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Radar-based target tracking for 360-degree environmental perception
Erik Henriksson, Viktor Kardell
Department of Signals and Systems
Chalmers University of Technology

Abstract
This thesis focuses on extended target tracking of dynamic objects using automotive
radar sensors. The tracking is based on data from a 360-degree environmental per-
ception system comprising four radar sensors with overlapping fields-of-view. Two
solutions are proposed to track the states of the objects, which include position, ve-
locity, heading and size. The first algorithm forms clusters based on detections and
creates rectangles that are used in the update step of an extended target tracker.
The second algorithm uses a Gaussian Mixture Probability Hypothesis Density (GM-
PHD) filter, clusters components of that filter and creates a rectangle around the
filtered components. Evaluation on logged data shows good results for both so-
lutions in terms of position and velocity accuracy. However, the detection-based
tracking solution shows a slightly more stable result than the PHD-based solution.
When it comes to estimation of the heading and the physical extension of objects,
the proposed solutions differ somewhat, but both produce rather poor estimates.
Especially at long ranges, the heading and size estimates are unstable.

Keywords: Target tracking, Extended targets, Radar, Kalman filter, Cluster-
ing methods, Automotive applications.
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1
Introduction

When you buy a new car today it comes with many safety features designed to
assist the driver. These systems, jointly called active safety systems, are intended
to help the driver realising potential risks in the traffic and even avoid them. There
are four levels of active safety functions. The first level is to warn the driver of
potential hazards, and includes systems for forward collision warning and blind spot
detection. The second level involves active intervention of the vehicle in specific
safety-critical situations. An example of such a system is collision mitigation by
braking. The third level is semi-autonomous driving, where the vehicle drives itself
in limited environments, but where the driver is responsible at all times. The final
and highest level is autonomous driving, where the vehicle drives without a driver
in control [1].

Today, no fully autonomous cars are on the roads, but several car manufac-
turers are aiming at delivering autonomous cars in a near future. By achieving this,
the amount of inattentive drivers can be decreased, and thus the number of traffic
incidents caused by a driver can potentially be reduced. Another benefit, mainly for
the driver, is that while the car is responsible to drive in a safe way, the driver can
focus on tasks he or she find more important. Additionally, the fuel consumption
could potentially be decreased with cars driving in a fuel conservative way, which is
a step towards a sustainable future [2].

Both autonomous vehicles and active safety systems require a description of
the surrounding environment in order to make accurate decisions. It is important
to be able to detect all kinds of dangers that potentially can cause an accident. It
can be to detect a pot hole in the road ahead and calculate a route to avoid the
danger, but it can also be to detect other road users that have a predicted trajectory
that collides with the trajectory of the ego vehicle. Hence, the first step in having
autonomous cars is to sense and describe the surroundings including both static and
dynamic objects, and make this information accessible for the car.

In order to create a description of the surrounding environment, vehicles must
be equipped with a combination of different sensors. The type of sensors are deter-
mined by the application that they are used for. Common sensor types for vehicles
are camera, laser and radar. For active safety systems, it is beneficial to use several
sensors because of their different strengths. Typically, cameras are good for classify-
ing objects but lacks the possibility of accurately estimating speed of objects. This
is a strength of the laser and is therefore used just for this reason. The drawback
of the laser is that it is very sensitive to weather such as rain or snow and mud
[3]. The radar is, in difference from the camera and laser, robust to weather and is
called a all-weather sensor [4] but does not give as accurate angular resolution as the
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1. Introduction

laser or as good object classification as the camera. This is why the combination of
sensors is necessary in an automotive application. In this thesis project, the focus
is on using radars solely.

For any type of surveillance system where dynamic targets are involved, target
tracking is an important component. The target tracking objective is to collect data
from sensors and filter data from the same object over time into a so-called track.
From these tracks, estimated characteristics such as velocities, accelerations and
future positions of tracked objects can be obtained. One important key of tracking
multiple targets is to associate data to the right tracks. This is referred to as data
association and is a necessary part of target tracking [4].

A complete 360-degree environmental perception requires information from
multiple radars which in turn requires fusion in some way. There are at least two
alternatives of fusing the information; tracking in each sensor and combining the
information or tracking using all detections in central tracking. The last approach
is used in this thesis project.

Using radars in an automotive setting may give rise to more than one detection
per object and scan. The majority of the target tracking literature focuses on point
targets, i.e., targets that give rise to at most one detection. An object that may
give rise to several detections is referred to as an extended object. Hence, the area
of tracking such objects is denoted extended target tracking.

1.1 Purpose
This thesis will evaluate the the capabilities of radar-based target tracking and
investigate how to handle extended targets in an automotive setting. By developing
a target tracker based on radar measurements, the information provided may then
be fused with the other sensors. This is to ultimately achieve a system that can
describe the environment in a robust and accurate way.

1.2 Objective
The objective of the thesis project is to detect and track objects in the surroundings
of the vehicle using radar sensors. The tracked objects are extended, and shall
be represented by the following information: position, velocity, heading, length and
width. The aim is to have a robust solution, which can be tuned to the requirements.

The focus of the work is to have a tracking algorithm for logged data in an
offline environment. Although the tracking algorithm will be built for offline use, a
long term goal is to implement the algorithm in a real-time system. Therefore ease
for such an implementation shall be considered during the development phase.

1.3 Thesis Outline
The thesis gives in Chapter 2 a description of the system used for developing the
tracking algorithms, such as vehicle, sensors and logged data together with the

2



1. Introduction

problem formulation. Chapter 3 covers the underlying theory to the methods used
in this report. Chapter 4 provides discussion of existing methods and two proposals
for solving the problem. Chapter 5 explains the methods and implementations
that is common for both proposals. Chapter 6 and 7 present the two implemented
solutions respectively and Chapter 8 displays the results. Lastly, Chapter 9 presents
discussion and a conclusion of the thesis project.

3



1. Introduction
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2
Problem description

This chapter provides a description of the studied problem and of the physical sys-
tem. First, a system overview is presented, containing technical specifications of the
sensors and their mounting location on the vehicle, followed by a description of the
data acquired from the sensors. Finally, the problem is formulated and limitations
to the problem is formed.

2.1 System overview

The system used in this thesis is a vehicle mounted with a set of sensors. We do
not have access to the vehicle, but are granted with logged data from test runs.
The vehicle is a Volvo XC90 equipped with four radar sensors and one internal
measurement unit (IMU) presented in this section, and these are the sensors of
interest in this thesis.

Radar has an all-weather capability, and is accurate in measuring the range
to and range-rate of an object [4]. These characteristics make it suitable for the
object-tracking task in a traffic environment. A radar transmits a pulse of energy,
and scans the response to check whether the pulse have reflected against a surface.
The range to a reflective surface is related to the calculated round-trip time of the
pulse. The radars also have the capability to measure the range rate of the reflected
pulse. If the reflected surface moves along the vector of the transmitted pulse, the
radar will be able to measure the velocity along this vector using the Doppler effect.
By analyzing the phase difference of a returning wavefront at the different elements
of an antenna, the radar is also capable of measuring the angle of arrival, i.e., the
bearing to an object. The bearing measurements are typically less accurate than
the range and range-range measurements.

The radars used in this thesis project is called side object detection sensors
(SODs) and are mounted at the corners of the vehicle, as shown in Figure 2.1. The
sensor placement, relative the ego vehicle coordinate system is given in Table 2.1
and the sensor specifications are given in Table 2.2. The SOD radars only measure
the surroundings in a plane around the vehicle i.e. they only give information in
two spatial dimensions. At each time k, we receive a collection of m measurements,
Zn
k = {z1,n

k , z2,n
k , ..., zm,nk }, from each radar sensor n. The measurements contain

object-generated measurements, false alarms and clutter. Each measurement can
be described by

zi,nk =
[
rik, αik, ṙik

]T
(2.1)

5



2. Problem description

where rik is the range of the detection, αik is the detection angle and ṙik is the range-
rate. Each SOD sensor provides 64 detections per scan, at a frequency of 20 Hz.

Table 2.1: Sensor placement.

Sensor (n) Placement (xns ,yns ) Angle (γns )
1 front left 58◦
2 rear left 120◦
3 rear right −120◦
4 front right −58◦

Table 2.2: Sensor specification.

Measurements Coverage Accuracy
Range [m] 0.3 to 85 ±0.25% + 0.1
Angle [◦] −75 to 75 ±1
Range rate [m/s] −55 to 15 ±0.07

The sensor placement is described by the offset relative to the ego vehicle reference
frame and is given by

Sn = {xns , yns , γns } (2.2)
where Sn is the specification for sensor n.

Figure 2.1: The coordinate systems of the vehicle. (xe, ye) represents the ego
vehicle coordinate system. The coordinate systems at the corners of the ego vehicle
represent the individual coordinate system of each sensor. The angular offset relative
to the ego vehicle reference frame is described by γns

Since the ego vehicle is moving, the coordinate frame in Figure 2.1 is mov-
ing. To measure the translation and rotation, we use an internal measurement unit

6



2. Problem description

(IMU). An IMU is an electronic device that measures the angular rate and the body
specific force using a number of accelerometers and gyroscopes. In a vehicle, it
is used to calculate the velocity, acceleration and yaw. From the IMU in the ego
vehicle, the states describing the ego vehicle motion is given by

xek =
[
∆xek, ∆yek, ẋek, ẏek, ∆θek

]T
(2.3)

where ∆xek and ∆yek are changes in position from last time step, estimated from
longitudinal velocity ẋek and lateral velocity ẏek respectively. ∆θek is given by the
change in heading from last time step. The IMU is providing measurements at 20
Hz. The specifications of the IMU is unknown but the uncertainties is assumed to
be much lower than the uncertainties of the radars.

2.2 Radar data

The available radar data is logged at a test track and on public roads. The data is
stored as MATLAB formatted data and built in structure arrays. From the radar,
detections are output. Each detection includes information of range, range rate and
detection angle to the reflecting point. Next, we describe the data in more detail.
For confidentiality reasons, we are only allowed to show simulated data to illustrate
the radar detections.

-62 -60 -58 -56 -54 -52 -50
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Simulated detections

Figure 2.2: Samples of how the detections from another vehicle might appear at
far distances. The expected number of detections at this distance is between one to
three. Note that the ego vehicle is at the origin, i.e., at the far right.
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Figure 2.3: Samples of how the detections from another vehicle might appear at
close distances. Here is a example when detections give a distinct description of the
vehicle.
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Figure 2.4: Samples of how the detections from another vehicle might appear at
close distances. This figure shows an example of how several detections give a vague
description of the vehicle.

Figure 2.2, 2.3 and 2.4 show three examples of how an object might appear in
the view of the SODs. On a far distance, one to three measurements appear on the
same object whereas if the object is about 5 meters from the ego vehicle, it generates
a larger number of detections. In addition to detections from moving objects, the
radar detects stationary structures such as guardrails and traffic signs.
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2. Problem description

2.3 Problem formulation

In order to have an autonomous car, the environment around the car needs to be
surveyed and provide information to the control system. In this thesis, the studied
problem is to detect and track dynamic objects in the surrounding environment. At
each time k, the collection of measurements, Zn

k = {z1,n
k , z2,n

k , ..., zm,nk }, from the four
radar sensors contains detections of range, angle and range rate given by

zi,nk =
[
rik, αik, ṙik

]T
. (2.4)

By using information from the radar sensors and information of the ego state,

xek =
[
∆xek, ∆yek, ẋek, ẏek, ∆θek

]T
, (2.5)

the aim is to estimate the object state, which include position, velocity, size and
heading at the discrete time instants k = 1, ..., K. The state of an object is given by

xk =
[
xk, yk, ẋk, ẏk, Lk, Wk, θk

]T
, (2.6)

where (xk, yk) is the position relative to the ego vehicles coordinate system, (ẋk, ẏk)
is the velocity relative the ground, Lk and Wk is the length and width respectively
and θk is the heading relative to the ego vehicles coordinate system according to
Figure 2.1.

Determining the position of an object is not such a trivial task as it first
might seem, first a valid representation of the position is necessary. Since handling
extended targets, the detections will originate from different locations on the target
and thus, a way to represent the position from the detections is needed.

As seen in Figure 2.2-2.4, the measurements appear very differently in different
scenarios and time steps. All of these different cases must be handled in order to
solve the problem. That includes combining all information gathered by the four
sensors and create a 360-view of objects in the surrounding. Figure 2.5 illustrates
that all four sensors will be used in a target tracker which tracks the objects.

Figure 2.5: Description of the tracking system.
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2. Problem description

2.3.1 Limitations
To narrow the scope of the thesis, we have decided on a set of limitations to the
tracking problem. Since the SOD radars only measure the surroundings in a plane,
the tracking system is limited to operate in a 2D Cartesian coordinate system. The
tracking system will use logged data, hence implementation in a real vehicle is not
within the scope of this thesis. The main focus is on tracking moving passenger cars.
Therefore, this thesis will focus on tracking objects of the certain size, shape and
movements that are typical for a passenger car. At last, the scenarios considered is
when all vehicles travels at the same road as the ego vehicle, i.e. no crossing traffic.

The thesis focuses on extended target tracking and how to approach the ex-
tended target tracking problem. Attributes such as tracking multiple targets will
not be considered, and the solutions proposed in this thesis will be developed for a
scenario with one target vehicle.

10



3
Theory

This section presents the underlying theory used in this report. It first covers the
tracking theory in general and the background of Bayesian filtering used in tracking.
Secondly, the approach of tracking using random finite sets is presented together
with related work of tracking extended targets. To find detections that belong
to the same physical object or to apply the point target assumption on extended
targets, clustering is needed and it is covered in this section as well.

3.1 Tracking theory overview
The main objective of target tracking is to recursively estimate the states of the
objects detected by one or several sensors. As illustrated in Figure 3.1, a tracking
algorithm consists of four main parts, namely prediction, data association, measure-
ment update and track handling. The prediction and measurement update is in this
thesis referred as filtering.

Figure 3.1: Target tracking in general where Zk = {z1
k, z2

k, ..., zmk } is measurements
and xk|k is the estimated state.

Given the posterior state estimate of objects, xk−1|k−1, and their correspond-
ing covariances, Pk−1|k−1, the state estimates are predicted using the motion model
that describes the dynamics of the objects. The measurements, Zk, are associated to
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3. Theory

tracks to determine which measurements that stem from which objects represented
by tracks. Using the associated measurements, each is updated with new infor-
mation. The track handling module initializes new tracks from the non-associated
measurements and deletes tracks that have not been updated for a number of time
steps. After the track handling, the target tracker outputs the current state esti-
mates xk|k, and the covariances Pk|k. This process is repeated at each time step
in order to detect and track objects in the observed scene. In the next sections we
present some background on filtering, data association and track handling.

3.2 Filtering
Filtering is about recursively estimating parameters of interest using data from a
sensor. In the target tracking framework, filtering is about describing the sequence
of states of an object, given sensor data about that object.

3.2.1 Bayesian statistics
A popular filtering framework stems from Bayesian statistics [5]. This filtering
method is called Recursively Bayesian estimation. The distribution of interest is
the posterior distribution

p(xk|z1:k) = p(xk|zk, z1:k−1) (3.1)

of a state xk at time k, given a set of measurements, z1:k = {z1, z2, ..., zk}. Bayes’
theorem shows how the conditional probability can be derived as

P (A|B) = P (B|A)P (A)
P (B) (3.2)

where A and B are events and P(A) and P(B) are probabilities for the respective
event to occur. This theorem can describe the distribution of interest as

p(xk|z1:k) = p(zk|xk, z1:k−1)p(xk|z1:k−1)
p(zk|z1:k−1) ∝ p(zk|xk, z1:k−1)p(xk|z1:k−1) (3.3)

where p(zk|xk, z1:k−1) can be simplified assuming that sensor noise is independent
over time such that z1:k−1 can be disregarded in the expression. The remaining
expression p(zk|xk) describes the likelihood function, or in filtering terms the sensor
model. The p(xk|z1:k−1) describes the prior distribution of xk and can be obtained
by marginalising over previous time step xk−1 according to

p(xk|z1:k−1) =
∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1. (3.4)

A common assumption is that the object dynamics follow a Markov model, where
knowledge of the previous state xk−1 is sufficient to describe the future state xk, i.e.,
p(xk|x1:k−1) = p(xk|xk−1). This assumption gives that the simplifications in

p(xk|xk−1,xk−2, ...,x1,x0) = p(xk|xk−1) (3.5)
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are valid. The resulting distribution p(xk|xk−1), are in filtering terms recognized as
the transition model or motion model.

The posterior distribution of xk|k is proportional to the likelihood multiplied
with the prior distribution as shown in Equation (3.3). These equations is funda-
mental for popular filtering methods, such as Kalman filter.

3.2.2 The Kalman filter
Based on equations presented in Section 3.2.1, the Kalman filter equations are de-
rived under the assumption that the transition and measurement models are linear
and Gaussian. The filter estimates a mean and a variance of the Gaussian distribu-
tion, represented as state vector x̂k|k, and covariance matrix Pk|k at time k.

Derived from Equation (3.4), the prediction step is formed as

x̂k|k−1 = Ak−1x̂k−1|k−1 (3.6)
Pk|k−1 = Ak−1Pk−1|k−1AT

k−1 + Qk−1 (3.7)

where the Ak−1 is the linear transition matrix which captures the dynamics of the
estimated states. Qk−1 is covariance of the process noise which captures the event of
model miss match between the real system and the transition matrix by increasing
the covariance Pk|k−1.

The update step of the filter includes

vk = zk −Hkxk|k−1 (3.8)
Sk = HkPk|k−1HT

k + Rk (3.9)
Kk = Pk|k−1HT

kS−1
k . (3.10)

Here, ẑk is the innovation i.e. the error in the predicted state with respect to the
measurement. Sk, is the innovation covariance, and Kk is the optimal Kalman
gain. The Hk is the sensor model of the system. The update results in a posterior
according to

x̂k|k = x̂k|k−1 + Kkvk (3.11)
Pk|k = (I−KkHk)Pk|k−1. (3.12)

This filter is running iteratively and updates at discrete time steps, whenever new
measurements can be used to update the state.

3.2.3 Non-linear Kalman filter
As describe above, the Kalman filter is used when we have linear and Gaussian
models. However, it is often the case that non-linear models are necessary. The
non linearity can occur if either or both the motion and the measurement model are
nonlinear. A non-linear system can be described as

xk = f(xk−1) + vk (3.13)
zk = h(xk) + wk (3.14)
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where xk represents the state and vk and wk are process- and measurement noises.
The noise assumed to be additive white Gaussian, with a zero mean and Qk−1 and
Rk covariances. Here, f is the nonlinear prediction function and h describes the
transition from state space to measurement state.

When filtering with non-linear models, the normal Kalman filter can no longer
be used. A way to still be able to use Kalman-like algorithms is to perform lin-
earization. This can be done either analytically, giving the extended Kalman filter
(EKF) [6], or statistically, giving the Unscented Kalman filter (UKF) [7].

The Extended Kalman Filter

Extended Kalman filter (EKF) solves the nonlinear filtering problem, by differentiat-
ing the nonlinear functions. In order to predict the covariance matrix, the prediction
function is linearized according to

F̄k−1 = ∂f(x)
∂x

∣∣∣∣∣
x=x̂k−1|k−1

. (3.15)

Using the linearized prediction function F̄k−1, the prediction step of the EKF is
governed by

x̂k|k−1 = f(x̂k−1|k−1) (3.16)

Pk|k−1 = F̄k−1Pk−1|k−1F̄
T

k−1 + Qk. (3.17)

Note that the prediction of state vector is equal to the normal Kalman prediction,
with the exception that transition function is non-linear. For the update step, the
measurement model must be linearized in order to update the covariance prediction.
The update step is

vk = zk − h(x̂k|k−1) (3.18)

Sk = H̄kPk|k−1H̄
T

k + Rk (3.19)

Kk = Pk|k−1H̄
T

kS−1
k (3.20)

x̂k|k = x̂k|k−1 + Kkvk (3.21)
Pk|k = (I−KkH̄k)Pk|k−1 (3.22)

where ẑk is the innovation and Sk is the approximate covariance of the innovation.
The Kk is the Kalman gain, which because of the linearization is no longer the
optimal gain such as in the linear case. The sensor model is differentiated in same
way as the prediction function, i.e.

H̄k = ∂h(x)
∂x

∣∣∣∣∣
x=x̂k|k−1

. (3.23)

Unscented Kalman Filter

The unscented Kalman filter (UKF) uses the unscented transform in order to ap-
proximate linear Gaussian distribution from a nonlinear distribution. The unscented
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transform approximates the mean and variance of a stochastic variable propagated
through a non-linear function [8]. A common use of the unscented transform is to
extend Kalman filters to non-linear function.

The transformation is done as follows. First a number of points from the
probability distribution are deterministically chosen. The number of points and
their location depend on the dimension of the state space and on the covariance
matrix, respectively. These points are then transformed through the non-linear
function. Finally, based on the transformed points, the mean and covariance matrix
of the transformed random variable can be extracted.

The deterministic points are referred to as sigma points, and are given by the
following equations

X (0) = x̂k (3.24)

X (i) = x̂k +
√

n

1−W0
P1/2
i (3.25)

X (i+n) = x̂k −
√

n

1−W0
P1/2
i . (3.26)

Here n is the dimension of the state space and W0 is a design parameter. A suitable
value for the W0 is 1− n/3 for Gaussian densities.

The UKF uses the sigma points, Equations (3.24) - (3.26), with corresponding
weights to create the prediction equations,

x̂k|k−1 ≈
2n∑
i=0

f(X i
k−1)Wi (3.27)

Pk|k−1 ≈ Qk−1 +
2n∑
i=0

(f(X i
k−1)− x̂k|k−1)(X i

k−1)− x̂k|k−1)TWi (3.28)

and the update equations

ẑk|k−1 ≈
2n∑
i=0

h(X i
k)Wi (3.29)

Pxz ≈
2n∑
i=0

(X i
k − x̂k|k−1)(h(X i

k)− ẑk|k−1)TWi (3.30)

Sk ≈ Rk +
2n∑
i=0

(h(χik)− ẑk|k−1)(h(χik)− ẑk|k−1)TWi (3.31)

x̂k|k = x̂k|k−1 + PxzS−1
k (zk − ẑk|k−1) (3.32)

Pk|k = Pk|k−1 −PxzS
−1
k PT

xz (3.33)

where zk is the measurement. The covariance matrix Pxz, is the approximated
state-measurement cross covariance.
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3.3 Data association

Data association considers the determining of which measurements that originate
from which objects. The association problem applies not only when tracking multi-
ple objects, but also when tracking a single object because of the occurrences of true
measurements together with false alarms (clutter). Here, we will describe methods
for data association. The problem of data association is to associate a set of detec-
tions with one or several existing tracks. In order to decrease complexity, gating is
typically used, where some of the measurements are excluded from the association
to a certain track, based on them being unreasonably far away from the prediction.

Association methods

Data association methods in tracking applications are mainly used to associate
detections to tracks. Given a set of measurements Z = {z1, z2, ...zn} and tracks
T = {T1, T2, ..., Tm}, the data association methods forms hypotheses of all associa-
tion combinations that can be formed. By combining a track Ti to every measure-
ments, n hypotheses are formed. Additionally, one hypothesis is added to represent
that the track has not been associated, i.e. in total n + 1 hypotheses are formed.
The association is then performed using either hard or soft decisions. Hard asso-
ciation means that only one detection can be associated to one target, while soft
association means that a weighted combination of detections can be associated to
an object. Nearest neighbour (NN), global nearest neighbour (GNN) and multiple
hypothesis tracking (MHT) are methods of hard decisions. Further, commonly used
soft association methods are probabilistic data association (PDA) and joint PDA
(JPDA). There is also versions of MHT that merges hypotheses, which makes it a
soft algorithm as well.

The MHT does not make a decision instantaneously. Instead, more data at
subsequent scans are collected, before a decision is made. It is hence a deferred
decision logic, which helps to resolve measurement to track ambiguities. Since many
association hypotheses are kept, it is a multiple hypothesis approach.

Both NN and GNN are sometimes referred to as single hypothesis tracking.
They are thus special cases of an MHT. For every data set, the goal is to sequentially
identify the most likely assignment of measurements to tracks. The difference of NN
and GNN is that the NN is a local algorithm, where each track can select its closest
detection, regardless of the other tracks. The GNN, on the other hand, find the
globally nearest neighbours, without conflict. The flaw of NN is hence that one
detection can be associated to two different tracks, which is not possible in GNN.

The PDA is a statistical solution to the association problem, where the PDA
finds the detection with highest probability to be associated to the track. JPDA
is a modified version of the PDA and is performing better when there are multiple
targets present [4]. In these filters, multiple hypotheses are formed after each scan
of data. The hypotheses are then combined before processing the new scan of data.
Both PDA and JPDA has the property of merging tracks that are close together,
which is referred to as the track coalescence problem. One solution to this is given
by the so-called set JPDA filter [9].
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Gating

A gate is used to eliminate detections that are unlikely to stem from a track. All
observations that falls within the gate, satisfies the gating relationship. The gate is
formed around the predicted measurement, and all measurements that satisfy the
relationship are candidates for the track update. The gating may be done in several
ways but rectangular and ellipsoidal gates are two solutions [4].

A third way to gate is by using the statistical distance that is the distance
between two statistical objects x1 and x2. By using Mahalanobis’ distance [10], the
distance is calculated as

dM(x1,x2) =
√

(x1 − x2)TS−1(x1 − x2) (3.34)

where x1, x2 ∈ RN×1, S ∈ RN×N . The distance, dM , is comparable to the cumulative
chi squared distribution, which enables the possibility of finding a threshold value
that is based on the probability that the two compared components are the same.

3.4 Track handling

Track handling is used to initiate, maintain and delete tracks. To do initiation of
a track, data must fulfill some suiting criteria, e.g. some binary tests, and then
an initial state for the track is formed. The track maintenance includes the target
tracking parts such as filtering and association. Another common part of track
handling is splitting and merging tracks, where a split occurs when one object spawns
from another object. The third function, deletion, is basically that the system
keeps the track a defined time after the last measurement, associated to the track,
occurred. After that it can be deleted [11].

M/N-logic for initialization and deletion

A criterion for initializing new tracks is M/N-logic. Using three values, {N1, N2,M},
the M/N-logic initializes a track when the criterion N1/N1 and N2/M is fulfilled. It
means that the track is initialized if N1 out of N1 and then N2 out of M following
measurements are inside the gate of a predicted track. The track deletion is similar
to the initiation but consists of that it must be N out of M following measurements
inside the gate. The N and M parameters do not necessary need to be the same in
the initialization as in the deletion [11].

Sequential probability ratio test

Instead of using a binary test when deciding if the data from sensors are correct,
using sequential probability ratio test (SPRT) [12] can be useful. SPRT, given two
hypotheses, calculates the posterior probability ratio and compare to two thresholds
given by
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A = 1− β
α

(3.35)

B = β

1− α (3.36)

where α is the false track confirmation probability and β is the true track deletion
probability. After that it decides whether it can accept one of the hypotheses or it
needs more data to be able to make a decision with high enough confidence.

3.5 Finite Set Statistics
Conventional target tracking methods are based on calculating the probability den-
sity function of a state vector, which includes states of one or several objects. The
position in the joint state vector gives each tracked object an identity. Another
approach to the problem is to collect all possible target state vectors into a random
set. This is the basis for random finite sets (RFSs) [13], from which several target
tracking methods have been derived. The goal, then, is to calculate the probability
density function of the random finite set. However, due to the large computational
complexity, approximations are necessary. One such approximation is to represent
the probability density function with its first-order moment, which is referred to
as the probability hypothesis density (PHD). The PHD describes the intensity of
targets in space. That is, for each point in space, the PHD describes the intensity of
targets at that point. Instead of associating and ranking each object to one measure-
ment according to a list of possible associations, PHD associates all measurements
with all objects simultaneously.

3.5.1 Gaussian Mixture Probability Hypothesis Density fil-
ter

Under the assumption that the targets dynamics and birth processes are Gaussian,
a Gaussian mixture PHD (GM-PHD) filter is shown to be applicable in [14]. The
Gaussian mixture is used to approximate the RFS in order to make it possible to
implement as a solution to the tracking problem. The tracked objects of the PHD
filter have no identity. A detailed description of the GM-PHD for both linear as well
as nonlinear cases is covered in [15]. A short summary follows in this section.

The Gaussian mixture describes the posterior intensity function by a set of
Gaussian components. These components consists of the state vector of the tracked
objects and are described by the mean, mk, of the Gaussian component. The cor-
responding uncertainties are described by covariances, Pk. The Gaussian mixture
components also have weights wk that describe the number of objects each of them
represents, such that if the weight of one component is 1, the component describes
one object. The Gaussian mixture PHD filter described in this section based on on
the implementation found in [15], and a simplification of that algorithm is presented
in Algorithm 1. The GM-PHD presented in this chapter is a point target tracker
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Algorithm 1: Gaussian Mixture PHD filter
Data: Gaussian components described by wk−1|k−1, mk−1|k−1, Pk−1|k−1 and set of

measurements Zk
1: Add birth components (mk,γ ,Pk,γ and wk,γ) to the set of Gaussian components
mk−1.
2: Predict existing components from previous time k − 1, add to the set of
Gaussian components

mk|k−1 = Ak−1mk−1|k−1,

Pk|k−1 = Ak−1Pk−1|k−1AT
k−1 + Qk−1,

wk|k−1 = pSwk−1|k−1.

3: Construction of PHD update components Kk, Sk and the Gaussian component
covariance Pk|k.
4: Missed detection update, mk|k = mk|k−1, Pk|k = Pk|k−1 and wk|k = pDwk|k−1.
5: For each z ∈ Zk, measurement update of all components

wk|k = pDwk|k−1N (zk;Hkmk|k−1,Sk),
mk|k = mk|k−1 + Kk(zk −Hk−1xk|k−1).

6: Normalization of weights

algorithm. The initial step of the GM-PHD filter is creating birth components de-
scribed by mk,γ ,Pk,γ and wk,γ. These birth components are supposed to handle the
event of identifying new dynamic object in the set of measurements apart from the
ones already identified. Components from previous time steps are predicted with
a transition model, which can be linear or non-linear, and their weights is multi-
plied with survival probability pS. Further, the set of predicted components are
duplicated, where one half is multiplied with (1− pD) to describe that they are not
detected, hence the pD describes the probability for object to be detected. The other
half is multiplied with pD to describe that they are detected. In the measurement
update step, all predicted components are associated to all measurements. The cor-
responding weight of a component associated to a measurement is multiplied with
the likelihood of that measurement, which is given by the innovation. The update
step results in exponential growth of Gaussian components. To mitigate this to-
gether with reducing the computational complexity of the filter, gating for the PHD
update is introduced in [16], which reduces the number of components yielded in
the update step. The PHD does only update components and measurement if the
distance between them falls below a certain threshold. The updated components
are normalized such that the sum of all components represents an estimate of the
number of objects in the posterior distribution. The combination of all Gaussian
components represents the posterior density.
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Merging and Pruning

As mentioned, gating only mitigates the exponential growth of Gaussian compo-
nents. To keep the amount of components to a more reasonable number, a method
is presented in [15] that merges components that lie within a certain distance be-
tween them for the entire set of Gaussian components. The merging step is followed
by a step where components with a weight below a threshold is removed.

3.6 Extended target tracking
An extended target is an object that may give rise to more than one measurement
per time step. In situations with high resolution sensors or/and objects within close
range to the sensors, extended targets must be considered. In this section, we present
two solutions that are popular in the literature for solving extended target tracking.

3.6.1 Probabilistic Multi-Hypotesis Tracker
The probabilistic multi-hypotesis tracker(PMHT) is a multi-target tracker [17]. The
PMHT approach for target tracking gives an probabilistic solution to the measurement-
to-track problem by associating all measurements to one track. Each measurement
is weighted with an estimate of how likely it is that the measurement stem from the
track. Though the PMHT filter handles the data association problem, the filter does
not handle the track initiation and deletion of tracks and relies on having accurate
knowledge of the number of object present in the set of measurement. In [18] the
general idea is to separate the kinematic state and extension states of an object.
Then, the expectation-maximization (EM) is used to iteratively optimize ellipsoids,
representing the state of an object, and the kinematic states by applying a Kalman
filter from the PMHT framework. The filter assumes that the kinematics of a point,
the centroid of the object, and an ellipse is an valid description for the entire object.

3.6.2 PHD-filter applications for extended targets
An alternative to track extended targets are presented in [14] and [19] which are us-
ing the theory of PHD, presented in Section 3.5. There, extended target tracking with
Gaussian Mixture Probability Hypothesis Density filter (GMPHD) and extended tar-
get tracking with Cardinalized Probability Hypothesis Density filter (ETT-CPHD)
are described. The first paper shows how one can narrow the partition set of mea-
surements without changing the quality of the estimations. The second paper is
using CPHD which introduces the possibility to have a probability mass function
of how many objects that is tracked. Notable is that both of these last mentioned
approaches use laser measurements to track objects.

3.7 Clustering
If the extension of targets is not handled by the algorithm it self, clustering of data
points that seem to originate from the same object is necessary. This is to avoid
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having more tracks than the number of objects. The clustering of data points in
a point target tracker can be done directly on detections and provide clusters of
detections to the tracker. Or it can be done after tracking point targets and cluster
tracks that seem to originate from the same target.

3.7.1 Hierarchical clustering
Hierarchical clustering is a way to build a hierarchy of clusters. There are two
ways of performing hierarchical clustering, bottom-up or top-down. In a bottom-up
algorithm, the clustering is initialized with each data points being its own cluster
and then merge clusters while moving up in the hierarchy. In contrast, top-down is
starting with all data points in one cluster that is split while moving down in the
hierarchy. In [20], this theory is presented among the theory of single, average and
complete linkage.

Single linkage is a type of bottom-up hierarchical clustering. At the bottom of
the hierarchy, all data points are individual clusters. By combining the closest pair
of clusters sequentially until all data points are in the same cluster. This creates a
tree diagram, called dendrogram, that shows how the data points are clustered. One
example of a dendrogram for 30 data points is shown in Figure 3.2. By choosing
a maximum distance criterion, the big cluster are split into multiple clusters. In
single linkage, the criterion is defined as the maximum allowed distance between the
closest points in two clusters.
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Figure 3.2: Example of a dendrogram.

There are other ways of choosing the criterion that splits the big cluster into
smaller ones. By using the average point of each cluster and measure the distance
between clusters, average linkage is used. If instead comparing the most distant
points between clusters, complete linkage is used. These two are also types of
hierarchical clustering.
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4
Introduction to proposed solutions

In the literature, there are a number of algorithms developed for the extended target
tracking problem. The algorithms have different characteristics which makes them
more or less suitable as a solution to the problem in this thesis. In this chapter, we
discuss some of the existing methods and introduce the algorithms developed in this
thesis.

4.1 Drawbacks of existing methods
Extended target tracking is a area of interest by many researchers, not only by
automotive industry. The existing methods developed for tracking extended targets
have in many cases shown promising results but they have not always been tested
in a practical situation. They have not necessarily focused on object tracking in
an automotive setting either. This is important to consider when evaluating these
approaches to see if they may suit for tracking in the environment considered in this
thesis.

4.1.1 Ellipse-based methods
A common way to model extended objects is to use an ellipse that describes the
distribution from an object. Some of the methods discussed in Section 3.5 and
Section 3.6 are using ellipses to describe an object. As shown in Figure 2.3 and
2.4, the measurements are distributed along the sides of the car and not around the
center. Creating an ellipse from these measurements with the center point as the
mean of the measurements, will be a rough approach to represent a car. In Figure
4.1 it is illustrated that the center point of the ellipse is close to one of the sides and
not in the middle. This creates ellipses that either not encloses all the measurements
or encloses all but represents the object in a non accurate way.

4.1.2 Rectangle-based methods
There are methods that, instead of ellipses, model extended objects as rectangles.
One such example is [21] where a PHD-based solution on rectangle-based models
is presented. This approach uses accurate laser measurements and may not suit
an application with radar measurements. As illustrated in Figure 4.2, the mea-
surements do not appear along the border of a rectangle. If the radar would have
produced detections along straight lines representing one or two sides of the object,
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Figure 4.1: 3 ellipses created with 1-, 2- and 3-σ around a set of simulated mea-
surements. The center point is the mean of the measurement and the ellipse is
created from the covariance of the measurements.

the methods in Section 3.5 and 3.6 that models objects as rectangles would have
been more appropriate to use. Instead we need to handle the multiple cases because
the detections does not appear in distinct pattern.
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Figure 4.2: Simulated measurements of how the measurements might appear.

4.1.3 Complexity
In the automotive industry, there are often limitations on computational power
and time for calculations. The process of PMHT is iterative in real time and it
is not certain that the result converges in time if used in production cars. The
extended target PHD and CPHD algorithms require partitioning of data and test
multiple partitions of measurements to all tracks. This results in a large number
of hypotheses to be handled by the algorithm and is not suitable for a production
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system.

4.2 Proposed algorithms
As discussed in the previous sections, there are several practical aspects to consider
when developing an extended target tracker in an automotive setting. First, when
tracking vehicles, we would like to describe them as rectangles. Second, the proposed
algorithms must be computationally efficient. In this thesis we present two solutions
for tracking cars using radar. The first algorithm clusters the detections to represent
one object per cluster and uses extended target tracking on the different clusters.
The second algorithm uses target tracking on the detections, clusters the output of
the tracking and then estimates the state of the object. The reason for developing
two different algorithms is because after implementing a point target tracker, two
potential solutions were identified. One were the detections were clustered and
tracked in an extended target tracker and one were the detections were handled as
point targets and then clustered. Next, we provide an brief overview of the two
methods.

4.2.1 Detection-based solution
The detection-based solution starts by merging the detection from all four sen-
sors into clusters. The clusters are associated to objects which are updated by an
extended target tracking module assuming rectangular shaped objects. The non-
associated measurements are used for initialization of new objects. The algorithm
makes use of hard clustering and association methods in order to avoid a large
number of cluster and association hypotheses. It also uses rectangular objects to
represent the cars.

Figure 4.3: Rough block diagram of the detection-based solution.

4.2.2 PHD-based solution
The idea of having a PHD-based solution is that, even if the targets are extended,
the point targets still contains information of the object. Using the estimated states
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from all single point targets that originates from the extended object, an estimation
of the extended target states could be extracted. The PHD-based solution runs a
Gaussian mixture PHD-filter on all the measurements in order to find and track
reflection points in the observed scene. The sensors may detect several reflection
points per object and each detection are handled as a point target in a Gaussian
Mixture PHD filter. These point targets may be found in the Gaussian mixture
and are clustered to represent an object per cluster. These clusters are further used
to estimate rectangular objects. The advantages of this approach is that it uses
a proven point target tracking that handles targets that appear and disappear. It
also uses hard decisions when clustering to avoid multiple hypotheses and a large
amount of data. At last, it uses rectangular models to represent the cars.

Figure 4.4: Rough block diagram of the PHD-based solution.

4.2.3 Common parts
Even though the two proposed solutions differ in general, some methods and models
are applicable for both algorithms. The most central common parts are the handling
of the object reference point, the sensor model, the ego motion compensation and
the data preprocessing. In the next chapter, these subjects are described in detail.
This to enhance the reader’s knowledge of the implementations that are similar for
both solutions before we discuss the individual algorithms further.
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In both of the proposed algorithms there is a need for a sensor model and compen-
sation of object states due to ego vehicle motion. In addition, both methods assume
that the data has been processed in order to remove detections from stationary
objects. In this chapter, these common parts are described.

5.1 Reference point
Since the objective is to track extended objects, finding a reference point on the
tracked object is crucial in order to find e.g. position of that object. Choosing
the geometrical middle point would have been an obvious choice, but since the
measurements originate from the surface of the closest sides of the object, a good
knowledge of the size would have been necessary to determine the middle point.
The object is instead described by one of the closest sides by having eight reference
points to represent the four corners and four sides of the objects as illustrated in
Figure 5.1.

Figure 5.1: The eight reference points is illustrated by the red dots in the figure.

Figure 5.2 illustrates how the reference point is determined depending on the
placement in the ego coordinate system and the heading of the tracked object. If
the tracked object is heading towards or from the ego vehicle, with an deviation of
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Figure 5.2: Three examples to illustrate how reference points on the tracked object
are decided. All objects have velocity in the heading direction. The segments that
encloses the origin of ego vehicle coordinate system, is determining the reference
point.

0.1 radians, the reference point is the front or the back respectively. If the tracked
objects heading is perpendicular relative the ego vehicle, with an deviation of 0.1
radians, is the reference point one the side pointing at the ego vehicle. In between,
the closest corner is used as reference point. Three examples of which points that are
used as reference points are shown in Figure 5.2. By doing this, one of the closest
points is used as reference point and the deviation is used so that the reference
point is not changed too often. The measurements often originates from the closest
sides of the vehicle. Using the closest point on the target as reference point will
indicate what sides of the object that the measurements originates from. With this
knowledge it makes it possible to estimate the position. By using the information of
length and width of the object, the reference point can be changed if another point
should be used to track the object.

5.2 Ego motion compensation
Since the ego vehicle is moving, the tracking coordinate system is moving. Then, a
compensation for the ego motion is required to describe the state vector and its cor-
responding covariance of the tracked object in the moving coordinate system. When
tracking a point target, given the change from time k− 1 to k in ego position (∆xek,
∆yek) and heading (∆θek), the mapping of the new state vector is done according to
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
xk
yk
ẋk
ẏk

 =
[
Rinv(∆θek) 02x2

02x2 Rinv(∆θek)

] 
xk −∆xek
yk −∆yek

ẋk
ẏk

 (5.1)

where the rotation is calculated by the inverse rotation matrix given by

Rinv(ϕ) =
[

cosϕ sinϕ
− sinϕ cosϕ

]
. (5.2)

When tracking an extended target, using the state vector including size and heading,
the mapping is instead done according to

xk
yk
ẋk
ẏk
Lk
Wk

θk


=

Rinv(∆θek) 02x2 02x3
02x2 Rinv(∆θek) 02x3
03x2 03x2 I3x3





xk −∆xek
yk −∆yek

ẋk
ẏk
Lk
Wk

θk −∆θek


. (5.3)

Sigma points are created from the non-rotated state vector, individually ro-
tated by Equation (5.1) and are then used to calculate a new covariance matrix
from Equation (3.30). This covariance matrix is the estimated covariance of the
transformed state vector.

5.3 Sensor Model
The sensor generates detections from the environment within its field-of-view. To
include the sensor measurements in a tracking framework, a sensor model is re-
quired. That model describes the relationship between the state of an object and a
measurement generated by the object. The sensor model h, is given by

zk = h(xDk ,xek, Sn). (5.4)

Here, xDk = [xk, yk, ẋk, ẏk]T and is a subset of the entire state vector, xk, describing
the object with one point, xek = [∆xek, ∆yek, ẋek, ẏek, ∆θek]T is the ego vehicle state
and Sn = {xns , yns , γns } describes the offset in position and rotation of sensor n
relative to the ego vehicle reference frame.

In Figure 5.3 an example is shown of how a point target, described by the state
vector xDk , can be transformed to the sensor reference frame. The sensor of interest
is in this illustration the front left sensor, and the Cartesian coordinate system for
this sensor is described in the figure (blue in figure). The position (xk, yk) and the
velocity (ẋk, ẏk) of the point target is relative to the ego vehicle reference frame (red
in figure). Moreover, the sensor is mounted with an offset to the ego reference frame
denoted as (xns , yns ) with relative rotation described by γns .
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Figure 5.3: The red star represents an estimated point target, the figure shows
how the relation between the measurement and the estimated states of the point
target. In this particular example the sensor used is front left but the relation can
be described in a similar way for all sensors.

First, we must describe the point target in the sensor Cartesian coordinate
system. The positions, (xk,r, yk,r), and velocities, (ẋk,r, ẏk,r) relative to the sensor
frame are described by

xk,r = (xk − xns ) cos γns − (yk − yns ) sin γns (5.5)
yk,r = (xk − xns ) sin γns + (yk − yns ) cos γns (5.6)

ẋk,r = ẋk cos γns − ẏk sin γns (5.7)
ẏk,r = ẋk sin γns + ẏk cos γns . (5.8)

The states given in the sensor frame are transformed from the sensor Cartesian
coordinate system to the polar coordinate system. They are represented by range,
angle and range rate given by

rk =
√
x2
k,r + y2

k,r (5.9)

αk = arctan
(
yk,r
xk,r

)
(5.10)

ṙk = xk,rẋk,r + yk,rẏk,r
r

− (ẋek cos (γns + αk) + ẏek sin (γns + αk)) (5.11)

where (ẋek, ẏek) is the ego vehicle speed relative the ground. Using Equation (5.9) -
(5.11), the sensor model is formulated as

h(xk,xek, Sn) =

rkαk
ṙk

 . (5.12)

30



5. Modelling and data preprocessing

Since the sensor does not capture the state of the objects perfectly, we need
to take this in consideration. The radar sensors have an specified uncertainty for
every measurement dimension which is modeled by multivariate measurement noise
denoted wk. The noise is described by

wk = N

03×1,

σr 0 0
0 σα 0
0 0 σṙ


 (5.13)

where σr, σα and σṙ is the specified uncertainty of range, bearing and range-rate mea-
surements respectively. Hence, a covariance matrix R, with the stated specification
presented in Table 2.2, can be described as

R =

(0.1 + 0.0025rk)2 0 0
0 12 0
0 0 0.072

 (5.14)

where r is the range measurement.

5.4 Data preprocessing
Since the tracking algorithms are going to track dynamic objects, we only want
consider measurements that has a velocity relative to the ground, i.e. remove mea-
surement that are assumed to originate from a static object. An estimate of velocity
can be obtained by looking at range-rate of every measurements. The velocity is
estimated according to

v̂k = ṙk + ẋek cos(γns + αk). (5.15)

where ṙk range rate, αk is bearing of the measurement detected by sensor n and ẋek is
ego velocity. Here, γns is the mounting angle of sensor s relative to the ego coordinate
frame. If the velocity in Equation (5.15) is below 1 m/s, the detection is considered
stationary and is removed from the set of measurement. The reason for removing
detections up to such high velocity as 1m/s is that we want to make sure that we
remove all static objects, including noisy detections. However, it is worth noting
that a velocity close to zero also can imply that the object is traveling perpendicular
relative the sensor. That is, with this approach we might remove detections not
originating from stationary objects. The assumption used is that objects travelling
perpendicular relative the ego vehicle will give rise to a detection by another sensor
or from the same sensor but another location on the object, especially up close.
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6
Detection-based solution

The idea of the detection-based solution is to use measurements from all four sen-
sors in a central target tracking module. The tracker has three main components.
First, a measurement grouping is performed by a clustering block. Second, created
measurement clusters are associated with existing objects, and used for updating
those objects. Third, remaining clusters are used for initialization of new objects.
In Figure 6.1, a schematic overview of the proposed solution is shown. There, the
main components and their interaction is visible. In the subsequent section, we will
present more details about the respective areas of the solution.

Figure 6.1: Scheme of the detection-based solution. Z1
k, Z2

k, Z3
k and Z4

k are mea-
surements, C is clusters, Ca is associated clusters, Cn is non-associated clusters.
xk|k−1 is the predicted state vector and xk|k is the updated state vector.

6.1 Extended object initialization
The proposed solution uses a point tracker for initialization. The reason for this
is that there is a high possibility that new objects will be detected at long ranges,
meaning that they will only give rise to a few number of detections. Thus, a point
target tracker is applicable. The input to the point tracker is non-associated clusters.
Since the assumption of the tracker is that at most one detection can originate from
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an object, the clusters are split, and all detections are handled individually. The
output from the initialization block is new extended targets that are input to the
extended target tracker. In the following section, we present the steps of creating a
new extended object. The state vector of the point target tracker is given by

xk =
[
xk, yk, ẋk, ẏk

]T
(6.1)

where xk and yk describes the position and ẋk and ẏk describes the velocity. Once
a point target is confirmed it is used to initialize an extended object.

6.1.1 Prediction and update
The state vector is changing over time and the change is modelled by the process
model

xk = Acvxk−1 + vk. (6.2)
With the assumption that the target has the same heading as the orientation of
the velocity vector, the constant velocity model describes the motion of the targets
such that we can get good enough information of the state of the target. Using the
constant velocity model, the transition matrix, Acv, is given by

Acv =
[
I2×2 T I2×2
02×2 I2×2

]
, (6.3)

where T is the sampling time. The process noise is modelled as Gaussian according
to

vk ∼ N (04×1,Qcv) (6.4)
where the covariance is modelled as

Qcv = σ2


T 3

3 I2×2
T 2

2 I2×2

T 2

2 I2×2 T I2×2

 . (6.5)

σ is a design parameter for the process noise. A track that is associated with a
measurement is updated using the measurement model

zk = h(xk,xe, Sn) + wk, (6.6)

where h is given by Equation (5.12). Since the measurement model is nonlinear, the
UKF update step in Equation (3.29) - (3.33) is applied.

6.1.2 Association and gating
To associate the measurements with the point targets, we use global nearest neigh-
bour to minimize the total distance between tracks and measurements. The distance
measure used is the Mahalanobis distance, which is given by

dM(ẑk|k−1, zk) =
√

(ẑk|k−1 − zk)TS−1(ẑk|k−1 − zk) (6.7)
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where zk is the measurement, ẑk|k−1 the predicted measurement, and S the innova-
tion covariance. In an UKF setting, the predicted measurement is given by

ẑk|k−1 =
2n∑
i=0

h(X i
k)Wi, (6.8)

where the sigma points, X i
k, are given by Equation (3.24) - (3.26). Further, the

covariance matrix, S is given by

S = R +
2n∑
i=0

(ẑ− z)(ẑ− z)TWi. (6.9)

To limit the computational complexity, gating is applied before association. There,
a gate is placed around each predicted track, and only measurements within the
gate are considered for association.

6.1.3 Track handling
The track handling for point targets has three parts: track initiation, track confir-
mation and track deletion. The initiation and confirmation of point targets follows
a two-step process. First, based on two candidate measurements, a first state vector
is initiated. Then, based on prediction and filtering, a track confirmation logic is
applied, where tracks fulfilling the criterion are marked as initialized and confirmed.

To initialize a track with a velocity, it is required to have the distance between
two succeeding measurements less than dmax. dmax is determined by the maximum
distance that is possible for an object to travel between two time steps. The maxi-
mum distance is calculated by

dmax = vmaxT (6.10)

where vmax is the maximum velocity that the algorithm tracks and T is the time step.
vmax is in this implementation set to be 30 m/s. For the situations we are interested
30 m/s is enough to consider, but When the distance between two measurements
are below the maximum distance, the initial position is set to the position of the
most recent measurement and the initial velocity is set by using the velocity vector
between the two measurements. A initialized track is set to be a tentative track
until it is confirmed or deleted.

After a track is set to be tentative, it requires to be updated by a number of
succeeding measurements to be confirmed. This is because two succeeding clutter
measurements may appear close to each other and initialize a track. The track
initialization uses M/N-logic to confirm a initialized track after a certain number of
succeeding measurements. The confirmation used in the solution is an extension of
M/N where if 2/2 + 2/3 measurements is inside the gate, the track is confirmed. If
the tentative track does not get confirmed after 5 time steps, it is deleted.

6.1.4 Initiation of extended objects
When the initiation logic confirms a track, a new extended object is initiated. The
initialization of the rectangular extension is done by taking the state vector of the
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confirmed track and adding length, width and heading to a new state vector. The
augmented state vector is then

xk =
[
xk, yk, ẋk, ẏk, Lk, Wk, θk

]T
(6.11)

where (xk, yk) is the position, (ẋk, ẏk) is the velocity, (Lk, Wk) is the length and
width respectively and θk is the heading. Because the tracking is limited to cars, the
initial length and width is set to 5 m and 2 m respectively. That should correspond
to a normal-sized car. At a long distance it is hard to determine the actual heading
of the object without assuming that it is the same as the direction of the velocity
vector. The initial heading is therefore set to that direction.

The position of the object describes the location of one of the 8 reference points
of the rectangle (see Figure 5.1 for an illustration). The reference point depends on
the position and heading of the initialized object, such that the point is the closest
point of the object. If the object is traveling towards or away from the ego vehicle,
the front or back is used. If the object is travelling perpendicular to the ego vehicle,
one of the sides is used. For all other cases, the closest corner is used (see Figure
5.2.

6.2 Extended target tracker

In this section we describe the four parts of the proposed extended target tracker,
namely gating and association, clustering, prediction and measurement update. For
gating and association, the same methods are used as for point targets. The differ-
ence is that clustered detections are used instead of single detections in the associ-
ation. The mean of the clustered detections is used as reference point for distance
calculations. For track deletion, a target that has not been updated for 9 out of 10
time steps is deleted.

6.2.1 Clustering
The first step of the measurement update is to cluster the detections. This is neces-
sary since an object may give rise to multiple detections, and since all four sensors
are used jointly. To be able to cluster data from all four sensors, we first map the
detections into the ego-vehicle coordinate system (see Figure 2.1). The clustering
is done using single linkage clustering (see Section 3.7). As maximum distance cri-
terion, the Mahalanobis distance us used, with a covariance matrix tuned to allow
greater distances in the longitudinal direction. The covariance matrix used is given
by

C =
[
1 0
0 0.01

]
.

This is done under the assumption that the vehicles travel on the same road as the
ego vehicle, and in the same direction making the clustering allow a larger distance
between points in the longitudinal direction than in the lateral direction.
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6.2.2 Prediction
The dynamics of the extended object is described by the process model

xk = Axk−1 + vk. (6.12)
The prediction is using the constant velocity model for position and velocity, and
the random walk model for length, width and heading. The transition model is
given by

A =
[

Acv 04×3
03×4 I3×3

]
, (6.13)

where Acv is the constant-velocity matrix in Equation (6.3). The process noise is
given by

vk ∼ N (0,Q) (6.14)
where the covariance of the process noise is gien by

Q =


Qcv 04×1 04×1 04×1
01×4 σ2

cv,L 0 0
01×4 0 σ2

ca,W 0
01×4 0 0 0.001σ2

 . (6.15)

Here, Qcv is the constant-velocity model noise in (6.5). σ is a design parameter for
the measurement noise of the heading and is the same as σ for Qcv. Note that there
is also process noise set on the length (σcv,L) and width (σcv,W ) even though that a
car always keeps its size. If no process noise on the size, there could be a possibility
that the length and width converges to incorrect values.

6.2.3 Measurement update
A predicted object is updated with information from measurement clusters. As
illustrated in 2.2-2.4, there is different amount of information depending on the
range to the object in relation to the ego vehicle. Therefore the update is divided
into two different cases. One where there are less than five measurements and one
where there are five or more measurements. In both cases, a reference point is used
to locate the tracked object. When the object is moving, the reference point is
moved to make sure that the closest points is tracked. How this is determined is
explained in Section 5.1.

Update using one measurement

Given a cluster with less than five measurements, it is hard to determine the mea-
surements position on the object. Since we are tracking the reference point which
is the closest point on the object, the measurement within the gate that is closest
to the ego vehicle is used for updating the position. The predicted reference point
is updated using the sensor model in (5.12). The update used is the same as in
the point target tracker, i.e. the UKF update step. How the prediction might be
updated is illustrated in Figure 6.2 where the position and heading is updated, but
not the size.
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Figure 6.2: Figure showing a simulated situation when there are few measure-
ments to update with. The circles describe which point that is updated to which
measurement (blue and red respectively).

Update using multiple measurements

When more than five measurements are present, the measurements are seen as either
a side of the object or two sides of the object. We determine this by fitting a line
through the detections with a least mean square (LMS) condition. If the sum of the
square distance divided by the number of measurements is below a threshold, and if
the line has similar heading as the predicted velocity, it is viewed as a side. If not,
the measurements are viewed as two sides of the vehicle.

If the measurements are viewed as belonging to one side of the object, two
rectangles are created. It is assumed that the measurements represent either the
length or the width of the object. If they are determined to originate from the side
of the object, the width from the prediction is used for the rectangle and vice versa.
This uses the assumption that the entire side is viewed in the measurements and
one of the length or width is determined by that. This creates two rectangles and
because only one of them actually corresponds to the object, that one will be used
for updating the state. An example of this where two rectangles are created from a
set of measurments can be seen in Figure 6.3.

If the measurements are considered to represent two sides of the object, mul-
tiple rectangles can be fitted to these detections. For this purpose we use a method
called rotating calipers [22]. First, a convex hull of the set of points is created and
then rotating calipers is applied on the convex hull. A convex hull, described bya a
set of points, is formed. The convex hull is defined as the smallest polygon including
all points in the set and an example of how it is created is shown in Figure 6.4a.
Rotating calipers can be described as placing a caliper along one side of the convex
hull, created of the measurements. The minimum box is then created by putting two
sides as close as each other as possible but still containing all points. By rotating
the caliper, to make one box along each side of the convex hull, all the possible
minimum bounding boxes along one side are obtained. Figure 6.4b shows rotating
calipers around a set of points. These set of rectangles is then used in the update
of the state.
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Figure 6.3: Figure showing a simulated situation when the measurements repre-
sents one side of the tracked object. The black and red boxes represents the two
created boxes from measurements where the red one is used to update the state.

(a) A convex hull around a set of
points.
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(b) Rotating calipers around a set of
points.

Figure 6.4: Example of a convex hull and rotating calipers created around at set
of points.

In both cases, where we either have rectangles created from a side or from
two sides, one rectangle out of the set of rectangles is used to update the state of
the tracked object. The update is done by choosing the rectangle with the smallest
Mahalanobis distance in position, size and heading. The velocity is disregarded
because we want to handle the detections as a cluster. At close distance detections
that are separated will have different range-rate even though the all detections have
the same global speed. This is problematic to solve with this implementation and
therefore not be investigated further. Since the information about the measurement
noise is related to the detections individually, a covariance matrix for the rectangle
must be created. It is given by

Rrect =


σ2
x 0 0 0 0

0 σ2
y 0 0 0

0 0 σL 0 0
0 0 0 σW 0
0 0 0 0 σ2

θ

 . (6.16)
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Here, the standard deviations (σx,σy,σθ) and σL, σW are design parameters. The σL,
σW are dependent on the range to the mean of the cluster and is therefore used to
determine the uncertainty in length and width. The uncertainty of length estimation
is described by the standard deviation, σL, of the measurement noise and is given
by

σL = τL
√
x2
k + y2

k (6.17)
where τL is a design parameter and is multiplied with the distance to the object. The
noise of the width, σW , is described in the same way. Since the measurements give
a better estimation of the size when the tracked objects are close, the uncertainty
in size increase with the range to the object. The covariance matrix used in the
calculations of Mahalanobis distance is

R = Rrect + HrectPk|k−1HT
rect (6.18)

where HrectPk|k−1HT
rect is the uncertainty of the prediction, transformed to the mea-

surement space where

Hrect =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

 . (6.19)

The chosen box updates the prediction if the distance is below a certain thresh-
old. The linear Kalman update given in (3.8)-(3.12) is applied to update with the
created box and the measurement model as (6.19) and the measurement noise Rrect.

An example of how a prediction is updated with the chosen box is seen in
Figure 6.5 where one may see that the red box is created around the measurements,
and the blue box is updated to the green box.

Figure 6.5: Figure showing a simulated situation when the prediction is updated
with a rectangle created of measurements.
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To avoid the complexity associated with many of the existing extended target track-
ing methods, the developed PHD-based algorithm relies on a point target tracker to
find the position and velocity of potential reflection points on objects. By clustering
tracked reflection points, the estimated position, velocity, heading and size of ex-
tended objects can be extracted. The proposed solution has four main components,
shown in Fig. 7.1. First, a Gaussian-mixture PHD filter is used to track reflection
points of objects. Second, the tracked reflection points are clustered. Based on
the clusters, object properties are extracted. Further, an extension filter is used
to be conservative in changes of length and width. In the following, each of these
components are described in more detail.

Figure 7.1: Block diagram of the proposed PHD-based extended target tracking
solution. Here, Z1:4

k is measurements from each individual sensor. The GM-PHD
filter output is weights (wk), means (mk) and covariances (Pk) of the Gaussian com-
ponents. The clustering index vector (Ck), describes which cluster each component
belongs to. The size of the clusters are filtered in extension filter.

7.1 Gaussian mixture PHD filter

The Gaussian mixture PHD (GM-PHD) is a point target tracker, with a poste-
rior intensity function described by a Gaussian mixture, as described in Section
3.5.1. In Fig. 7.2, we illustrate how the proposed multiple-sensor GM-PHD filter is
implemented. As seen in the figure, predicted components are updated with mea-
surements from each sensor separately. Then, in the merging step, the components
from all sensor updates are combined and potentially merged.
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Figure 7.2: Block diagram showing the implementation of the proposed multi-
sensor PHD filter.

Like in the detection-based solution, the motion model of PHD filter is decided
to be a constant velocity model with states described by

xk =
[
xk, yk, ẋk, ẏk

]T
where (xk, yk) represents the position of the tracked reflection points on the ob-
ject. The (ẋk, ẏk) describes the velocity of the tracked reflection points and are
differentiations with respect to time of the states (xk, yk). Based on what we are in-
terested to estimate from the objects in the surrounding, a constant velocity model
will be enough to describe the object if we assume that the tracked object at all
time is oriented in the direction of the velocity. This is a fairly common assumption
for automotive applications. The Gaussian components are described by this state
vector.

7.1.1 Prediction and birth

Every Gaussian component from the previous time step is in each iteration predicted
to the current time step. In addition to predictions, in each time step there is a birth
of new components, described by a birth process. In the following, both prediction
and birth are described for the proposed implementation.

The prediction of a component is done using the standard motion and covari-
ance matrices for a constant velocity model, Acv and Qcv respectively, same as in

42



7. PHD-based solution

Section 6.1.1. The Gaussian components are predicted according to

mk|k−1 = Acvmk−1|k−1 (7.1)
Pk|k−1 = AcvPk−1|k−1Acv + Qcv (7.2)
wk|k−1 = pSwk−1|k−1. (7.3)

Additionally, the prediction step also includes ego vehicle motion compensation, as
described in Section 5.2. In order to handle initialization of new Gaussian compo-
nents in the filter, birth components are added, as described in Section 3.5.1. Since
the focus is to track objects travelling on the same road as the ego vehicle, the
of Gaussian birth components (mγ) are located along the longitudinal axis in the
tracking coordinate system, i.e. where we expect object to appear. For this im-
plementation, two Gaussian birth components are used. Since it cannot be known
beforehand in which direction and object travels, the birth components have zero
velocity. The covariance for birth components (Pγ) is the same for all components
and is chosen to cover the every dimension where an object is expected to appear.

7.1.2 Measurement update
Since the measurement model is non-linear, the standard GM-PHD cannot be used.
Two implementations for nonlinear GM-PHD filter is proposed in [15] where we chose
to work with the Extended Kalman update. For such an implementation a linearized
sensor model is needed. The sensor model, for each radar, given by Equation (5.12),
is differentiated with respect to the states in the state vector according to

Hk = ∂h(x,xek, Sn)
∂x

∣∣∣∣∣
x=mk|k−1

. (7.4)

Here, x is the state vector, xe the ego-vehicle state, Sn the mounting specification
of sensor n, and mk|k−1 the mean of a predicted component.

The implementation in [15] is adapted for one sensor, while the proposed so-
lution uses four sensors simultaneously. Thus, the single sensor update step had to
be revised such that it can handle several sensors at each time step. Each measure-
ment from a sensors must be updated with the predicted components from previous
time step and with birth components. The resulting components from each of the
measurement update, are combined to one posterior intensity function.

Due to overlapping fields-of-view of the sensors, it is important change the
detection probabilities, pD, for the Gaussian components accordingly. Whenever
a component is located in fields-of-view of two or more sensors, the probability of
missed detection can be expressed as (1 − pD)n, where n is the number of sensors
that can detect that component. In this implementation we assume that the pD is
constant for all four radar sensors, i.e. that they have equal probability of detecting
an object if it is within a sensors field-of-view.

7.1.3 Merging and pruning
Since each component in the Gaussian mixture is update with multiple measure-
ments, the number of components in the mixture grows exponentially over time.
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Thus a function to limit the number of component is needed. In [15] such a function
is described, which merges components with similar states and prune components
with low weight. An example to illustrate this is if Mahalanobis distance between
two components (m1,k, w1,k, P1,k) and (m2,k, w2,k, P2,k) is below the threshold, the
two components are merged to a single component (mk, wk, Pk) according to

wk = w1,k + w2,k (7.5)

mk = 1
wk

(m1,kw1,k + m2,kw2,k) (7.6)

Pk = 1
wk

(w1,kP1,k(mk −m1,k)(mk −m1,k)T + w2,kP2,k(mk −m2,k)(mk −m2,k)T ).

(7.7)

Since the Mahalanobis distance is comparable to inverse-chi-squared distribution, we
use it with four degrees of freedom and a probability p = 0.999 in order to obtain a
threshold value for merging components. In pruning step, components with a weight
lower than a threshold are removed. This threshold is also a design parameter and
is tuned in order to have a good result.

7.2 Extended object extraction
The posterior from PHD filter is a Gaussian mixture composed of Gaussian compo-
nents. Each of the components have an estimated set of states. The tracking con-
cerns extended objects, hence the point target assumption the PHD filter assumes
is not a valid way of describing the object. This section describes the approach of
extracting information from point target objects and make extended objects using
clustering and describing the extension in the 2-dimensional Cartesian space.

7.2.1 Clustering
To find the state vector describing the extended targets, the Gaussian components
that originates from the same objects needs to be found. We assume, if components
are closely spaced it is likely that they are describing the same object. Hence, par-
titioning these components into clusters is necessary. The used clustering method is
single linkage clustering, similar to the clustering of measurements in the Detection-
based solution.

A single linkage cluster is described such as: any component in the cluster,
should have a distance to at least one other component in that cluster, which is
below a threshold. Since it is known that object are travelling in same direction
as the ego vehicle, and that cars typically are longer then they are wide, we would
like to allow clusters to associate components with greater distance in longitudinal
direction than in lateral direction in a similar fashion as detection based solution. In
order to have this behaviour, the distance can be calculated with the Mahalanobis
distance for the position state. With a covariance constructed as

C =
[
1 0
0 0.01

]
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which gives same distance if components are located 1 m separated in longitudinal
direction, as if they are 0.1 m separated in lateral direction, i.e. the clusters are
prone to allow larger extension in longitudinal direction because it allows larger
separation between components. If a component can not be clustered to an existing
cluster it forms a new cluster.

7.2.2 Object extraction

Having a cluster of components, each with individual states, an estimate of the
states for that entire cluster can be obtained. The states that we are interested in
is position, velocity, heading and size.

In order to estimate the velocity of the cluster, the velocity of all components
in the cluster is regarded. The weights of the components are used to create a
weighted mean of the longitudinal velocity, vCx , from the components in the cluster
according to

vCx = 1∑n
j=1 wC

j

n∑
i=1

mC
vx,iw

C
i , (7.8)

where mC
vx

is the longitudinal velocity state of Gaussian components in the cluster
(C). Estimation of lateral velocity(vCy ) is calculated in the same manner.

In this solution we have assumed that object are heading along the velocity
vector i.e. no skidding or drifting. Hence, the heading (θC) can be expressed as

θC = arctan
(
vCy
vCx

)
. (7.9)

whenever an object is moving in the same direction as the ego vehicle. If an object
travels in opposite direction we have to compensate for that arctan only is defined
for angles between −90◦ and 90◦.

A rectangle can represent an object in a spatial 2-dimensional space. The
orientation of the rectangle is decided by the heading of the cluster, thus the sides
of the rectangle representing the right and left side of the vehicle are oriented along
with the heading. In Figure 7.3, two rectangular shapes based on simulated Gaussian
components with same position but with different velocity vectors are presented.
The red and blue rectangle are constructed based on the red and blue speed vector
respectively. This illustrates the approach for finding the rectangle described with
components. Rectangles are formed if there are more than four elements in a cluster.
The length and width of the rectangle calculated and filtered in the extension filter.
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Figure 7.3: The minimum bounding box on a set of generated Gaussian compo-
nents that have same positions but different velocity vectors.

It is important to have a good position estimate of the tracked object. The
position of the Gaussian components are based on the measurements of the extended
object and it is not clear how to use this information to describe the definite position.
In this solution we choose to track reference points of the objects, described in
Section 5.1. From the Gaussian components of the cluster, the weighted mean
of the position state is assumed to represent the tracked reference point of the
object. An example to illustrate this is, if the front of the tracked object is facing
the one of sensors, it will induces detections over the surface oriented against the
sensor. This will make the Gaussian components adopt similar to the spreading
of measurements. Hence, the weighted mean of position states of the Gaussian
components shall represent the tracked reference point.

7.2.3 Extension filtering
The information of object extension is varying due to the sensor resolution. There-
fore we must consider that the entire extension of the object is not captured at each
time step. Since we know that object extension is constant over time, it is possible
for to utilize information over several time steps, hence a linear Kalman filter is
utilized in order to estimate the size. The state vector describing the extension of
the object is given by

xEk = [Lk,Wk]T (7.10)
where Lk is estimated length of the object andWk is the estimated width. The initial
value for the filter are set to L0 = 5 m and W0 = 2 m, same as in the detection-
based solution. A personal car, that is the objective for us to track, are typically of
a size 5-by-2 m. The uncertainty is set to be high, P0 = σEI2×2 where σE = 5. The
resulting equations describing the prediction step in extension estimation is

xEk|k−1 = I2×2xEk−1|k−1 (7.11)
PE
k|k−1 = I2×2PE

k−1|k−1IT2×2 + QE (7.12)
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where the prediction is constant, even if the the transition model of the size is true,
we still need to add process noise to be able to correct the estimation.If having
no process noise there is a possibility that the estimation of size is converging to
a incorrect value and is not being able to adjust. That is not a behaviour that is
desired, and instead we have a QE = diag(σcv,L, σcv,W ) where σcv,L and σcv,W are
design parameters. The update step is

SEk = HEPE
k|k−1H

E

vEk = xEk|k−1 − zEk
KE
k = PE

k|k−1Hk(SEk )−1.

The filter will only be updated when there are any information to be obtained from
the cluster i.e. four components or more. Since it is not desirable to underestimate
the size, updating size to a larger estimation should be easier than reversed, updating
to a smaller size. To control this behavior, the variance of the measurement noise is
modelled with respect to the change from prediction according to innovation (vEk )
where the error in length is described by εL,k and width εW,k. In Figure 7.4 the
function describing the measurement noise of the length estimation is presented.
The function is a discontinuous function, modeled to have the desired behaviour of
the filter. The measurement noise for width is calculated in same way.
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Figure 7.4: The plot shows how the standard deviation of measurement noise σ
changes with the error εk.
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8
Results

This section contains detailed results of the two algorithms developed during this
thesis. The focus is on estimation of position, velocity, heading and size. The
estimates are presented together with information from a reference system providing
ground truth.

For the evaluation we consider an overtaking scenario involving the ego vehicle
and a single target car. The target vehicle is a Volvo XC70 with length 4.838 meters
and the width 1.925 meters. The target vehicle is starting at ∼ 50 m from the ego
vehicle and standing still. The ego vehicle is accelerating up to ∼ 6 m/s and shortly
after, the target is accelerating up to ∼ 14 m/s. Both the ego vehicle and the target
is maintaining their speed until the last couple of seconds were the target starts to
decelerate. The scenario is illustrated in Figure 8.1 and this is only illustrating the
longitudinal position relative to the ego vehicle.

Figure 8.1: Overtaking scenario describing the longitudinal position at different
time steps.

This scenario is chosen because it covers the difference appearances of mea-
surements. It gathers measurements of the target at both long range and up close
which includes the cases seen in Figure 2.2-2.4. By the overtaking, multiple sensors
is detecting the target and it is detected from different angles. Moreover, the target
in this scenario was equipped with a reference system, hence the scenario is suitable
for evaluation.

8.1 Detection based solution

This section presents the results from running the detection-based algorithm on data
from the scenario in Figure 8.1. For the evaluation, the algorithm is implemented
using the parameters in Table 8.1.
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Table 8.1: Design parameter choice for detection-based solution on the chosen
scenario. These values are estimated based on visual inspection of the data and
tuned to suit the scenario.

Parameters
Standard deviation of process noise (σ) 1

Standard deviation of process noise for size (σcv,L,σcv,W ) 0.7
Standard deviation in x,y for meas. update (σx, σy) 3

Range influence on length and width (τL,τW ) 2
Standard deviation in heading for measurement update (σθ) 0.1

In Figure 8.2 the estimated position is presented while Figure 8.3 shows the
corresponding estimation error. In Figure 8.2, we see that the estimated longitudinal
position matches the ground truth very well throughout the scenario. For the lateral
position, the estimates are good when the target is close to the ego vehicle. The
filter initialize tracking of the target when it has accelerated for a short time, since
the filter does not track stationary targets. The tracking of the target stops at
approximately 28 s. That is because the target leaves the field-of-view of the sensor
system.
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Figure 8.2: Estimated longitudinal and lateral positions compared with ground
truth.
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Figure 8.3: Detection-based estimation error of the position relative to ground
truth.

The longitudinal velocities of the detection-based solution is close to the ground
truth (see Figure 8.4). It even finds the behavior in the beginning of the acceleration
(around 4s) where the acceleration dips for a short while. The lateral velocity is
very unstable compared to ground truth even if it becomes more accurate after the
overtaking.
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Figure 8.4: The estimated longitudinal and lateral velocities compared with ground
truth.

As illustrated in Figure 8.5, the heading is velocity unstable, similar to the
lateral velocity. This is because the heading is calculated from the velocity vector
of the longitudinal and lateral velocity, except when it is updated with a rectangle.
This is done only 2 times at around 10 s and multiple times between 14 and 17 s.
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Figure 8.5: Estimated heading compared with ground truth.

As can be seen in Figure 8.6, the estimation of the extension is poor. The
initial guess on length and width are 5 m and 2 m respectively. Because of the
detection-based solution does not update the size from less than 5 measurements
per time step, it is not updated until the target is up close. When an update is
done, it is updating to a smaller size than the ground truth.
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Figure 8.6: Estimated extension compared with ground truth.

8.2 PHD-based solution

The results from the PHD-filter are obtained from the same set of data as the
detection-based solution i.e., the scenario in Figure 8.1. The PHD-based solution
offers the possibility to tune the filter with a few parameters. The Gaussian birth
components are set to have the longitudinal position as −30 m and 30 m. The
corresponding covariance matrices have a value of Pγ = diag(100, 100, 100, 100).
The weights for the birth components are set to wγ = 0.005. In Table 8.2, we state
the other parameter values that were implemented during the evaluation.
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Table 8.2: Design parameters for the PHD-based solution in the chosen scenario.
These values are estimated based on visual inspection of the data and tuned to suit
the scenario.

Parameters
Detection probability (pD) 0.9
Survival probability (pS) 0.95

Standard deviation of process noise (σ) 1
Standard deviation of extension (σcv,L, σcv,W ) 0.7

In Figure 8.7 the estimated position is presented, while Figure 8.8 show the
corresponding errors. As shown in the figures, the lateral position varies, at long
range, as much as 4 meters in the initial phase of the tracking sequence. The
longitudinal position show good estimations but during the overtaking, the reference
position of the vehicle changes which introduces inaccurate estimations of position
of the extended object. This causes a change in longitudinal position estimation
over just one time step which is clear if looking at Figure 8.8 at time ∼ 15 s and
∼ 16 s.
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Figure 8.7: Longitudinal and lateral position compared compared with ground
truth.
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Figure 8.8: GM-PHD filter estimation error of the position relative to ground
truth.

In Figure 8.9, the longitudinal and lateral velocities are presented. At long
range, the longitudinal velocity is close to the ground truth. The filter only uses
measurement from a target that moves in 1 m/s or more and a track is initiated
almost immediately when it start to get measurements. Closer to the overtaking
situation, the longitudinal speed is marginally more unstable, at this position the
range-rate measurement provide less information of speed. The lateral velocity is not
stable in the initial tracking sequence, but as the target approaches the ego vehicle,
the lateral velocity becomes more stable, apart from a few inaccurate estimations.
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Figure 8.9: Longitudinal and lateral velocity compared with ground truth.

In Figure 8.10 the estimated heading is presented. Since the heading is esti-
mated based on the velocity vectors, and the velocity is rather noisy, the heading
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estimation is also noisy. It is unstable especially at low speeds. As illustrated in
Figure 8.9, it is difficult to estimate lateral velocity when the target is far away from
the ego vehicle, in combination with low longitudinal speed the heading is unstable.
As the longitudinal velocity increases, the variation of heading is significantly lower.
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Figure 8.10: Estimated heading from velocity vectors compared with ground truth.

In Figure 8.11, the estimated extension is presented. The presented values are
the output from the extension filter, which is only updated when there is enough
information about the object size. Notice that the size estimation is solely based on
the initial guess until 14 seconds in to the scenario, the reason for this is that the
clusters does not contain enough information in order to update the extension of the
object i.e. less than four components in the cluster. When there are information
about the size, the estimation is quite accurate results, given that the measurement
does not guarantee that the entire extension is represented in the measurement. But
the fact that the estimations is based on initial guess and that the size is updated
for such a short period, makes it difficult to rely of the radars for estimating an size
for an autonomous vehicle.
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Figure 8.11: Estimated extension after linear filter compared with ground truth.
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9
Discussion and conclusion

In this sections we summarize the results of the two proposed algorithms for extended
target tracking. In general, we see that both approaches are feasible when it comes
to tracking objects continuously over a longer period of time. Furthermore, when it
comes to tracking the kinematic states, such as position and velocity, both algorithms
work well. However, the estimations of the target extensions are questionable. In
the following, we discuss and summarize the results, and present directions for future
work.

9.1 Discussion

The detection-based solution shows promising results in general. The idea of using
a point target tracker until an object is confirmed, initialize it and then track it as
an extended target is working well. The PHD-based solution also show promising
results. It uses a point target tracker in order to estimate the state of extended
targets. The key is to extract information about the extended object from the
posterior density from the GM-PHD filter.

For the scenario that we have been evaluating in this thesis, which is an over-
taking scenario, both solutions are accurate when estimating the longitudinal states,
including position and velocity, at long ranges. This indicates that the information
of range and range-rate are accurate and give good information of longitudinal states
at a distance, for an overtaking situation when an object approaches the ego vehicle
on a straight road in the same or in adjacent lanes. This also gives an indica-
tion of that the single point target assumption is valid for estimating speed at long
ranges. Though, close to the ego vehicle, the longitudinal states have less accurate
result. When the number of measurements from an object increases, the estimation
in general becomes worse.

The lateral state estimations of the detection-based solution is in general poor
at long ranges. This is a problem, since at long ranges the assumption that the
measurements originates from the same reflection point on the target makes the
estimation to change velocity and direction. The lateral state estimation is better
when the target is beside the ego vehicle, and for a short time after the overtak-
ing. The lateral state estimation of the PHD-based solution is, in opposite to the
longitudinal estimations, poor at long ranges and slightly better close to the ego
vehicle. This behaviour is expected, since range and range-rate measurements are
more accurate that the angular measurements.

In terms of track initiation and deletion, both solutions show similar results.
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The tracking starts right after the target has a velocity of 1 m/s and drops the
target when it disappears from the sensors fields-of-view. Since we do not have
any restriction on how long we have to keep predicting the target, as soon it is not
detectable by the sensors it is acceptable to drop the target. Since track initiation is
conceptually different between the two methods, there is a difference in the start-up
time of new tracks. The PHD filter starts a track directly at the first measurement,
while the detection-based method has an initiation procedure that requires a number
of detections. However, when it comes to the initiation rate, or detection rate, of
targets, both methods are similar.

A point target assumption does not account for the extension of objects. This
is problem when tracking extended objects in general. When few detections are
present per object, it is difficult to determine the reflection point on the object. In
our cases, it is problematic to estimate states based on that a single measurement
should describe a reference point that we do not know the origin of. For instance, it
can be that the algorithm uses the front right corner as reference point and updates
with a detection from front left side of the car. In this case, it is interpreted as a
movement in the wrong direction. Even if a measurement would be accurate, there
would still be possible that we estimate states incorrectly because we do not know
the origin of the detection in terms of reflection point.

The object size is initialized to 5 by 2 meters which in this case is a good
estimation of the size. None of the solutions provide a robust solution for finding the
size of the objects. The detection-based solution relies on that the entire extension
is captured by the sensors to be able to make a rectangle of the correct size. Since
accurate measurements without clutter never yield a larger rectangle than the actual
size, the detection-based solution is prone to underestimate the size for all situations.
In an automotive application it is important not to underestimate the size of vehicles,
hence it is problematic to estimate based on this condition. Estimating size with the
PHD-based solution have similar problems as the detection-based solution. However,
since the components of the PHD filter spreads around the measurements, the size
estimation gives a wider and longer object than what the measurements show. Since
the estimation in the chosen scenario gives a shorter but wider object than the actual
size, one may question the choice of creating a rectangle around all components.
The extraction is tuned to decrease the error in length and width together. How to
extract the size from the components is a remaining difficulty of the PHD filter.

9.2 Conclusion
It is concluded that both proposed tracking algorithms works well in terms of detect-
ing and tracking vehicles. In terms of longitudinal position errors, the two methods
are similar, with a slight advantage for the detection-based method. Further, in
terms of lateral position and velocity, the errors for both methods are larger, due to
poorer angular accuracy than range accuracy, and due to the fact that the sensors
give few detections at long ranges. Finally, for the size estimation, both methods
perform poorly. The conclusion is that there is a possibility to track objects using
detections from the four considered corner radars. However, while the kinematic
states appear to be possible to track with good accuracy, the estimation of target
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extension is more difficult due to a limited number of detections per object. Future
work is needed in order to see if other sensor models could enable better estima-
tion, or if a more sensitive and high-performing radar is required for accurate size
estimation.

9.3 Future Work
In this work we have only considered a single scenario with one vehicle traveling in
the same direction as the ego vehicle. To also consider scenarios with multiple cars
and with more challenging environments, e.g. intersections, would be a natural step
forward. The algorithms are not tested on other scenarios but a good guess is that
problems will arise. Scenarios with multiple objects would probably require more
accurate clustering. Objects that are closely spaced might be clustered together
and larger objects might be clustered to multiple objects. Scenarios with crossing
traffic might need another or multiple motion models depending on the behavior of
the objects. An approach is to use an interacting multiple model filter to cover all
possible movements of a car.

Further, the implemented measurement model uses the assumption that the
measurements have the same reflection point on the vehicle in each time step. De-
veloping the measurement model to handle that the measurements are from different
reflection points on the object at different time steps could be further investigated.
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