Generating Real Time Reflections by Ray
Tracing Approximate Geometry

Master’s thesis in Interaction Design and Technologies

JOHAN FREDRIKSSON, ADAM SCOTT

Department of Interaction Design and Technologies
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2016

MASTER’S THESIS 2016:123

Generating Real Time Reflections by Ray Tracing
Approximate Geometry

JOHAN FREDRIKSSON, ADAM SCOTT

CHALMERS

UNIVERSITY OF TECHNOLOGY

Department of Computer Science
Division of Interaction Design and Technologies
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2016

Generating Real Time Reflections by Ray Tracing Approximate Geometry
JOHAN FREDRIKSSON, ADAM SCOTT

© JOHAN FREDRIKSSON, ADAM SCOTT, 2016.

Supervisor: Erik Sintorn, Computer Graphics
Examiner: Staffan Bjork, Interaction Design and Technologies

Master’s Thesis 2016:123

Department of Computer Science

Division of Interaction Design and Technologies
Chalmers University of Technology

SE-412 96 Gothenburg

Cover: BVH encapsulating approximate geometry created in the Frostbite engine.

Typeset in KTEX
Gothenburg, Sweden 2016

1ii

Generating Real Time Reflections by Ray Tracing Approximated Geometry
Johan Fredriksson, Adam Scott Department of Interaction Design and Technologies
Chalmers University of Technology

Abstract

Rendering reflections in real time is important for realistic modern games. A com-
mon way to provide reflections is by using environment mapping. This method is
not an accurate way to calculate reflections and it consumes a lot of memory space.
We propose a method of ray tracing approximate geometry in real time. By using
approximate geometry it can be kept simple and the size of the bounding volume
hierarchy will have a lower memory impact. The ray tracing is performed on the
GPU and the bounding volumes are pre built on the CPU using surface area heuris-
tics. The triangle intersection data is pre calculated in order to keep the run time
costs low. The method is implemented and tested on the Frostbite game engine.

Keywords: ray tracing, reflections, real time, acceleration structures

iv

Acknowledgements

Big thanks to: Erik Sintorn, our supervisor for all help, feedback, and sugges-
tions. Everybody at Ghost for everything, especially Andreas Brinck, Adam Carl-
son, Matthew Clarke, Lars Pensjo, David Skyfall and Martin Green for helping us
with all our integration issues.

The Image Quality team at Frostbite, in particular Charles de Rousiers and Tomasz
Stachowiak for the detailed explanation and help they offered us.

Ghost Games for allowing us to use their assets and resources and providing us with
a great working environment.

We would also like to thank our friends and family for supporting and cheering us
on during the Chalmers years. - Adam Scott and Johan Fredriksson

vi

Contents

1 Introduction

3

1.1 Background
1.2 Purpose
1.3 Problem Statement
1.4 Limitations

1.5 Ethics

Theory
2.1 Raytracing
2.1.1 Acceleration structures
2.1.1.1 Binary space partitioning trees
2112 K-Dtrees
2.1.1.3 Bounding volume hierarchies
2.1.1.4 Grids
2.1.1.5 Octrees
2.1.2 Spatial splitting oo
2.1.2.1 Heuristics
2.1.2.2 Binning o
2.1.3 Boxintersection
2.1.4 Triangle intersection oL
2.2 Existing method
2.2.1 Screen space reflectionso
222 Cubemaps
2.3 Previous Work
Methods and Implementation
3.1 Overview of the implemention
3.2 Predevelopment
3.3 Software development
3.3.1 Testing and validation
3.3.2 Pipeline
3.3.2.1 The BVH implementation
3.3.2.2 SAH based bounding volume construction
3.3.2.3 Pre compute intersection data
333 GPUvsCPU
3.3.4 Implementing ray tracing algorithm

17
17
17
18
18
19
19
20
21
21
22

viil

Contents

3.3.5 Filteringo 23

4 Results 24
4.1 Quality of the proxy geometry 25
4.2 Memory costs 25
4.3 Performance measurement 27
4.4 TImage quality 28

5 Conclusion and Discussion 32
6 Future work 34
Bibliography 35

ix

1

Introduction

In the video game industry the graphics are becoming more and more realistic. As
the computing power of GPUs are growing, the possibilities of what can be rendered
in real time grows with them. To provide realistic renderings an important aspect is
the simulation of light. It is common to approximate or "cheat" in these simulations
in order to achieve a viable calculation speed. An aspect of light simulation that is
expensive to simulate is reflections. As light moves from a light source and bounces
off materials, reflections are created. The color of the reflections vary depending on
the materials it comes in contact with along the way.

1.1 Background

Reflections are everything that can be seen, except for direct light. It is a vital part
of providing realistic effects in rendering. In order to create a realistic rendering, it
is necessary that the entire setting feels real to the observer. Specular and glossy
reflections are a big part of making a setting realistic, e.g. an observer expects to
see reflections when looking into a mirror. Accurate reflections can be expensive to
calculate and are normally only approximated. A widely used method to accurately
simulate reflections is ray tracing, which is an expensive process. This thesis will
focus on how to use ray tracing to calculate reflections in real time. Ray tracing
is performed by tracing the path of the light through the individual pixels of the
screen and simulating its interaction with virtual objects, as is shown in Figure 1.1.
Ray tracing works well with dynamic lighting models as the light is not necessarily
determined with pre computed light maps but can instead be calculated during run
time. For accurate and life-like reflections ray tracing can become expensive to
calculate, since more recursive rays will have to be used. This, in turn, demands
incrementally more computing power to process. However, when utilizing ray tracing
in real time, a higher frame rate can be achieved by exchanging reflection quality
for performance.

The cost of ray tracing is dependent on the complexity of the environment, as the
environment gets more detailed the rays needs to perform additional intersection
checks. This creates a bottleneck in the rendering process when scenes becomes
large and complex. The method described in this thesis is developed to suit the
future needs for the game Need for Speed [2] using the Frostbite game engine [10].
The existing system for handling reflections uses screen space reflections (SSR) and
image based lighting (IBL) through parallax-corrected cube maps which is further
described by Lagarde[46]. This implementation faces three major obstacles for po-

1. Introduction

tential future use cases. The first occurs when traveling at a high velocity in the
game and the cube maps fails to update fast enough, which leads to the method
failing to produce any reflections from the IBL system. The second, is that IBL fails
to handle dynamic lighting in the environment. The third and final obstacle, is the
discrepancy between the flat textured approximation for the scene around the cube
map and the actual geometry. Cube maps are rendered from a single point in space,
so for any other points within the cube the reflections are just approximations.

Figure 1.1: Ray tracing used to create shadows.

1.2 Purpose

The purpose of this thesis is to implement and evaluate a software solution for real
time reflections in the Frostbite engine which is compatible with the existing SSR
system. This thesis aims to replace the IBL implementation with a GPU ray tracer,
tracing against low fidelity proxy geometry. As with IBL this is used in order to
approximate the reflected color in different types of reflective material in the virtual
environment. The thesis will also cover researching supporting data structures that
adheres to the given constraints of the project. Any potential integration issue
during development will have to be handled, since the solution is intended to be
compatible with the currently implemented system. Therefore, development will
proceed according to specifications set by the stakeholders Ghost Games [1] and
Frostbite. The stakeholders have two important concerns that the method should be
able to handle. The first is to load reflection meshes from memory at a sufficient rate,
even when moving through the environment at high speeds, as this is problematic

1. Introduction

with the current implementation. The second is that the solution should be able
to handle dynamic lighting for possible future needs. The second concern makes it
difficult to utilize pre computed illumination as the current solution does.Ray tracing
against a complex environment can imply a performance loss. Furthermore, the
amount of memory occupied by the acceleration structure increases with the amount
of triangles in the geometry. Therefore, ray tracing will be performed against proxy
geometry, a simplified mesh representing the environment. Ray tracing against a
proxy geometry also marginally reduces the amount of intersection checks since
the ray tracing is performed against less triangles. This will provide decreased
calculations in real time at the cost of the quality of the reflections. With this
method the aim is to provide reflections that are accurate enough that the end user
will not notice the difference, while decreasing the required memory. This method is
developed with the racing game Need for Speed in focus, so the scenes will be both
large and complex. This leads us to believe that the previously mentioned bottleneck
in memory can possibly be decreased by utilizing our method, since the bounding
volume will allocate less memory compared to the size of the cube maps. Another
advantage the proposed method provides is an improved work flow for artists. With
the current solution involving cube maps the artist manually has to place cube maps
in the game world. By ray tracing proxy geometry this process can be automated
to remove this extra workload from the artists.

1.3 Problem Statement

The core problem is that the current utilized solution for resolving real time re-
flections with SSR and IBL is not fulfilling the two desired specifications given by
the stakeholders. When using IBL, updating the cube maps in sufficient time be-
comes an issue. The cube maps for IBL are created iteratively as the camera moves
through the scene, and at higher speeds the cube map creation can not update the
cube maps fast enough. An IBL based solution also has trouble handling dynamic
lighting, since it utilizes pre generated light maps. The proposed method of ray trac-
ing proxy geometry coupled with the implemented SSR solution, as an alternative
to IBL, can provide solutions to both of the mentioned specifications. However, the
computational requirements for constructing a real time reflection solution, in the
form of a GPU ray tracer, will entail several bottlenecks. The bottlenecks will, with
consideration to the overarching limitations set on the project, be handled on a pri-
ority basis. The implementation of the ray tracer will be developed to structurally
and architecturally fit the current implementation of Need for Speed. Therefore,
part of this project will focus on gaining knowledge and understanding of the ren-
dering software in the Frostbite engine, to efficiently be able work with the existing
system. Need for Speed is developed for the current generation of consoles, Xbox
One, and Playstation 4 (PS4). Therefore, the hardware [12] [5] on one, or both, of
these consoles will act as a benchmark of the available computing power the proxy
geometry implementation can utilize.

Existing ray tracers will be evaluated based on the efficiency of the tracing speed. In
order to achieve an acceptable frame rate, improvements of the tracing algorithms
and acceleration structures for the geometry in the environment will be researched.

1. Introduction

The quality of the reflections provided by tracing proxy geometry will then be val-
idated in relation to the quality provided by the IBL method. An issue with ray
tracing is how different materials and filtering is to be handled. For example, simu-
lated glossy reflections [45] require additional rays to be cast in order to accurately
display a reflection. Computing similar cases by casting multiple rays for each pixel
per frame can be detrimental to the execution speed of the algorithm. The goal of
this project is to develop an efficient ray tracing solution compatible with the current
generation of consoles. This means that the ray tracing will have to be performed
in real time and adhere to the memory restrictions developing for consoles implies.
Questions that will be answered in this thesis consist of the following; how can ray
traced proxy geometry reflections seamlessly be integrated with the current SSR, im-
plementation? How can ray tracing algorithms and acceleration structures be used
to keep the rendering overhead low while still producing acceptable reflections? And
finally, do the reflections produced by the proxy geometry sufficiently replace the
IBL implementation in consideration to image quality, while maintaining the same
or better performance?

1.4 Limitations

The subject of this thesis will be affected by memory concerns, therefore, the entire
proxy geometry cannot be in memory at once. As a solution it will have to be
streamed on demand. However, even as it is important that the proxy geometry is
optimized to be streamed in an efficient manner, this subject will not be a focus for
this thesis since it is outside of the intended scope. The reflections will be limited to
compute no illumination, and only use pre computed lighting in textures, in order to
keep the amount of computations low. Therefore, ray tracing against dynamic light
sources will not be performed in this thesis. However, the implementation could be
used as a basis for future research and development in order to enable ray traced
reflections which incorporates dynamic light sources. The current SSR solution will
not be improved in this thesis. Instead it will solely focus on the the proposed
method as an extension to the currently used SSR implementation.

1. Introduction

1.5 Ethics

One of the ethical dangers that can be present when creating visually realistic games
is that the user can become too immersed in the experience. This can in turn lead
to individuals losing grip on reality and get confused on which matters are real,
and which are not. However, the game industry is ever striding for more realistic
graphical effects, since a lot of people are looking to become immersed in the games
that they play. These matters become even more critical with the current focus from
gaming companies to develop virtual reality games, further immersing users in the
games they play. Balancing the end users desire for realistic graphics, physics, and
ambience with the possibility to tell the game apart from reality will always be an
important constraint for game developers. Adams [13] states that the ethical realism
of the game should be tightly bound to the visual realism. He makes the comparision
between the low visual realism game Space Invaders [11], where several aliens are
killed, and the high visual realism game Kingpin [9], where the main protagonist
kills several prostitutes. Kingpin has been heavily critized while Space Invaders is
generally accepted. This showcases that the more realistic game, Kingpin, had a too
large difference in the ethical realism compared to the visual realism it presented.

2

Theory

This chapter presents background information and previous work of methods re-
lated to this thesis. The purpose of this chapter is to analyze ray tracing and its
performance. In order to explore how ray tracing performance can be improved,
research on the most common acceleration structures is presented. Mainly, since
performance is in focus, the acceleration structures will be compared based on their
potential run time speed. To further increase ray tracing performance, heuristics
for building acceleration structures will be analyzed on how they can improve ray
tracing for this study.

2.1 Ray tracing

Ray tracing has several use cases, for example, collision detection [24]. However,
relevant to this thesis is that in computer graphics ray tracing can be used to accu-
rately generate images. The generation performed by tracing the path from the eye
through screen space pixels and simulating the behavior of light traversing through
virtual objects in the scene. The technique is capable of creating highly realistic
reflections compared to other more widely used approximations [17] [46]. Further-
more, ray tracing can be used to produce common visual effects, such as shadows
and refractions [15].

Ray tracing in computer graphics was introduced as early as in 1968 by Arthur Appel
[16]. Since ray tracing is able to create realistic lighting simulations it remains
popular and widely used. However, because it is a very costly process it is not
utilized in most real time games. A known exception is the game Enemy Territory:
Quake Wars [40] which is a remake of the original game, using ray tracing instead
of rasterization. The final result struggled with performance issues when compared
to the original game. Nevertheless, even though the game suffered from lower frame
rates, it shows that it is possible to use ray tracing in real time applications.

There are two main ways to perform intersection checks when ray tracing, ray march-
ing and ray casting [37]. Ray marching is able to provide results when encountering
isosurfaces [19] or representations of volumetric objects [52]. The technique is also
used for resolving materials such as marble or skin where the ray scatters inside
the material itself. Ray marching is performed by stepping along the direction of
the ray and gathering data on how the ray is affected. It is also used to find the
first intersection point in some cases, e.g. with SSR. When compared to simple ray
casting which performs an intersection check with the ray against potential surfaces,
it is a more expensive process.

2. Theory

2.1.1 Acceleration structures

Representing a 3D environment in an efficient data structure is one of the key
components of making ray tracing possible with respect to frame rate. In order
to make the ray tracer efficient, different acceleration structures are analyzed in
order to find which one best suits the specifications for this thesis. Bounding volume
hierarchies (BVH) or K-D trees generally achieves the best performance in rendering
[43]. The following sections explores some of the common ray tracing acceleration
structures and how they diverge.

2.1.1.1 Binary space partitioning trees

A binary space partitioning tree (BSP) is created by recursively splitting hyperplanes
along the orientation of the containing primitives. The BSP partitions becomes
increasingly smaller further down the tree hierarchy. As the spatial representations
becomes smaller, the resolution of given space becomes higher [36]. This results in
a binary tree where spatial traversal with ray tracing can be performed.

2.1.1.2 K-D trees

K-D trees are a subset of BSPs, more specifically they are binary trees where nodes
are splitting planes and leafs are holders of geometrical primitives such as triangles.
The difference between K-D trees and BSPs are that in a K-D tree all dividing lines
needs to be parallel to the axes. The nodes are generated by splitting the parent of
the node dependent on a pre-defined split heuristic. For a canonical balanced tree the
median can be chosen as split heuristic, thus, guaranteeing a O(logn) search cost.
A visualization of a K-D tree is shown in Figure 2.1. K-D trees have a lower number
of intersection tests compared to BVHs. Although, the ray tracing performance is
still normally better for a BVH [47]. However, Vinkler et al. found that K-D trees
tend to outperform BVHs in very large scenes with high occlusion.

N1

(S

N2

oC6

oC3
N1

N2 N4 oC1 G N4

N3 3 N5 C6
C'5

C1 c2 C4 C5 . .
N3 N5

Figure 2.1: The resulting tree the K-D algorithm creates is a space subdivided
binary tree with a low/hi split. In the tree on the left side nodes are represented by
circles and leaves by squares. In the tree to the right the spatial subdivision of the
same nodes are presented.

2. Theory

2.1.1.3 Bounding volume hierarchies

A BVH is a binary tree consisting of recursively built bounding volumes that holds
geometry in the same proximity. Constructing a BVH starts with a single root node
that encapsulates the entire geometry of the processed working set. This node is
then recursively split into two (or more) children, each child a subset of the root
node, the splitting continues until the child nodes holds a predefined amount of
primitives or less. Figure 2.2 shows child nodes as the inner bounding volumes with
the most opaque tint of gray. The construction recursion stops at a predetermined
termination expression, such as maximum amount of primitives in the volume or a
heuristic. Thus, resulting in workable subsets of the whole geometry.

Utilizing a BVH presents several advantages, such as a simple construction process
and a low memory footprint [43]. A low memory footprint is desirable, since, for
the purposes of this thesis, memory impact is in focus.

M, Chajdas [20] states that BVH structures on an average has a better traversal
performance, coherency, and execution time for ray tracing compared to K-D trees
and octrees. Luebke et al. also concludes that BVHs perform better than K-D
trees in real time [33]. The mentioned report focuses on a voxel based visualization
pipeline, however, the specifics of the data structures and the tracing results remain
relevant nonetheless. The results of the report affects the theoretical usage of BSP
trees as well, since a K-D tree is a subset of BSP trees.

Figure 2.2: Bounding volumes visualized in gray, constructed over several primi-
tives.

A BVH requires a certain spatial dependency, where primitives sharing a leaf node
are in the same proximity of each other. Since this dependency hierarchically goes
upwards the binary tree, moving a geometrical primitive between subsets can re-
sult in costly operations. This leads to BVHs not being well suited for run time
construction, especially with heavy split heuristic operations for optimizing tracing
performance. Lauterbach et al. [32] proposes two novel approaches to be able to
generate BVH trees at run time. The first one, a linear bounding volume hierar-
chy (LBVH), represents the triangles in the scene with Morton codes which allows
a BVH to be reduced to a linear sorting problem. This method splits the BVH
at a spatial median distribution, which is, while quick to build, not as optimized

2. Theory

as a SAH split for ray tracing. The other method is an approximated GPU SAH
approach resulting in better trace performance but slower build times. The paper
also proposes a hybrid implementation of the algorithms, letting the LBVH split
at shallower depths of the binary tree. Due to the possibility of parallelizing the
execution, it allows GPU SAH to take over at finer details of the scene. The hybrid
solution shows some promising use since it both offers the construction speed of the
LBVH implementation and the tracing optimization benefited from the spatial area
heuristic [32]. However, a CPU built, pre-processed, full SAH still offers the highest
run time speed and is preferable in scenarios where pre-building is possible.

2.1.1.4 Grids

A grid is created by performing uniform spatial subdivision of an area [26]. The
construction speed of a grid is fast and the complexity of the construction algorithm
can be made linear [27]. The creation time of the grids can be made quick enough for
real time reconstruction, thus, enabling ray tracing dynamic geometry and animated
scenes [50]. The underlying reason why the reconstruction speed of grids is fast, is
that primitives can quickly be allocated from one grid to another. When reallocating
a primitive in e.g. a BVH more than one node can be affected and several volumes
may have to be re-sized in order to be optimal. However, using a uniform grid is not
suited for ray tracing large scenes and generally a BVH outperforms a grid solution
in run time[50]. Grids are most useful in environments with dense primitives [18].
In situations where the primitives are small, a lot of intersection checks will be
performed on empty cells. This can be solved by making the cells cover a larger
area, which in turn leads to the issue of a lot of primitives inside one cell. This
problem is also known as the "teapot in the stadium', which makes it difficult to
select an effective resolution for a non adaptive grid. A further improvement is
to let grids recursively increase resolution of the cells depending on the amount of
triangles each cell contains. This increases the cost of the construction process and
also memory consumption, but results in a more efficient traversal time.

2.1.1.5 Octrees

Octree creation starts with a single root node which represents all geometry in the
scene. By recursively splitting each node along the axes into eight child nodes, a
traversable hierarchy is created. This process results in higher resolution of bounding
volumes in complex areas, where the primitives are placed in the child that encloses
it [34]. A higher resolution leads to significant increases in memory consumption,
especially if the octree is not adaptive to the amount of primitives in an area.

A promising research area in relation to ray tracing and octrees are voxel hierarchies.
Specifically sparse voxel octrees such as the implementation proposed by Laine et al.
[31]. The technique consists of removing the separation between mesh, normal data,
displacement, and color data. This is performed by storing them in the geometrical
representation of the analyzed intersection by voxelizing the scene. Each voxel
contains the detail of the point in question. The voxels are then stored in an octree,
the sparse attribute of the tree is that only sub trees containing geometry is included
in the ray traced hierarchy. The sparse voxel octree contains several mipmaps of the

2. Theory

encapsulated environment, thus, letting the data rich voxels optimally limit look
ups. This implicitly solves different levels of details of the intersected geometry
depending on tracing distance.

The technique exceeds rendering performance compared to a highly optimized tra-
ditional triangle tracer [14]. This is mainly because of its efficiency when shading
and post-processing.

2.1.2 Spatial splitting

How to properly perform spatial splitting is a widely discussed subject in computer
graphics. However, one thing that is agreed on is that good spatial splitting is
required for bounding volumes in order to perform real time ray tracing in complex
environments. This section will discuss both the heuristics and binning methods
that have been analyzed for the ray tracer.

2.1.2.1 Heuristics

Early attempts at creating efficient spatial subdivisions for ray tracing and similar
use cases involved picking an arbitrary split candidate for subdividing the node
at hand. This split candidate is known as the spatial median, and represents the
exact middle point of an axis belonging to the currently analyzed bounding volume.
By inherently adhering to the same formula (%amis). Spatial median split enables
a memory efficient split operation, since each node implicitly defines the splitting
volumes of its children. Since this method does not take into consideration where
primitives are positioned in the resulting bounding volumes, the heuristic leads to
memory inefficient fragmentation [34].

Glassners [22] early research involved analyzing the performance of two octree im-
plementations, one with respect to surface volume of the bounding box or object
density and one not. At this point the threshold chosen for a split seemed like an
important delimiter for the efficiency of said algorithm. Kaplan [28] continues to
work in a similar direction to the implementation presented by Glassner, but in the
form of a binary tree. In this method one node could hold the same amount of
primitives that is divided in up to four nodes with the implementation provided by
Glassner. Split heuristics was originally motivated by the fact that ray traversal
is the delimiting bottleneck in the operation, not the construction. Therefore, en-
abling the build procedure to aid the traversal method to perform better, results in
an overall better performance [34].

Stone [44] states that rays has a deterministic probability of hitting a convex poly-
gon depending on the surface area of the object, the distribution of the rays, and
the distance between the polygon and the ray origin. Since a bounding volume
is a primitive representation of a convex object, this statement can be applied for
creating a measurable heuristic depending on the surface area of the object. When
describing said heuristic, several assumptions [49] are made: The rays are handled
as uniformly distributed infinite lines, traversal cost (K7) and triangle intersection
(K7) are handled as known values and finally, intersecting N triangles are linearly
bound to the intersection cost, i.e. (N * Kj).

10

2. Theory

Cv(p) = K7 + PyC(Vi) + Py C (Vi) (2.1)

Expressing cost (Cy(p)) for a plane is the traversal combined with the cost of in-
tersecting the children of the node, this relation can be observed in equation 2.1.
Pyv,v] in the equation is the probability of hitting the child AABB z and C(V;) is
the cost of the sub-tree containing child x.

SA(V,) SA(V)

‘D= 2 sa Tt & A 2
In Equation 2.2, C(T) is representing the cost of the entire tree. This is the mea-
suring cost that needs to be as low as possible to ensure that the tracing algorithm
maintains a low amount of intersection checks and therefore, more efficient uses of
the allocated resources. Because of the recursive nature of the subdividing step, a
measurable termination step related to the split cost in comparison to the cost of
intersection the primitives contained by the bounding volume is necessary. Thus,
enabling the algorithm to only process relevant bounding volumes and not recurse
for an eternity.
Stich et al. [43] proposes a combination of both surface area heuristic (SAH) search
and traditional spatial median split, thus, resulting in the optimal split being cho-
sen depending on the SAH cost related to each split heuristic. Depending on the
needed resolution of the ray tracing pass and the allocated pre-processing resources,
techniques similar to this could be beneficial for a cheap, yet efficient, data structure.

2.1.2.2 Binning

Binning is to equidistantly split an arbitrary working set, which in the case of ray
tracers are bounding volumes, in pre defined bin sizes. Fach bin acts as a pivot
element creating subsets of the working set. This allows an algorithm to perform,
or analyze a permutation of the set depending on the set binning step. How optimal
the final split candidate is, is bounded to the resolution of the binning size.

At each split step, the heuristic is the delimiting factor for evaluating a potential
split. How each split candidate is chosen is dependent on the information the split
heuristic supplies. Since this information only can be available when compared to
each other, binning usually is performed to be able to perform this comparison.

To perform binning is a costly operation but as MacDonald states [34], for static
geometry, pre constructing a ray tracing data structure is cheaper than the actual
tracing operation. Therefore, any optimization for the tracing step that derives from
construction, increases the run time tracing performance.

11

2. Theory

yslab yslab

Ry

T fary T Nearsy

xslab

Ry
Bounding Box

A\rz Tfarl
xslab

TNear,

N

Figure 2.3: Ray-box intersection on an axis aligned bounding box. Ray R; is a hit
therefore, TNear; < T far;, whereas Ry misses and T far, < Tneary. Ny and No

is evaluated near intersections which are not chosen as T'Near,,, because T'Near, >
N; for Ry and T'Neary > Ny for Rs.

2.1.3 Box intersection

The speed of the ray-box intersection during ray tracing is vital when real time speed
is desired, since this is normally the most time consuming task in a ray tracer [42].
Thanassis [7] utilizes a method for ray-box intersection which shows fast results.
In this method the intersection can be computed as three individual slabs, each
representing the X-,Y- and Z-planes. A 2-dimensional version of this is shown in
Figure 2.3. The intersection test finds Tfar and Tnear for each pair of slabs with
respect to the ray. Comparing the nearest out of the Tfar values with the farthest
of the Tnear values you determine if it is a hit of the bounding box or not. The
Figure 2.3 shows two near intersections (N, N2) belonging to the rays Ry, Ry, both
of them showcases near intersections not selected by the algorithm since the chosen
intersections (T'neary, Tnears) is further away from the ray starting position. The
ray has similar intersections (F, F5) not being presented in the figure. They are
discarded by a similar logic, when the chosen Tfar for each ray is closer to the ray
starting position than F} and F5.

2.1.4 Triangle intersection

After determining if a ray has hit a leaf node or not, the triangles of the leaf has to
be evaluated to determine if the ray hits a triangle at all and if so which triangle
is closest to the origin of the ray. A common method [39] for triangle intersection
consists of a two-pass routine. Firstly, the analyzed ray is checked if it intersects the
plane belonging to the triangle. Secondly, the intersection is checked if it is inside
the triangle or not.

12

2. Theory

N

B
w \ / u
———> Normal
N P
Y

C

Figure 2.4: Ray-triangle intersection. The picture shows a triangle with vertices
A, B and C. The triangle plane and the triangle ABC shares a normal since they
are aligned. The red ray intersects the triangle at intersection point P. The areas
BAP, CBP and ACP are expressed as w, u, and v respectively.

The plane intersection pass consists of calculating the normal of the plane, as can be
seen in Figure 2.4. The normal is used for finding the distance between the origin of
the ray and the intersection. This distance is then inserted in the plane intersection
equation P = RayOrigin + distance * RayDirection, where P is the intersection
point. The plane equation, Ax + By + Cz + D = 0, can be derived to express
D in the form of D = dot(Normal, V), where vertex V € [A, B,C]. By combining
the plane equation and the plane intersection equation, distance can be expressed as
distance = —(dot(Normal, RayOrigin)+D) / dot(Normal, RayDirection). Before
calculating the distance equation, the equation dot(Normal, RayDirection) has to
differ from 0 since this would imply that the ray and the triangle normal is perpen-
dicular to each other. Another special case is when the distance is calculated to be
negative, this case means that the triangle is behind the origin of the ray, and should
therefore, not be considered for further evaluation. For the next step, to determine
if a hit is inside a triangle or not, Ericson [21] proposes a solution that originates in
the fact that any point P sharing the same plane as the triangle can be expressed
as P = uA + vB + wC, where u + v + w = 1. These coordinates are called
areal coordinates or barycentric coordinates and are normalized representations of
the contributed areal coverage of the triangle u, v and w (Figure 2.4). Each area
u, v and w can be expressed in the form w = %m. This equation can be
derived to express the barycentric coordinate w as w = (AB x AP) x Normal [39].
By calculating each area u, v, and w and for each coordinate stop the evaluation for
the triangle if u, v or w is < 0, since that the hit is therefore, outside of the triangle.
Any triangles that have passed this step is guaranteed to be hit the by the incoming
ray.

2.2 Existing method

The existing method utilizes a version of cube map reflections [23] in combination
with screen spaced ray tracing (SSR). Cube map reflections are generally a faster
technique than ray tracing, but is normally only accurate for a single point in space.
Another issue is that seams between two different cube maps can be visible if two
neighboring objects use different maps. To increase the accuracy of the cube maps

13

2. Theory

the reflections are parallax corrected [30] before rendered to the screen, as presented
in the game Remember Me [6]. The spatial points inside the cube maps are adjusted
to get the correct parallax value so the displayed reflections are as correct as possible.
However, when cube maps are used with fast moving cameras, as is the case in Need
For Speed, the cube maps need to cover larger areas with lower resolution. This is
since it puts a strain on the memory bandwidth, which leads to slower streaming
times. The lower resolution in combination with larger cube maps leads to poorer
quality in the reflections as well as errors for large parallax corrected values. Another
problem is that the cube maps are generated in run time, by creating one side of
the cube map per frame, and this method is easily overwhelmed when facing large
amounts of data that needs to be updated. An issue with the current implementation
is that the cube maps has to be manually inserted in the scenes. This in turn
increases the workload of the artists. The integration between the SSR and the IBL
in the existing solution shows some artifacts in the seams between the SSR and the
IBL, as is shown in Figure 2.5. The main reason for this seam is the low resolution
of the cube maps used by the IBL. The resolution of the cube maps are 128x128 for
each side of the cube, and there are constantly 41 cube maps loaded in memory.

Figure 2.5: Lower resolution on cube maps are visible when compared with SSR.

2.2.1 Screen space reflections

SSR is performed by ray tracing the scene using the depth buffer, as opposed to
the actual geometry. SSR normally only requires a ray and the scene, so the imple-
mentation can be made isolated if necessary. This technique works well with any
reflecting surface, even curved surfaces such as waves on water. Screen space ray
tracing can enable fully dynamic reflections, ambient occlusion, and refraction by
only using the depth buffer [35]. However, the technique fails to provide accurate
results in certain scenarios. The first, if reflections are of objects outside of the view
port, as is shown in Figure 2.6, SSR will not be able to draw them. Secondly, back
facing information is not accessible through this technique, as is shown in Figure

14

2. Theory

2.7. This makes it problematic in some cases, e.g. to produce mirror reflections of a
character from a third-person view. The third inaccuracy is visible in cases such as
the one shown in Figure 2.8. In this case, the reflective information is front facing
but obscured by another object. SSR lacks the color information for these cases
even if the intersection can be found.

9

Figure 2.6: Ray reflected outside of the field of view.

9

Figure 2.7: Ray intersecting with back face of an object.

15

2. Theory

Figure 2.8: Ray intersecting with an obscured object.

2.2.2 Cube maps

Cube maps are a commonly used method for environment mapping which was first
introduced by Greene [23]. The name cube mapping is derived from the fact that
it is used to map the environment in the form of sides on a cube. A cube map is
created by rendering the six sides of the scene from a single viewpoint. The mapping
is stored as six textures, one for every side of the cube, or as six regions of a single
texture. Therefore, the quality of the reflections are dependent on the quality of the
textures. This also leads to increased memory costs in order to get better reflections.
The biggest flaw with cube maps are how they are only correct for a single point in
space. There are ways of improving this, as with the previously mentioned method
of parallax correction. However, due to the fact that it is rendered from a single
point in space, reflections that are not in this point will not provide completely
accurate results.

2.3 Previous Work

Ray tracing has many applications in computer science. It is applied in different
fields for intersection detection and can be applied for tracing the path of light in
computer graphics. Thanassis [7] developed a tracing algorithm using BVHs in 2011.
The ray tracing algorithm he created is a real time CUDA [3] ray tracer. Due to
this the implementation is not compatible with Frostbite in itself, but the algorithm
has been studied and used as a base for the implementation of this paper. For more
information on fast tracing algorithms, Aila et al. [14] explains how to optimize
ray tracing for GPUs. Wald et al. [48] presents a promising implementation of
surface area heuristic splitting for improving the traversal speed of BVHs which our
implementation relies on to decrease the real time computations.

16

3

Methods and Implementation

Implementing a new reflection technique in a system as large as Frostbite requires
a lot of work with integration. This in turn makes it difficult to understand if bugs
in the implementation stems from miscalculations or integration issues. This issue
was solved by continuously testing all integrated elements in order to make sure
that the output was calculated properly. During the integration with the pipeline
software there are many stages were the bounding volume data can be negatively
affected. Therefore, we continuously checked to make sure that the data was not
corrupted along the way. Another challenge with this thesis is solving for problems
that tracing against a geometry which differs from the rendered geometry can create.
When tracing reflections against a simplified geometry the results can appear strange
in certain situations. For example, in some cases, certain buildings might not be
represented at all in the simplified geometry and will therefore, appear to have no
reflection. In other cases, the simplified geometry can be larger than the original
and it would appear to show a reflection of itself.

3.1 Overview of the implemention

The implementation takes a BVH, a texture containing the triangle colors, and the
ray to be traced. If the SSR fails to find a hit, the same ray is used for proxy ray
tracing instead. This ray is cast against the BVH and in case of an intersection,
returns the color of the closest triangle hit and the hit distance. Currently, the
textures does not contain any pre computed illumination, which would be very
beneficial for the final results. After the tracing process, the color is filtered with
the same filtering system as for the SSR.

3.2 Pre development

The initial phase of the development process consisted of focused testing of specific
components of the system. This was done by setting up a testing environment in
the form of a CUDA [3] ray tracer. This tracer is based on the implementation of
Thanassis [7] and the path-tracer by Kutz and Li [4]. The SAH-based BVH tree is
implemented with the SAH construction in I. Wald’s implementation [48] as base
and specific kernel routines defined in [8]. Early implementations were tested at this
stage and evaluated depending on relevancy for the intended implementation.

Efficiency and use case driven functionality such as back-face culling [25] were tested.
Back-face culling is necessary for removing artifacts that appears because of the

17

3. Methods and Implementation

quality difference between the actual geometry and the approximated mesh. This
problem is visualized in 2D in Figure 3.1.

Incoming SSR Ray Intended Proxy Ray Behavior

Approximated Mesh
\/cho’r’rect Proxy Intersection
Actual Geometry

Figure 3.1: The red ray in the figure represents the incoming screen space reflection
ray. The gray ray is the incorrectly intersected proxy ray, resulting in self reflection.
The blue outgoing ray in combination with the gray ray is the intended behavior of
the proxy ray.

3.3 Software development

The software development process was performed on a single computer, since the
resources provided to this project was limited to one computer fulfilling the necessary
criteria for implementing and testing the software. For this reason all major parts
of the code was created using pair programming [51]. This caused our development
process to be a bit slower than expected, but at the same time more thorough, so
this process likely decreased the time spent debugging, as well as provided both
members of the group full insight on all aspects of the implementation.

The development was performed in a test driven manner where all implementations
where verified with quick sanity checks. Once the output of the implementations
have been validated and the result was satisfying we would move on to the next step
in the solution. Testing each part of the implementation directly was an important
step in the process, since integration issues could otherwise make it difficult to find
out where an error originates from. However, it was also important to keep the tests
quick and simple so the process could move on as soon as possible.

3.3.1 Testing and validation

When implementing the new method, integration issues will be faced, especially
when considering the overall design. These issues can draw focus from familiarizing
oneself with the new method, when focusing on how to properly integrate the method
with the game engine. To ease the transition from the idea of the method to its
integrated version, test code prototyping the intended method is implemented as a
stand alone version. This in order to validate the method on its own. If the results
are satisfactory, it will then be implemented in the engine.

During the later course of the implementation phase of this thesis the results are
tested through quantitative validation. The results are measured against the cur-
rent implementation and the maximum frame budget allowed in the context. This
provides solid measurement of how computationally effective the solution is.

18

3. Methods and Implementation

3.3.2 Pipeline

The existing system available in Need for Speed utilizes a rigid pipeline to supply
the large amount of data streams present and to pre calculate as many calculations
as possible to maintain a playable real time game. To fulfill the goals of the project
(section 1.2), geometrical primitives intended for use has to be pre-calculated at
compile time and passed in appropriate form to the pipeline.

The first step toward this was to implement a policy class, RaytraceProxyPolicy,
acting as an implicit connection between the low level data meshes present in the
engine and a run-time class triggering on world traversal. The traversal function-
ality blends well with what this thesis project aims to achieve. This is because the
content of the meshes adheres to a high level split hierarchy, thus, coupling relevant
functionality to sub-portions of the game. By only processing and having the cur-
rently visited spatial proximity of the car held in memory at any time, contributed
rendering overhead is limited without impacting the results.

To properly process the underlying mesh, the contained triangles has to be extracted,
saved, and pushed onto the pipeline for run-time availability. Due to the data-
driven nature of the system at hand, high level structures and components has to be
filtered and interpreted to access the relevant data. This is a costly procedure, but
a necessary one. The implied cost is only applied to the pre computations, which
does not affect the run-time capabilities of the implementation. Local space vertex
position, texture UV coordinates, and local space normals are accessible from the
vertex element and used to further define the triangles. Mesh specific transforms
is used to correctly project the triangles in world space, thus, creating a unified
relation between all triangles. Parts of the computational components used by the
ray tracer kernel at run-time can be pre computed at this stage. Components such as
dot product D = dot(planar normal, vertex v0)), used to estimate the position
of a triangle in respect to a ray with the following function - (dot (N, orig) + D)
/ dot(N, dir) and barycentric coordinates used to determine if a cast ray is inside
a triangle or not. To prepare the triangles for BVH construction each triangle is
represented by a bounding volume, which lets the BVH algorithm have a quantifiable
comparison between the volumes in the scene.

3.3.2.1 The BVH implementation

When switching from IBL to ray tracing proxy geometry a different manual setup
is required. In order to provide an easier workflow for artist, work was put into al-
lowing the bounding volumes to update themselves when the underlying geometric
data for the proxy geometry is changed. Previously, with IBL, the artists had to
manually place cube maps in the game world and validate the results. With ray
traced proxy geometry, all that the artists have to do is supply the new geometry
to the application and the code for constructing the bounding volumes will be trig-
gered. In the build phase of the game, loading a proxy geometry triggers the class
RaytraceProxyPolicy if changes has been made to the geometry. This class then
constructs a bounding volume per proxy geometry zone, which are pre defined, and
stores the new addition with the geometry. By doing this it can be accessed after
the building phase.

19

3. Methods and Implementation

This part of the implementation is divided in two steps, first the BVH is constructed
with an object structure where each node holds a reference to their children or leaves.
Secondly, when the BVH is completed it is then converted to a GPU and pipeline
friendly indexed version. In the indexed version the BVH tree is constructed as a
main array with supplementing arrays that holds the triangles and the pre computed
triangle data.

The BVH data is then passed through the pipeline of the engine and can be accessed
and loaded on demand in run time. In order to load the BVH seamlessly in the game
they are triggered to load on a per zone basis. This way there is no need to have
more BVHs allocated in memory than what is necessary for the current calculations.
When the data is processed through the pipeline the bounding volume structures
and their containing primitives can be validated by drawing them in debug mode
on top of the game world, as shown in Figure 3.2.

Figure 3.2: Debug view of triangles and bounding volumes. Triangles are green
and bounding volumes are pink.

3.3.2.2 SAH based bounding volume construction

An issue when constructing a bounding volume hierarchy in a top-down method
is deciding where to split the larger volumes into smaller ones. To solve for this
problem, a surface area heuristic algorithm for fast bounding volume hierarchy con-
struction is utilized. Overall, the algorithm slows the construction process. However,
the intersection checks are quicker since the bounding volumes are optimally fitted.
Since the bounding volume construction is pre computed, the speed of the con-
struction is not prioritized but still desired. Wald [48] proposes an algorithm that
uses a top-down greedy SAH construction. The geometry is recursively divided into
non-overlapping spaces, as opposed to how a BVH normally partitions primitives
without regarding overlapping spaces. The heuristic algorithm Wald proposes works
as following: For N triangles in a sub-tree inside the volume V that is to be divided
in the two parts L and R with N respectively Ny triangles and the volumes V;, and
Vk. The estimated traversal cost for the sub-tree can be observed in equation 3.1.

20

3. Methods and Implementation

(SA(VL)) (SA(VR))
(SA(V)) (SA(V))
The SA(V) is the surface area of the volume V and K7 and K represents implementation-
specific constants for estimated cost of traversal and intersection. By utilizing this
estimation on possible partition cases, the case with the minimum cost can be se-
lected and the process repeated for each volume.

COSt(C—)L,R) :KT+K[(NL+()NR) (31)

3.3.2.3 Pre compute intersection data

Triangle data, such as edges, world space normals, and uv coordinates are pre com-
puted in compile time. This data is then passed through the pipeline formatted
as arrays in order to be accessed at run time. This is important to the run time
speed, since less calculations need to be performed by the kernels, thus, decreasing
the computation time of the ray tracing. This comes at a small cost to the memory,
however, in this case, the run time speed is prioritized.

3.3.3 GPU vs CPU

The implementation of the ray tracer leads to the question of developing it on the
GPU or on the CPU. The architecture of each of the processing units has its own
strengths and weaknesses and this has to be taken in consideration when deciding
which sort of tracer will be developed. Figure 3.3 abstractly showcases the physical
architecture of each processor. The size of each core relates to the power of the core
itself in terms of, among other features, its operation frequency, ALU complexity,
and latency efficiency.

Corel Core2 Multiproccessor 1 Multiproccessor 2

Core3 Core4

Multiproccessorn Multiproccessor m

CPU GPU

Figure 3.3: CPU (left) and GPU (right) illustration, the CPU has sequential high
level ALUs while the GPU has scalable parallelizable ALUs, working against low
level instructions.

By sequentially scheduling tasks with its large cache, CPUs are efficient when si-
multaneously handling different complex tasks on several different threads [41]. The
GPUs strength on the other hand is that it is very proficient at processing large
amounts of data, performing the same kernel operation on every data point in paral-
lel. This structure is called SIMD (Single Instruction Multiple Data) [38], a common

21

3. Methods and Implementation

instruction schema used for GPU architectures. A critical difference between the
two processing units is that programs developed for CPU use can have a contextual
awareness of the state of the program. Therefore, it can use high level information
and advanced data structures. GPU’s on the other hand, with their low level, free
standing, nature needs to have data in low level forms presented when each kernel
is processed. This leads to that the necessary data for a kernel instruction has to
be presented in low level structures. One way to supply this is by loading indexed
arrays into buffers. In relation to the thesis project, the pre computed data, such
as barycentric coordinates, needs to be pre processed and loaded in GPU favorable
arrays. This in order to enable each thread to calculate off screen reflections. With
these specifications in consideration, the project will move forward with implement-
ing a GPU ray tracer.

while exists bvh to analyze{
Pop bvh node from stack;
if node is inner node {
if ray intersects node bounding volume {
Push left child onto stack;
Push right child onto stack;
b
} else if node is leaf node {
for each triangle in leaf node{
if triangle is parallel or facing away from ray = break;
// Backface culling
if triangle is behind the origin of the ray = break;
Calculate barycentric coordinates;
if hit is outside triangle = break;
Calculate hitdistance from difference between lineStart and hit;
if hitdistance is shortest distance this far{
Save hitdistance as shortest hit;
Save best triangle and best hit;
b

Figure 3.4: Pseudo code for calculating which primitive a ray hits.

3.3.4 Implementing ray tracing algorithm

The actual ray tracing is intended to be performed on the GPU. Its the only re-
alistic option, since CPU ray tracing would be too slow for real time applications
(Section 3.3.3). The implementation is intended to work as an extension to the
existing screen space ray tracing algorithm. Therefore, it is only performed in cases
where SSR rays fails to find a target. This method ensures that the traced rays are
kept to a minimum amount, thus maintaining a low impact on the overall perfor-
mance of the ray trace pass. Injecting the functionality at this stage also enables

22

3. Methods and Implementation

the off screen reflection pass to benefit from functionality inherited from the screen
space pass, such as filtering and sample weight for the currently analyzed pixel.
The ray tracing algorithm , as seen in Figure 3.4, starts off by initializing a stack
that keeps track of the children of nodes hit. Initially the stack only contains the
root of the BVH tree. While this stack is not empty, the ray will perform intersection
tests on these nodes and add their children to the stack in the case of a hit. If the
node hit is a leaf node, back face culling and intersection tests are run with the pre
computed intersection data for all triangles in this node.

The triangle intersection is performed according to the intersection routine presented
by Roman Kuchkuda [29] whom suggests that if the intersection of the current tri-
angle is closer than any previously found, the triangle data and intersection distance
is saved. After all the intersection checks are finished and the stack is empty, the
closest triangle hit will be used to calculate the reflections.

if (lineDirInverse == 0){

if (lineStart < aabMinValue || lineStart > aabMaxValue) return false;
} else {

float T1 = (aabMinValue - lineStart) * lineDirInverse;

float T2 = (aabMaxValue - lineStart) * lineDirInverse;

if (T1 > T2) {
Swap Tl and T2 value;
}
Tnear = max(Tnear, T1); // Always keep closest Tnear
Tfar = min(Tfar, T2); // and farthest Tfar
if (Tnear > Tfar) return false; // Ray misses bounding volume

¥

Figure 3.5: Pseudo code for ray-box intersection.

In Figure 3.5 the implementation of the box intersection method is seen. This
method is a variant of the method mentioned in Section 2.1.3, where instead of
calculating the inverse of the line direction for each trace recursion, it is pre calcu-
lated before the algorithm enters the tracing logic. This optimization both makes
the algorithm save some computational power and removes the need to check if the
calculation divides with zero at any time. Overall, this makes it more streamlined
and efficient.

3.3.5 Filtering

The already existing filtering system that is part of the SSR generates pixel color
depending on material roughness, incoming radiance, and what values the neighbors
has had temporally using neighborhood clamping. The intended implementation is
meant to work closely with the SSR and override the logical implication of how the
system will handle a missing ray inside the SSR kernel. This leads to a natural
adaptation of the filtering used by the SSR to generate coherently filtered off screen
reflections.

23

4

Results

To appropriately evaluate the results of this project each research question needs
a comparable measure point. The implementation process consisted of continuous
discussion with supervisors and engineers at Ghost and Frostbite. This to ensure
that development adheres to similar solutions already present in the engine, and by
proxy, assuring that a prototype can be correctly and seamlessly integrated with the
current SSR implementation. So by following this mentality, the implied measure-
ment if the research question is answered or not is the current available sub-systems
and the use of said subsystems to enable and aid the intended reflection system.
when handling tracing algorithms and acceleration structures the measure point for
validation is the available memory, frame budget, and efficiency of said algorithms in
comparison with the current IBL implementation. These constraints implied that
work has to be done in order to both stream the data structures in the correct
fashion, optimize this process, and optimize said tracing algorithms.

To correctly measure if the third and final question, “Do the reflections produced
by the proxy geometry sufficiently replace the IBL implementation in consideration
to image quality, while maintaining the same or better performance? ”, is correctly
answered, the produced reflection is aimed to correctly reflect the approximated
geometry. This leads to the approximated geometry to be used as the benchmark if
the implementation is fulfilling the proposed research question or not, which can be
observed in Figure 4.1.

Figure 4.1: Proxy geometry (left) rendered from eye next to the textured source
mesh (right) present in the Need for Speed game. The images are taken from a
similar but not identical viewpoint.

24

4. Results

4.1 Quality of the proxy geometry

The quality of the proxy geometry and the textures that are associated with it
is highly influential on the final visual result. As the proxy geometry gets less
simplified and more like the original geometry and the textures are a closer match
to those used in the original model, the better the results will be. In the cases
where the geometry is kept very simple and the textures clearly do not match the
original texturing, the reflections will look inaccurate, as is shown in Figure 4.2.
Optimally the textures used will have pre-baked lighting, but in the prototype only
the diffuse coloring was used. The problem with the lighting of the textures is easily
fixed without adding extra memory or computing costs in run time. In order to
improve the texturing quality the textures would have to be made larger, which in
turn will make the method more heavy on the memory streaming. However, the
coloring of the textures can clearly be improved from their current state, which
would greatly improve the quality of the proxy reflections. There are some cases
where the geometry is overly simplified and gets culled, e.g. small cylindrical shapes
can be represented by triangles facing only one direction, so they are not visible in
the reflections.

Figure 4.2: Mismatched proxy geometry, where the house does not exist in the
generated proxy geometry. The texturing of the bridge pillars is also badly repre-
sented.

4.2 Memory costs
As mentioned the BVHs and textures are streamed on a per zone basis. The only

data in active memory at all times are the BVH for the zone, the triangle data and
a 512*512 texture belonging to the approximated mesh present in the engine (the

25

4. Results

applied texture can be observed in Figure 4.1). The average amount of memory used
by the proxy geometry is shown in Table 4.1. Whereas the method utilizing IBL
constantly has 41 cube maps with the size 128%128 loaded for each side of the cubes
with an additional mipmap level. This is summed up with 41*128%128%6*8%(4/3)
bytes to 42991508 bytes.

Data Memory Cost
Texture 786432 bytes
BV H 155250 bytes
Index Buf fer 15028 bytes
Delta Buf fer 15028 bytes
Edge Buf fer 45084 bytes
Normal Buf fer 45084 bytes
UV Buf fer 30056 bytes

Total 1091962 bytes

Table 4.1: A table showcasing the average memory cost for each data component
that is loaded for the proxy ray tracing implementation.

Except for taking up less memory space, which is approximately 1/20 of the previous
space, the proxy geometry zones also cover a larger area compared with the cube
maps.

(a) Tire shop (b) Underpass (c¢) Warehouse

(d) Mirror window (e) Plaza (f) Bridge

Figure 4.3: This collection of figures are sample scenes for performance measure-
ment. (a) and (b) are general scenes where a lot of off screen reflections occur. (c)
shows how a warehouse is reflected in a mirror-like wet street, where (d) shows how
the entire scene is ray traced when looking into a window that creates mirror-like
reflections. (e) shows the efficiency in a large scene and (f) shows how reflections
are created when driving under a bridge.

26

4. Results

4.3 Performance measurement

The implementation has been tested on NVIDIA GeForce GTX770 in a 1280x720
resolution as well as on a PlayStation 4 console. The bounding volume hierarchies are
pre-constructed on a PC with an Intel Xeon 3.50 GHz CPU and 32 GB RAM. There
exists 167 zones containing geometry in Need for Speed that the implementation
needs to create a BVH structure for. In total the zones contain 627411 triangles and
the total BVH construction time for all the zones is 453 seconds, with an average of
2.7 seconds per zone.

Performance has been tested throughout different scenes and six varying scenes has
been chosen to represent this. The scenes that are shown in Figure 4.3 show average,
best, and worst case scenarios as well as varying reflection types.

Tireshop Underpass Warehouse Mirrorwindow Plaza — Bridge

but 2983 5599 1997 2495 4003 3415

tri? 3322 6085 2214 2716 4331 3688
1 1.19ms 0.97ms 1.70ms 1.05ms 1.07ms 1.83ms
2 2.3Tms 3.99ms 2.85ms 1.68ms 1.48ms 4.52ms
3 1.92ms 2.70ms 2.20ms N/A 2.97Tms 2.48ms
4 2.3Tms 3.599ms 2.85ms 1.68ms 1.48ms 4.52ms
5 3.60ms 4.83ms 3.94ms 3.83ms 3.87ms 6.97ms
6 7.42ms 17.07ms 7.82ms 7.22ms 8.28ms 19.31ms

Table 4.2: Row 1 represents the existing implementation (SSR & IBL fallback),
row 2 is the proposed solution this project has resulted in, row 3 is a pass when
the proxy geometry is generated from the eye. Row 4 is the existing SSR solution
combined with color data from the proxy geometry (no filtering). Finally row 5 and
6 are the same settings as 1 and 2 running on a PS4 system.

The Table 4.2 shows some interesting benchmark results. The Underpass and the
Bridge images represents the worst case scenarios for the algorithm. In these cases
the SSR fails to find any hits for most of the pixels, so ray tracing is performed for
almost the entire scene, and most of the rays intersects with primitives. The reason
that the Bridge shows slightly worse performance results compared to the Underpass
is likely that the rays in the Bridge scene intersects with more primitives than the
underpass, therefore, more intersection testing needs to be performed. The results in
the Tire shop and the Warehouse images shows a performance decrease by roughly
1.2 ms on GTX770 and about 3.9 ms on PS4. These results also represents the
average performance decrease that has been detected throughout the environment.
The plaza shows a complex scene with open space. In this case the SSR identifies
most of the reflections, therefore, only small parts of the scene is actually ray traced.
All 6 scenes displayed in Figure 4.3 are performed in 30 frames per second on PS4.

!The number of bounding volumes in the BVH
2The number of triangles in the BVH

27

4. Results

Figure 4.4: Unnatural emissive reflections when using IBL (right) compared to
our method using ray tracing (left).

Figure 4.5: Original image using SSR and IBL, without ray tracing the proxy
geometry.

4.4 Image quality

The overall results of the final image is of a decent quality that clearly reflects the
cruder shapes of the proxy geometry. When compared to the previous method of
parallax corrected cube maps [30] the output is more consistent and the reflections
do not get unnatural offsets as can be problematic with larger cube maps which is
shown in Figure 4.4. The current state of the resulting renderings show a visible
difference when transitioning from SSR reflections to the proxy ray traced reflections,
as could be expected. This is since the proxy textures varies in coloring from the
original textures. A thorough comparison of IBL and our solution is shown in Figure
4.10.

28

4. Results

Figure 4.6: Image using SSR and proxy ray tracing with filtering.

Figure 4.7: Image using SSR and proxy ray tracing

Figure 4.8: Image using SSR and proxy ray tracing, with mirror like reflections.

Using ray tracing against proxy geometry gives more control of which reflections
will be visible when compared IBL. Comparing Figure 4.5 with 4.6 the most notable
difference is how the IBL fails to produce reflections of the bridge pillars that are seen
in the top middle when using ray tracing. The reflections shown in Figure 4.7 shows
a clearer image of all objects that are taken into account before filtering is applied,
where these are all objects that the IBL solution does not take into account when
creating reflections. In Figure 4.8 the poorer quality of the texture and modeling

29

4. Results

in the proxy geometry is visible. The texturing of the proxy geometry is monotone
and does not match the standards of the actual models in the game world.

The proposed implementation correctly renders the seam between screen space re-
flections and off screen reflections. In situations with dynamically lit environments
the disparity between the actual geometry of the world and the off screen approxima-
tion would become more explicit. The seam comparison can be observed in Figure
4.9 where the difference in accuracy is apparent.

Figure 4.9: Images using proxy ray tracing (left column) and IBL cube maps
(right column) to showcase how each implementation handles seaming screen space
reflections together with off screen space reflections.

30

4. Results

Figure 4.10: The presented figures are three scenes (one per row) taken from
the same angle with three different reflection settings (one per column). The left
column is SSR with off screen proxy reflections. The middle column is IBL mirror
reflections and the right column is mirror proxy reflections. The first row showcases
the large difference in reflection placement the IBL can result in compared to the
proxy solution. While producing correct emissive reflections, worse case scenarios
like this results in a detrimental accuracy to the reflected color. The second row
showcases a decent approximation of the IBL solution, but as seen on the right side
of the picture stretches out in an unnatural way. The third row is an optimal angle
for the IBL solution, taken close to the probe position for the cube map. Thus, this
angle produces accurate reflections of the building. The proxy reflection however
also produces similar results and with correct texturing and lighting would look very
similar to the results of the IBL solution.

31

O

Conclusion and Discussion

The study has in correlation with the research questions shown a novel solution
on how ray traced proxy geometry can be integrated with the SSR implementation
present in Need for Speed. The solution is a memory conservative approach, reusing
already loaded geometry and streaming logic. This approach follows the guidelines
specified by the stakeholders (Section 1.2), where automatically generated off screen
reflections as well as the possibility for dynamic lighting in the future is prioritized.
This while still keeping a low memory overhead (Section 4.2). The image result of
the off screen reflections is not coherent with the SSR implementation. However,
compared to the proxy geometry mesh that the reflection is based of, the solution
correctly reflects the source content, as is shown in Figure 4.1. This implies that
it is beneficial to further explore this subject. We believe that proxy tracing with
high texture quality and lighting would with high probability result in high quality
off screen reflections.

The ray tracing implementation also manages to render the transition between proxy
reflection and SSR reflection without the seam visible when using IBL, as is shown
in Figure 4.9. Therefore, it is an accurate and dynamic replacement for the IBL
implementation. We have also shown through the methods we use how to produce an
acceptable frame rate with our image quality. As mentioned, the image quality can
be increased with the quality of the texture without affecting the computational cost.
To answer the last question, “do the reflections produced by the proxy geometry
sufficiently replace the IBL implementation in consideration to image quality, while
maintaining the same or better performance”, we believe it does in some regards.
As of now, with the texture coloring not being fully utilized, the changes between
the SSR and the traced proxy geometry is too clear. The performance of the ray
tracing algorithm is costly compared with IBL, but it is more memory efficient.
However, with further work on this implementation it can prove to be an excellent
replacement for IBL that not only occupies less memory, but also provides less work
for artists.

The memory savings shows great results, as it on average occupies up about 1/20 of
the space that the IBL implementation utilizes. With this in mind, if the memory
streaming where not to be a concern, the quality of the proxy geometry could in
average be approximately doubled and still be as memory efficient as the IBL. If
the zones that are currently being utilized were to be split in smaller parts, only the
relevant ones would need to be loaded. This can lead to less unnecessary geometry
being loaded and further increase the streaming potential. We have noticed that
even though all proxy geometries are coupled with a 512*512 texture, some of the
geometries only occupies 256*512 of the texture. This shows that in some cases the

32

5. Conclusion and Discussion

texture resolution could be increased without altering the memory costs.

In the worst cases that has been found show a performance drop from around 8 ms
to 20 ms on a PS4 console. We believe that these cases can be optimized further by
performing further integration work between the SSR and proxy ray tracing shader
code. However, even in the worst cases, acceptable frame rates are still achieved.
As of the build speed of the bounding volumes, we believe it can be highly optimized.
The build times could be lowered by optimizing the calculations and parallelizing
the build tasks. However, this was not prioritized during the work of this thesis
since only the run time performance was in focus.

The image quality is varying with how the proxy geometry is approximated. In some
cases the texturing is better matched compared to other cases, where, e.g. white
texture is used as an approximation of gray buildings. We do not dispute that the
results would be improved with better texture quality and increased fidelity in the
proxy geometry. However, the quality of the texturing could be improved while still
utilizing the same amount of memory. Another way to improve the textures would
be to do a single light pass over the proxy geometry and add some lighting to the
textures, as they currently are very dark. Adding light would also help making the
proxy geometry a closer match to the real geometry. Ray tracing proxy geometry
does produce results that are more correct and not as positional based as parallax
corrected cube mapping.

There are cases where clear artifacts are visible that would not be there if the actual
geometry is ray traced. When tracing the proxy reflections that differ in size from
the actual geometry where e.g. a roof is set higher on a building, the reflection that
normally could be traced entirely with SSR is filled in with a mismatched proxy
reflection on top of it. Another issue is the opposite and more frequently occurring
case, where the proxy geometry is smaller than the actual geometry. This leads
to cases where the proxy trace fails to find hits where there actually should be
geometry.

33

O

Future work

The implemented prototype is dependent on the zone switching triggers that han-
dles skyline visibility (Section 3.3.2.1). While this is beneficial for prototyping and
evaluating the functionality of the off screen reflection solution, this area could be
researched for memory and build efficiency benefits. If the zones were to be split
up in smaller areas, they could then be incrementally replaced when the camera
moves towards other areas. This would decrease the stress of loading an entire zone
at once. Having smaller zones replaced depending on the camera position will also
increase the smoothness of transitions when calculating reflections close to the edge
of a zone. The resolution and efficiency of the BVH implementation is sufficient
(Section 4.2), but this subject could be further explored and optimized. Hybrid ap-
proaches such as the LBVH proposed in Section 3.3.2.1 could be implemented and
tested for further optimizations of the tracing kernel. For future implementations
where light maps and direct illumination, e.g. from the sun, could be implemented.
Worst case scenarios, such as the Underpass in Figure 4.3, would benefit of opti-
mization operations like a termination expression relevant to the importance of the
analyzed scene.

34

[1]

[17]

Bibliography

Ghost games is an ea games studio. http://ghostgames.com/. (Accessed on
05/10/2016).

Need for speed - official site - us. http://www.needforspeed.com/. (Accessed
on 05/10/2016).

Parallel programming and computing platform | cuda | nvidia | nvidia. http:
//www.nvidia.com/object/cuda_home_new.html. (Accessed on 05/30/2016).
Peter and karl’s gpu path tracer blog. http://gpupathtracer.blogspot.se/.
(Visited on 01/27/2016).

Playstation 4 hardware specs - playstation 4 wiki guide - ign. http://www.
ign.com/wikis/playstation-4/PlayStation_4_Hardware_Specs. (Visited
on 01/26,/2016).

Remember me (official). http://www.remembermegame.com/. (Accessed on
05/09/2016).

Renderer 2.x - porting to cuda (one month later). https://www.thanassis.
space/cudarenderer-BVH.html#phase2. (Accessed on 05/15/2016).

Robbin marcus: Real-time raytracing part 2. http://robbinmarcus.
blogspot.se/2015/10/real-time-raytracing-part-2.html. (Accessed on
05/16/2016).

Save 50% on kingpin — life of crime on steam. http://store.steampowered.
com/app/38430/. (Accessed on 06/23/2016).

A smooth and collaborative game development experience - frostbite. http:
//www.frostbite.com/about/mission/. (Accessed on 05/10/2016).

Space invaders - videogame by midway manufacturing co. http://
www.arcade-museum. com/game_detail.php?game_1id=9662. (Accessed on
06/23/2016).

Xbox one hardware specs - xbox one wiki guide - ign. http://www.ign.com/
wikis/xbox-one/Xbox_One_Hardware_Specs. (Visited on 01/26/2016).

E. Adams. Fundamentals of game design. Pearson Education, 2014.

T. Aila and S. Laine. Understanding the efficiency of ray traversal on gpus. In
Proceedings of the conference on high performance graphics 2009, pages 145—
149. ACM, 20009.

J. Amanatides, A. Woo, et al. A fast voxel traversal algorithm for ray tracing.
In Eurographics, volume 87, page 10, 1987.

A. Appel. Some techniques for shading machine renderings of solids. In Pro-
ceedings of the April 30-May 2, 1968, spring joint computer conference, pages
37-45. ACM, 1968.

K. Bjorke. Image-based lighting, 2004.

35

http://ghostgames.com/
http://www.needforspeed.com/
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://gpupathtracer.blogspot.se/
http://www.ign.com/wikis/playstation-4/PlayStation_4_Hardware_Specs
http://www.ign.com/wikis/playstation-4/PlayStation_4_Hardware_Specs
http://www.remembermegame.com/
https://www.thanassis.space/cudarenderer-BVH.html#phase2
https://www.thanassis.space/cudarenderer-BVH.html#phase2
http://robbinmarcus.blogspot.se/2015/10/real-time-raytracing-part-2.html
http://robbinmarcus.blogspot.se/2015/10/real-time-raytracing-part-2.html
http://store.steampowered.com/app/38430/
http://store.steampowered.com/app/38430/
http://www.frostbite.com/about/mission/
http://www.frostbite.com/about/mission/
http://www.arcade-museum.com/game_detail.php?game_id=9662
http://www.arcade-museum.com/game_detail.php?game_id=9662
http://www.ign.com/wikis/xbox-one/Xbox_One_Hardware_Specs
http://www.ign.com/wikis/xbox-one/Xbox_One_Hardware_Specs

Bibliography

[18] S. Boulos. Notes on efficient ray tracing. In ACM SIGGRAPH 2005 Courses,
page 10. ACM, 2005.

[19] H. Carr, J. Snoeyink, and M. van de Panne. Simplifying flexible isosurfaces
using local geometric measures. In Proceedings of the conference on Visualiza-
tion’04, pages 497-504. IEEE Computer Society, 2004.

[20] M. G. Chajdas. A wvozel-based visualization pipeline for high-resolution geome-
try. PhD thesis, Miinchen, Technische Universitat Miinchen, Diss., 2015, 2015.

[21] C. Ericson. Real-time collision detection. CRC Press, 2004.

[22] A. S. Glassner. Space subdivision for fast ray tracing. Computer Graphics and
Applications, IEEE, 4(10):15-24, 1984.

[23] N. Greene. Environment mapping and other applications of world projections.
Computer Graphics and Applications, IEEE, 6(11):21-29, 1986.

[24] E. Hermann, F. Faure, and B. Raffin. Ray-traced collision detection for de-
formable bodies. In GRAPP 2008-3rd International Conference on Computer
Graphics Theory and Applications, pages 293-299. INSTICC, 2008.

[25] M. J. Hopcroft and A. Spyridi. Backface primitives culling, Mar. 19 2002. US
Patent 6,359,629.

[26] T. Ize, P. Shirley, and S. Parker. Grid creation strategies for efficient ray tracing.
In Interactive Ray Tracing, 2007. RT’07. IEEE Symposium on, pages 27-32.
IEEE, 2007.

[27] J. Kalojanov, M. Billeter, and P. Slusallek. Two-level grids for ray tracing on
gpus. In Computer Graphics Forum, volume 30, pages 307-314. Wiley Online
Library, 2011.

[28] M. R. Kaplan. The use of spatial coherence in ray tracing. Techniques for
Computer Graphics, pages 173-193, 1987.

[29] R. Kuchkuda. An introduction to ray tracing. Theoretical Foundations of
Computer Graphics and CAD, Italy, 1987.

[30] Z. Lagarde. Local image-based lighting with parallax corrected cubemap.
GameConnection, 2012.

[31] S. Laine and T. Karras. Efficient sparse voxel octrees. Visualization and Com-
puter Graphics, IEEE Transactions on, 17(8):1048-1059, 2011.

[32] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and D. Manocha. Fast
bvh construction on gpus. In Computer Graphics Forum, volume 28, pages
375-384. Wiley Online Library, 2009.

[33] D. Luebke and S. Parker. Interactive ray tracing with cuda.
Technical — presentation, http://www. nvidia. com/content /nvi-
sion2008/tech__ presentations. html. PDF URL: hitp://www. nvidia.
com,/content/nvision2008/tech__presentations/Game__Developer _Track/NVISIONOS-
Interactive_ Ray__ Tracing. pdf, 2008.

[34] J. D. MacDonald and K. S. Booth. Heuristics for ray tracing using space
subdivision. The Visual Computer, 6(3):153-166, 1990.

[35] M. McGuire and M. Mara. Efficient gpu screen-space ray tracing. Journal of
Computer Graphics Techniques, 2014.

[36] B. F. Naylor. Binary space partitioning trees. Handbook of Data Structures
and Applications, pages 20—1, 2005.

36

Bibliography

[37]

[38]
[39]

[40]

A. Neubauer, L. Mroz, H. Hauser, and R. Wegenkittl. Cell-based first-hit ray
casting. In Proceedings of the symposium on Data Visualisation 2002, pages
77-86, 2002.

D. A. Patterson and J. L. Hennessy. Computer organization and design: the
hardware/software interface. Newnes, 2013.

S. Pixel. Ray tracing: Rendering a triangle. http://www.scratchapixel.com/
lessons/3d-basic-rendering/ray-tracing-rendering-a-triangle, 2012.
D. Pohl. Light it up! quake wars gets ray traced. Intel Visual Adrenaline, (2),
2009.

A. Rege. An introduction to modern gpu architecture. En ligne/, 2008.

B. Smits. Efficiency issues for ray tracing. In ACM SIGGRAPH 2005 Courses,
page 6. ACM, 2005.

M. Stich, H. Friedrich, and A. Dietrich. Spatial splits in bounding volume
hierarchies. In Proceedings of the Conference on High Performance Graphics
2009, pages 7-13. ACM, 2009.

L. D. Stone. Theory of optimal search. 1975.

K. G. Suffern and K. Suffern. Glossy reflection. In Ray Tracing from the Ground
up, chapter 25, pages 529-542. AK Peters, 2007.

L. H. Sébastien Lagarde. The art and rendering of remember me. Game De-
velopers Conference Europe, 2013.

B. Vinkler, Havran. Bounding volume hierarchies versus kd-trees on contem-
porary many-core architectures. 2014.

[. Wald. On fast construction of sah-based bounding volume hierarchies. In In-
teractive Ray Tracing, 2007. RT’07. IEEE Symposium on, pages 33—40. IEEE,
2007.

[. Wald and V. Havran. On building fast kd-trees for ray tracing, and on doing
that in o (n log n). In Interactive Ray Tracing 2006, IEEE Symposium on,
pages 61-69. IEEE, 2006.

I. Wald, T. Ize, A. Kensler, A. Knoll, and S. G. Parker. Ray tracing animated
scenes using coherent grid traversal. In ACM Transactions on Graphics (TOG),
volume 25, pages 485-493. ACM, 2006.

L. Williams and R. Kessler. Pair programming illuminated. Addison-Wesley
Longman Publishing Co., Inc., 2002.

K. Zhou, Z. Ren, S. Lin, H. Bao, B. Guo, and H.-Y. Shum. Real-time smoke
rendering using compensated ray marching. In ACM Transactions on Graphics
(TOG), volume 27, page 36. ACM, 2008.

37

http://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-rendering-a-triangle
http://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-rendering-a-triangle

	Introduction
	Background
	Purpose
	Problem Statement
	Limitations
	Ethics

	Theory
	Ray tracing
	Acceleration structures
	Binary space partitioning trees
	K-D trees
	Bounding volume hierarchies
	Grids
	Octrees

	Spatial splitting
	Heuristics
	Binning

	Box intersection
	Triangle intersection

	Existing method
	Screen space reflections
	Cube maps

	Previous Work

	Methods and Implementation
	Overview of the implemention
	Pre development
	Software development
	Testing and validation
	Pipeline
	The BVH implementation
	SAH based bounding volume construction
	Pre compute intersection data

	GPU vs CPU
	Implementing ray tracing algorithm
	Filtering

	Results
	Quality of the proxy geometry
	Memory costs
	Performance measurement
	Image quality

	Conclusion and Discussion
	Future work
	Bibliography

