
DF

.

Optimization of Hierarchical Decisions
in Airline Manpower Planning
Modifying job vacancy announcements using Kriging-
based optimization

Master’s thesis in Engineering Mathematics and Computational
Science

FRIDA ERIKSSON

Department of Mathematical Sciences
Chalmers University of Technology

Gothenburg, Sweden 2020

.

Master’s thesis 

Optimization of Hierarchical Decisions
in Airline Manpower Planning

Modifying job vacancy announcements using
Kriging-based optimization

FRIDA ERIKSSON

DF

Department of Mathecathical Sciences
Chalmers University of Technology

Gothenburg, Sweden 2020

.

Optimization of Hierarchical Decisions in Airline Manpower Planning

Modifying job vacancy announcements using Kriging-based optimization

FRIDA ERIKSSON

© FRIDA ERIKSSON, 2020

Supervisor: Pontus Ekh, Jeppesen Systems AB

Supervisor and examiner: Ann-Brith Strömberg, Mathematical Sciences,
Chalmers University of Technology

Master’s Thesis 2020
Department of Mathematical Sciences
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Abstract
.

This thesis work was performed at Jeppesen in Gothenburg, a company which devel-
ops and sells optimization software for scheduling to airlines. Among their different
products, Manpower Planning has been the focus in this project.

Airlines typically operate between many different airports, with several different air-
craft types and a large number of crews. The major part of the manpower planning
problem is that of deciding which and how many crews should be positioned at which
base airport, operating which aircraft type. The promotion process differs between air-
lines. Typically, on the North American market, job vacancies are announced, whereafter
crews make bids on the different vacancies. The allocation is then carried out according
to several rules, such that, e.g., the most senior crews’ bids are prioritized. The alloca-
tion decisions may lead to deficiencies, meaning that for some fleets the crew demand
exceeds the supply. By modifying the announced vacancies and by allowing staffing de-
viation on certain fleets, such deficiencies can be reduced, as well as the cost of simulator
training and other tutoring needed for crews which are promoted. Such modifications
are currently done manually.

In this thesis, an optimization algorithm is developed for modifying vacancies and
allowing staffing deviations. The problem itself is a black-box optimization problem,
meaning that it is computationally expensive to evaluate, and that no analytical deriva-
tives of the objective function exist. To solve such problems, a surrogate model can be
built which approximates the true objective. The surrogate model implemented in this
thesis is based on so-called Kriging, in which functions are modelled as realizations of
Gaussian processes. In addition, due to the problem being high-dimensional, dimen-
sionality reduction techniques are employed.

The optimization algorithm is implemented in Python and communicates with the
optimizer used at Jeppesen. Its performance and quality is tested on a benchmark prob-
lem as well as on real airline data. The allocation solutions found by the algorithm are
associated with lower costs compared to manually constructed reference solutions.

Acknowledgements
.

During the work with this thesis, many people have supported me in dif-
ferent ways and I would like to thank them all.
First of all, I would like to thank the people at the manpower optimization
department at Jeppesen for a few great months at the office, which contin-
ued remotely, due to the Corona virus situation. Especially I would like to
thank my supervisor Pontus Ekh and his team members for all support and
engagement throughout the thesis work.

I would also like to thank Ann-Brith Strömberg, my supervisor and ex-
aminer at the Mathematical Sciences department at Chalmers, for provid-
ing support in ideas, software licences and giving valuable feedback.

Contents

1 Introduction and problem description 2
1.1 Jeppesen . 2
1.2 Manpower Planning . 2
1.3 Key performance indicators . 4
1.4 Problem description . 4

2 Theory and background 5
2.1 Surrogate modeling . 5

2.1.1 Interpolation of scattered data in R . 6
2.1.2 Radial basis function models . 7
2.1.3 Kriging . 8

2.2 Dimensionality reduction . 12
2.2.1 Kriging partial least squares (KPLS) . 12
2.2.2 Improved parameter estimation (KPLS+K) . 15
2.2.3 Dropout . 15

2.3 Experimental design . 16
2.3.1 Random sampling . 16
2.3.2 Stratified sampling . 17
2.3.3 Latin hypercube design . 18

2.4 Infill sampling criteria . 20
2.4.1 Maximizing probability of improvement . 20
2.4.2 Maximizing expected improvement . 21

2.5 Numerical optimization algorithms . 24
2.5.1 COBYLA . 24
2.5.2 L-BFGS-B . 24

3 Explicit problem formulation 26
3.1 A simplified problem example . 26
3.2 Model formulation . 28

4 The optimization algorithm 32
4.1 Creating a surrogate model . 33
4.2 Design of experiments . 34
4.3 Infill sample criteria . 34
4.4 Termination criterion . 35

5 Implementation 36
5.1 General algorithm pseudocode . 36

5.1.1 Design of experiments . 37
5.1.2 Parameter estimation . 38
5.1.3 Infill sampling criteria . 38
5.1.4 Termination criterion . 39

5.2 Implementation into the Jeppesen Manpower Planning framework 39
5.3 Problem settings . 40

6 Algorithm evaluation 41
6.1 Evaluation of the KPLS algorithm using a benchmark function 41
6.2 Evaluation of the KPLS+K algorithm using a benchmark function 44

7 Results 45
7.1 Evaluating the KPLS algorithm on airline data with setting S1 46
7.2 Evaluating the KPLS algorithm on airline data with setting S2 51
7.3 Evaluating the KPLS+K algorithm on airline data with setting S1 55
7.4 Evaluating the KPLS+K algorithm on airline data with setting S2 59
7.5 General observations . 63

8 Discussion and future research 67
8.1 Method selection . 68
8.2 Algorithm evaluation . 70

9 Conclusions 71

Symbols and Notation

Symbol Meaning
det determinant of a matrix
| · | absolute value
R set of real numbers
R+ set of positive real numbers (including 0)
R∗+ set of positive real numbers (excluding 0)
(·)+ max(·,0)
·T transpose operation
n number of sampling points
d number of variables
h number of principal components
x 1× d vector containing one sample point
xj jth element of x
xi,j jth element of ith sample point xi
X n× d matrix of n sample points
y n× 1 vector of sample point evaluations
y(x) evaluation of sample point x
Ŷ (x) prediction of y(x)
k(·, ·) covariance function
N (0, k(·, ·)) Gaussian distribution of a process with mean 0 and covariance k(·, ·)
rxX n× 1 correlation vector
R n×n correlation matrix

1

1 Introduction and problem description

This Master’s Thesis was performed at Jeppesen and Mathematical Sciences at Chalmers University of
Technology in Gothenburg during the spring of 2020. Jeppesen build solutions for crew scheduling
and management problems and is a part of the Boeing Company. Their products consist of both
long-term schedules, as well as schedule recovery in case of disruption on the day of operation.

This project focuses on the airline Manpower Planning problem. The goal when solving the airline
Manpower Planning problem is to make sure that the crew demand in airline fleets does not exceed
the corresponding supply of crews. A major part of finding such solutions is to assign crew transitions
between the different airports and different aircraft types for which the airline operates. In this
project, much emphasis is put on the crew transitions.

Since airlines typically operate between many different airports, have several different fleets and
thousands of crew personnel, the Manpower Planning problem is impossible to solve by an exhaus-
tive search, due to its combinatorial nature. In order to find near-to-optimal solutions, a combination
of heuristics and exact methods are implemented within the Jeppesen Manpower Planning frame-
work. The evaluations are costly and the quality of model parameters reflects the solution quality.
Generally speaking, this thesis concerns improving certain parameter’s quality, by optimizing a sub-
step within the Manpower Planning framework, which is currently performed manually.

The thesis outline is as follows. In this section, Jeppesen is presented, followed by Manpower
Planning , key performance indicators and lastly the problem description is formulated. In Section
2, relevant theory and background is presented for the reader. Topics as surrogate modeling, dimen-
sionality reduction, experimental design and infill sampling criteria are presented. In Section 3, the
dynamics behind the problem is described, as well as an explicit model formulation of a simplified
problem. Thereafter, in Section 4, the optimization algorithm is presented, including the parts from
Section 2 which are implemented as a part of the thesis. The implementation of the optimization
algorithm then follows in Section 5. This includes pseudocode of the different parts of the algorithm,
how implementation into the Jeppesen Manpower Planning framework is carried out, as well as the
specific problem settings which are considered. In Section 6, the optimization algorithm is evaluated
using a benchmark problem, in order to validate its performance quality. Lastly, in Section 7 and
Section 8, numerical results obtained by running the optimization algorithm on the specific problem
are presented and discussed, as well as possible future research.

1.1 Jeppesen

Jeppesen in Gothenburg origins from a planning project at Volvo in the mid 1980s. In connection
with the aquisition by Boeing in 2006, the current name Jeppesen was established [1]. Jeppesen in
Gothenburg is, since then, a part of the Boeing Company and have at this date approximately 350
employees.

Jeppesen develops and sells solutions for crew planning and management problems to airlines.
Among their products, optimization software for tail assignment, i.e., the problem of assigning flights
to aircrafts, is found. Other products are related to crew pairing, i.e., finding sequences of flight con-
nections which starts and ends at the same base airport, and crew rostering, which means assigning
anonymous crew pairings to crew members. However, the product in focus within this project is their
optimization software for Manpower Planning, which is described in detail below.

1.2 Manpower Planning

The goal in airline Manpower Planning is to find solutions where the crew demand does not exceed
the crew supply within airline fleets. The planning is done long before the day of operation and con-
siders a number of hard and soft constraints, such as government regulations, union rules and crew
preferences. Building an optimal crew resource plan includes the decision of how many crews should
be allocated to the different aircraft types and the base airports, from which the airline operate. A

2

major part of finding such solutions is to assign crew transitions between the different airports and
the different aircraft types. In this project, we focus on such transitions, which are associated with
crew promotions.

In the airline promotion process, crews are typically asked to make bids on where and how they
prefer to continue working. The bids include desired base airport, type of aircraft, and rank, where
the rank can be either captain or first officer. Each crew should make several bids, since they are
not guaranteed to obtain their first choice. When solving the resource planning problem, these bids
are taken into consideration to decide where all crews should be positioned, in order to meet a given
demand. One thing that makes the problem practically complicated is that crews need to go to several
weeks of training in order to advance to higher positions, which means that they will be unavailable
(for regular duty) during this period. Moreover, airlines have a strict seniority ranking among their
crews, meaning that pilots with higher seniority should have their preferences fulfilled ahead of less
senior pilots.

The business process differs in different parts of the world. For most airlines on the European
Manpower Planning market, the crew bids are first collected, whereafter the airline announces job
vacancies, i.e., which jobs are vacant and need to be filled by a crew. The crews are then allocated
to these vacancies according to their bids (and other rules). The corresponding process related to
the North American market is more complicated. Since the data used in this project originates from
a North American airline, the business process applied to the North American Manpower Planning
market is to be described in more detail.

The North American business process can be divided into four parts; see Figure 1. In the first
step, vacancies are announced. Since crew preferences are not known in advance, uncertainty will be
present in this part of the process. In the second step, the crew bids are collected, which makes the
subsequent problems deterministic. As a third step in the process, crews are allocated to vacancies.
This problem can be seen as a network flow with dependencies, where a net demand must be fulfilled.
However, this problem becomes considerably more complicated than a pure network flow problem,
due to the crew seniority ranking. Lastly, the problem of when in time crew training will take place is
solved, given the allocations from step three. The problem solved in the last step is the most complex;
it includes constraints associated with, e.g., government regulations and union rules. Other factors
which make this step complicated is its high dimensionality and the requirements on integrality of its
solutions. The input-output response is not at all smooth and can not be represented by an analytical
function.

Announce
vacancies

Collect bids
Allocate crews

to vacancies

Solve the problem
of when in time

crew training
will take place1 2 3

4

Figure 1: Flowchart of the Manpower Planning process for the North American market.

The solution process applied by Jeppesen is presented in Figure 2. First of all, decisions have
to be made on how to announce the vacancies. Typically, historical data is used to generate several
different scenarios within the first step of the process. After the bid collection in step two, some
modifications of the originally posted vacancies are done, by comparing with the vacancies posted
in the first step. Moreover, feedback is sent to the initial step, in order to improve future vacancy
announcements. Currently, the modifications between steps two and three are done manually. Such
modifications may also be to allow some staffing deviation within different groups, where a group is
referred to as a triple; (base airport, aircraft type, rank).

When solving the crew-to-vacancy allocation problems, backfilling among groups is a recurrent
phenomenon. In other words, if a vacancy appears in a certain group, it tends to be filled by a person

3

Decision

Announce
vacancies

Collect bids

Modification

Feedback

Allocate crews
to vacancies

Solve the problem
of when in time

crew training
will take place1 2 3

4

Figure 2: Flowchart for the Jeppesen Manpower Planning solution process.

from a less desirable1 group. In the worst case scenario, this behavior is propagating into a long
chain of group re-distributions, which leads to unnecessary crew training. By allowing some staffing
deviation in groups far up in the chain, many group re-distributions and thus crew training can be
avoided.

1.3 Key performance indicators

To evaluate solutions of the Manpower Planning problem, so called Key Performance Indicators (KPIs)
are used. They consist of different performance measurements, based on, e.g., cost and quality. Some
of the KPIs that are generated by Jeppesen’s optimizer are

• total cost,

• number of courses given, and

• group deficiency costs.

The total cost is the usual minimization aim, and represents the sum of several different costs; for
instance, the cost of rosters, stand-ins, courses, and deficiencies. However, we must not restrict our-
selves to one of the KPIs. Several of them can be considered simultaneously, which is the idea of mul-
tiobjective optimization, in comparison with single objective optimization where only one objective
function is to be minimized. In this thesis work, the focus is mainly on single objective optimization,
but the method is possible to extend to multiobjective optimization. Nevertheless, all of the KPIs
mentioned are utilized in some sense, either as the minimization objective or within the optimization
algorithm.

1.4 Problem description

The goal of the thesis project is to optimize the decisions taken between steps 2 and 3 in the Man-
power Planning process illustrated in Figure 2. As previously mentioned, such decisions are mainly
addressing how much staffing deviation to allow within different groups. The final optimization pro-
cedure developed shall be theoretically substantiated and ideally possible to integrate into Jeppesen’s
optimizer in order to improve the product.

Currently, the problem of allocating crews to vacancies is solved using an iterative process. At
each iteration, one crew is reallocated between groups according to the crew’s bids, the current va-
cancies, and the crew seniority ranking. The procedure continues until no crew can alter between
groups to obtain a more preferable bid, without making it worse for any other crew with higher
seniority. This is one of the rules stated within Jeppesen’s Manpower Planning framework. The se-
niority attribute makes it non-trivial to formulate and solve the problem explicitly, e.g., as a mixed
integer linear program (MILP). However, this is investigated and such a formulation is included in
the report, to give a deeper understanding of the problem in question. In any case, since the final

1In general, larger aircraft types and higher rank are more desirable than smaller aircraft types and lower rank, due to
salary differences

4

evaluation of the model can not be done before the whole Manpower Planning process is completed,
a different, black-box based model will be requisite in order to utilize solution feedback.

In general, if an explicit formulation can not be found, or if function evaluations are computa-
tionally too expensive, a surrogate model which approximates input-output (I/O) responses can be
utilized. To design a surrogate model which approximates the true model properly will be the main
objective of this project. This can be broken down into several different issues, mainly the following.

• How to reduce the problem into fewer dimensions. Manpower Planning problems typically
involve many variables, which is problematic due to the resulting heavy computations.

• Design of experiment, i.e., how to choose initial sample points for the surrogate model.

• A strategy for choosing new evaluation points.

• How to modify surrogate modelling techniques in order to utilize the properties of this specific
problem.

When an adequate model has been developed, it is implemented in Python and its performance
will be examined using Jeppesen’s real data sets, as well as benchmark functions, in order to justify
the model and its performance quality. However, mimicking the behavior of Jeppesen’s optimizer is
complicated, which means that the benchmark function typically will be much smoother than the
true objective and thus may produce too promising results.

2 Theory and background

In this section, relevant theory and background is presented, which is used when constructing the
optimization algorithm. The subjects are presented with an emphasis to the mathematics, in order
to give insight into the model and method choices made. For the casual reader, this section does not
have to be read thoroughly; it can rather be used as a reference for the subsequent sections when
required.

In Section 2.1 surrogate modeling is presented, with emphasis on Kriging. Thereafter, dimension-
ality reduction techniques are described in Section 2.2, followed by experimental design in Section
2.3, infill sampling criteria in Section 2.4 and finally numerical optimization algorithms in Section
2.5.

2.1 Surrogate modeling

A surrogate model (also known as approximation model, metamodel or response surface) acts as a
model of a model [2]. Surrogate models are advantageous when the objective is to optimize black-box
functions (no analytical derivatives) or models which are expensive to evaluate. By interpolating I/O
data, the surrogate model approximates the underlying function for inputs not yet evaluated. There
are different types of surrogate models; Radial Basis Functions and Kriging (see [3]) being two widely
used methods. References to other types of surrogate models can be found in [4].

There are also non-interpolating methods, which are instead minimizing the sum of squared er-
rors from a predetermined function. An example of a non-interpolating method is the fitted quadratic
surfaces. However, as discussed in [5], such methods are unreliable since the surface may not cap-
ture the function’s shape sufficiently. Another problem with non-interpolating methods is that the
addition of new sample points will necessarily not lead to a more accurate surface fit. In contrast,
interpolating methods always become more accurate as new points are added to the sample, and will
eventually converge to the true function. However, interpolation can lead to overfitting, meaning
that the model approximated from a limited set of data points becomes overly complex.

5

2.1.1 Interpolation of scattered data in R

Data interpolation is the problem of constructing new data points within the range of a set of known
data points X = {x1, ...,xn}. Formally, we seek a function P ∈ C0 such that

P (xi) = yi , i = 1, ...,n, (1)

given the points in xi ∈ X and the corresponding data y = (y1, ..., yn). The interpolation function P
is not unique, since C0 is an infinite dimensional function space. However, for some specific linear
finite dimensional spaces, e.g., Πn−1 (the space of polynomials of degree less than n), uniqueness
holds. For Πn−1, the problem can be stated as finding the coefficients αi , i = 1, ...,n, such that

P (xi) =
n∑
j=1

αixi,j−1, i = 1, ...,n, (2)

which is equivalent to finding the solution α = (α1, ...,αn) to the linear system

Aα = y, (3)

where
Aij = xi,j−1, i, j = 1, ...,n.

If the matrix A is invertible, then the problem (3) (and equivalently (2)) has a unique solution. More-
over, Πn−1 is independent of the data information; it depends only on the data quantity. Despite of
these properties, the polynomial function space is not very practical for implementations, since the
polynomial degree increases in proportion to the number of data points evaluated. This usually leads
to highly oscillating interpolations; see Figure 3.

To avoid the oscillations, splines can be used. Splines are piecewise polynomials, which are used
to interpolate the data between evaluated points. The most common choice is cubic splines (of third
degree), but polynomials of any order can be used. The problem in R is, given one-dimensional
points a < x1 < ... < xn < b and the function space

S3(X) =
{
S ∈ C2((a,b)) : S |[xi ,xi+1] ∈Π3(R), i = 1, ...,n− 1

}
to find

S ∈ S3(X) : S(xi) = yi , i = 1, ...,n. (4)

Unlike Πn−1, S3 is dependent of the data points X . Moreover, a unique solution to (4) can not be
found. With n points and hence n−1 splines, each with four2 degrees of freedom, there are (n−1)+3 =
n+ 2 degrees of freedom in total, compared to the data which only has n degrees of freedom.

The function space can be modified in order to ensure a unique solution. For example, setting
the second derivative to zero at the end points reduces the dimensionality. This approach ensures a
unique solution to (4), and is obtained by replacing S3 with the natural spline space:

NS3(X) =
{
S ∈ S3(X) : S ′′(x1) = S ′′(xn) = 0

}
.

However, even though high oscillations are avoided, this approach still has the drawback of being
strongly location dependent, in comparison to Πn−1.

A general drawback with the mentioned interpolation methods is that it is difficult to extend them
to higher dimensions. In order to do this, we have to reformulate the problems. According to [6], all

2Four degrees of freedom at each interval and three degrees of freedom fixed at each of the inner points, since the function
and its first and second order derivatives have to be continuous

6

Figure 3: Interpolation of sampled data points using polynomial (dashed) and spline (solid) interpo-
lation.

natural cubic splines SN can be represented on the form:

SN (x) =
n∑
i=1

αiφ(|x − xi |) + p(x), x ∈R

n∑
i=1

αi =
n∑
i=1

αixi = 0,

where φ(r) = r3, r ≥ 0, is a basis function and p is a first order polynomial. This motivates us to
consider multivariate splines and therefore we are introducing radial basis functions (RBF).

2.1.2 Radial basis function models

A radial function is a function f : Rd → R such that there exists a univariate function φ : R+ → R

for which f (x) = φ(||x||), x ∈ Rd , i.e. the function value depends only on the Euclidean norm. A RBF
model is in turn a model constructed by linear superposition of radial functions as basis functions.
Radial basis functions are widely used in different applications, such as image processing and discrete
data interpolation [2].

The radial basis function model idea (for polynomials of order 0) is as follows. Let xi = {xi1, ...,xid},
i = 1, ...,n, be n d-dimensional sample points, selected through experimental design, see Section 2.3.
Let y1, ..., yn ∈ R be the corresponding data. We seek a prediction model f (x) which interpolates the
data {(xi , yi) : i = 1, ...,n}, and thus satisfies

f (x) =
n∑
i=1

βiφ(||x − xi ||) = βTΦ , (5)

where β =
(
β1 ... βn

)T
, Φij = φ(||xi −xj ||), the βi ∈R are weight coefficients and φ is a radial function of

the Euclidean distance between the point x to be evaluated and the sample point xi . Thus, ||·|| denotes
the Euclidean norm in Rd . Moreover, according to the interpolation condition (1), the prediction

7

model must satisfy
f (xi) = yi , i = 1, ...,n, (6)

ensuring that predictions are exact at the sampled points xi . To obtain the coefficients βi , the matrix
equation f = βTΦ can be uniquely solved if and only if Φ is invertible. Since Φ is defined by the
radial function φ, this have to be chosen in such a way that invertibility is guaranteed. For details
on how to uniquely solve (5), as well as how the RBF model is extended to involve higher order
polynomials, see [7].

Some of the most commonly used RBFs are presented in Table 1. All of them ensure unique
solutions to the interpolation problem. The RBFs are plotted in 1D in Figure 4, but all of them can be
used for interpolation of scattered data points in arbitrary dimensions.

Table 1: Common RBFs

Name φ(r)
Linear −r
Cubic r3

Thin plate spline rr logr
Multiquadratic −

√
r2 + 1

Inverse multiquadratic 1/
√
r2 + 1

Gaussian exp(−r2)

(a) Linear, cubic and thin plate spline. (b) Multiquadratic, inverse multiquadratic and Gaus-
sian.

Figure 4: The RBFs from Table 1.

2.1.3 Kriging

Another classic type of surrogate model which invokes Gaussian processes is the Kriging method, also
known as precisely Gaussian process model or Design and Analysis of Computer Experiments (DACE).
The Kriging method was first presented in geostatistics, see [3], but has been extended to computer
experiments as well as machine learning.

Kriging is often described as ’modeling the function as a realization of a stochastic process’
[5]. However, there is nothing random about the function values of unsampled points, we just do
not know them yet. Just like in other surrogate model techniques, e.g., RBF models, a set of d-
dimensional sample points xi = {xi1, ...,xid}, i = 1, ...,n, and corresponding data yi , i = 1, ...,n, are

8

given. Before sampling any new points, there will be an uncertainty about the function values at
these points. The uncertainty is modelled by considering the deterministic response f (x) as a real-
ization of the stochastic process

Y (x) =
d∑
j=1

βjϕj (x) +Z(x), (7)

where, for j = 1, ...,d, βj ∈ R is an unknown parameter, ϕj is a known independent basis function,
and Z(x) is a normally distributed random variable with E[Z(x)] = 0 and a covariance function (also
known as kernel function) given by

Cov(Z(x),Z(x′)) = k(x,x′) = σ2
z r(x,x

′) = σ2
z rxx′ ∀x,x′ ∈Rd ,

where σ2
z denotes the process variance and rxx′ denotes the correlation function between points x and

x′ . The correlation function depends on some hyper-parameters, which we will denote by θ and p,
and is given by

Corr(x,x′) = rxx′ = exp
(
−

d∑
j=1

θj |xj − x′j |
pj
)
, (8)

where it is assumed that θj ≥ 0 and 0 < pj ≤ 2, j = 1, ...,d. Moreover, we denote the n × 1 correlation
vector as rxX = [rxx1

, ..., rxxn] and the n×n correlation matrix as

R = [rx1X , ...,rxnX]T =


rx1x1

. . . rx1xn
...

. . .
...

rxnx1
. . . rxnxn

 ,
where the (x,x′) entry in R is usually given by (8).

When constructing the Kriging model, the hyper-parameters are considered to be known. The
θj parameter determines how fast the correlation decreases when moving in the jth coordinate di-
rection. A large value of θj means that the function is strongly active in the jth variable and may
cause the function value to change rapidly, even when the distance between two points is small. The
pj variable determines the function’s smoothness in the jth coordinate direction. While values of pj
close to 2 serve to model smooth functions, values of pj close to 0 are more suitable when modeling
less smooth, non-differentiable functions [5]. With a correlation function given by (8), the covariance
kernel k(x,x′) is called a Gaussian exponential kernel, which is the most widely used kernel function.
Alternatives exist, e.g., the Matérn kernel, see [8].

Derivation of the Kriging predictor

The Kriging predictor is the predictor which minimizes the expected squared prediction error. It is
unbiased and modelled as a linear function of the observed data. Thus, the goal of this derivation
is to determine the Best Linear Unbiased Predictor (BLUP), which is done in accordance with [9]. In
this context, unbiasedness means that the expected value of the linear predictor should equal the
expected value of (7). A linear predictor of Y (x) is on the form cT

xy, where cT
x is a linear weighting

vector and y = (y1, ..., yn)T is the sampled data output. Since E[Z(x)] = 0, an unbiased linear predictor
is such that

E[cT
xy] = cT

xϕβ, (9)

where ϕ = [ϕT(x1), ...,ϕT(xn)]T, ϕ(x) = [ϕ1(x), ...,ϕd(x)]T and β = [β1, ...,βd]T. By a similar reasoning,
the expected value of (7) is given by

E[Y (x)] = ϕT
xβ. (10)

Equating (9) and (10) for all β, we obtain a set of d unbiasedness constraints:

ϕTcx = ϕx. (11)

9

Now, for any linear predictor cT
xy of Y (x), the mean squared error (MSE) of the prediction Ŷ equals

MSE[Ŷ (x)] = E
[
cT
xy −Y (x)

]2
= E

[
cT
xyy

Tcx +Y 2(x)− 2cT
xyY (x)

]
= E

[
cT
x (ϕβ + z)(ϕβ + z)Tcx + (ϕT

xβ +Z(x))2 − 2cT
x (ϕβ + z)(ϕT

x β +Z(x))
]

= (cT
xϕβ −ϕT

xβ)2 + cT
xσ

2
z Rcx + σ2

z − 2cT
xσ

2
z rxX

= cT
xσ

2
z Rcx + σ2

z − 2cT
xσ

2
z rxX = σ2

z

(
1 + cT

xRcx − 2cT
xrxX

)
,

(12)

where z = [Z(x1), ...,Z(xn)]T and the other variables are as previously defined. The term (cT
xϕβ−ϕT

xβ)2

in the second last row vanishes because of the unbiasedness constraints (11).
For the constrained minimization of the MSE, we introduce d Lagrange multipliers λ for the d

unbiasedness constraints in (11) and we obtain the following minimization problem.

min
cx

σ2
z

(
1 + cT

xRcx − 2cT
xrxX

)
−λ

(
ϕTcx −ϕx

)
s.t. ϕTcx −ϕx = 0.

(13)

Taking the partial derivative with respect to cx of the objective function in (13), we have

σ2
z Rcx − σ2

z rxX −
λ
2
ϕ = 0.

Since it is permissible to define a new choice of Lagrange multipliers λ := 2λ, the slightly more dense
equation

σ2
z Rcx − σ2

z rxX −λϕ = 0 (14)

is used instead. Combining (14) with the set of d unbiasedness constraints in (11) yields the system[
0 ϕT

ϕ σ2
z R

][
−λ
cx

]
=

[
ϕx

σ2
z rxX

]
. (15)

By inverting the matrix, the BLUP is obtained as

Ŷ (x) = cT
xy =

[
−λT cT

x

][0
y

]
=

[
ϕT
x rT

xX

][
0 ϕT

ϕ R

]−1 [
0
y

]
.

Equivalently, this can be written as

Ŷ (x) = ϕT
x β̂ + rT

xXR
−1(y −ϕβ̂), (16)

where
β̂ = (ϕTR−1ϕ)−1ϕTR−1y (17)

is the usual generalized least squares estimator of β. It happens to be the maxmimum likelihood
estimate (MLE) as well, which will be derived later on.

In addition, the MSE of the estimate can be expressed by substituting in the matrices from (15)
into (12):

MSE[Ŷ (x)] = σ̂2(x) = σ2
z

1− [ϕT
x rT

xX

][
0 ϕT

ϕ R

]−1 [
ϕx
rxX

], (18)

where σ̂2 denotes the Kriging variance, which is different from the z-subscripted process variance.
A less complicated formula for the MSE of the predictor can be obtained by considering y and Y (x)
together. Assuming that they are jointly normally distributed, i.e.,[

y
Y (x)

]
∼N

[ϕϕT
x

]
β,σ2

z

[
R rxX
rT
xX 1

],
10

we can see Ŷ (x) as the conditional expectation of Ŷ (x) = Y (x)|y. Thus,

Ŷ (x) = Y (x)|y ∼N
(
µ(x),σ2(x)

)
,

where

µ(x) = ϕT
xβ + rT

xXR
−1(y −ϕβ), (19)

σ2(x) = σ2
z (1− rT

xXR
−1rxX). (20)

Comparing with previous estimates, equations (16) and (19) are equivalent, while (18) and (20) differ.
The reason why they differ is because the estimation of β is ignored in (20), which means that (18) is
slightly more accurate. However, both formulas ensure that the measure will be large for predictions
far away from sampled data, and become smaller when approaching the sampled data points.

To summarize, the Kriging mean and variance estimates are given by

µ̂(x) = ϕT
xβ + rT

xXR
−1(y −ϕβ)

σ̂2(x) = σ2
z

1− [ϕT
x rT

xX

][
0 ϕT

ϕ R

]−1 [
ϕx
rxX

] ≈ σ2
z (1− rT

xXR
−1rxX).

Maximum likelihood estimation

Yet, the model is not complete since the parameters β, σ2
z , θ = (θ1, ...,θd), and p = (p1, ...,pd) are not

specified. Within the Kriging framework, these parameters are usually obtained by applying MLE.
Cross Validation (CV) techniques can be used, but in most of the cases studied the MLE variance
is lower [10], which motivates the use of this technique. In practice, it is rather the log-likelihood
function which is maximized, since it is generally much easier to find its derivative. Since the log-
arithm is a monotonically increasing function, maximizing the log-likelihood function is equivalent
to maximizing the likelihood function.

Given a Gaussian random process, the log-MLE is (up to a constant) given by

− 1
2

(
n lnσ2

z + lndetR+ (y −ϕβ)TR−1(y −ϕβ)/σ2
z

)
, (21)

where det(·) denotes the determinant. If the hyper-parameters θ and p are assumed to be known, the
MLE of β and σ2

z are given by
β̂ = (ϕTR−1ϕ)−1ϕTR−1y

and
σ̂2
z =

1
n

(y −ϕβ̂)TR−1(y −ϕβ̂)

respectively. Observe that the MLE estimate of β is equivalent to its generalized least squares estimate
given in (17). Now, substituting the expressions for β̂ and σ̂2

z back into (21) yields the so-called
concentrated likelihood function:

− 1
2

(
n ln σ̂2

z + lndetR
)
. (22)

This is an equation of the hyper-parameters θ and p only, which should be chosen properly to maxi-
mize the function. Direct MLE is computationally expensive, since it requires the inversion of the n×n
correlation matrix R for each evaluated parameter setting. Thus, numerical optimization techniques
are used, with some simplifications. For example, the parameters pj are often fixed to the value 2
for all j = 1, ...,d. Most often the correlation function is robust enough to fit data adequately using
only the hyper-parameter θ [11]. Moreover, e.g., [12] suggests that without a significant loss in model
fidelity, a simple constant term model can be used, i.e., with ϕ = 1n, ϕ = 1n×n. This simplification is
known as ordinary Kriging in geostatistics and yields the predictors

ŶOK(x) = β̂ + rT
xXR

−1(y − 1β̂), (23)

11

with
β̂ = (1TR−11)−11TR−1y

and
σ̂2
z,OK =

1
n

(y − 1β̂)TR−1(y − 1β̂).

Lastly, for χ = (χ1, ...,χd), denoting g(χ) = exp
(
−
∑d
j=1θj |χj |

pj
)
, then the ith element of rxX equals

g(x − xi) and thus it holds that

Ŷ (x) = β̂ +
n∑
i=1

αig(x − xi), (24)

where αi denotes the ith element of R−1(y−ϕβ̂). Comparing (24) with (5), we observe that the Kriging
predictor has a similar form as the RBF surrogate. However, generally g(v) , g(||v||) and hence g(·) is
not a RBF.

2.2 Dimensionality reduction

High dimensional optimization problems are generally computationally heavy to solve. In order to
reduce computation times, dimensionality reduction techniques are introduced. There are numerous
of ways to tackle high-dimensionality, since the dimensionality challenge is more or less universal
within the fields of science and engineering. Here, the focus will be on how to reduce dimensionality
within the development of a Kriging-based surrogate model. In Section 2.2.1, the Kriging partial least
squares (KPLS) method is introduced, followed by its extension KPLS+K in Section 2.2.2. Lastly, the
dropout method is described in Section 2.2.3.

2.2.1 Kriging partial least squares (KPLS)

The Kriging model is advantageous due to its ability to accurately imitate the behavior of computa-
tionally expensive simulations and in addition providing an estimate for the prediction error. How-
ever, Kriging has drawbacks which become evident as the number of dimensions increases. As men-
tioned in Section 2.1.3, as the sample size n increases, the inversion of the n × n correlation matrix
R becomes computationally expensive. As a consequence, the estimation of the hyper-parameters
becomes complex, since it requires several inversions of the correlation matrix. To prevent such
problems and hence obtain a fast predictor, [13] presents a method which combines Kriging with
the technique of Partial Least Squares (PLS) which is referred to as the Kriging Partial Least Squares
(KPLS) method.

Partial least squares

Partial Least Squares is a technique for predicting trends in data. It is particularly useful when the
original data set consists of highly collinear variables and when the sample size is small. PLS finds
a linear relationship between I/O variables, by forming a new space spanned by so called principal
components (PC) and projecting the input variables onto this new space. The PCs are constructed
as linear combinations of the input variables. Below, a brief description of the PLS method follows.
For more details, see e.g., [14]. Another popular technique for dimensionality reduction is principal
component analysis (PCA), which exposes dependencies among the input variables. Since surrogate
modeling considers I/O responses, PLS is chosen rather than PCA, as PLS in contrast to PCA considers
I/O relationships.

The idea of the PLS method is to find the multidimensional direction in the input space which best
explains the characteristics of the output. First, the n×d dimensional initial sample matrix X and the
corresponding data y are centered and scaled. Thereafter, the principal components are constructed.

12

Let h denote the number of PCs retained3, with h� d. The PCs are constructed sequentially. The lth

PC, denoted as t(l), is obtained by finding the direction w(l) which maximizes the squared covariance
between t(l) = X (l−1)w(l) and y(l−1), i.e.,

w(l) =
{argmax

w(l)
w(l)TX (l−1)Ty(l−1)y(l−1)TX (l−1)w(l)

s.t. w(l)Tw(l) = 1,
(25)

for l = 1, ...,h. The maximum is found whenw(l) is the eigenvector of the matrixX (l−1)Ty(l−1)y(l−1)TX (l−1)

corresponding to the largest eigenvalue (in absolute terms). The vector w(l) thus contains the lth prin-
cipal component’s weights. To find an estimate of the solution to the problem (25), the power iteration
method introduced by [16] can be used.

To obtain the first PC, we use X (0) = X and y(0) = y. The matrices X (l) and y(l) are called residual
matrices from the regression of X (l−1) and y(l−1) onto tl , respectively, and are given by

X (l) = X (l−1) − t(l)p(l),

y(l) = y(l−1) − t(l)cl ,
(26)

where

p(l) = (t(l)Tt(l))−1t(l)TX (l−1) ∈R1×d ∀l = 1, ...,h,

cl = (t(l)Tt(l))−1t(l)Ty(l−1) ∈R ∀l = 1, ...,h,
(27)

contain the regression coefficients. An illustration of how the method works in a case with d = 3 and
h = 2 is given in Figure 5.

Now, by rotating the original coordinate system with axes x1, ...,xd , the principal components form
a new coordinate system [14], which can be written as

t(l) = X (l−1)w(l) = Xw(l)
∗ , l = 1, ...,h (28)

In accordance with [17], we introduce the new weights w(l)
∗ as the entries of the weight matrix W ∗,

given by
W ∗ =W (P TW)−1,

where W = (w(1), ...,w(h)) and P = (p(1)T, ...,p(h)T). When h = d, W ∗ rotates the original coordinate
system (x1, ...,xd) into the new system (t(1), ..., t(d)), following the principal directions w(1), ...,w(d). As
a last step of the KPLS approach, the principal components in (28) are utilized to estimate the hyper-
parameters of the correlation function R.

Construction of the KPLS model

In the original Kriging model, the hyper-parameters to be estimated are θ = (θ1, ...,θd) and p =
(p1, ...,pd). Within the KPLS framework, pj is fixed to 2 for all j = 1, ...,d. As discussed in Section 2.1.3,
this is a common simplification, which assumes the function to be smooth in all coordinate directions.
The parameters θ are measuring how strongly each of the input variables x1, ...,xd are affecting the

output y. The weight coefficientsw(l)
∗ , l = 1, ...,h, can in turn be interpreted as measuring the influence

of the input variables on the output. In the KPLS model, the number of hyper-parameters θ is equal
to the number of principal components. Since h � d, the estimation of the new hyper-parameters
θ1, ...,θh takes considerably less time than estimating the original d-dimensional parameter vector θ.

To construct the KPLS model, we first define a kernel kKPLS
1 : B×B→R given by k1(ϕ1(x),ϕ1(x′)),

where k1 : B × B→ R is an isotropic4 stationary kernel, ϕ1 : B→ B is the matrix of basis functions,

3in practice, h does not generally exceed 4 [15]
4the same hyper-parameter is used for all directions

13

x1

x2

x3 First principal
direction

Second principal
direction

Projection into two
principal components

(a) Construction of two principal components in
X ⊆R3 space

c1t
(1)

y(0)

(b) Prediction of y(0)

c2t
(2)

y(1)

(c) Prediction of y(1)

c1t
(1) + c2t

(2)

y

(d) Final prediction of y

Figure 5: A 3D example where two principal components are constructed, inspired by [13].

x 7→
[
w

(1)
∗1 x1, ...,w

(1)
∗d xd

]T
and B is a hypercube inluded in Rd . The weights w(1)

∗1 , ...,w
(1)
∗d can be inter-

preted as measuring the importance of the corresponding variables x1, ...,xd for constructing the first

principal component t(1). However, the information in w(1)
∗ is generally insufficient, and is therefore

supplemented by the information in the remaining PCs t(2), ...,t(h). To incorporate this information, a
new kernel is constructed sequentially using the tensor product of the kernels kKPLS

l , l = 1, ...,h:

kKPLS
1:h (x,x′) =

h∏
l=1

kKPLS
l (ϕl(x),ϕl(x

′)).

The kKPLS
1:h kernel thus accounts for all PC information in one single covariance kernel.

14

Using the Gaussian exponential kernel corresponding to (8) with p ≡ 2, the KPLS kernel becomes

kKPLS
1:h (x,x′) = σ2

z

h∏
l=1

d∏
j=1

exp
(
−θl

(
w

(l)
∗j xj −w

(l)
∗j x
′
j

)2
)

= σ2
z exp

(h∑
l=1

d∑
j=1

−θlw
(l)
∗j

2
(
xj − x′j

)2
)

= σ2
z exp

(d∑
j=1

−ηj
(
xj − x′j

)2
)

= σ2
z

d∏
j=1

exp
(
− ηj

(
xj − x′j

)2
)
,

where ηj =
∑h
l=1θlw

(l)
∗j

2 ∀j = 1, ...,d. Since the KPLS kernel and hence the corresponding correlation
matrix involves far less hyper-parameters, the MLE computation time will decrease significantly.
However, the improved computation time might be at the cost of a less accurate estimation.

2.2.2 Improved parameter estimation (KPLS+K)

To compromise between computation time and accuracy, [18] suggests an additional step, where the
complete hyper-parameter vector θ = (θ1, ...,θd) is estimated using ηj , j = 1, ...,d, as a starting point.
This approach is referred to as KPLS+K (KPLS to initialize the Kriging hyper-parameters). After the
θl-MLE, for l = 1, ...,h, a local optimization of the log-likelihood function (22) is performed in the
complete Rd space, with η = {ηj } ∈Rd used as the start vector. This step allows to correct the estima-
tion in many of the directions by optimizing η, although with a slight increase in computational time
compared to the KPLS model.

2.2.3 Dropout

Dropout is a dimensionality reduction technique applied to Bayesian optimization5 proposed by [19].
The idea is inspired by the dropout algorithm in neural networks and is fairly simple. At each iter-
ation, only a subset of magnitude d′ < d of the input variables is optimized. The rest of the d − d′
variables are chosen according to an alternative strategy; either using random numbers, by retrieving
the result of the best solution found, or a combination of these two methods.

Let Id′ denote the d′ indices corresponding to the variables xd
′

= xId′ which are to be optimized
and equivalently let Id−d′ be the indices of the left-out d − d′ dimensions, with variables xd−d

′
=

xId−d′ . Clearly, Id′ ∪ Id−d′ = {1, ...,d} and Id−d′ ∩ Id = 0. We will denote the set of observations as
x1:t = [xd

′
1:t ,x

d−d′
1:t], where at each iteration t, xd

′
t is optimized using a desired algorithm, while xd−d

′
t is

selected according to one of the following ”fill-in” strategies:

Dropout-Random

The variables are randomly generated from a uniform distribution within the domain:

xd
′−d
t ∼ U (xd

′−d). (29)

5yet another synonym for black-box optimization

15

Dropout-Copy

The values corresponding to the best solution found so far is copied:

x+
t = argmax

t′≤t
f (xt′)

xd−d
′

t = (x+
t)d−d

′
,

(30)

where f (xt′) = yt′ , t′ = 1, ..., t is the previously evaluated data.

Dropout-Mix

A mixture of Dropout-Random and Dropout-Copy. With probability p, xd−d
′

t is obtained from (29)
and consequently from (30) with probability 1− p.

2.3 Experimental design

Experimental design or design of experiments (DoE) is the process of constructing an initial sample
to provide to the surrogate model. The initial sample consists of a number of sample points xi =
(xi1, ...,xid), i = 1, ...,n, and the data y = (y1, ..., yn) obtained by evaluating the sample points. There
are many different DoE techniques; see, e.g., [2]. Here the methods of random sampling, stratified
sampling and Latin hypercube design (LHD) are presented, with focus on LHD.

Considering DoE methods designed for computer experiments, the primary target is to obtain a
space filling sample, in order to provide as much information as possible of the domain under inves-
tigation. Further on, this general domain is denoted by Ω. Secondly, the experimental design should
be non-collapsing. In case of the black-box function value being (almost) non-influenced by a certain
design parameter, two potential sample points which differ only in the direction corresponding to
this parameter will ”collapse”, meaning that they can be seen as the same sample point evaluated
twice. This situation is not desirable for deterministic black-box functions, and thus two DoE sample
points should not share any coordinate values [20].

2.3.1 Random sampling

A simple strategy for constructing an initial sample xi = (xi1, ...,xid), i = 1, ...,n, is to pick n points
randomly from a uniform probability distribution in Ω. This approach is however unable to ensure
the space-fillingness criterion, which emphasizes the need for a method to keep the sampled points
apart.

A suggestion of such a method is to pick points randomly from Ω and add them to the initial
sample X if they are at least a certain distance δ away from any other point in X . Equivalently, in
d dimensions, they should not lie within a d-dimensional hyper-sphere of radius δ centered around
the points in X . The performance of this method depends on the choices of δ and n. If they are too
large, it might not be possible to create such a sample, due to overlapping hyper-spheres. In Figure
6 this method is illustrated in two dimensions, with δ being 0.9 and 0.5, respectively. In order to
obtain a well spread sample, the radius δ should be estimated depending on n and Ω. To estimate δ,
a relationship between the volume of the hyper-spheres and the volume of the domain Ω is required.
The volume of a d-dimensional hyper-sphere is

Vd(δ) =
πd/2

Γ (d2 + 1)
δd =

π
d/2

(d2)!
δd , d even,

2(d+1)/2 π(d−1)/2

d!! δd , d odd,
(31)

where d!! =
∏d d2 e−1
i=0 (d − 2i) denotes the double factorial. To ensure that points are well spread out,

the radius δ and thus the volume Vd(δ) must increase as d increases. Considering (31), it is clear

16

(a) δ = 0.9 (b) δ = 0.5

Figure 6: Random sampling using different radii δ.

that δ must increase as d increases, since the fraction coefficients are vanishing as d →∞ due to the
factorials in the denominators. The main drawback of the random sampling method is the fact that
the radius δ has to be estimated, which can be computationally demanding in higher dimensions.

2.3.2 Stratified sampling

With the stratified sampling method, the sample space Ω is divided into I disjoint subspaces Si called
strata. The size of a strata is given by pi = P{X ∈ Si}, with

∑I
i=1pi = 1. In this way, all subareas of Ω

are represented by input variables [21]. The case when I = 1 corresponds to random sampling in the
whole sampling space Ω.

In each of the stratus, we obtain a random sample Xij , j = 1, ...,νi , from Si , where νi is the sample
size of stratus i ∈ {1, ..., I}. Given the probability density f (x), we have

Xij
iid∼

f (x)/pi , j = 1, ...,νi , x ∈ Si ,
0, elsewhere.

(32)

As shown in [21], stratified sampling (with proportional allocation, to be described in short) improves
over random sampling. To see this, we first introduce some notation. Let T denote the class of
estimators, given by

T (u1, ...,un) =
1
n

n∑
i=1

g(ui),

where g(·) is an arbitrary function. The choice g(u) = um is used to estimate themth sample moment6.
Further, let τ denote the expected value of T obtained using a random sample design of size n, and
let TR be the estimate of τ . The estimate obtained via stratified sampling is denoted TS, with the first

6first moment: mean, second moment: variance

17

two moments given by

µi = E[g(Yij)] =
∫
Si

g(y)(f (x)/pi)dx,

σ2
i = Var(g(Yij)) =

∫
Si

(g(y)−µi)2(f (x)/pi)dx,

where Y = h(X) is an unknown, but observable univariate transformation of X . Considering the
general form

TS =
I∑
i=1

(pi /νi)
νi∑
j=1

g(Yij)

it is easy to see that TS is an unbiased estimator of τ , with variance

Var(TS) =
I∑
i=1

(p2
i /νi)σ

2
i . (33)

From [22] we obtain the following results. If we choose pi and νi such that νi = pin, ∀i = 1, ..., I ,
we achieve a so called proportional allocation. Then, equation (33) can be written as

Var(TS) = Var(TR)− 1
n

I∑
i=1

pi(µi − τ)2,

which shows that Var(TS) ≤ Var(TR) and hence stratified sampling with proportional allocation im-
proves upon random sampling.

2.3.3 Latin hypercube design

Latin Hypercube design (LHD) is a widely used sampling method, first introduced in [21]. Compared
to random sampling and stratified sampling, it is found to be more accurate in estimating mean, vari-
ance, and distribution of function outputs. Except for fulfilling the criteria of being non-collapsing, it
has the advantage of being computationally cheap to generate. Space-fillingness is not guaranteed by
LHD itself, but procedures for finding a well spread sample using LHD exist and will be described in
short. Moreover, LHD can be seen as the extension of Latin square sampling (see, e.g., [23]) into d di-
mensions. Just like stratified sampling, LHD ensures that all areas of the domain Ω are represented
in the initial sample, but in addition all input variables also have all portions of their distribution
represented.

To obtain a LHD sample, the range of each of the d input variables are divided into n intervals
of equal marginal probability, where n denotes the desired initial sample size. The numbers n and d
are independent, i.e., a higher dimension does not require more sample points, which is one of the
main advantages of the LHD sampling method. In each of the n intervals (which can be different for
different variables), one observation is made using random sampling.

To exemplify, assuming a uniform probability distribution and setting d = 1, n = 10 and Ω =
[0, k], the first data point should be selected randomly from the interval [0, k/10], the second from
[k/10,2k/10] and so on until 10 sample points are obtained. Extending this to higher dimensions,
we simply follow the 1D approach in each of the d dimensions, yielding d n-tuples xj = (x1j , ...,xnj),
j = 1, ...,d, or equivalently the matrix

M =


x11 . . . x1d
...

. . .
...

xn1 . . . xnd

 .
18

To obtain the LHD sample, each column in the matrix is randomly perturbed. This means that each
new column is obtained as a permutation of the sequence {1, ...,n}, without replacement. After the
pertubation, n new d-tuples x′i = (x′i1, ...,x

′
id), i = 1, ...,n are obtained. Thus our LHD sample matrix is

M ′ =


x′11 . . . x′1d
...

. . .
...

x′n1 . . . x′nd

 ,
where each row in M ′ represents one sample point.

An example of a conversion from M to M ′ in two dimensions with Ω = [0,9]2 and n = 5 is:

M =


1 0
2 3
5 4
6 7
9 8

 −→M ′ =


6 0
5 4
1 8
9 3
2 7

 .
In this example the entries are integral for ease, but that is not the case in practice.

Generating the LHD sample using the procedure just described may result in points which are
not well spread out, if the correlation ρ between sample points is too high. In Figure 7a the worst
case scenario ρ = 1 is plotted. In order to get a more well spread sample, e.g., [24] proposes a method
which minimizes the correlation between the sample points. In Figure 7b a LHD with small cor-
relation (ρ = −0.03) obtained using the method in [24] is plotted; it is more scattered in the space
compared to the LHD with correlation ρ = 1.

(a) LHD with ρ = 1 (b) LHD with minimized correla-
tions, ρ = −0.03

(c) Maximin LHD

Figure 7: Different LHDs, all with d = 2 and n = 6.

However, the two middle points are still close. To avoid this, the so called maximin LHD method (see
[20]) can be applied, which maximizes the minimum distance between the n sample points. In Figure
7c a maximin LHD is plotted7. The corresponding correlation ρ = 0.2, which is not very small. This
suggests that there could be a trade-off between small correlation and maximum minimal distance
between points, which turns out to be true. In [25] it is shown that there is no one-to-one relationship
between the two objectives, and that LHD samples obtained by these two criteria can differ quite
much. This motivates us to consider a multi-objective approach, which both minimizes correlation
between points and maximizes the minimum distance between them. However, restricting ourselves
to only minimizing correlations provides results which are good enough, especially if more points
are to be sampled later on.

The number of possible LHD samples equals (n!)d and thus becomes huge as n and d increase.
Due to this, the problem of finding the optimal LHD becomes very difficult. Several algorithms for
finding an optimal LHD are proposed in the literature, such as, e.g., simulated annealing ([26]) and
columnwise-pairwise algorithms ([27]).

7found at www.spacefillingdesigns.nl

19

2.4 Infill sampling criteria

After having specified the surrogate model and experimental design, a method for finding new sam-
ple points should be selected, which is done by numerical optimization of an auxiliary function. In
geostatistics literature, this criterion is called the infill sampling criterion (ISC). This approach is ad-
vantageous for problems with computationally expensive function evaluations, since all information
available is used in order to determine where to evaluate the function next. Obviously, if function
evaluations are expensive, the number of function evaluations should ideally be few. There are other
methods for determining new sample points, such as genetic algorithms and gradient-based algo-
rithms. Both of them are computationally inexpensive, but require many function evaluations for
converging to a good solution. Therefore, ISC is the best suited method for modeling expensive
black-box functions.

The ISC can be divided into two different categories — one-stage and two-stage methods, where
the latter is the more common one. Considering two-stage methods, the surrogate model is first
fitted to the data by estimating the relevant parameters. When the parameters have been estimated
they are considered as true, whereafter the surrogate model is used in order to find new points to
evaluate. One-stage methods, on the other hand, do not create a surrogate model explicitly, but rather
”merge” the two stages. For example, response surface models can be used to set up and evaluate a
hypothesis of where the optimum is located. To determine the credibility of the hypothesis that
(x∗, f (x∗)) constitutes an optimum, the properties of the best-fitting response surface which passes
through (x∗, f (x∗)) and the observed data can be examined. Intuitively, the smoother the response
surface is, the more probable is the hypothesis, but it depends on the problem application [5].

Below follows several different ISCs, all of them being two-stage methods. Even though two-
stage methods are widely used, the property of considering the estimated parameter values as true
is deceiving and may lead to a response surface which is unable to model the underlying function
adequately. This may happen if the initial sample is too small, which can give rise to undesired
consequences, such as premature convergence or a too local search. A good ISC should balance local
and global search (also denoted as exploitation and exploration, respectively), so that information in
the surrogate model is utilized, and simultaneously not leaving any part of the domain completely
unexplored.

2.4.1 Maximizing probability of improvement

Some of the most popular infill sampling criteria are based on the idea of finding the points with
highest probability of improving the function beyond some target T . Given the Normally distributed
Kriging predictor Y (x) with mean Ŷ (x) and standard deviation σ̂ (x), the probability of improving the
best function value fmin at least to a number T < fmin is simply the probability that Y (x) ≤ T , given
by

P{Y (x) ≤ T } = Φ

(
T − Ŷ (x)
σ̂ (x)

)
, (34)

where Φ(·) denotes the standard Normal cumulative distribution function. The idea was introduced
in [28] (in one dimension), and have been widely extended in the literature.

The target T can either be chosen by the user or set to the default value of 0.999fmin [11]. The
closer T is to fmin, the more local is the search. As T decreases, the numerator of the argument in (34)
decreases, which tends to produce less sharp peaks of the probability metric in promising areas. This
trend is significant in Figure 8, where the probability of improvement criterion is used with different
values of T .

The criterion in (34) can be used directly, but this method is found to be extremely sensitive to the
value of the target T . A too high target leads to an excessively global search, which means that the
algorithm will fine-tune promising results very slowly. On the other hand, a small target may lead
to a local search which searches exhaustively nearby the current best point and does not consider
unexplored regions as desired. To handle this, [5] proposes two options; an enhanced method which

20

(a) T = 99.9% of fmin (b) T = 99% of fmin

Figure 8: Finding new points to evaluate using the probability of improvement criterion with differ-
ent targets.

uses several targets simultaneously and the idea of maximizing the expected improvement (EI).

Enhanced probability of improvement

By selecting several values of the target T , we are able to simultaneously search locally and globally.
The procedure of selecting a finite set of target values should be rather arbitrary. The approach
proposed in [5] starts by finding the minimum smin of the surrogate model, as well as the minimum
and maximum function value of the sampled points, called fmin and fmax, respectively. The targets
are thereafter constructed as

T = smin −α(fmax − fmin),

where α ∈ [0,3]. The case α = 0 corresponds to finding the point which minimizes the response
surface.

When a number of different values of α are used, the points x tend to cluster in different parts of
the solution space. Solutions corresponding to small values of α tend to cluster around the minimum
of the response surface, while points corresponding to larger values of α cluster in an unexplored
area. In practice, it is reasonable to sample only one point from each of the clusters, as a suggestion
the point associated with the smallest target value. An illustration of how this method proceeds is
found in Figure 9.

Since the method involves both local and global search, the area where the global optimum is
located can be found early. Moreover, by sampling several points per iteration, it is possible to speed
up the process, if parallel computations are possible. These are the main reasons why the enhanced
probability of improvement approach is considered as a promising one.

2.4.2 Maximizing expected improvement

The idea of maximizing the expected improvement was first suggested by [29] and is another way
of balancing exploitation and exploration. Complete exploitation simply minimizes the surrogate
model, while complete exploration maximizes the uncertainty, which is measured as the standard
error of the predictor. A balance is obtained by considering function improvement. Seeing the func-
tion value at a point x as the realization of a random variable Y (x), there is a positive probability
of improving the current best function value fmin if the tail of the density function of Y (x) extends
below the line y = fmin; see Figure 10.

21

(a) Initial sample and true function (b) First iteration

(c) Second iteration (d) Third iteration

Figure 9: Illustration of the enhanced probability of improvement method.

Different distances below the y = fmin line correspond to different density values (i.e., probabili-
ties), and by weighting all the possible improvements by their respective density values, the so called
expected improvement is obtained. The improvement at a point x is given by (fmin −Y (x))+, which is
a random variable. Taking expectations, we obtain the expected improvement as

EI(x) ≡ E[(fmin −Y (x))+] =
∫ fmin

−∞
(fmin −Y (x))

1
√

2πσ̂ (x)
exp

(
− Ŷ (x)2

2σ̂ (x)2

)
dY . (35)

By applying integration by parts to (35), we obtain the closed form

EI(x) =

(fmin − Ŷ (x))Φ
(
fmin−Ŷ (x)
σ̂ (x)

)
+ σ̂ (x)φ

(
fmin−Ŷ (x)
σ̂ (x)

)
, if σ̂ > 0,

0, if σ̂ = 0,
(36)

where Φ(·) and φ(·) denote the standard Normal cumulative distribution and probability density
function, respectively. As usual, Ŷ is the Kriging estimator, and σ̂ denotes its standard error. Natu-
rally, the expected improvement at the sampled points equals zero, since they are known and there-
fore treated as deterministic.

22

Figure 10: Probability of improvement at a 1D point.

By inspecting (36), two important trends can be revealed. The first term represents the difference
between the best function value found so far and the prediction, multiplied by the probability that
Ŷ < fmin. This term becomes large for points where Ŷ is likely to be smaller than fmin. On the other
hand, the second term is increasing with increasing σ̂ , thus yielding large values when the uncertainty
about whether or not Ŷ improves upon fmin is high. Hence, the expected improvement is large both
for regions with high uncertainty and high probability of improvement. This can also be observed by
taking the partial derivatives of EI(x) with respect to Ŷ (x):

∂EI(x)

∂Ŷ (x)
= −Φ

(
fmin − Ŷ (x)

σ̂ (x)

)
< 0,

and σ̂ (x):
∂EI(x)
∂σ̂ (x)

= φ
(
fmin − Ŷ (x)

σ̂ (x)

)
> 0,

showing that EI(x) is monotonically decreasing in Ŷ (x) and monotonically increasing in σ̂ (x).
The EI criterion is not very efficient for high-dimensional problems, due to the model uncertainty

being high using many input variables. The EI criterion emphasizes exploration rather than exploita-
tion, since it is more or less impossible to fill all areas of the domain in high-dimensional problems.

Locating the regional extreme

A criterion which exploits the surrogate model more than the EI criterion and hence is more suited
for high-dimensional problems is the so-called Watson and Barnes (WB2) criterion, presented in [11].
The WB2 criterion is given by

WB2(x) =

−Ŷ (x) + (fmin − Ŷ (x))Φ
(
fmin−Ŷ (x)
σ̂ (x)

)
+ σ̂ (x)φ

(
fmin−Ŷ (x)
σ̂ (x)

)
, if σ̂ > 0,

−Ŷ (x), if σ̂ = 0,
(37)

which is almost identical to the EI criterion in (36), except for the additional −Ŷ -term, yielding more
focus on exploitation. Moreover, it does not return a zero value at sampled points, giving a smoother
behavior which may help in locating the maximum.

23

2.5 Numerical optimization algorithms

In order to find the optima of a continuous function without known derivative or which is in some
sense computationally expensive to optimize explicitly, numerical optimization algorithms can be
used. Various such algorithms exists, each with its own specific feature. Below, the algorithms
COBYLA and L-BFGS-B are presented, which both incorporate the possibility of handling box con-
straints, i.e., constraints on the form ai ≤ xi ≤ bi , ∀i = 1, ...,n, where xi denotes the ith variable.

2.5.1 COBYLA

The constrained optimization by linear approximation (COBYLA) algorithm was introduced in [30]
and implemented in Fortran. The method is numerical and can be adopted to constrained problems
where the objective function derivative is unknown. Formally, it finds the point x ∈ Ω which has
optimal objective function value f (x), given inequality constraints on the form g(x) ≥ 0, while not
knowing the gradient of f . The functions f and g are real valued and can be calculated for each x,
but there are no assumptions regarding smoothness.

The algorithm is a trust-region method, which, as suggested by its name, employs linear approx-
imations of the objective function and the constraints. At each iteration, the approximate linear
problem is solved, yielding a candidate solution. The candidate solution is in turn evaluated using
the original objective and constraint functions, which results in a new point within the sampling
space. This information is then used for improving the linear approximation in the next iteration of
the algorithm. The procedure continues until the solution can not be improved anymore, whereafter
the step size is reduced in order to refine the search. When a sufficiently small step size has been
reached, the algorithm terminates [18]. The pseudocode of the COBYLA algorithm is presented in
Algorithm 1.

Algorithm 1 COBYLA
S := {(xstart, f (xstart))}
δ := initial step size
while δ not sufficiently small do

repeat
Approximate linear problem LP (S)
Solve LP (S)→ xcandidate
Evaluate f (xcandidate)
S := S ∪ {(xcandidate, f (xcandidate))}

until f (xcandidate) not improved
Reduce δ

end while
return xcandidate

2.5.2 L-BFGS-B

The Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm solves unconstrained non-linear optim-
ization problems by an iterative approach. It belongs to the family of quasi-Newton methods, which
approximate the objective function’s Jacobian or Hessian. The BFGS method is widely used in the
literature, especially the extension L-BFGS, where L is an abbreviation for Limited memory. Rather
than storing a dense approximation of the n × n inverse Hessian matrix, as in BFGS, the L-BFGS
algorithm stores just a few vectors which implicitly represent the approximation. Hence, L-BFGS
requires less memory than BFGS, implying that it is a more suitable method when high-dimensional
data sets are considered. An additional exension to L-BFGS is the so called L-BFGS-B algorithm,
which, in addition, can handle box constraints.

Starting from an initial feasible point x0, the algorithm proceeds by finding new, better estimates
x1,x2, The objective function is denoted by f , gk := ∇f (xk), and H0

k denotes the initial approxima-
tion of the Hessian matrix of f (x). In each iteration of the algorithm we discard the oldest information

24

contained in the matrix, and replace it by new information. In this way, the model of the function
will be more appropriate. Therefore, we store the last l updates of the form

sk = xk+1 − xk
tk = gk+1 − gk ,

where xk is the position at the k:th iteration, gk = ∇f (xk), and all vectors are column vectors. The
BFGS formula for updating the Hessian approximation is given by

Hk+1 =Hk +
sks

T
k

tTk sk

(tTkHktk
tTk

+ 1
)
− 1

tTk s

(
skt

T
kHk +Hktks

T
k

)
︸ ︷︷ ︸

=:U (sk ,tk ,Hk)

and the l:th update is given by

Hl =H0 +U (so, t0,H0) + · · ·+U (sl−1, tl−1,Hl−1),

In the next iteration, we want to replace the term U (s0, t0,H0) by one involving sl and tl . However,
all terms U (s1, t1,H1), ...,U (sl−1, tl−1,Hl−1) depend on U (so, t0,H0) and hence if this term is discarded,
all the other terms will change as well. To avoid this problem, the inverse BFGS formula (38) can be
used:

Hk+1 = V T
k HkVk + ρksks

T
k , (38)

where ρk = 1/tTk sk and Vk = I − ρktksTk .
The Hessian matrix should be a diagonal, positive definite matrix. It can be easily verified that if

Hk is positive definite and tTk sk > 0, then Hk+1 is positive definite. For details, see [31]. In Algorithm
2, pseudocode (from [32]) for the L-BFGS-B algorithm is presented.

Algorithm 2 L-BFGS-B
1. Choose x0, H0, l and 0 < β′ < 1/2, β′ < β < 1
Set box constraints blow and bup
2. Compute approximate Newton’s direction dk = −Hkgk
Compute update xk+1 = xk +αkdk , where the step length α satisfies the Wolfe conditions:f (xk +αkdk) ≤ f (xk) + β′αkg

T
k dk

g(xk +αkdk)Tdk ≤ βgT
k dk

and fulfills the box constraints: blow ≤ xk+1 ≤ bup
(α = 1 is always the first try)
3. Let l̂ = min{k, l − 1}
Update H0 l̂ + 1 times using the pairs {sj , tj }kj=k−l̂ :

Hk+1 =
(
V T
k · · ·V

T
k−l̂

)
H0(Vk−l̂ · · ·Vk)

+ρk−l̂
(
V T
k · · ·V

T
k−l̂+1

)
sk−l̂s

T
k−l̂

(Vk−l̂+1 · · ·Vk)

+ρk−l̂+1

(
V T
k · · ·V

T
k−l̂+2

)
sk−l̂+1s

T
k−l̂+1

(Vk−l̂+2 · · ·Vk)

...

+ρksks
T
k

4. Set k := k + 1 and go to 2

25

3 Explicit problem formulation

In order to get a deeper understanding of the problem of allocating crews to vacancies while allowing
staffing deviation among groups, an explicit model formulation is presented. However, the problem
modeled in this section is a simplification of the original problem. The problem statement of the
simplified version is to optimize staffing deviation among groups in such a way that crew training is
minimized.

One of the main difficulties in constructing an explicit problem formulation is related to the ob-
jective function, which is complicated to construct properly, since numerous kinds of costs have to
be considered and which take a lot of time to evaluate. For instance, Jeppesen’s optimizer takes into
account monthly deficiencies, vacations, flight demand, etc., which will not be covered in our simpli-
fied model. Hence, in order to solve the problem of modifying vacancies and staffing deviations, an
iteration based scheme is necessary, such as the one implemented in Jeppesen’s optimizer (step 4 in
Figure 2). However, the simplified problem presented in this section is similar in terms of problem
dynamics, and is mainly included to improve the reader’s comprehension of the problem.

3.1 A simplified problem example

To exemplify, assume that there are two different groups (1,2) and five crews (A,B,C,D,E) to be dis-
tributed among the groups. All five crews are initially positioned in any of the groups. Crew A is the
most senior one, followed by B, and so on. Each crew is asked to make bids on how to be positioned
in the future; in this simple case their preference list can be either [1,2] or [2,1]. Consider the initial
state in Figure 11. The number inside the circle represents the group, while the number inside the
square represents the number of vacancies announced. All crews are placed in their current group,
represented by the blocks, and their preference lists are superscripted.

1 2
B[2,1] C[1,2] D[2,1] A[1,2] E[1,2]

0 1

Figure 11: Crew’s initial positions in groups.

Crew A is ranked as the most senior crew, and should hence have its preference fulfilled ahead
of all the other crews. However, since no vacancy is announced in group 1 where crew A prefers to
be, A is not allowed to transfer to group 1. Considering the second most senior crew B, group 2 is
preferred rather than group 1. Since there is a vacancy in group 2, B is allowed to transfer to group
2. When crew B moves, a vacancy appears in group 1, while the vacancy in group 2 disappears.

In the next iteration, the most senior crew A is again the first to be considered. Since a vacancy
has appeared in group 1, crew A is allowed to switch group. The vacancies are updated and the
procedure continues until no crew can move to a more preferred group (which is associated with a
positive number of vacancies). The complete process is presented in Figure 12. The number of crew
trainings needed (i.e., the number of crews which have changed group) is four.

Now, we investigate whether the number of crew training can be decreased if we are allowed to
have some staffing deviation within the groups. Consider the same initial setting as in Figure 11, but
with the additional allowed staffing deviation printed in the rightmost squares, see the first iteration
in Figure 13. This number indicates how much staffing deviation we allow within the certain group
and as long as this lower limit is not reached, the corresponding vacancy value does not increase when
crews are leaving the group. Once again, in the first iteration crew B transfers to group 2. However,
since we allow one unit of deviation in group 1, the vacancy number is not increased in this group.
This leads to a situation where there are no vacancy in any group, and the procedure terminates,
resulting in one crew training solely.

26

1 2
B[2,1] C[1,2] D[2,1] A[1,2] E[1,2]

0 1

1 2
A[1,2] B[2,1] E[1,2]C[1,2] D[2,1]

1 0

1 2
A[1,2] C[1,2] D[2,1] B[2,1] E[1,2]

0 1

1 2
B[2,1] D[2,1] E[1,2]A[1,2] C[2,1]

1 0

1 2
A[1,2] C[1,2] E[1,2] B[2,1] D[2,1]

0 1

Figure 12: Crew’s movements during the complete process. Arrows are representing the movement
of a crew from one group to the other.

1 2
B[2,1] C[1,2] D[2,1] A[1,2] E[1,2]

0 11 0

1 2
A[1,2] B[2,1] E[1,2]C[1,2] D[2,1]

0 00 0

Figure 13: Crew’s movements in the case where one unit of staffing deviation is allowed.

In order to get a fair result, the allowed staffing deviation in groups should be penalized, so that
they are not implicitly maximized. However, the example presented above is very simple, and hence
does not capture all behaviors of a larger problem instance. One of the main reasons for allowing
staffing deviation is to avoid so called backfilling, meaning that one crew movement needs to be
filled by another crew, which can propagate to a chain of movements. Moreover, the fact that the
most senior crew A did not get its most preferred bid in this last example will not happen in general,

27

when considering larger problem instances.

3.2 Model formulation

In the example presented in Section 3.1, the allowed staffing deviation is fixed. Then, based on that
value, the number of crew re-allocations is evaluated. Instead of fixing the allowed staffing deviation
within the different groups, we want to optimize it. In the remainder of this section, an explicit
optimization model for this problem is built. The resulting model is a MILP (Mixed Integer Linear
Program), which can be implemented in a linear optimization software, e.g., AMPL. However, the
purpose with this explicit model is not to solve large problem instances, but rather to get a deeper
understanding of the problem and its features.

We start by introducing all the sets needed:

• I = {1, ...,n1} set of crews;

• J = {1, ...,n2} set of groups;

• T = {1, ...,T } set of iteration indices.

The maximum number of iterations needed is denoted by T , and should be set to a sufficiently large
number. Secondly, we introduce the model parameters:

• pi,j =

1, if crew i ∈ I is initially in group j ∈ J ,
0, otherwise;

• vj ∈Z+ = number of vacancies announced in group j ∈ J ;

• uj = the binary equivalent of vj ;

• bi,j,k =

1, if crew i ∈ I prefers group j ∈ J rather than group k ∈ J , j , k,
0, otherwise;

• M1,M2,M3 = large positive constants;

• ω ∈ {0,1} = training cost weight.

The large constants M1, M2 and M3 are needed for certain logical constraints, such as if-then-else
constraints and constraints for obtaining binary equivalents of integer variables. The purpose of the
parameter ω is to weight the training cost term in the objective function, which enables different
balancing between the training cost and the allowed staffing deviation.

Next, the model variables are introduced:

• yi,j,s =

1, if crew i ∈ I is in group j ∈ J at iteration s ∈ T ,
0, otherwise;

• ȳi,j = |yi,j,T − yi,j,0| =


1, if crew i ∈ I does not start and end in the same group j ∈ J ,

i.e., needs training,
0, otherwise;

• wj,s ∈Z+ = number of vacancies in group j ∈ J at iteration s ∈ T ;

• hj,s = the binary equivalent of wj,s;

• dj ∈Z+ = allowed initial staffing deviation in group j ∈ J ;

• zj,s ∈Z+ = allowed staffing deviation in group j ∈ J at iteration s ∈ T ;

28

• mi,j,k,s =


1, if crew i ∈ I moves to group j ∈ J from group k ∈ J , where j , k,

at iteration s ∈ T ,
0, otherwise;

• qi,j,k,s =


1, if crew i ∈ I prefers group j ∈ J rather than group k ∈ J , where j , k, and has

not moved to another, more preferred group at iteration s ∈ T ,
0, otherwise;

• rj,s ∈ {0,1} = binary variables for if-else constraints,

where the sought variables are dj , j ∈ J . In order to obtain a linear problem, the absolute values
|yi,j,T − yi,j,0|, i ∈ I , j ∈ J , can not be used explicitly. Instead, the variables ȳi,j , i ∈ I , j ∈ J , are used,
which possess the absolute value properties.

Since the variables ȳi,j , i ∈ I , j ∈ J , indicate whether or not crews need training, they should be
included in the objective function, as well as the initial allowed staffing deviation. Summing the ȳi,j
variables, the training is counted twice8, and hence this term is halved. The two terms are balanced
by the weight ω, completing the minimization statement:

min
ω
2

∑
i∈I

∑
j∈J

ȳi,j −
∑
j∈J

dj .

In order for the variables ȳi,j , i ∈ I , j ∈ J to have the absolute value properties, the constraints
(C1) and (C2) are included in the model:

ȳi,j ≥ yi,j,T − yi,j,0 ∀i ∈ I , j ∈ J (C1)

ȳi,j ≥ −(yi,j,T − yi,j,0) ∀i ∈ I , j ∈ J (C2)

Next, the constraints (C3)–(C6) are incorporated, to initialize positions, vacancies and allowed staffing
deviation:

yi,j,0 = pi,j ∀i ∈ I , j ∈ J (C3)

wj,0 = vj ∀j ∈ J (C4)

hj,0 = uj ∀j ∈ J (C5)

zj,0 = dj ∀j ∈ J (C6)

Moreover, considering the initial allowed staffing deviation in particular, two additional set of con-
straints are needed:

zj,s ≤ dj , ∀j ∈ J , s ∈ T ; (C7)

dj ≤M1(1−uj), ∀j ∈ J . (C8)

The constraints (C7) make sure that the staffing deviation never reaches above the initial allowed
staffing deviation, while the constraints (C8) ensures that staffing deviation is allowed only in groups
where no vacancy is announced. In fact, the constraints (C8) are optional, but we decide to keep them
in this version of the problem. The numberM1 can be chosen arbitrary, and represents the maximum
allowed staffing deviation in any group. To obtain the binary equivalents hj,s of wj,s, the constraints
(C9)–(C10) are added to the model:

hj,s ≤ wj,s, ∀j ∈ J , s ∈ T ; (C9)

M2hj,s ≥ wj,s, ∀j ∈ J , s ∈ T . (C10)

8e.g., if crew i ∈ I moves from group j ∈ J to group k ∈ J , j , k, then both ȳi,j = 1 and ȳi,k = 1

29

The large number M2 should be at least maxj {vj }+n1.
Next, several different types of constraints should be added to model the crew movements. First

of all, no crew is allowed to make a move in the initial state, which is ensured by the constraints

mi,j,k,0 = 0, ∀i ∈ I , j ∈ J , k ∈ J . (C11)

Moreover, no more than one movement is allowed at each iteration and each crew is only allowed to
be in one group at each iteration. These attributes are presented by the constraints (C12) and (C13),
respectively: ∑

i∈I

∑
j∈J

∑
k∈J \{j}

mi,j,k,s ≤ 1 ∀s ∈ T \ {0} (C12)

∑
j∈J

yi,j,s = 1 ∀i ∈ I , s ∈ T . (C13)

The constraint corresponding to s = 0 in (C12) is omitted, since it is redundant due to the constraints
(C11). To obtain the desired features of the movement variables m, the constraints (C14) are used:

mi,j,k,s+1 ≥ yi,j,s+1 + yi,k,s − 1, ∀i ∈ I , j,k ∈ J : j , k,s ∈ T \ {T }. (C14)

These constraints guarantee that crew i ∈ I moves to group j ∈ J from group k ∈ J ,wherej , k, at
iteration s + 1 ∈ T \ {T }. In addition, we want to ensure that crew i ∈ I moves to group j ∈ J from
group k ∈ J if and only if all of the following four criteria are fulfilled:

• crew i is currently in group k;

• group j has a non-zero number of vacancies;

• none of the more senior crews than i have already made a move at the current iteration;

• crew i prefers group j rather than group k and has not moved to another, more preferred group
at the current iteration.

These criteria are ensured by the constraints (C15)-(C17):

yi,j,s+1 ≥ qi,j,k,s+1 + hj,s + yi,k,s +
(
1−

∑
l∈I :
l<i

∑
g1∈J

∑
g2∈J \{g1}

ml,g1,g2,s+1

)
− 3 (C15)

∀i ∈ I , j,k ∈ J , j , k,s ∈ T \ {T }

mi,j,k,s+1 ≥ qi,j,k,s+1 + hj,s + yi,k,s +
(
1−

∑
l∈I :
l<i

∑
g1∈J

∑
g2∈J \{g1}

ml,g1,g2,s+1

)
− 3 (C16)

∀i ∈ I , j,k ∈ J , j , k,s ∈ T \ {T }

mi,j,k,s+1 ≤
1
4

(
qi,j,k,s+1 + hj,s + yi,k,s +

(
1−

∑
l∈I :
l<i

∑
g1∈J

∑
g2∈J \{g1}

ml,g1,g2,s+1

))
(C17)

∀i ∈ I , j,k ∈ J , j , k,s ∈ T \ {T }

Additionally, we want to obtain the proper behavior of the variables q, which is ensured by the

30

constraints (C18)–(C19):

qi,j,k,s ≥
(
1−

∑
g1∈J :(∑

g2∈J \{j,g1}
bi,g1 ,g2≥

∑
g2∈J \{j}

bi,j,g2

)mi,g1,k,s

)
+ bi,j,k − 1 ∀i ∈ I , j,k ∈ J , j , k,s ∈ T (C18)

qi,j,k,s ≤
1
2

((
1−

∑
g1∈J :(∑

g2∈J \{j,g1}
bi,g1 ,g2≥

∑
g2∈J \{j}

bi,j,g2

)mi,g1,k,s

)
+ bi,j,k

)
∀i ∈ I , j,k ∈ J , j , k,s ∈ T . (C19)

In this way, qi,j,k,s will equal one if and only if

• crew i prefers group j rather than the current group k, and

• crew i has not moved to another, more preferred group than group j at the current iteration.

One way to see which groups are more preferred than group j, is to add the corresponding preference
parameters bi,g,k . Crew i’s most preferred group will have the largest value of

∑
g∈J \{k} bi,g,k (maxi-

mum n1 − 1, if k is the least preferred group), and for all groups g1 which crew i prefers more than j,
it will hold that ∑

g2∈J \{j,g1}
bi,g1,g2

≥
∑

g2∈J \{j}
bi,j,g2

.

Thus, to see whether or not crew i has moved to a more preferred group than j, we sum allm variables
corresponding to such groups g1. If this sum equals one, it means that i has moved to a more preferred
group than j at the current iteration s, and hence i should not move to j as well.

Finally, vacancies and staffing deviations shall be updated as crews move between groups. When
a crew enters a group, this group’s vacancy number is decreased by one unit. Considering the group
which the crew is leaving, the vacancy update depends on the staffing deviation. If there is a non-
negative staffing deviation, the vacancy number is not increased. Instead, the staffing deviation is
decreased by one unit. However, if the group under consideration does not allow staffing deviation,
the vacancy is increased by one unit. To model this, we introduce the binary help variables rj,s, j ∈
J , s ∈ T , which have the following property:

rj,s = 1⇔ zj,s > 0 ∀j ∈ J , s ∈ T .

This can be modelled using the equations (C20)–(C21):

zj,s ≥ rj,s ∀j ∈ J , s ∈ T (C20)

zj,s ≤M1rj,s ∀j ∈ J , s ∈ T . (C21)

Now, the r variables can be used to model the if-then-else behavior of the vacancy and staffing devi-
ation updates:

rj,s = 1 ⇒
∑
i∈I

∑
k∈J \{j}

(mi,j,k,s+1 −mi,k,j,s+1) = zj,s+1 − zj,s, ∀j ∈ J , s ∈ T \ {T }; (39)

rj,s = 0 ⇒
∑
i∈I

∑
k∈J \{j}

(mi,j,k,s+1 −mi,k,j,s+1) = wj,s −wj,s+1, ∀j ∈ J , s ∈ T \ {T }. (40)

Observe that the sum∑
i∈I

∑
k∈J \{j}

(mi,j,k,s+1 −mi,k,j,s+1) =

1, if any crew moves to group j (at time s+ 1),
−1, if any crew moves from group j (at time s+ 1),

31

which means that vacancies z and staffing deviations w are updated accordingly. Observe also that
the left hand sides of relations (39)–(40) are reversed.

The four last constraints (C22)–(C25) of the model ensure the implications in the relations (39)–
(40):

zj,s+1 − zj,s −M3(1− rj,s) ≤
∑
i∈I

∑
k∈J \{j}

mi,j,k,s+1 −mi,k,j,s+1, ∀j ∈ J , s ∈ T \ {T }; (C22)

∑
i∈I

∑
k∈J \{j}

(mi,j,k,s+1 −mi,k,j,s+1) ≤ zj,s+1 − zj,s +M3(1− rj,s), ∀j ∈ J , s ∈ T \ {T }; (C23)

wj,s −wj,s+1 −M3(1− rj,s) ≤
∑
i∈I

∑
k∈J \{j}

mi,j,k,s+1 −mi,k,j,s+1, ∀j ∈ J , s ∈ T \ {T }; (C24)

∑
i∈I

∑
k∈J \{j}

(mi,j,k,s+1 −mi,k,j,s+1) ≤ wj,s −wj,s+1 +M3(1− rj,s), ∀j ∈ J , s ∈ T \ {T }; (C25)

this completes the model. Since all variables in the constraints (C22)–(C25) are binary and the sum∑
i∈I

∑
k∈J \{j}(mi,j,k,s+1 −mi,k,j,s+1) ∈ {−1,0,1} ∀j ∈ J , s ∈ T \ {T }, it is sufficient to set M3 ≥ 1.

4 The optimization algorithm

The black-box optimization algorithm presented in this thesis is a two-stage method based on surro-
gate modeling, in particular Kriging, described in Section 2.1.3. Dimensionality reduction techniques
are utilized, such as Kriging partial least squares and dropout; see Sections 2.2.1 and 2.2.3, respec-
tively. In this section, the different parts of the optimization algorithm are presented and described
based on the theory in Section 2. There, different approaches for surrogate modeling, experimental
design and infill sampling is described, and here the best suited methods are selected and presented
in Sections 4.1, 4.2, and 4.3, respectively, in order to build the algorithm. Lastly, in Section 4.4, the
algorithm’s termination criterion is declared.

In Figure 14, a flowchart of the two-stage approach is presented. The procedure is as follows.
First, an initial sample X , including sample points x and their evaluated true function values y,
is created by employing a DoE technique. Using the initial sample, a surrogate model is built, by
estimating the model parameters. The resulting response surface is then optimized based on given
m infill sampling criteria, yielding m new points. These points are then evaluated by invoking the
expensive black-box function. If the termination criterion is fulfilled, the algorithm finishes and the
point x∗ ∈ X corresponding to the minimum in y is considered as the minimum of the problem.
Yet, if the termination criterion is not fulfilled, the newly evaluated points are added to the sample
and the algorithm restarts by re-building the surrogate model. The surrogate model is re-built by re-
estimating the model parameters. The procedure continues until the termination criterion is fulfilled.

32

construct initial
sample X = (x1, ...,xn),
y = (y1, ..., yn) using

a DoE technique

re/build
surrogate

model

optimization of
infill sampling

criteria →
xn+1, ...,xn+m

evaluate
xn+1, ...,xn+m →
yn+1, ..., yn+m

termination
criterion
fulfilled?

add new points
to sample:

X := X ∪ {xn+1, ...,xn+m},
y := y ∪ {yn+1, ..., yn+m},

n := n + m

stop no
yes

Figure 14: Flowchart of the two-stage optimization algorithm, inspired by [18].

4.1 Creating a surrogate model

As discussed in Section 2.1, interpolating surrogate models are preferred rather than non-interpolating
models in most cases, since they are more accurate. This becomes even more evident as the number
of sample points increases. The interpolating surrogate model type chosen for this application is
Kriging, due to its ability to measure the uncertainty in the predictor itself. Moreover, the fact that
the hyper-parameters can be ”tuned” using MLE is the main reason why Kriging often outperforms
other basis-function methods when it comes to prediction accuracy [5]. However, the parameter esti-
mation is expensive compared to, e.g., radial basis function models, which only requires the solution
of a linear system.

Due to the high dimensional nature of the problem, parameter estimations become computation-
ally heavy. Thus, the Kriging-based dimensionality reduction technique KPLS is utilized. The KPLS
approach starts off by constructing principal components. To construct the h� d principal compo-
nents, we first have to solve the optimization problem (25). We want to find the eigenvector w(l) of
the matrix X (l−1)Ty(l−1)y(l−1)TX (l−1), l = 1, ...,h, corresponding to the dominant eigenvalue, i.e., the
eigenvalue with largest absolute value.

Following the power iteration method, we denote A = X (l−1)Ty(l−1)y(l−1)TX (l−1) and drop the prin-
cipal component index l for ease, since the procedure is independent of the iteration number. Then
we proceed by choosing an initial approximation w0 , 0d of the sought eigenvector w. Moreover,

||w(0)||∞ = max0≤i≤d |w
(0)
i | = 1, i.e., the vector is rescaled so that all its components are within the in-

terval [−1,1]. Note that, here, the superscipt indicates iteration number, not PC index. Now, we form

33

the successive approximations as:

w(1) =Aw(0)

w(2) = Aw(1) = A(Aw(0)) =A2w(0)

...

w(k) = Aw(k−1) = A2w(k−2) = · · · =Akw(0),

where the vector w(k) yields an approximation for the eigenvector corresponding to the dominating
eigenvalue. The approximation will be good for large powers k and with properly rescaled sequences.
In order to get h such vectors, the procedure is repeated h times, with A updated according to the
iteration number l = 1, ...,h and the equations (26)–(27). The initial approximation w(0) can be kept
the same for all iterations.

When the vectors w(l)
∗ , l = 1, ...,h, are constructed, they are used to construct the KPLS kernel

function. As suggested by [12], we use ordinary Kriging, i.e., choosing basis function ϕ = 1n, ϕ =
1n×n, without a significant loss in model fidelity. Thus, we use the kernel function

k(x,x′) = σ2
z

h∏
l=1

d∏
j=1

exp
(
−θl

(
w

(l)
∗j xj −w

(l)
∗j x
′
j

)2
)

(41)

= σ2
z exp

(d∑
j=1

−ηj
(
xj − x′j

)2
)
, (42)

where ηj =
∑h
l=1θlw

(l)
∗j

2. For KPLS, the kernel function in (41) is considered, where the parameters
θl , l = 1, ...,h, are to be estimated. The extension KPLS+K is to be examined as well, and for that
the kernel function (42) is used. Both the KPLS and the KPLS+K optimization algorithm are to be
evaluated and compared in the sense of performance.

To estimate the parameters θ and η, the concentrated likelihood function (22) should be maxi-
mized. Such calculations are computationally expensive, especially when the sample size n is large,
due to the inversion of the n × n correlation matrix. In this work, the derivative-free algorithm L-
BFGS-B is used to find approximate solutions to the maximization problems. The COBYLA algorithm
is discarded, due to poor performance during testing.

4.2 Design of experiments

In order to build a surrogate model an initial sample consisting of points X = (x1, ...,xn) and corre-
sponding data y = (y1, ..., yn) needs to be constructed, as indicated in Figure 14. In this work, the De-
sign of Experiment technique Latin Hypercube design, described in Section 2.3.3, is used to create the
initial sample. It is chosen because of its good properties, such as guaranteeing non-collapsingness.
Moreover, by minimizing correlations, a sufficiently spread set of points is obtained. When using a
two-stage method the initial configuration is less important compared to if a one-stage method was
to be used, since additional points will be added to X . However, a good initial sample is necessary
in order for the surrogate model to approximate the black box function adequately. In addition, two
points corresponding to minj=1,...,d{Ωj } and maxj=1,...,d{Ωj } are added to the initial sample, providing
extra information to the algorithm .

4.3 Infill sample criteria

We can, using the initial sample points X and corresponding data y obtained via Latin Hypercube
design, approximate the response surface f (x), x ∈ X . By adding new sample points to X which are

34

well spread, the uncertainty about the model will decrease and the surrogate function will approach
the true function shape. However, only focusing on decreasing uncertainty to get a more reliable
model will not provide the sought after minima per se. Therefore, we need a trade-off when it comes
to space-fillingness and explicit surrogate function minimization when choosing new points to eval-
uate.

Due to the possibility of parallel computations within the software at hand, several points will
be added to the sample at each iteration, in order to decrease the total computation time of the algo-
rithm. Since the evaluation of the black-box function is time consuming, the number of evaluation
iterations should be kept low. However, if too many points are added to the sample at each iteration,
the sample size will increase rapidly, which increases the MLE and ISC optimization times. Moreover,
many of the evaluations will probably be ”wasted”, since the initial function evaluations are few and
thus may provide bad approximations in yet unexplored regions.

To utilize each evaluation iteration to the fullest, we focus both on model exploitation and explo-
ration. Therefore, at each iteration a complete local optimization (minimizing the surrogate model)
and a complete global search (maximizing model uncertainty) is performed. Moreover, the expected
improvement (EI) criterion (36) and the WB2 criterion (37), both presented in Section 2.4.2, are maxi-
mized to obtain additional sample points, as well as modifications of them. The enhanced probability
of improvement method presented in Section 2.4.1 is left out, due to the large number of function
evaluations needed to build the clusters. However, the maximizing probability of improvement cri-
terion is used, but with one choice of target only. All infill sampling criteria to be used are found in
Table 2, where

ISC(x,A,B,C) =

−AŶ (x) +B(fmin − Ŷ (x))Φ
(
fmin−Ŷ (x)
σ̂ (x)

)
+Cσ̂ (x)φ

(
fmin−Ŷ (x)
σ̂ (x)

)
, if σ̂ > 0,

−AŶ (x), if σ̂ = 0.

Table 2: Infill sampling criteria used for finding new points to evaluate.

Name Infill sampling criterion Objective
1 LCL Minimize surrogate model min Ŷ (x)
2 GBL Maximize model uncertainty max σ̂ (x)
3 EI Maximize expected improvement max ISC(x,0,1,1)
4 WB2 Maximize WB2 max ISC(x,1,1,1)

5 WBA
2 Maximize modified WB2 max ISC(x,1,2,1)

6 WBB
2 Maximize modified WB2 max ISC(x,1,0,5)

7 WBC
2 Maximize modified WB2 max ISC(x,1,5,0)

8 POI Maximize probability of improvement max φ
(

0.9fmin−Ŷ (x)
σ̂ (x)

)

4.4 Termination criterion

In order to decide when to stop the algorithm, a termination criterion is specified. For this algorithm,
there are two main reasons for termination; convergence and attaining a maximum number of itera-
tions. The maximum number of iterations is specified by the user, and should be sufficiently large to
make sure that the algorithm does not terminate prematurely.

Considering the convergence criterion, we are looking for a point in time when the progress of the
algorithm is very small. Since it is not certain that the algorithm will make progress in each single
iteration, it is a bad idea to consider the progress made between the latest two consecutive iterations
solely. Instead, the nT most recent iterations are considered, where nT > 2. Thus, the algorithm will
terminate if the progress in the last nT iterations is sufficiently small. Assuming that m points are

35

added to the sample in each iteration of the algorithm, resulting in n+mi points in total after iteration
i is completed. The progress pi made in iteration i is calculated as

pi =
min
j=1,...,m

{yn+m(i−1)+j } − min
j<n+m(i−1)

{yj }

min
j<n+m(i−1)

{yj }
. (43)

Consequently, the algorithm terminates after iteration i if

pk − pk−1 > −ε, ∀k ∈ {i −nT + 1, ..., i},

where 0 < ε� 1.

5 Implementation

In this section, the methods presented in Section 4 are used to construct an algorithm for solving
the black-box optimization problem. The general algorithm is described in pseudocode in Section
5.1, followed by more detailed descriptions of the algorithms used for creating an initial sample
in Section 5.1.1, parameter estimation in Section 5.1.2, to find new points for evaluation in Section
5.1.3, and termination criteria in Section 5.1.4. The pseudocode for the L-BFGS-B algorithm, which
is used both for the parameter estimation and the infill sampling criteria, was presented earlier, in
Section 2.5.2. In Section 5.2, the implementation into Jeppesen’s Manpower Planning framework is
described. Lastly, in Section 5.3, the different problem settings to be evaluated are specified.

5.1 General algorithm pseudocode

In Algorithm 3, the pseudocode of the main program Optimize(modelType) is presented, where the
argument modelType can be either KPLS or KPLS+K, which were introduced in Section 2.2.1 and 2.2.2,
respectively.

Algorithm 3 Optimize(modelType)
Set number of variables, d
Set variable domain, Ω ⊆Zd
Set initial sample size, n
Create initial sample (X ,y) = CreateInitialSample(Ω,n,d)
Normalize (X ,y)→ (XN ,yN)
Set number of infill sampling criteria, m
Set number of principal components, h

Set initial parameters, θ(0) = θ
(0)
1 , ...,θ

(0)
h

Set termination criterion, T = false

while T == false do
θ = EstimateParameters(θ(0),XN ,yN ,global)
θ(0) = θ
η(0) = {η(0)

j }j=1,...,d =
∑h
l=1θlw

(l)
∗j

2

if modeltype == KPLS+K then
η = EstimateParameters(η(0),XN ,yN ,local)

else
η = η(0)

end if
for i = 1 :m do

(xNn+i , Ŷ (xNn+i)) = GetNewPoint(i,XN ,yN ,η,Ω,d)
end for
(yn+1, ..., yn+m) = Evaluate(xNn+1, ...,x

N
n+m)

XN = XN ∪ {xNn+1, ...,x
N
n+m}, yN = yN ∪ {yNn+1, ..., y

N
n+m}

n + =m
T = ShouldTerminate(yN ,n,m)

end while

36

Initially, the number of variables is set, as well as a variable domain Ω, which for each variable
specifies its allowed (integer valued) range. The initial sample size is chosen and an initial sample
is created using the CreateInitialSample function, described in Section 5.1.1. The initial sample
X , consisting of sample points x, and the corresponding data y are then normalized. The number of
infill sampling criteria m and principal components h are set, as well as an initial parameter vector
θ, to be provided for the parameter estimation procedure. The termination criterion T is initially not
fulfilled, and as long as it is not, the same procedure is repeated for each iteration.

First, the parameter vector θ of length h is estimated using the previously specified start vector
θ(0) and the function EstimateParameters, described in Section 5.1.2. Next, the parameter vector

η(0) is obtained from θ as {η(0)
j }j=1,...,d =

∑h
l=1θlw

(l)
∗j

2, where the w(l)
∗j

2 are constructed as described

in Section 2.2.1. In the KPLS case, η = η(0) constitutes our d-dimensional model parameter vector,
which completes the surrogate model. In the KPLS+K case, η(0) is locally optimized with the goal of
improving the surrogate model. This is, once again, done using the EstimateParameters function.

When the surrogate model is specified, new points are to be added to the sample. By calling the
function GetNewPoint, described in Section 5.1.3, m times, the new points (xNn+1, ...,x

N
n+m) are gener-

ated using m different infill sampling criteria. Thereafter, these points are evaluated in Jeppesen’s
optimizer, yielding the data (yn+1, ..., yn+m). The sample matrix XN and the cost vector yN are up-
dated with the new data and the current sample size is increased. Lastly, the termination criterion
is (possibly) updated by calling the function ShouldTerminate, described in Section 5.1.4. Once it is
fulfilled, the algorithm terminates.

5.1.1 Design of experiments

In Algorithm 4, the pseudocode for generating a design of experiments by Latin Hypercube design
is presented. To obtain a sufficiently well spread-out set of sample points, we focus on minimizing
correlations.

Algorithm 4 CreateInitialSample(Ω,n,d)
Set lower and upper bounds, lj = minΩj ,uj = maxΩj ∀j ∈ d
Set ρmax = 1
Set number of retries, nR
Set Xbest = ∅
for loopIndex = 1 : nR do

Set X = ∅
for j = 1 : d do
p = random perturbation of 1, ...,n
for i = 1 : n do
s = GetRandomIntegerInRange(0,(uj − lj + 1)/n) + lj + i(uj − lj + 1)/n)
Xj,pn−i+1 = s

end for
R = {ri,k}i,k=1,...,n = GetCorrelationMatrix(X)
if maxi,k |ri,k | < ρmax then
ρmax = maxi,k |ri,k |
Xbest = X

end if
end for

end for
return [Xbest,{lj }j=1,...,d ,{uj }j=1,...,d]

First, we denote by l and u the lower and upper limits, respectively, of each variable. Now, the
idea is to generate a large number nR of Latin Hypercube samples, and then choose the sample which
corresponds to the smallest correlation. The current smallest correlation is denoted by ρmax and set
to 1, while the current best sample Xbest is initialized as the empty set.

In each of the retries a new matrix X is constructed, and each variable is then considered one at
the time. We want to divide each variable’s domain into n parts of equal size. Since the variables take

37

on integer values only, the variable domain Ω have to be constructed carefully, so that it is possible
to make such a division. In fact, for each variable j it must hold that (uj − lj + 1)/n ∈ N. When the
domain is divided into n equally sized parts, a value s is randomly sampled in each part i as

s = GetRandomIntegerInRange(0, (uj − lj + 1)/n) + lj + i(uj − lj + 1)/n).

This yields an n-dimensional vector, which shall be randomly perturbed. Practically, a random per-
turbation p of 1, ...,n is created. When a value s is sampled in part i of variable j, we set Xj,pn−i+1

= s.
After all entries ofX have been filled, its correlation matrix is computed, and the largest non-diagonal
value is considered. If this value is smaller than ρmax, ρmax and Xbest are updated, which means that
Xbest will correspond to the Latin Hypercube sample with the smallest maximal off-diagonal element.
Finally, the Xbest matrix is concatenated with the vectors containing the lower and upper values, re-
spectively.

5.1.2 Parameter estimation

The function EstimateParameters in Algorithm 5 can be used for estimating both θ and η. The
difference lies in the number of dimensions d and the type of search, where the θ estimate is found
by a global optimization, while η is estimated by a local optimization. In both cases, the objective
function to optimize is the concentrated likelihood function (22), but with different covariance ker-
nels. When estimating θ, the covariance kernel (41) is used, while (42) is used in case of estimating
η. Neither θ nor η are allowed to be non-positive, and hence bounds b : pl > 0 ∀l = 1, ...,d are spec-
ified. The bounds, together with the initial guess p(0), the sample matrix XN , and data yN are sent
as arguments to the L-BFGS-B minimization function. The minimize function in the Python package
scipy.optimize is used, with L-BFGS-B specified as method. In the case of local optimization, we
simply set ’maxiter’=1, meaning that the L-BFGS-B algorithm finishes after one iteration.

Algorithm 5 EstimateParameters(p(0),XN ,yN , typeOfSearch)

Set d =length(p(0))
Set objective function: LL = concentrated likelihood function (22)
if typeOfSearch == global then

Set kernel function k = kKPLS
1:h (41)

else
Set kernel function k = kKPLS+K (42)

end if
Set bounds, b : pl > 0 ∀l = 1, ...,d
p = L-BFGS-B(LL(k),p(0),XN ,yN ,b, typeOfSearch)

return p

5.1.3 Infill sampling criteria

In Algorithm 6 the pseudocode for the GetNewPoint function is presented, which considers the sur-
rogate model and provides new sample points according to different infill sampling criteria. The
criteria to be used are found in Table 2. As for parameter estimation, the minimize function in the
package scipy.optimize in Python is used, with L-BFGS-B as the method choice. After having speci-
fied an initial guess x(0) ∈Ω and an objective function, the L-BFGS-B algorithm is run to find a sample
point x. In comparison with the parameter estimation, both lower and upper bounds (given by the
end points of the variable domain in each dimension; Ωj , j = 1, ...,d) lj = minΩj and uj = maxΩj ,
need to be provided to the L-BFGS-B function.

38

Algorithm 6 GetNewPoint(i,XN ,yN ,η,Ω,d)
Set lower and upper bounds, lj = minΩj ,uj = maxΩj , j = 1, ...,d

Choose an initial guess: x(0) ∈Ω
Set objective function: ISC(i,η), given on the i:th row in Table 2
x = L-BFGS-B(ISC(i,η),x(0),XN ,yN , {lj }j=1,...,d , {uj }j=1,...,d)

return x

5.1.4 Termination criterion

The pseudocode for the function ShouldTerminate is presented in Algorithm 7, which determines
when to terminate the complete optimization procedure. As mentioned in Section 4.4, there are two
criteria for termination; convergence or if a maximum number of iterations have been reached.

Algorithm 7 ShouldTerminate(yN ,n,m)
Choose maximum number of iterations, maxIter
Set currentIter = (length(yN)−n)/m
if currentIter ≥ maxIter then

return True

end if
Set number of points for convergence verification, nT
Set tolerance ε
Set counter = 0
for k = currentIter−nT : currentIter do

Set pk and pk−1 according to (43)
if pk − pk−1 > −ε then

counter+ = 1
end if

end for
if counter == nT then

return True

end if
return False

The first thing to be done in ShouldTerminate is to choose the maximum number of iterations
maxIter (which was denoted by T in Section 3.2). This number is then compared with the current
iteration number currentIter = (length(yN)− n)/m. If maxIter exceeds currentIter, the function
ShouldTerminate returns True.

To verify whether or not the algorithm has converged, the number of points for convergence
verification nT is set, as well as the tolerance ε. Then, for all points k in the range (currentIter-
nT ,currentIter), the number pk is computed according to (43). If all differences between consec-
utive pk are greater than the (negative) tolerance, i.e., if pk − pk−1 > −ε, ∀k ∈ {currentIter − nT +
1, ...,currentIter}, ShouldTerminate returns True. If none of the termination criteria are fulfilled,
ShouldTerminate returns False.

5.2 Implementation into the Jeppesen Manpower Planning framework

All algorithms and functions presented in this section are implemented in Python, except for the
function Evaluate, which corresponds to running Jeppesen’s optimizer. When a starting sample
X is created using the function CreateInitialSample, all points x are evaluated in the optimizer,
resulting in several KPIs. The KPIs, especially the total cost y, are then utilized in order to find the
next set of sample points. The complete optimization procedure is launched from a Linux terminal
and proceeds automatically until any of the termination criteria are fulfilled. The implementation
into a GUI is not within the scope of this thesis, but should be possible t accomplish.

39

5.3 Problem settings

There are several different interesting problem instances to be investigated. The original data pro-
vided by Jeppesen have d = 76 groups and more than 10,000 crews, which means that the problems
to solve are 76-dimensional. Due to heavy computation times, mainly in the L-BFGS-B optimiza-
tion procedure, we prefer to consider instances where the number of dimensions is reduced. The
following problem settings are considered which are all associated with lower dimensions:

• Optimize only on groups where no vacancy is announced (d = 37)
Referred to as S1

• Optimize only on a subset G of the groups. For consistency, we choose d = 37 groups, but the
number can be arbitrary in the range [1,76]. Out of the 37 groups, the ten groups with highest
deficiency cost are selected, while the remaining groups are picked randomly. The dimension-
ality reduction technique Dropout-Copy (30) is used for the 39 groups not being considered for
optimization, meaning that those variables are copied from the best-so-far solution
Referred to as S2. The variable oj denotes the original number of vacancies announced in group
j ∈ G, and this data is provided by Jeppesen

Both problem settings are presented in Table 3 and will be solved using both the KPLS and the
KPLS+K approach. Moreover, as several points are evaluated in each iteration, it may happen that
different infill sampling criteria yield the same optimal point. In the worst case scenario, very few
points are added in each iteration, which becomes inefficient in the sense of total computation time.
To get around this problem, we make sure that at least a number nL of points are added in each
iteration. It is more beneficial to include points corresponding to the most exploiting infill sampling
criteria, i.e., the ISC named LCL, WB2, WBA

2 and WBB
2 in Table 2. Thus, if a point found by any of

these versions of ISC is non-unique, noise is applied to change the point slightly. In practice, a few of
the variables are changed by one unit. This procedure ensures that at least nL = 4 points are added
to the sample in each iteration. Moreover, the initial sample size is 32 in both the S1 and S2 settings,
which constitutes of 30 LHD points and two points corresponding to the lower and upper variable
values, i.e. minj=1,...,d{Ωj } and maxj=1,...,d{Ωj } .

Table 3: Parameter values of problem setting S1 and S2. The variable oj denotes the original number
of vacancies announced in group j.

Parameter Value (S1) Value (S2)
Number of groups, d 37 37
Initial sample size, n 32 32
Variable domain Ωj for groups j with vacancies announced [−29,0]d [oj − 4, oj + 5]
Variable domain Ωj for groups j with no vacancies announced [−29,0]d [−29,0]
Number of retries when building an initial sample matrix, nR 1000 100
Maximum number of algorithm iterations, maxIter (T) 20 20
Number of principal components, h 3 3

Initial paramater, θ(0)
j 0.1 ∀j = 1, ...,h 0.1 ∀j = 1, ...,h

Number of points for convergence verification, nT 3 3
Tolerance, ε 10−3 10−3

40

6 Algorithm evaluation

Before running the algorithm with data provided by Jeppesen, the performance quality of the algo-
rithm is investigated. Since the true minimum of Jeppesen’s problem instance is not known, it is
impossible (in reasonable time) to know whether a near-optimum solution has been reached. There-
fore, by evaluating the algorithm using a function with a known minimum value, it is possible to
see how well the algorithm performs. However, it is not certain that the performance quality of the
algorithm is the same considering different problem instances, but it indicates whether the algorithm
is able to produce promising results or not.

To obtain a reliable result, the benchmark function and the black-box function should produce as
similar results as possible. After some trial, the following benchmark function was chosen:

y(x) = 900
d∑
j=1

(xj − rj)2 + 2 · 107. (44)

The minimum is r = {r1, ..., rd}, where each rj is randomly generated in the integer valued range de-
fined by the variable domain in the jth dimension; Ωj , i.e., in the range [minΩj ,maxΩj] ∀j = 1, ...,d.
The goal of the optimization algorithm is to find r, or at least a point close to r.

What should be noticed is that the benchmark function (44) is convex and hence it has a very
smooth behavior, which is not the case when it comes to the black-box function representing the total
cost obtained from Jeppesen’s optimizer. The black-box function is very complex and contains many
irregularities. Thus, we can not expect the algorithm to perform as well when using real airline data
as when using the benchmark function. This is taken into consideration later on when the results
obtained from the algorithms on real airline data is presented and discussed.

In the remainder of the section, the KPLS and the KPLS+K algorithms, introduced in Sections
2.2.1 and 2.2.2, are evaluated on the problem setting S1 found in Table 3. All simulations presented
in this thesis are done on an Intel® CoreTM i7-6600U CPU @ 2.60 GHz 2.81 GHz PC.

6.1 Evaluation of the KPLS algorithm using a benchmark function

To evaluate the performance of the KPLS algorithm, we begin by generating a start sample X using
the CreateInitialSample function, and via (44) the corresponding data y is obtained. The best point
in the start sample has a cost of 23,205,800 and is located 59.68 distance units away from the true
minimum. The distance considered is the Euclidean distance in d = 37 dimensions, given by

D(x,x∗) =

√√√√ d∑
j=1

(xi − x∗i)2

Running the algorithm on the start sample results in the points visualized in Figure 15. In Figure
15a the initial sample is plotted as small dots, followed by most of the ISC points. However, some
are suppressed and plotted only in Figure 15b for clarity, showing the evolution of the points with
exploiting ISC. The lines at the bottom of the plots represent the true minimum at 2 · 107, which the
new points are approaching.

The best point found before the algorithm terminates has a cost of 20,175,500 and a distance of
13.96 length units to the optimum x∗. It corresponds to infill sampling criterion WB2 in the 13th
iteration.

Even before the new points are evaluated, their predicted value can be calculated using the Krig-
ing predictor (23). These predictions are plotted in Figure 16. We observe that the predictions are
generally smaller than the true values, but the overall trend is similar. To be able to see the differences
in predictions and true values more clearly, the error given by

Error(x) =
|Ŷ (x)−Y (x)|

Y (x)
100, (45)

41

(a) Initial sample and evolution of most of the ISC points; some
local criteria are excluded for clarity.

(b) Evolution of points associated with exploiting ISC.

Figure 15: KPLS algorithm performance using the benchmark function (44).

is plotted in Figure 17. It can be observed that most errors are below 5%. The largest errors corre-
spond to infill sampling criterion GBL. This is natural, since the criterion of GBL is to maximize model
uncertainty.

Another way of investigating whether the ISC characteristics seem reasonable or not is to look
at distances between points. Once again, it is the Euclidean distance in d = 37 dimensions that is
considered and for each new point we pay attention to the smallest distance to any of the points in the
sample. We expect that global/space filling ISC should have a larger smallest distance to any point
as compared with the more local ISC. From Figure 18 this behavior is confirmed. The criterion GBL
corresponds to the largest values, while points associated with local optimization of the surrogate
model, e.g., criteria LCL, WB2, WBA

2 , WBB
2 , and WBC

2 have small values. Moreover, the distances stay
more or less the same for each of the different ISC as the sample size increases, meaning that the
space is not significantly filled by the addition of approximately 120 new points.

The computation times for estimating θ and optimizing the different ISC are plotted in Figure

42

Figure 16: Kriging predictions of the benchmark function (44) within the KPLS algorithm.

Figure 17: Kriging predictor errors given by (45) within the KPLS algorithm.

Figure 18: The smallest distance to any point in the sample, for each new point.

43

19. The dashed line represents the complete time spent on each iteration of the algorithm, which
is generally increased with an increased sample size. The total time, from start to termination, is 4
hours and 8 minutes, while the minimum is found after 3 hours and 32 minutes.

Figure 19: Computation times for each iteration of the KPLS algorithm when the benchmark function
(44) is used as the black-box function

6.2 Evaluation of the KPLS+K algorithm using a benchmark function

In this section, the KPLS+K algorithm is evaluated using the same problem setting as when evaluating
the KPLS algorithm. This time, the minimum found by the algorithm has a cost of 20,030,600 and a
distance of 5.83 length units to the optimum. The sample is visualized in Figure 20, with the points
corresponding to different behaving ISCs are plotted in Figure 20a and the points corresponding
to local optimizations are plotted in Figure 20b for clarity. The minimum is observed in the 14:th
iteration, associated with infill sampling criterion LCL. Compared to the KPLS algorithm, a lower
cost than the minimum of 20,175,500 is found at earliest in iteration 6 for criterion WBA

2 . This
means that, if the total time of reaching the point corresponding to WBA

2 in iteration 6 is less than 3
hours and 32 minutes (which is the time it takes to reach criterion WBA

2 in iteration 6), the KPLS+K
algorithm is preferred rather than the KPLS algorithm for the problem instance considered. The time
of estimating the parameters θ and η, as well as the time for optimizing the ISC and the total time
spent in each iteration are plotted in Figure 22.

It is clear that the time of estimating the parameter η is increasing with the iteration number, i.e.,
with the sample size. The total time from start to termination for the KPLS+K algorithm is 6 hours
and 46 minutes, which is obviously longer than the running time of the KPLS algorithm. However,
it takes 1 hour and 9 minutes until the KPLS+K algorithm reaches a lower cost than the minimum
found by the KPLS algorithm, which indicates that the KPLS+K algorithm is more beneficial. The
fact that fewer iterations are needed is even more important when running the algorithms on real
airline data, since evaluations of the black-box function (represented by Jeppesen’s optimizer) are
time consuming.

Lastly, in Figure 22 the errors of the KPLS+K algorithm computed as in (45) are presented. These
errors are generally smaller than the errors of the KPLS algorithm plotted in Figure 17. Once again,
the largest errors correspond to criterion GBL, i.e., maximizing model uncertainty. It is natural that
errors become smaller using the KPLS+K algorithm, since the parameter estimation is more accurate,
meaning that the concentrated likelihood function (22) is increased.

44

(a) Initial sample and evolution of most of the ISC points; some
local criteria are excluded for clarity.

(b) Evolution of points associated with exploiting ISC.

Figure 20: KPLS+K algorithm performance using the benchmark function (44).

The fact that the algorithms find near-optimal points using the benchmark function (44) is promis-
ing and we thus proceed by evaluating the KPLS and KPLS+K algorithms on real airline data, using
both parameter settings S1 and S2. However, as mentioned in the beginning of this section, the
black-box function representing the total cost obtained from Jeppesen’s optimizer is less smooth,
which means that the algorithm may differ in performance when applied on real airline data.

7 Results

When evaluating the KPLS and the KPLS+K algorithm using the real airline data provided by Jeppe-
sen, both parameter settings S1 and S2 are considered. The results obtained by running the KPLS
algorithm with parameter settings S1 and S2 are presented in Section 7.1 and 7.2, respectively, while
the corresponding KPLS+K results are presented in Sections 7.3 and 7.4. Two different initial sam-
ples are generated, one to use with S1 and one to use with S2. Lastly, some general observations are
presented in Section 7.5

In comparison with the benchmark problem, the minimum black-box function value is unknown,

45

Figure 21: Computation times for each iteration of the KPLS+K algorithm when the benchmark
function (44) is used as the black-box function.

Figure 22: Kriging predictor errors given by (45) when running the KPLS+K algorithm and using the
benchmark function (44).

but we still want to be able to assess the performance quality of the algorithms. Hence, a reference
solution is constructed manually by the manpower optimization team at Jeppesen, who have much in-
sight in the problem and its dynamics. The reference solution is associated with a cost of 21,866,261
and does not represent the black-box function minimum. Hence, the algorithms should ideally find
solutions with costs lower than this reference value. The total cost is a sum of different costs, e.g.,
deficiency costs and cost of courses. Such values are to be investigated as well. The deficiency cost
corresponding to the reference solution is 7,666,282, while the share of crews being transitioned is
0.213.

7.1 Evaluating the KPLS algorithm on airline data with setting S1

In Figure 23 the result of running the KPLS algorithm on real airline data with parameter setting S1
is visualized. The best solution found by the algorithm has a cost of 20,875,584 and it was found in
the 7th iteration, corresponding to criterion WBB

2 . The algorithm terminated after ten iterations and
found many points related to a lower cost than the manually constructed reference solution, which is

46

Figure 23: KPLS algorithm performance using real airline data and parameter setting S1. The hori-
zontal dashed line represents the reference solution constructed manually, while the vertical dashed
lines indicate the iterations.

represented by pale dashed lines in Figure 23.
The sample points plotted in Figure 23 corresponds to the best solution found. To find out

whether the algorithm is robust, we would like to run it several times. However, since computation
times are heavy, we restrict our computations to three runs per case. In Table 4, the lowest cost among
three evaluations are presented, together with the corresponding ISC, iteration number and time to
reach that point, as well as the total time and number of iterations before algorithm termination.

In contrast to the benchmark problem, points close to each other (in Euclidean distance) does not
necessarily have similar costs. For example, the point corresponding to the minimum cost in this
evaluation is very close to three other points; the points corresponding to criteria GBL, EI, and POI in
the 7th iteration. The fact that the points are close means that they differ with a small number in few
of the dimensions. The Euclidean distances are 3.61, 1.73 and 2.45, respectively, while the costs are
26,032,238, 21,044,766 and 25,949,687. This means that, e.g., the points corresponding to criteria
WBA

2 and POI in iteration 7 differs by one unit in six of the groups, and this difference gives rise to a

47

Table 4: Three evaluations of the KPLS algorithm using problem setting S1.

Time Time Total time
reaching including including

best solution black-box Total # Total time black-box
Lowest cost ISC Iteration [h:min] evaluation iterations [h:min] evaluation
20,875,584 WBB

2 7 1:32 ≈ 7:30 10 2:36 ≈ 11:00
20,882,789 WB2 2 0:05 ≈ 2:00 5 0:38 ≈ 5:00
20,941,931 WBB

2 5 0:52 ≈ 5:00 8 1:34 ≈ 8:30

24% cost increment.
As mentioned in the beginning of this section, the total cost is a sum of several different costs,

deficiency costs and cost of courses being two such terms. Ideally, both the deficiency cost and the
number of courses given, i.e., crew transitions, should be small. The deficiency costs and the share
of crews being transitioned, corresponding to the total costs in Figure 23, are plotted in Figures 24
and 25, respectively. We observe that the deficiency costs are generally decreasing with the iteration
number, while the share of crew transfers is slightly increasing. The best solution found, i.e., the
sample point corresponding to the lowest total cost is associated with both a relatively low deficiency
cost (8,259,762) and a low share of crews being transitioned (0.155). There is a general trade-off
between deficiency cost and the share of crews being transitioned, which is realized when observing
that the sample points which give rise to high deficiency costs generally are associated with low
shares of crews being transitioned. If desired, more importance can be given to either of these KPIs,
by weighting the different costs in the objective function.

The prediction errors, calculated as in (45), are plotted in Figure 26. The errors are generally
small, most errors are below 5%. It is neither evident that errors are increasing nor decreasing as the
sample grows. Also, the size of the error does not have the same correspondence to the ISC. It is not
the case that the more space-filling criteria (GBL, EI and POI) generally have larger errors than the
criteria which are focusing on the surrogate model minimum (LCL, WB2, WBA

2 , WBB
2 and WBC

2).
The computation time for each of the iterations are plotted in Figure 27. The time for optimizing

all the ISC is generally increasing with a larger sample size, while the computation time for estimat-
ing the parameter θ does increase at first, but then decreases again. However, since optimizing the
ISC makes up the majority of the total computation time, the total computation time is still increas-
ing with the number of iterations in general. The total time from start to termination of the algorithm
(excluding cost evaluations performed in Jeppesen’s optimizer) is 2 hours and 51 minutes, and the
best solution was found after 1 hour and 32 minutes. The points to be evaluated in the optimizer
are sent in parallel, and hence the evaluation wall clock time is independent of the number of points
evaluated in each iteration. Nevertheless, the optimizer’s evaluation time is approximately 50 min-
utes, which means that the complete computation time is roughly 11 hours, while the best point was
found after roughly 7.5 hours.

48

Figure 24: Deficiency costs for each of the sample points evaluated using the KPLS algorithm on
problem setting S1 and real airline data.

49

Figure 25: Share of crew transfers for each of the sample points evaluated using the KPLS algorithm
on problem setting S1 and real airline data.

50

Figure 26: Kriging predictor errors given by (45) when running the KPLS algorithm with parameter
setting S1 on real airline data.

Figure 27: Computation times for each iteration of the KPLS algorithm using real airline data and
parameter setting S1.

7.2 Evaluating the KPLS algorithm on airline data with setting S2

Here, the KPLS algorithm is evaluated on a new problem setting, namely S2. Three different eval-
uations are presented in Table 5, where the evaluation corresponding to the lowest cost found is to
be looked into in short. A different initial sample is constructed which, as compared to the initial
sample used with S1, is related to higher costs. The costs associated with the new initial sample are
plotted together with the evolution of the costs of the new sample points, in Figure 28.

The best point found is related to a cost of 21,965,782, which corresponds to criterion WB2 in the
fourth iteration. This cost is much higher than the lowest cost found using parameter setting S1, and

51

Figure 28: KPLS algorithm performance using real airline data and parameter setting S2. The hori-
zontal dashed line represents the reference solution constructed manually, while the vertical dashed
lines indicate the iterations.

slightly larger than the reference solution. The algorithm terminates after seven iterations, since it
can not find an improved solution within three iterations after the fourth iteration, at which the point
with the lowest cost point was found.

Table 5: Three evaluations of the KPLS algorithm using problem setting S2.

Time Time Total time
reaching including including

best solution black-box Total # Total time black-box
Lowest cost ISC Iteration [h:min] evaluation iterations [h:min] evaluation
21,965,782 WB2 4 0:46 ≈ 4:00 7 1:40 ≈ 7:30
21,996,566 WBC

2 3 0:24 ≈ 3:00 6 1:02 ≈ 6:00
22,260,378 WBA

2 4 0:43 ≈ 4:00 7 2:11 ≈ 8:00

52

The corresponding deficiency costs and shares of crew transitions are plotted in Figures 29 and
30, respectively. In contrast to the S1 case, the deficiency costs are much lower than the deficiency
cost of the reference solution. However, due to the trade-off between a low deficiency cost and a low
share of crews being transitioned, the share of crews being transitioned is much higher as compared
to the S1 case. For the S2 problem instance, almost all sample points correspond to solutions were
the share of crew transitions are approaching 20 %.

Figure 29: Deficiency costs for each of the sample points evaluated using the KPLS algorithm on
problem setting S2 and real airline data.

53

Figure 30: Share of crew transfers for each of the sample points evaluated using the KPLS algorithm
on problem setting S2 and real airline data.

The prediction errors for each sample point, calculated as in (45), are plotted in Figure 31. The
errors are much larger as compared with the S1 case and once again it is not the case that points cor-
responding to space-filling ISC generally have larger errors than points corresponding to exploiting
ISC. However, there is a trend of errors decreasing as the number of sample points is increased.

The resulting computation times are visualized in Figure 32. We observe that, in general, the
time of estimating the parameter vector θ, as well as optimizing all the ISCs, is increased with the
number of iterations, even though there is a high peak in the second iteration considering the time of
estimating all ISCs.

54

Figure 31: Kriging predictor errors given by (45) when running the KPLS algorithm with parameter
setting S2 on real airline data.

Figure 32: Computation times for each iteration of the KPLS algorithm using real airline data and
parameter setting S2.

7.3 Evaluating the KPLS+K algorithm on airline data with setting S1

The next thing to do is to evaluate our algorithm which includes an improved parameter estimation,
referred to as KPLS+K. Three evaluations are presented in Table 6, and the best evaluation is to be
examined further.

In Figure 33, the initial sample created for problem setting S1 is plotted, together with the evo-
lution of the new sample points. The lowest cost found is 20,894,365 and it corresponds to criterion
LCL in the 9th iteration. The algorithm then terminates three iterations later, after the 12th iteration.
Many of the points found are associated with lower costs than the reference solution.

The corresponding deficiency costs and shares of crew transitions are plotted in Figures 34 and
35, respectively. The behavior is similar to the case when the KPLS algorithm was evaluated on the
same problem instance (S1), where the deficiency cost was generally decreasing with the number

55

Table 6: Three evaluations of the KPLS+K algorithm using problem setting S1.

Time Time Total time
reaching including including

best solution black-box Total # Total time black-box
Lowest cost ISC Iteration [h:min] evaluation iterations [h:min] evaluation
20,894,365 LCL 9 2:46 ≈ 10:00 12 4:18 ≈ 14:30
20,945,693 WB2 4 1:17 ≈ 4:30 7 3:04 ≈ 9:00
20,947,911 WBC

2 6 1:27 ≈ 6:30 9 4:04 ≈ 11:30

Figure 33: KPLS+K algorithm performance using real airline data and parameter setting S1. The
horizontal dashed line represents the reference solution constructed manually, while the vertical
dashed lines indicate the iterations.

of iterations, while the share of crews being transitioned are rather increasing with the iteration
number. The best solution (i.e., the solution corresponding to the lowest total cost) has a deficiency
cost of 7,896,336, which is slightly higher as compared to the deficiency cost of the reference solution,

56

but lower compared to the KPLS case. However, 15.9 % of the crews are being transitioned, which
is more than the corresponding value of the best solution found evaluating the KPLS algorithm on
problem setting S1.

Figure 34: Deficiency costs for each of the sample points evaluated using the KPLS+K algorithm on
problem setting S1 and real airline data.

The prediction errors are visualized in Figure 36. A trend of slightly increasing errors can be
observed, but they all stay below 8%. There is no trend that points corresponding to space-filling ISC
are associated with larger errors compared to the exploiting ISC.

As presented in Table 6, the computation time for reaching the minimum cost point is 2 hours and
46 minutes, or approximately 10 hours including the black-box evaluations in Jeppesen’s optimizer.
The complete evaluation time is approximately 14.5 hours, where 4 hours and 18 minutes of those are
spent on estimating θ and η and optimizing the different ISCs. The computation times for estimating
both parameters θ and η are unexpectedly decreased in the last two iterations.

57

Figure 35: Share of crew transfers for each of the sample points evaluated using the KPLS+K algo-
rithm on problem setting S1 and real airline data.

.

58

Figure 36: Kriging predictor errors given by (45) when running the KPLS+K algorithm with param-
eter setting S1 on real airline data.

Figure 37: Computation times for each iteration of the KPLS+K algorithm using real airline data and
the parameter setting S1.

7.4 Evaluating the KPLS+K algorithm on airline data with setting S2

Lastly, the KPLS+K algorithm is evaluated when problem setting S2 is used. Three different evalua-
tions are presented in Table 7.

For the evaluation corresponding to the best solution, the resulting sample points are plotted in
Figure 38. The lowest cost evaluated is 21,719,179, which is found in the fifth iteration, with criterion
WBC

2 . The algorithm was unable to find a better solution within three iterations and hence terminated
after seven iterations. The cost attained is slightly lower than the cost of the reference solution.

The corresponding deficiency costs and shares of crew transitions are plotted in Figures 39 and 40,
respectively. Just like when evaluating the KPLS algorithm using problem setting S2, the deficiency
costs are generally smaller than that of the reference solution. However, this time the percentage

59

Table 7: Three evaluations of the KPLS+K algorithm using problem setting S1.

Time Time Total time
reaching including including

best solution black-box Total # Total time black-box
Lowest cost ISC Iteration [h:min] evaluation iterations [h:min] evaluation
21,719,179 WBC

2 5 1:00 ≈ 5:00 8 2:02 ≈ 8:30
21,807,441 WBA

2 3 0:28 ≈ 3:00 6 1:15 ≈ 6:00
22,309,445 WB2 3 0:31 ≈ 3:00 6 1:21 ≈ 6:00

Figure 38: KPLS+K algorithm performance using real airline data and parameter setting S2. The
horizontal dashed line represents the reference solution constructed manually, while the vertical
dashed lines indicate the iterations.

of crews being transitioned is not as high, which may be a reason why the total costs where lower
running the KPLS+K algorithm as compared to running the KPLS algorithm, using the S2 problem
setting.

60

Figure 39: Deficiency costs for each of the sample points evaluated using the KPLS+K algorithm on
problem setting S2 and real airline data.

The Kriging prediction errors calculated as (45) are presented in Figure 41. The errors are rela-
tively large compared to the other cases studied, and they tend to increase with the sample size.

All relevant computation times are plotted in Figure 42. As in all previous cases, the computation
time of optimizing each of the ISCs is generally increasing with the sample size. In this case, so
are the computation times of estimating the parameter vectors θ and η. The time measured from
start to termination of the KPLS+K algorithm with parameter setting S2 is 2 hours and 2 minutes
(excluding the evaluations in Jeppesen’s optimizer), while it takes roughly 8.5 hours including the
time spent by Jeppesen’s optimizer. Moreover, the time it takes to reach the point with the lowest
cost is roughly 5 hours, or 1 hour excluding the evaluation performed by the optimizer. The largest
share of the computation time in each iteration is, once again, related to optimizing all ISCs. The
time of estimating θ is larger than that of estimating η.

61

Figure 40: Share of crew transfers for each of the sample points evaluated using the KPLS+K algo-
rithm on problem setting S2 and real airline data.

.

62

Figure 41: Kriging predictor errors given by (45) when running the KPLS+K algorithm with param-
eter setting S2 on real airline data.

Figure 42: Computation times for each iteration of the KPLS+K algorithm using real airline data and
parameter setting S2.

7.5 General observations

Lastly, some general observations are presented. What is common for all evaluations is that the most
space-filling ISCs (i.e., GBL, EI, and POI) are associated with high costs, and barely ever reaches
below the reference solution’s cost (except the EI criterion, once in each of Figures 23 and 33). By
investigating the points corresponding to space-filling ISC, it can be observed that the variables to a
great extent equal the lower and upper values of the variable domain. In the case of S1, this means
that many of the variables equals either −29 or 0, see Table 3. In practice, the number −29 represent
the maximum allowed staffing deviation, while the number 0 means that there is no staffing deviation
in the corresponding group. The behavior that variables tend to equal the lower and upper values
of the variable domain is especially evident for points corresponding to the complete global search

63

criterion GBL. However, even though these points do not explicitly result in low costs, their presence
in the sample can be useful when building the surrogate model and may lead to the exploration of
new, promising areas. To investigate the usefulness of the space-filling ISC, we consider a new setting,
where only criteria LCL, WB2, WBA

2 , and WBB
2 are used for finding new points to evaluate. The rest

of the parameter values are set according to S1 in Table 3. The algorithm performance is presented in
Figure 43. The lowest cost found is 20,717,286, corresponding to WBB

2 in iteration 8. The algorithm
terminates after 11 iterations and finds many solutions with lower costs than that of the reference
solution.

Figure 43: Performance of the KPLS algorithm on problem setting S1 using real airline data, when
only exploiting ISCs are considered for finding new evaluation points. The horizontal dashed line
represents the reference solution constructed manually, while the vertical dashed lines indicate the
iterations.

The corresponding deficiency costs and shares of crew transitions are plotted in Figures 44 and
45, respectively. Similar results as in Section 7.1 are observed when it comes to deficiency costs,
i.e., they are generally decreasing. However, this time there is no evident trend of the share of crew
transitions increasing with the number of iterations, which may be a reason why such low total costs
were found using this problem instance. The best solution found has a deficiency cost of 8,099,209
and the share of crews being transitioned is 0.154, which are both lower as compared to the values

64

obtained when running the KPLS algorithm on the original S1 problem setting.

Figure 44: Deficiency costs for each of the sample points evaluated using the KPLS algorithm on
problem setting S1 and real airline data, when only exploiting ISCs are considered.

The Kriging prediction errors calculated using (45) are presented in Figure 46. The errors are very
low; the largest error is slightly above 3 %. No evident trend of neither increasing nor decreasing
errors can be observed.

Lastly, in Figure 47, the corresponding computation times are visualized. The total computation
time from start to termination is approximately 10 hours, where 1 hour and 8 minutes of those are
spent on computations outside Jeppesen’s optimizer. The best solution is found after roughly 7.5
hours, where the algorithm computations take 48 minutes.

The simulation presented above is associated with the lowest cost found. Resulting variables are
presented in Table 8 together with those of two other simulations, to show that also in this case the
algorithm is relatively robust.

65

Figure 45: Share of crew transfers for each of the sample points evaluated using the KPLS algorithm
on problem setting S1 and real airline data, when only exploiting ISCs are considered.

Table 8: Three evaluations of the KPLS algorithm using problem setting S1 and considering only the
exploiting ISC.

Time Time Total time
reaching including including

best solution black-box Total # Total time black-box
Lowest cost ISC Iteration [h:min] evaluation iterations [h:min] evaluation
20,717,286 WBB

2 8 0.48 ≈ 7:30 11 1:08 ≈ 10:00
20,816,133 WB2 11 1:11 ≈ 10:00 14 1:56 ≈ 13:30
20,987,046 WBB

2 3 0:07 ≈ 2:30 6 0:21 ≈ 5:30

.

66

Figure 46: Kriging predictor errors given by (45) when running the KPLS algorithm with parameter
setting S1 on real airline data and only considering the exploiting ISC for finding new evaluation
points.

Figure 47: Computation times for each iteration of the KPLS algorithm with parameter setting S1 on
real airline data, when only the exploiting ISC are considered for finding new evaluation points.

8 Discussion and future research

The goal of this thesis work was to build an algorithm for modifying vacancy announcement and the
amount of staffing deviation allowed (so-called backfilling) within the Manpower Planning frame-
work used at Jeppesen. The algorithm was implemented in Python, in order to be easily integrated
into the already existing software. The algorithm, which is referred to as KPLS in the literature, was
implemented to solve general planning problems. So was also the extension KPLS+K, which includes
an additional estimation of the surrogate model parameters. Both versions of the algorithm were
evaluated using a benchmark function with a known minimum value, in order to assess their per-
formance quality. Thereafter, they were evaluated using real airline data for two different problem

67

settings. In this section, the results presented in the previous section will be discussed, as well as the
algorithm in general. Possible improvements will be presented, as well as future research.

8.1 Method selection

Constructing the surrogate model

In constructing the surrogate model, Kriging was chosen as the basis method. The reason to choose
Kriging was its ability to measure the uncertainty in the predictor itself. Other, similar methods
have been considered, such as surrogate models based on radial basis functions. The (in literature
stated) improved performance of the Kriging method compared to the RBF method was preferred
in this case. However, the RBF method is simpler, requiring only the solution of a system of linear
equations, compared to maximizing a likelihood function as required in the Kriging method. The
trade-off between performance and simplicity have not been investigated further in this project.

Except surrogate modelling techniques as Kriging and RBF, there are other possible approaches
on how to face the problem. In these days, machine learning algorithms have become very popular,
e.g., artificial neural networks (ANN) and support vector machines (SVM). However, they generally
require a huge amount of data in order to provide good results. That is the main reason why such al-
gorithms are discarded, since it would take a vast amount of time to generate the data needed to train
the algorithm. Surrogate models like Kriging, which do not require the evaluation of particularly
many sample points, was the better option for this very problem.

Due to the problem being high-dimensional, dimensionality reduction techniques were invoked,
to decrease computation times. The KPLS model (and its extension KPLS+K) was chosen due to its
ability of maintaining good accuracy while saving CPU time, as stated in [13]. Within this project, no
explicit comparison of the accuracy and the CPU time between KPLS and full-dimensional Kriging
was performed. However, since the estimation of the parameter η (a local optimization, consisting
of only one iteration of the L-BFGS-B algorithm) usually took several minutes, we expect a full-
dimensional estimation of the parameter θ to be an unreasonably heavy computation.

In [13], the number of principal components is set using a leave-one-out cross-validation pro-
cedure. First, h different KPLS models are constructed, where h = 1,2, ... denotes the number of
principal components used. Then, the number h is chosen as the number of components which min-
imizes the leave-out cross-validation error. Since it takes a noticeable time to estimate θ, especially
for larger values of h, we chose to fix h = 3 within this project. The choice h = 3 is a good trade-off
between surrogate model accuracy and computation time and the same approach is used in, e.g., [18].

The optimization algorithm was constructed mainly using the ideas presented in [13], [15], and
[18]. In these papers, the parameter p ≡ 2 (in the correlation function (8)) as a simplification. Since
the problem considered in this thesis is high dimensional, the estimation of an additional parameter
vector would make the computation times increase considerably. Recalling the interpretation of the
parameter vector p, it determines the function’s smoothness in each direction j = 1, ...,d. Values pj
close to 2 serve to model smooth functions, while values of pj close to 0 are more suitable for modeling
less smooth functions. The benchmark problems yielded solutions with good quality, which can be
explained by the fact that the benchmark function (44) is very smooth. When it comes to the black-
box function, we can not establish its smoothness with certainty. However, the observation that some
pair of points which differed only by a few units gave rise to essentially different costs indicates
that the black-box function is less smooth. As a future revision of the algorithm, the value of the
parameter p should therefore be decreased.

Design of experiments

As seen in Figure 18, the distances between points do not decrease as the sample size does. The reason
for this is that the search space is huge. For the S1 problem instance, the total number of points within
the search space is 3037 ≈ 5 · 1054, which means that it is impossible to fill the space with as few as
≈ 102 points. This motivates a larger initial sample size. On the other hand, an increased sample size

68

increases computation times both for estimating parameters and for finding new points to evaluate,
and hence this trade-off must be taken into consideration. In the evaluations above, the start samples
have a size of 32, where 30 of the points are constructed using Latin Hypercube design and the
remaining two samples constitutes the minimum and maximum values of the variable domains. No
further investigation of the algorithm performance using different start samples have been performed
in this project, but can easily be done. However, the variable domains must be chosen in accordance,
such that the LHD sample can be constructed properly. For example, if a LHD sample of size 50 is
constructed for problem setting S1, the range of the integral variable domain Ω must be a multiple
of 50 (or the other way around), i.e. Ω = [−50k + 1,0], k ≥ 1, or Ω = [−50/k + 1,0] such that −50/k ∈N,
which changes the solution set. The choice Ω = [−29,0] is a suitable variable range for the airline data
considered, and that motivates the use of a LHD sample consisting of 30 points. However, using the
logic just presented a LHD sample of size 30 ·2 = 60 would do as well, but the decreased computation
time using a 30 point LHD sample was preferred in this case.

Infill sampling criteria

Another trade-off which have been considered is how many sample points to evaluate in each itera-
tion. We want to utilize the fact that evaluations of the black-box function can be done in parallel, by
adding several points to the sample in each iteration. By doing so, the number of iterations needed
for the algorithm to find good solutions is decreased. However, as mentioned in Section 5.1.3, it is
not beneficial to add a huge number of points in each iteration. From the start, the surrogate model
is approximated from a small number of sample points, which means that it is not very accurate.
Therefore, the points found by the different infill sampling criteria are optimized based on a de-
ficient surrogate model and will unlikely coincide with the true minimum. As we have seen, the
computation times generally increase with an increased sample size, and thus a reasonable number
of sample points should be added in each iteration, so that computation times do not become too
heavy already from the start.

In the cases evaluated in Section 7, eight different ISC were considered, which focused on both
exploration and exploitation. We observed that the ISC focusing on exploration yielded points asso-
ciated with high costs, which motivated us to consider a new setting where only exploiting ISCs were
used to find new points to evaluate. The result of running the KPLS algorithm on this new, modified
S1 setting was presented in Table 8. The KPLS algorithm found good solutions, one even better than
the best solution found using the full-ISC setting. From these observations, we conclude that the
exploiting ISC are the most important criteria for finding good solutions and that the sample points
found by the exploring ISC are more or less redundant. This might as well mean that the surrogate
model used is unnecessarily complex, and that a simpler method than Kriging could have been suf-
ficient. One advantage with the Kriging method is its ability to predict the uncertainty in the model
itself, but since the ISC focusing on maximizing the model uncertainty were more or less redundant,
the uncertainty prediction was not particularly useful. Therefore, a general suggestion is to consider
a surrogate model based on a simpler method than Kriging.

Numerical optimization

The L-BFGS-B algorithm was used rather than the COBYLA algorithm, due to lack in performance
of the latter (e.g., COBYLA produced worse solutions compared to the L-BFGS-B algorithm and did
not maintain the box constraints). However, there are still a few problems related to the use of the
L-BFGS-B method within the minimize method in the Python package scipy.optimize. It happens
that the L-BFGS-B function does not manage to find an improved solution, compared to the initial
vector sent as input argument. In the case of estimating the parameter vector θ, this means that
the surrogate model is not updated between two iterations, since the start vector θ(0) is set as the
parameter vector θ obtained in the previous iteration. This behavior can be observed in many of
the plots visualizing computation times, e.g., in Figures 27, 37, and 47. The time of estimating θ

69

is dropping as no improved surrogate model can be found by the L-BFGS-B method. Ideally, the
surrogate model should be improved in each iteration of the algorithm, and if it is not it may result
in incorrect points being evaluated. In the KPLS+K case, the problem becomes less significant, since
that algorithm includes an additional parameter estimation which can retrieve the improper initial
parameter estimation. However, the fact that the algorithm lacks in performance is still inconvenient.

Another problem which had to be dealt with concerning the L-BFGS-B function was the fact that
some updates produced within the L-BFGS-B procedure become infeasible. For example, for dif-
ferent choices of the parameter vector θ the correlation matrix (8) can become singular and thus
non-invertible. Such cases have to be taken care of separately, e.g., by penalizing (giving high costs
to) parameters θ related to correlation matrices with determinants very close to zero. Such problems
appeared often for parameters θ and η including very small entries. In fact, both θ and η are bounded
to be strictly above zero. In the implementation, these lower bounds have to be chosen explicitly. In
order to avoid the singularity problems, sufficiently large bounds are chosen, namely θ ≥ 10−4 and
η ≥ 10−6.

The reason why singularity problems appear is probably because of sample points being almost
equal, due to some of the infill sampling criteria being similar. Even if we relax the requirement that
at least nL points must be added in each iteration (which results in similar sample points, due to the
fact that the noise applied only changes a few of the variables by one unit), the singularity problem
will still be present. This is because the convergence to a minimum means that several points are
sampled in the same area. The problem becomes even more evident since the variables are integer
valued and the variable ranges are relatively small.

Apart from all these inconveniences, L-BFGS-B was the best choice among the methods avail-
able in the scipy package in Python. For an improved algorithm, another numerical optimization
tool should be used, e.g., the partitioning algorithm DIRECT (shorthand for DIviding RECTangles).
The absence of an easy-to-use implementation of DIRECT led to the rejection of the method within
this project, and it can be considered as a future revision. Implementing a numerical optimization
procedure from scratch is also a possible approach.

8.2 Algorithm evaluation

Starting off with the evaluation of the algorithms using the benchmark function (44), we were not
able to find the true minimum before termination, but points relatively close to the optimum were
discovered. Beginning with points further away than 59 length units (Euclidean distance in d =
37 dimensions), the KPLS+K algorithm was able to find a point 5.83 length units away from the
true minimum, with a corresponding cost of 20,030,600 (0.15% greater than the minimum). The
fact that the algorithm performed well on the benchmark problem motivated us to stay with the
implementation and apply it on real airline data. However, as mentioned in the previous section, the
benchmark function is much smoother than the black-box function representing the cost produced
by Jeppesen’s optimizer. This becomes evident when evaluating the algorithms on real airline data,
observing, e.g., that small changes in a few of the variables can give rise to great cost increments.

It is not surprising that the algorithm performed better using a convex objective function. When
the surrogate model was approximated and when new points were to be evaluated, the numerical
optimization algorithm L-BFGS-B algorithm was employed, which is based on the approximation of
the Hessian matrix. The approximation of the Hessian matrix will probably be more precise consid-
ering the benchmark function (44), since it is in fact constant (the true objective is a second order
polynomial). When it comes to the Hessian of the black-box function, there is no explicit formulation
to make use of, and little is known about its characteristics, except that there are many irregulari-
ties. The irregularities, such that small changes in a few number of variables may result in large cost
changes, probably makes it more difficult for the L-BFGS-B algorithm to produce accurate surrogate
models.

In contrast to the evaluation of the benchmark problem, the KPLS+K algorithm did not perform
better than the KPLS algorithm when real airline data was considered. For the S1 problem setting, the

70

overall results were similar, but the KPLS algorithm managed to find a slightly lower cost compared to
the KPLS+K algorithm. Since the KPLS computation times are lower than the KPLS+K computation
times, we can conclude that the KPLS algorithm is preferred rather than the KPLS+K algorithm in
this case. This means that the parameter estimation of the KPLS algorithm is sufficient, or at least
that the improved parameter estimation in the KPLS+K algorithm does not improve the fit of the
surrogate model to the black-box model. Nevertheless, both algorithms find many solutions with
lower costs compared to the manually constructed reference solution. Even though the computation
times are heavy, they probably improve upon the time it takes to construct a good solution manually,
i.e., modify all vacancies and decide how much staffing deviation to allow in each of the groups.
Moreover, in addition to the manually constructed reference solution, a useful idea would be to
construct one more reference solution. Instead of being constructed manually, this other reference
solution should rather be the result of some basic heuristic approach. As a future work, it would be
interesting to see if the algorithms presented in this work are able to find better solutions compared
to the results obtained via a basic heuristic approach, which has not been implemented here.

Considering the S2 problem setting, neither of the algorithms perform better than when the S1
problem setting was used. However, with the S2 setting, the KPLS+K algorithm still managed to find
solutions associated with lower costs compared to the reference solution, but the KPLS algorithm
did not. The reason why the algorithms perform better on the S1 setting may be due to the vacancy
announcements being relatively good, while there is much room for improvements when it comes to
the staffing deviation, which is the only thing being optimized using problem setting S1.

Another behavior which can be observed from many of the evaluations in Section 7 is that the
evolution of sample points does not converge to a minimum, the costs are rather increased after the
lowest cost have been found. One reason for this behavior may be that an interpolating surrogate
model is used. As mentioned in Section 2.1, interpolation can lead to over-fitting, meaning that the
model used for interpolating the sample points becomes overly complex. Over-fitted models can,
e.g., result in artificial bumps, which makes the Kriging prediction of the minimum erroneous. As a
future work, the over-fitting problem can be studied in more detail.

9 Conclusions

In order to modify the announced job vacancies and to allow staffing deviations, two optimization
algorithms were presented, referred to as KPLS and KPLS+K. These algorithms were based on sur-
rogate modeling, meaning that the true objective is approximated by a function, given a small set of
sample points where the true costs are known. Both of the algorithms performed well on a bench-
mark problem, where the black-box function constituted a known, smooth function. The lowest
cost found by the KPLS algorithm was 0.88 % larger than the actual function minimum, while the
KPLS+K algorithm found a point with a corresponding cost which was only 0.15 % larger than the
true minimum. The algorithms were then evaluated on real airline data provided by Jeppesen, which
had a less smooth behavior. Two different settings were considered, referred to as S1 and S2. In the
S1 setting, only groups where no job vacancy was announced were considered for optimization, while
for the S2 setting, the announced vacancies were optimized as well. For the S1 setting, both the KPLS
and the KPLS+K algorithms found solutions with lower costs compared to a manually constructed
reference solution. The performance of the algorithms on the S2 setting was worse, but the KPLS+K
algorithm still managed to find a few solutions associated with lower costs compared the reference
solution, while the KPLS algorithm did not.

During simulations, it was observed that several of the infill sampling criteria (ISC) – those focus-
ing on exploration – generally gave rise to high costs. Therefore, an additional evaluation of the S1
setting was performed, where only four exploiting ISCs were employed. The result even improved
upon the result associated with the full-ISC setting. From the observations, we conclude that, for this
problem, the exploring ISC are not important in order to find good solutions. This means that the
Kriging method is probably unnecessarily complex for this problem, since its ability to predict the

71

model uncertainty is barely taken advantage of.
Several revisions of the model have been proposed, such as decreasing the parameter p (in the ker-

nel function), testing algorithm robustness by using different start samples of different sizes, using a
different approach for numerical estimation of the parameters θ and η, and optimizing the different
ISCs. However, due to the indications of the Kriging method being unnecessarily complex, the first
thing to consider before improving this particular algorithm should be implementing a simpler sur-
rogate model, e.g., based on RBFs. Moreover, there are many interesting problems and extensions to
be investigated within the Manpower Planning framework. For example, a similar problem to this
can be found at the beginning of the Manpower Planning procedure presented in Figure 2, where
also uncertainty is present.

72

References

[1] L. A. Karlberg, “Doktorstäta Carmen Systems säljs för 1 miljard,” NyTeknik, 2006-03-03.
url: https://www.nyteknik.se/digitalisering/doktorstata-carmen-systems-saljs-for-1-miljard-
6438840, 2020-04-20.

[2] P. Jiang, Q. Zhou, and X. Shao, “Surrogate-model-based design and optimization,” in Surrogate
Model-Based Engineering Design and Optimization, pp. 2–34, Springer, 2020.

[3] D. G. Krige, “A statistical approach to some basic mine valuation problems on the Witwaters-
rand,” Journal of the Southern African Institute of Mining and Metallurgy, vol. 52, no. 6, pp. 119–
139, 1951.

[4] J. P. Kleijnen, “Design and analysis of simulation experiments,” in International Workshop on
Simulation, pp. 3–22, Springer, 2015.

[5] D. R. Jones, “A taxonomy of global optimization methods based on response surfaces,” Journal
of Global Optimization, vol. 21, no. 4, pp. 345–383, 2001.

[6] H. Wendland, Scattered Data Approximation, vol. 17. Cambridge, UK: Cambridge Monographs
on Applied and Computational Mathematics, 2005.

[7] S. Jakobsson, M. Patriksson, J. Rudholm, and A. Wojciechowski, “A method for simulation based
optimization using radial basis functions,” Optimization and Engineering, vol. 11, no. 4, pp. 501–
532, 2010.

[8] A. M. Yaglom, “Correlation theory of stationary and related random functions.,” Volume I: Basic
Results., vol. 526 of Springer Series in Statistics, 1987.

[9] M. Schonlau, “Computer Experiments and Global Optimization,” University of Waterloo, 1997.

[10] F. Bachoc, “Cross validation and maximum likelihood estimations of hyper-parameters of Gaus-
sian processes with model misspecification,” Computational Statistics & Data Analysis, vol. 66,
pp. 55–69, 2013.

[11] M. J. Sasena, Flexibility and Efficiency Enhancements for Constrained Global Design Optimization
with Kriging Approximations. PhD thesis, University of Michigan Ann Arbor, MI, 2002.

[12] J. Sacks, S. B. Schiller, and W. J. Welch, “Designs for computer experiments,” Technometrics,
vol. 31, no. 1, pp. 41–47, 1989.

[13] M. A. Bouhlel, N. Bartoli, A. Otsmane, and J. Morlier, “Improving kriging surrogates of high-
dimensional design models by partial least squares dimension reduction,” Structural and Multi-
disciplinary Optimization, vol. 53, no. 5, pp. 935–952, 2016.

[14] R. A. Pérez and G. González-Farias, “Partial least squares regression on symmetric positive-
definite matrices,” Revista Colombiana de Estadı́stica, vol. 36, no. 1, pp. 177–192, 2013.

[15] M. A. Bouhlel, N. Bartoli, A. Otsmane, and J. Morlier, “An improved approach for estimating the
hyperparameters of the kriging model for high-dimensional problems through the partial least
squares method,” Mathematical Problems in Engineering, vol. 2016, 2016.

[16] C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and
integral operators. United States Governm. Press Office Los Angeles, CA, 1950.

[17] R. Manne, “Analysis of two partial-least-squares algorithms for multivariate calibration,”
Chemometrics and Intelligent Laboratory Systems, vol. 2, no. 1–3, pp. 187–197, 1987.

73

[18] M. A. Bouhlel, N. Bartoli, R. G. Regis, A. Otsmane, and J. Morlier, “Efficient global optimization
for high-dimensional constrained problems by using the kriging models combined with the
partial least squares method,” Engineering Optimization, vol. 50, no. 12, pp. 2038–2053, 2018.

[19] C. Li, S. Gupta, S. Rana, V. Nguyen, S. Venkatesh, and A. Shilton, “High dimensional Bayesian
optimization using dropout,” arXiv preprint arXiv:1802.05400, 2018.

[20] E. R. van Dam, B. Husslage, D. den Hertog, and H. Melissen, “Maximin latin hypercube designs
in two dimensions,” Operations Research, vol. 55, no. 1, pp. 158–169, 2007.

[21] M. D. McKay, R. J. Beckman, and W. J. Conover, “Comparison of three methods for selecting
values of input variables in the analysis of output from a computer code,” Technometrics, vol. 21,
no. 2, pp. 239–245, 1979.

[22] K. D. Tocher, “The art of simulation,” English Universities Press, London, 1967.

[23] D. Raj, “Sampling theory,” McGraw-Hill, New York, 1968.

[24] B. Tang, “Selecting Latin Hypercubes using correlation criteria,” Statistica Sinica, vol. 8, pp. 965–
977, 1998.

[25] M. D. Morris and T. J. Mitchell, “Exploratory designs for computational experiments,” Journal
of Statistical Planning and Inference, vol. 43, no. 3, pp. 381–402, 1995.

[26] I. O. Bohachevsky, M. E. Johnson, and M. L. Stein, “Generalized simulated annealing for function
optimization,” Technometrics, vol. 28, no. 3, pp. 209–217, 1986.

[27] W. W. Li and C. Jeff Wu, “Columnwise-pairwise algorithms with applications to the construction
of supersaturated designs,” Technometrics, vol. 39, no. 2, pp. 171–179, 1997.

[28] H. J. Kushner, “A new method of locating the maximum point of an arbitrary multipeak curve
in the presence of noise,” Journal of Basic Engineering, vol. 86, no. 1, pp. 97–106, 1964.

[29] J. Mockus, V. Tiesis, and A. Zilinskas, “The application of Bayesian methods for seeking the
extremum,” Towards Global Optimization, vol. 2, no. 117-129, p. 2, 1978.

[30] M. J. Powell, “A direct search optimization method that models the objective and constraint
functions by linear interpolation,” in Advances in Optimization and Numerical Analysis, pp. 51–
67, Springer, 1994.

[31] J. Nocedal, “Updating quasi-Newton matrices with limited storage,” Mathematics of Computa-
tion, vol. 35, no. 151, pp. 773–782, 1980.

[32] D. C. Liu and J. Nocedal, “On the limited memory BFGS method for large scale optimization,”
Mathematical Programming, vol. 45, no. 1-3, pp. 503–528, 1989.

74

	Introduction and problem description
	Jeppesen
	Manpower Planning
	Key performance indicators
	Problem description

	Theory and background
	Surrogate modeling
	Interpolation of scattered data in R
	Radial basis function models
	Kriging

	Dimensionality reduction
	Kriging partial least squares (KPLS)
	Improved parameter estimation (KPLS+K)
	Dropout

	Experimental design
	Random sampling
	Stratified sampling
	Latin hypercube design

	Infill sampling criteria
	Maximizing probability of improvement
	Maximizing expected improvement

	Numerical optimization algorithms
	COBYLA
	L-BFGS-B

	Explicit problem formulation
	A simplified problem example
	Model formulation

	The optimization algorithm
	Creating a surrogate model
	Design of experiments
	Infill sample criteria
	Termination criterion

	Implementation
	General algorithm pseudocode
	Design of experiments
	Parameter estimation
	Infill sampling criteria
	Termination criterion

	Implementation into the Jeppesen Manpower Planning framework
	Problem settings

	Algorithm evaluation
	Evaluation of the KPLS algorithm using a benchmark function
	Evaluation of the KPLS+K algorithm using a benchmark function

	Results
	Evaluating the KPLS algorithm on airline data with setting S1
	Evaluating the KPLS algorithm on airline data with setting S2
	Evaluating the KPLS+K algorithm on airline data with setting S1
	Evaluating the KPLS+K algorithm on airline data with setting S2
	General observations

	Discussion and future research
	Method selection
	Algorithm evaluation

	Conclusions

