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Deep Learning and Regular Control Methods
A Performance Evaluation on a Unicycle
María Helga Jóndsdóttir
Filip Petersson
Department of Electrical Engineering
Chalmers University of Technology

Abstract
In this thesis the differences between control using deep learning and regular control
algorithms are highlighted. Moreover, it is pursued to demonstrate how algorithms
developed in a simulated environment manage to stabilize a real physical system.
The process of design and construction of a unicycle as a system to compare both
methods on is described thoroughly. An infinite horizon Linear Quadratic Regulator
(lqr) is selected as a traditional control method and a Proximal Policy Optimization
(ppo) algorithm is chosen as the deep learning method. The development of the
two methods is described thoroughly and their selection is motivated. Performance
evaluation is done on the system using the two methods, both in simulation and
practice. The two methods are able to stabilize the system in simulation and also
when transferred to the real physical system. The performance in practice is similar
to the performance in simulation which indicates that both methods handles the
transition to the real physical system fairly well, even though the traditional lqr
method outperforms the ppo algorithm in most cases. That being said, the deep
learning algorithm shows no sign of uncertain behaviours and leaves a promising
room for improvement due to its nonlinear properties. Even though the ppo method
showed signs of exploratory behaviour, for systems with a known global optimum
the traditional control methods are recommended if applicable, due to its simplicity
and robustness.

Keywords: Model based control, reinforced learning, linear-quadratic regulator, uni-
cycle, system control, Proximal policy optimization,
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1
Introduction

1.1 Background

Deep learning (dl) is a hot topic in modern society and it is one of the most rapidly
growing technical fields today. Its methods can be used in both software and hard-
ware related applications. One of many subjects that could benefit from deep learn-
ing is control theory. Therefore, the possibility of improvements in the field using
deep learning will likely become important in the control research community. The
main advantage over the more traditional control methods is its ability to cope with
nonlinearities. It enables implementation of wider range of functions and adaptabil-
ity to more complex systems [1]. However, there are several difficulties in using dl
as a control algorithm, which may induce doubts to the method. Stability as well as
performance are essential factors in the industry. One drawback in dl applications
is its potential lack of robustness when encountering unexpected conditions. When
the testing data differs from the training data, dl algorithms may not only exhibit
poor performance, but possibly erroneously assume that the performance is good [2].

The replacement of traditional control with deep learning can therefore be unbene-
ficial depending on the system and its characteristics. There has been a significant
progress in generating control policies in simulated environments [3][4]. Algorithms
are capable of solving complex physical control problems in continuous action spaces
in a robust way. Even though the tasks are claimed to have real world complexity
it is hard to find an example of such high level algorithm in an actual real world
application.

For executing a dl algorithm on a system in practice, the success is mostly based
on training on the physical system itself or on data generated by it [5][6][7]. Doing
so can be time consuming, especially as the system gets more complex and training
requires more iterations and data. Furthermore, there exist critical systems that
are sensitive to failures and training on the physical system itself may therefore be
practically infeasible.

In such cases, a more efficient solution is to train on a simulated system and transfer
the policy to the real world. In order to do this, one needs to be able to model the
system in a detailed way. There can be found both successful and unsuccessful
examples where this is performed [8][9], which may race questions about the actual
complexity of the task of transferring a simulated policy to a physical system.

1



1. Introduction

Furthermore, one might wonder if a traditional control method would perform bet-
ter or worse on the same system. In order to recognize how good the deep learning
algorithm actually is performing, One would like to benchmark another method on
a similar control level. That kind of comparison is hard to find.

Due to its unstable equilibrium point, the inverted pendulum setup is a commonly
used benchmark in control theory [10]. There are many variations of this system all
based on the same principal dynamics. One example is a unicycle, which principal
dynamics can be viewed as an inverted pendulum in two dimensions [11].

1.2 Purpose
In this thesis project, a unicycle was to be designed and stabilized around its unstable
equilibrium point using both a traditional control method and a dl algorithm trained
in simulation and transferred to the hardware. The main purpose is to provide an
example of a fair comparison between the two methods on a benchmark control
problem. The level of performance and robustness of both the traditional control
method and a state of the art dl algorithm was to be compared in simulation and in
practice. Finally, the thesis should also give a comparison of how the performance
of the designed control algorithms differs in simulation, to that of a real physical
system.

1.3 Ethical Aspects
With the immense amount of information available online, one needs to ensure that
the things contributed follow basic ethical principles. This implies not altering any
results and not hide a possible flaw (that could later be revealed at an unfortunate
time). Even though ethical aspects can be hard do find in some work it is important
to pay attention to them and be aware of that future work based on ones work can
be used in unethical situations.

This thesis will provide an example of how modern dl algorithms an act as an
alternative to traditional control algorithms. It is important that results are true
and clear in the case of this work being used as a foundation for further development
of a control for a system that could serve a different purpose and ensure that no
harm could be done that can be traced to the control algorithm.

1.4 Outline
In Chapter 2, a brief overview of the theory used throughout the thesis is presented.
The aim of this chapter is to summarize definitions of necessary concepts in one
place. It is left to the reader to further explore more detailed history and proofs of
the concepts through the cited references.

2



1. Introduction

In Chapter 3, the design of the unicycle is presented. It starts with the hardware
design of the mechanical structure and the electrical system. Once these have been
described, a mathematical model is derived and the embedded software system is
described. Finally, a design validation is done in order to verify that the mathemat-
ical model yields a satisfactory simulation of the constructed unicycle.

Based on the design, the traditional control method and the dl algorithm are cho-
sen and justified in Chapter 4. It gives a detailed description of the development in
simulation of both algorithms, which are then transferred to the real physical system.

The results are presented in Chapter 5. This chapter starts off with a detailed test
procedure to make the results replicable. Using this test procedure, the results of
the tests are presented. These results are then discussed and analyzed in Chapter 6.
First, a general comparison between the traditional control method and the dl algo-
rithm is made. Then, a comparison of how the performance differs from simulation
to the real physical system is made for each control algorithm. This is followed by
a generalization of the achieved results, as well as suggestions for future work.

Finally, in Chapter 7 the main conclusion of the thesis is presented.

1.5 Open Source Repository
For the interested reader, all the developed software such as the embedded c++ code
and the mathematical model can be found at the open source GitHub repository
(https://github.com/filpet95/Unicycle_PPO_vs_LQR). It is released under a
gnu licence, which in short implies that the software is available and free of use but
any changes must be available to the public.

3
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2
Theory

In this chapter, a brief overview of the concepts used in the thesis is presented.

2.1 Rotating Coordinates
Consider two arbitrary coordinate frames F0 and F1 with identical origin. Any
arbitrary vector p0 in the frame F0 given by

p0 =

p
0
x

p0
y

p0
z

 (2.1)

is, in the frame F1 given by

p1 = R1
0

p
0
x

p0
y

p0
z

 , (2.2)

where R1
0 is the rotation matrix from frame F0 to F1 [12]. The rotation matrix is

orthogonal, which implies that the inverse transformation can be given by

R0
1 = (R1

0)−1 = (R1
0)T . (2.3)

Three rotation matrices of particular interest are the rotations about each fixed axis,
also called the elementary rotations. The rotation about each axis in frame F0 are
then given by

Rx(φ) =

1 0 0
0 cos(φ) sin(φ)
0 − sin(φ) cos(φ)

 , Ry(θ) =

cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)

 (2.4)

and Rz(ψ) =

 cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1

 . (2.5)

Combining these rotations in a fixed body system, one can construct more complex
rotations. In fact, by using the simple rotations about three consecutive coordinate
axes, any rotation can be described given that two consecutive rotations are not done
about the same axis. This way to parametrize a rotation is called Euler angles. As
matrix multiplication in the general case does not commute, the order in which
the elemental rotations are done matters and depends on the system. Hence, using
Euler angles, there are 12 different possible sequences that can describe a rotation
in 3 dimensions [12].

5



2. Theory

2.2 Lagrange’s Dynamics

Lagrange’s Dynamics are a tool used to model mechanical systems. It utilizes a
generalized configuration space to find the equations of motion of the system. In
general, equations of motion include reaction forces that may enlarge the complexity
of the modelling significantly. As the reaction forces are often absent in Lagrange’s
equations, the number of equations describing the dynamics are often fewer when
using Lagrange’s dynamics with a good set of generalized coordinates [12][13].

2.2.1 Generalized Coordinates

Generalized coordinates are a set of coordinates that can uniquely describe the
position of a system. If the number of generalized coordinates is equal to the degrees
of freedom (dof) of the system, they are called free, which one often strives for when
selecting generalized coordinates. If the number of generalized coordinates is larger
than the dof of the system, one can often eliminate coordinates using holonomic
constraints in order to achieve free generalized coordinates [12].

2.2.2 Generalized Forces

Consider an arbitrary point p in a system with a position described as a function of
the generalized coordinates q and time t according to

p(q, t) = r(q1, . . . , qM , t), (2.6)

where r is an arbitrary function. The virtual work is defined as the work from an
infinitesimal displacement δr given by

δr =
M∑

i=1

∂p

∂qi

δqi (2.7)

from a force F under the condition that the time is kept fixed. Given the sum of all
external forces Fe acting on p, the virtual work is given by

δW =
M∑

i=1
Fe · ∂p

∂qi

δqi. (2.8)

The generalized force acting on p for each generalized coordinate qi is defined as the
coefficient in front of the virtual displacement δqi in Equation 2.8, i.e.

Qi = Fe · ∂p
∂qi

, (2.9)

where i = 1, . . .M [12].
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2. Theory

2.2.3 Lagrange’s Equations
Consider a system with M dof described by free generalized coordinates q ∈ RM ,
i.e.

q =


q1
...
qM

 . (2.10)

The equations of motion of this system are given by
d

dt

∂L(q, q̇)
∂q̇i

− ∂L(q, q̇)
∂qi

= Qi(q), i = 1 . . .M, (2.11)

where Q(q) are the external forces expressed in generalized coordinates and L(q, q̇)
is the Lagrangian defined according to

L(q, q̇) = T (q, q̇) − U(q), (2.12)

where T (q, q̇) is the kinetic energy of the system and U(q) is the potential energy
of the system [12][13].

2.3 Linearization
The dynamics of a nonlinear system described by

d

dt
x(t) = f(x(t),u(t)) x ∈ Rn,u ∈ Rm (2.13)

y(t) = h(x(t),u(t)) y ∈ Rp (2.14)

can be approximated around an equilibrium point xs,us in which

ẋ(t) = f(xs(t),us(t)) = 0 (2.15)

as linear dynamics [14]. Provided that f and h are differentiable, the linear dynamics
are a valid approximation of the nonlinear system in a local neighborhood around
the equilibrium point and are called the linearized system. The dynamics of the
linearized system are achieved by expanding f and h around the equilibrium point
using the first order Taylor expansion. This will result in the linearized system

d

dt
∆x(t) = A∆x(t) +B∆u(t)

∆y(t) = C∆x(t) +D∆u(t),
(2.16)

where ∆x(t) = x(t)−xs, ∆u(t) = u(t)−us and A, B, C and D are system matrices
given by

A = ∂f

∂x

∣∣∣∣∣x=xs
u=us

, B = ∂f

∂u

∣∣∣∣∣x=xs
u=us

, C = ∂h

∂x

∣∣∣∣∣x=xs
u=us

, D = ∂h

∂u

∣∣∣∣∣x=xs
u=us

. (2.17)

Commonly, for notation purposes the ∆ in Equation 2.16 is left out [14]. Doing so,
the linearized system is given by

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t).

(2.18)

7
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2.4 Discretization
A continuous time lti system given by Equation 2.18 can, in discrete time with
sample time Ts be approximated according to

xk+1 = Adxk +Bduk

yk = Cdxk +Dduk,
(2.19)

where k is the time index representing time instance t = kTs and Ad, Bd, Cd and
Dd are discrete time system matrices determined from the continuous time system.
If the input is constant on each time interval t ∈

[
kTs (k + 1)Ts

]
(so called zero

orer hold input), the approximation is exact and the discrete time system matrices
are given by

Ad = eATs , Bd =
∫ T

0
Tse

AσdσB, Cd = C, Dd = D, (2.20)

where e is the matrix exponential [14].

2.5 Infinite Horizon Linear Quadratic Regulator
The infinite horizon linear quadratic regulator (lqr) is a model based state feedback
controller. The feedback gain is determined offline from an arbitrary initial state
minimizing a weighted sequence of states and inputs over a future time horizon that
tends towards infinity. Given two positive, symmetric and semi definite weight ma-
trices Qx ≥ 0, Qu > 0 and a linear model, the lqr feedback law is optimal [15].

In the discrete case, the lqr controller is derived as follows. Assume a linear, time
invariant (lti) and controllable discrete time state space model given by

xk+1 = Axk +Buk, (2.21)

where x is the state vector, A and B are constant system matrices with appropriate
dimensions and k is the time index. The optimal feedback uopt(k) at time t = kTs,
which minimizes the cost function

J =
∞∑
0

x(k)TQxx(k) + u(k)TQuu(k) (2.22)

is given by

uopt(k) = −Kx(k), (2.23)

where K is the optimal steady state feedback gain matrix. Given that the system
matrices (A,B) are stabilizable, K is determined according to

K = (Qu +BT P̄B)−1BT P̄A, (2.24)

8
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where P̄ is a positive semidefinite matrix, which is the solution of the discrete time
algebraic Riccatti equation given by

AT P̄A− P̄ +Qx − AT P̄B(R +BT P̄B)−1BT P̄A = 0. (2.25)

By combining Equation 2.21 and 2.23, the closed loop system, i.e.

xk+1 = (A−BK)xk, (2.26)

has guaranteed phase and gain margins and is asymptotically stable [14].

2.6 Infinite Impulse Response Filters
A continuous time first order standard infinite impulse response (iir) low pass filter
can be described by

H(s) = 1
1 + sτ

, (2.27)

where τ is the time constant. In time domain, it is equivalent to

ˆ̇y(t) = −1
τ
ŷ(t) + 1

τ
ym(t), (2.28)

where ŷ is the estimated state and ym is the measurement. Discretizing this using
forward Euler, one will get

ŷk = (1 − Ts

τ
)ŷk−1 + Ts

τ
ym,k, (2.29)

where k is the time index representing t = kTs and Ts is the sampling time.

Note that Equation 2.29 will give relatively bad estimations in the first time steps,
as the old output will start at 0 while the initial state may be something entirely
different. This problem can be solved by adding an adaptive time constant that is
low at the beginning and increases with time until it converges to a steady state
value. This can be achieved using

wk = λwk−1 + 1

ŷk = (1 − 1
wk

)ŷk−1 + 1
wk

ym,k,
(2.30)

where w is initialized to 0. Depending on the tuning constant λ, w will eventually
converge to a steady state value w∞ and then be equivalent to Equation 2.29. By
comparing Equation 2.29 and 2.30, one can identify the worst (steady state) time
constant by

τ = w∞Ts. (2.31)

The choice of tuning constant λ is a trade off between slow dynamics and noise on
the signal due to the resolution errors.
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2.7 Complementary Filter
A complementary filter is a fairly simple alternative to nonlinear filters such as the
extended or unscented Kalman filter. The complementary filter fuses two estima-
tions that have complementary properties in the frequency domain [16]. Assume
two scalar estimations ŷ1 and ŷ2, where ŷ1 have desirable properties at high frequen-
cies and ŷ2 has desirable properties at low frequencies. Furthermore, assume that
the estimation ŷ1 is obtained by integrating the measurement ym. The idea of the
complementary filter is to apply a high pass filter on the estimation ŷ1 and a low
pass filter on the estimation ŷ2 and fuse the two estimations to one. Doing this, the
final estimation ŷk at the discrete time step t = kTs is given by

ŷk = (1 − γ)ŷ2,k + γ(ŷk−1 + Tsym,k), (2.32)

where Ts is the sample time and γ is a tuning parameter. Choosing a γ close to
one corresponds to a low cut off frequency and a significant contribution from the
estimation with desirable properties at high frequencies [16].

2.8 Kalman Filter
The Kalman filter is widely used in stochastic optimal control and is the closed form
solution to the Bayesian filtering equations [17]. Assume a motion and measurement
model given by

xk = Ak−1xk−1 + qk−1, (2.33)
ym,k = Hkxk + rk, (2.34)

where xk is the state, ym,k is the measurement, qk−1 ∼ N (0, Qk−1) is the process
noise and rk ∼ N (0, Rk) is the measurement noise. Furthermore, assume the prior
mean m0 and covariance P0. Given the measurements y1:k, then the optimal linear
and Gaussian estimation at time step t = kTs is given by

p(xk|y1:k) = N (xk|mk, Pk), (2.35)

where mk is the mean and Pk is the covariance of the update step

mk = m−
k +Kkvk,

Pk = P−
k −KkSkK

T
k ,

vk = ym,k −Hkm−
k ,

Sk = HkP
−
k H

T
k +Rk,

Kk = P−
k H

T
k S

−1
k

(2.36)

and m−
k is the mean and P−

k is the covariance of the prediction step

m−
k = Ak−1mk−1,

P−
k = Ak−1Pk−1A

T
k−1 +Qk−1.

(2.37)

Hence, the minimum mean square error estimation at time t = kTs is ŷk = mk [17].

10
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2.9 Reinforcement Learning
The goal of reinforced learning is for an agent to learn the best strategy to react in
a certain environment. The reactions from the environment are decided by a model.
The model itself is generally unknown by the agent. The agent can stay in one or
many states (x ∈ S) of the environment. To move from one state to another the
agent takes an action (a ∈ A). Once an action is taken the agent receives a reward
from the model as a feedback. The goal for the agent is to maximize the return,
which is the expected total cumulative reward. To do so the agent follows a policy
(π(x)) which is a function of states that tells the agent which actions to take in a
particular state. Each state has a value function, Vπ(x) giving the expected future
reward for that particular state if the agent follows the policy.

Most reinforced learning algorithms are built on a so called Action-value method.
The policy is trained by learning values of actions and selecting actions by their
estimated action values [18].

2.9.1 Gradient Decent
In order to get a solution to

∂L(θ)
∂θ

= 0, (2.38)

one need to find the θ that locally minimizes the function L. If L is a complex
function, numerical methods can be used to iteratively update θ in small steps until
∂L(θ)

∂θ
is close enough to 0. This can be generally expressed by

θk+1 = θk − αk
∂L(θk)
∂θk

, (2.39)

where θk represents the parameter at iteration k, and αk is a small number that
determines the step size at each iteration towards a local minima. In the case of a
local maximum each update in Equation 2.39 is instead added to θk+1. The method
is then referred to a gradient ascent. The αk parameter is often referred to as
learning rate in machine learning and can be fixed, adaptive or updated according
to a schedule [19].

2.9.2 Multilayer Perceptron
The multilayer preceptron is a linear classifier that classifies outputs to inputs be-
tween layers in a neural network. The input is a vector, x, what will be multiplied
with a vector of weights w, and then a bias, b, is added to it as it is passed from
one layer to the next. Hence, the output z is given by

z =
n∑

i=1
wixi + b = wT x + b. (2.40)

11
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z is then passed through an activation function yielding the output from the first
hidden layers first neuron, h1

1 = f(z).

Each neuron will have their own set of weights (wh1
1 : (w1, w2, ..., wm)). The outputs

from all neurons in the first hidden layer (h1 : (h1
1, h

1
2, ..., h

1
n)) will be the input to

the next layer,

h2
1 = f(

n∑
i=1

wih
1
i + b) = f(wh1

1T h1 + b), (2.41)

where f is an activation function. The same thing is done for all layers until ŷ is
reached as the output from the final layer (Figure 2.1 [20][21]).

Figure 2.1: A mulitilayer peceptron with an input layer x : (x1, x2, ..., xn), two
hidden layers, h1, h2, and an output layer ŷ.

2.9.3 Activation Function
Output from each node in a neural network is usually determined by an activation
function. These functions are applied to the outputs from the layers in order to map
them to a certain range. In multilayer peceptron a common activation function is
the hyperbolic tangent function, defined by

tanh(x) = ex − e−x

ex + e−x
. (2.42)

The function is smooth, bounded and maps the inputs to the range between −1 and
1 [22].

2.9.4 Policy Gradient Methods
The method differs from a more traditional Action-value method mentioned earlier
in this section in the way that it does not require the value function to select action,
only to learn the policy. It learns the policy directly with a parameterized function
with respect to θ,

π(a|x; θ) = Pr{A(ti) = a|S(ti) = x, θ(ti) = θ} (2.43)

12
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where π(a|x; θ) is the probability that action a is taken at time ti given that the
environment is in state x at time ti with parameter θ. Policy gradient methods learn
the policy parameter based on the gradient of a scalar performance measure, L(θ)
with respect to the policy parameter. These methods use gradient decent, in order
to move θ towards the direction suggested by the gradient ∇L(θ) to find the best θ
for the policy that produces the highest return [18].

Policy-based methods offer practical ways of dealing with large action spaces, even
continuous spaces with an infinite number of actions. Instead of computing learned
probabilities for each of the many actions, it can learn statistics of the probability
distribution [18].

In general the method starts out with an arbitrary random policy. Then actions are
sampled in the environment. If the reward is better then expected the probabilities
of taking those actions are increased, if not they are decreased.

2.9.5 Proximal Policy Optimization
This method is built on the policy gradient method, introduced preveously in this
section. It uses trust regions to avoid large gradient update. The authors of the
method propose an objective function, Lt(θ), which is approximately maximized in
every iteration between an old policy parameter (θ) to a new updated one [23]. This
is represented as

Lt(θ) = Ê[LCLIP
t (θ) − c1L

V F
t (θ) + c2S[πθ](xt)], (2.44)

where Ê denotes the estimation of emperical average of finite numbers of samples
from a batch. c1 and c2 are coefficients, S is called entrophy bonus and LV F

t is a
squared error loss calculated from the value function,

LV F
t = (Vθ(x) − Vtarget)2. (2.45)

The term LCLIP
t (θ) is a clipped objective,

LCLIP
t (θ) = Ê[min(rt(θ)Ât, clip(rt(θ), 1 − ϵ, 1 + ϵ)Ât)] (2.46)

Here the first term is a probability ratio,

rt(θ) = πθ(a|s)
πθold

(a|s)
(2.47)

between the old policy and the new one. Here πθ(a|s) is the probability of an action
in a given state in a policy. The probability ratio is then multiplied with an estima-
tor of the advantage of this update gives, Ât. Next term is a clipping operator, which
clips the ratio to be within [1 − ϵ, 1 + ϵ]. Finally the objective takes the minimal
value of the clipped and unclipped ratio creating a bound that prevents the objective
function from increasing the policy update to extremes for better rewards [23].
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3
Design

In this chapter, the design of the hardware, mathematical model and the software
of the system will be described.

The design of the hardware is split up into a mechanical and an electrical part. To
begin with, the mechanical structure of the unicycle will be constructed. Then, an
electrical construction will be implemented to make the unicycle independent of any
external resources.

Once the hardware is in place, a mathematical model will be designed based on the
constructed hardware. The purpose of the mathematical model is both to aid the
design of the controllers that will be implemented and to simulate the final system
for results.

Furthermore, an embedded software algorithm will be implemented. The result of
that part will be a complete system to which one can upload a control algorithm
to. Hence, all parts from applying input references to sensor readings will be im-
plemented. This includes sensor fusion in order to get accurate readings from the
sensor data as well as a working software for each part of the unicycle, which is
combined to a complete system.

Finally, in order to validate the designed unicycle with the derived mathematical
model, a design validation will be conducted.

3.1 Mechanical Construction
Since the main focus is not on the mechanical aspects in this thesis, the construction
is based on a previous design made by Gabriel Pereira Das Nevas [24]. It is a robot
that travels on one wheel on the ground. The ground wheel is driven by a motor
which task is to prevent the system from falling in the longitudinal direction. At-
tached to the wheel is a u-shaped aluminum profile which is described as the body.
Its task is to combine all components into one rigid body. Finally, on top of the
body, a reaction disk driven by another motor is placed. Its task is to prevent the
system from falling in the lateral direction.

The reaction disk (1 in Figure 3.1) is made from 1.5 [mm] thick aluminum. It has
the outer diameter of 430 [mm] and the inner diameter of 400 [mm] in order to keep
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(a) Back view (b) Side view (c) Viewed from an angle

Figure 3.1: A 3D model of the system created in Fusion360. The main components
are the Reaction disk (1), Body (2), Drive wheel (3), Battery box (4) wheel motor
(5), disk motor (6) and the Electronics box (7).

it as light as possible. The disk is rotated by a brushed dc motor (6 in Figure 3.1)
that is attached to the body. The body (2 in Figure 3.1) is made out of the same
1.5 [mm] aluminum as the reaction disk. It is 350 [mm] long, 110 [mm] wide and
55 [mm] deep. The driving wheel (3 in Figure 3.1) is rotated by another brushed
dc motor attached to the body (5 in Figure 3.1) and an extension shaft goes from
the motor through the wheel to a bearing at the other side. Above the bearing, a
box (4 in Figure 3.1) is mounted containing a battery used to power the motors.
Furthermore, in order to position the center of mass in the center of the body, a
stabilization weight of 0.19 [kg] is placed in the same box. Finally, in order to enclose
all electronics, another box is placed right above the driving wheel.

In order to achieve as accurate parameters for the mathematical model as possible,
a 3d model of the unicycle is set up in Autodesk’s Fusion360, see Figure 3.1. All
components are carefully given its correct dimensions and weight in order to get the
inertia matrices of each part. All the parameters of the constructed unicycle can be
found in Appendix A.

3.2 Electrical Construction

The electrical system can be divided into two subparts, a signal system and a driving
system powered by separate voltage sources, see Figure 3.2. The task of the signal
system is to collect data from sensors in order to determine the state of the unicycle
and give control signals to the driving system. It consists of a 9 dof inertial mea-
surement unit (imu), two motor encoders, a microcontroller, a 3.7 [V ] lipo battery,
three switches as well as other small parts.
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Figure 3.2: Schematics of the electrical construction, divided into one signal system
and one driving system.

The imu is stmicroelectronics lsm9ds1 (for the datasheet see [25]). It houses a
3-axis accelerometer, a 3-axis gyroscope and a 3-axis magnetometer, which will be
used to determine the current angle and angular velocity of the unicycle (see Sec-
tion 3.4.1).

The motor encoders are quadrature rotary encoders mounted on the back of the two
dc motors. These encoders will be used to get the angular velocity of the driving
wheel and the reaction disk (see Section 3.4.1).

The microcontroller is Adafruits dual core esp32 Feather (for the datasheet see [26]).
It has 520 [kb] sram and 4 [mb] flash which comes in handy for managing both the
traditional and deep learning control algorithms. One core is dedicated to handle
the control algorithms while the other takes care of the sensor readings and the user
inputs. This is to make sure that the control algorithm is not interrupted by other
tasks or external interrupts, which is described in detail in Section 3.4.1.

The switches are implemented in order to easily activate or deactivate different parts
of the signal system. Switch sw1 is a switch between the microcontroller and the
lipo battery. Note that if a usb cable is plugged in, the signal system will be driven
by the power from the usb regardless of the state of switch sw1. Switch sw2 and
sw3 are used to activate the control system and switch between the two algorithms
respectively.

The battery v1 in Figure 3.2 is the 3.7 [V ] lipo battery and is used to drive the
signal system. It can be charged by plugging in a usb cable to the microcontroller
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and activating switch sw1. This is to avoid opening the box every time the battery
needs to be charged.

The driving system consists of a four cell lipo battery, two brushed DC motors and
two motor drivers. Both motors are 12 [V ] brushed gear motors connected to sepa-
rated motor drivers. The disk motor has a larger torque (2.16 [Nm] stall) and speed
(437 [rpm] at no load) than the driving wheel motor to be able to rotate the disk fast
enough to generate sufficient torque to maintain stability. For the datasheets of the
reaction disk motor and the wheel motor, see [27] and [28], respectively. The motor
drivers are dimensioned to handle a stall current up to 30 [A]. For the datasheet of
the motor drivers, see [29].

The two motor drivers and the entire signal system, except for the motor encoders,
are mounted inside the electronics box. The motor encoders are mounted on the
back of each motor and are protected with motor caps.

The final result of the mechanical and electrical design can be seen in Figure 3.3.

Figure 3.3: Overview of the result of the mechanical and electrical design.

3.3 Mathematical Model
Due to the systems multiple rotating frames, the Lagrangian method (see Sec-
tion 2.2) is used for deriving the model. The unicycle is divided into 3 parts, the
wheel, the body and the reaction disk. Four frames are then used to describe the
system. The first frame is the world frame, which represents a space fixed coordinate
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system independent of the system itself (see Figure 3.4). Its axes are denoted X0,
Y0 and Z0 and the direction of the driving wheel of the unicycle is assumed to be
fixed along the X0-axis giving the system its first dof. The roll angle of the system
is defined around the X0-axis adding the second dof to the system. The driving
wheel has a separate frame (see Figure 3.4a), which will be referred to as the wheel
frame. Note that the wheel frame is not affected by the spin of the wheel. Its axes
are denoted Xw, Yw and Zw and the pitch of the system is defined as the rotation
of the body and disk around the Yw axis, giving the third dof to the system. Fur-
thermore, the body frame is located at the center of mass of the body and its axes
are denoted Xb, Yb and Zb. Finally, the disk frame is located at the center of mass
of the disk and its axes are denoted Xd, Yd and Zd. The rotation of the disk around
Xd adds the final dof to the system.

Thus the model of the unicycle has 4 degrees of freedom; the spin of the wheel (αw),
the roll of the system (φ), the pitch of the system (θ) and rotation of the disk (αd).
When referred to mutually, the roll and the pitch of the system will be specified as
the system angles.

(a) The position of the wheel frame. (b) The position of the body frame.

Figure 3.4: An illustration of the system showing its angles and positions of frames
used for the mathematical model.
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3.3.1 Dynamical Parameterization
The position of the origin of the wheel frame can be expressed in the world frame
according to

p0
w =

 −rwαw

−rw sin(φ)
rw cos(φ)

 , (3.1)

where rw is the radius of the wheel. Its value can be found in Appendix A.

The rotation from the wheel frame to the world frame R0
w and the rotation from the

body frame to the wheel frame Rw
b are given by

R0
w = RT

x and Rw
b = RT

y (3.2)

respectively, where Rx and Ry are the elementary rotations defined in Equation 2.4
in Section 2.1. The position of the origin of the body frame and the disk frame can,
in the wheel frame, be expressed by

pw
b = Rw

b

 0
0
Lwb

 and pw
d = Rw

b

 0
0
Lwd

 . (3.3)

respectively, where Lwb is the length from the center of the driving wheel to the
center of mass of the body, while Lwd is the distance from the center of the driving
wheel to the center of the disk (see Appendix A). In order to express the origin of the
body frame and the disk frame in the world frame, one has to do the transformations

p0
b = p0

w +R0
wpw

b and p0
d = p0

w +R0
wpw

d , (3.4)

which results in

p0
b =

 −αwrw + Lwb sin(θ)
− sin(φ)(rw + Lwb cos(θ))
cos(φ)(rw + Lwb cos(θ))

 and p0
d =

 −αwrw + Lwd sin(θ)
− sin(φ)(rw + Lwd cos(θ))
cos(φ)(rw + Lwd cos(θ))

 . (3.5)

3.3.2 Lagrange’s Equations
Recall, from Section 2.2, that a set of n coordinates, where n equals the dof, which
can uniquely describe the position of a system are called free generalized coordinates.
Aiming to obtain free generalized coordinates, the trivial choice of coordinates q for
the unicycle are

q(t) =


αw(t)
αd(t)
φ(t)
θ(t)

 . (3.6)

Furthermore, recall that the Lagrangian of a system is defined according to

L(q, q̇) = T (q, q̇) − U(q), (3.7)
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where T is the kinetic energy and U is the potential energy of the system. For the
unicycle, the potential energy of the system is given by

U(q) = g
[
mw mb md

] p
0
w

p0
b

p0
d

 , (3.8)

where mw, mb and md are masses of wheel, body and disk respectively. Their values
are specified in appendix A.

The kinetic energy can be divided into one translational part Tt(q, q̇) and one rota-
tional part Tr(q, q̇). The translational kinetic energy is given by

Tt(q, q̇) = 1
2
mwṗ0

w(q)ṗ0
w(q)T + 1

2
mbṗ

0
b(q)ṗ0

b(q)T + 1
2
mdṗ0

d(q)ṗ0
d(q)T

, (3.9)

where ṗ0
i (q) = ∂p0

i

∂q
q̇ is the time derivative of p0

i .

The rotational kinetic energy of the unicycle is derived for each part of the uni-
cycle. To begin with, there are two rotations acting on the driving wheel. The
first rotation is the spin of the driving wheel caused by the motor and the second
is the roll (φ) around the X0 axis. Hence, the total rotational velocity of the wheel
expressed in the wheel frame is given by

ωw
w = Rx

φ̇0
0

 −

 0
α̇w

0

 =

 φ̇
−α̇w

0

 . (3.10)

The rotational kinetic energy of the wheel can thus be defined as

Tw = 1
2

ωw
w

T Iwωw
w , (3.11)

where Iw is the inertia of the driving wheel expressed in the wheel frame (see Ap-
pendix A.1).

The angular velocity of the body in the body frame is given by

ωb
b = RyRx

φ̇0
0

 +Ry

0
θ̇
0

 =

φ̇ cos(θ)
θ̇

φ̇ sin(θ)

 . (3.12)

The total rotational kinetic energy of the body expressed in the body frame is thus
given by

Tb = 1
2

ωb
bIbω

b
b, (3.13)

where Ib is the inertia of the body around its center of mass (see Appendix A.2).
In the body, both motors (5 and 6 in Figure 3.1), the body itself (2 in Figure 3.1),
the electronics (7 in Figure 3.1), the battery and the stabilization weight (4 in Fig-
ure 3.1) are included.
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At last, the rotational velocity of the disk expressed in the body frame is given by

ωb
d = ωb

b +

α̇d

0
0

 , (3.14)

where α̇d is the rotation of the disk around the Xb-axis due to the motor torque.
The rotational kinetic energy of the disk is given by

Td = 1
2

ωb
d

T
Idωb

d, (3.15)

where Id is the inertia of the disk taken around the center of the disk (see Ap-
pendix A.3).

Finally, the total rotational kinetic energy is given by

Tr(q, q̇) = Tw + Tb + Td. (3.16)

Using Equation 3.9 and 3.16, the total kinetic energy is given by

T (q, q̇) = Tt(q, q̇) + Tr(q, q̇). (3.17)

Recall that the equation of motions is given by Equation 2.11. Inserting Equa-
tion 3.7, one gets

∂

∂q̇
(∂T (q, q̇)

∂q̇
)q̈ + ∂

∂q
(∂T (q, q̇)

∂q̇
)q̇ − ∂L(q, q̇)

∂q
= Q. (3.18)

3.3.3 External Forces
The external forces on the system come from the disk and wheel motors. The torque
generated from the motors should be expressed in the generalized coordinates (see
Equation 2.9).

A positive torque from the wheel motor will result in a direct positive displacement
in αw as well as in θ. Hence, Q1 and Q4 are given by

Q1 = τw and Q4 = τw. (3.19)

Similarly, a positive torque from the disk motor will result in a direct positive dis-
placement in αd and a direct negative displacement in φ. Hence, Q2 and Q3 are
given by

Q2 = τd and Q3 = −τd. (3.20)

The total external generalized forces are given by

Q =


τw

τd

−τd

τw

 . (3.21)
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According to Kirchoffs voltage law, the dynamics of a dc motor can be described
by

− u(t) +Rai(t) + La
d

dt
i(t) + um(t) = 0, (3.22)

where u is the input voltage, Ra is the armature resistance, La is the armature
inductance, i is the armature current, um(t) = Kuωm(t) is the back emf voltage,
Tm(t) = Kmi(t) is the torque generated at the motor shaft, Ku is the motor velocity
constant and Km is the motor torque constant. After measurement, the inductance
of both motors are negligible, and Equation 3.22 simplifies to

−u(t) +Rai(t) + um(t) = 0. (3.23)

The total external generalized forces from Equation 3.21 can now be written accord-
ing to

Q =


Km,wiw(t)
Km,did(t)

−Km,did(t)
Km,wiw(t)

 . (3.24)

By combining Equation 3.24 and 3.23, one gets

Q(q̇,u) =


Km,w

uw(t)−Ku,wα̇w(t)
Ra,w

Km,d
ud(t)−Ku,dα̇d(t)

Ra,d

−Km,d
ud(t)−Ku,dα̇d(t)

Ra,d

Km,w
uw(t)−Ku,wα̇w(t)

Ra,w

 , (3.25)

where Ra,w, Ra,d, Km,w, Km,d, Ku,w and Ku,d can be found in Appendix A.4. Finally,
the dynamics of the system can be described by

∂

∂q̇
(∂T (q, q̇)

∂q̇
)q̈ + ∂

∂q
(∂T (q, q̇)

∂q̇
)q̇ − ∂L(q, q̇)

∂q
− Q(q̇,u) = 0, (3.26)

where u =
[
uw ud

]T
. The Matlab implementation of the nonlinear model de-

scribing the dynamics of the system can be found in the open source repository, see
section 1.5.

3.3.4 Simulation
In order to simulate the continuous time nonlinear model, an integration method
needs to be implemented. One of the most widely used methods is the Runge
Kutta 4 (rk4) method due to its simplicity and good stability characteristics [30].
However, due to stiffness in the model, the rk4 method fails to accurately simulate
the model. A solution to this problem is implementing a variable step size solver that
will automatically decrease the step size for steep gradients. The order 4/5 Fehlberg
solver (rk45) is a common variable step size solver and yields a satisfactory result in
simulations [30]. The implementation of the solver can be found in the open source
repository, see section 1.5.
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3.4 System Software Design
The developed system software design which can be found in the open source repos-
itory (see Section 1.5) is described in this section. It mainly consists of two tasks
which are executed on one core each (see Figure 3.5). The first task is the State
update task, which assigns the state, given the sensor readings. To do this, it utilizes
the two classes Motor and imu. The filtering and sensor fusion of the states are done
in the corresponding classes.

ESP32
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Control_algorithm

Initiate task variables
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State Ready?

Update States 
Locally

Give State Used
Semaphore

Derive Action Using
Current Algorithm

Take Safety
Semaphore

Control
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Apply
Input

Give Safety
Semaphore

Apply 0

Core 1

Reset

Setup
Initiate Motors
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Initiate Buttons

Upright?

Create State Update
Task

Create Control
Task

Initiate task variables
State_Update

State used?

Wait Ts/2

Update Motor States
locally

Update IMUStates
locally

Update States
Globally

Upright? Take Safety
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Give State Ready
Semaphore

Motor ISR

Forward?

Increment
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Activate Control
            ISR

Activate?

Enable Control

Reset

Pushed in?

DL

LQR

Control Algorithm
               ISR

Figure 3.5: A simplified flowchart for the implemented software algorithm.

The second task is the Control algorithm task which, given the state of the external
switches will execute either the traditional or the DL control algorithm. Once the
input is derived, the task will apply the voltage to the motors using the Motor class.

In order to avoid data races and to properly time the two tasks, semaphores are
used. One mutual exclusion semaphore protects the global state. Furthermore,
there are two binary semaphores in order to properly time the Control algorithm
task to execute after the states have been updated. The purpose of the semaphores
is to execute the State update task before the next control update while having as
fresh readings as possible. Finally, another semaphore is used in order to shut down
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the entire system in case of the unicycle falling down.

At reset, the algorithm will run a setup routine before any of the tasks begin to
execute. This setup routine will initiate all objects, semaphores, interrupts and
states. The imu will, depending on the state of the unicycle, calibrate. The two
tasks will not start to execute unless the unicycle is in an upright position.

3.4.1 Sensor Filtering
In this section, the filtering and sensor fusion of all measurements will be described.

Motor state

As mentioned previously, both motors are equipped with a gearbox and a rotary en-
coder. The rotary encoders are quadrature incremental encoders, i.e. there are two
sensors placed with a 90 degree phase difference which generate pulses. Depending
on which channel generates the pulse first, one can not only determine the speed of
the motor, but also the direction. Hence, by keeping track of the amount and or-
der of the pulses, one will get the exact motor position and can estimate the velocity.

In the Motor class, an external interrupt is implemented which increments or decre-
ments a counter depending on the state of the two sensor channels. The quadrature
encoder of the disk motor has 12 counts per channel and revolution on the motor
side, which corresponds to a counts to radians conversion of κd = 0.0136. The
quadrature encoder of the wheel motor has 16 counts per channel and revolution on
the motor side, which corresponds to a counts to radians conversion of κw = 0.0073.
Using this, the angular velocity of the motor can be derived at each sample time by
integrating the counter according to

ωs = ∆cκ
Ts

, (3.27)

where ∆c is the number of counts since last update, κ is the conversion constant
and Ts is the sample time. This results in a resolution of rw ≈ 7 [rpm] for the wheel
motor and rd = 13 [rpm] for the disk motor. Hence, some sort of a low pass filter
should be implemented.

Recall the low pass filter with adaptive time constant given by Equation 2.30 in
section 2.6. By using this filter with λ = 0.7, the worst (steady state) time constant
is derived to

τmotor = wTs = 0.0333. (3.28)

A simulation using this tuning on both motor velocities, with a step input on both
motors, is compared to the ideal simulation in Figure 3.6a. One can see that the
dynamics are relatively slow and not sufficiently fast to neglect.
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Figure 3.6: Simulation using a step input on both motors and filtered motor
velocities with different tunings of the filter constant.

After trial and error, the constant was tuned to λ = 0.45 instead, in which case the
noise of the motor velocities is considered acceptable, while the time constant ends
up at

τmotor = wTs = 0.0167. (3.29)

A simulation using this tuning on the motor velocities with a step input on both
motors is compared to the ideal simulation in Figure 3.6b. The dynamics of the
filter is considered negligible.

System Angles

The roll angle φ and the pitch angle θ can be obtained using the accelerometer and
the gyroscope in the imu. By integrating the gyroscope data, one achieves an orien-
tation estimation that is accurate on short term but drifts over time. However, the
acceleration data is more accurate under the assumption that the imu is not affected
by any forces. This assumption can normally be made in a long term but when the
unit actually moves, it is often exposed to external forces [16]. By fusing the two
sensors using a complementary filter (see section 2.7), a more accurate estimation
of the orientation can be made.

Assume that the unicycle is located in an arbitrary orientation as shown in Fig-
ure 3.7, where F0 is the world coordinate frame, Fimu,b is the base frame of the imu
and Fimu is the body frame of the imu. Furthermore, it is assumed that the imu
is not exposed to any external forces. Then the acceleration readings of the imu,
expressed in the unit

[
gm
s2

]
can be expressed bya

imu
x

aimu
y

aimu
z

 = Rimu
0

0
0
1

 = Rimu
imu,bR

imu,b
0

0
0
1

 . (3.30)

Note that due to the assumption of no external forces, the imu should be put as
close to the center of rotation as possible. The rotation between the world frame
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Figure 3.7: A simple illustration of the three frames used to approximate the
system angles from the imu readings.

and the imu base frame is given by

Rimu,b
0 =

 0 0 1
0 −1 0

−1 0 0

 . (3.31)

As the pitch rotation follows the roll rotation, Rimu
imu,b is given by the yz rotation in

the base frame of the imu. Hence, Equation 3.30 can be written asa
imu
x

aimu
y

aimu
z

 = Ryimu,bRzimu,bR
imu,b
0

0
0
1

 , (3.32)

which evaluates to a
imu
x

aimu
y

aimu
z

 =

cos(θ) cos(φ)
− sin(φ)

cos(φ) sin(θ)

 . (3.33)

By dividing the third row with the first row of Equation 3.33, one will get

aimu
z

aimu
x

= − sin(θ)
cos(θ)

= tan(θ). (3.34)

Hence, using the accelerometer readings, the pitch angle at time step t = kTs can
be estimated by

θ̂a,k = atan2(
aimu

z,k

aimu
x,k

). (3.35)
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Dividing the second row of Equation 3.33 by cos(φ) results in

− tan(φ) =
aimu

y

cos(φ)
. (3.36)

Furthermore, by adding the sum of the squares of the first and third row, one will
get

(aimu
x )2 + (aimu

z )2 = cos2(φ)(cos2(θ) + sin2(θ)) = cos2(φ). (3.37)
Taking the square root of Equation 3.37 results in

cos(φ) =
√

(aimu
x )2 + (aimu

z )2. (3.38)
Finally, combining Equation 3.36 and 3.38, one gets

− tan(φ) =
aimu

y√
(aimu

x )2 + (aimu
z )2

. (3.39)

Hence, using the accelerometer readings, the roll angle at time step t = kTs can be
estimated by

φ̂a,k = −atan2

 aimu
y,k√

(aimu
x,k )2 + (aimu

z,k )2

. (3.40)

(3.41)

Using the gyroscope data, in order to get the estimation ˆ̇θg at time step t = kTs,
one needs to do the inverse transformation of the imu base frame according to

ˆ̇θg,k = −gimu
y,k , (3.42)

where gimu
y is the gyroscope reading around the Yimu axis. Similarly, in order to get

the estimation ˆ̇φg one needs to do an inverse rotation in the imu base frame and the
inverse y rotation according to

ˆ̇φg,k = gimu
x,k sin(θ) − gimu

z,k cos(θ), (3.43)
where gimu

z and gimu
x are the gyroscope readings around the Zimu and Ximu axis re-

spectively.

Finally, recall the complementary filter update step in Equation 2.32. Using Equa-
tion 3.35, 3.40, 3.42 and 3.43, the estimated system angles at time t = kTs are given
by

φ̂k = (1 − γc)φ̂a,k + γc(φ̂k−1 + Tsφ̇g,k) (3.44)
θ̂k = (1 − γc)θ̂a,k + γc(θ̂k−1 + Tsθ̇g,k), (3.45)

where γc is a tuning parameter. By choosing γc = 0.99, a significant contribution
from the gyroscope estimation is made in order to achieve fast dynamics of the filter
while avoiding drift of the estimation.

As the acceleration state is not available directly in the achieved mathematical
model, there is no trivial way of accurately simulating the complementary filter.
However, when implemented in practice it yields satisfactory results.
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Angular Velocities of the Unicycle

As mentioned previously, the angular velocities φ̇ and θ̇ can be estimated as shown
in Equations 3.42 and 3.43. Due to the noise on the sensor data, these states will
be filtered using a Kalman filter as introduced in Section 2.8.

To begin with, a motion model of the angular velocity needs to be selected. Since
the unicycle uses acceleration on the driving wheel and the reaction disk to stabilize,
a random walk model is not considered sufficient. Hence, a constant velocity model
of the gyroscope data (i.e. constant angular acceleration) will be used. As the
angular acceleration is not measured, this state needs to be observed by the Kalman
filter. Assuming white Gaussian noise, the motion and measurement model for both
estimations at time step t = kTs are given by[

ωk

ω̇k

]
=

[
1 Ts

0 1

]
︸ ︷︷ ︸

A

[
ωk−1
ω̇k−1

]
+

[
0

qk−1

]
(3.46)

ym,k =
[
1 0

]
︸ ︷︷ ︸

H

[
ωk

ω̇k

]
+ rk, (3.47)

where qk−1 ∼ N (0, q̃), rk ∼ N (0, r̃) and yk is the sensor measurement. Using Monte
Carlo approximation, the covariance of the noise on both sensor measurements are
estimated as r̃φ̇ = r̃θ̇ = 5×10−6. Furthermore, the model noise covariance is initially
set to q̃φ̇ = q̃θ̇ = 5 × 10−6.

The mean and covariance of both estimations are initialized to m0 = 02x1 and
P0 = 02×2. Due to this, the Kalman filters should be given some time to reach a
steady state value of the covariance matrix Pk. This is done during the Setup routine.

Using the above defined parameters for both estimates ˆ̇φ and ˆ̇θ in the update and
prediction step defined in Equation 2.36 and 2.37, the amplitude of the noise is
considered too large. After trial and error, the model noise covariance for both
methods were tuned to q̃φ̇ = q̃θ̇ = 5 × 10−6. This yields a satisfactory result both in
practice and simulation. A simulation using two Kalman filters with a step input on
the motors is shown in Figure 3.8. The dynamics of the Kalman filters are considered
negligible.

3.5 Design Validation
There are many parameters that may contribute to an uncertainty in the model.
Most of the mechanical parameters such as lengths, masses and inertias can be mea-
sured in reality or approximated in computer aided design (cad) softwares. The
parameters considered most critical are the motor constants from the two motors,
as they are derived using other parameters from the corresponding data sheet (see
Appendix A.4).
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Figure 3.8: Simulation showing observed and true angular velocities (φ̇, θ̇) of the
system over time when using a step input on both motors. Observed states are
shown as solid lines and true states are dashed.

In order to validate the accuracy of the model, the system step response is inves-
tigated both in simulation and practice. This is done by fixing the unicycle in a
string to steadily stay in an initial state. Once the strings are cut, and the unicycle
starts falling with an angular velocity ωth, the step input is applied. Ideally, the
threshold velocity should be infinitely small but due to practical uncertainties, it is
set to ωth = 0.0524 [ rad

s
].

The first test is done by applying a constant input of Vc = 10 [V ] on the disk motor.
This is repeated around three different initial angles φ0 ≈ −1 [deg], φ0 ≈ −5 [deg]
and φ0 ≈ −8 [deg]. The data from all tests is recorded and simulations are per-
formed from the same initial state that the step is applied. Using the nominal motor
parameters, the results shown in Figure 3.9 are achieved.
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Figure 3.9: Comparison between test and simulation results using a step on the disk
motor from three initial positions. Parameters used in simulation are the nominal
parameters. The real test results are shown as solid lines and the simulation results
are dashed.

From Figure 3.9a and 3.9b, a similar shape of the curve can be noted, however the
torque generated from the motor seems to be too high. By tuning the disk motor
parameter Km,d to Km,d = 0.0250, the results shown in Figure 3.10 are achieved.
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These simulations seem to better describe the real system.
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Figure 3.10: Comparison between test and simulation results using a step on
the disk motor from three initial positions. The simulation was made using the
calibrated motor parameter. The real test results are shown as solid lines and the
simulation results are dashed.

A similar step response test is made for the wheel motor in the initial angles θ0 ≈
15 [deg], θ0 ≈ 20 [deg] and θ0 ≈ 25 [deg]. Using the nominal motor parameters of
the wheel motor, the result shown in Figure 3.11 is achieved. Both the amplitude
and the behaviour of the system seem to describe the system satisfactorily. More
complex system identification is left for future work.
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Figure 3.11: Comparison between test and simulation results using a step on
the wheel motor from three initial positions. The simulation was made using the
nominal motor parameters. The real test results are shown as solid lines and the
simulation results are dashed.
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4
Control Strategies

In this chapter, the traditional and the dl algorithms will be implemented, both
in simulation and in practice. In order to give a fair comparison between the two
methods, they will be implemented under the same conditions. That means that
the dl method will be trained using the same state information that is used in the
traditional control method.

4.1 Traditional Control Method
In control theory, there are many ways to implement a controller. The by far
most common controller design is the Proportional-integral-derivative (pid) con-
troller [15]. This is most probably due to its simplicity and clear physical interpre-
tation of each tuning constant. However, in multiple-input-multiple-output (mimo)
systems, the complexity of tuning the constants increases significantly [14].

Another common controller is the lqr controller introduced in Section 2.5. The
lqr is one of the most commonly solved optimal control problems [15]. As a math-
ematical model of the system is available and due to its characteristics, the lqr
controller is implemented in this project.

4.1.1 Linearization
In order to synthesise a lqr controller, a lti system is needed. Hence, the mathe-
matical model developed in Section 3.3 needs to be linearized. The state vector x
is chosen as the time derivative of the general coordinates q, the roll and the pitch
of the system, according to

x =
[
α̇w α̇d φ̇ θ̇ φ θ

]T
. (4.1)

In order to express the dynamics on the form in Equation 2.13, Equation 3.26 needs
to be solved for q̈. In matrix form, the dynamics can be rewritten as

ANL(q, q̇,u)q̈ −BNL(q, q̇, q,u) = 0. (4.2)

As the determinant of ANL is nonzero, the solution is unique and given by

q̈ = A−1
NLBNL(q, q̇,u) = g(q, q̇,u) = g(x,u). (4.3)
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Using g(x,u), the dynamics can now be expressed according to

ẋ(t) = f(x,u), (4.4)

where f(x,u) is given by

f(x,u) =

g(q, q̇,u)
φ̇

θ̇

 . (4.5)

By solving f(x,u) = 0, one gets

xs = 06×1 and us = 02×1. (4.6)

Utilizing Equation 4.5 and 4.6, the system matrices A and B defined by Equa-
tion 2.17 are derived and presented in Appendix B.1. Finally, the linearized dynam-
ics are given by

ẋ(t) = Ax(t) +Bu(t). (4.7)

4.1.2 Discretization
As the controller will be implemented in a microcontroller, the mathematical system
needs to be discretized before using it to derive the controller. More specifically, as
the controller will yield a constant reference signal of the input voltage in every time
step, the zero order hold discretization method described in Section 2.4 should be
used. Using Equation 2.20, the sample time Ts = 0.01 and the continuous time
system matrices A and B derived in the previous section, the discrete time system
matrices Ad and Bd are derived and presented in Appendix B.2. Hence, the discrete
time lti system is described by

ẋk+1 = Adxk +Bduk. (4.8)

4.1.3 Discrete Time System Analysis
The derived discrete time lti system given by Equation 4.8 should be analyzed in
order to validate the correctness of the model and identify system characteristics.
To begin with, both the discrete time lti system and the nonlinear continuous time
system are simulated to fall from an arbitrary initial state set to

x0 =
[
0 0 0 0 0.2 π

180 0.2 π
180

]T
. (4.9)

The result can be shown in Figure 4.1. As expected, one can see that the discrete
time lti system behaves in a similar fashion as the continuous time nonlinear system
for small angle deviations.

An n-dimensional discrete time lti system is asymptotically stable if all eigenval-
ues are strictly within the unit circle in the complex plane [31]. In this case, the
eigenvalues λe are derived to

λe =
[
0.7454 1.0655 1.0590 0.8797 0.9549 0.9460

]T
, (4.10)
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Figure 4.1: Simulation of the continuous time nonlinear system (solid) and the
discrete time lti system (dashed) from a small initial angle.

which implies that the system is unstable. This is of course expected due to the
unstable linearization point.

Furthermore, an n-dimensional discrete time lti system is controllable if the column
vectors of the controllability matrix

C =
[
B AB A2B . . . An−1B

]
(4.11)

span the n dimensional space [31]. Using the derived discrete lti system, the con-
trollability matrix C is derived and its rank is computed to

rank(C) = 6, (4.12)

which is equal the dimension of the system. As a numerical solver was used to derive
the controllability matrix, the conditional number γc ≈ 4 of the system is derived to
ensure that it is well conditioned. As the conditional number is relatively low, one
can draw the conclusion that the column vectors of the controllability matrix span
the dimensional space and the discrete time lti system is controllable.

4.1.4 Controller Synthesis
Recall from Section 2.5 that given a controllable discrete time lti model and positive,
symmetric and semi definite weight matrices Qx ≥ 0 and Qu > 0, an optimal
feedback law can be derived. By weighting the states and inputs equally according
to

Qx =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


and Qu =

[
1 0
0 1

]
, (4.13)
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the optimal steady state feedback gain matrix becomes

K =
[
−2.3749 −0.0003 −0.0034 8.6670 −0.0273 53.3768
0.0004 −1.0748 −33.2082 −0.0070 −189.2764 −0.0224

]
. (4.14)

Using the optimal feedback law

uopt,k = −Kxk, (4.15)

a closed loop simulation of the nonlinear system from an initial state given by

x0 =
[
0 0 0 0 5 π

180 5 π
180

]T
(4.16)

is shown in Figure 4.2. One can see that the linear control law can stabilize the
nonlinear model in a satisfactory way even with this trivial tuning.
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Figure 4.2: Closed loop simulation using the nonlinear continious time system
model and the optimal control law achieved from trivial tuning and the original lti
system.

However, when implemented on the real system, the unicycle only manages to stay
upright for a couple of seconds. The issue lies in an unstable, stuttering behaviour
around the Y axis of the unicycle. All the states corresponding to that axis, i.e. the
angular velocity of the wheel (α̇w), the pitch velocity (θ̇) and the pitch angle (θ) was
tuned as well as possible. However, no matter the tuning the issue was still present.
After further investigation, the problem was found to most probably be due to an
unmodelled backlash in the wheel.

To solve the backlash issue, one would like smoothen the inputs when the wheel
changes its direction. A possible way to do this is to simply implement a filter on
the input to the wheel. Recall Equation 2.29, in which a first order discrete iir filter
is described. Using the first order iir filter, the input to the wheel motor is now
given by

uw,k+1 = (1 − Ts

τ
)uw,k + Ts

τ︸︷︷︸
λw

uf,k, (4.17)

36



4. Control Strategies

where uf is the input to the filter and λw = 0.1. Extending the discrete time lti
model with uw as a state and uf as a new input, gives[

xk+1
uw,k+1

]
=

[
Ad bd,1

01×6 1 − λw

]
︸ ︷︷ ︸

Ãd

[
xk

uw,k

]
︸ ︷︷ ︸

x̃

+
[
06×1 bd,2
λw 0

]
︸ ︷︷ ︸

B̃d

[
uf,k

ud,k

]
︸ ︷︷ ︸

ũ

, (4.18)

where bd,1 and bd,2 are the first and second columns of Bd. The result of the extended
system matrices Ãd and B̃d can be found in Appendix B.3. Deriving the rank of the
controllability matrix C̃ of the extended system, gives

rank(C̃) = 7 (4.19)

and the conditional number of the new system remains low. This implies control-
lability of the extended system. In order to avoid adding an extra weight on the
wheel input, the additional state is given the weight quw = 0 in the weight matrix
Qx and all other weights are kept unchanged. This results in an optimal steady
state feedback matrix given by

K =
[
−4.0731 −0.0003 −0.0039 13.8771 −0.0356 87.4214 1.5365
0.0002 −1.1972 −51.1834 −0.0091 −293.6850 −0.0237 0.0003

]
. (4.20)

From the same initial state as in Equation 4.16, a simulation using the extended
feedback gain is shown in Figures 4.3a - 4.3b. One can conclude that the extended
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Figure 4.3: Closed loop simulation using the nonlinear continuous time system
model and two versions of the control law computed with the extended system.

controller successfully stabilizes the nonlinear system with an undesirable oscillation.
This can be resolved by tuning the weight matrices Qx and Qu. After trial and error,
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the final weight matrices are given by

Qx =



0.001 0 0 0 0 0 0
0 0.001 0 0 0 0 0
0 0 0.1 0 0 0 0
0 0 0 0.1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0


and Qu = 12 ·

[
0.01 0

0 0.01

]
(4.21)

which yields the final optimal steady state feedback gain matrix

K =
[
−3.4573 −0.0000 0.0007 11.6581 −0.0073 73.8567 1.2872
−0.0000 −0.5240 −27.4457 −0.0045 −158.8489 −0.0102 0.0002

]
. (4.22)

As can be seen in Figures 4.3c and 4.3d, the final controller got smaller overshoot
and less oscillation than the previous controller. Furthermore, once tested on the
real system, it stabilizes with a satisfactory behaviour as well.

4.2 Deep Learning Algorithm
For the deep learning control of the unicycle, a Proximal Policy Optimization (ppo)
is chosen, see Section 2.9.5. The method is built on a policy based reinforcement
learning which offers practical ways of dealing with continuous spaces and infinite
number of actions. Instead of learning probability for every action, policy based
methods learn the distribution of probabilities over actions [18]. The official paper
on ppo method [23] presents results from training the algorithm along with other
ones on various applications. The ppo showed a superiority in complex control
tasks compared to other policy based algorithms. It is as well considered to be the
state-of-the-art method for reinforced learning in continuous spaces and is therefore
chosen for the task [32].

4.2.1 DL Framework

An implementation of the ppo algorithm from OpenAI TM’s Baselines is used. In
order to train an agent with the ppo method a special training environment needs
to be set up using the Gym library. Gym is a platform aimed to standardise more
environments used in publications in order to make it easier to reproduce public re-
search and compare results from independent papers. In the environment, the agent
can explore the properties of the physical system through simulation. Hence, the
nonlinear mathematical model developed in Section 3.3 is implemented in Python
to be used during training. Furthermore, in order to accurately simulate the con-
tinuous time nonlinear model, a rk45 solver is implemented, see Section 3.3.4. All
Gym environments must have a common interface of a special environment class,
consisting of the two base functions, Step and Reset.

38



4. Control Strategies

The Step function observes the current state and uses the nonlinear model and
Runge Kutta numerical integration to take a step with given inputs. Furthermore,
the step function returns whether the resulting state is terminal or not, the reward
and an observation of the new state.

The purpose of the Reset function is to set the initial states of the agent in the
environment. This way, the agent can start from a new initial state every episode
and explore the system. Hence, the reset function is called every time a new episode
should be initiated.

The unicycle environment focuses on episodic setting of reinforced learning. The
reward returned from the Step function is determined by a reward function and
is used as a feedback to the agent. If the input which the agent selects leads to
a terminal state, the episode will end and the agent will call the Reset function.
Each step taken gives a reward and the agent’s goal is to maximize that reward. In
general, the more steps the agent manages to take without falling down, the more
reward it will get for that episode. By repeating this procedure in the unicycle
environment the agent generates its own training data and uses it to improve its
policy.

4.2.2 Parameters

Learning Rate

An important tuning parameter during training is the learning rate introduced in
Section 2.9.1. If the learning rate is selected too large the gradient will most likely
fail to converge or even diverge and enter a region of the parameter space far away
from the optimum. This can be avoided by reducing the learning rate. However,
with a too small learning rate gradient decent can be slow and the training could
end up without any results at all. In general, selecting a learning rate is a trade off
between the larger learning rates fast convergence and the small learning rates long
training.

To select the learning rate the previously mentioned paper on ppo will be used as a
benchmark [23]. There, a learning rate of 3 × 10−4 was used to train an agent in a
fairly complex continuous control problem for a million time steps. By monitoring
the episodic reward during training, an appropriate learning rate should be selected.
During early stages of the training, the learning rate αr is set to αr = 10−3. The
learning rate will then be reduced when the model is fine tuned.

Observation and Action Spaces

All possible actions the agent can take in the environment are defined by the action
space. The action space is determined by the maximum and minimum voltage to
the motors and is therefore defined as
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uw ∈
[
−ūw, ūw

]
ud ∈

[
−ūd, ūd

]
, (4.23)

where ūw = ūd = 12 [V ]. Similarly, all possible states the agent’s actions can lead to
are defined by the observation space. If the system deviates too far away from the
upright position, it will be practically impossible to stabilize. In order to prevent the
agent from exploring regions too far from those that are stabilizable, the observation
space is limited by terminal states. Thus, the observation space x̄ is defined as the
state x with the limits

α̇w ∈
[
− ¯̇αw, ¯̇αw

]
, α̇d ∈

[
− ¯̇αd, ¯̇αd

]
, φ̇ ∈

[
− ¯̇φ , ¯̇φ

]
, (4.24)

θ̇ ∈
[
− ¯̇θ , ¯̇θ

]
, φ ∈

[
−φ̄ , φ̄

]
, θ ∈

[
−θ̄ , θ̄

]
, (4.25)

where ¯̇αw = 84 [rpm], ¯̇αd = 450 [rpm], ¯̇φ = ¯̇θ = 100 [deg
s ] and φ̄ = θ̄ = 25 [deg]. If

the agent finds itself in a state outside of the observation space (in a terminal state)
the episode will end and the Reset function is called.

Reward

Selecting a suitable reward function is an essential factor when training a model.
The reward is the feedback the agent receives from the environment. It is impor-
tant to select a reward which reflects what should be accomplished. If the reward
function is badly engineered the agent might learn an unexpected way to make the
environment deliver a reward with an undesirable behaviour.

Designing a reward function is in general left to an informal trial-and error search for
functions that produce acceptable results [18]. Using inspiration from other previ-
ous and similar projects, several reward functions are examined with various results.
Below, some examples of the behaviour in the simulated nonlinear model at early
stages of the training, using different reward functions, are presented.

A common reward function is to give 1 as a reward for an acceptable step in the
environment and -1 for a step that leads to a system failure. Based on this, the
reward function

Rk =

1 for xt ∈ x̄

−1 otherwise
(4.26)

is implemented, where Rk is the reward at time step t = kTs.
This leads to an upright but oscillating behaviour of the unicycle as can be seen in
Figure 4.4. The system manages to maintain within the observation space, however,
without the knowledge of the true goal of being close to zero. Another reward func-
tion is constructed with an increasing reward as θ and φ approaches zero, according
to

Rk = (1 −
(
φk

φ̄

)2
) + (1 −

(
θk

θ̄

)2
), (4.27)
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where φk and θk is the roll and the pitch angle respectively at time instant t = kTs.
It is inspired by a function used in a continuous control problem of the Mountain
car from OpenAI’s Gym. The performance achieved from using this reward function
can be seen in Figure 4.5. One can note that the reward function seems to have a
reasonably good performance in the angles, while the input oscillates in an undesir-
able fashion. This is a typical example of a fairly simple reward function working
well if the system is going to be simulated, however, in practice it will most proba-
bly be problematic. Hence, achieving a more complex and restricted behaviour with
reasonable inputs for a real physical system calls for a more complex function.The
final suggestion is a function constructed from all states according to

6∑
i=1

βi(1 −
(
xi,k

x̄i

)2
), (4.28)

where xi,k is the current state, x̄i is the maximum value for each state and βi, i =
1 . . . 6 are scaling constants for each factor. Figure 4.6 shows a steady state perfor-
mance gained from this reward function. In this example, βi = 1 for all terms. As
soon as the system ends up outside the observation space the episode is terminated
and the agent receives a negative reward of -1.
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Figure 4.4: An oscillating "stable" performance in simulation after million itera-
tions using reward function from Equation 4.26.
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Figure 4.5: Simulation showing stable system angles after million iterations using
reward function in Equation 4.27. The simulated motor voltage inputs however are
not optimal.
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Figure 4.6: Stable performance of both system angles and motor inputs after
million iterations using the reward function from Equation 4.28.

Reset Function

As previously mentioned, the purpose of the Reset function is to set the initial states
of the agent in the environment. This is done every time a new episode starts. As
a first attempt, the reset function selects an initial state according to

x0 =
[
0 0 0 0 φ0 θ0

]T
, (4.29)

where θ0 and φ0 are drawn according to a random uniform distribution from the
observation space, i.e.

φ0 ∈
[
−φ̄, φ̄

]
, θ0 ∈

[
−θ̄, θ̄

]
. (4.30)

Using this reset function, the algorithm is only capable of stabilizing from a small
initial angle. In order to force the policy to stabilize larger initial angles, the set
from which θ0 and φ0 is selected is redefined to φ0 ∈ Φ and θ ∈ Θ. The sets Φ and
Θ are defined according to

Φ =
[
−φ̄, −

¯
φ

]
∪

[
¯
φ, φ̄

]
, Θ =

[
−θ̄, −

¯
θ

]
∪

[
¯
θ, θ̄

]
, (4.31)

where φ̄,
¯
φ, θ̄ and

¯
θ are increased the longer the agent has trained. This way, the

algorithm first focuses to learn to stabilize smaller angles. Once it learns that, it
can gradually learn to stabilize larger angles as well.

Finally, as the policy improves, the agent manages to make the system remain stable
for a longer amount of time during training. Hence, it is therefore receiving a lot
of reward for long episodes without exploring the system and improve its policy
further. Due to this, a time limit is set for each episode. Once the episode exceeds
k = 15000 steps, the reset function is called and the agent is therefore regularly
forced to stabilize from a large angle during training.

4.2.3 Final ppo Model
The final model is first trained at a learning rate of αr = 10−3 for ni = 107 itera-
tions. It is then fine tuned using a decreased learning of αr = 10−6 for ni = 5 × 105

iterations at a time.
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Furthermore, starting from φ̄ = 7 [deg],
¯
φ = 3 [deg], θ̄ = 15 [deg] and

¯
θ = 7 [deg],

the upper bound of the reset limitations from Equation 4.31 are increased in 1 [deg]
at a time until there are no more improvement in the maximum initial angles the
algorithm manages to stabilize. The final reset limitations are given by φ̄ = 9 [deg],

¯
φ = 3 [deg], θ̄ = 22 [deg] and

¯
θ = 7 [deg].

During the first ni = 106 iterations, the scaling factors βi from the reward function
in Equation 4.28 are set to be 1 for all states. When fine tuning, β2 is set to 1.5
in several iteration sets in order to try to reduce the aggressiveness of the disk in
practice.

Transfer to Hardware

The final trained and fine tuned model is a mulitylayer precepton network with an
input layer, two hidden layers and an output layer, see Section 2.9.2. The input
layer and the hidden layers have a tanh activation function, see Section 2.9.3. The
input layer has six nodes, one for each state. The hidden layers have 64 nodes each
and the output layer has two final nodes. This setup can be interpreted as three
cascaded matrix multiplications. The output y0 from the input layer is given by

y0 = tanh(W0xk + b0), (4.32)

where W0 and b0 are the weights and the biases of the input layer respectively. The
output y1 from the first hidden layer is given by

y1 = tanh(W1y0 + b1), (4.33)

where W1 and b1 are the weights and the biases of the first hidden layer respectively.
Similarly, the output y2 from the second hidden layer is given by

y2 = tanh(W2y1 + b2), (4.34)

where W2 and b2 are the weights and the biases of the second hidden layer respec-
tively. Finally, the control law of the dl algorithm is given by

uk = W3y2 + b2, (4.35)

where W3 and b3 are the weights and the biases of the output layer, respectively.

When transferring the trained policy to the unicycle, it does not manage to stabilize.
To solve this, noise was added to the observations in the simulation environment and
additional fine tuning of the policy was done using the same training parameters.
The added noise was set to a normal distributed Gaussian noise with zero mean
and a standard deviation of 5 × 10−6. When transferring the new policy to the real
physical system it managed to stabilize in a satisfactory way.
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5
Results

In this chapter, the final versions of the traditional lqr controller and the ppo con-
trol algorithm will be evaluated. The evaluation of the two methods will be done
in simulation and in practice separately. In order to get a hint on the differences
between simulation and the real system, the simulations will be evaluated using the
final practical controllers given by Equation 4.22 and 4.35. Due to the fast dynam-
ics of the sensor filters, see Section 3.4, they are not included in the simulations.
However, the filter on the input signal uw implemented due to the backlash in the
ground wheel has considerably slower dynamics and is included in all simulations.

In order to achieve a viable definition of a stable state for the real system, a test of
the steady state performance of the two control methods will be done in practice.
To evaluate the performance and robustness of the methods, there will be 4 types
of tests that will be executed in a similar fashion both in simulation and in practice.
The intention of these tests is to evaluate the:

• Maximum initial angle,
• General performance metrics,
• Robustness to model errors,
• Robustness to external impulses.

The scope of the Maximum initial angle test is to evaluate what the maximal initial
deviation from the zero state each control method can stabilize from. This way, one
can get an idea of the interval of stabilization for both methods.

The General performance metrics tests are meant to evaluate the time of stabiliza-
tion and the amount of overshoot of the methods. This should be done from a fixed
initial state within interval of stabilization for both methods. The time of stabiliza-
tion is defined as the time it takes to reach a stable state.

In order to get an idea of how the two methods perform when exposed to model
errors, they will be evaluated with a slight translation of the center of mass. This
will be tested in the Robustness to model errors test by evaluating the way each
method stabilizes its extreme initial positions. Hence, the Maximum initial angle
test will be repeated using the system with a translated center of mass.

Finally, the scope of the Robustness to external impulses test is to find the maximum
external impulse each method can handle.
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5.1 Test Procedure
In order to make the results replicable, all tests will be executed according to a
predefined test procedure. The test procedure of all tests will be described in this
section.

5.1.1 Steady State Performance Test
The Steady state performance test will be executed by starting the unicycle in a
stable position and let it balance by itself for a time t = 10 [s]. The tests for the
different methods will be executed several times consecutively in order to avoid any
eventual temperature dependency from the imu. The tests will be done in the same
environment using the same calibration during all tests for both methods. The result
from the tests should be the mean and standard deviation of the angle states as well
as the motor states as these will be used as a metric to define the stable state.

5.1.2 Maximum initial angle
The maximum initial angle test will be executed in as close to perfect environment
as possible. In simulation, this means simulating the two control methods using the
non-linear model without any sensor or model noise. In practice, the unicycle will
be evaluated with minimal external disturbances.

Suppose that the unicycle is to be tested from the initial state

x̂0 =
[
0 0 0 0 φ̂0 θ̂0

]T
. (5.1)

In practice, the unicycle will be fixed in two strings before the test is initiated in
order to get a steady initial position close to φ̂0 and θ̂0. To avoid external interference
on the system caused by the strings, the test will not be started until the strings are
cut. Once the strings are cut, and the unicycle starts falling with a angular velocity
ωth, the control algorithm is activated. Ideally, the threshold velocity in which the
control algorithm is activated should be infinitely small. However, due to practical
uncertainties, it was set to ωth = 3 [deg

s
] after trial and error on the physical system.

Hence, the initial state from which the test is performed will be

x0 =
[
0 0 φ̇0 θ̇0 φ0 θ0

]T
, (5.2)

where

|φ̇0| ∈
[
0, ωth + ε1

]
|θ̇0| ∈

[
0, ωth + ε2

]
(5.3)

φ0 ∈
[
φ̂0 − ε3, φ̂0 + ε3

]
θ0 ∈

[
θ̂0 − ε4, θ̂0 + ε4

]
(5.4)

and εi is a small number. Only tests in which the angle of the tested dof and the
corresponding angular velocity fulfills Equation 5.2 using ε = 0.2 [deg] and ε = 3 [deg

s ]
will be recorded. This procedure will be repeated until each dof and method has

46



5. Results

10 approved test recordings.

The maximum initial angle of a method in a specific dof is regarded as the maximum
integer in which the method stabilizes. In practice, a method is defined to stabilize
a specific initial position given at least 5 out of the 10 approved tests have stabilized.
This ratio was decided based on the fact that when performing the tests the human
factor had a huge impact on the results due to the complexity of the execution of
the tests.

5.1.3 General Performance Metrics
In order to compare time of stabilization and the overshoot of the two methods, the
metrics should be evaluated from the same initial position using both methods. The
test procedure described for the Maximum initial angle test will be repeated from
an initial position within both methods interval of stabilization. In practice, each
method should have 10 approved tests in each dof, in which the time of stabiliza-
tion and the overshoot is derived.

The time of stabilization is defined as the time when the tested initial angle and the
corresponding motor velocity first is within the interval I1 and I2 defined by

I1 =
[
0, δa

]
I2 =

[
0, δα

]
, (5.5)

where δa and δα are chosen according to the Steady state performance test, see Sec-
tion 5.2.

The General performance metrics test will be evaluated for a non zero initial position
both in the X0 and Y0 axis of the unicycle, see Figure 3.4. The result of the test
will be the time of stabilization and the overshoot for each dof, both in simulation
and in practice.

5.1.4 Robustness to Model Error
The Robustness to model error test will be done by translating the center of mass
slightly in the horizontal direction. This is be achieved by removing the weight in
the battery box, both in the simulated non-linear model and the actual hardware,
resulting in a translation of δcom ≈ 13 [mm]. A new mathematical model is derived
in the same way as described in Section 3.3, with the position of the body in the
wheel frame now given by

pw
b = RT

y

 0
δcom
Lwb

 (5.6)

and a slight adjustment of mb and Ib. The Maximum initial angle test will be
repeated using the adjusted model.
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5.1.5 Robustness to External Impulses
The Robustness to external impulses test will show how well the two methods can
handle external disturbances in form of an impulse.

Figure 5.1: An illustration of the Impulse test setup.

In practice, the force will be applied by a ball hanging in a string from the ceiling.
Before the test is initiated, the ball is moved to a fixed height along a circle with
the radius equal the length of the string. Without creating a slack in the string, the
ball is dropped from the initial position. It will swing down and hit the unicycle
once it reaches the downward hanging position, see Figure 5.1. Since impulse can be
regarded as a change in momentum, the impulse can be derived using the momentum
the ball has at the time instance it hits the unicycle,

Jm =
∫ t2

t1
Fdt ≈ ∆p = mbv2 −mbv1 (5.7)

where Jm is the impulse, p is the momentum and mb is the mass of the ball [13].
Assuming a perfectly inelastic collision at t2, v1 is the velocity of the ball at t1 = 0
just before impact and v2 = 0 is the velocity after the collision, at time t2 = ∆t.

In order to calculate the velocity at impact, the law of Conservation of Energy is
used. Assuming the ball has no velocity before it is dropped and the height of impact
is defined as zero, the law of Conservation yields

mbgh = 1
2
mbv

2
1, (5.8)

where g is gravity and h is the height of the ball [13].
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In order to keep the initial position of the unicycle as close to zero as possible,
the control algorithm will be activated once the collision has occured. This is im-
plemented in a similar way as the Maximum initial angle test, using a threshold
angular velocity of the unicycle set to ωth = 3 [deg

s ]. In practice, this test will only
be performed for an impulse in the Y0 direction (reperesented as F1 in Figure 5.2)
due to the physical characteristic of the system and the fact that the hardware is
sensitive to hard hits.

Figure 5.2: A diagram of the system showing its base frame, X0Y0Z0 and where
the two forces, F1 and F2 are acting on it in simulation.

In simulation, this test will be done by extending the mathematical model derived in
Section 3.3 with two additional inputs representing the external forces. The forces
are applied at

p2 = pd and p1 = pd +

 0
wb

2
0

 , (5.9)

where wb = 110 [mm] is the width of the body. Points pd and pb are the same
as presented in Chapter 3, center of reaction disk and center of body respectively.
Assuming the applied force is linear, by simulating a force Fe for a time ∆t, the
impulse can be derived using

Jsim = Fe∆t. (5.10)

5.2 Steady State Performance
Both control methods manage to remain upright during all the executed tests. The
steady state performance metrics of every test is summarized in Table 5.1. First,
one can note that both the traditional lqr controller and the ppo algorithm have
a fairly small mean angle in the roll direction. However, the ppo algorithm got a
considerably larger standard deviation of the roll angle compared to traditional lqr
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Table 5.1: Performance metrics from the Steady state performance test.

Method Test # Std,
φ [deg]

Mean,
φ [deg]

Std,
θ [deg]

Mean,
θ [deg]

Std,
α̇d [rpm]

Mean,
α̇d [rpm]

Std,
α̇w [rpm]

Mean,
α̇w [rpm]

lqr 1 0.1898 -0.0898 1.2058 -0.9057 26.4456 8.2613 13.2353 -3.3833
lqr 2 0.2348 0.2131 1.1274 -0.6958 26.7204 -32.9591 11.8973 -0.5704
lqr 3 0.1454 -0.0752 1.1800 -0.8256 20.6729 5.1093 12.7707 -1.1403
lqr 4 0.1854 0.2516 1.5674 -0.9115 16.9824 -35.2621 15.0449 -3.0854
lqr 5 0.1840 0.0273 1.7148 -0.8394 22.3484 -10.1699 16.3178 -1.3653
ppo 1 1.6434 -0.4834 1.5676 -1.9481 136.4362 42.0260 18.7758 -22.3214
ppo 2 1.6793 1.1328 1.5296 1.1285 123.1010 -76.0093 21.3889 15.3171
ppo 3 1.4247 0.7629 1.5172 -1.1049 116.5147 -34.7585 19.1792 -10.6706
ppo 4 1.9951 -1.2780 1.2737 -1.1804 133.3778 72.8266 15.4322 -12.8182
ppo 5 1.3123 -1.7157 1.5408 -1.5720 107.8820 111.5666 18.4815 -20.2148
LQR Avg 0.1879 0.0654 1.4831 -0.8356 22.6340 -13.0041 13.8532 -1.9089
DL Avg 1.6110 -0.3163 1.4858 -0.9242 123.4623 23.1303 18.6515 -10.1416

controller. This can also be seen in Figure 5.3a, in which the angle states of the
unicycle are plotted separately for both methods in the Steady State Performance
test. This stuttering performance of the roll angle of the ppo alogithm is caused
by the behaviour of the disk. In Figure 5.3b, where the motor velocities are plotted
separately for both methods during Test 1, one can see that the disk velocity of the
ppo algorithm reaches a maximum velocity of α̇d ≈ 400 [rpm]. This can also be
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Figure 5.3: A typical result from the Steady state performance test. Angles of the
unicycle and motor velocities are plotted for the traditional lqr controller in solid
lines and for the ppo algorithm in dashed lines.

observed in the average result as the standard deviation of the disk velocity in the
ppo algorithm is σw ≈ 123 [rpm] compared to the traditional lqr controller which
has a standard deviation of the disk velocity of σd ≈ 23 [rpm].

Using a similar argumentation observing Table 5.1 and Figure 5.3a, one can note
that the performance of the stabilization of the pitch angle is similar for the two
methods. However, the ppo method stabilizes using a small constant velocity on
the ground wheel. This will ultimately end up in the unicycle slowly travelling in
the positive x- direction.
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Utilizing the metrics from Table 5.1, the stabilization interval defined in Equation 5.5
is determined using

δa = 2 δα = 130, (5.11)

if the tested initial angle is a roll angle and

δa = 2 δα = 20, (5.12)

if the tested initial angle is a pitch angle.

5.3 Maximum Initial Angle of Stabilization
The maximum initial roll angle that both the ppo algorithm and the traditional
lqr controller manage to stabilize in simulation is φ0 = 8 [deg]. The plots of angles
and angular velocities of the unicycle and the time of stabilization ts as well as
the maximal overshoot Mp for the simulation using traditional lqr are shown in
Figure 5.4a and 5.4b. The corresponding plots using ppo are shown in Figure 5.4c
and 5.4d.
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Figure 5.4: Simulation results for the maximum roll angles φ0 = 8 [deg] for both
lqr and ppo. The states of the unicycle are shown in solid lines and the performance
metrics are shown in dashed lines.

In the pitch the ppo algorithm manages to stabilize an initial angle of θ0 = 19 [deg]
while the traditional lqr manages to stabilize an initial angle of θ0 = 28 [deg]. In
Figure 5.5a and 5.5b, the angles and the angular velocities of the traditional lqr
in the simulation are shown. The corresponding plots using ppo are shown in Fig-
ure 5.5c and 5.5d.
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Figure 5.5: Simulation results for the maximum pitch angles θ0 = 19 [deg] for ppo
and θ0 = 28 [deg] for lqr.

A similar result is achieved in practice. In Table C.1 in Appendix C.1, a summary
of the approved tests executed for an initial roll angle of φ̂0 = 7 [deg] using the
traditional lqr controller can be found. The unicycle manages to stabilize 9 out of
10 attempts and it is the maximum integer roll angle that passes the test procedure
requirements, see Section 5.1.2. In Table C.2, in Appendix C.1, a corresponding
summary for the same initial angle using the ppo algorithm is found. The unicycle
manages to stabilize 8 out of 10 attempts and turns out to be the largest initial roll
angle that passes the test procedure requirements. Hence, both methods have the
same maximum angle of stabilization in practice as well. In Figure 5.6, the angles
and the angular velocities as well as the time of stabilization ts and the maximal
overshoot Mp from Test 4 using the traditional lqr controller and Test 9 using
the ppo algorithm are shown. These tests represent the general performance of the
respective control method.

In Table C.3 in Appendix C.1, a summary of the approved tests executed for an
initial pitch angle of θ̂0 = 28 [deg] using the traditional lqr controller can be found.
The method manages to stabilize 7 of 10 attempts of this angle which is the maxi-
mum initial pitch angle that passes the test procedure requirements. In Figure 5.7c
and 5.7d, the angles and angular velocities for test 7 are shown which represent the
general outcome.

The maximum initial pitch angle that passes the test procedure requirements using
the ppo algorithm is θ̂0 = 20 [deg] and the summary of all approved tests is shown in
Table C.4 in Appendix C.1. The ppo algorithm successfully passes 7 out of 10 tests
from this initial angle. In Figure 5.7a and 5.7b, the angles and angular velocities
for Test 10 are shown which represent the general outcome.
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Figure 5.6: A typical result for the maximum roll angles φ0 = 7 [deg] for both lqr
and ppo. The states of the unicycle are shown in solid lines and the performance
metrics are shown in dashed lines.
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Figure 5.7: A typical result for the maximum pitch angles θ0 = 28 [deg] for lqr
and θ0 = 20 [deg] for ppo.

5.4 General Performance Metrics
The fact that both control methods have an equal maximum angle of stabilization in
the roll angle enables the general performance metrics of the roll to be evaluated at
this angle. This is preferable due to the fairly large stabilization interval of the roll
angle as defined in Equation 5.11. Hence, in simulation, the general performance
metrics are evaluated at φ0 = 8 [deg], see Figure 5.4. The traditional lqr controller
has both a smaller time of stabilization ts = 1.01 [s] and overshoot Mp = 4.7 [deg]
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compared to the ppo algorithm which has ts = 1.83 [s] and Mp = 8.2 [deg].

As the two methods have different maximum pitch angles, the performance metrics
in the general case will be done from an initial angle that is inside both methods
stabilization interval. The chosen initial angle that will be tested is set to θ̂0 =
14 [deg]. Using the limits defined in Equation 5.12, the results of the simulation are
shown in Figure 5.8. Unlike the roll performance, the ppo algorithm has a lower
overshoot of Mp = 1.7 [deg] compared to the traditional lqr controller which has
an overshoot of Mp = 2.74 [deg]. However, the traditional lqr controller has a
smaller time of stabilization ts = 0.74 [s] compared to the ppo algorithm which has
ts = 1.12 [s].
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Figure 5.8: Simulation result from the General performance metric test from an
initial pitch angle of θ0 = 14 [deg] for both lqr amd ppo. The states of the unicycle
are shown in solid lines and the performance metrics are shown in dashed lines.

Finally, in order to be able to compare simulation and practical performance, a
last simulation from an initial angle of φ0 = 7 [deg] is made. The results of the
performance metrics from all simulations are summarized in Table 5.2.

Using the practical tests from the maximum roll angle, see Figure 5.6, the perfor-
mance metrics from all tests are summarized in Table C.5 in Appendix C.2. Similar
to the simulations, the traditional lqr controller has both a smaller average time
of stabilization ts ≈ 0.9 [s] and overshoot Mp ≈ 4.0 [deg] compared to the ppo
algorithm which has ts ≈ 1.4 [s] and Mp = 7.8 [deg].

The performance metrics of 10 approved tests from an initial pitch angle of θ̂0 =
14 [deg] are summarized in Table C.6 in Appendix C.2. A general plot of the angles
and angular velocities and the performance metrics for these tests are shown in
Figure 5.9. A result similar to the simulation is achieved in the pitch direction as
well, as the ppo algorithm has a smaller overshoot but a larger time of stabilization
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Table 5.2: General performance metrics from simulations of different initial posi-
tions.

Initial angle,
[deg] Method Time of Stabilization,

ts [s]
Overshoot,
Mp [deg]

φ0 = 8 lqr 1.01 4.70
φ0 = 8 ppo 1.83 8.20
θ0 = 14 lqr 0.74 2.74
θ0 = 14 ppo 1.12 1.70
φ0 = 7 lqr 0.79 3.53
φ0 = 7 ppo 0.82 4.57

in comparison to the traditional lqr controller. A table summarizing the average
performance metrics of the practical tests is shown in Table 5.3.
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Figure 5.9: A typical result from the General performance metrics test from an
initial pitch angle of θ̂0 = 14 [deg] for both lqr amd ppo. The states of the unicycle
are shown in solid lines and the performance metrics are shown in dashed lines.

5.5 Robustness to Model Errors
Simulations of maximum angles using the mathematical model with translated cen-
ter of mass for both controllers are shown in Figure 5.10. The maximum angle
in a positive roll direction is to φ0 = 11 [deg] for the traditional lqr controller
and φ0 = 9 [deg] for the ppo algorithm. Hence, when simulating the model with
translated center of mass, the traditional lqr controller can handle a larger ini-
tial positive roll angle compared to the ppo algorithm and both methods performs
better compared to the ideal simulation. However, in the negative roll direction,
both controllers can only manage to stabilize from a maximum negative angle of
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Table 5.3: Average general performance metrics from practical tests in different
initial positions.

Initial angle,
[deg] Method Time of Stabilization,

ts [s]
Overshoot,
Mp [deg]

φ̂0 = 7 lqr 0.8622 4.0083
φ̂0 = 7 ppo 1.3775 7.8011
θ̂0 = 14 lqr 0.7920 7.8367
θ̂0 = 14 ppo 0.8330 4.4357

φ0 = −6 [deg]. Furthermore, the maximum pitch angles of stabilization in simula-
tion using the traditional lqr controller are θ0 = 28 [deg] while the ppo algorithm
can manage from θ0 = 19 [deg]. Additionally, in Figure 5.10 one can notice that
both controllers stabilize around a steady state angle of µlqr = µppo = 2.88 [deg] in
the roll while the pitch angle stabilizes at zero.
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Figure 5.10: Simulation from the Robustness to model errors test. The angles
are shown in solid lines and the dashed lines are the values which the angles are
converging to.

In tables C.7- C.10 in Appendix C, results can be found from all practical tests made
on the system containing the model error. The traditional lqr controller manages
to stabilize in 9 out of 10 tries from an initial roll angle of φ̂0 = 9 [deg] and 8 out of
10 tries from an initial pitch angle of θ̂0 = 29 [deg]. The ppo algorithm manages to
stabilize in 7 out of 10 times from an initial roll angle of φ̂0 = 9 [deg] and 5 out of
10 times from an initial pitch angle of θ̂0 = 21 [deg].

Figure 5.11 shows a typical result of pitch and roll angles for both controllers from
all performed practical tests. One can note that, as in simulation, the roll angle
converges to a steady state in both methods. In order to derive the average value in
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which the method seems to converge towards, one needs to define a time instance in
which the controller have stabilized. Utilizing the result from Section 5.4, it can be
seen that both controllers have stabilized well within the interval t ∈

[
0 2

]
[s]. By

taking the average of the roll data in the tests performed from an initial roll angle
after t = 2 [s] for both methods, one achieves the results shown in Table 5.4. The
practical offsets µ̄lqr ≈ 1.5 [deg] and µ̄ppo ≈ 1.2 [deg] are derived as the mean offset
of all tests and is plotted Figure 5.11.
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Figure 5.11: A typical result from the Robustness to model errors test in practice.
The angles are shown in solid lines and the dashed lines are the values which the
angles are converging to.

Table 5.4: The average angle of convergence from the practical Robustness to
model error tests performed from an initial roll angle. The average convergence is
derived to be µ̄lqr ≈ 1.2 for the traditional lqr controller and µ̄ppo ≈ 1.5 for the
ppo algorithm.

Test # 1 2 3 4 5 6 7 8 9 10 Avg
µppo 1.2 1.2806 1.1943 1.1814 1.9879 -0.367 - - 1.9286 - 1.2008
µlqr 2.2935 0.86413 1.3702 - 1.5176 1.0713 2.472 1.5314 1.251 1.1035 1.4972

5.6 Robustness to External Impulses
Simulation of the effects of external impulses applied along Y0 axis as described
in Figure 5.2 are presented in Figure 5.12. Similarly, Figure 5.13 shows the effect
of an external impulse along the X0 axis of both controllers. In simulation, the
maximum impulse the traditional lqr controller is able to handle in the Y0 direction
(corresponding to the applied force F1 in Figure 5.2) is Jy = 0.2 [Ns] and the
corresponding maximum impulse for the ppo algorithm is Jy = 0.2 [Ns] as well.
Similarly, the maximum impulse the traditional lqr controller manages to stabilize
in the X0 direction (corresponding to the force F2 in Figure 5.2) is Jx = 0.49 [Ns]
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compared to the ppo algorithm which manages to stabilize a maximum impulse of
Jx = 0.34 [Ns]. Thus, the two algorithms are equally robust in the roll angle but
the traditional lqr controller is more robust in the pitch angle.
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Figure 5.12: Result of the system angles from simulations of the effect of maximum
external impulse parallel to the Y0 axis.
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Figure 5.13: Result of the system angles from simulations of the effect of maximum
external impulse parallel to the X0 axis.

Tables C.11 and C.12 in Appendix C show a summary of initial conditions for each
performed practical test as well as an index indicating whether or not the system
passes the test by managing to stay upright after the impulse is applied. By in-
creasing the height of the initial position of the ball in steps of ∆h = 10 [mm],
the maximum impulse in the Y0 direction is determined to Jy ≈ 0.2 [Ns] for both
methods. The traditional lqr controller manages to stabilize in 6 out of 10 tries
and the ppo algorithm manages to stabilize in 7 out of 10 tries. Figure 5.14 shows
a general reaction of the angular response from the maximum impulse disturbance.
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Figure 5.14: A typical result of the system angles from the Robustness to external
imupses test from an external impulse parallel to the Y0 axis.
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Large initial states in Tables C.11 and C.12 is due to the large impulse of the ball
generating a fast change in the states. When the controller starts it has therefore
already gotten a high angular velocity from the hit.
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6
Discussion

This chapter will provide an analysis and a general discussion on the test results
presented in the previous chapter. Furthermore, an attempt of generalizing the re-
sults to cast light on a wider perspective when comparing the two methods will be
done. Finally, future possibilities will be briefly addressed.

6.1 General Comparison Between the Methods
Even though both the traditional lqr controller and the ppo algorithm successfully
stabilize the unicycle within an interval of stabilization, there are many interesting
aspects in the performance and robustness of the methods to discuss. As described
in Section 5.2, the traditional lqr controller has a better steady state performance
around the X0 axis of the unicycle. This performance advantage also appear in the
General performance metrics tests, both in simulation and practice (see Tables 5.2
and 5.3). Furthermore, one can also notice a large standard deviation of the time
of stabilization in the ppo algorithm during the roll tests (see Table C.5 in Ap-
pendix C.2). This is a direct implication from the large standard deviation of the
roll angle in the stable state. However, when it comes to testing the limits of the
roll, such as the largest initial angle, the ppo algorithm performs equally well as
the traditional lqr controller. This is the case both in simulation and in practice,
see section 5.3. The two algorithms also perform equally well around the X0 axis
when it comes to the largest external disturbances that the two methods can handle,
which can be seen in Section 5.6.

The similar behaviour in the systems extreme conditions in the roll indicates a hard-
ware limit of the unicycle. Once exposed to these conditions, the disk motor velocity
saturates and no more torque can be applied. The results from the Robustness to
model error test in Section 5.5 provide further support for the hardware limit ar-
gument of the unicycle. By removing the stabilization weight of the unicycle, both
control methods manage to stabilize a larger maximum roll angle. However, both
methods have a smaller maximum roll angle in the negative direction when tested in
simulation. This is expected due to the small positive torque that is introduced by
gravity due to the translated center of mass. Similarly, an improved maximum pitch
angle is expected for both methods due to the decreased total weight of the system.
In simulation this is only the case regarding the traditional lqr controller. In fact,
the maximal initial angle of stabilization around the Y0 axis using the ppo algorithm
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decreases compared to the ideal model. Hence, it can be argued that the limits of
stabilization is hardware related for both methods in the roll angle while the ppo
algorithm is limited in the pitch angle due to its stabilization method. Therefore, in
order to achieve a larger angle of stabilization and to reject a larger external distur-
bance around the X0 axis of the unicycle, the hardware section should be adapted
for the system. For further reading on suggested adjustments, see Section 6.4.

One can also note that while the traditional lqr controller manages to stabilize a
roll angle up to φ0 = 11 [deg] when simulating the model with an adjusted center of
mass, the ppo only manages an angle up to φ0 = 9 [deg]. This is most probably due
to that the training of the ppo algorithm was made with an initial maximum angle
of φ0 = 9 [deg] (see Section 4.2.3). Hence, the argument can be made that in order
for the ppo algorithm to perform, it relies on having experienced a similar scenario
during training.

Another interesting thing to note from the stabilization of the maximum initial roll
angle using the ppo algorithm, is that the overshoot is larger than the initial angle
itself. This can be seen in Figure 5.6c, where the roll angle exceeds φ ≈ 8.5 [deg].
The reason why the method manages to stabilize an overshoot larger than the max-
imum initial angle is due to the disk having a wider range to accelerate, as the
velocity of the disk at the time instance of the overshoot is larger than zero in the
opposite direction. This behaviour is undoubtedly not optimal and indicates that
the ppo algorithm has converged to a local optimum solution. In this local optima,
one should as well note that the pitch and roll seem to be more coupled than the
traditional lqr controller anticipates. This can be seen as the ppo algorithm relies
more on movement in roll in order to stabilize its pitch and wise versa. An example
of this can be observed in most figures, e.g. Figure 5.4c.

While the performance differences between the two methods is mainly shown in
small roll angles, they have a similar performance in small pitch angles, as can be
seen in Section 5.2. When comparing the general performance metrics about the Y0
axis of the two methods, the traditional lqr controller has a faster time of stabi-
lization than the ppo algorithm. However, the overshoot of the ppo algorithm is
smaller than that of the lqr controller, which is the case in both simulation and
practice as can be seen in Table 5.2 and 5.3, respectively. Hence, the control around
the Y0 axis using the ppo algorithm is more conservative than the traditional lqr
controller. This is presumably the reason the ppo algorithm have a worse perfor-
mance in the extreme conditions of the pitch angle. It manages to stabilize both a
smaller maximum pitch angle and a smaller external disturbance in comparison to
the traditional lqr controller. Consequently, one can make the argument that the
robustness detriment of the ppo algorithm is due to the conservatism of the local
optima solution.

This conservatism of the ppo method puts an expectation that it should have a
better steady state performance compared to the more aggressive traditional lqr
controller. However, this is not the case, as can be seen in Table 5.1. In fact, the
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traditional lqr controller seems to perform slightly better as it has both a smaller
standard deviation and mean value of the wheel motor. This indicates a minor in-
consistency of the ppo algorithm.

Finally, even though the two methods have similar extreme limits around the X0
axis, the traditional lqr controller successfully stabilizes a larger amount of the
tests in these scenarios, which can be seen in Appendix C. Altogether, the tradi-
tional lqr controller seems to outperform the ppo algorithm in most aspects.

6.2 Comparison Between Simulation and Prac-
tice

To begin with, a similar behaviour in simulation as well as the real physical system
can be observed for both methods in most tests. The shape of curves and the order
of magnitude seen in plots indicate that the dynamics of the mathematical model
matches the real system, which further support the conclusion from Section 3.5. A
clear example of this can be seen by comparing the angular velocities in Figure 5.5
to Figure 5.7. In both figures, the angular velocity of the traditional lqr controller
takes a small dive on its way up from the initial angle to a stable performance in
both simulation and practice. Furthermore, the rise in the angular velocity around
X0 axis in the ppo can as well easily be seen in both simulation and the real sys-
tem. However, one has to keep in mind that there are several indications that the
model can be improved as well. Even though the shape of the dynamics seem to
match relatively well there are mismatching magnitude of some of the performance
metrics when comparing the simulation results to the real system. For instance,
when comparing the general performance metrics in Table 5.2 and 5.3, the ampli-
tude of the overshoot around the Y0 axis is more than double in practice compared
to in simulation for both methods. The same applies for the ppo algorithm in the
X0 direction. Furthermore, the results of the Maximum initial angle test and the
Robustness to model error test do not yield identical results in simulation and in
practice. In general, both controllers stabilize 1 [deg] more around the X0 axis and
1 [deg] less around the Y0 axis in practice than in simulation. This may indicate that
the parameters for the disk motor is "oversized" and the parameters in the wheel mo-
tor is "undersized". However, the magnitude of the external impulse test matched
perfectly in simulation and in practice. Hence, to improve the model, parameter
identification should be made which is left for future work.

More importantly, even though the magnitude of all performance metrics did not
match perfectly, the proportion of performance when comparing the two methods
matched fairly well. For instance, both methods stabilized equal maximum angles
around the X0 axis and the more conservative behaviour of the ppo algorithm in
comparison to the traditional lqr controller around the Y0 axis is evident both in
practice and simulation. This indicates that both methods managed the transfer of
the controller from simulation to the real physical system fairly well.
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As described in Section 4.2.3, the main change to successfully transfer the ppo algo-
rithm to the real physical system was to train it with noise on the state observations.
By observing the results of the Maximum initial angle test and the Robustness to
model error test, one could argument that the ppo algorithm is a bit more prepared
for the transfer to practice. Around the Y0 axis, the ppo algorithm manages 1 re-
spectively 2 [deg] more in practice than simulation compared to the lqr for which
the corresponding values were 0 and 1 [deg] more. Even though this difference could
be due to other factors, it is still interesting to note that the ppo algorithm can
more easily be prepared for the real system by adding nonlinearites as external dis-
turbances and nonlinear filters to the training. This is left for future work and is
further discussed in Section 6.4.

6.3 Generalization of the Results
While evaluating the achieved results in Chapter 5, it is important to keep in mind
that the two derived controllers are not unique. By tuning the weights and pa-
rameters in the traditional lqr controller as well as the ppo algorithm, different
observations and results could be achieved. For instance, by further tuning, the
conservatism of the ppo algorithm could most likely be adjusted. However, in this
project, a significant amount of time was invested particularly on the ppo algorithm
compared to the traditional lqr controller. The effect of a change on a specific
parameter may be hard to predict and the training to find out is time consuming.

It is as well important to mention that this comparison is only an example on one
particular system. The inverted pendulum is a standard subject of control theory
and has a well known optimal behaviour. As mentioned earlier, the ppo algorithm
shows a different and somewhat unexpected behaviour around the X0 axis of the
unicycle, which indicates the the ppo algorithm converged to a local optima. It
can therefore be suggested that for systems with no clear or even unknown optimal
solution or for systems that one wishes to explore, the ppo algorithm could be a
feasible solution.

On the other hand, as mentioned in section 6.1, the ppo algorithm relies on having
experienced a scenario during training similar to that it is currently encountering.
For systems with large state spaces or unknown limits of the states, a dl based
control might not be desirable. If one cannot define the limits of the state space in
which the system will be deployed in, one can not guarantee any performance.

6.4 Future Work
Due to the dynamics of the unicycle having an unstable stabilization point, the
system is an interesting subject for comparing control methods and hence the pos-
sibilities of future work on the system are many. To begin with, one should adjust
the hardware section in order to improve the performance in the extreme conditions
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in the roll angle. One way to achieve this would be to increase the inertia of the
disk to make sure that the motor speed does not saturate. However, one should
keep in mind that increasing the inertia of the disk will increase the total mass of
the system, which will most likely result in a worse performance about the Y0 axis.

There are many ways to improve the performance of the ppo algorithm on the uni-
cycle. By extending its reward function to include a term representing the energy
loss, one could imagine it to behave more smoothly and reduce large jumps in input
and thus a high acceleration of the disk. Furthermore, by introducing the algorithm
to all filters and disturbances in the training environment, the ppo algorithm should
become more robust. The ideal way of doing this would be to fine tune it on the
actual hardware. That way it could get to know the systems characteristics on more
detail and better adjust its policy towards a more optimal control. A performance
comparison between a controller trained in simulation and a controller fine tuned
on hardware would have been of great interest.

Finally, in order to increase the robustness of the unicycle using traditional control
theory, a robust controller such as the H∞ controller could be implemented. This
should end up in a better performance to disturbances and noise.
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7
Conclusion

The constructed unicycle managed to stabilize within an interval of stabilization and
remained stable using both methods. Even though the mathematical model resem-
bled the unicycle fairly well, it was not perfect and there is room for improvements.
Despite this, the ppo policy trained in simulation using noise on the observations
transferred to the real system successfully. Transferring policies from simulation to
a real physical system is considered a viable option for systems in which training
from scratch on the physical system itself is practically infeasible. An interesting
aspect would be to take a ppo algorithm trained in simulation and fine tune it on
hardware subject to external disturbances, which is left for future research.

The traditional lqr controller proved to outperform the ppo algorithm in most
perspectives where the hardware of the unicycle did not set any limitations. This
was the case both in simulation and practice. Similarly, the traditional lqr con-
troller also proved to be more robust to external disturbances where the hardware
limits were not an issue. This is likely due to the local optima the ppo algorithm
converged to in which it displayed a somewhat unexpected way to stabilize the roll
angle of the unicycle. This innovative behaviour might be desirable for some sys-
tems, yet for systems with a known global optima, the traditional control methods
are recommended, if applicable.

Finally, the robustness advantage of the traditional lqr controller was most proba-
bly due to the conservatism of the achieved ppo solution. As both methods handled
the enforced model errors similarly, and both methods seemed to have a similar
performance in simulation as in practice there were no signs of uncertain behaviours
regarding the robustness of the ppo algorithm compared to the traditional lqr con-
troller. In fact, by introducing the ppo algorithm to all filters and disturbances, the
difference between simulation and practice might be reduced for the method, which
is left as a future investigation.
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A
Hardware Parameters

The radius of the driving wheel is rw = 0.072 [m]. The length between the wheel
frame and the body frame is Lwb = 0.1292 [m] and the length between the wheel
frame and the disk frame is Lwd = 0.3006 [m].

A.1 Hardware Parameters for the Wheel
The wheel (drive wheel, hub, shaft and adapter included) got the inertia matrix

Iw =

 0.3882 −0.0000 −0.0000
−0.0000 0.6889 0.0000
−0.0000 0.0000 0.3882

 · 1 × 10−3 [kgm2] (A.1)

and the mass mw = 0.3047 [kg].

A.2 Hardware Parameters for the Body
The body of the unicycle (body itself, disk motor, wheel motor, bearing, battery,
stabilization weight, battery box, electronics and electronics box included) got the
inertia matrix 28.9000 0.0252 1.1860

0.0252 21.0200 4.9580
1.1860 4.9580 9.1760

 · 1 × 10−3 [kgm2] (A.2)

and the mass mb = 1.8040 [kg].

A.3 Hardware Parameters for the Disk
The disk (disk and diskhub included) got the inertia matrix 3.9480 −0.0000 −0.0001

−0.0000 1.9800 −0.0004
−0.0001 −0.0004 1.9690

 · 1 × 10−3 [kgm2] (A.3)

and the weight md = 0.2045 [kg].
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A. Hardware Parameters

A.4 Hardware Parameters for the Motors
The resistance of the wheel and disk motor respectively is Ra,w = 4.8 [Ω] and
Ra,w = 0.6 [Ω].

As the current draw of the motor is small during no load, the motor velocity constant
can be estimated by

Ku = Rated Voltage
No load speed

. (A.4)

For the wheel motor, this result in Ku,w = 1.0709 [Vs] and for the disk motor it
result in Ku,d = 0.2622 [Vs].

From Tm(t) = Kmia(t), the motor torque constant can be estimated according to

Km = stall torque
stall current

. (A.5)

For the wheel motor, this result in Km,w = 0.6119 [Nm
A ] and for the disk motor it

result in Km,d = 0.1077 [Nm
A ].
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B
Traditional Control Method

B.1 Continuous Time System Matrices
The continuous time lti system matrices are given by

A =



−27.6628 −0.0002 0.0000 0.0000 −0.0399 133.8083
−0.0019 −2.9326 0.0000 0.0000 −34.1926 0.0153
0.0019 0.1652 0.0000 0.0000 34.1926 −0.0152

−10.1012 −0.0001 0.0000 0.0000 −0.0238 79.9978
0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 1.0000 0.0000 0.0000


(B.1)

and

B =



25.8302 0.0007
0.0018 11.1837

−0.0018 −0.6299
9.4320 0.0004
0.0000 0.0000
0.0000 0.0000


. (B.2)

B.2 Discrete Time System Matrices
Using Ts = 0.01, the discrete time equivalence of the system matrices are given by

Ad =



0.7581 −0.0000 −0.0000 0.0061 −0.0003 1.1706
−0.0000 0.9711 −0.0017 0.0000 −0.3372 0.0001
0.0000 0.0016 1.0017 −0.0000 0.3418 −0.0001

−0.0884 −0.0000 −0.0000 1.0038 −0.0002 0.7392
0.0000 0.0000 0.0100 −0.0000 1.0017 −0.0000

−0.0005 −0.0000 −0.0000 0.0100 −0.0000 1.0038


(B.3)

and

Bd =



0.2258 0.0000
0.0000 0.1102

−0.0000 −0.0062
0.0825 0.0000

−0.0000 −0.0000
0.0004 0.0000


. (B.4)
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B. Traditional Control Method

B.3 Extended Discrete Time System Matrices
The discrete time system matrices extended with the filter output state is given by

Ãd =



0.7581 −0.0000 −0.0000 0.0061 −0.0003 1.1706 0.2258
−0.0000 0.9711 −0.0017 0.0000 −0.3372 0.0001 0.0000
0.0000 0.0016 1.0017 −0.0000 0.3418 −0.0001 −0.0000

−0.0884 −0.0000 −0.0000 1.0038 −0.0002 0.7392 0.0825
0.0000 0.0000 0.0100 −0.0000 1.0017 −0.0000 −0.0000

−0.0005 −0.0000 −0.0000 0.0100 −0.0000 1.0038 0.0004
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9000


(B.5)

and

B̃d =



0.0000 0.0000
0.0000 0.1102
0.0000 −0.0062
0.0000 0.0000
0.0000 −0.0000
0.0000 0.0000
0.1000 0.0000


(B.6)
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C
Detailed Test Results

C.1 Test Results for Maximum Initial Angle Tests

Table C.1: Test results using lqr from initial angle test φ̂0 = 7 [deg].

Test # Stabilized φ0 [deg] φ̇0 [deg
s

] θ0 [deg] θ̇0 [deg
s

]
1 Yes 7.1052 4.1869 0.0535 1.1411
2 Yes 7.1144 3.3161 0.0728 0.8875
3 Yes 7.0715 3.8403 -0.1604 -0.9629
4 Yes 7.0509 3.2009 -0.5068 -2.7123
5 Yes 7.0708 3.0783 0.0115 0.3690
6 Yes 7.1114 3.5945 0.3593 -0.0490
7 Yes 7.1984 3.1718 0.0457 1.6010
8 No 7.0967 4.2119 -0.2538 -0.2606
9 Yes 7.0504 3.3495 -0.1353 0.8463
10 Yes 7.1211 3.8435 -0.3447 -2.2228

Table C.2: Test results using ppo from initial angle test φ̂0 = 7 [deg].

Test # Stabilized φ0 [deg] φ̇0 [deg
s

] θ0 [deg] θ̇0 [deg
s

]
1 Yes 7.0514 3.3407 -0.2657 -0.3589
2 No 7.0514 3.8598 -0.4071 -1.6635
3 Yes 7.0522 3.0107 -0.0914 0.3628
4 Yes 7.0559 3.6560 -0.1477 -0.1164
5 Yes 7.1392 3.1307 -0.1906 0.4221
6 Yes 7.1309 3.4314 -0.0470 0.7162
7 Yes 7.0844 3.9300 0.0585 -0.2538
8 Yes 7.1133 3.2387 -0.0468 -0.1047
9 Yes 7.0925 4.2972 0.1114 1.4291
10 No 7.0173 3.2860 -0.0493 0.2614
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C. Detailed Test Results

Table C.3: Test results using lqr from initial angle test θ̂0 = 28 [deg].

Test # Stabilized θ0 [deg] θ̇0 [deg
s

] φ0 [deg] φ̇0 [deg
s

]
1 Yes 28.2253 3.0676 -0.0054 1.3140
2 No 27.9673 3.1915 -0.3999 -0.6628
3 No 28.1648 4.0687 -0.0646 -1.7452
4 Yes 28.2425 4.1090 -0.5752 -4.0893
5 No 27.9154 4.3254 -0.0370 -1.0390
6 Yes 28.0882 5.2698 -0.5945 -2.6924
7 Yes 28.0506 4.2304 -0.1830 -0.4664
8 Yes 28.0979 4.2691 -0.1054 0.3521
9 Yes 27.9750 3.5655 -0.0965 -1.0534
10 Yes 28.0490 3.5680 -0.2165 0.7503

Table C.4: Test results using ppo from initial angle test θ̂0 = 20 [deg].

Test # Stabilized θ0 [deg] θ̇0 [deg
s

] φ0 [deg] φ̇0 [deg
s

]
1 Yes 19.9644 3.8947 0.3038 -2.4489
2 Yes 20.2951 4.8152 -0.0951 -1.1272
3 No 20.0236 3.5445 -0.1231 0.2723
4 Yes 20.1037 3.2248 0.1716 3.2244
5 No 20.2785 3.8873 -0.2754 -2.1412
6 Yes 20.2809 3.2932 0.2840 4.5698
7 No 20.1519 3.3231 0.6834 9.3101
8 Yes 20.0959 3.6069 -0.2447 -0.3503
9 Yes 19.9917 3.0883 -0.2293 -2.4983
10 Yes 20.2117 3.8841 -0.3375 0.3078
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C.2 Test results for General Performance Metrics

Table C.5: Performance metrics from initial angle test φ̂0 = 7 [deg].

Method Test # ts [s] Mp [deg] φ0 [deg] φ̇0 [deg
s

]
lqr 1 0.81 4.0548 7.1052 4.1869
lqr 2 0.87 4.0057 7.1144 3.3161
lqr 3 0.82 4.1809 7.0715 3.8403
lqr 4 0.96 4.1780 7.0509 3.2009
lqr 5 0.85 3.5717 7.0708 3.0783
lqr 6 0.83 3.8602 7.1114 3.5945
lqr 7 0.77 3.7210 7.1984 3.1718
lqr 8 - - 7.0967 4.2119
lqr 9 0.82 4.1199 7.0504 3.3495
lqr 10 1.03 4.3826 7.1211 3.8435
ppo 1 1.23 8.5361 7.0514 3.3407
ppo 2 - - 7.0514 3.8598
ppo 3 0.98 7.1959 7.0522 3.0107
ppo 4 1.43 7.7097 7.0559 3.6560
ppo 5 1.69 7.6584 7.1392 3.1307
ppo 6 1.06 8.2362 7.1309 3.4314
ppo 7 1.55 7.3143 7.0844 3.9300
ppo 8 1.39 7.7643 7.1133 3.2387
ppo 9 1.69 7.9938 7.0925 4.2972
ppo 10 - - 7.0173 3.2860
LQR Avg 0.8622 4.0083 7.0993 3.5091
PPO Avg 1.3775 7.8011 7.0900 3.5044
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Table C.6: Performance metrics from initial angle test θ̂0 = 14 [deg].

Method Test # ts [s] Mp [deg] θ0 [deg] θ̇0 [deg
s

]
lqr 1 0.6200 6.5841 14.0997 3.2550
lqr 2 0.7700 7.8375 14.1007 3.5919
lqr 3 0.5700 6.1508 14.1100 3.2396
lqr 4 0.7500 8.4301 14.1153 4.0949
lqr 5 0.6900 7.5912 14.0896 3.3436
lqr 6 1.0900 9.3344 14.1649 4.1689
lqr 7 1.0100 8.6831 14.0772 3.2496
lqr 8 1.0200 7.5075 14.0404 3.0553
lqr 9 0.6700 8.5227 14.0719 3.2367
lqr 10 0.7300 7.7260 14.1257 4.6143
ppo 1 0.7500 4.6639 14.0732 3.3405
ppo 2 0.6700 4.3294 14.0649 3.3147
ppo 3 0.7700 4.8435 14.1540 4.5967
ppo 4 0.9600 4.7568 14.1117 5.3525
ppo 5 0.6900 4.7445 14.1163 3.0337
ppo 6 0.7200 4.4122 14.1573 5.2125
ppo 7 0.8300 5.3388 14.1207 4.8015
ppo 8 0.9400 3.2477 14.0671 3.7742
ppo 9 1.1100 4.1034 14.1436 4.0622
ppo 10 0.8900 3.9165 14.1493 3.5671
LQR Avg 0.7920 7.8367 14.0996 3.5850
PPO Avg 0.8330 4.4357 14.1158 4.1056
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C. Detailed Test Results

C.3 Test Results for Model Error Test

Table C.7: Test results using lqr from model error test φ̂0 = 9 [deg].

Test # Stabilized µφ φ0 [deg] φ̇0 [deg
s

] θ0 [deg] θ̇0 [deg
s

]
1 Yes 2.2935 9.0943 3.0210 -0.0469 -0.3736
2 Yes 0.86413 9.0893 3.1237 -0.1207 0.2772
3 Yes 1.3702 9.0472 3.2381 -0.1394 -0.9110
4 No - 9.0821 3.6097 -0.4104 -1.5084
5 Yes 1.5176 9.0856 3.0243 -0.3172 0.3485
6 Yes 1.0713 9.1114 3.4831 -0.0155 0.6072
7 Yes 2.472 9.0152 3.6989 -0.1006 1.6323
8 Yes 1.5314 9.1662 3.7062 -0.7624 -3.2506
9 Yes 1.251 9.0478 4.1718 0.2071 1.3157
10 Yes 1.1035 9.1073 3.1890 0.0548 0.0839

Table C.8: Test results using ppo from model error test φ̂0 = 9 [deg].

Test # Stabilized µφ φ0 [deg] φ̇0 [deg
s

] θ0 [deg] θ̇0 [deg
s

]
1 Yes 1.2 9.0753 3.0410 -0.0753 -0.3613
2 Yes 1.2806 9.0999 3.8043 -0.2346 -0.5411
3 Yes 1.1943 9.1434 3.5626 -0.0405 -0.6100
4 Yes 1.1814 9.1042 3.7209 -0.0384 -0.7838
5 Yes 1.9879 9.0939 3.6663 0.0476 0.8471
6 Yes -0.367 9.0892 3.2021 0.0471 0.4288
7 No - 9.0259 4.1683 -0.1830 0.2996
8 No - 8.9996 4.6991 -0.3876 -3.4415
9 Yes 1.9286 9.0412 4.5242 -0.1508 -0.8677
10 No - 9.1138 3.3368 -0.1250 0.7790

Table C.9: Test results using lqr from model error test θ̂0 = 29 [deg].

Test # Stabilized θ0 [deg] θ̇0 [deg
s

] φ0 [deg] φ̇0 [deg
s

]
1 Yes 28.8810 3.7196 -0.4086 -0.5598
2 Yes 28.9892 3.4049 0.0674 0.8184
3 Yes 29.0633 5.6467 -0.4138 -0.1552
4 Yes 28.9391 3.7552 -0.0098 1.2048
5 No 29.1707 4.4005 -0.0448 0.0508
6 Yes 28.9746 3.7016 -0.0908 -0.2888
7 Yes 29.0673 5.1658 -0.0678 -1.6815
8 No 29.0048 3.7917 -0.1430 -1.5184
9 Yes 29.0150 3.1857 -0.0494 -2.0361
10 Yes 29.2392 3.0602 -0.1964 -4.6488
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C. Detailed Test Results

Table C.10: Test results using ppo from model error test θ̂0 = 21 [deg].

Test # Stabilized θ0 [deg] θ̇0 [deg
s

] φ0 [deg] φ̇0 [deg
s

]
1 Yes 21.0552 3.6683 -0.3007 -0.2846
2 No 21.0940 3.7070 -0.1747 -1.9587
3 Yes 21.0733 3.1835 -0.2771 -1.5523
4 Yes 21.0543 4.1781 -0.1358 0.3921
5 No 20.9660 4.5332 -0.0790 -2.1191
6 No 20.9233 4.4010 0.0917 -2.6484
7 No 21.1447 3.4218 -0.0944 1.0080
8 Yes 21.0218 4.0549 -0.1044 -1.2701
9 Yes 21.0041 3.4832 -0.1214 0.3221
10 No 21.0570 4.0286 -0.5909 -1.7401
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C. Detailed Test Results

C.4 Test Results for External Impulse Test

Table C.11: Test results applying external impulse on the lqr

Test # Stabilized θ0 [deg] θ̇0 [deg
s

] φ0 [deg] φ̇0 [deg
s

]
1 Yes 0.5557 6.5918 -0.0876 17.1418
2 No 0.8183 7.0947 0.4986 19.9469
3 Yes 0.1359 -9.2007 0.1313 15.1581
4 Yes 0.3978 -0.0542 -0.4335 -3.1423
5 No 0.2645 -3.3012 0.2896 18.2692
6 Yes 0.2207 -0.4678 0.1535 13.4951
7 No 0.3442 0.1493 -0.8513 -3.0077
8 Yes 0.2534 -0.3308 -0.1437 16.2608
9 Yes 0.4412 0.3076 0.3329 17.4939
10 No 0.3909 8.3626 0.4904 21.6636

Table C.12: Test results applying external impulse on the ppo

Test # Stabilized θ0 [deg] θ̇0 [deg
s

] φ0 [deg] φ̇0 [deg
s

]
1 Yes -0.3992 -0.8181 0.4079 -3.1005
2 Yes 0.7291 8.5475 0.2601 19.8193
3 Yes -0.2359 7.7453 0.123526 19.6751
4 Yes 0.1865 0.9738 -0.3499 -3.0710
5 No 0.7351 1.95763 -0.2147 8.5414
6 Yes -0.1593 -1.7963 -0.5022 8.4269
7 Yes 0.4803 1.4596 0.2353 14.4134
8 Yes 0.4306 -2.6988 -0.0455 11.2114
9 No 0.7027 3.1732 0.1334 16.7592
10 No 0.2180 -0.7331 0.2663 15.3498

XI
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