

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering

Göteborg, Sweden, October 2013

Extending TTCN-3 with Model-Based Fuzzing for

Robustness Testing of Telecom Protocols

Master of Science Thesis in Computer Systems and Networks

William Johansson

Martin Svensson

The Author grants to Chalmers University of Technology and University of Gothenburg

the non-exclusive right to publish the Work electronically and in a non-commercial

purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work

does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author

has signed a copyright agreement with a third party regarding the Work, the Author

warrants hereby that he/she has obtained any necessary permission from this third party to

let Chalmers University of Technology and University of Gothenburg store the Work

electronically and make it accessible on the Internet.

Extending TTCN-3 with Model-Based Fuzzing for Robustness Testing of Telecom

Protocols

William Johansson

Martin Svensson

© William Johansson, October 2013.

© Martin Svensson, October 2013.

Examiner: Magnus Almgren

Supervisor: Vincenzo Gulisano and Ulf E. Larson

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering

Göteborg, Sweden October 2013

Abstract

The telecommunication network is classified by governments as a critical infrastructure which
must be protected. It provides text and voice communication, Internet access, and emergency
services for mobile subscribers worldwide. Operators set high demands on the availability of the
telecommunication products and a common level to mark high availability is 99.999%, or less
than five and a half minutes of downtime a year. Hence, telecommunication vendors have to
thoroughly test their products to ensure that the demands are met. One way to achieve this is
to apply a robustness testing technique called fuzzing.

In this master thesis we designed and implemented a model-based fuzzer for robustness testing
of telecommunication protocol implementations. Our fuzzer is generation-based and integrates
with the TTCN-3 conformance test environment by extracting protocol models and creates gen-
erators to populate the models. A case-study is conducted of fuzzing a telecommunication
protocol which shows that the fuzzer is capable of provoking erroneous behavior, some which
unlikely would have been found otherwise. After discussion with the conformance test team, the
tool is considered easy to learn, and that it will be a helpful addition to the tester’s toolbox.
Taken together, we believe that the fuzzer will be a valuable asset for robustness testing.

Sammanfattning

Regeringar världen över klassificerar telekommunikationsnätverket som en kritisk infrastruktur
som m̊aste skyddas fr̊an attacker. Nätverket möjliggör kommunikation genom textmeddelanden,
mobilsamtal, internetanslutning och nödsamtal för mobilabonnemang världen över. Höga krav
sätts p̊a operatörer att deras system ska ha en hög tillgänglighet där en välkänd niv̊a för en hög
tillgänglighet är 99,999% vilket motsvarar mindre än fem och en halv minut per år d̊a systemen
inte är i drift. Därför m̊aste tillverkare av telekommunikationssystem genomföra utförliga tester
av systemen för att n̊a dessa höga krav. En metod som kan appliceras för att n̊a dessa m̊al är en
teknik för robusthetstestning vid namn fuzztestning.

I detta examensarbete har vi designat och implementerat en modellbaserad fuzzer för robust-
hetstestning av protokollimplementationer inom telekommunikation. V̊ar fuzzer är baserad p̊a
meddelandegenerering och är integrerad i en konformitetstestmiljö, skriven i TTCN-3, genom
att extrahera protokollmodeller och skapa funktioner av dessa som genererar värden för samtli-
ga fält av de extraherade protokollen. Det utfördes ocks̊a en undersökning där fuzzern testades
gentemot telekommunikationsprotokoll där resultatet visade att fuzzern är kapabel till att hitta
felaktiga beteenden, beteenden som troligtvis inte hade blivit funna p̊a annat sätt. Efter dis-
kussioner med konformitetstestgruppen ans̊ags det att verktyget är lätt att lära sig och att det
skulle vara en värdefull tillg̊ang för robusthetstestning.

Acknowledgement

This Master’s thesis has been suggested and funded by Ericsson AB. The authors would like to
thank everyone involved in the thesis. Big thanks to Ericsson and especially the SGSN-MME
teams for helping us with everything.

Special thanks go out to our supervisor at Ericsson, Ulf E. Larson, for supporting and guiding
our work from day one. Big thanks to our examiner, Magnus Almgren, and supervisor, Vincenzo
Gulisano, at Chalmers which have been very helpful with providing feedback and presenting new
ideas to our work. The authors would also like to thank everyone that has taken their time to
proofread our thesis and come up with valuable comments.

Contents

1 Introduction 1

1.1 Scope . 2

1.2 Delimitations . 2

2 Theory 5

2.1 Telecom networks . 5

2.1.1 History . 5

2.1.2 Evolved Packet System . 6

2.1.3 The Cellular Network . 8

2.1.4 Communication Interfaces . 9

2.1.5 Mobility Management Entity . 10

2.2 Non-Access Stratum Protocol . 10

2.2.1 Protocol Structure . 11

2.2.2 Encapsulation . 12

2.2.3 State Machines . 13

2.2.4 Attach and Service Request . 14

2.3 Testing and Test Control Notation Version 3 . 14

2.3.1 TTCN-3 Control Interface . 16

2.3.2 TTCN-3 Runtime Interface . 16

2.3.3 TITAN: Test Execution Environment . 16

2.4 Erlang . 17

2.5 Ericsson SGSN-MME . 18

2.5.1 Hardware . 18

2.5.2 Software . 19

2.6 GSN Test Tool . 19

2.7 Fuzzing . 19

2.7.1 History . 20

2.7.2 Black- and White-Box Testing . 20

2.7.3 Mutation and Generation-based Fuzzing 21

2.7.4 Fuzzing Techniques . 21

3 Related Work 23

3.1 Telecom Attacks . 23

3.2 Telecom Tools . 24

3.3 Related Fuzzing Research . 25

3.4 Fuzzing Tools . 26

CONTENTS

4 Design and Implementation 27
4.1 Existing Test Environment . 27

4.1.1 TTCN-3 Environment . 27
4.1.2 GTT Environment . 28
4.1.3 Evaluation . 28

4.2 Design Requirements . 29
4.2.1 Conformance Test Environment . 29
4.2.2 Fuzzing Test Environment . 30
4.2.3 Model Extraction . 30
4.2.4 Fuzzing Engine . 31
4.2.5 Observer . 32

4.3 Implementation . 32
4.3.1 Model Extraction . 33
4.3.2 Fuzzing Engine . 34
4.3.3 Fuzzing API . 34

5 Case Study: NAS on Ericsson MME 37
5.1 Test Setup . 37

5.1.1 State Awareness . 38
5.1.2 Encryption . 39

5.2 Observer Implementation . 39
5.3 Large Scale Attack . 40
5.4 Results . 43

5.4.1 Message types statistics . 44
5.4.2 Comparisons . 45

6 Evaluation 49
6.1 Observer Implementation . 49
6.2 Test Execution of NAS Protocol Implementation 50
6.3 Fuzzing Technique . 50
6.4 Large Scale Attack . 51
6.5 Generalizability . 52
6.6 Questionnaire . 52
6.7 Implementation Problems . 54

6.7.1 Initial Delimitations . 54
6.7.2 Imposed Limitations . 54
6.7.3 Case Study Problems . 55

7 Future Work 57
7.1 State Monitoring . 57
7.2 Code Coverage . 57
7.3 Boundary Value Analysis . 58
7.4 Detailed Message Field Analysis . 58

8 Conclusions 59

Abbreviations 61

List of Figures 63

CONTENTS

List of Tables 64

Bibliography 65

Chapter 1

Introduction

The telecom network is a very important infrastructure in today’s society. It provides voice
and text communication, Internet access, and emergency services for mobile subscribers. Ac-
cording to the International Telecommunication Union (ITU), there are over 6.8 billion mobile
subscribers and close to 2.1 billion mobile-broadband subscribers worldwide [1]. These sub-
scribers require a connection to the telecom network to be able to utilize their subscriptions. By
introducing Internet access via the telecom network, new technologies, such as the smartphone,
arose. Smartphones need a connection to the telecom network for Internet access to be fully
utilized. With an increasing usage of the telecom network the demands of its availability will
also be higher. Today’s society is already heavily dependent upon telecommunication services,
where mobile communication over distance is assumed to be working. It is also a crucial way for
communication and coordination in times of crisis. The US government and the EU commission
both classify telecommunication infrastructure as a critical infrastructure [2, 3] which must be
protected. The European commission describes a critical infrastructure with the following words:

“Critical infrastructures consist of those physical and information technology fa-
cilities, networks, services and assets which, if disrupted or destroyed, would have a
serious impact on the health, safety, security or economic well-being of citizens or the
effective functioning of governments in the Member States.” [3]

To reach the demands, the operators need to guarantee high availability of the network.
A commonly used level to mark high availability is 99.999% [4], which means less than five
and a half minutes of downtime over a year. Engineering for availability requires complex and
redundant systems which can survive multiple types of unintended failures such as power outages
and earthquakes, but it also needs to survive deliberate attacks against the systems availability
such as remote network attacks. A network that is classified as a critical infrastructure has to
be able to withstand deliberate attacks without causing unavailability to the network. Some
types of attacks can be stopped by preventing intrusions with network firewalls and intrusion
detection systems. However, software vulnerabilities may still exist and be exploited to cause
unavailability. In order to prevent vulnerabilities that can be exploited by malicious input data,
such input needs to be handled correctly by the application. Therefore, the system needs to be
robust and tested thoroughly for possible vulnerabilities.

A successful attack on the telecom network may lead to a denial of service which will disturb
end-users connectivity. Such a disturbance is not acceptable due to the very large number of
users and critical services that would be affected. Emergency numbers would be affected and
possibly unavailable over the telecom network, which could have negative consequences. These

1

1. INTRODUCTION

circumstances put high demands on the system, both from end-users such as consumers and
businesses as well as through government regulations.

The availability of telecom services is highly prioritized by telecom network providers and
software testing has to be applied to ensure robustness of their systems. A robust system has
the ability to handle malicious or unknown data without ending up with an unwanted behavior
such as a system crash leading to a denial of service. Appropriate testing has to be applied to
enhance the robustness of the system implementation. A well-known software testing technique
for robustness testing is fuzzing, where malformed messages are injected into the system to test
its implementation. The system is monitored for unwanted behavior to determine if the injected
message caused any problem.

Third party robustness testing tools, as offered by Codenomicon [5] and P1 Security [6],
have fully modeled protocols and advanced fuzzing algorithms to apply on their models. These
testing tools have all the necessary means to perform robustness testing of various systems
and implementations and are often adoptable to test not yet modeled protocols. However,
one disadvantage of using third party tools is when internal information, e.g. source code, of
the systems cannot be revealed. A black-box approach then has to be applied on the tested
system which may have an influence on the fuzzers’ efficiency. A fuzzing tool that utilizes the
information of the implementation has all the means for having an increased performance. This
can be knowledge of which message types that will be accepted and discarded upon arrival as well
as code coverage issues. A white-box approach might be preferable in more complex systems,
such as the systems of the telecom network.

Recent presentations [7, 8, 9, 10, 11] shows that fuzzing can find exploitable bugs in the second
generation (2G) and third generation (3G) cellular network standards. This report will focus on
the fourth generation (4G) cellular network standards and use knowledge of the system to reach
deeper into the system implementation to perform directed and more sophisticated testing than
what a third party test tool have access to.

1.1 Scope

The purpose of this thesis is to integrate robustness testing with an existing testing environment
for functional and conformance testing. A comparison between TTCN-3 and GTT will be estab-
lished to determine what testing enviroment to use. Robustness testing will be implemented with
model-based fuzzing, using the models provided by the testing environment. The model-based
fuzzer uses information from models, such as a network protocol, to intelligently generate data,
such as protocol messages. The fuzzer will be general and applicable to different models, and
tested on telecom equipment with models of a 3GPP protocol.

The telecom network will be tested due to its importance as a critical infrastructure. Fuzzing
has proved itself useful in several previous works, where vulnerabilities are found and exploited.
This thesis will be different from previous work due to its testing of real telecom network equip-
ment in a controlled environment, with full control over the network. We will have access to the
source code as well as experts in the field of telecom networks. This opens the possibility for
efficient testing based on information only accessible from the inside.

1.2 Delimitations

• The proof of concept fuzzer will be specialized to work with an existing testing environment
and the telecom protocols already tested there. It will not cover any other protocols or
testing environments.

2

1.2. DELIMITATIONS

• After the study of the testing environments, only the chosen one, out of the available testing
environments, will be used for the proof of concept fuzzer implementation.

• A fuzzing engine will either be developed from scratch or chosen from an open source
third party tool. If a fuzzing engine is chosen, it will not be extended to include missing
functionality of other fuzzing engines.

• If the fuzzer is capable of finding bugs, the source of the erroneous behavior will not be
investigated. The developed fuzzer will only prove a concept that it is possible to find bugs,
not troubleshoot the source of a potential error.

3

1. INTRODUCTION

4

Chapter 2

Theory

This chapter provides the reader with detailed background information of the different topics
covered in the thesis. The telecom network are described first with an overview of its history
and details about the 4G standards. The two testing environments, TTCN-3 and GTT, of the
target system are then described. Necessary information of the programming language Erlang
are described, as well as the target systems hardware and software configuration. Lastly, the
software testing technique called fuzzing is described.

2.1 Telecom networks

The telecom network is an interconnected network for long distance communication. It provides
the means for voice and text communication, Internet access, and emergency services for end-
users worldwide. An access point for wireless radio communication, called Radio Access Network
(RAN), provides an interface to the telecom network. The RAN is connected to a core network
that will handle all in- and outgoing traffic to a Public Switched Telephone Network (PSTN)
for voice communication and to a Packet Data Networks (PDN), such as the Internet, private
corporate, or service networks.

2.1.1 History

The different telecom network standards are divided into generations, where the first generation
(1G) consisted of several different standards. These standards commonly used digital signaling
but analog transmission of voice. One such 1G standard is the Nordic Mobile Telephone (NMT)
which was used in parts of Europe, mainly in the north [12]. The competition of different
standards mostly meant that a cell phone only worked with a specific network, and could not be
used in any other network. Most 1G networks are today closed down.

The 2G standards sparked the transition from analog to digital transmission of voice. This
also enabled the transmission of other data than voice, such as SMS text messages. The Global
System for Mobile Communications (GSM) is such a 2G mobile communication standard and
can today be accessed in over 219 countries worldwide [13] and have over 6.8 billion subscribers
according to the International Telecommunications Union [1]. GSM supports voice and text
communication as well as data transfers at low speeds. The GSM network is circuit switched,
which means that there is a dedicated channel that transmits the voice in an ongoing call. The
technology evolved over the years and with the addition of the General Packet Radio Service
(GPRS), packet switching became available and with that came Internet access through the

5

2. THEORY

telecom network. With the growth of Internet usage, an increasing demand for higher bandwidth
came from end-users. A competing 2G standard is the IS-95 standard, marketed as cdmaOne,
which is developed by Qualcomm [14]. Both GSM and IS-95 tried to meet the demands for
higher bandwidth by launching new evolved standards.

The International Mobile Telecommunications-2000 (IMT-2000) is a specification by the ITU
for standards that can support voice and high-speed data communication. Standards that com-
ply with IMT-2000 are better known as the third Generation (3G) mobile communication sys-
tems [15]. Both the Third Generation Partnership Project (3GPP) and the Third Generation
Partnership Project 2 (3GPP2) were founded based on the ITM-2000. The 3GPP developed
Universal Mobile Telecommunications System (UMTS) as a successor to GSM [12]. The same
core network, circuit switching and GPRS, is used in UMTS as in GSM. The radio interfaces
for GSM and UMTS communication are different which means that two different RANs (Radio
Access Networks) has to be used to support both standards. A competing 3G standard to UMTS
is the CDMA2000 which is a development of cmdaOne by Qualcomm and the 3GPP2 [14]. Even
with the 3G standards providing much higher bandwidth than the 2G standards, the demand
for higher bandwidth is still increasing.

To further enhance packet switched communication with even higher speeds, the 4G commu-
nication standards has been developed. Initially there was several competing standards with the
largest being 3GPP’s Long Term Evolution (LTE), 3GPP2’s Ultra Mobile Broadband (UMB)
and IEEE 802.16, more commonly known as WiMAX. Common for all developed standards, and
requirements of the ITU specification IMT-Advanced for 4G, is the path to a fully packet switched
network [16]. The lead sponsor of UMB, Qualcomm, decided to end development of UMB and
recommends LTE instead. The ITU later declared that two standards comply with their 4G
definition IMT-Advanced: LTE-Advanced (LTE Release 10 and Beyond) and WirelessMAN-
Advanced (Mobile WiMAX Release 2) [17]. With Qualcomm’s recommendation of LTE, this is
seen as the most natural upgrade path for current 3G network.

2.1.2 Evolved Packet System

The Evolved Packet System (EPS) provides the core network for LTE communication and is
standardized by 3GPP. LTE is marketed as a 4G standard and the first available 4G services
were launched in Stockholm, Sweden, and Oslo, Norway, on December 14, 2009 [18]. The

UE eNodeB SGW

MME

PGW

HSS

Internet

E-UTRAN EPC Network PDN

Signaling
Payload

Figure 2.1: EPS network overview

6

2.1. TELECOM NETWORKS

PCRF

OCS

MME

MSC/

VLR

SGW

SGSN

GMLC

EIR

HSS

E-SMLC

Backbone
Network

O&M Network

LI
System

Other
PLMN

GPRS Network

EPC

Network

S1-U

Gy+

S6b

SGi

S2a

Gx

Rx

S10

Gom

S5/S8

Gx/SGi

S16

S13

Gom

SLs

S6a
SLg

S1-MME S11

SGs/Sv Gn/GpIu

Gom
S8

Gp/S3/S10

S4S12

S3/Gn

/Gp

Payload

Signaling

CDF

BS

Ga

Bp

BpRf

CGF

Corporate

Network

Internet

Service

Network

PDN

Host

Trusted

Non-3GPP

Networks

UE

LTE

eNodeB

SBc

CBC

RNC

3GPP

AAA

PGW

MAG

/HSGW

/TWAN

1xCS

IWS

S102

1xRTT

MSC

A1

Figure 2.2: Overview of the EPS network [19]

EPS is divided into three main networks: Evolved Universal Terrestrial Radio Access Network
(E-UTRAN), Evolved Packet Core (EPC) and PDN.

An overview of the EPS with the main components of each network can be seen in Figure 2.1.
The E-UTRAN provides wireless access for User Equipment (UE), such as mobile phones and
tablets, supporting LTE. The radio base station, in EPS called E-UTRAN Node B (eNodeB),
provides signaling messages from the UE to the Mobility Management Entity (MME) and payload
from the UE destined for a PDN.

The MME is a core node of the EPC network and is responsible for mobility handling and
session management of a UE. The Home Subscriber Server (HSS) will provide the MME with
authentication and authorization functionality of an attaching UE. When the HSS have authen-
ticated the UE as a valid network user, a Serving Gateway (SGW) and a PDN Gateway (PGW)
will be assigned to the UE. The SGW is the bridge between the EPC and the E-UTRAN and
will route packets from the UE to the PGW and from the PGW to the E-UTRAN. The PGW
is the bridge between the EPC network and the PDNs.

A more detailed illustration of the EPS network can be seen in Figure 2.2. Five different
networks can be seen where the E-UTRAN (here called LTE), EPC network and the PDNs have

7

2. THEORY

Cell

T rack in g
Area

SGW Service
Area

SGW Service
Area

MME Pool
Area

T rack in g
Area

T rack in g
Area

MME Pool
Area

Cell

Cell

Cell

Cell

Cell

Cell

Figure 2.3: Network structure of the EPS radio network [19]

already been described. The Trusted Non-3GPP Networks can be seen in the lower left corner.
These networks can be connected to make use of the EPC, but it is up to the operator to decide
which of the networks standards that are allowed. The GPRS network, for 2G and 3G mobile
communication, can be seen at the top of the figure. Also visible in the EPC network are several
nodes which contribute in various ways. For example the Billing System (BS) node at the bottom
of the EPC network illustration keeps track of subscriber usages to bill accordingly.

2.1.3 The Cellular Network

The RAN is divided into static geographical areas and the smallest geographical area in the EPC
radio network is a cell. An example network structure of an EPC radio network can be seen in
Figure 2.3. The size of a cell is based on the number of expected users in a specific geographical
area and may vary in size. When a large number of users are expected, such as in a big city,
a small geographical cell may be preferred, while a cell with a large geographical area may be
more suitable on the country side. A cell is covered by a single eNodeB, but an eNodeB can
cover multiple cells depending on the expected number of users and the capacity and range of
the eNodeB.

As can be seen in Figure 2.3, a cell belongs to a Tracking Area (TA) and each TA contains at
least one cell. The area covered by a TA can be from a small part of a city to an entire county.
Each TA is covered by one MME, or several MME’s if an MME pool configuration is used. If an
MME pool is used the MME pool area defines the TAs a UE can move between without being
required to reconnect to another MME. The MME Pool consists of one or several MMEs working
in parallel within the MME pool area and providing load distribution, expansion possibilities and
redundancy services. As long as a UE remains within the same MME pool serving area, it is
attached to the same MME. If the MME is unavailable, the eNodeB will redirect the UE to
another MME in the pool.

8

2.1. TELECOM NETWORKS

The last area in the cellular radio network of the EPC is the SGW serving area. This area
defines for which cells a certain SGW can be used. The SGW serving area may not cover a whole
MME pool area and if a UE moves outside the SGW serving area the MME has to redirect the
UE to the dedicated SGW for the new cell.

2.1.4 Communication Interfaces

There are several communication interfaces in EPS to interconnect the nodes. Since different
nodes in the EPC can be from different vendors, it is important to standardize the interfaces
they communicate over. The EPS architecture with its interfaces is standardized by the 3GPP
in detail in the standard TS 23.401 [20]. An overview of the interfaces with their name and
connections can be seen in Figure 2.2. The protocols used in some important interfaces will be
further described below and can be seen illustrated in Figure 2.4.

All UE communication is wireless and goes over the radio interface Uu with an eNodeB.
The UE communicates with the eNodeB using the Radio Resource Control (RRC) protocol [21].
RRC encapsulates all different messages that is transferred between the network and the UE,
both signaling and payload data.

The eNodeB has a group of interfaces towards the EPC network called the S1 interfaces,
consisting of the S1-U interface to an SGW and the S1-MME interface to an MME. The S1-U
interface is based on Internet Protocol (IP) with User Datagram Protocol (UDP) as transport
protocol, carrying GPRS Tunneling Protocol (GTP) User Plane version 1 (GTPv1-U) application
data [22]. The GTPv1-U protocol carries encapsulated IP payload data between a UE and a
PDN, such as the IP traffic when a user browses the web with a smartphone. The S1-MME

RRC

NAS

RRC

NAS

S1AP

SCTP

IP

GTPv1-U

SCTP

IP

S1AP

NAS

UDP

UDP

GTPv2-CDIAMETERDIAMETER

SCTP

IP

IP

UDP

GTPv1-U GTPv2-C

Uu

S1-U

S6a S11

S1-MME

UE eNodeB

SGW

MMEHSS

IP IP

UDP

IP IP

SCTP

Figure 2.4: Subset of communication interfaces with their protocols

9

2. THEORY

interface is IP based with Stream Control Transmission Protocol (SCTP) used as transport
protocol. The S1 Application Protocol (S1AP) is used as the application protocol between the
eNodeB and the MME, containing functions for configuring the signaling context for a UE and
transferring messages between the MME and the UE. This communication between the MME
and the UE over S1AP uses the Non-Access Stratum (NAS) protocol, which is further described
in Section 2.2.

The MME communicates with several interfaces within the EPC network. Two selected
interfaces are described here, out of importance to both the network and the thesis. The S11
interface towards the SGW uses GTP Control Plane version 2 (GTPv2-C) over IP and UDP and
carries signaling to setup and configure connections for a UE via the SGW [23]. The S6a interface
towards the HSS carries the Diameter protocol over IP and SCTP to provide authentication and
authorization of a UE and the subscriber [24, 25].

2.1.5 Mobility Management Entity

The MME is responsible for the attachment and detachment of a UE. It will select an SGW
and a PGW for the UE to use in order to connect to a PDN. The MME will also assure the
sustainability of this connection from the UE to the PDN network over time. In the attachment
process of a UE, the MME performs an authentication of the UE to determine if the UE has the
correct access rights to use the EPS. This authentication is done in conjunction with the HSS
which contains subscription information for authentication and authorization of subscribers.

A UE that is moved into a new TA has to establish a new connection to the eNodeB that
covers the entered cell. The MME will manage the handover to the new eNodeB and make
sure the connection to the PDN network is sustained. If a UE enters a cell in the EPC radio
network, the MME will also take care of the procedure of transferring a connected UE of a
2G or 3G network to the LTE network that is currently available and the other way around.
Communication between the MME and the UE is transferred with the Non-Access Stratum
(NAS) application layer protocol described in more detail in the next section.

2.2 Non-Access Stratum Protocol

The NAS protocol is used for signaling between the UE and the MME [26]. NAS messages
are transported over RRC between the UE and the eNodeB, and forwarded unmodified by the
eNodeB to the MME via the S1-MME interface, encapsulated in S1AP messages as described
in Section 2.1.4. The protocol is internally a set of two protocols which have different respon-
sibilities; mobility management by the EPS Mobility Management (EMM) protocol and session
management by the EPS Session Management (ESM) protocol.

The EMM part of NAS is responsible for mobility related procedures in the E-UTRAN,
authentication of UEs and security related issues. The 3GPP specification has separated the
functionality of the EMM protocol into three sections. The first is the EMM common proce-
dures where all network-initiated mechanisms are described such as authentication requests and
encryption initialization. The second section covers the EMM specific procedures that identify
all UE-initiated procedures. Here we find procedures such as attach and detach to and from
the EPC. The third and last section is the EPS Connection Management (ECM) which provides
means to maintain the connection to the EPC.

The ESM part of NAS offers functionality for establishment and handling of user data. To
let the UE communicate with a PDN, the ESM is used to establish a PDN connection. Within
this connection, one or several EPS bearers exist which are logical connections carrying user
data [20]. All traffic over a PDN connection are assigned to and carried over a specific bearer.

10

2.2. NON-ACCESS STRATUM PROTOCOL

01234567

EPS Bearer
Identity

Protocol
Discriminator

Procedure Transaction Identity

Message Type

Type dependent information

(a) ESM message

01234567

Security Header
Type

Protocol
Discriminator

Message Type

Type dependent information

(b) EMM message

Figure 2.5: NAS plain structure

1 template NAS_Message example_esm :=
2 {
3 ProtocolDiscriminator := ’0010’B, // ESM Message
4 EPS_messages := {
5 EPS_SessionManagement := {
6 EPSBearerIdentity := ’0111’B,
7 ProcedureTransactionIdentifier := ’00001111’B,
8 MessageType := ’11010010’B, // PDN_DisconnectReject
9 MessageTypeData := {

10 PDN_DisconnectReject := {
11 // Type dependent information
12 }
13 }
14 }
15 }
16 }

Figure 2.6: Example NAS ESM message described in TTCN-3

There is always at least one bearer, the default bearer, in every PDN connection. Other bearers
are called dedicated bearers and are setup with the ESM protocol. These dedicated bearers are
configured with a packet filter, to specify the packets that should belong to a bearer. They can
also be configured with different quality of service (QoS) specifications, for example to prioritize
a bearer carrying voice data. The default bearer carries all traffic that is not matched by any
dedicated bearers filter.

2.2.1 Protocol Structure

The EMM and ESM protocol structure is illustrated in Figure 2.5. The four bit Protocol Dis-
criminator field defines the NAS message structure. For example, a Protocol Discriminator with
the bit sequence 0010 is defined as an ESM message while the bit sequence 0111 is an EMM
message [27]. The EPS Bearer Identity field in ESM is used to identify the message flow and
the Security Header Type field in EMM contains information regarding the security protection of

11

2. THEORY

EMM-
DEREGISTERED

EMM-
REGISTERED-

INITIATED

EMM-
REGISTERED

EMM-SERVICE-
REQUEST-
INITIATED

Attach
Request

Attach
Reject

A
tt
ac

h

A
cc

ep
t

Detach
Request

Service
Request

Service
Request
Accept

or
Reject

Figure 2.7: Simplified EMM state machine for the MME

the NAS message. The ESM message has an extra octet for the Procedure Transaction Identity
field which allows 254 bi-directional transactions and two reserved values. The Message Type
field defines the message type of ESM and EMM respectively. The last field is dependent on the
message type and may differ in length and content.

An example template of an ESM message can be seen in Figure 2.6, defined in the TTCN-3
language. The protocol discriminator can be seen on line 3 with the value defined for ESM,
0010. This is the reason why the EPS Message contains an ESM message in which the three
fields for an ESM message is defined. The four bit EPS Bearer Identity on line 6, the eight
bit Procedure Transaction Identity on line 7, and the eight bit Message Type on line 8 are all
mandatory fields for an ESM message. The message type data field contains the ESM message
defined by the Message Type, which in this case is a PDN Disconnect Reject message. Values in
this field are dependent on the message type and will be filled with data according to the message
type specifications. The PDN Disconnect Reject message contains no data, which means that
the Type Dependent Information field will be of zero bit size.

2.2.2 Encapsulation

NAS messages are sent from the UE to the eNodeB via the RRC protocol. The eNodeB communi-
cates with the MME over the S1AP protocol where NAS messages from the UE are encapsulated
unaltered for transfer to the MME. There are three ways to transport NAS messages within S1AP,
either as an Initial Message, an Uplink NAS Transport, or a Downlink NAS Transport [28]. The
Initial Message type is used when the first NAS message to be forwarded to the MME arrives at
the eNodeB from the UE. The eNodeB establishes a logical S1-connection between the UE and
the MME by generating a new and unique eNB-UE-S1AP ID and includes this in the message
along with the NAS message. When the connection exists, the eNodeB will send the NAS mes-
sages as a Uplink NAS Transport message, which consists of the ID of the S1-connection and the
NAS message. As soon as the connection is closed, a new one has to be opened by sending the
initial message as described above.

12

2.2. NON-ACCESS STRATUM PROTOCOL

Table 2.1: EMM sublayer states

• EMM sublayer states in the UE EMM sublayer states in the MME
• EMM-NULL • EMM-DEREGISTERED
• EMM-DEREGISTERED • EMM-DEREGISTERED-INITIATED
• EMM-DEREGISTERED-INITIATED • EMM-COMMON-PROCEDURE-
• EMM-REGISTERED-INITIATED INITIATED
• EMM-REGISTERED • EMM-REGISTERED
• EMM-TRACKING-AREA-UPDATE-
INITIATED
• EMM-SERVICE-REQUEST-INITIATED

Table 2.2: ESM sublayer states

ESM sublayer states in the UE ESM sublayer states in the MME
• BEARER-CONTEXT-INACTIVE • BEARER-CONTEXT-INACTIVE
• BEARER-CONTEXT-ACTIVE • BEARER-CONTEXT-INACTIVE-PENDING
• PROCEDURE-TRANSACTION- • BEARER-CONTEXT-ACTIVE
INACTIVE • BEARER-CONTEXT-ACTIVE-PENDING
• PROCEDURE-TRANSACTION- • BEARER-CONTEXT-MODIFY-PENDING
PENDING • PROCEDURE-TRANSACTION-INACTIVE

• PROCEDURE-TRANSACTION-PENDING

2.2.3 State Machines

Four different state machines are present in the system to determine the connection state of an
MME and a UE. Two state machines for the communication with the E-UTRAN over the RRC
respectively S1AP protocol and two for the UE and MME over the NAS protocol.

The UE and the MME will both establish a connection to the E-UTRAN where both the UE
and MME can be in either EMM-IDLE or EMM-CONNECTED mode [26]. The UE and the
MME communicates with the E-UTRAN with separate interfaces. The UE uses radio communi-
cation to establish a connection to the E-UTRAN over the RRC layer in the protocol stack while
the MME uses the S1AP layer with a wired connection in the S1-MME interface. The mode will
shift from EMM-IDLE to EMM-CONNECTED when an RRC respectively S1AP connection has
been established. The mode will shift back when this connection is released.

The EMM part of NAS is built around two state machines which exist for every UE; one state
machine in the UE and one in the MME. The UE state machine starts in the state EMM-NULL
and needs to be in state EMM-REGISTERED to perform most EMM operations. The main
EMM states for which the UE keeps track of can be seen in Table 2.1 where EMM-REGISTERED
and EMM-DEREGISTERED have substates of their own, but these will not be presented in this
table. In order to get to EMM-REGISTERED an attach request to the network has to be
achieved. The attach procedure will establish an EMM context, containing information to keep
the connection alive.

The EMM state machine for the MME has only four main states which are stated in Table 2.1.
A simplified state machine with the most important states, for the understanding of this master
thesis report, and with the messages that change the states are shown in Figure 2.7. The MME
state machine will begin in the state EMM-DEREGISTERED where the UE is detached and
the MME have no EMM context. As stated previously, an attach procedure has to be achieved
in order to change the state to EMM-REGISTERED.

13

2. THEORY

UE MME

Attach Request

Attach Accept

Attach Complete

(a) Successful attach

UE MME

Attach Request

Attach Reject

(b) Unsuccessful attach

Figure 2.8: NAS attach procedure over logical S1 connection

The main function of the ESM sublayer is to provide support for EPS bearer context handling
for both the UE and the MME. It provides the means for activation, deactivation and modification
of EPS bearer contexts. ESM has one state machine for every bearer context and for both the
UE and the MME. These state machines in the UE and the MME have four respectively six
main states which can be seen in Table 2.2. The states indicate if a bearer is active, inactive, or
in a modification transaction.

2.2.4 Attach and Service Request

A UE that wants to use the EPS must announce its presence in the network. This is achieved
via a UE initiated attach procedure to the MME which starts with the UE sending an Attach
Request message. An illustration of the attach procedure can be seen in Figure 2.8. The MME
will handle the request and determine if an attach procedure to the network is permitted. A
couple of procedures have to be established in order for a UE to be successfully attached. The
subscriber is authenticated, a session to the SGW is created, bearers are established, and contexts
for the communication are set up. If any complication occurs during the attach procedure an
Attach Reject message will be returned to the UE which have to restart the attach procedure
to get access to the network. If successful, an Attach Accept message is returned from the
MME instead. The UE will confirm the attach with an Attach Complete message and enter the
EMM-REGISTERED state.

When the UE is in state EMM-REGISTERED and EMM-IDLE mode, no signaling connec-
tion is active and the only allowed messages to send are Attach Request, Detach Request, Tracking
Area Update Request, Service Request, and Extended Service Request. These are sent as initial
NAS messages by the eNodeB to setup a connection to the MME for the UE. When the initial
NAS message has been sent and an NAS message from the MME is received, the UE enters
EMM-CONNECTED mode. As mentioned earlier, one of the initial messages is Service Request
which is very commonly used when a UE wants to send signaling data to the network [26]. An
accepted Service Request message will be answered with a Service Accept, and a denied request
will be answered with a Service Reject.

2.3 Testing and Test Control Notation Version 3

This section will introduce the basic structure of the testing language TTCN-3 and the associative
entities for each interface as well as the test executable that uses the interfaces to communicate
with the system under test (SUT).

14

2.3. TESTING AND TEST CONTROL NOTATION VERSION 3

TTCN-3 Executable (TE)

Test Man-
agement

Component
Handling

Test Logger Codec

System Under Test (SUT)
System
Adaptor

Platform
Adaptor

Figure 2.9: TTCN-3 Test System

TTCN-3 is a standardized testing language and environment developed and maintained by
the European Telecommunications Standards Institute (ETSI) [29]. It is designed purely for
testing and specially for black-box testing. The TTCN-3 language has seven basic built-in types:
integer, float, boolean, bitstring, hexstring, octetstring, and charstring [30].
The types correspond to what the names are normally used for, with integer having integer
values and such. The types are also of no fixed size, with the ability to create a string type such as
bitstring with any length (e.g. 100 bits). There are also special types such as verdicttype
which is used to set a verdict of a test case (e.g. pass or fail). It is possible to define subtypes
to the built-in types and introduce restrictions to them, such as restricting a bitstring to a
length of four bits. This subtype can then be used in the same way as the other types.

The language also provides the possibility to define structured types [30]. A record structure
will define a new type with typed and named fields. When creating an instance of such a
structure, these fields have to be instantiated with the correct type of the field. The fields can
also be marked as optional and then omitted when creating the structure. A union structure
will also define a new type with typed and named fields. The difference compared to record is
that a union can only hold one value, which means that only one of the fields can be chosen.
There are several other structured types, such as set and enumerate.

In order to use the TTCN-3 language to test network protocols, the protocols are modeled
using the language types and structures. These models are based on the protocol specification or
standard, which states the different fields and length of the protocol messages. Such specifications
can be e.g. Request for Comments (RFC) for internet protocols or 3GPP standards for telecom
protocols. A test case is then created containing sequential ordered operations that should be
performed, such as creating a message using the models, sending and receiving messages to and
from an SUT respectively. The test cases combined with the models are compiled into a TTCN-3
executable (TE). A test system provides the TE with all necessary means for communication
between the TE and the SUT as well as the user of the test system and the TE. An overview of
the TTCN-3 test system is illustrated in Figure 2.9.

The TTCN-3 test system has two standardized interfaces: The TTCN-3 Control Interface [31]
and the TTCN-3 Runtime Interface [32]. The TTCN-3 Control Interface provides communication
from and to the TE for the test system user. It also defines modules for test distribution and
encoding/decoding of messages. The four modules defined in TCI are: test management, test
component handler, logging, and codecs. The TTCN-3 Runtime Interface has two modules that
define the communication between the TE and the SUT as well as the TE and the platform.

15

2. THEORY

The two modules in the TTCN-3 Runtime Interface are: SUT Adaptor and Platform Adaptor.

2.3.1 TTCN-3 Control Interface

The TTCN-3 Control Interface is responsible for test execution management, distribution of test
execution over different test devices, encoding/decoding of messages to and from the SUT, and
logging information of the test execution. These tasks are divided over four different entities:
Test Management, Component Handler, Test Logging, and Codecs.

The Test Management entity is responsible for all management of the test system. First, an
initialization of the test system is performed. When this is done the test execution is started
within the Test Management entity. The Test Management entity is also responsible for all
invocations of TTCN-3 modules, i.e. propagation of module parameters to the test execution.

The Component Handler entity makes it possible to distribute the test executor over several
nodes. It provides the means for communication for the distributed test system entities. By this,
synchronization of the distributed nodes can be established.

The Test Logging entity provides the information of the execution. It performs test event
logging and presentation of all events during execution. The log can contain information such as
which test component that have been created, what data was sent to the SUT and when, what
timers that have been started, stopped, or timed out etc.

The codecs are responsible for encoding and decoding the TTCN-3 values to and from the
communication data format respectively. This format is used in communication with the SUT
and often consist of transforming the data to and from binary strings. The codec for a certain
TTCN-3 type defines how the values should be represented in these binary strings, e.g. in what
order they should appear and the bit endianness.

2.3.2 TTCN-3 Runtime Interface

The TTCN-3 Runtime Interface handles all communication between the TE and the SUT. All
timers and external functions are defined and called within this interface. The TTCN-3 Run-
time Interface standard provides information about two entities: SUT Adaptor and Platform
Adaptor [32].

The SUT Adaptor implements the real communication link between the test executable and
the SUT, and forwards events to each end of the link. The SUT Adaptor takes the send or
receive requests from the TE and sends messages on the link or to the TE respectively.

The Platform Adaptor implements all external functions and timers. All external functions
that are called from the TE go through this interface. The Platform Adaptor takes care of all
interactions with the timers, such as starting, stopping, and reading.

2.3.3 TITAN: Test Execution Environment

TITAN is an Ericsson developed test compiler and executor for TTCN-3 test suites. TITAN
was initially developed during a Master of Science thesis at Ericsson in the beginning of year
2000 [33]. More functionality has been added since the first prototype and TITAN is now
a complete compiler and test execution environment for TTCN-3 test cases with support for
parallel distribution and ASN.1 modules [34].

TITAN uses C++ as an intermediate language before the compilation of an executable file.
TITAN takes TTCN-3 and ASN.1 modules as input to generate C++ code. The generated C++
is compiled together with a base library and test ports to a TE, in TITAN called Executable
Test Suite (ETS). The ETS contains all necessary means for test execution, including logging

16

2.4. ERLANG

capabilities, coding and decoding functionality and includes procedures for communication with
the SUT as well as the test system user. TITAN also provides a complete test environment for
configuration and execution of an ETS.

TITAN does not follow the TTCN-3 Runtime Interface and TTCN-3 Control Interface stan-
dards introduced by ETSI. In 2002-2003 when ETSI released the two standards, TITAN already
had a complete test system with its own proprietary interfaces [33]. The TITAN interfaces are
similar to those standardized by ETSI but not fully compliant for various reasons, such as effi-
ciency. An advantage with the TITAN SUT adapter is that a port instantiation only handles
one TTCN-3 communication port which corresponds to one protocol. In this way distribution
of messages of various protocols is solved by the interface, as opposed to the TTCN-3 Runtime
Interface where all messages will be handled by the same function of a single adapter.

TITAN has a “Negative testing mode” feature which gives the ability to write TTCN-3 test
cases where values in messages are overridden. This makes it possible to use fault injection in
the TTCN-3 environment. The values are statically assigned at compile time and are capable of
overriding arbitrary fields of a message.

2.4 Erlang

Erlang is an open source functional programming language, developed by Ericsson in 1986 [35].
It was developed for the telecom network to be able to handle a large amount of concurrent
processes. An Erlang process is implemented as a lightweight process where no shared memory
is used [36]. The independence of each process means that if a process crashes, the other processes
will not be affected. This approach is desired in a network with a high number of connected
entities. The philosophy of Erlang is to handle faults by letting a process crash and restart it.

S

S 1 2 3 . . . N

(a) Restart one strategy where process 2 crashes

S

S 1 2 3 . . . N

(b) Restart all strategy where process 2 crashes

Figure 2.10: Erlang supervisor tree restart strategies

A basic concept in Erlang is a supervision tree with two different processes: workers and
supervisors [37]. The worker is a process that executes some type of calculation, while the
supervisor is a process that monitors the worker. A supervisor can supervise both workers and
other supervisors, but a worker cannot have a child of its own. Two examples of Erlang supervisor
trees are illustrated in Figure 2.10. When a worker crashes, it is the supervisor’s responsibility
to restart it again. The supervisor can be configured to restart the worker that crashed or an
arbitrary number of process children depending on the system configuration. The supervisor
is configured with a restart strategy which defines the actions to take after a child crashes.
Examples of restart strategies are to only restart the crashed child (Figure 2.10a), restart all
children with a higher id than the crashed child, or restart all child processes (Figure 2.10b).

A maximum restart frequency is defined with two variables: MaxR and MaxT. If the number
of restarts exceeds MaxR during the time interval MaxT, then the supervisor will crash, including
crashing all its children, and the supervisor above will take appropriate actions according to its
restart strategy.

17

2. THEORY

The supervisor tree can be of different levels depending on system architecture and each
level is dependent on MaxR and MaxT values for the restart procedure. In this way, different
parts of a system can be restarted without affecting other parts of the tree. This method of
process handling is particularly effective in systems where one process handles one task, such as
a connection to a device, where a crash of a process will not affect other processes in the same
tree. However, frequent crashes in one part of the system may escalate to force restarts of correct
processes in other parts of the tree. The intention of escalation restarts is to prevent a situation
where a child process crashes repeatedly for the same reason. If child processes are crashing
repeatedly, the reason for the crashes is believed to be solvable by restarting a larger part of
the system. If this does not work, a greater part of the system is restarted until the problem is
solved.

2.5 Ericsson SGSN-MME

The Serving GPRS Support Node - Mobility Management Entity (SGSN-MME) developed by
Ericsson provides SGSN functionality for GSM (2G) and WCDMA (3G) network access and
MME functionality for LTE (4G) network access which includes the EPC network. A network
with a functional SGSN for GSM and WCDMA access can be upgraded to an SGSN-MME to
support triple 3GPP access (GSM, WCDMA, and LTE) with a simple software upgrade [38].
The SGSN-MME can also be configured with dual access for either GSM and WCDMA or
WCDMA and LTE according to the customers’ desires. Ericsson SGSN-MME offers scalability
by deploying a pooled configuration where one node supports 18 million subscribers and up to 64
nodes can be pooled in the same configuration which gives support for 1152 million subscribers.

2.5.1 Hardware

Ericsson SGSN-MME is held within a cabinet that can hold up to three magazines which each
contains various number of Plug-In Units (PIU), depending on the hardware configuration. The
PIUs are interconnected through the backplane of a magazine which provides dual redundant
power distribution and dual redundant Ethernet connectivity to all PIU slots. The latest hard-
ware (MkVIII) has three different PIUs:

• System Control Switch Board version 2 (SCXB2),

• Component Main Switch Board version 3 (CMXB3),

• Generic Ericsson Processor board version 3 (GEP3).

The SCXB2 handles Ethernet layer 2 and layer 3 for internal switching and external IP
interfaces. The CMXB3 handles Ethernet layer 2 switching for communication between the
magazines. The GEP3 can be configured to take different roles and is available in two different
versions, with or without storage media. The GEP3 with storage media takes the role as a File
Server Board (FSB). The GEP3 FSB is available with either a mechanical hard disk or a Solid
State Disk (SSD). A GEP3 without storage capabilities can take several roles:

• Application Processor (AP)

• Device Processor (DP)

• Node Control Board (NCB)

18

2.6. GSN TEST TOOL

The AP card handles traffic control activities such as mobility and session management and
high-level protocol processing. The AP card will handle connections to subscribers and internal
system activities such as recovery and distribution. The DP card will manage the internal
distribution of SCTP messages. The NCB provides central support and functions for the boards
in the magazine, such as hardware and software monitoring and distribution, and SGSN-MME
supervision.

A typical hardware setup for a magazine would be to have two SCXB2, CMXB3 and NCB
respectively. The remaining slots would either be AP boards, DP boards or FSBs depending on
the purpose of the hardware configuration.

2.5.2 Software

The SGSN-MME applications handling high-level protocols are largely implemented in the Erlang
programming language. As described earlier in Section 2.4, using a supervisor tree with workers is
recommended when designing software in Erlang and worker processes are supposed to crash upon
failure instead of recovering. The software design of the MME follows the Erlang philosophy with
supervisor trees, where every attached UE is handled by a worker process. Upon any unexpected
failure occurring while handling traffic from a user, the worker will crash which results in the
UE connection handled by that worker being dropped. This way, only that single UE is affected
by the failure while the other connected UEs are left unaffected working as usual.

The Erlang supervisor tree of the MME contains supervisors as nodes and static and dynamic
workers as leaves. Dynamically spawned worker processes (dynamic workers) are located at the
bottom of the supervisor tree structure. A typical assignment of a dynamic worker process would
be to handle a connection of a single UE. The process will be terminated either when the UE
disconnects from the network, or when an error occurs which causes it to crash.

2.6 GSN Test Tool

The GSN Test Tool (GTT) is an Ericsson specific test framework for testing SGSN-MME func-
tionality. The GTT framework has support for simulating all nodes which communicates with
the SGSN-MME and can be run towards a simulated or a real SGSN-MME node. Test cases
are written in GTT which is an Erlang based framework. A test case sends a message to the
SGSN-MME and verifies the correctness of the received answer. Verification of returned data
and observations of state changes in the SGSN-MME is used to distinguish the outcome of the
test case which could either be pass or fail.

The GTT framework runs on a simulated version of an SGSN-MME node were the communi-
cation links is replaced by a shared memory network. The shared memory network has support
for all interfaces to the node. The operating systems run on several virtual Linux and Solaris
machines. The applications used in the SGSN-MME are however the same as in a real node.

GTT is used for traffic verification and has state awareness of the SGSN-MME to find errors
in the system implementation at an early stage in the development process. It has support for
full test execution automation with integrated functionality for result and log presentation. The
logs will provide the designer with the information needed to find the source of the error.

2.7 Fuzzing

Fuzzing is a software testing technique where random or semi-random data is injected into an
application or system which is observed for faulty or unwanted behavior to distinguish the mes-

19

2. THEORY

sage that caused the fault [39]. Fuzzing is often used for security related issues such as finding
system implementation flaws to increase system robustness. A robust system is capable of han-
dling manipulated or random input data without disturbing legitimate system users. Systems
with a large number of users have demands on reliability and availability and have to be engi-
neered for robustness to withstand possible attacks, especially in a critical infrastructure such
as the telecom network. The biggest field of application of fuzzing is security related testing for
vulnerability and reliability issues to improve robustness.

2.7.1 History

Software testing with automatic random test case generation to stress the system implementation
dates back to 1970 when K. V. Hanford introduced the “syntax machine” [40]. The “syntax
machine” generated random test cases for any suitable programming language. The test cases
were syntactically correct, but the results they produced were unpredictable and uncheckable.
However, the number of test cases which could be generated by the “syntax machine” made it a
valuable tool for reliability testing.

The term “fuzzer” originates from the University of Wisconsin by Barton Miller in 1988 [41],
almost two decades later. It was one of the subjects which could be selected during a class project,
taught by Barton Miller, where the students where supposed to develop a basic command-line
fuzzer to test the robustness of Unix programs by sending randomly generated data in the
intention to make them crash. The developed class project fuzzer was able to generate a random
byte stream that was used as input to stdin via a pipe. The SUT was monitored to determine
when the execution terminated for each input stream. If an error had occurred the application
would generate a core file in the file system. If such file was found it was concluded that the
random input stream crashed the application [42].

2.7.2 Black- and White-Box Testing

Software testing of applications and systems implementation can be established with two different
approaches. Either the system is seen as a closed box, black-box, which given some input will
produce some output, or it can be seen as an open box, white-box, where the internal structure
is known and can be utilized to create test cases.

An advantage with black-box testing is that no internal structure or specific knowledge of
the system is generally required [43]. The developer though has to be aware of what the SUT
is supposed to achieve but exactly how this is done is not important. This is a commonly
used method for fuzzing because of its simplicity, but it might not be suitable in more complex
systems, such as where a state machine is present. The state machine may cause a big amount of
the fuzzed messages to be discarded and never reach the internal structure of the SUT that the
tester wants to test. This also implies that certain code coverage cannot be guaranteed because
the system is treated as a black-box. It will not know how the messages can be generated to
cover the parts that not yet have been tested.

In a more complex system, a white-box testing approach might be preferred if possible.
White-box testing utilizes information of the SUTs internal structure to generate messages [43].
The aim of white-box testing is to expand the attack surface by intentionally produce messages
that will hit certain paths in the source code. Paths that have been created by decisions based
functions such as if- or switch-statements that is input dependent. The fuzzer can be directed to
fuzz a specific part of the system by sending a message with certain static fields or a sequence of
legitimate messages to reach a wanted state before the malformed messages are sent. The tester
have to utilize the knowledge of the SUT to increase the efficiency of the fuzzer by not generating

20

2.7. FUZZING

messages that will be discarded or are already known to generate an erroneous behavior.

2.7.3 Mutation and Generation-based Fuzzing

There are no strict standards to follow when developing a fuzzer. As the authors point out
in [44], fuzzing has no precise rules and its efficiency depends on the creativity of the developer.
However, fuzzing can be divided into two distinct procedures [45]: mutation-based or generation-
based fuzzing.

Mutation-based fuzzing needs to extract valid messages of the targeting protocol to be able
to create fuzzed messages [45]. A mutation-based message can be seen in Figure 2.11, where
the original hex string has been mutated in four different byte fields. Malformed messages are
created from legitimate messages by applying various mutation rules. The rules are based on
the mutation property, such as adding, removing, substituting, or bit flipping of data, and the
data it should be applied on, such as protocol fields, sequences, bytes, or bits. The mutation
properties can be applied on an arbitrary number of data segments. The mutation rules can be
statically created or dynamically generated by random selection.

46 75 7A 7A 65 64 67 67 7F

46 75 7A 7A 69 6E 67 21 3FOriginal

Mutated

Figure 2.11: Mutation of message

Generation-based fuzzing builds malformed messages from scratch. To achieve this, protocol
specifications are needed. The messages are generated according to the types specified in the
specifications. An example can be seen in Figure 2.12 where a message has been generated from
a protocol specification. Some fields have to be statically assigned for communication means.
This can be checksums or other control fields that cause the system to discard them at arrival.
The aim of generation-based fuzzing is to generate semi-random messages where control fields are
statically set to not disturb communication and to randomly generate all other data according
to the protocol specifications.

STRING INTEGER BOOLEAN

“Testing” 12345 TRUE

Specifications

Generated

Figure 2.12: Generation of message

2.7.4 Fuzzing Techniques

What fuzzing technique to use for a specific SUT may vary depending on the knowledge and
complexity of the SUT. With no knowledge of the system, also known as black-box testing, a
random-based fuzzer may be suitable while in a more complex system an intelligent fuzzer, white-
box fuzzing, may have to be considered in order to reach deeper into the system implementation
before sending malformed messages. To describe the level of system awareness the terms “dumb”
and “intelligent” fuzzing are frequently used by several authors. Dumb fuzzing refers to a limited
awareness of the protocol and system implementation and a more intelligent fuzzer may have all,
or close to all, knowledge. A dumb fuzzer is easy to construct but inefficient while the intelligent
fuzzer is striving for a higher efficiency while having longer construction time. This section will

21

2. THEORY

describe different fuzzing techniques, starting with a dumb fuzzer and ending up with a more
intelligent fuzzing procedure.

A random-based fuzzer has no awareness, or limited awareness, of the message structure.
It is a “dumb” fuzzing method that uses a black-box testing approach often with a mutation-
based message generation. Random-based fuzzers often operate with functions such as replacing,
adding and removing bits or bytes in a legit message. One approach to implement a random-
fuzzer can be to listen to the network and catch a valid message sent to the SUT. One or several
functions named above are then applied to the message. The outcome is a malformed message
that is sent to the SUT which is monitored for unwanted behavior. This procedure is repeated
until erroneous behavior is detected. Though, due to lack of knowledge of the message structure,
random-based fuzzers may have problems fuzzing other messages than the first message in a
complex protocol where a sequence of messages has to be sent to reach a specific state of the
SUT.

A fuzzing technique which is more “intelligent” than the random-based fuzzer is a block-based
fuzzer. The idea of a block-based fuzzer is to break down the protocol into two different block
styles: a static block, that will remain the same in all fuzzed messages, and a variable block,
where the fuzzing will occur. The variable block may be tagged with different types such as
integer or string and is fuzzed according to the type.

A model-based fuzzer has knowledge of the protocol specification from which a model of the
protocol is generated and executed. It is often used with a white-box generation-based testing
method and is the most “intelligent” of the described fuzzing approaches. Complex interactions
with the SUT can be accomplished with greater code coverage which implies that fewer test cases
will cover a greater part of the implementation [46]. Different states can be reached before fuzzed
malformed messages are delivered to the SUT, thus increasing the possibility to find unwanted
system behaviors. By utilizing the protocol specifications, test cases can be targeted at certain
parts of the system. A model-based fuzzer is more complex than other fuzzing techniques, but
the time spent with design and implementation can decrease the execution time of the fuzzer
gaining a significant advantage if the fuzzer is frequently used.

22

Chapter 3

Related Work

Previous work related to fuzzing, telecom and the combination of the two are interesting to this
thesis. To show the importance of robustness in a telecom network, a series of attacks related
to telecom are presented. These attacks show that the telecom devices and networks have been
sensitive to attacks before, and probably still are. Many of the attacks also make use of fuzzing
to find vulnerabilities, which shows that this method is useful in this area as well.

Since telecom networks has often been seen as protected with its secrecy and regulations,
input from UEs could be regarded as more trusted than in other networks. This means that
malicious input from attackers was seen as impossible or unlikely. However, several open source
projects now show that the network is being tested with open tools freely available for anyone.
The LTE standard is much more open than the GSM standard was and therefore should open
implementations be easier without the need of reverse engineering. While we present a tool
which handles the GSM stack very well, we also see tendencies of the open source community
targeting LTE. With open tools for communicating with the network, an attacker can focus on
the actual attack and not on reverse engineering the network stack. It also means that untested
and uncertified tools that may behave incorrectly connect to the networks, making it even more
important to handle inconsistencies.

This thesis aims to design a robustness testing tool to proactively find vulnerabilities and
weaknesses before being exploited by a malicious user. The tool is focused on integrating with a
conformance test environment, and previous attempts to do this are presented here. The main
focus has been to investigate fuzzing within a TTCN-3 environment since it is a standardized
testing environment and very well used in the industry. There was also previous research in this
field that was very close to the goals of this thesis.

While presenting research, several fuzzing tools are also investigated. Both open source
variants with different specialties as well as commercial tools with support for telecom related
protocols. The tools investigated were preferably model-based fuzzers, since that was one of
the main aims of the thesis. Several differences between the investigated fuzzers exist and are
presented here.

3.1 Telecom Attacks

Recent studies [7, 8, 9, 10] points out the existence of vulnerabilities in the cellular network.
Some of the studies have put their focus on the SMS implementation, as the study of Mulliner
et al. [8].

23

3. RELATED WORK

Mulliner et al. make the use of fuzzing techniques in their paper [8] to generate, what they call,
an SMS of death. The aim of their paper is to find vulnerabilities in the SMS implementation with
an open source library for SMS generation written in Python. The equipment at hand was a GSM
base station connected to a laptop running the open source base station controller (OpenBSC)
configured as desired for the experiment, as well as a couple of mobile phones from the leading
telephone companies. Their methodology was as follows: generate a database of fuzzed SMS
messages, set up a communication channel between the cell phone and the base station, send
SMS message, and close the channel. The cell phone was monitored for crashes and the messages
that generated a crash were flagged as an invalid message. The authors found malformed SMSes
that disconnected the phone from the network and some even provoked a reboot of the phone,
showing that fuzzing is a valuable tool to find vulnerabilities in the SMS implementation of
numerous leading brands. By making use of the network automatically retransmitting SMSes
that wasn’t acknowledged by the phone because it crashed, a denial of service attack is taking
place on the phone. The authors question whether the telecom network will survive a large scale
attack, where 10, 000 phones are reconnecting at the same time.

The attack described above directly targets mobile phones, especially via SMS on GSM net-
works. Presented attacks on the network itself is not as common and attacks targeting LTE are
even rarer, probably because of it being too new and not yet widely implemented. The paper
“Non-Access-Stratum Request Attack in E-UTRAN” [47] by Yu and Wen examines vulnerabil-
ities in the LTE radio network E-UTRAN. It was found that IMSI numbers was transmitted
in plain text without confidentiality and integrity protection, all according to the standard [26].
Collecting IMSI numbers in plaintext could be used to emulate several UEs and launch an attack
from one device using multiple virtual UEs. With this technique, the MME assumes the mes-
sages are originating from multiple UEs and handles them accordingly. If an attack that requires
multiple messages to be sent while the message could only be sent once per device, this technique
could be used to send multiple messages from one device. Yo and Wen show that the network
can be stressed heavily by sending attach requests for many virtual UEs with collected IMSI
values. The network may become so overloaded that it cannot handle all messages, rendering
the attack a denial of service attack.

3.2 Telecom Tools

To send arbitrary messages from a UE in a network such as EPS or GSM, where a UE is called
Mobile Station (MS), necessary control over the radio stack of the hardware is needed. Typical
UEs are devices specialized in mobile communication such as mobile phones and tables, but also
hardware extensions to computers such as USB dongles for 3G or 4G internet connectivity. In
most cases, the radio stack is not presented directly to the user facing system on the device to
conform to the real time demands of the network and to isolate it from malicious uses. This
separate device is called a baseband and is usually a separate chip called a baseband processor
which communicates with the main operating system and transfers the interesting part of the
radio traffic such as payload containing voice, text or IP packets.

Several attempts on reverse engineering the baseband exist to get control of the radio traffic
sent and received. On top of this, several open source projects exists which have varying control of
the radio stack. Most notably is an Open Source Mobile Communications (Osmocom) project,
Osmocom Baseband (OsmocomBB) [11]. OsmocomBB is a GSM baseband implementation
making it possible to run your own GSM stack on a supported baseband processor. The project
has developed drivers for baseband processors on specific MSs and implemented the GSM protocol
stack from the MS side. OsmocomBB provides custom firmware for the supported baseband

24

3.3. RELATED FUZZING RESEARCH

processors which provide a proxy of the GSM L1 interface towards a host computer running other
OsmocomBB applications. One such application is the mobile application which implements
large parts of a regular GSM MS [48]. This can easily be used to send and receive arbitrary SMS
or MMS messages, establish voice calls and select cell to connect to. By implementing a new
application, or extending an existing, any arbitrary layer two message can be sent via the L1
proxy. At the time of writing, OsmocomBB has varied support of at least 10 different MSs [49].

While OsmocomBB targets GSM, there exist tools that targets LTE. Since most open source
development in this field relies on reverse engineering of equipment, research on LTE basebands
is going forward as such equipment is getting more popular. The Osmocom team has shown
interest in LTE, where one member has deployed his own LTE eNodeB [50]. P1 Security has
been testing USB LTE devices and had the possibility to dump the baseband firmware as well as
capturing LTE traffic from the device [51]. The OpenLTE project [52] aims to provide an open
source implementation of the 3GPP LTE protocols. The focus is on transmission and reception
of UE traffic and currently only supports handling and decoding LTE radio traffic. Compared to
OsmocomBB, OpenLTE has much less functionality and cannot replace an LTE baseband yet.

3.3 Related Fuzzing Research

Robustness testing and fuzzing has a long history as described in Section 2.7.1. Some research
has been made about integrating robustness testing in an existing testing framework, especially
conformance test environments since that makes it easier for model-based fuzzing. The previous
research presented here is using model-based fuzzing in TTCN-3 and shares a lot of goals of this
thesis. They all have a goal of making use of the protocol models defined in TTCN-3 to construct
messages with invalid data. However, they take different approaches of using the models and
they differ in going for mutation or generation-based fuzzing.

In one paper [53], the authors present an approach in TTCN-3 to automatically extract
the message structure from existing test data. The input syntax is then used to create invalid
messages with mutation according to an attack heuristic algorithm. These predefined algo-
rithms are type specific and cover common vulnerabilities such as buffer overflow patterns for
the charstring TTCN-3 type. The authors state that the idea of this paper is to automate
the process of fuzzing by using automatic construction of invalid messages, script generation for
message injection via reuse of existing conformance test cases and verdict determination from
the same conformance test. Since it is mutation-based, it is inherently dependent on valid test
case data to create invalid messages.

A case study was presented in the paper where the concept was applied on the application
layer control protocol Session Initiation Protocol (SIP) was used. Three SIP terminals were used
as SUTs and all of them experienced some kind of unwanted behavior during the execution.
They showed that the concept of using an automated approach to extract input syntax, generate
malformed messages, inject them to the SUT and determine a verdict can be used for testing
real world applications.

The DIAMONDS project [54] has a special focus on model-based fuzzing and presented [39]
an extension to the TTCN-3 language for fuzz generation capabilities. The extension introduces
a special fuzzing mechanism where a call to fuzz() could mutate or generate a value. The
presentation shows that such a call could generate a new value without providing an existing
value, if a suitable generator for this data type exists. The authors state that the generators
and mutators should be implemented by making use of already existing fuzzing tools, such as
Peach [55]. It is unclear if their extension could automatically generate used-defined models by
e.g. traversing a record and generating its field using a suitable generator, or if the tester

25

3. RELATED WORK

has to define a generator for this special type. A goal of the extension is to make the use of
fuzzing easy for existing TTCN-3 users. The DIAMONDS project has performed model-based
fuzz testing at Ericsson of the eNodeB on protocol layers which were not covered by any existing
tool [56]. The test found some faults and the authors concluded that it should be possible to
test new protocols with reasonable effort.

3.4 Fuzzing Tools

There are several fuzzing tools available, both commercial and freer versions. To motivate the
need of creating a new one, existing tools has to be researched to see if they match the require-
ments. Several tools presented here are model-based but often require the tester to write their
own models, although some tools come bundled with models for a set of protocols. This means
that most tools do not automatically support a new protocol. Some tools do support creating
models via reverse engineering, by providing it with captured network traffic.

The Peach Fuzzer [55] is a general open-source fuzzing tool with both mutation and generation
capabilities. Based on a user-defined model, it can generate messages both randomly and using
some commonly vulnerable values. For each protocol to fuzz with Peach, a model has to be
created. Creation of this can be a tedious act, since the effectiveness of the fuzzing will depend
on the detail of the model. Radamsa [57] is another general fuzzing tool, specialized in mutation-
based fuzzing. According to the authors, it is simple to setup and use. It contains several
mutation algorithms and it can be easily scripted. However, it only works on given sample
inputs, and it does not have any specific telecom support. Another well-known open source tool
is Sulley [58] which monitors network traffic and automatically modifies the traffic by mutating
and changing order of messages. The models of a protocol have to be provided in Python code,
which defines the fields of a message and whether it should be fuzzed or not.

Commercial model-based fuzzing tools also exist, which have some differences from the open
source tools. The most common difference is that they come bundled with many more protocol
models to perform fuzzing on. Codenomicon Defensics [5] is such a commercial model-based
fuzzing tool which contains over 200 protocol test suites of which 13 are telecom specific, such
as GTPv1 and Diameter [59]. However, there is currently no support for LTE application layer
protocols, such as S1AP or NAS. Codenomicon offers the Defensics Traffic Capture Fuzzer [60]
which performs fuzzing on protocol without preexisting models. It works by analyzing traffic
captures of said protocol to create an approximate model. This creates a model much quicker
than manual creation, but carries the same disadvantages as other mutation-based fuzzers. P1
Telecom Fuzzer [6] is another commercial fuzzing tool specifically targeting telecom networks.
It supports a wide range of protocols for GSM, CDMA, WCDMA and LTE with support for
some application layer protocols such as S1AP and NAS. Both Codenomicon Defensics and P1
Telecom Fuzzer provide protocol test suites, but neither provides functionality to adapt fuzzing
to a new protocol based on its specification. While Codenomicon offers fuzzing based on traffic
capture as described earlier, P1 Security state that a new protocol is modeled manually in one
to five days upon request.

26

Chapter 4

Design and Implementation

The design of the fuzzer consists of two parts: investigating and analyzing the existing test envi-
ronment, and dividing the fuzzer into components and deciding requirements of the components
based on the existing test environment. The first part is described in Section 4.1 where the two
existing test environments of the Ericsson SGSN-MME are described: TTCN-3 and GTT. The
second part is described in Section 4.2 where the fuzzer is divided into several components with
requirements to get it fully integrated with the environment.

4.1 Existing Test Environment

There exist two test environments at Ericsson for the SGSN-MME: TTCN-3 and GTT. Both
TTCN-3 and GTT is used for functional testing of the MME, but they have some differences.
A brief explanation on how they both are used is presented below with an evaluation on what
would fit the fuzzer best.

4.1.1 TTCN-3 Environment

TTCN-3 is used for black-box conformance testing and, primarily, only looks at messages that
go in and out from the test case to the SUT. The environment is based upon TITAN, described
in Section 2.3.3, and has functionality to simulate a complete EPC network where the different
nodes surrounding the MME (such as the SGW and HSS) can be implemented in TTCN-3. The
environment makes sure that the interfaces of the MME are mapped so that messages are routed
from the testing environment to the SUT and vice versa, to create a complete and isolated EPC
network.

Two different TTCN-3 testing frameworks exists for testing the SGSN-MME: FAST and
Inka. The FAST framework has a lot of functionality separated into different functions, which
combined can make a complete traffic flow test case, e.g. 1) attach a UE, 2) update tracking
area, 3) transfer to other MME, 4) detach. This makes it easy to write new test cases by making
use of the functionality that already exists, as well as adding the small parts not implemented.
Since it has a lot of functionality, it is quite large in size and could be hard to understand. Inka
on the other hand is a new framework, a lot smaller and without a lot of functionality. The focus
is instead to give the tester full control over the signaling, which leads to the requirements of
handling every message going in and out.

27

4. DESIGN AND IMPLEMENTATION

4.1.2 GTT Environment

GTT is an Ericsson internal test framework specifically for the SGSN-MME. It has many sim-
ilarities with TTCN-3 described in Section 4.1.1; it performs testing by sending messages and
verifying the received messages, as well as simulating the nodes around the SGSN-MME to build
a complete EPC network. However, GTT also performs white-box testing by reading various
variables, counters and gauges from the SUT to determine if the SUT is in an expected state.

The test cases are written in Erlang and it is fairly easy to write simple test cases. GTT
supports testing of all interfaces of the SGSN-MME. Due to its close connection to the SUT,
some messages are not generated and sent over the real interfaces as e.g. SCTP packets over
IP, but instead injected into the system and passing over some of the input message parsers in
the SUT. Therefore, it might be hard to generate messages that test the parsers. Though for
some interfaces and protocols the messages are sent over real links with separate encoders and
decoders for these messages, such as for the S1-MME interface which is described in Section 2.2.
At the time of evaluating the testing environments, it was hard to run GTT tests on a real node
and it was necessary to use simulated hardware. This might introduce false-positive test results
due to the simulated hardware not performing as real hardware would; for example the network
and routing might be different leading to messages taking different paths.

4.1.3 Evaluation

The environments were evaluated to make a decision whether to integrate fuzzing in TTCN-3
or GTT. The key advantages and disadvantages found are summarized and presented below for
both TTCN-3 and GTT.

TTCN-3 advantages

• Full protocol specification models

• Negative testing functionality available in
TITAN

• Traffic flow functionality available in FAST

• Fuzzing with TTCN-3 is being researched,
even inside Ericsson

• External C++ code can be integrated with
TITAN generated C++ code

GTT advantages

• Easy to use

• Supports almost all interfaces

• Separate encoder and decoder exists for
S1-MME interface

• Any Erlang code can be integrated with
test suite

TTCN-3 disadvantages

• Negative testing in TITAN is not fully ex-
plored at Ericsson

• Need to deal with many signals with Inka,
no traffic flow and not in parallel mode

• FAST might be hard to understand due to
its large size

GTT disadvantages

• Shared memory for communication

• Need encoder and decoder for protocols to
generate messages

• May return false-positives due to simula-
tion

• Difficult to run with real hardware

28

4.2. DESIGN REQUIREMENTS

A unanimous decision was made together with experts in the respective testing framework.
TTCN-3, specifically with TITAN, turned out to be the preferred testing language for model-
based fuzzing due to having full protocol specifications that already are modeled in the language.
The simplicity to create external C++ code to integrate with the generated TITAN code and
the fact that fuzzing is being researched inside Ericsson also made a big impact in the choice of
testing framework. Too much work would have to be done outside the scope of this thesis to be
able to use fuzzing within GTT. This was the main argument for the decision to choose TTCN-3
as the testing framework to implement the fuzzer in. In order to reuse as much functionality
as possible about the protocols, the FAST framework was further selected. It was seen as more
supported and while it is of large size, all parts do not need to be investigated nor used. Inka
seemed too complicated with the signal handling, which would make fuzzing more difficult.

4.2 Design Requirements

The aim was to integrate a model-based fuzzer with an existing testing environment, which after
the evaluation presented in the previous section led to the choice of integrating with TTCN-3
and TITAN. While there was some negative testing functionality in TITAN, it was limited to
override fields with constant values. These constant values had to be provided at compile-time,
which was seen as an impossible task for a fuzzer due to the amount of combinations that a
fuzzer would generate. This also led to the need of being provided a message in which some
fields could be overridden, which would limit the amount of fuzzed messages to the amount of
provided messages.

A brief introduction to the TTCN-3 test environment used at Ericsson for conformance testing
and the requirements that has to be fulfilled before fuzzing can be applied will be described in
the following subsections.

4.2.1 Conformance Test Environment

The existing environment for functional and conformance testing can be seen in Figure 4.1,
which illustrates the main components of the test environment. TITAN takes as input a test
suite consisting of a set of TTCN-3 modules with models and test cases, and ASN.1 modules [34].
It then parses and analyses the input modules and generates C++ code. The C++ code for the
modules are then compiled to an ETS together with external C++ code such as test ports and
the base library. Test ports used by the ETS are defined in C++ and are a realization of TTCN-3
test ports [33]. The test port creates the bridge between the ETS and the SUT for external
communication. The base library consists of C++ classes which defines the basic TTCN-3 data
types and built-in functions such as timers, ports, test components and verdict handling. Also
included in the base library are necessary functions to run the ETS which comprises configuration
routines and logging procedures.

The generated ETS contains all necessary functionality for setting up the execution of the
test. This includes encoding and decoding of messages, logging and SUT communication. During
execution, messages will be sent to the SUT which will respond accordingly. Each test case will
be handled separately and a restart of the SUT will be established if a test case caused any error
to not affect the next test case. At the end of the execution run a summary is presented of the
executed test cases. At this point, appropriate actions can be taken by the tester according to
the test case verdict (pass or fail).

29

4. DESIGN AND IMPLEMENTATION

SUT
Executable
Test Suite

C++
Compiler

TTCN-3
Compiler

TITAN

TTCN-3
Input

Modules

External
C++ Code

messages

Figure 4.1: Conformance test environment

4.2.2 Fuzzing Test Environment

To integrate fuzzing in the conformance test environment, the environment needs to be extended
with new functionality. The proposed extension components will be described below, and an
illustration of the extended environment can be seen in Figure 4.2.

The existing functionality for negative testing only allowed constant values provided at
compile-time. A test case would have to be set up for each fuzzed message which would be
time consuming and not very efficient. Instead the fuzzed messages have to be dynamically gen-
erated at run-time. To generate messages at run-time, the TTCN-3 models have to be extracted
at compile-time to have necessary information available at run-time. The models will be used
as input to a fuzzing engine which has the functionality to generate and populate the extracted
models.

At last, an observer has to be designed to distinguish if the SUT could handle the malformed
message correctly. The observer will monitor specified properties of the SUT and will make
a decision based on these if the fuzzed message caused any problems. The observer will give
feedback to the ETS which can react accordingly, e.g. save the message that caused the problem
together with useful information such as crash logs.

4.2.3 Model Extraction

To use model-based fuzzing, the models of the protocol need to be extracted. When testing
protocols in TTCN-3, the protocol are modeled in detail using TTCN-3 data types and structures.
As described earlier, the fuzzer needs to have the models at compile-time to have all the required
information available at run-time.

The model extractor component has the responsibility of extracting the models from the
TTCN-3 files to a suitable format for the fuzzing engine. To get good test coverage, all types
and structures in a model need to be extracted. In order to create a generation-based fuzzer, the
extractor should not be dependent on existing populated models as mutation-based fuzzers are.
Instead, all necessary information should exist to build a message from scratch. To summarize,

30

4.2. DESIGN REQUIREMENTS

SUT
Executable
Test Suite

C++
Compiler

TTCN-3
Compiler

TITAN

TTCN-3
Input

Modules

Model
extraction

Fuzzing
Engine

Observer

External
C++ Code

C++

messages

events

feedback

Existing

New

Figure 4.2: Extended test environment with fuzzing components

the requirements for the model extractor were the following:

1. extract all subtypes defined,

2. extract all structure types like: record and union,

3. extract optionality of fields in structures, and

4. independent of existing populated models.

4.2.4 Fuzzing Engine

To make use of the models in fuzzing, the models need to be populated with data to create an
instance of the model. It is assumed that the model extractor provides the fuzzing engine with
the models in a suitable format containing all necessary information. The fuzzing engine then
needs to have the ability to create instances of all TTCN-3 types, both built-in and extracted
subtypes. The requirement for this generation is for simplicity only set to generate random
values. The fuzzing engine should also be able to create instances of structured types, filling the
fields with generated values of correct types.

Another set of requirements of the fuzzing engine covers the ability to control the randomness
in some way. One such requirement is being able to easily reproduce generated messages. To
do this, the random generation needs to depend on a seed than can be set before generation
where the same seed will lead to the same generation. Another required feature is the ability to
preserve certain field from randomization, such as fields that the tester for some reason wants to
be statically set. One typical example of this is fields containing some authentication information,
where invalid data may result in the message being thrown away by the SUT due to authentication
failure.

31

4. DESIGN AND IMPLEMENTATION

1 module Example
2 {
3 type bitstring BIT4 length(4);
4 type hexstring HEX2 length(2);
5 type record MSG
6 {
7 BIT4 fourBitField,
8 HEX2 twoHex,
9 integer number optional

10 };
11 }

Figure 4.3: Example TTCN-3 module with type definitions

In order to get an integration with the TTCN-3 environment, the fuzzer needs to be used
from within TTCN-3. To do this, the functionality of the fuzzing engine needs to be provided
to the TTCN-3 environment and not be a standalone tool.

To summarize, the requirements for the fuzzing engine were to:

1. generate random value for any built-in TTCN-3 type: integer, bitstring, . . . ,

2. generate random value for any extracted type, including structures,

3. preserve certain values from randomness, such as authentication fields,

4. have reproducible results by setting seed, and

5. be usable from inside TTCN-3.

4.2.5 Observer

While running functional black-box tests, the verdict of the test is often determined by comparing
the messages received from the SUT to some expected value. In negative testing such as fuzz
testing, no particular response is expected. Instead, some kind of error condition within the SUT
is researched. A black-box approach would be to validate if proper actions are still possible to
perform, but that will only determine if the SUT is still available. To determine if some internal
fault has occurred that is not visible from the outside, a white-box approach is needed that uses
information from within the SUT. The observer is an white-box approach which monitors the
system while performing the fuzz testing to figure out if there has been some error.

However, the observer is dependent on the SUT, which means that it is impossible to create
a generic monitor which covers all SUTs. Therefore, the monitor part was not designed nor
implemented generically but only with the requirement that it should provide useful feedback
from the SUT to the fuzzing test case.

4.3 Implementation

To fulfill the requirements described in Section 4.2, some implementation choices were made.
One of the delimitations of the thesis (see Section 1.2) was to either integrate an existing fuzzing
engine or to develop one from scratch. With the requirements fully stated in the design section,

32

4.3. IMPLEMENTATION

Example.MSG

BIT4

bitstring

4 bits

HEX2

hexstring

8 bits

integer

optional

Structure

Subtype

Built-in

Figure 4.4: Extracted model tree of MSG structure in Example module

several open source fuzzing engines, e.g. Peach [55], fulfilled most of the requirements. However,
none of them had the possibility to integrate with TTCN-3 without heavy rewriting since they
were constructed as standalone tools. Also due to licensing issues, integration was not possible
for all fuzzing engines. Therefore, a simple fuzzing engine was developed entirely for the fuzzer,
which may lack features that existing fuzzing engines have.

Since the choice of TITAN was made, the fuzzer’s components were implemented in C++ out
of convenience. TITAN allows external C++ code to be used when compiling the ETS, which
makes it easy to integrate the fuzzer with the compiler. Since the goal was to integrate the
fuzzer with the existing environment, an Application Programming Interface (API) to use the
fuzzer from TTCN-3 was developed to create a complete integration. The implementation of the
components described in Section 4.2 and the fuzzing API are described below.

4.3.1 Model Extraction

The TTCN-3 files containing message structures has to be parsed for the models to be extracted.
Since TITAN already parses the files to generate C++ code it is unnecessary to create a separate
TTCN-3 parser. Instead, the generated C++ code was statically analyzed at compile time to
extract the models. The TTCN-3 models consist of structure types and subtypes.

As described in Section 2.3, there are several built-in types in TTCN-3 and users can define
subtypes of these with restrictions on its length or value. For example, a subtype of bitstring
may have a length restriction of exactly four bits, or a subtype of integer may have a value
restriction of positive values up to 255.

An example of a TTCN-3 model is illustrated in Figure 4.3. Two subtypes are defined in
the example, both with a length restriction. The first is a bitstring named BIT4 with a
length restriction of four bits. The second subtype is a hexstring named HEX2 with a length
restriction of two hexadecimal digits, which is eight bits. A record, which defines the message
structure of this illustration, named MSG can be seen on line 5. The user defined subtypes BIT4
and HEX2 together with an optional field, of type integer, form the field types of MSG.

When extracting the message structure, the model extractor builds a tree with a record
structure as the root. A tree of the example module presented earlier is illustrated in Figure 4.4
with the message MSG of module Example as the root. The Example.MSG has a weighted
branch to each type defined in MSG which states if the field is optional or not. If a node is a
subtype it will have a branch to a leaf with a length restriction of the specified built-in type.
The tree structure can also have nested types with a record within another record but the
leaves will always be a built-in TTCN-3 type.

33

4. DESIGN AND IMPLEMENTATION

4.3.2 Fuzzing Engine

The generation of data takes place in the fuzzing engine where generators for the extracted
subtypes and structures are created at compile-time from the extracted trees. Together with
generators for the built-in TTCN-3 types, this is returned back as C++ code to the TITAN
compiler which includes it in the ETS.

Generation of structures is made by traversing the model tree and generating values for
each of the leaf nodes. This way a completely generated structure with all fields filled will be
produced. If the branch marks the field as optional, a random boolean value will decide if the field
is generated or omitted. All structure fields have names, and the tester may choose to override
certain fields to preserve them from randomization. When generating a field in a structure, the
name combined with the type of the field is looked up in an override table. If a value exists
in the table, this value is used instead of generating a new one. This can be useful to preserve
values from testing, such as identification or authentication fields. The union and enum types
will be generated by choosing one possible alternative at random.

The generators for the subtypes also traverse the extracted tree, with the node pointing to a
built-in type to be generated. The generator for this type is called with any requirements stated
in the branch to the leaf. The result of this generation is returned as the result of the subtype
generation.

The built-in types are generated by creating a number of random bits. All built-in type
generators require a size parameter, indicating how many bits to generate. If a charstring
with 12 characters is to be generated, the generator produces 96 random bits which are used
to create a charstring. The same procedure applies for the other built-in types, such as
generating 32 random bits for a 32-bit integer. The random bits returned are based on a
random seed that can be set at any time. This way, the same results can be reproduced at any
time given the same seed.

4.3.3 Fuzzing API

To use the fuzzer, glue code between the TTCN-3 code and the C++ code is generated. This
glue code exports the generator functions from C++ to TTCN-3. To generate the glue code,
a generator is called with the modules that the fuzzer should handle as input. The glue code
contains functions that are common to the fuzzer and the specific input modules. The glue code
consists of two parts, one generated TTCN-3 file and one generated C++ file.

Using the module Example in Figure 4.3 as input for the fuzzing glue generator, the TTCN-3
module with exported functions seen in Figure 4.5 will be produced. The functions on lines 9
to 15 provide the functionality of overriding certain values in a record. A function call to
fuzz_override_INTEGER("number", 4) will make sure that later generated structures
that contain a field named number have the value 4. This also applies to subtypes of the native
types, so any subtype of integer called number would have the value 4.

The functions on lines 17 to 23 generate new values with the type according to its name.
All functions takes an integer value bits ≥ 0 that determine how many bits that should
be generated, except fuzz_gen_BOOLEAN() which is always a single bit. A function call to
fuzz_gen_INTEGER(n) would generate an integer m, −2n−1 ≤ m ≤ 2n−1. Internally in the
fuzzer, the least significant n bits are extracted from the generated bits. The n:th bit is inter-
preted as a signed bit, where 0 is positive and 1 is negative. Calling fuzz_gen_BITSTRING(4)
would generate a random string of four bits, e.g. ’0110’B expressed in TTCN-3. To get a ran-
dom number of bits, the argument bits could be the return value of fuzz_gen_INTEGER. For
example, fuzz_gen_BITSTRING(fuzz_gen_INTEGER(4) + 8) would produce a string of
n bits, 1 ≤ n ≤ 15.

34

4.3. IMPLEMENTATION

1 module fuzzGlue
2 {
3 import from Example all;
4 // Built-in functions
5 external function fuzz_init();
6 external function fuzz_end();
7 external function fuzz_set_seed(integer seed);
8 // Overrides for native types
9 external function fuzz_override_BOOLEAN

(charstring name, boolean val);
10 external function fuzz_override_INTEGER

(charstring name, integer val);
11 external function fuzz_override_FLOAT

(charstring name, float val);
12 external function fuzz_override_CHARSTRING

(charstring name, charstring val);
13 external function fuzz_override_BITSTRING

(charstring name, bitstring val);
14 external function fuzz_override_HEXSTRING

(charstring name, hexstring val);
15 external function fuzz_override_OCTETSTRING

(charstring name, octetstring val);
16 // Generators for native types
17 external function fuzz_gen_BOOLEAN()

return boolean;
18 external function fuzz_gen_INTEGER(integer bits)

return integer;
19 external function fuzz_gen_FLOAT(integer bits)

return float;
20 external function fuzz_gen_CHARSTRING(integer bits)

return charstring;
21 external function fuzz_gen_BITSTRING(integer bits)

return bitstring;
22 external function fuzz_gen_HEXSTRING(integer bits)

return hexstring;
23 external function fuzz_gen_OCTETSTRING(integer bits)

return octetstring;
24 // Generators for Example
25 external function fuzz_gen_Example_BIT4() return Example.BIT4;
26 external function fuzz_gen_Example_HEX1() return Example.HEX1;
27 external function fuzz_gen_Example_MSG() return Example.MSG;
28 }

Figure 4.5: TTCN-3 glue code for Example module

35

4. DESIGN AND IMPLEMENTATION

The functions on lines 25 to 27 are specific for the Example module. Note that these
functions do not take any arguments such as number of bits, because the types are defined with
length specifications. Calling fuzz_gen_Example_BIT4() would generate a correct BIT4
value which is a bitstring with length of four bits. Calling fuzz_gen_Example_MSG() would
generate a MSG record value. All fields inside the record will be generated; a generated BIT4 for
the fourBitField field, a generated HEX2 for the twoHex field and a generated integer for
the number field. Since the number field is optional, a random boolean value will decide if it is
filled with an integer value or omit. Since the number field also is of type integer, and no
subtype with length restriction, a default bit length of 32 bits will be used by the generator.

1 module ExampleTesting
2 {
3 from Example import all;
4 from fuzzGlue import all;
5 // Port definition
6 type port ExamplePort message
7 {
8 inout MSG
9 };

10 testcase fuzzing()
11 {
12 fuzzInit();
13 port ExamplePort sutPort;
14 // ... connect sutPort ...
15 var MSG fuzzed_message := fuzz_gen_Example_MSG();
16 sutPort.send(fuzzed_message);
17 // ... evaluate ...
18 }
19 }

Figure 4.6: Example TTCN-3 test case using fuzzing functions

An example fuzzing test case that uses the exported generators may look like the one in
Figure 4.6. The module ExampleTesting has a port to an SUT that communicates with the
MSG type as the protocol. In the test case fuzzing, the fuzzing engine is initialized on line 12
which is required prior to any other fuzzing function call. A MSG message is then randomly
generated by the fuzzing engine on line 15 and sent on line 16 to the SUT. After the message
has been sent, the tester may for example evaluate responses from the SUT or use an observer
to get information about how the SUT reacted to this random message.

36

Chapter 5

Case Study: NAS on Ericsson
MME

The fuzzer was tested on the NAS protocol [26], described further in Section 2.2. The experiment
on NAS was performed in several steps along the development of the fuzzer. We selected NAS
as a case study since previous research has shown that most attacks originate from end-user
equipment, as presented previously in Section 3.1. NAS directly connects the UE with the
MME, and the MME is a critical network element in EPS. Through this connection, the MME
may accept potentially untrusted input directly from UEs. In addition, NAS is a relatively simple
protocol that has a fairly low number of message types and the majority of the protocol fields
consist of bit strings. This means that fuzz testing can easily get good coverage due to the low
number of different types to test. NAS is also already used in current conformance testing at
Ericsson. Thus, the protocol is already modeled in detail in TTCN-3 and a test framework for
functional testing exists.

The development of the case study was divided into three phases. The goal of the first phase
was to make sure that the fuzzer could generate NAS messages and that these could be sent.
This was tested during development of the fuzzer to make sure that the fuzzer could handle the
NAS TTCN-3 models. When the fuzzer got stable enough to generate NAS messages properly,
a test case to send generated messages and receive answers was developed. The second phase
extended the test case with the observer component to actually find possible errors occurring.
When the test case could find errors and return the messages causing errors, the third and last
phase was entered. This phase evaluated the possibility of using the fuzzer to create a larger
impact than the errors that was found in the second phase, such as creating a denial of service
attack.

5.1 Test Setup

The Ericsson SGSN-MME is heavily tested with TTCN-3, and this is the case with the NAS
protocol stack. NAS is modeled in TTCN-3 and covers every message type and field that is valid
in NAS, according to its standard [26]. In practice, this is done by having a base NAS structure
called PDU_NAS_EPS. This structure contains the header common for both ESM and EMM as
described in Section 2.2.1 with a Protocol Discriminator field. The other field is a union which
states if the message is an ESM or EMM message. An EMM message will contain a Security
Header Type and an ESM message will contain an EPS Bearer Identity. Both EMM and ESM

37

5. CASE STUDY: NAS ON ERICSSON MME

have their own union field which states what message type the data consists of. The actual data
is defined in TTCN-3 as their own record.

When the fuzzer is provided the NAS TTCN-3 module as input, the models are extracted
as described in Section 4.3.1. Since all message types and fields in the NAS module are defined
with TTCN-3 types, all possible variations of NAS messages are possible to generate with the
fuzzer. The glue code generated, as described in Section 4.3.3, will contain functions to generate
a specific message as well as a function to generate a complete PDU_NAS_EPS message with a
randomly chosen message type.

To test the Ericsson SGSN-MME NAS stack, generated messages has to be sent to the SUT.
The conformance test framework FAST, as described in Section 4.1, provides functionality to
send and receive messages as a UE and an eNodeB. This framework is used to simulate the
needed components around the MME, such as the SGW and HSS, as well as to simulate a UE
and an eNodeB. Generated NAS messages can then be sent with the sending functionality of
FAST.

5.1.1 State Awareness

To get better results, a certain state of the UE was wanted before sending messages. This method
would more likely be able to find system implementation faults than simply sending messages
without any prerequisites. Both the EMM and ESM protocol are built uppon state machines.
The UE and the MME both have one EMM state machine, and one ESM state machine per
bearer context. The state machines of the protocols are described further in Section 2.2. To get
as many messages accepted as possible, the first step is to get the UE recognized by the MME
by attaching it. Therefore, this experiment is focusing on the EMM state machine, since this
machine is responsible for the attachment and detachment of the UE.

A simplified diagram over the EMM state machine for the MME can be seen in Figure 2.7.
The main states are EMM-REGISTERED and EMM-DEREGISTERED, which describes if the
UE is attached or detached respectively. The UE can also be in either EMM-IDLE or EMM-
CONNECTED mode, which represents if there is an NAS signaling connection between the UE
and the MME, regardless of the EMM state. According to the NAS standard [26], when the
UE is in EMM-IDLE mode it is only allowed to send initial NAS messages that can be used to
go from EMM-IDLE to EMM-CONNECTED mode. In EMM-CONNECTED mode however,
several more messages are allowed to be sent and received by the UE, depending on the EMM
state. The most common signaling is made in EMM-REGISTERED, which would mean that the
combination of EMM-REGISTERED state with EMM-CONNECTED mode is the best choice
for sending fuzzed messages.

To get our simulated UE attached in the EMM-REGISTERED state, the attach sequence is
performed as is described in Section 2.2.4. With the use of the existing test framework FAST,
the attach sequence is already implemented and can be reused easily by simply calling a function.
This function will perform the attach sequence and put the UE in EMM-REGISTERED state
and EMM-IDLE mode. To get to EMM-CONNECTED mode, a Service Request is sent and
upon arrival of a Service Accept message the transition to EMM-CONNECTED mode is made.
The functionality of the FAST framework to send messages is used both for sending the Service
Request and the fuzzed messages. To know what EMM state and mode the MME believes the
UE to be in after sending the message, the responses has to be handled. A receive window of 200
milliseconds after sending handles some specific messages, such as a Detach Request to the UE
or an S1AP Context Release sent to the eNodeB. By handling some of these specific messages,
enough is known to conclude if the UE is still in the wanted EMM-REGISTERED state and
EMM-CONNECTED mode.

38

5.2. OBSERVER IMPLEMENTATION

5.1.2 Encryption

During the attach procedure, certain security functions are also performed. This includes setting
up ciphering keys between the UE and the MME. These keys are later used to encrypt messages
transferred between the UE and the MME. Both the MME and the UE will, according to the
NAS standard [26], dismiss all encrypted messages that cannot be decrypted without errors.
Errors include using other keys than negotiated and invalid message authentication codes. As
soon as ciphering keys are set up, NAS messages are supposed to be encrypted and rejected if
they are not.

For the fuzzer, encryption becomes as important as entering states. The purpose of entering a
certain state before sending generated messages was to get as many messages handled by the SUT
as possible. Since the standard states that only encrypted messages are allowed after setting up
ciphering keys, the fuzzer need to be aware of these to encrypt the generated messages. Without
encryption, the SUT will only be tested of its ability to discard unencrypted messages. With
encryption, the SUT will decrypt the generated message properly and handle it. By using the
FAST framework for sending messages, functionality for handling ciphering keys, encryption and
decryption of messages is provided in the sending functionality.

5.2 Observer Implementation

As described in Section 4.2.5 an observer is needed to monitor the SUT for faults. To construct an
observer, implementation specific information about the SUT is required to get useful feedback.
The software design of the SUT is described in Section 2.5.2, and based on this it was deemed
to be very interesting to look for Erlang worker crashes. To monitor Erlang crashes on the SUT,
the observer needs to get enough information to conclude that a crash has occurred. The first
try of implementing this was to monitor the crash log files, but it turned out that this log file was
not written to instantaneously but delayed and crash reports were grouped together if they were
similar. Instead, the second try consisted of checking a crash counter to get the total number of
crashes that has occurred. The crash counter is an integer value that increases for every Erlang
crash, regardless of the cause or impact of the crash. By polling the crash counter on demand,
the observer could conclude if and how many crashes has occurred since last check. Since the
environment is completely isolated, it is only the fuzzing test that can affect the SUT and the
crash counter.

When implementing the observer, it was found that polling the crash counter was quite time
consuming. The test case sends messages every 200 milliseconds, and a crash counter poll take
approximately 1 second. If the crash counter is checked after every message, the throughput goes
down to 50 messages per minute from 300 messages per minute without the check. To increase
the throughput while checking the counter, a bulk of messages is sent and the crash counter is
checked before and after sending. If the crash counter has increased, a crash has occurred and
a binary search on the sent messages will find the message that caused the crash. To divide the
list in even parts for binary search, the message list has to be of length 2X . By using X = 4, the
counter is checked after 16 messages and the throughput is instead approximately 228 messages
per minute.

The test case with an observer is described in pseudo-code in Figure 5.1. The test case consists
of an infinite loop, using generated NAS messages from the fuzzer on line 4, sends them using a
helper function on line 5, stores them in a list on line 6, and finds the messages causing crashes
on lines 7 - 13 as soon as the number of messages sent are 2X . The function SendAndHandle,
on lines 14 - 29, takes care of being in a wanted EMM state and mode before sending a message.
It also handles incoming messages after sending m, to conclude what EMM state and mode the

39

5. CASE STUDY: NAS ON ERICSSON MME

UE is in. The wanted EMM state EMM-REGISTERED is reached by trying to attach if the UE
is in any other state, see line 16. The wanted EMM mode EMM-CONNECTED is reached by
sending a Service Request when in the correct state, see line 19. When this criterion is met, the
message is sent on line 28 and incoming messages are handled by calling HandleIncoming on
line 29.

The procedure for finding sequences of messages causing crashes is described in pseudo-code
in Figure 5.2. The reproduction function takes as argument the expected number of crashes, W ,
which initially is the increase of the crash counter value, and the list of messages M . It starts by
splitting the list of messages into two lists, M1 and M2, and sends all the messages in them using
the helper function described earlier, counting the number of crashes created by each of the lists,
see lines 6 - 14. If a crash was produced by the first part, this list is used as input to the function
recursively with the measured expected number of crashes, see lines 16 - 19. The same procedure
happens for the second part as well, see lines 20 - 23. The result from the both recursive calls is
stored in the list S which will be a list of smallest possible sequences of messages causing a crash.
If the two lists from the splits together were unable to create the expected number of crashes,
this implies that some crashes were not reproduced due to splitting the list. If this happens, the
input list is also added to the list S on lines 24 - 26. The list S is in the end returned on line 27.

5.3 Large Scale Attack

To further investigate the robustness of the SUT, test cases that make use of the information
gathered by fuzzing to create a large-scale attack were created. The idea of creating a large-scale
attack was to use the fuzzing test case described in Section 5.2 to get find a message which will
cause a process crash, and exploit the worker crash escalation policies. By creating multiple
worker crashes within a certain time slot, not only the workers will restart but the supervisors as
well. Going further, when enough supervisors restart at one level, their supervisors will restart,
and so on. The aim of the attack is to get as high up in the supervisor tree as possible, hopefully
high enough to disconnect all attached UEs rendering the attack a full scale denial of service
attack.

The workers are identified in Section 2.5.2 as dynamic worker processes representing an
attached UE. Therefore, to create several worker crashes in a time period, several UEs have to
send the message which caused a crash. While this could be done by a single UE repeating the
process of attaching and sending the message, the attach phase takes too much time to complete
to be able to send enough messages. This leads to the requirement of having multiple UEs
attached where each of them sends the message.

One problem is to find out how many UEs that are needed to cause a crash. The solution
depends on two things:

1. how fast the complete attack process takes for one UE, and

2. how many crashes that are needed to trigger an escalation.

The first factor is solved by running the test and measuring how long time an attack process
takes when having different numbers of UEs attached. To solve the second factor we have to
investigate the escalation policy of the system, which could be almost impossible without access
to the system, its internal documentation and the source code.

If a message which could provoke a static worker crash was found, the escalation procedure
would be rather simple to trigger due to the direct access to a supervisor restart. However, the
generated messages, which have tested the system implementation so far, were not able to create
a static worker crash and the large scale attack would have to be performed with an escalation

40

5.3. LARGE SCALE ATTACK

External: send(n): FAST send function, sends NAS message n, encrypted if needed
External: receive(): returns the received NAS message n
External: GenerateNAS(): returns a generated NAS message n
External: NASType(n): returns the NAS message type t
External: crashCounter(): returns an integer number of crashes
External: AttachProcedure(): FAST attach sequence, modifies global EMM state Es

and EMM mode Em

External: HandleIncoming(t): handles incoming messages for t milliseconds, modifies
global EMM state Es and EMM mode Em

Global: Es: current EMM state, initially EMM-DEREGISTERED
Global: Em: current EMM mode, initially EMM-IDLE
Local: M : list of messages sent, initially ∅
Local: F : list of found faulty messages, initially ∅
Local: C: saved crash counter value
Local: X: denoting the 2X number of messages sent before searching for errors, set to 4
Local: Z: denoting the time to wait for receving messages, in milliseconds, set to 200

1 Function TestCaseObserver() begin
2 C ← crashCounter()
3 while true do
4 g ← GenerateNAS()
5 SendAndHandle(g)
6 M := M ∪ {g}
7 if |M | = 2X then
8 C ′ ← crashCounter()
9 if C ′ > C then

10 f ← FindError((C’ - C), M)
11 F := F ∪ {f}
12 C := C ′

13 M := ∅

14 Function SendAndHandle(m) begin
15 if Es 6= EMM-REGISTERED then
16 AttachProcedure() // Hopefully sets state EMM-REGISTERED
17 return SendAndHandle(m) // Recursively wait for correct state

18 else if Es = EMM-REGISTERED and Em 6= EMM-CONNECTED then
19 send(ServiceRequest)
20 ni ← receive()
21 if NASType(ni) = ServiceAccept then
22 Em := EMM-CONNECTED

23 else
24 Em := EMM-IDLE

25 return SendAndHandle(m) // Recursively wait for correct state

26 else
27 // Es = EMM-REGISTERED and Em = EMM-CONNECTED
28 send(m)
29 HandleIncoming(Z)

Figure 5.1: Sequence of the test case with observer

41

5. CASE STUDY: NAS ON ERICSSON MME

External: crashCounter(): returns an integer number of crashes
External: split(M): returns 〈M1,M2〉 with the first half M1 and the second half M2

of the list M
External: append(F,G): returns the combined list of F and G
Local: M : a list of 2n messages
Local: W : expected number of crashes

1 Function Reproduce(W,M) return S // list of sequences of messages
2 begin
3 if |M | < 1 then
4 return ∅
5 C ← crashCounter()
6 〈M1,M2〉 ← split(M)
7 foreach m in M1 do
8 SendAndHandle(m)

9 C ′ ← crashCounter()
10 C1 := (C ′ − C) // crashes from M1

11 foreach m in M2 do
12 SendAndHandle(m)

13 C ′′ ← crashCounter()
14 C2 := (C ′′ − C ′) // crashes from M2

15 S := ∅
16 if C1 > 0 then
17 // Find crashing sequences in M1 and add to S
18 S1 ← Reproduce(C1, M1)
19 S ←append(S,S1)

20 if C2 > 0 then
21 // Find crashing sequences in M1 and add to S
22 S2 ← Reproduce(C2, M2)
23 S ←append(S,S2)

24 if (C1 + C2) < W then
25 // Add this sequence if crashes after splitting are fewer

than expected
26 S ←append(S,M)

27 return S

Figure 5.2: Procedure to find the smallest possible sequences of messages that cause a crash

42

5.4. RESULTS

UE 1

UE 2

UE 3

UE 4

UE 5

eNodeB MME

HSS

SGW

SUT

Simulated

Figure 5.3: Large scale attack illustration

of dynamic worker crashes. To accomplish this, a certain number of dynamic crashes have to be
provoked during a strict time interval. This leads to the requirement of attaching multiple UEs
to reach the desired crash frequency. In the test setup, multiple UEs will attach to the MME via
one eNodeB as illustrated in Figure 5.3. Each attached UE will send the same message sequence
which the fuzzer has identified as a malicious sequence. The malicious message sequence will
cause a dynamic worker to crash. To further enhance the crash frequency, a predefined number
of UEs was attached before the attack began. In this way, waves of malicious messages were sent
to the SUT. Each wave contained the same number of attached UEs, which after a couple of
waves reached the desired number of crashes to trigger a dynamic crash escalation. When the UE
have sent the malicious message it will be detached because the dynamic process which handled
the connection crashed. The UE have to reattach in order to participate in a new attack wave.
The time it took for a UE to attach and send the messages corresponds to the crash frequency
of this test. This frequency has to exceed the configured crash frequency of the SUT to reach a
dynamic worker crash escalation.

The exact procedure and results from the large scale attack cannot be presented in this master
thesis due to its sensitive nature.

5.4 Results

The robustness testing of NAS showed some interesting result, where crashes were found. Since
NAS was modeled completely in TTCN-3 and in full detail according to the standard, covering
all 56 different message types in ESM and EMM, the full protocol could be generated by the
fuzzer. The results presented here show statistics of the message types causing crashes, what

43

5. CASE STUDY: NAS ON ERICSSON MME

protocol they belong in (ESM or EMM) as well as a comparison between random fuzzing and
our fuzzer. Note that the results presented in this thesis only consist of relative numbers and no
absolute numbers will be revealed.

5.4.1 Message types statistics

To calculate statistics over the messages that caused crashes, the test case described in Section 5.2
was used which returns a list of message sequences causing a crash. The statistics are based on a
large number of such sequences, with the total number of messages sent to create these sequences
being of several factors larger. To make it possible to compare sequences easily, only sequences
containing exactly one message was collected. The fuzzer picks messages at random and with
a large number of messages sent, all 56 message types in NAS will be chosen many times with
high probability.

The distribution of the number of crashes over the messages types, which were able to cause
an Erlang worker to crash, can be seen in Figure 5.4. It shows the percentage of crashes per
message type relative to the total number of crashes1. The graph shows clearly that the message
type O has triggered more crashes than any other. From the presented statistics, some other
results can also be illustrated.

A measurement of how many message types that were represented in the messages causing
crashes was taken and the result can be seen in Figure 5.5. The total number of message types in
NAS (combining both ESM and EMM message types) are 56, which means that only 15 message
types were involved in causing crashes.

The results in Figure 5.6 show that there was a clear over representation of ESM messages
among the crashes. Only two EMM message types were represented among the crashing message
types, but these two stood for 17.9% of all crashes.

Distinguishing message that should, according to the NAS standard [26], originate from the
UE versus the MME, the results in Figure 5.7 show that there were slightly more MME originating
messages causing crashes than UE originating messages.

A B C D E F G H I J K L M N O
0 %

5 %

10 %

15 %

2.5%

4.3%
5%

5.8% 6% 6.2% 6.3% 6.5% 6.7% 6.8% 7% 7.2% 7.6%
8.5%

13.6%

R
el

at
iv

e
cr

as
h

es

Figure 5.4: Relative number of crashes per message type

1The actual message types are replaced with identifiers from A to O

44

5.4. RESULTS

26.8%

73.2%

Crash

No crash

Figure 5.5: Percentage of message types causing crashes

17.9%

82.1%

EMM

ESM

Figure 5.6: Percentage of ESM vs EMM messages causing crashes

26.8%

73.2%

Crash

No crash

Figure 5.7: Percentage of messages that should originate from UE or from MME

5.4.2 Comparisons

To evaluate some choices made in designing the test case, as well as to compare the implemented
fuzzer against different techniques, other test cases were created. A very simple random-based
fuzzer was created, as described in Section 2.7.4. This had no mutation capabilities or any other
type of way to more intelligently create messages, but was purely generating completely random
amount of bytes, consisting of random data. The developed fuzzer, called Model-based, and the
random-based fuzzer are compared in three different test cases in Figure 5.8. Each test case
consisted of sending a very large number of messages each and the results consist of the number
of occured crashes. Note that the actual number of messages sent to the SUT cannot be revealed

45

5. CASE STUDY: NAS ON ERICSSON MME

Initial Attached Service Request

0 %

20 %

40 %

60 %

80 %

0% 0%

16.25%

0% 0.91%

82.84%
R

el
at

iv
e

cr
a
sh

es

Random-based Model-based

Figure 5.8: Comparison of crashes between random-based and model-based fuzzing, relative to
the total number of crashes

because of its sensitive nature.

The first test case, called Initial, sent messages from the UE without attaching or performing
any initial setup. This is the same way an Attach Request is sent when a UE wants to attach.
The result shows that neither the random-based nor the model-based fuzzer could provoke any
crash in this stage.

The second test case, called Attached, performed the attach phase as described in the real
test case in Section 5.2 and then sent the generated messages when the EMM state was EMM-
REGISTERED. As in the real test case, it made sure that the UE stayed in the wanted state by
handling incoming messages. In contrast to the real test case however, it did not try to get in to
some EMM mode, but assumed the mode to be EMM-IDLE all the time. The result show that
the random-based fuzzer could not provoke any crash, and the model-based fuzzer could only
provoke a small number of crashes compared to the Service Request test case.

The third test case, called Service Request, was the real test case as described in Section 5.2.
The results show that the model-based fuzzer provoked more crashes while at the same time
the random-based fuzzer actually provoked some crashes as well. In these results, the model-
based fuzzer performed better than the random-based fuzzer with a factor of 5. Comparing the
different test cases show that this combination of the EMM state EMM-REGISTERED and
mode EMM-CONNECTED did outperform the others with a wide margin.

Another choice made in the real test case was to encrypt the messages when this was required
in normal procedures. The assumption was made that more messages were to be allowed, and
that only the decryption part of the SUT would be tested if encryption was required and not
performed. The real test case, presented as Service Request in the previous Figure 5.8, was
modified to disregard the encryption of messages, even when required. The results in Figure 5.9
shows the number of crashes produced after sending the same amount of messages as the previ-
ous comparison each for both the random-based and the model-based fuzzer, unencrypted and
encrypted. These results show that while encrypted messages provoke more crashes, even with

46

5.4. RESULTS

Random-based Model-based

0 %

10 %

20 %

30 %

40 %

50 %

7.41%

36.45%

9.21%

46.94%
R

el
a
ti

ve
cr

as
h

es

Unencrypted Encrypted

Figure 5.9: Comparison of crashes between unencrypted and encrypted messages, relative to
the total number of crashes

the random-based fuzzer, the unencrypted messages did provoke crashes as well. Looking at
the model-based fuzzer, the encrypted messages provoked almost 29% more crashes than the
unencrypted messages. It is however important to notice that the number of crashes does not
correspond to the number of actual bugs.

47

5. CASE STUDY: NAS ON ERICSSON MME

48

Chapter 6

Evaluation

The results presented in the case study showed that the fuzzer is capable of generating messages
according to the extracted protocol models to test the system implementation. The observer
monitored an Erlang crash counter, provided by the SUT, and reported the message which caused
the Erlang worker to crash. Even though these Erlang crashes could be intentional crashes, the
number of crashes indicates that some errors are likely to have been found. Therefore, it could be
argued that the case study shows that the fuzzer is capable of finding faults that were previously
unknown.

6.1 Observer Implementation

Fuzzing have great potential of finding not yet exploited bugs of system implementations, but
an effective observer has to be implemented to reveal these unwanted behaviors created by the
fuzzer. The implemented observer in Section 5.2 only monitored worker crashes to determine if
generated message caused any faulty behavior. The worker crashes were considered to be the
most suitable behavior to monitor, but several other properties were considered during the design
phase which never was implemented.

Hardware utilization such as CPU usage and memory consumption was discussed to be mon-
itored by the observer as a side track of what was considered to be a faulty behavior. A higher
work load could mean that the worker have ended up in a state which it could not exit. The
observer should look for CPU spikes to determine if such state has occurred. Higher memory
consumption than what is considered to be acceptable for a single process would also be a mea-
surement to consider. Both ideas could easily be implemented in the current observer. However,
what is considered to be an acceptable value for both cases could not be established and the idea
was abandoned.

Another property to observe would be to take advantage of the separated state machines in
the UE and MME. The observer could trigger if the state machines in the UE and the MME
believe they are in different states. An example of an erroneous state would be if the UE thinks
that it is detached while the MME still believes the UE is attached to the network. This could
potentially create a denial of service if enough UEs are capable of detaching while the MME
thinks they still belong to the network.

The observer can also be state aware and always keep track of the latest entered state to
determine if the current state is possible to reach from the previous state. Unfortunately, there
was no built-in functionality to read the current state of a UE. The only information which can
be obtained from the MME was if the UE was idle, active or in a transaction. This information

49

6. EVALUATION

was not sufficient enough to determine if some erroneous state has been reached. A lot of work
has to be done to keep track of the current state and what states it should be able to reach. This
was considered to be too time consuming and out of scope of this thesis.

A technique often used with black-box testing is to set up a legitimate client (a UE using
telecom terms) which does some repeated operation with the network. In this way an error can
be detected by checking if the legitimate user still can communicate correctly with the system.
This is useful to determine whether the SUT is still functional or has in some way crashed, when
no other indication of this exists. Since we used a white-box approach this would not give use
any further information beyond the information we can acquire from the system.

6.2 Test Execution of NAS Protocol Implementation

The case study presented in Section 5 gave us some interesting insight about the SUT. Because
of the Erlang philosophy to handle errors by “letting it crash”, it is not known how many of the
malformed messages, which created a crash, were deliberate crashes or a system implementation
bug. However, after a discussion with the test team it was concluded that at least one of the
presented crashes was unintended. The crash logs have been handed over to the test team for
further analysis.

This thesis does not cover the design of good test cases; instead it aims to provide experienced
testers with a tool to generate fuzzed messages in an existing test environment. To get some
information of the capability of the developed fuzzer, a case study was performed on a protocol
implementation, in this case NAS.

The pseudo-code presented in Figure 5.1 was implemented in the test environment to find a
number of unique messages which created an Erlang worker to crash. The test case was designed
to test the system implementation of the NAS protocol. The purpose of this test case was to
show that an erroneous behavior could be provoked by the implemented fuzzer. Even though all
different message types of the NAS protocol were generated during the test run, only 15 out of
the 56 message types, which corresponds to roughly 27%, were able to provoke a dynamic crash
as can be seen in Figure 5.5. Two out of these 15 message types belonged to the EMM part of the
NAS protocol, illustrated in Figure 5.6. There are in total 33 EMM and 23 ESM message types
which imply that over 56% of the ESM messages and just over 6% of the EMM messages caused
dynamic workers to crash in the developed test case. The generated messages sent to the SUT
took no respect regarding the intended origin of a specific message type. Figure 5.7 illustrates
the distribution of the collected messages of the intended origin according to the standards [26].
All messages were however sent from a UE to the MME. 43.5% out of the messages, which caused
a crash, were supposed to originate from a UE while 56.5% messages were supposed to originate
from the MME. The UE messages should be covered by the system implementation and would
at least be accepted by the system implementation which implies that the randomized values in
the data fields of the message probably caused the process to crash. The messages that should
have originated from the MME however are not expected from the system implementation and it
could be argued that this is the reason why MME messages are over represented in the sampled
crashes.

6.3 Fuzzing Technique

To emphasize the efficiency differences of random and model-based fuzz testing, several tests were
designed which are presented in Section 5.4.2. A large number of messages were generated and
sent to the SUT with the same state awareness and encryption logic for both fuzzing methods

50

6.4. LARGE SCALE ATTACK

in all test cases. The first comparison is illustrated in Figure 5.8 and shows three different test
cases. The first test case was not able to create any crash at all and no valuable information
could be drawn from this test regarding the efficiency of random and model-based fuzzing in
the current test environment. The second test showed that the model-based fuzzer were able
to provoke a small number of crashes, while the random-based fuzzer did not find any messages
at all which could cause a worker process to crash. However, the third test is what makes the
model-based fuzzer to stand out from a less sophisticated fuzzer, such as a random fuzzer. The
model-based fuzzer were able to provoke over five times more crashes for the same amount of
generated messages, showing that a model-based approach is far more effective than a random
approach. The random-based fuzzer was however capable of provoking worker crashes with
almost no time spent on development. It could be argued if it is worth its time to create a
more effective fuzzer when a basic is capable of finding worker crashes as well. A random-based
fuzzer cannot test any sophisticated attack patterns which will decrease the coverage factor of
the system implementation. Hence, a model-based fuzzer has great potential to find bugs in
more complex systems. It’s only the tester that sets the limit about how sophisticated the test
execution will be.

A second test was developed to motivate the choice of using encryption of the generated
messages sent by the fuzzer to the SUT. The random-based and model-based approaches were
both tested with and without encryption which is illustrated in Figure 5.9. With encryption,
both the random-based and the model-based fuzzers where able to provoke slightly more worker
crashes compared with no encryption. The increase of crashes found with encryption turned on
is approximately the same for both methods.

6.4 Large Scale Attack

Detailed results of the large scale attack are not discussed in this thesis due to its sensitive nature.

It could be argued that a large-scale attack is only possible in a controlled environment like
the one it was tested in. To perform it in practice, the attacker needs to have a large number of
UEs that could send crafted NAS messages. This may seem like two difficult problems to solve
in practice, but below are possible solutions presented to both these problems that could make
this attack seem possible.

The possibility for a user to send arbitrary messages relies on an open LTE stack that can be
used to send messages of the NAS protocol. In Section 3.2, it is shown that an open GSM stack
could be created and used to send arbitrary messages in the GSM network. The section also
describes the increasing interests of the LTE network where the aim is to transmit and receive
UE traffic. The technology to attack the LTE network exists, the question is not if, but when a
serious attack against the LTE network will be carried out.

The possibility for a user to send messages from multiple UEs is either dependent on the
number of UEs that the user possesses, or if there is some way to simulate several UEs. The
NAS denial of service attack present in Section 3.1 describes a method to collect IMSI values.
The attack uses the IMSI values to create a virtual UE per IMSI value, which gives a single
device the possibility to emulate multiple UEs, dependent on how many IMSI values that could
be collected. This is used to overload the system, but could instead be used to attach virtual
UEs that all send the crafted NAS messages. As long as a sufficient amount of virtual UEs are
attached, the attack presented in Section 5.3 could be launched.

51

6. EVALUATION

6.5 Generalizability

The fuzzer is designed to be generic to any protocol modeled in TTCN-3, but the case study can
only show that this was successfully applied by us with the NAS protocol. To further test its
generalizability, the fuzzer was tested on the S1AP and Diameter protocol. Both these protocols
are used in the MME, as described in Section 2.1.4, and are tested in the TTCN-3 conformance
test environment.

The Diameter protocol was modeled in TTCN-3 and the fuzzer could extract this protocol
fully. The protocol specification is very flexible and allows for custom extensions. The types
included in the models were all specified in the Diameter specification [24] and extensions in
3GPP specification TS 29.272 [25]. No problems occurred for the model extractor, making
the fuzzer capable of generating 100% of the modeled protocol. Using the MME as the SUT,
Diameter messages are exchanged between the HSS and the MME. However; they are only sent
from the HSS on demand of the MME as answers to requests. Therefore, the test logic requires
that such requests could be created to get opportunities to answer with generated messages.
Time was not put on developing such test logic and no test with sending generated Diameter
messages was performed.

The S1AP protocol was not modeled in TTCN-3 but in ASN.1 which TITAN supports, and
that presented some different problems for the model extractor. When running fuzzing tests, the
fuzzer could generate 83% of all S1AP IEs. For example, the native data type objid was not
supported by our fuzzer and workarounds had to be implemented for some TITAN quirks for the
generated C++ files from the ASN.1 files. The messages generated were sent in TTCN-3 in the
same way as with NAS with the help of the FAST framework.

The fuzzer exposed three main functions for S1AP message generation which corresponds to
the three main message types of S1AP: InitiatingMessage, SuccessfulOutcome and Unsuccess-
fulOutcome [28]. When performing the basic fuzz testing on S1AP, only the InitiatingMessage
type was generated and sent to the SUT since this was seen as the most complex type while the
other were mere answer and acknowledgement messages.

However, testing S1AP may not be as interesting as NAS in respect to the level of trust of the
input. The NAS messages are forwarded unmodified from the UE directly to the MME via the
eNodeBs’ S1-MME interface. The only level of trust in this case is the eventual assumption that
the software generating the NAS messages is from a trusted developer, which is impossible to
confirm. In the S1AP case, the messages are created by the eNodeBs and are at least originating
from devices already trusted by the telecom network operator. A breach into the eNodeB software
would of course make this untrusted.

6.6 Questionnaire

When the fuzzer had been designed, implemented, and tested, an evaluation of its usability and
applicability of the test environment was performed within the organization. For this purpose
we gathered the key testers of the MME to demonstrate the fuzzer and present one of the
messages which provoked a crash while fuzzing the NAS protocol. The presentation included a
live demonstration of how the fuzzer generated messages and that some of the messages were
able to provoke a crash. The presented message, which caused an Erlang process to crash,
was combined with the crash log with detailed information of the worker crash. After the
presentation we asked the testers to fill in a questionnaire regarding the tool and the presented
crash. Questions Q1 to Q7 are regarding the presented tool while Q8 to Q11 handles their
thoughts about the presented crash. The answer to each question can be seen in Table 6.1.

52

6.6. QUESTIONNAIRE

Table 6.1: Answers from questionnaire

Question Answer

Q1 Average 2.3 out of 5
Q2 Average 4.6 out of 5
Q3 Average 4.2 out of 5
Q4 Average 2 out of 5
Q5 Average 3.6 out of 5
Q6 Median 1.75 days
Q7 Average 4.17 out of 5
Q8 1/3 yes, 2/3 no
Q9 Average 4 out of 5
Q10 Median 10%
Q11 Median 4.5 days

Some of the answers span between 1 and 5 where 1 means “very unlikely” and 5 means “very
likely”. The following 11 questions were given:

Q1: Would this tool save time in your daily activities? [1-5]

Q2: Would this tool be helpful to discover hidden/new aspects of the product? [1-5]

Q3: Would this tool increase the quality of the product? [1-5]

Q4: Would this tool require a fuzzing expert to use? [1-5]

Q5: Would this tool fit with the testing requirements? [1-5]

Q6: How many days would it take to get familiar with the tool? [Number of days]

Q7: How likely is it that you would use such a tool, given that you should perform negative
testing? [1-5]

Q8: Have you found crashes similar to the one presented? [Yes/No]

Q9: Would this tool save time in finding such crashes? [1-5]

Q10: What is the probability the crash would be found by you without this tool? [Percentage]

Q11: How many days would it take to find this crash without the presented tool? [Number of
days]

The answers provided us with interesting input about the usefulness and ease of use which
can be seen in Table 6.1. Question Q1 got a rather negative response, in average 2.3 out of 5.
One explanation could be that the questioned testers didn’t perform this kind of negative testing
in their daily activities, which means that no time could be saved. An average answer of 4.6
out of 5 on question Q2 shows that the testers think that the tool is capable of finding bugs
which not would have been found with the current test methods. Question Q3 confirms with
the average answer of 4.2 out of 5 that the quality of the product is believed to be improved if
the tool would be used as a complement to the existing robustness testing already performed at
Ericsson. The answers to Question Q4 (an average of 2 out of 5) and Q6 (1.75 days in median)
show that the testers did not believe that they required to be experts in fuzzing to use the tool,

53

6. EVALUATION

they thought it seemed easy to use and could be familiar with it after 1-3 days. The average
answer 3.6 out of 5 on question Q5 indicates that the tool would fit with the existing testing
requirements. Distinguishing the testing from positive and negative testing, the testers’ average
answer 4.17 out of 5 on question Q7 indicate that they believe the tool would be used.

The questions Q8 to Q11 relate to the crash presented for the testers. The average answer on
Q8 indicates that similar crashes are rarely found. One third of the testers have unintentionally
encountered similar crashes while testing other parts of the MME. This is further supported by
the median answer of 10% on question Q10 where the presented crash would unlikely have been
found early in the testing phase, if at all. The average answer 4 out of 5 on question Q9 states
that the key testers of the MME believes that the tool would simplify the task of finding such
crashes. Question Q11 gives an estimation of the time saved using the presented tool instead of
finding the crash manually, given that a fault exists. By using the tool, the median value states
that over 4.5 days could be saved.

6.7 Implementation Problems

Some problems arose due to our initial delimitations, see Section 1.2, and the design choices,
see Section 4. In this section, the initial delimitations will be discussed and their impact of the
results, as well as delimitations imposed by the design choices.

6.7.1 Initial Delimitations

The first and second delimitation states that the fuzzer will be specialized to work with the
existing testing environment and the protocols tested there, not covering any other protocols or
environments. The developed fuzzer is specialized to be integrated with TTCN-3, specifically
with TITAN. It is however possible to perform fuzz testing on any protocol that can be tested
with TITAN, which should be any protocol testable in TTCN-3. There are no other limitations
regarding this and the case study, as well as other protocols tested described in Section 6.5,
shows that this is possible.

The third delimitation states that the fuzzer will be limited in functionality in what the test
environment and the chosen or developed fuzzing engine are capable of. The fuzzing engine
was developed from scratch and an existing fuzzing engine was not used nor imported. Existing
fuzzing engines, some presented in Section 3.4, provide features for generating values not just
on random. Many of these features could be tasks for extending the developed fuzzing engine in
the future, as is described later in Section 7.3.

The fourth and last delimitation states that potential erroneous behavior of the SUT will
not be further investigated in this thesis, but left as a task for the developers and testers of the
SUT. As is shown in the results of the case study, see Section 5.4, some crashes are believed to
be faults that should be investigated and the developers are notified.

6.7.2 Imposed Limitations

There were some limitations imposed by the design choices that affected the functionality of
the fuzzer. One limitation about the message generation was discovered with the integration of
TITAN. During the case study, it was found that some messages did not match what the fuzzing
engine generated, according to its logs. After investigating the messages sent using a network
capturing tool, it was found that the message encoder overrides some generated values. While the
selected message type and its contents were preserved, the NAS message type was overridden to
match the message type selected in the TTCN-3 union field, as well as the protocol discriminator

54

6.7. IMPLEMENTATION PROBLEMS

field. This limits the number of fields that can be generated by the fuzzer, and it is impossible
to know what fields without investigating the encoder. In the case of NAS, the fields that were
discovered being overwritten would help the fuzzed messages being parsed more correctly since
it made important values correspond to the TTCN-3 model. In other protocols, other fields may
be overwritten which may prevent them from being tested by the fuzzer. It was deemed too
time-costly to investigate exactly what fields that were affected, since that will depend on the
protocol encoder.

6.7.3 Case Study Problems

When designing the case study, the FAST framework was chosen to integrate with, as mentioned
in 4.1. While FAST had a lot of functionality that could be used, such as the attach phase in
NAS, it was designed for positive testing and to fail fast. That means that if any unexpected
message would arrive, the test case would stop and all progress was lost. This led to the necessity
of reimplementing some functionality of FAST, mostly the protocol logic parts that involved
waiting for answers. The functions which would actually create and send messages could be used
to great extent.

The FAST framework was also designed to only support one single UE while testing the
MME. All the simulated nodes were separated in TTCN-3 components, but the simulated UE
only existed as information in a structure variable vUE global to all components. This means
that the SGW, HSS and eNodeBs could read vUE and knew what to expect in arriving messages.
If a message arrives that does not match the information stored in vUE the test case would end
with a failure verdict. While this is helpful when designing positive testing for one UE, using
several UEs are impossible without changes to the FAST framework.

For the large scale attack presented in Section 5.3, multiple UEs were needed. This led to
designing a test case with reimplementing some of the UE logic from FAST. For each UE to
simulate, vUE was copied in to an array UEs[i] and values such as the IMSI were changed to
make the UE unique. The eNodeB functions could mostly be used but those functions reading
directly from vUE had to be avoided and reimplemented. For the most parts, those functions
were wrappers around a series of other functions that did not read vUE, which could be called
directly instead. The SGW and HSS were reimplemented as very simple nodes, accepting every
request coming in. Since the UEs would only attach and send the crashing messages, not much
was needed to handle in the SGW and HSS. These limitations of FAST show that the framework
is designed for positive testing. However, the large scale attack is not an ordinary fuzzing test
case but a very special test case demanding more of the environment than the other fuzzing test
cases.

55

6. EVALUATION

56

Chapter 7

Future Work

The presented approach provides the basic functionality to apply robustness testing with model-
based fuzzing. By extracting protocol models from an existing test environment, the fuzzer can
generate messages from scratch. In this chapter, some possible extensions to the developed fuzzer
are presented. They take different paths, but they are all based on interesting research and tend
to get some more sophistication in regards to the generation of messages.

7.1 State Monitoring

This thesis focused on Erlang worker crashes and escalation of supervisor crashes where the state
awareness has been limited to reach a state where it is possible to send valid NAS messages to the
SUT. Another interesting aspect would be to monitor the state that the UE will reach depending
on the messages sent to the SUT. Since the UE and the SUT have separated state-machines,
they can be evaluated to see if any malformed message will make the two state-machines to have
different views. The same fuzzing techniques can be applied to this as was presented in this
thesis, except for the aim and monitoring decisions. Several questions arise with this approach:

• Is it possible to reach a state that the UE should not be able to reach?

• Is it possible to reach a state where harm can be done to the system or other subscribers?

• What could an attacker gain with state awareness?

7.2 Code Coverage

It was mentioned earlier in this thesis that with white-box testing the opportunity of getting high
code coverage arises. This was not a part of this thesis but might be a worthwhile extension to
implement in the future. A code coverage tool, such as an application that return the functions,
or even lines of code, that are executed during fuzzing would show the coveage of the system code.
The fuzzer can use this information to generate special messages that would hit the functions
that are rarely accessed under normal conditions. Only the fields that will guarantee that these
code paths will be hit can be fixed while all other fields are randomly generated. This procedure
would preferably be fully automated.

57

7. FUTURE WORK

7.3 Boundary Value Analysis

Messages in a textual protocol consists entierly of character strings. The various fields in the
message then often have variable lengths, as compared to binary protocols like NAS which often
have fixed lengths. When randomly generating messages for fuzzing, an unlimited number of
strings can be composed to constitute a message. Therefore, it is obvious that more logic behind
generation other than purely randomized values are needed, as done by Xu et al. [53] with
different attack vectors.

When designing the fuzzer presented in this thesis, the NAS protocol was studied to get
requirements of the fuzzer. When analyzing NAS, a large majority of the message fields were bi-
nary enumerations, like for example the EPS attach type field. This field is a three bit long field,
where 001 means ”EPS attach”, 010 means ”combined EPS/IMSI attach”, 110 is ”EPS emer-
gency attach”, and 111 is reserved. All other values are to be interpreted as ”EPS attach” [26].
Interpreting the field as an integer and choosing a boundary value such as MAX−1 = 110 would
only choose ”EPS emergency attach” without meaning anything special. A random choice has
more probability to choose interesting values such as 011.

However, some NAS fields are integers which are often length fields indicating how many
elements the following array has. In such cases, a good extension to the fuzzer would be the
ability to test inconsistency between actual array lengths and length field values. Sequence
number fields and timer fields could as well be tested with boundary values which are more
common to cause errors.

7.4 Detailed Message Field Analysis

It was found in the case study that randomly generated messages may cause an Erlang worker to
crash, but the messages that caused a crash where not investigated in detail. Further investigation
of message fields can be a future extension of this master thesis. One such extension could be to
provide the fuzzer with mutation-based capabilities that systematically mutates fields of a known
malicious message to find the field that caused the potential erroneous behavior (i.e. worker crash
in the case study).

Several different strategies could be used to mutate the message. One strategy is to look at
the optional fields in the TTCN-3 specification of the protocol. For every such field, the field
could either be present or omitted. If the field is present, it contains a generated value. The
mutator could toggle the presence; if the value was present, omit the value; or if the value was
omitted, change it to present and generate a value for it. The effect of the toggling is measured
after sending the new message with this field toggled. If the erroneous behavior caused by the
first message is gone after toggling the field, the previous state of the field is deemed as important
for triggering the behavior.

Another strategy for a non-optional field is to regenerate its value to see the effect with a
completely new value. If the behavior is the same with the new message, this changed value is
considered as not important for the effect caused in the first message. However, if the behavior
of the first message is gone after modifying this field, the field is deemed as important.

58

Chapter 8

Conclusions

This thesis presents an approach for robustness testing using model-based fuzzing. Fuzzing
is a software testing technique where malformed messages are created and sent to the system
under test. Model-based fuzzing uses models of the message format to more intelligently create
malformed messages. A tool for model-based fuzzing is developed which is fully integrated
with an existing TTCN-3 testing environment. TTCN-3 is a standardized testing language and
environment commonly used for conformance testing. The integration is made possible using
TITAN, a TTCN-3 compiler and runtime environment developed by Ericsson. The tool makes
use of networking protocol models used for conformance testing in TTCN-3 to perform model-
based fuzzing.

With the integration of the tool in TTCN-3, any protocol modeled in TTCN-3 can be used
for fuzzing. Since the tool is generation-based, every part of the protocol message structure can
be created with every possible combination. This gives the opportunity to achieve good testing
coverage. For an organization performing conformance testing with TTCN-3, this means that
an evaluation of the robustness can be performed with good coverage.

The tool is evaluated with a case study of testing the 3GPP NAS protocol on the Ericsson
SGSN-MME. Developed test cases make use of existing functionality in the environment to reach
certain states before performing fuzzing. The test cases aim to find Erlang crashes which may
not correspond to actual bugs, but being an indication of where to investigate further. Results
of the testing show that it is crucial to perform fuzzing in certain states of the protocol. The tool
is further compared to a random-based fuzzing approach, which shows that model-based fuzzing
performs better in terms of causing several more crashes.

By conducting a questionnaire with key testers of the Ericsson SGSN-MME, opinions about
the fuzzer’s usability is obtained. Among the testers, the fuzzer is considered easy to use and
that it would increase the quality of the product tested with it. It is also considered to be a
valuable tool which would take short time to be familiar with. The testers also believe that the
fuzzer can find crashes that would not be found without the tool.

59

8. CONCLUSIONS

60

Abbreviations

1G First Generation

2G Second Generation

3G Third Generation

3GPP Third Generation Partnership
Project

3GPP2 Third Generation Partnership
Project 2

4G Fourth Generation

AP Application Processor

API Application Programming Interface

ASN.1 Abstract Syntax Notation One

BS Base Station

CDMA Code Division Multiple Access

CDMA2000 Code Division Multiple
Access

CH Component Handler

CMXB3 Component Main Switch Board
version 3

CPU Central Processing Unit

DP Device Processor

E-UTRAN Evolved Universal Terrestrial
Radio Access

ECM EPS Connection Management

EMM EPS Mobility Management

eNodeB Evolved Node B/
E-UTRAN Node B

EPC Evolved Packet Core

EPS Evolved Packet System

ESM EPS Session Management

ETS Executable Test Suite

ETSI European Telecommunications
Standards Institute

EU European Union

FSB File Serving Board

GEP3 Generic Ericsson Processor board
version 3

GPRS General Packet Radio Service

GSM Global System for Mobile
Communications

GTPv1 GPRS Tunneling Protocol
version 1

GTPv1-U GPRS Tunneling Protocol
User Plane version 1

GTPv2-C GPRS Tunneling Protocol
Control Plane version 2

GTT GSN Test Tool

HSS Home Subscriber Server

IEEE Institute of Electrical and Electronics
Engineers

IMSI International Mobile Subscriber
Identity

61

8. CONCLUSIONS

IMT-2000 International Mobile
Telecommunications-2000

IMT-Advanced International Mobile
Telecommunications-Advanced

IP Internet Protocol

LTE Long Term Evolution

MME Mobility Management Entity

MMS Multimedia Messaging Service

MS Mobile Station

NAS Non-Access Stratum

NCB Node Control Board

NMT Nordic Mobile Telephone

OpenBSC Open Source Base Station
Controller

Osmocom Open Source Mobile
Communications

OsmocomBB Open Source Mobile
Communications Baseband

PDN Public Data Network

PGW PDN Gateway

PIU Plug-In Units

PSTN Public Switched Telephone Network

QoS Quality of Service

RAN Radio Access Network

RFC Request For Comments

RRC Radio Resource Control

S1AP S1 Application Protocol

SCTP Stream Control Transmission
Protocol

SCXB2 System Control Switch Board
version 2

SGSN Serving GPRS Support Node

SGSN-MME Serving GPRS Support Node
– Mobility Management Entity

SGW Serving Gateway

SIP Session Initiation Protocol

SMS Short Message Service

SSD Solid State Disk

SUT System Under Test

TA Tracking Area

TCP Transmission Control Protocol

TE TTCN-3 Executable

TTCN-3 Testing and Test Control
Notation version 3

UDP User Datagram Protocol

UE User Equipment

UMB Ultra Mobile Broadband

UMTS Universal Mobile
Telecommunications System

USB Universal Serial Bus

WCDMA Wideband Code Division
Multiple Access

WiMAX Worldwide Interoperability for
Microwave Access

62

List of Figures

2.1 EPS network overview . 6
2.2 Overview of the EPS network [19] . 7
2.3 Network structure of the EPS radio network [19] 8
2.4 Subset of communication interfaces with their protocols 9
2.5 NAS plain structure . 11
2.6 Example NAS ESM message described in TTCN-3 11
2.7 Simplified EMM state machine for the MME . 12
2.8 NAS attach procedure over logical S1 connection 14
2.9 TTCN-3 Test System . 15
2.10 Erlang supervisor tree restart strategies . 17
2.11 Mutation of message . 21
2.12 Generation of message . 21

4.1 Conformance test environment . 30
4.2 Extended test environment with fuzzing components 31
4.3 Example TTCN-3 module with type definitions 32
4.4 Extracted model tree of MSG structure in Example module 33
4.5 TTCN-3 glue code for Example module . 35
4.6 Example TTCN-3 test case using fuzzing functions 36

5.1 Sequence of the test case with observer . 41
5.2 Procedure to find the smallest possible sequences of messages that cause a crash 42
5.3 Large scale attack illustration . 43
5.4 Relative number of crashes per message type . 44
5.5 Percentage of message types causing crashes . 45
5.6 Percentage of ESM vs EMM messages causing crashes 45
5.7 Percentage of messages that should originate from UE or from MME 45
5.8 Comparison of random-based and model-based fuzzing 46
5.9 Comparison of unencrypted and encrypted fuzzing 47

63

List of Tables

2.1 EMM sublayer states . 13
2.2 ESM sublayer states . 13

6.1 Answers from questionnaire . 53

64

Bibliography

[1] I. T. Union, “Key ICT indicators for developed and developing countries and the world.”
[Online]. Available: http://www.itu.int/en/ITU-D/Statistics/Documents/statistics/2013/
ITU Key 2005-2013 ICT data.xls

[2] J. Moteff, C. Copeland, and J. Fischer, “Critical infrastructures: what makes
an infrastructure critical?” DTIC Document, 2003. [Online]. Available: http:
//www.fas.org/irp/crs/RL31556.pdf

[3] Commisson of the European Communities, “Critical Infrastructure Protection in the fight
against terrorism.” [Online]. Available: http://eur-lex.europa.eu/LexUriServ/LexUriServ.
do?uri=COM:2004:0702:FIN:EN:PDF

[4] J. Gray and D. P. Siewiorek, “High-availability computer systems,” Computer, vol. 24, no. 9,
pp. 39–48, 1991.

[5] Codenomicon Ltd., “Codenomicon Defensics,” 2013. [Online]. Available: http:
//www.codenomicon.com/defensics/

[6] Priority One Security, “P1 Telecom Fuzzer (PTF),” 2013. [Online]. Available:
http://www.p1sec.com/corp/products/p1-telecom-fuzzer-ptf/

[7] F. Ricciato, A. Coluccia, and A. D’Alconzo, “A review of DoS attack models for 3G cellular
networks from a system-design perspective,” Computer Communications, vol. 33, no. 5, pp.
551–558, 2010.

[8] C. Mulliner, N. Golde, and J.-P. Seifert, “SMS of Death: From Analyzing to Attacking
Mobile Phones on a Large Scale,” USENIX Security Symposium, 2011. [Online]. Available:
https://www.usenix.org/legacy/event/sec11/tech/full papers/Mulliner.pdf

[9] R.-P. Weinmann, “All your baseband are belong to us,” Presenta-
tion, DeepSEC, 2010. [Online]. Available: http://2010.hack.lu/archive/2010/
Weinmann-All-Your-Baseband-Are-Belong-To-Us-slides.pdf

[10] Grugq, “Base Jumping: Attacking the GSM baseband and base station,” 2010. [Online].
Available: http://www.coseinc.com/en/index.php?rt=download&act=publication&file=
Base%20Jumping.pdf

[11] S. M. Harald Welte, “OsmocomBB: Running your own GSM stack on a phone,”
2010. [Online]. Available: http://events.ccc.de/congress/2010/Fahrplan/attachments/
1771 osmocombb-27c3.pdf

[12] 3GPP, “About 3GPP,” 2013. [Online]. Available: http://3gpp.org/About-3GPP

65

http://www.itu.int/en/ITU-D/Statistics/Documents/statistics/2013/ITU_Key_2005-2013_ICT_data.xls
http://www.itu.int/en/ITU-D/Statistics/Documents/statistics/2013/ITU_Key_2005-2013_ICT_data.xls
http://www.fas.org/irp/crs/RL31556.pdf
http://www.fas.org/irp/crs/RL31556.pdf
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2004:0702:FIN:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2004:0702:FIN:EN:PDF
http://www.codenomicon.com/defensics/
http://www.codenomicon.com/defensics/
http://www.p1sec.com/corp/products/p1-telecom-fuzzer-ptf/
https://www.usenix.org/legacy/event/sec11/tech/full_papers/Mulliner.pdf
http://2010.hack.lu/archive/2010/Weinmann-All-Your-Baseband-Are-Belong-To-Us-slides.pdf
http://2010.hack.lu/archive/2010/Weinmann-All-Your-Baseband-Are-Belong-To-Us-slides.pdf
http://www.coseinc.com/en/index.php?rt=download&act=publication&file=Base%20Jumping.pdf
http://www.coseinc.com/en/index.php?rt=download&act=publication&file=Base%20Jumping.pdf
http://events.ccc.de/congress/2010/Fahrplan/attachments/1771_osmocombb-27c3.pdf
http://events.ccc.de/congress/2010/Fahrplan/attachments/1771_osmocombb-27c3.pdf
http://3gpp.org/About-3GPP

BIBLIOGRAPHY

[13] GSM Association, “GSM technology,” 2013. [Online]. Available: http://www.gsma.com/
aboutus/gsm-technology/gsm

[14] Qualcomm, “History - Who We Are,” 2013. [Online]. Available: http://www.qualcomm.
com/about/history/

[15] G. L. Stüber, Principles of mobile communication. Springer, 2011.

[16] Framework for services supported by IMT, ITU-R Std. M.1822, 2007. [Online]. Available:
https://www.itu.int/dms pubrec/itu-r/rec/m/R-REC-M.1822-0-200710-I!!PDF-E.pdf

[17] International Telecommunication Union, “ITU paves way for next-generation 4G mobile
technologies,” 2010. [Online]. Available: http://www.itu.int/net/pressoffice/press releases/
2010/40.aspx

[18] J. Gozalvez, “First Commercial LTE Network [Mobile Radio],” Vehicular Technology Mag-
azine, IEEE, vol. 5, no. 2, pp. 8–16, 2010.

[19] Ericsson AB, “CPI,” [Internal Ericsson].

[20] 3GPP, “3GPP TS 23.401 V11.6.0: General Packet Radio Service (GPRS) enhancements
for Evolved Universal Terrestrial Radio Access Network (E-UTRAN) access.” [Online].
Available: http://www.3gpp.org/ftp/specs/html-INFO/23401.htm

[21] 3GPP, “3GPP TS 36.331 V11.4.0: Radio Resource Control (RRC).” [Online]. Available:
http://www.3gpp.org/ftp/specs/html-INFO/36331.htm

[22] 3GPP, “3GPP TS 29.281 V11.6.0: General Packet Radio System (GPRS) Tunnelling
Protocol User Plane (GTPv1-U).” [Online]. Available: http://www.3gpp.org/ftp/specs/
html-INFO/29281.htm

[23] 3GPP, “3GPP TS 29.274 V11.7.0: Evolved General Packet Radio System (GPRS)
Tunnelling Protocol for Control Plane (GTPv2-C).” [Online]. Available: http:
//www.3gpp.org/ftp/specs/html-INFO/29274.htm

[24] P. Calhoun, J. Loughney, E. Guttman, G. Zorn, and J. Arkko, “RFC 3588: Diameter
Base Protocol,” Internet Engineering Task Force, Sep. 2003. [Online]. Available:
http://www.ietf.org/rfc/rfc3588.txt

[25] 3GPP, “3GPP TS 29.272 V11.7.0: MME and SGSN related interfaces based on Diameter
protocol.” [Online]. Available: http://www.3gpp.org/ftp/Specs/html-info/29272.htm

[26] 3GPP, “3GPP TS 24.301 V12.0.0: Non-Access-Stratum (NAS) protocol for Evolved Packet
System (EPS).” [Online]. Available: http://www.3gpp.org/ftp/Specs/html-info/24301.htm

[27] 3GPP, “3GPP TS 24.007 V11.0.0: Mobile radio interface signalling layer 3.” [Online].
Available: http://www.3gpp.org/ftp/Specs/html-info/24007.htm

[28] 3GPP, “3GPP TS 36.413 V11.4.0: Evolved Universal Terrestrial Radio Access
Network (E-UTRAN); S1 Application Protocol (S1AP).” [Online]. Available: http:
//www.3gpp.org/ftp/specs/html-INFO/36413.htm

[29] ETSI, “Introduction – About TTCN-3,” 2013. [Online]. Available: http://www.ttcn-3.org/
index.php/about/introduction

66

http://www.gsma.com/aboutus/gsm-technology/gsm
http://www.gsma.com/aboutus/gsm-technology/gsm
http://www.qualcomm.com/about/history/
http://www.qualcomm.com/about/history/
https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.1822-0-200710-I!!PDF-E.pdf
http://www.itu.int/net/pressoffice/press_releases/2010/40.aspx
http://www.itu.int/net/pressoffice/press_releases/2010/40.aspx
http://www.3gpp.org/ftp/specs/html-INFO/23401.htm
http://www.3gpp.org/ftp/specs/html-INFO/36331.htm
http://www.3gpp.org/ftp/specs/html-INFO/29281.htm
http://www.3gpp.org/ftp/specs/html-INFO/29281.htm
http://www.3gpp.org/ftp/specs/html-INFO/29274.htm
http://www.3gpp.org/ftp/specs/html-INFO/29274.htm
http://www.ietf.org/rfc/rfc3588.txt
http://www.3gpp.org/ftp/Specs/html-info/29272.htm
http://www.3gpp.org/ftp/Specs/html-info/24301.htm
http://www.3gpp.org/ftp/Specs/html-info/24007.htm
http://www.3gpp.org/ftp/specs/html-INFO/36413.htm
http://www.3gpp.org/ftp/specs/html-INFO/36413.htm
http://www.ttcn-3.org/index.php/about/introduction
http://www.ttcn-3.org/index.php/about/introduction

BIBLIOGRAPHY

[30] ETSI, “201 873-1 Part 1: TTCN-3 Core Language, Version 4.5.1,” 2013. [Online].
Available: http://www.etsi.org/deliver/etsi es/201800 201899/20187301/04.05.01 60/es
20187301v040501p.pdf

[31] ETSI, “201 873-6 Part 6: TTCN-3 Control Interface (TCI), Version: 4.4.1,” 2012.
[Online]. Available: http://www.etsi.org/deliver/etsi es/201800 201899/20187306/04.04.
01 60/es 20187306v040401p.pdf

[32] ETSI, “201 873-5 Part 5: TTCN-3 Runtime Interface (TRI), Version: 4.4.1,” 2012.
[Online]. Available: http://www.etsi.org/deliver/etsi es/201800 201899/20187305/04.04.
01 60/es 20187305v040401p.pdf

[33] J. Z. Szabó and T. Csöndes, “TITAN, TTCN-3 test execution environment,” Infocommuni-
cations Journal, vol. 62, no. 1, pp. 27–31, 2007.

[34] Abstract Syntax Notation One ASN.1: Specification of basic notation, ITU-T Std. X.680,
2008. [Online]. Available: http://www.itu.int/ITU-T/studygroups/com17/languages/X.
680-0207.pdf

[35] J. Armstrong, “Making reliable distributed systems in the presence of software errors,”
Ph.D. dissertation, KTH, 2003. [Online]. Available: http://www.erlang.org/download/
armstrong thesis 2003.pdf

[36] J. Armstrong, “Concurrency Oriented Programming in Erlang,” Invited talk, FFG, 2003.
[Online]. Available: http://ll2.ai.mit.edu/talks/armstrong.pdf

[37] Ericsson AB, “Erlang, OTP Design Principles User’s Guide, Overview,” 2013. [Online].
Available: http://www.erlang.org/doc/design principles/des princ.html

[38] Ericsson AB, “Ericsson SGSN-MME.” [Online]. Available: http://www.ericsson.com/
ourportfolio/products/sgsn-mme

[39] I. Schieferdecker, J. Großmann, and M. Schneider, “Model-based fuzzing for
security testing,” 2010. [Online]. Available: http://www.spacios.eu/sectest2012/pdfs/
SecTestICST Schieferdecker.pdf

[40] K. V. Hanford, “Automatic generation of test cases,” IBM Systems Journal, vol. 9, no. 4,
pp. 242–257, 1970.

[41] B. Miller, “Fuzz Testing of Application Reliability,” 1988. [Online]. Available:
http://pages.cs.wisc.edu/∼bart/fuzz/CS736-Projects-f1988.pdf

[42] A. Takanen, “Fuzzing: the Past, the Present and the Future,” in Actes du 7ème Symposium
sur la Séurité des Technologies de l’Information et des Communications, 2009.

[43] J. Neystadt and Microsoft Corporation, “Automated Penetration Testing with White-Box
Fuzzing,” 2008. [Online]. Available: http://msdn.microsoft.com/en-us/library/cc162782.
aspx

[44] S. Bekrar, C. Bekrar, R. Groz, and L. Mounier, “Finding software vulnerabilities by smart
fuzzing,” in Software Testing, Verification and Validation (ICST), 2011 IEEE Fourth In-
ternational Conference on. IEEE, 2011, pp. 427–430.

[45] C. Miller and Z. N. J. Peterson, “Analysis of Mutation and Generation-Based Fuzzing,”
2007. [Online]. Available: http://securityevaluators.com/files/papers/analysisfuzzing.pdf

67

http://www.etsi.org/deliver/etsi_es/201800_201899/20187301/04.05.01_60/es_20187301v040501p.pdf
http://www.etsi.org/deliver/etsi_es/201800_201899/20187301/04.05.01_60/es_20187301v040501p.pdf
http://www.etsi.org/deliver/etsi_es/201800_201899/20187306/04.04.01_60/es_20187306v040401p.pdf
http://www.etsi.org/deliver/etsi_es/201800_201899/20187306/04.04.01_60/es_20187306v040401p.pdf
http://www.etsi.org/deliver/etsi_es/201800_201899/20187305/04.04.01_60/es_20187305v040401p.pdf
http://www.etsi.org/deliver/etsi_es/201800_201899/20187305/04.04.01_60/es_20187305v040401p.pdf
http://www.itu.int/ITU-T/studygroups/com17/languages/X.680-0207.pdf
http://www.itu.int/ITU-T/studygroups/com17/languages/X.680-0207.pdf
http://www.erlang.org/download/armstrong_thesis_2003.pdf
http://www.erlang.org/download/armstrong_thesis_2003.pdf
http://ll2.ai.mit.edu/talks/armstrong.pdf
http://www.erlang.org/doc/design_principles/des_princ.html
http://www.ericsson.com/ourportfolio/products/sgsn-mme
http://www.ericsson.com/ourportfolio/products/sgsn-mme
http://www.spacios.eu/sectest2012/pdfs/SecTestICST_Schieferdecker.pdf
http://www.spacios.eu/sectest2012/pdfs/SecTestICST_Schieferdecker.pdf
http://pages.cs.wisc.edu/~bart/fuzz/CS736-Projects-f1988.pdf
http://msdn.microsoft.com/en-us/library/cc162782.aspx
http://msdn.microsoft.com/en-us/library/cc162782.aspx
http://securityevaluators.com/files/papers/analysisfuzzing.pdf

BIBLIOGRAPHY

[46] Codenomicon Ltd., “Fuzzing challenges: Metrics and Coverage,”
2010. [Online]. Available: http://www.codenomicon.com/resources/whitepapers/
codenomicon-wp-fuzzing-metrics-20100202.pdf

[47] D. Yu and W. Wen, “Non-Access-Stratum Request Attack in E-UTRAN,” in Computing,
Communications and Applications Conference (ComComAp), 2012. IEEE, 2012, pp. 48–53.

[48] OsmocomBB project, “OsmocomBB mobile.” [Online]. Available: http://bb.osmocom.org/
trac/wiki/mobile

[49] OsmocomBB project, “OsmocomBB Hardware/Phones.” [Online]. Available: http:
//bb.osmocom.org/trac/wiki/Hardware/Phones

[50] D. Spaar, “Running your own LTE eNodeB.” [Online]. Available: http://www.mirider.
com/weblog/2013/07/30/

[51] R. Amin, “4G Wireshark Dissector based on Samsung USB stick.” [Online]. Available:
http://labs.p1sec.com/2013/08/18/4g-wireshark-dissector-based-on-samsung-usb-stick/

[52] B. Wojtowicz, “OpenLTE.” [Online]. Available: http://openlte.sourceforge.net/

[53] L. Xu, J. Wu, and C. Liu, “T3FAH: a TTCN-3 based Fuzzer with Attack Heuristics,”
in Computer Science and Information Engineering, 2009 WRI World Congress on, vol. 7.
IEEE, 2009, pp. 744–749.

[54] I. Schieferdecker, J. Großmann, and M. Schneider, “Model-Based Security Testing,” in
MBT, ser. EPTCS, A. K. Petrenko and H. Schlingloff, Eds., vol. 80, 2012, pp. 1–12.

[55] Deja vu Security, “Peach Fuzzer,” 2013. [Online]. Available: http://peachfuzzer.com/

[56] DIAMONDS Consortium, “Development and Industrial Application of Multi-Domain
Security Testing Technologies,” 2013. [Online]. Available: http://www.itea2-diamonds.
org/ docs/caseStudies/Case Study Experience Sheet Ericsson.pdf

[57] OUSPG, “Radamsa.” [Online]. Available: https://code.google.com/p/ouspg/wiki/Radamsa

[58] P. Amini, “Sulley,” 2013. [Online]. Available: https://github.com/OpenRCE/sulley

[59] Codenomicon Ltd., “Codenomicon Defensics for 3G/4G LTE,” 2013. [Online]. Available:
http://www.codenomicon.com/defensics/3g-4g-lte/

[60] Codenomicon Ltd., “Codenomicon Defensics Traffic Capture Fuzzer,” 2013. [Online].
Available: http://www.codenomicon.com/defensics/traffic-capture-fuzzer/

68

http://www.codenomicon.com/resources/whitepapers/codenomicon-wp-fuzzing-metrics-20100202.pdf
http://www.codenomicon.com/resources/whitepapers/codenomicon-wp-fuzzing-metrics-20100202.pdf
http://bb.osmocom.org/trac/wiki/mobile
http://bb.osmocom.org/trac/wiki/mobile
http://bb.osmocom.org/trac/wiki/Hardware/Phones
http://bb.osmocom.org/trac/wiki/Hardware/Phones
http://www.mirider.com/weblog/2013/07/30/
http://www.mirider.com/weblog/2013/07/30/
http://labs.p1sec.com/2013/08/18/4g-wireshark-dissector-based-on-samsung-usb-stick/
http://openlte.sourceforge.net/
http://peachfuzzer.com/
http://www.itea2-diamonds.org/_docs/caseStudies/Case_Study_Experience_Sheet_Ericsson.pdf
http://www.itea2-diamonds.org/_docs/caseStudies/Case_Study_Experience_Sheet_Ericsson.pdf
https://code.google.com/p/ouspg/wiki/Radamsa
https://github.com/OpenRCE/sulley
http://www.codenomicon.com/defensics/3g-4g-lte/
http://www.codenomicon.com/defensics/traffic-capture-fuzzer/

	Introduction
	Scope
	Delimitations

	Theory
	Telecom networks
	History
	Evolved Packet System
	The Cellular Network
	Communication Interfaces
	Mobility Management Entity

	Non-Access Stratum Protocol
	Protocol Structure
	Encapsulation
	State Machines
	Attach and Service Request

	Testing and Test Control Notation Version 3
	TTCN-3 Control Interface
	TTCN-3 Runtime Interface
	TITAN: Test Execution Environment

	Erlang
	Ericsson SGSN-MME
	Hardware
	Software

	GSN Test Tool
	Fuzzing
	History
	Black- and White-Box Testing
	Mutation and Generation-based Fuzzing
	Fuzzing Techniques

	Related Work
	Telecom Attacks
	Telecom Tools
	Related Fuzzing Research
	Fuzzing Tools

	Design and Implementation
	Existing Test Environment
	TTCN-3 Environment
	GTT Environment
	Evaluation

	Design Requirements
	Conformance Test Environment
	Fuzzing Test Environment
	Model Extraction
	Fuzzing Engine
	Observer

	Implementation
	Model Extraction
	Fuzzing Engine
	Fuzzing API

	Case Study: NAS on Ericsson MME
	Test Setup
	State Awareness
	Encryption

	Observer Implementation
	Large Scale Attack
	Results
	Message types statistics
	Comparisons

	Evaluation
	Observer Implementation
	Test Execution of NAS Protocol Implementation
	Fuzzing Technique
	Large Scale Attack
	Generalizability
	Questionnaire
	Implementation Problems
	Initial Delimitations
	Imposed Limitations
	Case Study Problems

	Future Work
	State Monitoring
	Code Coverage
	Boundary Value Analysis
	Detailed Message Field Analysis

	Conclusions
	Abbreviations
	List of Figures
	List of Tables
	Bibliography

