spring.red σbot.global

σtop.simply.red.tot σtop.simply.red σtop.global

σbot.simply.red.tot σbot.simply.red σbot.global
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B3.4.2 Section forces from FEM

Figure B3.14 Extraction of sectional forces for the detailed shell model.

Stress in rib, load placed centrally over rib, at CB (Load case 1):

σrib.CB.top.red

Mrib.CB

Istiff.y.red

tp

2
zstiff.CG.red










Nrib.CB

Astiff.red


σrib.CB.bot.red

Mrib.CB

Istiff.y.red
zbot zstiff.CG.red 

Nrib.CB

Astiff.red


Stress in rib, load placed centrally over rib, between CBs (Load case 2):

σrib.span.top.red

Mrib.span

Istiff.y.red

tp

2
zstiff.CG.red










Nrib.span

Astiff.red


σrib.span.bot.red

Mrib.span

Istiff.y.red
zbot zstiff.CG.red 

Nrib.span

Astiff.red


Stress in rib, load placed between two ribs, at CB (Load case 3):

σrib.CB.between.top.red

Mrib.CB.between

Istiff.y.red

tp

2
zstiff.CG.red











Nrib.CB.between

Astiff.red




σrib.CB.between.bot.red

Mrib.CB.between

Istiff.y.red
zbot zstiff.CG.red 

Nrib.CB.between

Astiff.red



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Stress in rib, load placed between two ribs, between CB (Load case 4):

σrib.span.between.top.red

Mrib.span.between

Istiff.y.red

tp

2
zstiff.CG.red











Nrib.span.between

Astiff.red




σrib.span.between.bot.red

Mrib.span.between

Istiff.y.red
zbot zstiff.CG.red 

Nrib.span.between

Astiff.red




Stress in rib, uniformly distributed load (Load case 5):

σrib.uniform.top.red

Mrib.uniform

Istiff.y.red

tp

2
zstiff.CG.red










Nrib.uniform

Astiff.red


σrib.uniform.bot.red

Mrib.uniform

Istiff.y.red
zbot zstiff.CG.red 

Nrib.uniform

Astiff.red


Stress in rib, load placed centrally over edge rib, at cross beams
(Load case 6):

σedgerib.CB.top.red

Medgerib.CB

Istiff.y.red.LC67

tp

2
zstiff.CG.red.LC67











Nedgerib.CB

Astiff.red.LC67




σedgerib.CB.bot.red

Medgerib.CB

Istiff.y.red.LC67
zbot zstiff.CG.red.LC67 

Nedgerib.CB

Astiff.red.LC67



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Stress in rib, load placed centrally over edge rib, between cross beams
(Load case 7):

σedgerib.span.top.red

Medgerib.span

Istiff.y.red.LC67

tp

2
zstiff.CG.red.LC67











Nedgerib.span

Astiff.red.LC67




σedgerib.span.bot.red

Medgerib.span

Istiff.y.red.LC67
zbot zstiff.CG.red.LC67 

Nedgerib.span

Astiff.red.LC67




B3.5 Normal force and stress in longitudinal stiffener, LC2

Load case 2 is singled out as an interesting load case, and hand calculations for this
load case are performed.

lP 16.5m Position of point load

Point load
P 300kN

qself gself gself.CB.smeared 15.407
kN

m
 Self weight for the bridge

RA

P ltot lP  qself

ltot
2

2


ltot
366.103 kN Reaction force

Figure B3.15 Calculation model for load case 2.
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x-values used by GoBeam.

xP1.GoBeam
0

0,000001

0,15

0,3

0,45

0,6

0,75

0,9

1,05

1,2

 xP2.GoBeam
16,5

16,65

16,8

16,95

17,1

17,25

17,4

17,55

17,7

17,85



xP1 xP1.GoBeam m xP2 xP2.GoBeam m

MP1 xP1  RA xP1 qself

xP1
2

2


Bending moment in the bridge

MP2 xP2  RA xP2 qself

xP2
2

2
 P xP2 lP 

σP1 xP1 
MP1 xP1 

Iy
zCG zstiff.CG 

Normal stress at the centre of gravity of
the longitudinal stiffener.

σP2 xP2 
MP2 xP2 

Iy
zCG zstiff.CG 

NP1 xP1  σP1 xP1  Astiff

Normal force at the centre of gravity of
the longitudinal stiffener.

NP2 xP2  σP2 xP2  Astiff

σP1.top xP1 
MP1 xP1 

Iy

tp

2
zCG











Normal stress at the top of the
longitudinal stiffener.

σP2.top xP2 
MP2 xP2 

Iy

tp

2
zCG










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σP1.bot xP1 
MP1 xP1 

Iy
zCG tp hs

ts

2












Normal stress at the bottom of the
longitudinal stiffener.

σP2.bot xP2 
MP2 xP2 

Iy
zCG tp hs

ts

2












NP1.top xP1  σP1 xP1  Astiff

Normal force at the top of the
longitudinal stiffener.

NP2.top xP2  σP2 xP2  Astiff

NP1.bot xP1  σP1 xP1  Astiff

Normal force at the bottom of the
longitudinal stiffener.

NP2.bot xP2  σP2 xP2  Astiff

Bending moments calculated using GoBeam.

MLC2.1.GoBeam
0,00

0,00

1,15

2,15

2,98

3,67

4,19

4,56

4,78

4,83

 MLC2.2.GoBeam
158,13

135,56

112,83

89,94

66,89

43,69

20,33

-3,18

-26,85

-50,68



MLC2.1 MLC2.1.GoBeam kN m

MLC2.2 MLC2.2.GoBeam kN m

σtop.LC2.1

MLC2.1

Istiff.y

tp

2
zstiff.CG










NP1.top xP1 

Astiff


σtop.LC2.2

MLC2.2

Istiff.y

tp

2
zstiff.CG










NP2.top xP2 

Astiff

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σbot.LC2.1

MLC2.1

Istiff.y
hs tp

ts

2
 zstiff.CG










NP1.bot xP1 

Astiff


σbot.LC2.2

MLC2.2

Istiff.y
hs tp

ts

2
 zstiff.CG










NP2.bot xP2 

Astiff

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B4 Equivalent Plate

Figure B4.1 Direction of the axis for the equivalent plate.

Calculations in this chapter are described in Section 3.2 in the main report, and equations
here are referenced to that section.
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B4.1 Alternative 1: Equivalent thickness

brib bs.top ds 0.6 m Width of one stiffener with its part of the
top plate.

Figure B4.2 Width of longitudinal stiffener.

Dyy

E Istiff.y

brib
1.95 10

7


N m
2



m
 Equation 3.14

E1 E 210 GPa

Ieq

Dyy

E1
9.26 10

7


mm
4

m
 Equivalent secend mometn of area

teq
3

12 Ieq 103.59 mm Equivalent thickness

G12

E1

2 1 ν( )
80.769 GPa Shear modulus

G13 G12 80.769 GPa
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Rotational angle calculated using Strusoft Frame analysis.

 

Figure B4.3 Model to calculate rotational angle.

mxx 10
kN m

m
 Bending moment used in Strusoft

φ 0.041rad From Strusoft

Dxx

mxx

2 φ
brib 7.3171 10

4


N m
2



m
 Equation 3.2

E2

Dxx

Ieq
0.79 GPa Equation 3.3

G23

E2

2 1 ν( )
0.304 GPa Shear modulus
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B4.2 Alternative 2: Equivalent shape orthotropic plate

Ab Astiff tp brib 2.6 10
3

 mm
2

 Area of stiffener without oustanding part
of top flange.

Figure B4.4 Area of stiffener.

B4.2.1 Membrane rigidity 

dyy

E tp

1 ν
2


E

Ab

bs.top ds 
 Equation 3.11

dyy 4.602
GPa m

2


m


dv

E tp

1 ν
2


ν 1.108

GPa m
2



m
 Equation 3.11

dxx

E tp

1 ν
2


3.692

GPa m
2



m
 Equation 3.11

dxy

E tp

1 ν
2



1

2
 1 ν( ) Equation 3.11

dxy 1.292
GPa m

2


m

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B4.2.2 Flexural rigidity

Dxx 0.073
MPa m

4


m


Rotational angle calculated using Strusoft Frame analysis.

Figure B4.5 Model to calculate reduced bending moment between webs.

mxx 10
kN m

m
 Bending moment used in Strusoft

Reduced bending moment from Strusoft
mxx.1 9.6

kN m

m


Dv ν
ds mxx bs.top mxx.1

brib mxx
Dxx 0.022

MPa m
4



m


Equation 3.15

Dyy 19.455
MPa m

4


m


ixy
1

6
tp

3
 6.827 10

7


m
4

m
 Equation 3.19

bav

bs.top bs.bot

2
0.275 m Average width of stiffener

As hs bav 0.055 m
2

 Area enclosed by stiffener
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It

4 As
2



bs.top

tp

bs.bot

ts
 2

hs

ts


6.676 10
5

 m
4



Equation 3.21

iyx
1

bs.top ds 
It

tp
3

bs.top ds 

6


ts
3

bs.bot

3
2

ts
3

hs

3






















 1.12 10
4


m

4

m


Equation 3.20

Equation 3.18
iav

iyx ixy

2
5.633 10

5


m
4

m


Equation 3.17
Dav

E

2 1 ν( )

iav

2
 2.275

MPa m
4



m


D

dxx

Pa m
2

m

dv

Pa m
2

m

0

0

0

0

dv

Pa m
2

m

dyy

Pa m
2

m

0

0

0

0

0

0

dxy

Pa m
2

m

0

0

0

0

0

0

Dxx

Pa m
4

m

Dv

Pa m
4

m

0

0

0

0

Dv

Pa m
4

m

Dyy

Pa m
4

m

0

0

0

0

0

0

Dav

Pa m
4

m


























































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B4.2.3 Shear rigidity 

Deflection calculated using Strusoft Frame analysis.

vx 10
kN

m
 Force used in Strusoft

δshear 10.246mm From Strusoft

 

Figure B4.6 Model to calculate shear stiffness.

Ksx

vx

δshear
975.991

kN

m
2

 Equation 3.22

Dsx

brib

1

Ksx

brib
3

12 Dxx












0.771
MPa m

2


m


Equation 3.23

Shear factor calculated according to Cowper (1966):

mbox

bav tp

hs ts
5.5

nbox

bav

hs
1.375

κbox

10 1 ν( ) 1 3 mbox 2

12 72 mbox 150 mbox
2

 90 mbox
3







ν 11 66 mbox 135 mbox
2

 90 mbox
3









10 nbox
2

 3 ν( ) mbox 3 mbox
2









0.143
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Asy Astiff κbox 1.747 10
3

 m
2

 Reduced area due to shear effects

Equation 3.24
Dsy G12

Asy

brib
 235.131

MPa m
2



m


B4.2.4 Stiffness matrices

D

3.692 10
9



1.108 10
9



0

0

0

0

1.108 10
9



4.602 10
9



0

0

0

0

0

0

1.292 10
9



0

0

0

0

0

0

7.317 10
4



2.151 10
4



0

0

0

0

2.151 10
4



1.945 10
7



0

0

0

0

0

0

2.275 10
6





























Dshear

Dsx

0

0

Dsy







7.706 10
5



0

0

2.351 10
8













Pa m
2



m

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B4.3 Section forces for equivalent plate

 

Figure B4.7 Schematic figure showing how the sectional forces were extracted.

Wheel load placed centrally over rib, at cross beam (Load case 1): 

xeq.in

Meq.CB.in

Neq.CB.in













0 ‐5,4652 ‐180,521

0,15 16,67887 ‐667,536

0,25 111,8779 ‐1939,31

0,35 253,2259 ‐3629,67

0,45 385,0663 ‐5540,71

0,55 507,4281 ‐7632,08

0,65 620,3345 ‐9867,18

0,75 723,7965 ‐12214,3

0,85 817,838 ‐14647,1

0,95 902,484 ‐17144,1



Wheel load placed centrally over rib, between cross beams (Load case 2): 

Meq.span.in

Neq.span.in





 ‐5,45337 ‐171,068

16,70659 ‐639,397

111,0167 ‐1863,88

250,5583 ‐3490,63

380,5958 ‐5326,31

501,1559 ‐7332,62

612,2575 ‐9474,88

713,9175 ‐11723

806,148 ‐14051,9

888,9735 ‐16441,6


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Wheel load placed between two ribs, at cross beam (Load case 3): 

Meq.CB.between.in

Neq.CB.between.in





 ‐5,46797 ‐183,785

16,82196 ‐676,244

112,381 ‐1962,56

254,153 ‐3672,86

386,4114 ‐5606,74

509,1915 ‐7722,95

622,5165 ‐9984,17

726,3945 ‐12358,1

820,845 ‐14818,2

905,897 ‐17342,8



Wheel load placed between two ribs, between cross beams (Load case 4). 

Meq.span.between.in

Neq.span.between.in





 ‐5,45753 ‐173,93

16,83355 ‐646,985

111,4534 ‐1884,15

251,347 ‐3528,36

381,7301 ‐5384,04

502,636 ‐7412,08

614,086 ‐9577,2

716,086 ‐11848,9

808,653 ‐14201,9

891,8185 ‐16615,8



Uniform load acting on the whole deck (Load case 5):

Meq.uniform.in

Neq.uniform.in





 ‐6,47732 ‐419,447

175,209 ‐1968,85

807,7565 ‐6070,94

1674,326 ‐11451,3

2470,662 ‐17330,6

3196,896 ‐23611,6

3853,162 ‐30207,7

4439,587 ‐37045,1

4956,291 ‐44062,9

5403,391 ‐51212,9


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xedge.in
0

0,025

0,05

0,075

0,1

0,125

0,15

0,175

0,2

0,225



Different x-values for the edge stiffener,
because of finer mesh.

Wheel load placed centrally over edge rib, at cross beams  (Load case 6):

Meq.edge.CB.in

Neq.edge.CB.in





 ‐0,11856 ‐65,7519

‐0,28775 ‐181,763

‐0,74984 ‐493,928

‐1,56531 ‐925,936

‐2,98313 ‐1391,93

‐5,14972 ‐1821,38

‐15,0475 ‐2237,01

‐12,0695 ‐2574,46

10,92609 ‐2787,57

33,56169 ‐2956,34



Wheel load placed centrally over edge rib, between cross beams  (Load case 7):

Meq.edge.span.in

Neq.edge.span.in





 ‐0,12152 ‐62,3359

‐0,2999 ‐171,399

‐0,79144 ‐465,587

‐1,65292 ‐872,555

‐3,12032 ‐1310,72

‐5,33223 ‐1713,22

‐14,661 ‐2102,41

‐11,1831 ‐2418,3

11,62638 ‐2615,97

34,06291 ‐2770,84


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xeq xeq.in m

xedge xedge.in m

Meq.CB Meq.CB.in N m

Meq.span Meq.span.in N m

Meq.CB.between Meq.CB.between.in N m

Meq.span.between Meq.span.between.in N m

Meq.uniform Meq.uniform.in N m

Meq.edge.CB Meq.edge.CB.in N m

Meq.edge.span Meq.edge.span.in N m

Neq.CB Neq.CB.in N

Neq.span Neq.span.in N

Neq.CB.between Neq.CB.between.in N

Neq.span.between Neq.span.between.in N

Neq.uniform Neq.uniform.in N

Neq.edge.CB Neq.edge.CB.in N

Neq.edge.span Neq.edge.span.in N
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B4.4 Stress in longitudinal stiffener, equivalent plate

Distance from top of the plate to bottom
of the longitudinal stiffener. zbot 0.218 m

Stress in rib, load placed centrally over rib, at CB (Load case 1)

σeq.CB.top

Meq.CB

Istiff.y

tp

2
zstiff.CG










Neq.CB

Astiff


σeq.CB.bot

Meq.CB

Istiff.y
zbot zstiff.CG 

Neq.CB

Astiff


Stress in rib, load placed centrally over rib, between CBs (Load case 2)

σeq.span.top

Meq.span

Istiff.y

tp

2
zstiff.CG










Neq.span

Astiff


σeq.span.bot

Meq.span

Istiff.y
zbot zstiff.CG 

Neq.span

Astiff


Stress in rib, load placed between two ribs, at CB (Load case 3)

σeq.CB.between.top

Meq.CB.between

Istiff.y

tp

2
zstiff.CG










Neq.CB.between

Astiff


σeq.CB.between.bot

Meq.CB.between

Istiff.y
zbot zstiff.CG 

Neq.CB.between

Astiff


Stress in rib, load placed between two ribs, between CB (Load case 4)

σeq.span.between.top

Meq.span.between

Istiff.y

tp

2
zstiff.CG










Neq.span.between

Astiff


σeq.span.between.bot

Meq.span.between

Istiff.y
zbot zstiff.CG 

Neq.span.between

Astiff

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Stress in rib, uinformly distributed load (Load case 5)

σeq.uniform.top

Meq.uniform

Istiff.y

tp

2
zstiff.CG










Neq.uniform

Astiff


σeq.uniform.bot

Meq.uniform

Istiff.y
zbot zstiff.CG 

Neq.uniform

Astiff


Stress in rib, load placed centrally over edge rib, at cross beams  (Load case 6):

σeq.edge.CB.top

Meq.edge.CB

Istiff.y.LC67

tp

2
zstiff.CG.LC67










Neq.edge.CB

Astiff.LC67


σeq.edge.CB.bot

Meq.edge.CB

Istiff.y.LC67
zbot zstiff.CG.LC67 

Neq.edge.CB

Astiff.LC67


Stress in rib, load placed centrally over edge rib, between cross beams  (Load case 7):

σeq.edge.span.top

Meq.edge.span

Istiff.y.LC67

tp

2
zstiff.CG.LC67










Neq.edge.span

Astiff.LC67


σeq.edge.span.bot

Meq.edge.span

Istiff.y.LC67
zbot zstiff.CG.LC67 

Neq.edge.span

Astiff.LC67


B4.5 Stress in reduced longitudinal stiffener, equivalent plate

Distance from top of the plate to bottom
of the longitudinal stiffener. zbot 0.218 m

Stress in rib, load placed centrally over rib, at CB (Load case 1)

σeq.CB.top.red

Meq.CB

Istiff.y.red

tp

2
zstiff.CG.red










Neq.CB

Astiff.red


σeq.CB.bot.red

Meq.CB

Istiff.y.red
zbot zstiff.CG.red 

Neq.CB

Astiff.red

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Stress in rib, load placed centrally over rib, between CBs (Load case 2)

σeq.span.top.red

Meq.span

Istiff.y.red

tp

2
zstiff.CG.red










Neq.span

Astiff.red


σeq.span.bot.red

Meq.span

Istiff.y.red
zbot zstiff.CG.red 

Neq.span

Astiff.red


Stress in rib, load placed between two ribs, at CB (Load case 3)

σeq.CB.between.top.red

Meq.CB.between

Istiff.y.red

tp

2
zstiff.CG.red










Neq.CB.between

Astiff.red


σeq.CB.between.bot.red

Meq.CB.between

Istiff.y.red
zbot zstiff.CG.red 

Neq.CB.between

Astiff.red


Stress in rib, load placed between two ribs, between CB (Load case 4)

σeq.span.between.top.red

Meq.span.between

Istiff.y.red

tp

2
zstiff.CG.red










Neq.span.between

Astiff.red


σeq.span.between.bot.red

Meq.span.between

Istiff.y.red
zbot zstiff.CG.red 

Neq.span.between

Astiff.red




Stress in rib, uniformly distributed load (Load case 5)

σeq.uniform.top.red

Meq.uniform

Istiff.y.red

tp

2
zstiff.CG.red










Neq.uniform

Astiff.red


σeq.uniform.bot.red

Meq.uniform

Istiff.y.red
zbot zstiff.CG.red 

Neq.uniform

Astiff.red

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Stress in rib, load placed centrally over edge rib, at cross beams  (Load case 6):

σeq.edge.CB.top.red

Meq.edge.CB

Istiff.y.red.LC67

tp

2
zstiff.CG.red.LC67










Neq.edge.CB

Astiff.red.LC67


σeq.edge.CB.bot.red

Meq.edge.CB

Istiff.y.red.LC67
zbot zstiff.CG.red.LC67 

Neq.edge.CB

Astiff.red.LC67


Stress in rib, load placed centrally over edge rib, between cross beams  (Load case 7):

σeq.edge.span.top.red

Meq.edge.span

Istiff.y.red.LC67

tp

2
zstiff.CG.red.LC67










Neq.edge.span

Astiff.red.LC67


σeq.edge.span.bot.red

Meq.edge.span

Istiff.y.red.LC67
zbot zstiff.CG.red.LC67 

Neq.edge.span

Astiff.red.LC67

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Appendix C – Hand Calculations, I-beam Study 
In this Appendix, hand calculations are presented for an I-beam study, the purpose of 
which is to justify the difference in deflection for hand calculations and FE modelling. 
The I-beam study also serves to investigate whether it is possible to reduce the cross 
section within the FE model. 
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C1 Indata
fy 355MPa Yield strength

hw 1500mm Height of the web

tw 12mm Thickness of the web

bf 400mm Width of the flange

tf 25mm Thickness of the flange

lb 30m Length of the beam

E 210GPa Young's modulus

Load:

Q 10
kN

m
2



q Q bf 4
kN

m

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C2 Gross Cross Section

Second moment of area for the gross section:

I
tw hw

3


12
2

bf tf
3



12
bf tf

tf

2

hw

2










2








 0.015 m
4



Maximum moment:

Mmax

q lb
2



8
450 kN m Middle of the beam

Maximum moment from Abaqus, using free body cut:

Mabaqus 450kN m Middle of the beam

Ratio for moment:

Mmax

Mabaqus
1

Maximum stress:

σmax

Mmax

I

hw

2
 22.494 MPa

σabaqus 22.2MPa

σmax

σabaqus
1.013

Maximum deflection of the beam: 

Euler-Bernoulli beam theory:

δEB

5 q lb
4



384 E I
13.389 mm
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Timoshenko beam theory:

From the differential equation for a beam:

EI
d

4
w x( )

dx
4

 q x( )
EI

κAG

d
2

q x( )

dx
2

=

EI
d

3
w x( )

dx
3

 q x( ) x
EI

κAG

d q x( )

dx
 C1=

EI
d

2
w x( )

dx
2

 q x( )
x

2

2


EI

κAG
q x( ) C1 x C2=

EI
d w x( )

dx
 q x( )

x
3

6


EI

κAG
q x( ) x C1

x
2

2
 C2 x C3=

EI w x( ) q x( )
x

4

24


EI

κAG

q x( ) x
2



2
 C1

x
3

6
 C2

x
2

2
 C3 x C4=

Boundary conditions:

Moment is zero at 0 and L

EI
d

2
w x( )

dx
2

 M x( )=

C2 0=

C1
EI

κAGL
q x( )

q x( ) L

2
=

Deflection is zero at 0 and L

C4 0=

C3
EI

κAG

q x( ) L

2
 q x( )

L
3

24
 C1

L
2

6
=

So, 

w x( )
1

EI
q x( )

x
4

24


EI

κAG

q x( ) x
2



2
 C1

x
3

6
 C3 x









=

ν 0.3
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Agross 2 bf tf hw tw 0.038 m
2



Shear coefficient for I-beam (Cowper, 1966):

mκ

2 bf tf

hw tf  tw
1.093

nκ

bf

hw tf 


κ
10 1 ν( ) 1 3mκ 2

12 72mκ 150 mκ
2

 90 mκ
3





 ν 11 66 mκ 135 mκ

2
 90 mκ

3






30 nκ
2

 mκ mκ
2





 5 ν nκ

2
 8 mκ 9 mκ

2







0.473

G
E

2 1 ν( )
80.769 GPa

Deflection derived from the differential equation for beams, see above.

C1
E I q

κ Agross G lb

q lb

2
 5.971 10

4
 N

C2
E I

κ Agross G
q

lb

2


q lb
3



24
 C1

lb
2

6
 4.587 10

6
 N m

2


δmid.tim
1

E I

q
lb

2









4



24

E I

κ Agross G
q

lb

2









2

2
 C1

lb

2









3

6
 C2

lb

2














 13.544 mm

Abaqus:

δabaqus 13.71mm

δEB

δabaqus
0.977

δmid.tim

δabaqus
0.988
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C3 Reduced Cross Section

Check of cross section class according to EN 1993-1-1 Table 5.2

ε
235MPa

fy
0.814

Web, internal compression part subjected to bending

hw

tw ε
153.635  > 124 Cross section class 4

Top flange, outstand flange, subjected to compression 

Cross section class 2

bf tw

2

tf ε
9.538  < 10 

Calculation of reduced cross section, according to EN1993-1-5, section 4.4.

From table 4.1
(assuming pure bending) 

ψ 1

kσ 23.9

λp.w

hw

tw

28.4 ε kσ
1.107 Equation 4.2

ρw 1 λp.w 0.673if

λp.w 0.055 3 ψ( )

λp.w
2

λp.w 0.673if



Equation 4.2

C-5



ρw 0.814

bc

hw

2
0.75 m

beff1 0.4 ρw bc 0.244 m From table 4.1

beff2 0.6 ρw bc 0.366 m

bgap

hw

2
beff1 beff2 0.14 m

Area of reduced cross section:

Aef 2 bf tf beff1 beff2
hw

2










tw 0.036 m
2



Centre of gravity for the reduced cross section:

zeff

bf tf
tf

2
 beff1 tw tf

beff1

2












beff2

hw

2










tw tf beff1 bgap

beff2

hw

2


2
















bf tf tf hw
tf

2














Aef
0.795 m
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Second moment of area for the reduced cross section:

Ieff

bf tf
3



12
bf tf zeff

tf

2










2


tw beff1

3


12


tw beff1 zeff tf
beff1

2










2



beff2

hw

2










3

12
tw



beff2

hw

2










tw tf beff1 bgap

beff2

hw

2


2
 zeff











2





bf tf
3



12
bf tf tf hw

tf

2
 zeff









2





0.015 m
4



Deflection for the reduced cross section:

δred

5 q lb
4



384 E Ieff
13.696 mm

δred.abaqus 14.02mm

δred

δred.abaqus
0.977

Maximum stress for reduced cross section:

σtop

Mmax

Ieff
zeff tf  23.626 MPa

σbot

Mmax

Ieff
hw tf zeff  22.392 MPa

σtop.abaqus 23.39 MPa

σbot.abaqus 22.10MPa

σtop

σtop.abaqus
1.01

σbot

σbot.abaqus
1.013
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