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Abstract
In this project you will follow the process of modeling, designing, and constructing a
segmented and modular snake-like robot that can successfully traverse a constructed
obstacle course. The robot is adaptable with the help of a sensor and different
movements. The forwarding locomotion consists of a pulse movement as well as a
rolling movement for longer distances. It is also able to climb vertical obstacles up
to a height of 24cm, with the robot being 60cm long, and climb slopes up to 27°.
All the movements were constructed with a geometrical analysis.
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1
Introduction

1.1 Background

In today’s modern society, technology is advancing at a rapid speed, computers
are made smaller, and the development of robots is increasing[1]. This has opened
up many new avenues of possible applications for robots. Such as robots that can
travel through harsh terrain in, for example, search-and-rescue missions. A harsh
terrain poses many challenges to the locomotion of the robots[2]. A good source of
inspiration while searching for solutions to this problem is nature. Among nature’s
more interesting forms of movements are the movements of serpents and snakes and
more specifically, how they are efficiently able to access the most restricted areas.
A more in-depth analysis of the biomechanical study of snakes can be found in the
book by Harvey B. Lillywhite (2014)[3].

1.1.1 Snake-like robots
Snake-like robots are a subject that has been popular for quite some time with
the first research on the area conducted in 1972 and has since then been continued
upon, with the robots becoming more and more advanced[4][5]. Snake-like robots
have many applications and can be categorized into two kinds of robots, segmented
and continuum robots[5].

Segmented robots are made up of multiple, usually similar segments that with the
help of motors generate movement in one or more axes. By re-positioning the
segments with the support of the motors movement can be generated. Advanced
versions of these robots are usually constructed such that each segment provides
rotation in more than one axis, while less complex ones only provide rotation in
one axis. This enables the more advanced robots to have the ability to use more
complex forms of movement. Segments and their modulated property lead to the
option of increasing or decreasing the number of segments that a robot includes.
Some concept systems have automated the process of self-assembly and -disassembly
to such a degree that the system can do it automatically[6].

A common way to generate movement with segmented snake-like robots is in the
form of serpentine movement, i.e. shifting the body parallel to the ground to gen-
erate propulsion (see Fig. 1.1).

1



1. Introduction

Continuum robots have, with the help of minuscule segments, a big amount of
variability. This, in addition to an external source for propulsion, gives it a multitude
of applications. In general, the movement is generated by using hydraulics or wires
to produce contractions in the robot[5]. The big difference, between segmented and
continuum robots, is that while segmented robots use their segments to achieve
locomotion, continuum robots are usually used as manipulators. These kinds of
manipulators are e.g. found among surgical robots[7].

Figure 1.1: Figure representing the serpentine movement often found in biological
snakes. (Picture:Rushenb[8]).

1.1.2 Modular Robots

The meaning of the word modular differs in what context it is used. In the case of
robotics, it is used to describe a robot with several generic modules that can change
the connection and order of these modules for better adaptation and flexibility.
This not only greatly cooperates with automation of robots, but also allow for
greater effectiveness in one specialized area. In the context of snake-like robots,
each segment in a segmented snake-like robot can be represented by a module[9].

1.2 Purpose

The purpose of this project was to model, design and construct a snake-like robot
that can efficiently move over harsh terrain using a sensor to identify obstacles and
adapt its movement accordingly.

The concept of snake-like robots is quite broad and allows many opportunities for
this project to use unique implementations and solutions. Even so, the project’s
primary purpose was found in the members’ practice and union of different fields,
so as to familiarize themselves with the boundary between theoretical design and
physical implementation.

2



1. Introduction

1.3 Problem description
Expanding upon the purpose, the problems were narrowed to specifications. Other
than setting demands of climbing obstacles and slopes, an objective was set such that
the robot could move faster in an unhindered environment rather than in obstructed
areas. It should also be able to base its movement pattern on the terrain in front of
it and, therefore, become adaptable. Due to constraints in resources, this robot will
be restricted to eight segments.

Specifications, to fulfill the purpose of the project, are as follows:
• The robot needs to be able to move forward in at least two different ways.
• The robot needs to achieve its propulsion through manipulation of separate

segments.
• The robot needs to have an appearance that is similar to the body of a snake.
• The robot needs to be able to ascend an incline of at least 20°.
• The robot needs to successfully climb a vertical obstacle reaching a height of

at least a fourth of its length.
• The robot should be modular and adaptable.

1.4 Methodology
We chose to divide the problem into smaller sub-problems. Our method for dealing
with these problems was by splitting the project into three major areas: Modeling,
Design, and Implementation. These areas, in turn, got divided into sub-areas.
The intended workflow of the project was such that the Modeling works on the
theoretical parts of the project, while Implementation and, to an extent, Design
applied the theoretical basis.

The modeling and the relating simulations used geometric analysis to create math-
ematical expressions for the robot. This is extended upon by a basic mechanical
analysis for critical points. If reconfiguration is needed, finding it at this stage costs
fewer resources than discovering them during testing.

The Design area focused on the physical design of the robot and also motivated
hardware choices. Several of these choices were motivated using the data produced
in Modeling. This also included the sensor, which was the tool used for identifying
the path ahead.

In this project, the Implementation involved programming of the algorithms de-
veloped through modeling, but it also includes the implementation of the distance
sensor. Further, it contains the integration between the distance sensor and the
implemented movements to create the adaptive part of the robot.

3
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2
Modeling

In this project, a snake-like robot was designed that can traverse a designed obstacle
course (further described in 3.4), where the obstructions consist of vertical objects
as well as a slope. Since there was a focus on climbing, and the project had limited
resources, the robot was constrained to only be able to move in the vertical plane
and therefore unable to move sideways.

Symbol Description
l Length of a segment
k Distance moved relative to a segments length
ψi The angle for rotational joint number i
h Height of an obstacle
m Mass of a segment
g Gravitational acceleration
ρs Angle of a slope
µ The friction coefficient

Table 2.1: Table of recurring variables in this chapter.

2.1 Movement
In this section, three different kinds of movements are sketched and evaluated to
achieve the objectives of the project. These movements include two ways of forward-
ing locomotion and different variations of a climbing algorithm. Climbing slopes also
take advantage from high friction which disables the robot from both pushing and
dragging segments that are in contact with the ground. This implies that to achieve
forward locomotion; the robot needs to lift the back-end of its body and then place
it a distance ahead, followed by moving the front-end forward.

The three different movements were developed to be specialized for various tasks.
The first movement introduced is the main movement, which is also one of the
forward movements. This is used to traverse shorter distances accurately and was
therefore designed as a pulse-movement. For longer distances, a second forward lo-
comotion was made, referred to as the fast movement, which resembles the "rolling"
movement of a crawler belt. To make the climbing as effective as possible, three
similar sequences were made. This was designed such that the robot could efficiently
climb different heights.

5



2. Modeling

2.1.1 Main movement

This movement was first sketched on paper and afterward made into a simplified
model that was simulated in Matlab. The simulation revealed that when positioning
the segments based on the simplified model, it would result in the segments being
unnecessarily pushed or dragged. This means that the simplified movement was not
unaffected by friction. Therefore, another model was made such that all segments
touching the ground would stay static. From the simplified model, it could be con-
cluded that one can base the angles between the segments upon how far the pulse
should move the robot forward. In the following, we derive the kinematic model
that connects the angles of the joints to the distance covered by the robot. The
distance is parameterized as k · l, where k is how far the tail is moved relative to a
segment’s length, and l is the length of a segment.

Figure 2.1 shows the position of the robot after the tail is moved, where α, β,
and γ are the angles in this position. Before moving to this position, the tail is
lifted just enough not to get dragged on the ground. With the help of geometry and
the law of cosines, the angles are evaluated by the following equations:

α = arccos
(

12 − 6k + k2

12 − 4k

)
(2.1)

β = arccos
(

6k − 4 − k2

4

)
(2.2)

γ = arccos
(

6 − 6k + k2

6 − 2k

)
. (2.3)

l
l

l

3l − kl
α

β

γ

Figure 2.1: This is an illustration of the first position in the main movement. Here
the segments are angled according to α, β, and γ. The dots in the figure represents
rotational joints which are controlled by motors, and the arrow shows the direction
of the head segment.

The next step is to place down the tail on the ground. To do so without pushing
the tail backward, the angles always need to follow each other in a specific way (see
Fig. 2.2). Using geometry and the law of cosines every angle was made dependent
on angle v, this resulted in Equations (2.4) - (2.9).

6



2. Modeling

w1
w2

ρ
u1

u2

v

l

l

l

3l − kl

d

Figure 2.2: This figure shows an example of how the robot has to be positioned
between the steps for the robot to not push any segments along the ground.

d = l
√

10 − 6k + k2 − (6 − 2k) cos(v) (2.4)

ρ = arccos
(

2l2 − d2

2l2

)
(2.5)

u1 = arccos
(
d2 + l2 − 9l2 + 6kl2 − k2l2

2dl

)
(2.6)

u2 = arccos
(
d

2l

)
(2.7)

w1 = arccos
(
d2 + 8l2 − 6kl2 + k2l2

6dl − 2dkl

)
(2.8)

w2 = u2 (2.9)

where u = u1 + u2 and w = w1 + w2 for a convex quadrilateral and u = u1 − u2
and w = w1 − w2 for a concave quadrilateral. With the help of these equations,
the angles can now be manipulated such that all the segments touching the ground
stay static. The next step is to move from the first position shown in Fig. 2.1 to
the second position shown in Fig. 2.3. This position is when the entirety of the tail
is placed on the ground. The angles σ and δ are calculated by the use of geometry
and the law of cosines as follows:

δ = arccos
(

4k − 2 − k2

2

)
(2.10)

σ = π − δ

2 (2.11)

σ
δ

σl

l

l
2l − kl

l

Figure 2.3: Illustration of the second position in the main movement.
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The last position to mention is as shown in Fig. 2.4.

l
l

l

3l − kl
α

β

γ

Figure 2.4: Illustration of the last position.

From this position, the robot only has to repeat the steps in the same order, with
the only difference that the positions are moved one segment forward. When this is
repeated through all the segments of the robot, it has moved k · l cm. By defining
the angles α, β, γ, δ, and σ and expressing them with respect to k, we can easily
generate a reference for the motors. Even though this movement is not efficient
for traveling long distances, it is very useful for moving shorter and more exact
distances.

2.1.2 Fast movement
The fast movement consists of three steps: Assembling, "rolling", and disassembling.
For the assembly step, the robot folds the tail to the head as depicted in Fig. 2.5,
while the disassembly step is simply the assembly done in reverse. The "rolling"
motion is based on repeating one step, but to more easily understand how the step
iterates it is split into two, as shown in Fig. 2.6. It is important to note that the
robot will only pass through the first step when it is moving from the start position
to the second step. After this movement has been repeated eight times, one for each
segment, the robot has completed one cycle and has returned to the start position.
Afterward, the robot can either disassemble or move another cycle. This movement
is more efficient than the main movement because every iteration of the motors
makes the robot move a whole segment. The only downside of the fast movement is
the constraint of having to complete an entire cycle, making it unusable for distances
shorter than the robot’s length. An earlier example of this movement is found in
ACM R7, presented in 2010 by Ohashi and Hirose[10].

Start position First step Second step Last step

Figure 2.5: Illustration of the assemble for the fast-movement.

Start position First step Second step

Figure 2.6: Illustration of the actual movement for the fast movement.
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2. Modeling

These two types of movement can now compensate each other such that the robot
can choose movement pattern according to the situation. If the robot is going to
move a distance shorter than its length, it will use the main movement, and if the
distance is further than the length of the robot’s body, it will use the fast movement.
For the fast movement, the tail and head have to join without pushing each other.
It is also important to note that when using the fast movement, the robot has to
make an entire turn, i.e. it moves the whole length of its body. Therefore, the robot
has to identify objects further away than its length.

2.1.3 Climbing movement
Climbing a vertical object can be done in different ways. The most important out-
come is to end up with as many segments on the obstacle as possible, such that the
robot can lift the remaining segments without falling backward. The climbing can
be done by pushing the robot against the wall while lifting the first parts of the
robot, one at a time. The challenge during this type of climbing is to move forward
while using fewer parts, as more and more parts are in the air. Therefore, another
way of climbing was developed where the robot balances on the head and lifts the
tail as high as possible. By testing and doing a minor analysis of the forces and
torque for getting to the last position, it was clear that balancing on one segment
would be too hard and unreliable for the actual robot. However, balancing on two
segments is more stable and was used in the development of the climbing algorithm.

Depending on the height of the object, three different variations of the climbing
algorithm were designed. In this way, the robot can choose a faster and more re-
liable method every time an object appears. The robot starts by getting into the
climbing position as shown in Fig. 2.7, where h is the height of the object, ψ5 = 110°,
and ψ3 = 45°.

ψ5

ψ3

Objecth

Figure 2.7: This figure illustrates the starting position for the climbing. Here the
back-end of the robot is lifted and tilted over the object.

The first variation of the climbing algorithm was designed to make the robot able to
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2. Modeling

climb heights up to one and a half segment efficiently. To make the climbing as stable
as possible, the robot leans on the object with the tail, as shown in Fig. 2.8, where S
is a distance that can be adjusted for optimization, ψ6 = 90°, ψ5 = arccos

(
S+h−l

l

)
,

and ψ4 = arccos
(

− S
4l

)
− ψ5.

ψ6

ψ5

ψ4

Objecth

S

Figure 2.8: Illustration of the first position in the climbing of low objects.

In order to move closer to the object the robot lifts itself by setting ψ7 = 90°
while at the same time changing the rest of the joints as shown in Fig. 2.9, where
ψ6 = arccos

(
S+h−l

l

)
, and ψ5 = arccos

(
− S

5l

)
− ψ6.

ψ7

ψ6

ψ5

Objecth

S

Figure 2.9: Illustration of the second position in the climbing of low objects.

In the last step, the robot gets as close to the object as possible through diminishing
ψ7, because this will make the robot balance on the head instead of falling backward
while the center of mass is in front of the head. At the same time, the rest of the
joints changes, making the robot end up in the position shown in Fig. 2.10, where
ψ7 = arccos

(
S+h−l

l

)
and ψ6 = arccos

(
− S

6l

)
− ψ7.
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ψ7

ψ6

Objecth

S

Figure 2.10: Illustration of the third position in the climbing of low objects.

The robot now has to flatten out to complete the climbing process. However, as a
result, the robot is turned upside down with the tail in front. As a consequence, it
has to fold back to the normal state with the head in front, which is explained later
on in this section.

Climbing objects higher than one and a half segments but lower than two and a
half segments starts with the same opening position as before (see Fig. 2.7). This
climbing is, for the most part, the same except for some small modifications. As
before, the tail is placed on the object to make the robot stable (see Fig. 2.11),
where ψ5 = arccos

(
S+h−l

2l

)
, and ψ3 = arccos

(
− S

3l

)
− ψ5.

ψ6

ψ5

ψ3

Objecth

S

Figure 2.11: Illustration of the first position during the climb of objects of medium
height.

The tail is then pushed to the position shown in Fig. 2.12, where ψ5 = arccos
(
S+h−2l

l

)
,

and ψ4 = arccos
(

− S
4l

)
− ψ5.
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ψ7

ψ5
ψ4

Objecth

S

Figure 2.12: Illustration of the second position during the climb of objects of
medium height.

Lastly, it achieves the position shown in Fig. 2.13, where ψ6 = arccos
(
S+h−2l

l

)
, and

ψ5 = arccos
(

− S
5l

)
−ψ6. From this position, the robot executes the same movements

as for lower objects.

ψ6
ψ5

Objecth

S

Figure 2.13: Illustration of the third position during the climb of objects of medium
height.

To climb objects higher than two and a half segments, a final variation was made,
such that the robot could still end up with more than four segments on the object
to avoid falling backward. This means that the theoretical model can climb heights
less than four segments. In the same way as the previous climbing variations, the
start position is first achieved as shown in Fig. 2.7. Afterward, the robots start
the climbing algorithm by reaching the position illustrated in Fig. 2.14, where
ψ5 = arccos

(
S+h−l

3l

)
, and ψ2 = arccos

(
− S

2l

)
− ψ5.
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ψ6

ψ5

ψ2

Object
h

S

Figure 2.14: Illustration of the first position during the climb of objects of large
heights.

After the robot has achieved the first position, it moves into the next position shown
in Fig. 2.15, where ψ5 = arccos

(
S+h−2l

2l

)
, and ψ3 = arccos

(
− S

3l

)
− ψ5.

ψ7

ψ5

ψ3

Object
h

S

Figure 2.15: Illustration of the second position during the climb of objects of large
heights.

The last position is represented in Fig. 2.16, where ψ6 = arccos
(
S+h−2l

2l

)
, and

ψ4 = arccos
(

− S
4l

)
− ψ6.
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ψ5
ψ4

Object
h

S

Figure 2.16: Illustration of the third position during the climb of objects of large
heights.

2.1.4 Flip
As mentioned in the section above, when the robot has climbed a vertical object it
is turned upside down. Therefore, a sequence of movements was made that will flip
the robot back to its original orientation. This movement is based upon the back
having low friction and, therefore, being able to slide on the ground when needed.

Figure 2.17: Illustration of the different steps to flip around.
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2. Modeling

2.2 Critical positions
To make the robot able to accomplish the lifting and moving that is explained in this
chapter, specifications on motors, friction material, and links between the motors
are needed. Therefore, important critical positions were evaluated such that the
robot will be capable of accomplishing the needs from the problem description and
the different movements. The first critical position examined is when a motor would
have to lift four segments as this is the maximum amount of torque that a motor will
have to exert. The following calculations assume that the mass of all segments is
equal and, therefore, that their center of mass is located in the middle. The torque in
this situation isM = F ·2l (see Fig. 2.18) and F = 4 ·mg because the center of mass
of the four left segments is located in the middle of them. With a segment’s length
of l = 0.1m and a mass of m = 0.1kg, the maximum torque is Mm = 0.7846Nm.
Concluding that a motor which can produce a torque of Mm > 0.7846Nm is enough
for the robot.

2l

F
M

Figure 2.18: Illustration of the torque produced by the left half of the robot.

The critical position when moving up a slope is found when the center of mass
is located too far back on the robot, causing it to fall backward. Therefore, the
most uncertain position in the fast movement was evaluated, which is just after an
iteration has begun (see Fig. 2.19). This is because the rear (point 1) is now in
the air. If the center of mass ended up on the left side of point 2 in this situation,
the robot would fall backward because point 2 is the last part touching the ground.
Theoretically, without considering the torque on the joints, the biggest angle is
ρs = 90° − ρr. Where ρr = 45° is easily found from Fig. 2.19. This means that the
absolute biggest angle the robot could climb using the fast movement is ρs = 45°.

ρs

ρr

1
2

Center of mass

Figure 2.19: This figure illustrates the critical position when climbing a slope
while using the fast movement.
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2. Modeling

When moving up or down a slope, the friction is also a variable that needs to be
considered in order to ensure stability. In Section 1.3 it is specified that a slope
of ρs = 20° needs to be manageable. The coefficient of friction has to be µ >
tan(ρs) = [ρs = 20°] = 0, 364. Furthermore, with the steepest slope manageable
being ρs = 45°, the coefficient of friction should be µ < tan(45°) = 1.

With the modeling being based on free rotations and simple lines instead of actual
segments, the design of the robot has to follow some parameters. The motors and
the design must enable a rotation between each segment of at least ±110°.
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3
Design of the robot

In this project, the snake-like robot needed to have a practical design that also looks
like a real snake. Since the robot moves vertically with a pulse-movement and is also
able to "roll" forward, as is described in Section 2.1.2, the design had to be different
from a robot that is supposed to move with a serpentine movement. To make a
robot with a vertical movement, some boundaries to the physical appearance had to
be made. This lead to the design of a more functional robot, rather than perfectly
resembling a biological snake.

3.1 Specifications
The physical design needs to fulfill the movement requirements described in Section
1.3, and Chapter 2.

• The design must allow each segment of the robot to rotate more than ±110◦.
• The robot’s motors need to have a torque of at least 0.8Nm, as is calculated

in Section 2.2.
• Cables running along the robot must not risk getting pinched.
• The robot needs to adapt according to the next obstacle, which implies that

the robot needs to have space for a visual sensor.
• A friction coefficient of at least 0.364, as is calculated in Section 2.2, between

the robot and the ground needs to be implemented.
• The energy source needs to fulfill the electronics energy demands.
• The design of the robot should be as light as possible without impairing the

durability.
• All the electronics should be easily accessible.
• The robot needs to have an appearance resembling that of a real snake.

3.2 Hardware choices
This section addresses the hardware choices made in order to fulfill the demands in
the previous section, namely the motors, microcontroller, and sensor.

3.2.1 Servo motors
To fulfill the climbing demands of the snake, strong and relatively quick servo mo-
tors were necessary. The selection of a digital servo motor with its own control
circuit allowed for simpler programming, which meant that less work was needed to
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3. Design of the robot

implement the control of the servo motor. An added benefit was to be able to select
the servo motors maximum and current torque, as well as monitoring its voltages
and currents. For this reason, the XYZRobot A1-16 servo motor was selected. It is
a servo motor built specifically for robots, with simple control and easy integration.
Table 3.1 summarizes the chosen servomotors specifications taken from the servo
data sheet, see Appendix A.1.

Size: 50x32x40.5 mm
Weight: 60 g
Voltage: 12 V
Resolution: 0.323°
Max speed: 70 rpm
Stall torque: 2.5 Nm
± max. angle 155°

Table 3.1: Servo motor specifications.

3.2.2 Microcontroller
While not a requirement of the project, a desire throughout the work was to make
the robot completely wireless. A Wemos D1 mini module, featuring an EspressIf
ESP8266 microcontroller and micro USB connector for programming was chosen for
the central control of the robot. It contains WIFI capabilities, as well as being small
and, therefore, easy to place inside the robot. Furthermore, it is simple to program
using the Arduino IDE.

3.2.3 Sensor
To enable the robot to sense its surroundings, a distance sensor was required. To
enable fast and simple reading of distances, an analog sensor is preferred. The
Sharp GP2Y0A21YK0F provides a narrow reading between 10-80cm, and since this
is longer than the robot, it is enough for this project (the robot’s length is ∼60cm,
this is further explained in Section 3.3).

18



3. Design of the robot

3.3 Physical design of the robot
As seen in Section 3.1, different aspects need to be considered when designing the
robot. The design of all parts of the project was made in the CAD program Autodesk
Inventor Professional 2017. Since no CAD-file for the used motors was found, an
approximate copy of its design had to be made to get an accurate impression of how
the robot would look when finished, as well as to make sure that all parts would fit
the motors. All parts were then printed and adjusted to match with the hardware
choices made in Section 3.2.

Figure 3.1: Illustrations of the robot with associated motor numbers.

The design of the snake can be divided into three different parts; the head, the
midsection, and the tail. Each part has to take some of the specifications listed
in Section 3.1 into account. As seen in Fig. 3.1, each part of the midsection re-
ceived its own identification number, which is later used in the programming and
implementation of the robot.

3.3.1 Midsection
The main part of the robot is its midsection, which consists of seven motors that
are all connected to each other by links as seen in Fig. 3.2. Two slightly different
variations of the links were designed to match with each side of the motor. This was
necessary since a motor have small differences between either side of it. These links
were designed to be easily mounted as well as being robust enough. The length and
shape was chosen such that each segment of the robot would have at least ±110◦

of freedom in the vertical plane. This design also allows integration of battery cells
on the end of each segment, if the interest of a wireless version of the robot would
arise.
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3. Design of the robot

Figure 3.2: Illustration of the links connecting two motors.

3.3.2 Head
One of the main focuses while designing the head components of the snake, seen in
Fig. A.5, was to make sure that the sensor would be easy to mount and dismount.
This was acquired by making one slit on each side, where the sensor could be at-
tached to the head. In addition to the practical characteristics of the head, it was
also designed to have an appearance of a snake. This is the reason why the head
received modifications resembling a mouth, a nose, and an eye, which does not have
any practical use. Another demand for the head is that it has to be designed with
an opening for the tail seen in Fig 3.4, which makes it possible to do the "rolling"
movement. This implies that the space between the head components needs to be
larger than the width of the tail.

Figure 3.3: Illustration of the head.
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3. Design of the robot

Figure 3.4: Illustration of the tail and head while assembled.

3.3.3 Tail
The parts seen in Fig. 3.5 is the robot’s tail which is the only part of the robot that
does not include a motor. The complete part is built with three smaller components.
The main component is a small box that holds the electronics, as well as the cables
for the electronics. Therefore, both a hole from the side and one towards the front
is included. The connection between motor one and the tail is made in a similar
way to the links to get the same properties as the rest of the segments.

Figure 3.5: Illustration of the separated parts of the tail.
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3.4 Obstacle course
To verify that the robot fulfills the set specifications in Section 1.3, an obstacle
course was constructed (see Fig. 3.6). This part of the project was also made in a
slight modular way, to change or swap different parts easily. Firstly, a small plateau
to test the robot’s climbing abilities for small obstacles. After this plateau, a ramp
with an angle of 20° to verify that the robot meets the set requirements for climbing
slopes. This ramp ends with a flat part where the robot can adjust for the main
climbing challenge. This is a vertical obstacle that reaches 20cm in height followed
by a similar obstacle of 10cm. This part of the course is to resemble stairs, where the
robot has a limited distance (40cm) to adjust before climbing again. The usage of a
vertical obstacle with a height of 20cm was implemented to challenge the climbing
algorithm.

60cm
40cm

80cm

324cm

64cm
5cm

20cm
10cm

20o

Figure 3.6: Schematic of the built obstacle course.
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4
Implementation

The project’s implementation was divided into three different parts. The first part,
Motor Control, focuses on the control of the motors and implementation of the
algorithms. The second part, Distance sensor, around the implementation of
the robot’s sensor by scanning and identifying obstacles. The third and last part,
Autonomous Driving, on the integration of the distance sensor into the different
movements to create an adaptive robot.

4.1 Programming language
Programming of the snake-like robot was early on decided to be done on the C-based
Arduino platform with its associated IDE, as it provides a simple starting ground
for coding microcontrollers as well as containing preexisting code and libraries for
various tasks. Although at first, the idea was to create a PC application for con-
trolling the robot, it was replaced with a served web page with accessory control
through the Arduino IDE Serial Console.

4.2 Motor Control
The project’s motor control module started with control of a single servo motor,
and later the control of all servo motors individually. XYZRobots A1-16 smart
servo motors can be named for individual control while having them in a parallel
connection; this meant controlling the servo motors from a single control pin instead
of needing to have a separate control pin for each servo motor (see Fig. 4.1).

S3 S2 S1 ESP

Vcc

Tx
Rx
GND

Figure 4.1: Connection diagram for digital servo motors, e.g. the ones used.

Instead of implementing a communication’s protocol based upon the servo motor’s
data sheet, it was decided to use already existing code. This code was provided
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by the manufacturer of the servo motors The important part to note about this
communication protocol is that each servo motor is sent a target position, a value
between 0 (+155 degrees) and 1023 (-155 degrees), and a playtime, the time in which
a servo motor attains the given position.

Before the implementations of the different movements, three milestones were set;
Control of a single servo motor, Renaming a servo motor for serializable commu-
nication and Control of seven servo motors in series. After testing each segments
response, functions that could convert angles between degrees, radians and the servo
motors angle were implemented (see fig. 4.2).

45° π
4 646

Figure 4.2: Conversion between degrees, radians, and servo motor position.

Each algorithm was implemented by converting their calculated equations into sep-
arate arrays of length seven, with each array’s element corresponding to a different
servo motors angle. This means that element one in a given array represents the an-
gle that servo motor one attains. As seen in Section 5.1.1, the main movement was
converted into an array of length eight, with the first seven elements corresponding
to a servo motors angle, and the eighth elements being there for iterating purposes.
The conversion between equations and arrays was done by calculating what angle
the servo motor of a given joint needed to attain. For example, to achieve an angle
for the second joint, it needs to be converted to the servo motors actual angle (see
fig 4.3)

ψ
180° − ψ

Figure 4.3: Conversion between a joint angle into a servo position,

4.3 Distance sensor
The implementation of the distance sensor started with making a conversion between
the output (voltage) from the sensor into a distance in centimeters. The accuracy
of the calculated distance is important as the robot is going to base every action on
different measures of distance.

After the conversion between voltage and distance had been implemented, two dif-
ferent measuring algorithms were designed. One to accurately measure the height
of an obstacle, and one to accurately measure the angle of an obstacle. This meant
that the robot could first measure the angle, and afterward measure the height,
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given that it was a vertical obstacle.

To measure the angle of an obstacle the robot makes two different distance mea-
surements. One measure at an angle of 0° as to get the distance to the obstacle
(ds), and afterward a measurement at a different angle (in our case 10°), to get the
hypotenuse (dhyp). To do a reading at a given angle means to tilt the head upwards
(vt) (see Fig. 4.4). Afterward, the robot calculates the height (dh) and length (dt) of
the inner triangle (see Eq. (4.1)-(4.2)). These are then used to calculate the slope’s
angle (vs) in Eq. (4.3).

dl = cos(vl) · dhyp − ds (4.1)

dh = sin(vt) · dhyp (4.2)

vs = arctan(dh
dl

) (4.3)

ds dt

dh

dhyp

vt vs

Figure 4.4: Measuring the angle of a slope.

To get the height of an obstacle, the robot starts by measuring the length to the
obstacle. Afterward, the robot makes a sweep of readings upwards until it no longer
sees the obstacle. This means that the distance measured before it no longer sees
the obstacle is the hypotenuse (dhyp), as is seen in Fig. 4.5. To make the sweep
of measurements, the robot subsequently takes a measurement and increments the
angle in which the head is tilted (vt) by 1°. After obtaining the hypotenuse the
height (dh) of the obstacle can be obtained (see Eq. (4.4)).

dh = dgyp · sin(vt) (4.4)
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dt

dh

dhyp

vt

Figure 4.5: Measuring the height of a vertical obstacle.

During the implementation, an unexpected problem arose. To get the hypotenuse of
the triangle, seen in Fig. 4.5, the assumption was made such that the robot only had
to measure until the obstacle was no longer detected. Instead of the measurements
going from a regular length to the maximum detectable, only a slight increase of the
length was seen. Thus the problem occurred of having to implement a detection of
a gradual change in the distance readings, signifying the edge of the obstacle.

4.3.1 Autonomous driving

Implementing the autonomous driving meant integrating the distance sensor to-
gether with the movement algorithms. This meant that the robot makes a sequence
of choices based upon different measurements. The sequence of choices can be seen
in a simplified manner in Fig. 4.6. Figure 4.7 shows a flowchart depicting the full
sequence of choices.

Figure 4.6: Simplified diagram describing the robot’s thought process.
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Figure 4.7: In-depth diagram describing the robot’s thought process.

As seen in the diagrams mentioned above, the robot has to take measurements while
it is assembled and while it flips around. To make a measurement while assembled,
the robot tilts the back-end, such that it does not obstruct the head (see fig. 4.8)
and then makes the measurement. While flipping, the robot measures in a similar
fashion. It first stops at a given position (see fig. 4.9), makes a distance measurement
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in front and at a tilted angle. From these measurements, it can decide whether it is
an obstacle close-by or if it is free to flip around. If there is an obstacle in its way,
the robot identifies it. Figure 4.10 shows the end result while measuring the height
to get the length to the top of the obstacle (dt) which it afterward uses to calculate
the height (see Eq. (4.5)). If the robot has identified another close-by obstruction
while flipping, it chooses to skip the last four steps in the flip motion, as those steps
are unnecessary.

Figure 4.8: Depicting how the tail is lifted to give the sensor an unobstructed
view.

do Object

Figure 4.9: Stopping to make a measurement while unfolding.

Object
vft

h

dj

dt

Figure 4.10: Final position after making the sweep.

h = dj + dt · sin(vft) (4.5)
As seen in Appendix A.2, the accuracy of the sensor has a significant decline after
about 40cm. To solve this problem, the robot only measures heights within 40cm of
the obstacles. For distances measured between 40 and 65cm the robot only needs
to identify whether the object is a slope or a vertical obstacle, choosing movement
accordingly. To identify whether an obstacle is a slope or not, the robot looks for
a big enough angle. This means that if the angle is above 60° it is identified as a
vertical obstacle.
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5
Results

5.1 Modeling
Following is the result of the movement algorithms implemented on the robot. This
includes figures and tables containing the steps of the movements as implemented
on the robot.

5.1.1 Main movement
Figures 5.1-5.4 and Table 5.1 contains the resulting matrix and movement by con-
verting Equations (2.1)-(2.11) from Section 2.1.1.

k = distance to move

length of a segment
, α = arccos 12 − 6k + k2

12 − 4k , β = arccos 6k − 4 − k2

4

γ = arccos 6 − 6k + k2

6 − 2k , δ = arccos 4k − 2 − k2

2 , σ = π − δ

2

Servo 1 Servo 2 Servo 3 Servo 4 Servo 5 Servo 6 Servo 7 Iteration
It.1 Step 1 0 β − π γ 0 0 0 0 α
It.1 Step 2 σ δ − π σ 0 0 0 0 0
It.1 Step 3 γ β − π 0 α 0 0 0 0

Table 5.1: The resulting matrix for the main movement.

β − π

γ

[
0 β − π γ 0 0 0 0

]

Figure 5.1: Iteration 1 Step 1 of the main movement.
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σ

δ − π

σ

[
σ δ − π σ 0 0 0 0

]

Figure 5.2: Iteration 1 Step 2 of the main movement.

α

β − π

γ

[
γ β − π α 0 0 0 0

]

Figure 5.3: Iteration 1 Step 3 of the main movement.

β − π

γ
α

[
α 0 β − π γ 0 0 0

]

Figure 5.4: Iteration 2 Step 1 of the main movement.
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5.1.2 Fast movement

Table 5.2 and Figure 5.5 contain the assembling sequence and movement made by
converting the steps in Figure 2.5 into corresponding angles for the servo motors.

Servo 1 Servo 2 Servo 3 Servo 4 Servo 5 Servo 6 Servo 7
Step 1 0 0 0 0 0 0 0
Step 2 0 90 90 0 0 0 0
Step 3 0 0 90 90 0 0 0
Step 4 90 0 0 90 90 0 0

Table 5.2: The resulting matrix for assemble.

(1) (2) (3) (4)

Figure 5.5: The assembly- and disassembly steps.

Table 5.3 contains the disassembling, which is the assembling sequence backwards
(see Fig. 5.5).

Servo 1 Servo 2 Servo 3 Servo 4 Servo 5 Servo 6 Servo 7
Step 1 90 0 0 90 90 0 0
Step 2 0 0 90 90 0 0 0
Step 3 0 90 90 0 0 0 0
Step 4 0 0 0 0 0 0 0

Table 5.3: The resulting matrix for disassemble.

The forward locomotion is the result of converting the steps of Fig. 2.6 into an array
of angles (see Eq. (5.1)). These angles represent the start position. For continued
movement, the array iterates through the snake by shifting each array element to
the right (see Fig. 5.6 and Table 5.4).

[90, 0, 0, 90, 90, 0, 0, 90] (5.1)
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Servo 1 Servo 2 Servo 3 Servo 4 Servo 5 Servo 6 Servo 7 Iteration
It.1 90 0 0 90 90 0 0 90
It.2 90 90 0 0 90 90 0 0
It.3 0 90 90 0 0 90 90 0
It.4 0 0 90 90 0 0 90 90
It.5 90 0 0 90 90 0 0 90
etc. . . . . . . . .

Table 5.4: The resulting matrix for the fast movement.

[
90 0 0 90 90 0 0

]
[
90 90 0 0 90 90 0

]
[
0 90 90 0 0 90 90

]
[
0 0 90 90 0 0 90

]
[
90 0 0 90 90 0 0

]

Figure 5.6: Illustration of the actual movement for the fast movement.
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5.1.3 Climbing

Table 5.5 and Figure 5.7 shows the movement before the robot starts the climbing
algorithm. This movement’s purpose is to safely enter each variation of the climbing
algorithm.

Servo 1 Servo 2 Servo 3 Servo 4 Servo 5 Servo 6 Servo 7
Step 1 0 0 0 0 0 0 0
Step 2 0 0 100 0 0 0 0
Step 3 0 0 0 110 0 0 0
Step 4 0 0 45 0 110 0 0

Table 5.5: The resulting matrix for the rising movement.

(1)

(2)

100°

(3)

110°

(4)
110°

45°

Figure 5.7: Illustration of the rising movement before climbing.
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Figure 2.8-2.10 and Table 5.6 shows the steps and movements of the first climbing
algorithm. This algorithm is used to climb obstacles up to 10.95cm (length of 1.5
segments).

h = height, l = lenght of a segment, s = extra space

θ1 = arccos s+ h− l

l
, θ2 = arccos −s

4l

θ3 = arccos −s
5l , θ4 = arccos −s

6l

Servo 1 Servo 2 Servo 3 Servo 4 Servo 5 Servo 6 Servo 7
Step 1 0 0 0 θ2 − θ1 θ1 90 0
Step 2 0 0 0 0 θ3 − θ1 θ1 90
Step 3 0 0 0 0 0 θ4-θ1 θ1
Step 4 0 0 0 0 0 0 0

Table 5.6: The resulting matrix for the first climbing algorithm.

Figure 2.11-2.13 and Table 5.7 shows the steps and movements of the second vari-
ation of the climbing algorithm. This variation is used to climb obstacles between
10.95cm and 18.25cm (length of 2.5 segments).

θ1 = arccos s+ h− l

2l , θ2 = arccos −s
3l

θ3 = arccos −s
4l , θ4 = arccos s+ h− 2l

l

θ5 arccos
−s
5
l

Servo 1 Servo 2 Servo 3 Servo 4 Servo 5 Servo 6 Servo 7
Step 1 0 0 θ2 − θ1 0 θ1 90 0
Step 2 0 0 0 θ3 − θ4 θ4 0 90
Step 3 0 0 0 0 θ5 − θ4 θ4 0
Step 4 0 0 0 0 0 0 0

Table 5.7: The resulting matrix for the climbing.

Figure 2.14-2.16 and table 5.8 shows the steps and movements of the third variation
of the climbing algorithm. This variation is used to climb obstacles higher than
18.25cm.

θ1 = arccos s+ h− l

3l , θ2 = arccos −s
2l

θ3 = arccos −s
3l , θ4 = arccos s+ h− 2l

2l
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θ5 arccos
−s
4
l
, θ6 = arccos s+ h− 3l

l

Servo 1 Servo 2 Servo 3 Servo 4 Servo 5 Servo 6 Servo 7
Step 1 0 0 θ2 − θ1 0 θ1 90 0
Step 2 0 0 0 θ3 − θ4 θ4 0 90
Step 3 0 0 0 θ5 − θ6 θ6 0 0
Step 4 0 0 0 0 0 0 0

Table 5.8: The resulting matrix for the climbing.

Figure 2.17 contains the movement after the climbing algorithm. This is done to
flip the robot to resume its original orientation. Before finishing the flip, the robot
scans for nearby obstacles (see figure 4.9).
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5.2 Sensor

5.2.1 Distance measurements

Figure 5.8 contains the sampled values from the sensor at different distances. This
was used to create the Eq. (5.2) using Matlab, where v=voltage and d=distance.
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Figure 5.8: Graph that shows both the sampled voltages as well as the extracted
function.

d = 0.02652 ∗ v5 − 0.2823 ∗ v4 + 1.52 ∗ v3 − 5.158 ∗ v2 + 5.615 ∗ v + 17.46
v − 0.1844 (5.2)

Figure 5.9 contains the result of the robots measured (see Fig. 5.10) distance in
comparison to the actual distance. This was tested for distances between 5-80cm in
5 cm increments.
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Figure 5.9: The spread of result for measuring different lengths between 10-80cm.
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Figure 5.10: The picture shows how the distance measurements were made.
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5.2.2 Height measurements
Figure 5.12-5.16 contains the result of different height measurements (see fig.5.11).
These measurements were made at different distances away from the obstacle so as
to give an idea of the spread. Table 5.9 contains the average value as well as the
standard deviation of the different measurements.

Figure 5.11: The picture shows how the height measurements were made.
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Figure 5.12: Measuring the height of 5 cm at different distances.
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Figure 5.13: Measuring the height of 10 cm at different distances.
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Figure 5.14: Measuring the height of 15 cm at different distances.
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Figure 5.15: Measuring the height of 20 cm at different distances.
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Figure 5.16: Measuring the height of 25 cm at different distances.
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Distance [cm] Height [cm] Average value [cm] Standard Deviation [cm]
5 5 6.58 0.20
10 5 6.74 0.19
15 5 7.19 0.15
20 5 7.73 0.37
25 5 8.40 0.33
30 5 7.97 0.52
35 5 8.93 0.62
40 5 9.5 0.42
5 10 11.49 0.10
10 10 11.95 0.28
15 10 11.44 0.48
20 10 11.29 0.37
25 10 12.12 0.55
30 10 13.51 0.60
35 10 14.71 1.09
40 10 15.03 0.83
5 15 16.73 0.47
10 15 17.45 0.38
15 15 17.71 0.35
20 15 18.23 0.58
25 15 18.77 0.73
30 15 19.36 0.34
35 15 20.80 0.61
40 15 19.57 0.78
5 20 23.02 0.61
10 20 22.04 0.69
15 20 22.53 0.59
20 20 22.28 0.89
25 20 23.08 1.02
30 20 24.00 1.27
35 20 24.82 1.49
40 20 24.24 0.92
5 25 29.91 2.01
10 25 27.75 0.82
15 25 28.19 0.42
20 25 29.27 0.98
25 25 29.10 1.15
30 25 30.53 1.96
35 25 29.75 1.56
40 25 29.98 1.40

Table 5.9: Average value and standard deviation for the different height measure-
ments at the different distances away.
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5.2.3 Angle measurements
Table 5.10 contains the result while measuring the type of obstruction, where Wall
is a vertical obstacle, and Slope means an incline of 10-20°.

Distance [cm] Height [cm] Type Result
5 30 Slope Slope
10 30 Slope Slope
20 30 Slope Slope
30 30 Slope Slope
50 30 Slope Slope
55+ 30 Slope Uncertain
5 5 Wall Wall
10 5 Wall Wall
20 5 Wall Wall

25-30 5 Wall Uncertain
30 5 Wall Slope
5 10 Wall Wall
10 10 Wall Wall
20 10 Wall Wall
30 10 Wall Wall
50 10 Wall Wall
70 10 Wall Wall
5 20 Wall Wall
10 20 Wall Wall
20 20 Wall Wall
30 20 Wall Wall
50 20 Wall Wall
70 20 Wall Wall

Table 5.10: Results while identifying obstacles at different distances.
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5.3 Designing

5.3.1 Robot

Size: 605x35.5x50 mm
Weight: 658 g
Tail weight: 79 g
Friction coefficient µ 0.73

Table 5.11: Specifications for the physical robot and friction coefficient between
the robot and the obstacle course.

Figure 5.17-5.18 shows the final appearance of the snake-like robot; one picture was
taken from the left side (5.17), and one from the right (5.18).

Figure 5.17: The final appearance of the robot from its left side.

Figure 5.18: The final appearance of the robot from its right side.

Figure 5.19-5.20 shows the final appearance of the head; one picture was taken from
above, showing how the distance sensor is placed inside (5.19), as well as one close-
up image of the head segment. (5.20).
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Figure 5.19: A picture taken from above that show the entirety of the head seg-
ment.

Figure 5.20: A close-up of the side of the head segment.

Figure 5.21 shows the final appearance of a segment. This picture was taken when
the robot was turned upside down to better show the underneath of the segment.

Figure 5.21: Image that shows a segment turned upside down.

Figure 5.22-5.23 shows the final appearance of the tail, taken from above. The first
shows the tail closed (Fig. 5.22), and the second shows it open (Fig. 5.23). In figure
5.23 one can see the different components that make up the inside electronics of the
tail; 1 is the voltage regulator, 2 is the barrel connector for power, 3 is the gyroscope
(not implemented), and 4 is the Wemos D1 Mini.
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Figure 5.22: A picture taken from above that show the whole tail.

Figure 5.23: A picture taken from above that shows the inside of the tail.
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5.3.2 Obstacle course

Figure 5.24 shows the outcome of the constructed obstacle course, based on the
design in Fig. 3.6.

Figure 5.24: Picture of the completed obstacle course.

5.4 Outcome

This section contains; the comparison between theoretical analysis and the physical
result, the speed and time in which the robot executes different movements, and the
result of traversing the obstacle course.

5.4.1 Comparison of theoretical analysis and physical result

Table 5.12 contains the comparison between the theoretical maximum and the mea-
sured maximum (approx.) of different movements.

Movement Theoretical max. Actual max.
Climbing a vertical obstacle Approx. 29.2cm (4 segments) 24cm

Rolling up a slope 45° 27°

Table 5.12: Difference between maximum values and actual values.

Table 5.13 contains the comparison between the theoretical distance a movement
should achieve and the actual distance the movement achieved, measured as shown
in Fig. 5.25 and Fig. 5.26, as well as how much the robot deviates from the path
after ten pulses or one whole rotation. When measuring the deviation, deviation to
the left of the robots path is considered to be positive and to the right negative.
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Movement Theoretical [cm] Actual (approx.) [cm] Offset sideways [cm]
10x Pulse k=0.5 36.5 (0.5 seg.) 32 0
10x Pulse k=0.5 36.5 (0.5 seg.) 32 0
10x Pulse k=0.5 36.5 (0.5 seg.) 32 0
10x Pulse k=0.5 36.5 (0.5 seg.) 32 0
10x Pulse k=0.5 36.5 (0.5 seg.) 32 0
10x Pulse k=1 73 (1 seg.) 51.5 4.5
10x Pulse k=1 73 (1 seg.) 52.5 5
10x Pulse k=1 73 (1 seg.) 52.5 5
10x Pulse k=1 73 (1 seg.) 53 5
10x Pulse k=1 73 (1 seg.) 53.5 5
Roll 8 seg. 58.4 60.0 0.2
Roll 8 seg. 58.4 60.5 1
Roll 8 seg. 58.4 60.5 -0.5
Roll 8 seg. 58.4 60.5 -0.5
Roll 8 seg. 58.4 60.5 0

Table 5.13: Comparison between the actual and theoretical distance.

Figure 5.25: Picture of the setup used to measure distance before the test.

Figure 5.26: Picture of the setup used to measure distance after the test. Notice
the offset from the straight line.
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5.4.2 Speed
Table 5.14 shows an approximation of the time it takes to complete three different
cases of forwarding locomotion, as well as their speed. The first and second rows
show two different cases of the pulse; one where the robot tries to move a half
segment forward with each pulse, and one where it tries to move a whole segment
forward. The third row shows how fast the robot can roll a single round. In addition
to being three different cases of forwarding locomotion, the time for the movements
is measured when the robot runs at normal speed. Normal speed refers to the speed
used when running the obstacle course with stability.

Movement Time [m:s] Speed [cm/s]
10x Pulse k=0.5 0:43 0.74
10x Pulse k=1 0:43 1.22
Roll one round 0:16 3.78

Table 5.14: Approximate results while running with normal speed.

Table 5.15 contains the approximate total time it takes to climb three different
heights. These height are the ones contained in the obstacle course.

Height [cm] Time [s]
5 14
10 14
20 14

Table 5.15: Approximate results while running with normal speed.

Table 5.16 shows the result of running the four different auxiliary movements at
normal speed.

Movement Time [s]
Assemble 6

Disassemble 6
Rise 6.3
Flip 24

Table 5.16: Approximate results while running at normal speed.

5.5 Obstacle course
Table 5.17 contains the result while running the obstacle course. This includes the
time it took, how many minor adjustments were made (i.e. straightening it out
when it deviates too much from the path), as well as how many major corrections
that had to be made and why. It also contains additional comments about each run.
Important to note is that the robot start 15cm away from the first plateau.
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Time Minor Major What? Why? Comment
(m:s)

4:06 2 1 Fell while travers-
ing the slope.

Instability in seg-
ments design,
mostly the tail.

Made one false dis-
tance measurement
between the slope
and stairs, which
caused a delay.

4:15 3 1 Fell while travers-
ing the slope.

Instability in the
segments design,
mostly the tail.

Made two erro-
neous distance
measurements be-
tween the slope
and stairs, which
caused a delay.

4:20 4 1 Identified the slope
as a vertical obsta-
cle.

Ended up too close
to the slope after
climbing.

Overall a good run.

3:39 1 2 Fell two times on
the slope.

Instability in the
design, mostly the
tail.

Made quick cor-
rections, overall a
good run.

3:56 0 1 Fell at the end of
the slope.

Instability in the
design.

Overall good run.

3:47 0 0 - - Perfect run.

4:13 0 2 Fell in slope. Fell
while flipping.

Instability in de-
sign. Dragged
power cable.

Otherwise perfect
run.

3:38 1 0 - - Perfect run.

3:57 0 3 Fell thrice at the
slope.

Ended up to close
to the slope. Tried
to climb. Failed be-
cause of slope. Got
corrected. Tried to
assemble. Failed
because of slope.
Fell at the end of
the slope.

Otherwise a good
run.

3:42 3 0 - - Perfect run.

Table 5.17: Results while running the obstacle course. 49
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Discussion

6.1 Implementation of algorithms

After implementing the different movements, the results (see Section 5.1) have, for
the most part, followed our expectations with the only exception being the pulse
(see Table 5.13). When we modeled the pulse we had a continuous update of angles
for a smoother movement, but when implementing it on the robot we cut it down
into three different steps (see Section 5.1.1). This is because when controlling the
motors we could give them a playtime, in which the motor tries to attain a target
position. This means that instead of needing continuous updates, we could send
the servos a single target position to achieve a necessary step, this turned out to
be much easier to implement. Although sending target positions to the motors is
sub par for the pulse movement, every other movement benefits from this. This is
because when we made the geometrical analysis, we based it on following a pattern
of steps which is easily replicated by sending positions to the motors.

When trying to optimize the speed of each movement, we, in the end, decided that
the use of a slower speed was better for the robot’s performance. This is partly
because we lacked time to find a more efficient speed but also because the final
design of the robot left it more unstable than planned (further explained later).
This was not a problem when traversing flat ground, but it became an issue when,
for example, the robot was moving up a slope or climbing an obstacle. An alternative
to this would be to use a faster speed when moving on flat ground and then to use a
slower speed elsewhere, but we decided to keep the speed so we could focus on more
stressing matters.

The implementation of the main movement could have been made marginally faster
if it had been made in such a way that more than one pulse at a time could be
sent, instead of only having a few joints executing the movement at a time. The
streamlining of other implementations would also affect the overall performance, i.e.
to skip the last step of assembling. Another example would be to rearrange the
steps of the fast movement such that lifting the back-end before measuring would
no longer be necessary.

The different variations of the algorithms perform admirably. However, they are
defined for exactly eight segments and, therefore, not as modular as they could have
been. Although the movements aren’t very modular, it is still relatively easy to
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change them while implementing, as each matrix and array can be expanded.

6.2 Environment Sensing
We have been able to measure distances between 5-40cm accurately, and when it
comes to distances between 40-80cm the result is sufficient. When measuring heights
we get a result above the actual height, but this is not a problem when it comes to
distances between 5-20cm. Because when the robot executes a climbing algorithm,
it uses the tail as support which removes the problem of height difference. The
inaccuracy becomes a problem at heights around 25cm because if the robot tries to
climb too high, i.e. approx. 28.5cm, it generates too much backward momentum
and falls. Although the robot falls when it tries to climb a height of 28.5cm, our
goal was to climb a height of 15.1cm (fourth of the length) and the obstruction used
in the obstacle course is 20cm, meaning that we met the set objective.

When it comes to measuring the angle of different obstructions in the obstacle course,
the robot can accurately decide whether an obstruction is a slope or a vertical object.
The only case where this does not succeed is when the robot is too far away from a
small obstacle (see Table 5.10). This is because when the robot makes the second
measurement at 10°, it misses the obstacle.

The worst case scenario is, therefore, when the robot judges a vertical object within
60cm of the robot as a slope or if it makes an incorrect measurement, judging the
actual distance further away than it is. This would mean that the robot starts
rolling and collides with the obstruction.

Overall, we have integrated a single distance sensor which means we can only identify
obstacles in front of the robot. To distinguish obstacles in a real life environment,
more sensors need to be implemented. However, integrating more sensors requires
more time resources that are not available in this project.

6.3 Physical design
The physical design was made as easy as possible using CAD. The resulted snake
was built using the purchased servos and printed links. Even though the design is
very simple, it is also quite practical due to easy mounting between servo and link.
The disadvantage with the links is that the robot did not reach the stability we
wanted to achieve. This could have probably been fixed by making a design that
would have encased the servos instead of just connecting them. Of course, that
would also come with a downside of a limited rotation for each segment. The most
apparent instability in the design is seen in Fig. 5.21, where we show a picture of
an upside down segment. In the picture it is possible to see the uneven friction that
leads to instability. This is an example of what could have been fixed if we had
something encase the servos such that anything touching the ground would do it
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uniformly.

The head of the snake makes a positive detail to the whole robot since it has a
snake-like appearance which the other parts does not have, except when one looks
at the combined shape of the robot. The design of the head is satisfactory, but it
could have been improved the same way as the links to increase the robustness and
stability of the robot.

The robot’s tail consists of printed parts which hold all the electronics. Slots inside
the tail to hold the electronics were avoided since it would both take much time as
well as being unnecessary since the tail contains a lid. However, it would have been
a desired feature of the tail if more electronics were included, as it would be easier
to keep track of all the cables.

An additional design modification that would have improved the robot would be
to have a heavier tail. If the tail had a higher weight, we would get closer to the
theoretical maximum height. This is due to instead of having at least four segments
on the obstacle during climbing, we could achieve the aspired center of mass by
having the majority of the weight on said obstacle (see Section 2.1.3).

As mentioned in Section 3.3.1, the design of the segments allows for battery inte-
gration, but due to time constraints it was never implemented. This means that the
usefulness of the WIFI module on the EspressIf ESP8266 has been reduced. Another
part that could have been implemented is the gyroscope which could be used, for
instance, to allow a faster movement while on flat ground (see Section 5.23).

6.4 Autonomous driving

The overall result while traversing the obstacle course is good, the only thing we
would have preferably improved upon would be the stability in the design. This
would have removed every major correction as they only occurred due to the insta-
bility. Although this problem was not accounted for, when we designed the segments
we considered encasing each segment but decided against it as we preferred to design
small and easy-to-use connections.

In the case of some runs, we made a false identification of the slope. This is because
of the design of the obstacle course. When the robot climbs small heights, it pushes
itself forward. This distance is almost as far as the length of the robot, which means
that it will either end on the slope or extremely close to the slope. Furthermore, as
mentioned in Section 6.2, the sensor readings only accurately works between 5-40cm.
A solution to this problem would be to change the climbing for small heights, such
that it does not push itself as much forward.
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6.5 Mechanical Forces

When we created our movement algorithms, we used a geometrical analysis instead
of a mechanical analysis. We opted for a basic mechanical analysis for some chosen
critical points, as shown in Section 2.2. The basic analysis was made not only to
calculate if any of the movements needed some alterations to achieve our goals but
also to find out what kind of demands we had to put on the design. Besides, we
were also interested in finding out what kind of limits the theoretical model had so
it could be possible to compare it to our measured result (see Table 5.12).

To get a better idea of the mechanical forces, one needs to remember that the forces
on the segments are quite complex since the system has many degrees of freedom.
This means that there are many variables that depend on each other in convoluted
ways. This leads to a complex system where not only a single segment needed to
be taken into account, but the entirety of the system. The analysis gave us an
understanding of how the system behaves, we, however, lacked the time to further
give it a higher complexity.

If we had focused more on the analysis of mechanical forces, we could have made
a more accurate mathematical model and a closed-loop control system. This would
have resulted in a different forward locomotion in addition to a more stable system.
Furthermore, this could have improved the climbing algorithm, because the main
problem to climb higher vertical obstacles is balancing, which a closed-loop control
system could handle.

More accurate mathematical models have already been done in many different
projects. For example, the Ver-vite project done in 2003, which resulted in a model
that shows how the mechanical forces act upon a segmented system with four seg-
ments[11].

6.6 Mobility

The mobility of a segmented snake-like robot will always depend on many moving
parts. In this project, a limited number of moving parts was considered due to
budget limitations. An early decision was to make the robot move in a vertical
plane because it would make it possible to move over small vertical obstacles, e.g.,
a stair. However, it would be preferable to make the robot able to move in all
directions, but in this project it had to be excluded due to limited numbers of
motors and connectors. In particular, it would require twice the amount of servos if
the robot was going to have as much movement sideways as it does vertically. This
would also make the segments close to twice as long due to difficulties in efficient
designing. An example of a solution to this came later in the project, that it may
be possible to add wheels or servos in the front and back to make it possible for the
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robot to rotate its body while standing still. This solution would make the robot
keep its flexibility in the vertical plane in addition to added movement sideways.
However, for this example, depending on where you locate the e.g. servos, it would
demand the robot to disassemble each time it has to turn since it would need to use
both the front and the back to turn.

In our case, besides being restricted to the vertical plane, our robot’s overall move-
ment has for the most part been satisfactory, with the only exceptions being our
simplification of the pulse and missing encasing for the segments.

Besides using more sensors to get a better understanding of the surroundings, we
could also have used a sensor to implement a closed-loop system. To make an accu-
rate closed-loop system, it would have required a bigger feedback system, especially
if we wanted to use a closed-loop system to balance the robot.
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7
Conclusions

7.1 Final Result

We have designed and implemented a snake-like robot with eight connected seg-
ments. All movements are achieved by rotating the seven different motors. The
robot’s forward locomotion is implemented in two different ways, a pulse movement
(main movement) at an average speed of 0.74(k = 0.5) cm/s and 1.22cm/s(k = 1),
and a "rolling" movement (fast movement) at an average speed of 3.78cm/s. Addi-
tionally, the robot can accurately climb vertical obstacles up to 24cm.

In addition to implementing the algorithms mentioned above, four auxiliary move-
ments have been modeled and implemented. The assembling and disassembling
having a speed of 6s, the flip movement having a speed of 24s, and the rising move-
ment having a speed of 6.3s.

Measuring distances can accurately be done for lengths between 5-40cm, and is
sufficiently accurate for lengths between 40-80cm. It is also able to measure heights
accurately between 5-20cm, as well as the type of the obstruction.

7.1.1 Main conclusion

The fast movement performs well, which greatly reduces the time at which the robot
traverses the obstacle course. The remaining movement for forwarding locomotion,
the main movement, greatly assists in traveling specific distances.

The climbing algorithm executes with high stability at heights up to 24cm; this is
8.9cm over our desired height. The robot can also climb inclines of 27°, this being
7° more than what we set out to achieve. This concludes that the robot succeeds in
challenges more difficult than required (see Section 1.3).

The robot can also adapt to different obstacles in front of it to not only be able to
traverse difficult terrain but also to traverse the terrain in the most efficient way it
can achieve. It can run, with some minor and major corrections, a designed obstacle
course that contains four obstacles. The biggest problem being the instability in
design which makes the robot deviate from the path as well as making it hard for
the robot to traverse a slope.
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7.1.2 Additional conclusions
If we had focused on mechanical forces, we could have made a closed-loop system
which could be used to develop a different balancing method and, thereby, possibly
a better climbing algorithm. It could also be used to get a better understanding
of what limitations a segmented snake-like robot has, and how to optimize the
movements at critical points, e.g. rolling while in 45°.

The usage of additional sensors would have resulted in more accurate sensing of
the environment. This would also have been needed to make a robust closed-loop
system.

Adding an encasing for each servo to be the bulk of each segment would have in-
creased the robot’s stability and, therefore, enabled a higher movement speed. This
speed would not only have improved the fast movement but also the climbing algo-
rithm, as well as the auxiliary movements.

Another design modification that would greatly have helped the robot would be to
add a heavier weight to the tail of the snake, so that the climbing algorithms could
be used for higher obstacles, instead of being limited to a height of 24cm. If this
modification had been made, we would have needed to change the rising movement,
so as to not fall backward.
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A
Appendix 1

The appendix includes the datasheet for the Servo aswell as the Matlabcode used
in chapter–.

I



 

Overview and Characteristics of Servo A1-16 

A1-16 is a modular actuator, which combines a gear reducer, a DC motor and an 
embedded control board in one small package. A1-16 provides the necessary torque 
for building a small robot. Also, A1-16 could give much information of internal 
condition such as the internal temperature, supply voltage and so on. A1-16 is much 
easier to use for beginners and advance users than a traditional servo motor 

General Servo Motor Specifications 

1. Operation voltage : 8 ~ 12 V(default) 
2. Maximum speed : 70 ± 10 rpm 
3. Stall torque : 25.0 kg-cm max 
4. Rotary position feedback with 360° continuous rotation angle and maximum 330° 

effective position control range 
5. Protocol type : Duplex UART 5V TTL serial communication(8, N, 1) 
6. Communication Speed : 9600, 19200, 57600, 115200(default) 
7. Feedback Information : Position, Temperature, Current, Voltage, etc 

Dimensions of Servo Motor 

1. Size : 50 x 32 x 40.5 mm 
2. Weight : 60 ± 2 grams 
3. Material : POM casing with metal gear 

Wiring Connection 

 
The A1-16 servos communicate with the main controller by daisy chain connection. 
Many A1-16 servos could be controlled by one single bus as shown above. Main 
controller provides power and sends control signal to A1-16 and receives respective 
data through the same bus. Every A1-16 servo has its unique ID value and 
communicates with the main controller by it, so user should be sure with the right ID 



 

before assembly. When power is successfully applied to A1-16, the status LED blinks 
in sequence with red, white, blue and green LED twice. 
 
The pin assignment of A1-16 is described as below. Each pin of two connector is 
internal connected. So A1-16 could function with any connector attached. 

 

  



 

Front View of A1-16 

 
1. Servo Hub: The servo hub is the rotation output part of A1-16. 
2. Zero Position: The zero position shows the central position of A1-16 servo hub. 

Back View of A1-16 

 
1. Cable Clip: The cable clip provide a route for cable. 
2. Status LED: The status LED could indicate different error status to the users. The 

detail error information shows below. 
Status Error Error LED on/off 
Normal Operation White LED on 
Exceed Potentiometer Range Error Blue LED on 
Over Voltage/Temperature/Current 
Limits Error 

Red LED on/ 
White LED off 

Requested Packet Error Green LED on 
3. Cable Connector: The cable connector provides power and communication signal 

for A1-16. 
4. Servo ID: The servo ID shows default ID of A1-16. 
  



 

Requested and ACK Packets 

 Main controller communicates with the servos in the UART network by sending 
a requested packet and receiving ACK packet back from the servo. Regardless of the 
number of servos in the network, only the servo with correct ID will acknowledge 
request packet and send the ACK packet to the main controller. 

 
There are 9 UART command packets, as listed below, can be send from the master to 
servo controllers: 
 (1) EEP_WRITE  EEPROM parameters write 
 (2) EEP_READ  EEPROM parameters read 
 (3) RAM_WRITE RAM parameters write 
 (4) RAM_READ RAM parameters read 

(5) I_JOG   independent control move 
 (6) S_JOG   synchronous control move 
 (7) STAT   read servo status 
 (8) ROLLBACK  reset all parameters to default values 

(9) REBOOT  reset servo. 
The servo controller may report ACK packets accordingly. The detail description of 
Requested and ACK packets are explained in Table1 through Table 9. 
  



 

Table 1: Requested and ACK packets data string 
bytes 1 2 3 4 5 6 7 8~107 
description header header packet 

size N 
packet 
ID 

CMD check_
sum_1 

check_ 
sum_2 

data[i] 

Requested 
packet 

0xFF 0xFF 7~107 1~20, 
254 (#) 

0x01~
0x09 

(*) (**) ... 

ACK 
packet 

0xFF 0xFF 7~107 1~20 0x40~ 
0x49 

(*) (**) ... 

Note: (#) When packet ID=254, broadcast ID, none of any servo will send ACK packet 
     (*) check_sum_1 = (N^ID^CMD^data[0]^data[1]^...^data[N-8]) & 0xFE 
     (**) check_sum_2 = (~check_sum_1) & 0xFE 
Table 2: Requested and ACK packets CMDs 
Requested packet CMD 
EEP_ 
WRITE 

EEP_ 
READ 

RAM_ 
WRITE 

RAM_ 
READ 

I_JOG S_JOG STAT ROLLBACK REBOOT 

0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 
ACK packet CMD 
EEP_ 
WRITE 

EEP_ 
READ 

RAM_ 
WRITE 

RAM_ 
READ 

I_JOG S_JOG STAT ROLLBACK REBOOT 

0x41 0x42 0x43 0x44 0x45 0x46 0x47 0x48 0x49 
 
  



 

Table 3: Requested and ACK packets for EEP_WRITE(0x01) and RAM_WRITE(0x03) 
(1) Requested packet for EEP_WRITE and RAM_WRITE CMD 
1 2 3 4 5 6 7 8 9 +L 
header header size ID CMD check_ 

sum_1 
check_ 
sum_2 

start 
addr. 

length 
L 

data[i] 

0xFF 0xFF 9+L 1~20, 
254 

0x01, 
0x03 

0xXX 0xXX 0xXX 0xXX ... 

Note: EEP_WRITE: 4 <= start addr. <= 53, , 5 <= start adds. + length <= 54 
     RAM_WRITE: 0 <= start addr. <= 47, 1 <= start adds. + length <= 48 
(2) ACK packet for EEP_WRITE and RAM_WRITE CMD 
1 2 3 4 5 6 7 8 9 
header header size ID CMD check_ 

sum_1 
check_ 
sum_2 

status 
error 

Status 
detail 

0xFF 0xFF 9 1~20 0x41, 
0x43 

0xXX 0xXX 0xXX 0xXX 

Note: The status_error and status_detail are listed in RAM parameters section. 
Table 4: Requested and ACK packets for EEP_READ(0x02) and RAM_READ(0x04) CMD 
(1) Requested packet for EEP_READ and RAM_READ CMD 
1 2 3 4 5 6 7 8 9 
header header size ID CMD check_ 

sum_1 
check_ 
sum_2 

start 
addr. 

length 
L 

0xFF 0xFF 9 1~20 0x02, 
0x04 

0xXX 0xXX 0xXX 0xXX 

Note: EEP_READ: 0 <= start addr. <= 53, , 1 <= start adds. + length <= 54 
     RAM_READ: 0 <= start addr. <= 79, 1 <= start adds. + length <= 80 
(2) ACK packet for EEP_READ and RAM_READ CMD 
1 2 3 4 5 6 7 8 9 +L 
header header size ID CMD check_ 

sum_1 
check_ 
sum_2 

start 
addr. 

length 
L 

data[i] 

0xFF 0xFF 9+L 1~20 0x42, 
0x44 

0xXX 0xXX 0xXX 0xXX ... 

 
  



 

Table 5: Requested and ACK packets for I-JOG (0x05) CMD 
(1) Requested packet for I-JOG CMD 
1 2 3 4 5 6 7 +5 +(n-1)*5 
header header size ID CMD check_ 

sum_1 
check_ 
sum_2 

I-JOG 
data 

... 

0xFF 0xFF 7+5*n 1~20, 
254 

0x05 0xXX 0xXX (5-1) ... 

Note: n=number of motor IDs send. 
(5-1) I-JOG data 
1 2 3 4 5 
goal.lsb goal.msb set ID playtime 

(unit:10 msec) 
0xXX 0xXX 0xXX 1~20 0xXX 
Note: (1) goal=0~1023; (2) play time may be modified for a long movement; 
     (3) set = 0 (position control) / 1 (speed control) / 2 (torque off) /3 (position    
            control servo on) 
(2) ACK packet for I-JOG CMD 
1 2 3 4 5 6 7 8 9 
header header size ID CMD check_ 

sum_1 
check_ 
sum_2 

status 
error 

status 
detail 

0xFF 0xFF 9 1~20 0x45 0xXX 0xXX 0xXX 0xXX 
 
  



 

Table 6: Requested and ACK packets for S-SOG (0x06) CMD 
(1) Requested packet for S-JOG CMD 
1 2 3 4 5 6 7 8 +4 +(n-1)*4 
header header size ID CMD check_ 

sum_1 
check_ 
sum_2 

play 
time 

S-JOG 
data 

... 

0xFF 0xFF 8+4*n 1~20, 
254 

0x06 0xXX 0xXX 0xXX (6-1) ... 

Note: n=number of motor IDs send. 
(6-1) S-JOG data 
1 2 3 4 
goal.lsb goal.msb set ID 
0xXX 0xXX 0xXX 1~20 
Note: (1) goal=0~1023; (2) goal position may not be reached for a short play time; 
     (3) set = 0 (position control) / 1 (speed control) / 2 (torque off) / 3 (position  
              control servo on) 
(2) ACK packet for S-JOG CMD 
1 2 3 4 5 6 7 8 9 
Header header size ID CMD check_ 

sum_1 
check_ 
sum_2 

status 
error 

Status 
detail 

0xFF 0xFF 9 1~20 0x46 0xXX 0xXX 0xXX 0xXX 
 
  



 

Table 7: Requested and ACK packets for STAT(0x07) CMD 
(1) Requested packet for STAT CMD 
1 2 3 4 5 6 7 
header header size ID CMD check_ 

sum_1 
check_ 
sum_2 

0xFF 0xFF 7 1~20 0x07 0xXX 0xXX 
(2) ACK packet for STAT CMD 
1 2 3 4 5 6 7 8 9 
header header size ID CMD check_ 

sum_1 
check_ 
sum_2 

status_ 
error 

status_ 
detail 

0xFF 0xFF 17 1~20 0x47 0xXX 0xXX 0xXX 0xXX 
 
10 11 12 13 14 15 16 17 
PWM. 
lsb 

PWM. 
msb 

pos_ref. 
lsb 

pos_ref.
msb 

position. 
lsb 

position. 
msb 

Ibus. 
lsb 

Ibus. 
msb 

0xXX 0xXX 0xXX 0xXX 0xXX 0xXX 0xXX 0xXX 
 
Table 8: Requested and ACK packets for ROLLBACK(0x08) CMD 
(1) Requested packet for ROLLBACK CMD 
1 2 3 4 5 6 7 
header header size ID CMD check_ 

sum_1 
check_ 
sum_2 

0xFF 0xFF 7 1~20, 
254 

0x08 0xXX 0xXX 

 
(2) ACK packet for ROLLBACK CMD 
1 2 3 4 5 6 7 8 9 
header header size ID CMD check_ 

sum_1 
check_ 
sum_2 

status_ 
error 

status_ 
detail 

0xFF 0xFF 9 1~20 0x48 0xXX 0xXX 0xXX 0xXX 
 
  



 

Table 9: Requested and ACK packets for REBOOT(0x09) CMD 
(1) Requested packet for REBOOT CMD 
1 2 3 4 5 6 7 
header header size ID CMD check_ 

sum_1 
check_ 
sum_2 

0xFF 0xFF 7 1~20, 
254 

0x09 0xXX 0xXX 

 
(2) ACK packet for REBOOT CMD 
1 2 3 4 5 6 7 8 9 
header header size ID CMD check_ 

sum_1 
check_ 
sum_2 

status_ 
error 

status_ 
detail 

0xFF 0xFF 9 1~20 0x49 0xXX 0xXX 0xXX 0xXX 
 
  



 

3. EEPROM & RAM Parameters 
 The system parameters saved in EEOROM and RAM are shown in Table 10. 
There are 54 bytes parameter data in EEPROM and 80 bytes parameter data in RAM, 
in which the first 48 bytes of RAM data are same as the data in RAM from address of 
6 to 54. The EEPROM data can be read and written to; some of the RAM data are 
read only. 
 
Table 10: EEPROM & RAM Parameters 
EEPROM 
Addr. 

RAM 
Addr. 

Parameter Bytes R/W 
/RO 

Default 
Value 

0  Model_No 1 RO 0x01 
1 Year 1 RO 0x0F 
2 Version/Month 1 RO 0x3A 
3 Day 1 RO 0x01 
4 Reserved 1 RO 0x01 
5 Baud_Rate 1 R/W 0x0C 
6 0 sID 1 R/W 0x01 
7 1 ACK_Policy 1 R/W 0x02 
8 2 Alarm_LED_Policy 1 R/W 0x00 
9 3 Torque_Policy 1 R/W 0x01 
10 4 SPDctrl_Policy 1 R/W 0x01 
11 5 Max_Temperature 1 R/W 0x4B 
12 6 Min_Voltage 1 R/W 0x77 
13 7 Max_Voltage 1 R/W 0xE8 
14 8 Acceleration_Ratio 1 R/W 0x00 
15 9 Reserved 1 R/W 0xFF 
16 10 Reserved 1 R/W 0x00 
17 11 Reserved 1 R/W 0x00 
18 12 Max_Wheel_Ref_Position 2 R/W 0x042E 
20 14 Reserved 1 R/W 0x00 
21 15 Reserved 1 R/W 0x00 
22 16 Max_PWM 2 R/W 0x03FF 
24 18 Overload_Threshold 2 R/W 0x00CC 
26 20 Min_Position 2 R/W 0x00 
28 22 Max_Position 2 R/W 0x03FF 
30 24 Position_Kp 2 R/W 0x0F00 
32 26 Position_Kd 2 R/W 0x0800 



 

34 28 Position_Ki 2 R/W 0x0000 
36 30 Close_to_Open_Ref_Position 2 R/W 0x03FF 
38 32 Open_to_Close_Ref_Position 2 R/W 0x00 
40 34 Reserved 2 R/W 0x03FF 
42 36 Ramp_Speed 2 R/W 0x03FF 
44 38 LED_Blink_Period 1 R/W 0x00 
45 39 Reserved 1 R/W 0x00 
46 40 Packet_Timeout_Detection_Period 1 R/W 0x0A 
47 41 Reserved 1 R/W 0x00 
48 42 Overload_Detection_Period 1 R/W 0x19 
49 43 Reserved 1 R/W 0x00 
50 44 Inposition_Margin 1 R/W 0x01 
51 45 Over_Voltage_Detection_Period 1 R/W 0xFF 
52 46 Over_Temperature_Detection_Period 1 R/W 0x0A 
53 47 Calibration_Difference 1 R/W 0xXX 
 48 Status_Error 1 R/W 0x00 

49 Status_Detail 1 R/W 0x40 
50 Reserved 1 R/W 0x00 
51 Reserved 1 R/W 0x00 
52 Reserved 1 R/W 0x01 
53 LED_Control 1 R/W 0x00 
54 Voltage 1 RO 0xXX 
55 Temperature 1 RO 0xXX 
56 Current_Control_Mode 1 RO 0x02 
57 Tick 1 RO 0x00 
58 Reserved 2 RO 0xXXXX 
60 Joint_Position 2 RO 0xXXXX 
62 Reserved 2 RO 0x0000 
64 PWM_Output_Duty 2 RO 0x0000 
66 Bus_Current 2 RO 0x0000 
68 Position_Goal 2 RO 0xXXXX 
70 Position_Ref 2 RO 0xXXXX 
72 Omega_Goal 2 RO 0x0000 
74 Omega_Ref 2 RO 0x0000 
76 Requested_Counts 2 RO 0x0000 
78 ACK_Counts 2 RO 0x0000 

 



 

The description of EEPROM and RAM parameters above are summarized below. 
(E0) Model_No：Servo model name 
(E1) Year：Year 
(E2) Version/Month：bit0~3：month, bit4~8：version of servo firmware 
(E5) Baud_Rate： 

0x01：9600 
0x02：19200 
0x06：57600 
0x0C：115200 

(E6,R0) sID：Servo ID, 1, 2, ..., 19, 20 ... , 253 
(E7,R1) ACK_Policy： 

only STAT command reply：0 
only EEPROM/RAM RAED and STAT commands reply：1 
all commands reply：2 

(E8,R2) Alarm_LED_Policy：bit i = 0 (System Alarm LED), 1 (User LED) 
Bit 0：White LED 
Bit 1：Blue LED 
Bit 2：Green LED 
Bit 3：Red LED 

(E9,R3) Torque_Policy：Shut down Motor when Voltage/Load/Temperature 
Torque Free Control：0 
Torque Limited：1 

(E10,R4) SPDctrl_Policy：Speed open/close loop control 
Open Loop Control：0 
Close Loop Control：1 

(E11,R5) Max_Temperature：The limit of A1-16 servo operating temperature. The  
value is in Degrees Celsius. 

(E12,R6) Min_Voltage：The min value of A1-16 servo operating voltage. The value is  
16 times the actual voltage. 

(E13,R7) Max_Voltage：The max value of A1-16 servo operating voltage. The value is  
16 times the actual voltage. 

(E14,R8) Acceleration_Ratio = 0, 1, 2, ..., 50 
Play_time Acceleration_Ratio Referenced position trajectory 
0  Ramp-to-step position command,  

see (36) 
1~255 0 Constant speed profile 
1~255 1~50 T-curve speed profile 

 Note: acceleration_time = deceleration_time = play_time * Acceleration_Ratio/100 



 

(E18,R12) Max_Wheel_Ref_Position：Start virtual position for speed close loop  
control. 

(E22,R16) Max_PWM：The max value of A1-16 servo output torque. 
(E24,R18) Overload_Threshold：The max value of A1-16 servo output torque. 
(E26,R20) Min_Position：Min operational angle 
(E28,R22) Max_Position：Max operational angle 
(E30,R24) Position_Kp：msb is the integer number and lsb is the decimal number. 

The P control law is implemented below with a sampling time of 10 msec 
(E32,R26) Position_Kd：msb is the integer number and lsb is the decimal number. 

The PD control law is implemented below with a sampling time of 10 msec 
(E34,R28) Position_Ki：msb is the integer number and lsb is the decimal number. 

The PID control law is implemented below with a sampling time of 10 msec, 
(E36,R30) Close_to_Open_Ref_Position：close loop continuous rotate mode close to  

open position. 
(E38,R32) Open_to_Close_Ref_Position：close loop continuous rotate mode open to  

close position. 
(E42,R36) Ramp_Speed = 0 (step position command), 1~1023 (slope of ramp-to-step) 
(E44,R38) LED_Blink_Period：Blinking Period of LED with a sampling time of 10 msec. 
(E46,R40) Packet_Timeout_Detection_Period：Packet Timeout Detection Period of  

LED with a sampling time of 10 msec. 1 = 10ms 
(E48,R42) Overload_Detection_Period：Overload Detection Period of servo with a  

sampling time of 10 msec. 1 = 10ms 
(E51,R45) Over_Voltage_Detection_Period：Over Voltage Detection Period of servo  

with a sampling time of 10 msec. 1 = 10ms 
(E52,R46) Over_ Temperature _Detection_Period：Over Temperature Detection  

Period of servo with a sampling time of 10 msec. 1 = 10ms 
(E53,R47) Calibration_Difference：The difference between newtral point and position 

raw data. 
(R48) status_error 

bit Mask Default Status Error Error LED on/off 
1 0x01 0 Exceed Potentiometer Range Error Blue LED on 
2 0x02 0 Over Voltage Limits Error Red LED on/ 

White LED off 
3 0x04 0 Over Temperature Error Red LED on/ 

White LED off 
4 0x08 0 Overload/Over-current Error Red LED on/ 

White LED off 
5 0x10 0 Reserved None 



 

6 0x20 0 Requested Packet Checksum Error Green LED on 
7 0x40 0 Requested Packet Data Error Green LED on 
8 0x80 0 Requested Packet RX FIFO Error Green LED on 

(R49) status_detail  
bit Mask Default Status Detail 
1 0x01 0 Reserved 
2 0x02 0 Reserved 
3 0x04 0 Reserved 
4 0x08 0 Reserved 
5 0x10 0 Motor Moving 
6 0x20 0 Motor In-Position (Position control mode only)  
7 0x40 0 1: Torque on (Position/Speed control), 0: Torque off  
8 0x80 0 Motor Braked 

(R53) LED_Control：bit i = 0 (LEDi off), 1 (LEDi on); (see Alarm_LED_Policy) 
Bit 0：White LED 
Bit 1：Blue LED 
Bit 2：Green LED 
Bit 3：Red LED 

(R54) Voltage：The voltage currently applied to servo. The Value is 16 times the 
actual voltage. 

(R55) Temperature：The internal temperature of motor in Degrees Celsius. 
(R56) Current_Control_Mode：0 (position control), 1 (speed control), 2 (torque off) 
(R57) Tick：Time servo operation. 1 = 10ms 
(R60) Joint Postion：Servo Position 
(R64) PWM_Output_Duty：The torque applied to motor 
(R66) Bus_Current：The Current applied to motor. The Value is 200 times the 

actual current. 
(R68) Position_Goal：Servo goal of position control mode 
(R70) Position_Ref：Ref point for position control 
(R72) Omega_Goal：Goal speed of speed close-loop control 
(R74) Omega_Ref：Ref speed of speed close-loop control 
(R76) Requested_Counts：Total # of requested packets received since power on. 
(R78) ACK_Counts：Total # of ACK packets send since power on. 
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GP2Y0A21YK0F

Distance Measuring Sensor Unit
Measuring distance: 10 to 80 cm
Analog output type

■Applications
1. Touch-less switch
    (Sanitary equipment, Control of illumination, etc. )
2. Robot cleaner
3. Sensor for energy saving
   (ATM, Copier, Vending machine)
4. Amusement equipment
   (Robot, Arcade game machine)

■Features
1. Distance measuring range : 10 to 80 cm
2. Analog output type
3. Package size : 29.5×13×13.5 mm
4. Consumption current : Typ. 30 mA
5. Supply voltage : 4.5 to 5.5 V

■Agency approvals/Compliance
1. Compliant with RoHS directive (2002/95/EC)
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              devices shown in catalogs, data books, etc.  Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device.

Sheet No.: E4-A00201EN
Date Dec.01.2006

©SHARP Corporation

■Description
GP2Y0A21YK0F is a distance measuring sensor unit,
composed of an integrated combination of PSD 
(position sensitive detector) , IRED (infrared emitting 
diode) and signal processing circuit. 
The variety of the reflectivity of the object, the
environmental temperature and the operating duration
are not influenced easily to the distance detection 
because of adopting the triangulation method. 
This device outputs the voltage corresponding to the
detection distance. So this sensor can also be used as
a proximity sensor.
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■Block diagram

■Outline Dimensions (Unit : mm)

Product mass : Approx. 3.6g

Signal
processing circuit Voltage regulator 

Oscillation circuit 

Output circuit 

Distance measuring IC

LED drive circuit 

ＧＮＤ Ｖｃｃ

 

Ｖｏ 

ＰＳＤ 

ＬＥＤ 

Stamp(Example)

Model name Month(1 to 9,X,Y,Z)
Year(2005:5)

2Y0A21  F    4  Z

(Stamp)

Light emitter

φ3.2hole

R3
.7

5

3.75

*4.5 * 20±0.1

37
29.5

10.1
14.75

Light detector

φ3.2hole

R3
.7

5

6.3
2

8.
4

7.
2

Lens case

13
(1

8.
9 

    
   

 )
+0

.5
-0

.3

(3.3)

1.2PWB

Connector

7.5 4.15 16.3

①②③ 13
.5

2-
1.

5

Connector signal
signal name

VO

GND

VCC

Connector :
 J.S.T.TRADING COMPANY,LTD,
 S3B-PH

Materials
   Lens :Acrylic acid resin
             (Visible light cut-off resin)
   Case :Carbonic ABS
             (Conductive resin)
   PWB :Paper phenol

Note 1. The dimensions marked * are described the dimensions of lens center position.
Note 2. Unspecified tolerances shall be ± 0.3 mm.
Note 3. The dimensions in parenthesis are shown for reference.

GP2Y0A21YK0F

2Y0A21  F  4Z

Sheet No.: E4-A00201EN
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(Ta=25℃,VCC=5V)

Parameter Symbol Rating Unit
Supply voltage VCC 4.5 to 5.5 V

■Absolute Maximum Ratings

■Electro-optical Characteristics

GP2Y0A21YK0F

(Ta=25℃,VCC=5V)

* L : Distance to reflective object
Note 1 : Using reflective object : White paper (Made by Kodak Co., Ltd. gray cards R-27・white face, reflectance; 90%)

Sheet No.: E4-A00201EN

Symbol Rating Unit
Supply voltage VCC -0.3 to +7 V
Output terminal voltage VO -0.3 to VCC+0.3 V
Operating temperature Topr -10 to  +60 ℃

Storage temperature Tstg -40 to  +70 ℃

Parameter

Parameter Symbol Conditions MIN. TYP. MAX. Unit
Average supply current ICC L=80cm (Note 1) ― 30 40 mA
Distance measuring ΔL (Note 1) 10 ― 80 cm
Output voltage VO L=80cm (Note 1) 0.25 0.4 0.55 V

Output voltage differential ΔVO
Output voltage differece between
L=10cm and L=80cm (Note 1) 1.65 1.9 2.15 V

■Recommended operating conditions

3



Fig. 1 Timing chart 

GP2Y0A21YK0F

Vcc(Power supply)

nth
output

nth
measurement 

Second
measurement First measurement 

Second output First outputUnstable output

MAX 5.0ms 

38.3ms±9.6ms

Distance measuring operating 

Vo(Output)

Sheet No.: E4-A00201EN
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GP2Y0A21YK0F

Fig. 2 Example of distance measuring characteristics(output) 
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GP2Y0A21YK0F

Sheet No.: E4-A00201EN

■Notes

●Advice for the optics
 • The lens of this device needs to be kept clean.  There are cases that dust, water or oil and so on deteriorate
    the characteristics of this device.  Please consider in actual application.
 • Please don’t do washing. Washing may deteriorate the characteristics of optical system and so on.
    Please confirm resistance to chemicals under the actual usage since this product has not been designed against washing.

●Advice for the characteristics
 • In case that an optical filter is set in front of the emitter and detector portion, the optical filter which has the most
   efficient transmittance at the emitting wavelength range of LED for this product (λ = 870 ± 70nm), shall be 
   recommended to use. Both faces of the filter should be mirror polishing. Also, as there are cases that the characteristics 
   may not be satisfied according to the distance between the protection cover and this product or the thickness of the 
   protection cover, please use this product after confirming the operation sufficiently in actual application.
 • In case that there is an object near to emitter side of the sensor between sensor and a detecting object, please use this 
   device after confirming sufficiently that the characteristics of this sensor do not change by the object.
 • When the detector is exposed to the direct light from the sun, tungsten lamp and so on, there are cases that it can not
   measure the distance exactly.  Please consider the design that the detector is not exposed to the direct light from such
   light source.
 • Distance to a mirror reflector can not be sometimes measured exactly.
   In case of changing the mounting angle of  this product, it may measure the distance exactly.
 • In case that reflective object has boundary line which material or color etc. are excessively different, in order to 
   decrease deviation of measuring distance, it shall be recommended to set the sensor that the direction of boundary line 
   and the line between emitter center and detector center are in parallel. 

 • In order to decrease deviation of measuring distance by moving direction of the reflective object, it shall be 
   recommended to set the sensor that the moving direction of the object and the line between emitter center and 
   detector center are vertical. 

●Advice for the power supply
 • In order to stabilize power supply line, we recommend to insert a by-pass capacitor of 10μF or more
   between Vcc and GND near this product.

(Incorrect) (Correct)

(Incorrect)

(Moving direction)

(Correct)

(Moving direction)

●Notes on handling
 • There are some possibilities that the internal components in the sensor may be exposed to the excessive mechanical 
   stress. Please be careful not to cause any excessive pressure on the sensor package  and also on the PCB while 
   assembling this product.
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GP2Y0A21YK0F

Sheet No.: E4-A00201EN

●Presence of ODC etc.
    This product shall not contain the following materials.
    And they are not used in the production process for this product.
    Regulation substances : CFCs, Halon, Carbon tetrachloride, 1.1.1-Trichloroethane (Methylchloroform)

    Specific brominated flame retardants such as the PBB and PBDE are not used in this product at all.

    This product shall not contain the following materials banned in the RoHS Directive (2002/95/EC).
 • Lead, Mercury, Cadmium, Hexavalent chromium, Polybrominated biphenyls (PBB), 
   Polybrominated diphenyl ethers (PBDE).
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GP2Y0A21YK0F
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■Package specification

Packaging method
    1.Put products of 100pcs. in tray.  packing method is showed in the above fig.(Fig.1)
    2.Put them(10-tray) in the packing box. Put pads on their top and bottom.
       And put pads on each trays(Total 10 sheets) (Fig.2).
    3.Seal the packing box with craft tape.
       Print the model No.,quantity,inspection date (1000 pcs./a packing box)(Fig.3).

Package composition

Pad

Packing case 

Craft tape

Model No.
Quantity
Date

Tray

Product

(2 sheeets/case: top and bottom)

Tray put products
(10-tray/case)

Pad
(10 sheeets/case)

(Fig.1)

(Fig.2)

(Fig.3)
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■Important Notices

· The circuit application examples in this publication are 
provided to explain representative applications of 
SHARP devices and are not intended to guarantee any circuit 
design or license any intellectual property rights. SHARP 
takes no responsibility for any problems related to any 
intellectual property right of a third party resulting from the use 
of SHARP's devices.

· Contact SHARP in order to obtain the latest device specifi-
cation sheets before using any SHARP device. SHARP 
reserves the right to make changes in the specif icat ions,  
characterist ics,  data,  materials ,  structure, and other 
contents described herein at any time without notice in 
order to improve design or reliability. Manufacturing 
locations are also subject to change without notice.

· Observe the following points when using any devices in this 
publication. SHARP takes no responsibility for damage 
caused by improper use of the devices which does not meet the 
conditions and absolute maximum ratings to be used specified 
in the relevant specification sheet nor meet the following condi-
tions:
(i) The devices in this publication are designed for use in 
general electronic equipment designs such as:
   --- Personal computers
   --- Office automation equipment
   --- Telecommunication equipment [terminal]
   --- Test and measurement equipment
   --- Industrial control
   --- Audio visual equipment
   --- Consumer electronics
(ii) Measures such as fail-safe function and redundant design 
should be taken to ensure reliability and safety when SHARP 
devices are used for or in connection 

with equipment that requires higher reliability such as:
   --- Transportation control and safety equipment (i.e.,
         aircraft, trains, automobiles, etc.)
   --- Traffic signals
   --- Gas leakage sensor breakers
   --- Alarm equipment
   --- Various safety devices, etc.
( i i i )  SHARP dev ices  sha l l  no t  be  used  fo r  o r  in  
connection with equipment that requires an extremely high 
level of reliability and safety such as:
   --- Space applications
   --- Telecommunication equipment [trunk lines]
   --- Nuclear power control equipment
   --- Medical and other life support equipment (e.g.,
         scuba).

· If the SHARP devices listed in this publication fall 
within the scope of strategic products described in the 
Foreign Exchange and Foreign Trade Law of Japan, it is 
necessary to obtain approval to export such SHARP devices.

· This publication is the proprietary product of SHARP and 
is copyrighted, with all rights reserved. Under the copy-
right laws, no part of this publication may be repro-
duced or transmitted in any form or by any means, 
electronic or mechanical, for any purpose, in whole or in 
part, without the express written permission of SHARP. 
Express written permission is also required before any use 
of this publication may be made by a third party.

· Contact and consult with a SHARP representative if there 
are any questions about the contents of this publication.

GP2Y0A21YK0F

Sheet No.: E4-A00201EN
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A. Appendix 1

Figure A.1: Illustration of the head.
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A. Appendix 1

Figure A.2: Illustration of the head.

Figure A.3: Illustration of the head.

LII



A. Appendix 1

Figure A.4: Illustration of the head.

Figure A.5: Illustration of the head.
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