
End-to-end Autoencoder Learning
for fiber-optic communication systems

Master’s thesis in Master Programme of Communication Engineering

SHEN LI

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

Master’s thesis 2018:NN

End-to-end Autoencoder Learning for
Fiber-optic Communication Systems

Shen Li

Department of Electrical Engineering
Master Programme of Communication Engineering

Chalmers University of Technology
Gothenburg, Sweden 2018

End-to-end Autoencoder Learning for Fiber-optic Communication Systems
Shen Li

© Shen Li, 2018.

Supervisor: Henk Wymeersch, Christian Häger
Examiner: Henk Wymeersch

Master’s Thesis 2018:NN
Department of Electrical Engineering
Master Programme of Communication Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 79 039 8286

Typeset in LATEX
Printed by Chalmers Reproservice
Gothenburg, Sweden 2018

iv

End-to-end Autoencoder Learning forFiber-optic Communication Systems
Shen Li
Department of Electrical Engineering
Chalmers University of Technology

Abstract
Modulation formats that can achieve high spectral efficiency like multi-level quadra-
ture amplitude modulation (M-QAM) are employed by fiber-optic communication
systems to increase data rates. However, M-QAM has more compacted constella-
tions, which means it’s more sensitive to noise and higher input power is needed.
Kerr effect becomes one of the main difficulties as it constrains the optimal input
power. Autoencoders (AEs) in machine learning field is a promising tool to jointly
optimize the transmitter and the receiver in a single process to not only realize con-
stellation shaping but also design an optimal receiver.

In this thesis, we develop an AE for a simplified memoryless fiber channel model.
The AE can approach maximum likelihood (ML) performance and leads to opti-
mized constellations that are more robust against nonlinear signal-noise interac-
tion (NLSNI) than conventional quadrature amplitude modulation (QAM) formats.
Moreover, it is shown that the AE approach can be used to establish tight lower
bounds on the channel capacity by computing achievable information rates (AIRs).

Keywords: fiber-optic communication, autoencoder, neural networks, nonlinear phase
noise, achievable information rate.

v

Acknowledgements
I would like to thank Prof. Henk Wymeersch and Dr. Chistian Häger first who
proposed this thesis topic and gives me this valuable opportunity to do this master
thesis project in which I really learned a lot.

I would like to sincerely express my gratitude to my two supervisors Henk Wymeer-
sch and Christian Häger for their continuous guidance, patience and encouragement
not only on the academic research, but also on my life. I also appreciate the help
of Nil Garcia for a lot of inspiring discussions about my thesis work. Thank you all
again a lot for the work and guidance on the writing of the conference paper as well
as the thesis report. Moreover, I am genuine thankful to Chalmers C3SE to provide
the PC-cluster which saves a lot of my time for running simulations.

In a word, I sincerely thank all the people who were involved during my one-year
master thesis. This thesis experience would be unforgettable for me as I really has
harvested a lot of new knowledge and gain confidence and inspiration of life with
the help of them all.

Shen Li, Gothenburg, June 2018

vii

Contents

List of Figures xi

1 Introduction 1
1.1 Limits of nonlinear fiber-optical communication 1
1.2 Conventional approaches . 3
1.3 Machine learning approaches . 3
1.4 Goal of the Thesis . 3
1.5 Ethics in machine learning . 4

2 Theory 5
2.1 Nonlinear phase noise in fiber-optic channels 5
2.2 Maximum likelihood detection for nonlinear fiber-optic channels . . . 5
2.3 Neural networks basics . 6

2.3.1 Basic structure and components of neural networks 7
2.3.2 Autoencoder . 15
2.3.3 TensorFlow . 17

3 Proposed autoencoder structure 19
3.1 Introduction . 19
3.2 Proposed AE structure . 19
3.3 AE constellations and detectors . 20
3.4 AE for bounding the capacity . 20

4 Performance Analysis 23
4.1 Simulation scenario . 23
4.2 Selection of number of layers and activation functions 23
4.3 Symbol Error Rate . 25
4.4 Learned constellations . 27
4.5 Achievable Information Rate . 29

5 Conclusion 31

Bibliography 33

ix

Contents

x

List of Figures

1.1 Received 16 QAM constellation with nonlinear phase noise 2
1.2 SER as a function of input power in the presence of nonlinear phase

noise for 16 QAM assuming that the fiber length is 100 km, the
nonlinear parameter is 1.27, the total noise power is −21.3 dBm and
the number of iterations to simulate the model is 50. 2

2.1 A simple artificial neural network . 7
2.2 The structure of a neuron . 8
2.3 Activation functions . 8
2.4 Illustration of gradient descent on a level set 11
2.5 Illustration of stochastic gradient descent on a level set 11
2.6 Backpropagation: First, the input a[0] is fed into the neural network

and forward-propagated until the loss function L(ŷ, y) at the end.
Then the gradients of each layers’ weights and biases dW [l] and db[l]

are calculated from the end to the front. Finally, all the weights and
biases are updated according to the gradients. 14

2.7 Illustration of the structure of an AE 16
2.8 General structure of a DAE . 17
2.9 Data flow graph of an one-layer neural network in TensorFlow 18

3.1 A simpliest communication system 19
3.2 Autoencoder structure assuming 2 hidden layers in both the trans-

mitter and receiver neural network 20

4.1 Data flow graph of the AE for M = 16 in Tensorflow 24
4.2 SER as a function of number of training iterations for appropriate

network patameters (left) and insufficient parameters (right) forM =
16. 25

4.3 SER as a function of Pin for M = 16. 26
4.4 ML decision boundaries for the AE constellation at Pin = 0 dBm

(left) and learned AE decision regions (right). 27
4.5 Learned 16-point constellation for AWGN channel 27
4.6 Learned 16-point constellations for the nonlinear fiber channel under

different Pin . 28
4.7 Learned 256-point constellations for the nonlinear fiber channel under

different Pin . 29

xi

List of Figures

4.8 Comparison of the AIR of the AE to various information-theoretic
capacity bounds and 16-QAM. 30

xii

1
Introduction

1.1 Limits of nonlinear fiber-optical communica-
tion

Nowadays, the amount of information is increasing rapidly. In order to increase
the transmission speed and information capacity, optical fiber communication has
become the most important way of wired communication and provides for over 99%
of global data traffic because of its high transmission bandwidth, large capacity,
low transmission loss and long transmission distance. Fiber transmission rates can
be increased by using high order constellations, like multi-level quadrature ampli-
tude modulation (M-QAM). However, these constellations are more compact and
require higher input power [1] and thus more susceptible to nonlinear impairments
such as nonlinear signal-noise interaction (NLSNI). Due to the Kerr effect [2], the
fiber channel will cause a rotation of the transmitted constellation symbols and the
rotation degree is proportional to the symbols’ energy. Thus, the nonlinear Kerr
effect constrains the optimal input power of signals and becomes one of the main
difficulties of fiber-optical communication.

To visualize the effect on symbols, a 16-QAM constellation pattern after going
through a channel with Kerr effect and amplified spontaneous emission (ASE) noise
is shown in Figure 1.1. Symbols with high energy rotates more than those with
lower energy. Figure 1.2 shows the symbol error rate (SER) as a function of input
power for the linear additive white Gaussian noise (AWGN) channel and the non-
linear fiber channel only considering the Kerr effect and ASE noise. Both systems
use the Euclidean distance detection. From this figure, the SER of nonlinear fiber
channel first decreases as the input power increases like the linear channel because
the signal-to-noise ratio (SNR) is higher and then goes up again as the nonlinear
effect becomes the main distortion.

Due to NLSNI, the challenge is that the optimal constellation and the optimal
receiver for a fiber communication system are unknown. The achievable transmission
rates are themselves upper-bounded by the channel capacity, which is also unknown
for optical channels with NLSNI, even for simplified nondispersive scenarios, though
upper [3] and lower [3–5] capacity bounds have been established for the simplified
non-dispersive channel.

1

1. Introduction

Figure 1.1: Received 16 QAM constellation with nonlinear phase noise

Figure 1.2: SER as a function of input power in the presence of nonlinear phase
noise for 16 QAM assuming that the fiber length is 100 km, the nonlinear parameter
is 1.27, the total noise power is −21.3 dBm and the number of iterations to simulate
the model is 50.

2

1. Introduction

1.2 Conventional approaches
Conventional techniques to deal with NLSNI include improved detector designs [1,
6, 7] and optimized modulation formats [7–9] (constellation shaping). In order to
avoid complexity and focus on the Kerr nonlinearity, simplified memoryless and
dispersionless models are often studied. In [7], the expression of the maximum
likelihood (ML) detection boundaries are derived and 4-point constellation formats
different from 4-QAM are studied, yielding better SER performance than 4-QAM.
A closed-form ML-based detector for such a channel model was developed in [1] and
the SER performance was compared with those of some other common sub-optimal
detectors, showing a better trade-off of complexity and performance. In [8], a “joint
optimization” approach was used to optimize amplitude-phase shift keying (APSK)
constellations under a improved version of the two-stage (TS) detector [7] including
the amplitude direction, a phase rotation and the phase direction. This constellation
shaping approach used brute-force gird search to first list all the possible cases in
which how many constellation rings there are and how the points distributed in
those rings and then determines the optimal radii of all the rings for each case.
The limitation of these methods is that they only focus on the design of either the
detector or the transmitter (constellation shaping), but cannot jointly optimize both
of them at the same time.

1.3 Machine learning approaches
A different approach for constellation or detector design is to rely on machine learn-
ing and deep learning, including [10–13,15–17]. Recently, autoencoders (AEs) have
emerged as a promising tool for end-to-end design and have been shown to lead to
good performance for wireless [10, 11], noncoherent optical [16], as well as visible
light communication [17]. A new way was first proposed in [10] to regard commu-
nication system design as a single optimization process using deep neural networks
and learns interesting constellations for the linear AWGN channel. In [13], deep
neural network is used to unroll the split-step Fourier method (SSFM) of digital
backpropagation (DBP) [14]. The result shows that the learned DBP significantly
reduces the complexity of conventional DBP. In [16], end-to-end AE learning for op-
tical communication systems was first implemented by experiment. The AE learns
the samples of the transmitted wave form as well as a good receiver resulting in
better performance than some conventional modulations and receivers.

1.4 Goal of the Thesis
Different from conventional sub-optimal approaches, AE can jointly optimize the
transmitter and the receiver in a single process. In this thesis, we apply an AE
to a simplified memory-less fiber channel model similar to [1, 3–8]. As the chan-
nel model we used is simplified, the channel probability density function (PDF) is
known analytically [4–6], which allows us to get access to an ML decoder. With this
benchmark, the goal is to find a good constellation format and a near-ML receiver

3

1. Introduction

for this channel and then good performance will follow. The performance is evalu-
ated by comparing the SERs and achievable information rates (AIRs) [18–21] of the
systems using conventional constellation formats like M-QAM and an ML decoder.
Moreover, we use AE to find good input distributions and auxiliary channels dis-
tribution to create a lower bound of channel capacity by calculating the achievable
information rate (AIR).

1.5 Ethics in machine learning
Continuous progress and widespread use of machine learning brings huge advantages
to human society. However, there are still some underlying ethical issues we cannot
neglect.

First, machine learning usually needs a lot of training data to learn algorithms,
which leads to privacy concern. The training data can be some personal informa-
tion which is not open source and public. For example, a search engine algorithm
may use internet users’ sensitive information including searching habits, searching
content, et cetera, to learn and recommand users’ content of interest. Users’ per-
sonal data may be stolen by other services and used illegally.

Second, algorithms can be biased and discriminational [22]. Algorithms sometimes
are actually predicting future trends according to previous data. The algorithm
model and the input of the algorithm determine the result of prediction. If the
training dataset is discriminational, incomplete, or even incorrect. The trained al-
gorithm using this kind of training data will also be biased. On the other hand,
the design of algorithms itself may contain discrimination of developers. No matter
where the discrimination is from, algorithms may retain and magnify the discrimina-
tion. For example, if discriminational algorithms are used for crime risk assessment
or credit assessment, unfair results will cause a loss to people.

Third, safety and responsibility problem is another issue. For example, if a traffic
accident happens to a self-driving car, who should take the responsibility? How the
safety of artificial intelligence products can be guaranteed?

In this thesis, machine learning is used in fiber-optic communication systems to find
a good set of transceiver and the above-mentioned ethical problems will not happen
in our work.

4

2
Theory

In this chapter, we first briefly introduce the nonlinear phase noise in fiber-optic
channels. The basic theory behind deep learning such as the components of a neural
network, different optimizer algorithms and backpropagation is discussed. We also
introduce the concept of AEs in machine learning field and the software library that
we use in this thesis work.

2.1 Nonlinear phase noise in fiber-optic channels
The propagation of signals in a fiber with ideal distributed amplification is modeled
by the nonlinear Schrödinger equation (NLSE) [23].

∂x(z, t)
∂z

= iγ ‖x(z, t)‖2 x(z, t)− iβ2

2
∂2x(z, t)
∂t2

− n(z, t) (2.1)

where x(z, t) , [xx xy]ᵀ is the transmitted signal, z and t are time and distance
coordinates, γ is the nonlinearity parameter, β2 is the group velocity dispersion co-
efficient, n(z, t) is Gaussian noise. The first term on the right side of the equation
represents the Kerr effect in fiber-optic system causing a phase shift which is propor-
tional to the signal’s power. This nonlinear phase noise is one of the most important
distortion in fiber-optic communication systems. The second term on the right side
of the equation represents dispersion. Since the likelihood function of the channel
in Eq. 2.1 is unknown, we consider a simplified nondispersive memoryless channel
which is obtained by neglecting β2 in Eq. 2.1. The resulting per-sample model is
defined by the recursion [3]

xk+1 = xke
jLγ|xk|2/K + nk+1, 0 ≤ k < K, (2.2)

where x0 = x is the (complex-valued) channel input, y = xK is the channel output,
nk+1 ∼ CN (0, PN/K), L is the total link length, PN is the noise power, and γ is
the nonlinearity parameter. The model assumes ideal distributed amplification and
K →∞.

2.2 Maximum likelihood detection for nonlinear
fiber-optic channels

ML detection, which is widely used for linear channels, requires the PDF of the re-
ceived signal, but for nonlinear fiber-optic channels, the PDF of the received signal

5

2. Theory

is hard to compute. However, for the simplified channel model in (2.2), the channel
PDF is known analytically. In [7], ML decision boundaries are derived for a similar
channel model only considering nonlinear phase noise and using distributed ampli-
fication.

Let xi ∈ Ω2 be one transmitted symbol from constellation pattern Ω2 with input
power P and phase θo and y be the received signal with received amplitude r and
phase θ. σ2 denotes the variance of the ASE noise and r denotes the received electric
field amplitude divided by σ. The conditional PDF p(y|xi) is the joint PDF of r
and θ [6, 7]:

p(y|xi) = fP,θo(r, θ) = fR(r, P)
2π + 1

π

∞∑
m=1

Re
{
Cm(r)ejm(θ−θo)

}
(2.3)

where
fR(r, P) = 2re−(r2+P/σ2)I0(2r

√
P/σ2) (2.4)

is the Rice PDF of r and Cm(r) is the Fourier coefficient:

Cm(r) = r sec
√
jmx

sm
e
√
P/σ2√jmx tan

√
jmxe−

r2+α2
m

2sm Im(αmr
sm

) (2.5)

where x = γPL√
P/σ2+1/2

, αm = (P/σ2)1/4 sec
√
jmx, sm = tan

√
jmx

2
√
jmx

and Im(·) is the
mth-order modified Bessel function of the first kind.

With the known fiber channel PDF, the ML detector is defined as:

x̂i = arg max
xi∈Ω2

p(y|xi) (2.6)

After receiving a signal y, the ML detector find the xi that yields the largest condi-
tional PDF p(y|xi), thus realizing ML detection.

2.3 Neural networks basics
Artificial Neural Network (ANN) was inspired by biological neural networks that
exist in animal neural systems and brains. ANN has a long history of evolution,
and it is widely used in nowadays research. In 1943, Warren McCulloch and Walter
Pitts proposed a neuron model that outputs either 1 or 0 based on a threshold value,
and successfully modeled NOT/OR/AND logic functions [24]. In 1958, Rosenblatt
proposed the concept of perceptron whose output depends on the linear combination
of inputs and weights. By adjusting the weights, it can solve linearly separable clas-
sification problem [25]. Geoffrey Hinton solved non-linear classification problem by
introducing sigmoid function into a perceptron and using backpropagation for train-
ing [26], which is the prototype of more advanced ANN model, such as Recurrent
Neural Network (RNN), Convolution Neural Network (CNN) , sparse auto-encoding,
etc.

6

2. Theory

Universal approximation theorem [27] shows that an ANN with single hidden layer
has ability to approximate continuous functions on compact subsets RN , and people
found that ANNs with multiple hidden layers always have better performance than
ANNs with single hidden layer. A deep learning model or a Deep Neural Network
(DNN) is simply an ANN with multiple hidden layers, and these is no clear definition
about the number of hidden layers that a DNN has. Compared with conventional
algorithmic approaches, DNN can be trained and adjust itself automatically to solve
the problem at hand, avoiding developing extremely complicated algorithms. Struc-
tures, activation functions and training rules of DNN may be modified according to
different applications, and we can find the information of interest that are deeply
hiding inside of the training data. For example, RNN is widely used in Natural
Language Processing (NLP) [28], CNN is heavily used in image processing such as
pattern recognition and image identification [29], sparse auto-encoding can be used
for representation learning [30], etc.

2.3.1 Basic structure and components of neural networks

2.3.1.1 Neural network structure

ANNs are mathematical models or computing models simulating the structures and
functions of biological neural networks [31] . An ANN usually comprises an input
layer, an output layer and one or more hidden layers. A simple ANN with 3 hidden
layers is illustrated in Figure 2.1. Each layer consists of many computing units called
neurons. Figure 2.2 shows the structure of a single neuron.

input

output

Hidden layers

Figure 2.1: A simple artificial neural network

The neuron takes inputs from the previous layer and generates an output according
to y = f(wᵀx + b), where w is a vector of weights, x , [x1 x2 ... xn], b ∈ R is a bias,
and f(·) is an activation function. The role of nonlinear activation functions is to
make the network nonlinear so that the neural network can approximate arbitrary
complex functions. If we don’t use them, the neural network will be always linear
and there is no point to use many layers to simulate complex computing processes.
Table 2.1 lists some widely used activation functions.

7

2. Theory

Σ

𝑤#

𝑤$

𝑤%

b

𝑥#

𝑥$

𝑥%

…
…

		𝑓(*) y

Figure 2.2: The structure of a neuron

Table 2.1: List of some common-used activation functions

Name f(x) Range
Identity x (−∞,∞)
Sigmoid 1

1+e−x (0, 1)
TanH ex−e−x

ex+e−x (−1, 1)
ReLU max(x, 0) [0,∞)
Softmax exi∑

i
exi

(0, 1]

Figure 2.3: Activation functions

8

2. Theory

Different activation functions have different features. For instance, as shown in Fig-
ure 2.3, sigmoid function will saturate (the gradient of sigmoid function is close to
zero) when the input is very large, which results in slow convergence rate because
the gradient of the activation function is needed to update parameters in backprop-
agation (details in 2.3.1.5). TanH function also has this saturated gradient problem
but TanH is better than sigmoid because its output is zero-centered. However, the
computation complexity of both sigmoid and TanH are high as they have to do ex-
ponential computation. ReLU function is much simpler and computationally more
efficient than sigmoid and TanH. ReLU can also avoid the saturated gradient prob-
lem as it is linear for x > 0. Nevertheless, the biggest drawback of ReLU is called
“dying ReLU” problem. When the input of a ReLU neuron is less than zero, the
gradient will also be zero during the backpropagation causing that the weights of
this neuron will not be updated. If too many such neurons die, the neural network
will not learn any more.

2.3.1.2 Machine learning tasks

The task of machine learning is to establish mathematic models such as neural
networks to learn or predict from data. The establishment of the neural network
structure is directly based on the training data, a set of input data used for training
the network. Typically, machine learning tasks are classified into two broad cat-
egories, supervised learning and unsupervised learning depending on whether the
training data is labeled (i.e., data is classified) or there is a feedback for each train-
ing data [32].

Supervised learning
In standard supervised learning tasks, the input data always have labels which are
the desired output of the input. Given a set ofN training examples {(x1, y1), (x2, y2),
..., (xN , yN)}, where xi refers to the i-th training example’s feature vector and yi
refers to the i-th training example’s label, the goal is to find a function f : X → Y
that maps the input data to their labels as much as possible.

Different from standard supervised learning tasks, If the training data is not labeled
but there is a feedback (reward or punishment) corresponding to each training data,
this kind of learning tasks belongs to reinforcement learning. Reinforcement learn-
ing seeks a set of actions that the agent should take in a dynamic environment to
maximize the cumulative rewards and get the best performance.

Unsupervised learning
In unsupervised learning, the input data don’t have any labels. The goal can be
finding hidden laws or learning features of the input data. Typical algorithms used in
unsupervised learning includes clustering [33], autoencoders, generative adversarial
networks (GAN) [34], self-organizing map (SOM) [35], adaptive resonance theory
(ART) [36,37], etc.

9

2. Theory

2.3.1.3 Cost function

In order to train a neural network, a loss function is needed to calculate the differ-
ence, the so-called “loss” between the real output and the desired output of each
training example. For instance, in supervised learning tasks, the loss is calculated
between the neural network’s output ŷi and their labels yi for each training exam-
ple. The following equation shows two common-used loss functions. A cost function
J(W,b) = 1

N

∑N
i=1 L(ŷi, yi) parameterized by W and b is the average loss of all the

training examples, where N is the number of training examples. The neural network
can be trained by a certain optimizer to find the best weights and bias to minimize
the objective cost function.

L(ŷi, yi) =
{

(ŷi − yi)2, MSE
yi log(ŷi) Cross entropy (2.7)

Sometimes a regularization item is added to the cost function to avoid over-fitting.
Eq. 2.8 shows a common regularization method called L2 regularization:

J(W,b) = 1
N

N∑
i=1

L(ŷi,yi) + λ

2N ‖W‖
2
2 (2.8)

where λ is the regularization parameter and λ > 0.

2.3.1.4 Practical optimizers

Some of the most popular and common optimizers used for deep learning are intro-
duced in the following.

Gradient descent
Gradient descent is one of the most common ways to minimize an objective function
J(θ) by updating the parameters θ recursively in the direction of the negative gra-
dient of J(θ) at the current point, where θ are the weights and biases of the neural
network. For example, suppose J(θ)’s graph has a bowl shape, from a top view
shown in Fig. 2.4 [38], J(θ) is represented by a set of blue contour lines on which
the value of J(θ) is constant. The red arrows represent the direction of the negative
gradient at some points. We start from a point θt at which the negative gradient is
−OθJ(θt). Then the parameter θ is updated by:

θt+1 = θt − αOθJ(θt) (2.9)

where α is a learning step size. Finally, gradient descent will lead to the minimal
value of J(θ), that is around the smallest circle in Fig. 2.4.

10

2. Theory

𝜃"

𝜃#

𝜃$
𝜃%

𝜃&
𝜃'

Figure 2.4: Illustration of gradient descent on a level set

If we calculate the negative gradient of our loss function L(θ) over the entire training
set, that is to average the gradients of all training data points, the method is batch
gradient descent (BGD). The direction of the calculated average negative gradient
using BGD is the fastest direction to reach a local minimum. However, calculating
the loss of all data points to perform only one update is inefficient when the training
data set is large as every data point’s gradient is required. Stochastic gradient
descent (SGD) is designed to accelerate the training speed. SGDmethod updates the
parameter by calculating the loss of only one stochastic training example (xi, yi) [39]:

θt+1 = θt − αOθJi(θt; (x(i), y(i))) (2.10)

𝜃"
𝜃#

𝜃$

𝜃%

𝜃& 𝜃'

𝜃(

𝜃)

𝜃*

Figure 2.5: Illustration of stochastic gradient descent on a level set

11

2. Theory

Although SGD method needs more steps to reach the global minimum than BGD
as the gradient is not the best, as shown in Fig. 2.5, the convergence is much faster
when the training set is large because less computation is used for updating. Another
compromise method is mini-batch gradient descent [39]. This method performs an
update over a small set of n training examples (xi:i+n, y(i:i+n)):

θt+1 = θt − αOθJi(θt; (x(i:i+n), y(i:i+n))) (2.11)

Gradient descent with momentum
The learning steps of SGD or mini-batch gradient descent are fluctuated, which
makes learning slow. Momentum is a method that takes past gradients into account
to smooth out the steps of gradient descent and can accelerate the learning process
[39]. First, we initialize v0 = 0. The recursive updating rules at time t are:

vt = βvt−1 + (1− β)OθJi(θt) (2.12)

θt+1 = θt − αvt (2.13)

where the factor β is called momentum and the most common value for β is 0.9.
When β = 0, then method it’s the same as gradient descent without momentum.
Higher β means that more past gradients are taken into consideration so the learn-
ing steps are smoother.

RMSProp
Root mean square propagation (RMSProp) is another method that can also speed up
mini-batch gradient descent. This method takes a moving average of the gradient’s
square and then divide the gradient by the square root of this mean square:

vt = βvt−1 + (1− β)(OθJi(θt))2 (2.14)

θt+1 = θt − α
OθJi(θt)√
vt + ε

(2.15)

where ε is a small value used to avoid that the gradient is divided by zero.

Adam
Adam optimizer [40] is an important common-used algorithm proposed recently.
This method not only take a exponentially weighted average of the gradient but
also the gradient’s square (the first moment and second moment of the gradient).
Then update parameters in the same way as RMSProp but using the bias-corrected
version of the gradient and gradient’s square:

vt = β1vt−1 + (1− β1)OθJi(θt) (2.16)

st = β2st−1 + (1− β2)(OθJi(θt))2 (2.17)

vcorrectedt = vt
1− βt1

(2.18)

12

2. Theory

scorrectedt = st
1− βt2

(2.19)

θt+1 = θt − α
vcorrectedt√
scorrectedt + ε

(2.20)

β1 and β2 are also two hyper-parameters need to be chose. It’s proven to be effective
for a wide variety of different kinds of neural network architectures.
Selecting an appropriate learning rate is important for training. If the learning rate
is too large, the neural network will not converge while too small learning rates will
make the training process very slow. The choice of the learning rate depends on the
specific problem at hand. We might start with a large learning rate such as 0.1 to
observe the training process, and then try exponentially smaller values 0.01, 0.001,
etc. After knowing the reasonable smaller range of the learning rate for example
[0.001, 0.01], then we might uniformly sample from this range until finding the best
suitable one.

Sometimes a learning rate can make the training process fast at first but fluctuated
around the minimum and not really converged. If we change this learning rate into
a smaller one, then the whole training process is not efficient. It is usually useful to
reduce the learning rate gradually during the training process. Here are the formulas
of some examples of reducing the learning rate:

α =



α0
1

1+ηt

α0η
t

α0
c√
t

(2.21)

where α0 denotes the initial value of the learning rate, t denotes the current number
of training epochs, η ∈ (0, 1) is the decay rate and c > 0 is a constant adjusted
according to the need.

2.3.1.5 Backpropagation

The training process in deep learning is the process of minimizing the cost function.
Gradient descent is the most common solution which needs to calculate gradients
first. Backpropagation [41] is used to calculate and backpropagate all parameters’
gradients accroding to which the parameters can be updated.

Let Wl and bl denote the weight matrix and bias vector of the lth hidden layer,
f [l](·) denote the lth layer’s activation function, f [l]′(·) is the derivative of f [l](·), al is
the output vector of the lth hidden layer and zl = Wlal−1 + bl. Suppose the neural
network has L + 1 layers in total (the 0th layer represents the input layer and the
Lth is the output layer). Fig. 2.6 illustrated how a neural network’s parameters are
updated through backpropagation.

13

2. Theory

𝑊[#]

𝑏[#]
	𝑧[#]

𝑓 [#](*)
	𝑦- = 𝑎[#]

𝐿(𝑦-, 𝑦)

𝑊[2]

𝑏[2]
	𝑧[2]

𝑓 [2](*) 𝑊[3]

𝑏[3]
	𝑎[2] ⋯⋯ 	𝑧[3]

𝑓 [3](*)
	𝑎[3]

⋯⋯
	𝑎[5] 	𝑎[#62]

𝑓 [#]7(*)
𝑑𝑎[#]	𝑑𝑧[#]𝑊[#]

𝑏[#]
𝑓 [3]7(*)

	𝑑𝑧[3]𝑊[3]

𝑏[3]
⋯⋯

	𝑑𝑎[3]𝑊[2]

𝑏[2]
	𝑑𝑧[2]

𝑓 [2]7(*)
	𝑑𝑎[2] ⋯⋯ 	𝑑𝑎[#62]

𝑑𝑊[#]

𝑑𝑏[#]

	𝑎[#62]	𝑎[362]

𝑑𝑊[3]

𝑑𝑏[3]
𝑑𝑊[2]

𝑑𝑏[2]

	𝑎[5]

Figure 2.6: Backpropagation: First, the input a[0] is fed into the neural network
and forward-propagated until the loss function L(ŷ, y) at the end. Then the gradients
of each layers’ weights and biases dW [l] and db[l] are calculated from the end to the
front. Finally, all the weights and biases are updated according to the gradients.

First, all the parameters are initialized. Then the loss L(a[L],y) is obtained after
forward propagation. As the name suggests, we start calculating the gradient from
the last layer. Let dx represents the partial derivative of the loss function L(ŷ,y)
with respect to x. da[L] is easy to be obtained:

da[L] = ∂L(a[L],y)
∂a[L] (2.22)

According to chain rule, dz[L] is calculated by:

dz[L] = ∂L(a[L],y)
∂z[L] = ∂L(a[L],y)

∂a[L]
∂a[L]

∂z[L] = da[L]f [L]′(z[L]) (2.23)

Similarly, we can get the derivative of the loss function with respect to W[L] and
b[L]:

dW[L] = ∂L(a[L],y)
∂W[L] = ∂L(a[L],y)

∂z[L]
∂z[L]

∂W[L] = dz[L]a[L−1] (2.24)

db[L] = ∂L(a[L],y)
∂b[L] = ∂L(a[L],y)

∂z[L]
∂z[L]

∂b[L] = dz[L] (2.25)

For the (L−1)th layer, according to z[L] = W[L]a[L−1] +b[L], da[L−1] can be obtained
by:

da[L−1] = ∂L(a[L],y)
∂a[L−1] = ∂L(a[L],y)

∂z[L]
∂z[L]

∂a[L−1] = dz[L]W[L] (2.26)

In general, we can have the following rules:

dz[l] = da[l]f [L]′(z[L]) (2.27)

14

2. Theory

da[l−1] = dz[l]W[l] (2.28)

dW[l] = dz[l]a[l−1] (2.29)

db[l] = dz[l] (2.30)

where l = L,L− 1, ..., 2, 1.

If we use gradient descent and set a learning rate α, each layer’s weights and biases
at time t are updated by the following rules until the loss converges.

W[l]
t+1 = W[l]

t − αdW
[l]
t (2.31)

b[l]
t+1 = b[l]

t − αdb
[l]
t (2.32)

The reason why regularization works is that with a regularization item added to
the cost function, the new gradient of the cost function dW′ with respect to W
will be dW + λ

N
W, where dW represents the gradient of the cost function without

regularization. Then W is updated by:

Wt+1 = Wt − αdW′
t = Wt − α(dWt + λ

N
Wt) = (1− αλ

N
)Wt − αdWt (2.33)

Thus, (1− αλ
N

)Wt realizes a "weight decay". If the regularization parameter λ is big
enough, the weights W will be limited to small values, the network will more linear
to reduce over-fitting.

2.3.2 Autoencoder
In machine learning, an AE is an artificial neural network used for unsupervised
learning to learn data codings [42]. The coding can be a lower representation of
the data (e.g. an image), thus realizing dimensionality reduction. An AE usually
consists of two parts: an encoder function z = fθ(x) maps an input x to a code z
and a decoder gφ(fθ(x)) = x̂ attempts to reconstruct the input x̂ from z. Figure 3.2
illustrates a simple structure of an AE. The difference from supervised learning is
that the training data don’t have any manual labels, or in other words, the labels
are the data themselves. The learning process is to minimize the loss function:

L(x, gφ(fθ(x))) (2.34)

Just copying the input seems to be meaningless. However, what we really care about
is the code z. It can be a low-dimensional representation of the input, e.g. an image,
and then the original input can be reconstructed only using this memory-efficient
representation. Thus, AE realizes image compression. The dimension of the code
z also can be the same as the input or even more than the input. Unfortunately,
the AE sometimes merely copies the input and fails to extract anything useful of
the input when there aren’t any constraint [43]. Regularized AEs are designed to
force the encoder and the decoder to learn useful information from the input data
by adding items to the loss function or adding noise to the distribution of input
data, such as sparse AEs and denoising AEs (DAEs) [44]. These variants of the AE

15

2. Theory

effectively prevent encoders and decoders from only copy their input to the output.
Actually the above-mentioned low-dimensional representation method is also a kind
of constraint under which the AE may learn the most prominent features with lim-
ited dimension of representation.

𝑥 𝑥"

input output

code

𝑧

hi
dd
en
la
ye
rs

hi
dd
en
la
ye
rs

Figure 2.7: Illustration of the structure of an AE

Here we briefly introduce the DAE. Suppose the raw input data x has a distribution
p(x). The input of a DAE is a noisy version x̃ of the x. Figure 2.8 shows how a DAE
works. The corrupted data x̃ is generated according to a conditional probability
c(x̃|x) or by setting some percentage of x to zeros. Then x̃ is fed to the encoder
and the decoder, yielding a code z = fθ(x) and an output y = gφ(fθ(x̃)). The loss
function is defined as:

L(x, gφ(fθ(x̃))) (2.35)

This approach force the AE to avoid learning identity functions. In [45], the idea is
that the training process of a DAE is to estimate the conditional probability p(x|x̃).
Then p(x) can be obtained with knowing p(x|x̃) and c(x̃|x) according to a Markov
chain. It has been proved that the trained representation implicitly estimate the
data generating distribution [45]. Thus the DAE can be used as a generative model
to generate data samples from the learned distribution [43]. The trained represen-
tation also shows better robustness to noise and can be used to initialize a deep
network [44].

16

2. Theory

Figure 2.8: General structure of a DAE

2.3.3 TensorFlow

TensorFlow [46] is a open source software library used for artificial intelligence learn-
ing. Tensors means N -dimensional arrays and Flow implies calculation based on
data flow graphs. As the name suggests, TensorFlow is the calculation process of
the flow of tensors from one end of the flow graphs to the other. TensorFlow trans-
mits complex data structures to artificial intelligence neural networks for analysis
and processing. Figure 2.9 [46] illustrates how data flows of a simplest one-layer
neural network in TensorFlow. The nodes represent computation units and edges
imply incoming or output data of the nodes. When using TensorFlow, first the graph
model needs to be constructed by setting up the relations among all the edges. Then
data start to flow only when a session is created.

The biggest advantage of TensorFlow is that TensorFlow supports distributed com-
puting for heterogeneous devices, which can greatly speed up learning process. Ten-
sorFlow can also automatically identify and execute operations that can be executed
in parallel [46].

17

2. Theory

Figure 2.9: Data flow graph of an one-layer neural network in TensorFlow

18

3
Proposed autoencoder structure

3.1 Introduction
It has recently been proposed to interpret all components of a communication sys-
tem, consisting of a transmitter, channel, and receiver, as an AE [10]. The goal
of a communication system is to restore the same information as what has been
transmitted, which is what exactly an AE does. Traditional components of a com-
munication system including coding and decoding, modulation and demodulation
are designed sub-optimal and we don’t know if the whole communication system
is joint optimized. The AE allows for end-to-end learning of good transmitter and
receiver structures in a single process. We apply an AE to find good constellations
and detectors for the channel model from Eq. 2.2.

3.2 Proposed AE structure
A simplest communication system basically comprises a transmitter, a channel and a
receiver, as shown in Fig. 3.1. These components can be interpreted as an AE [10] in
which the transmitter and the receiver can be jointly optimized through end-to-end
learning.

Transmitter ReceiverChannel𝑠 𝑠̂𝑥 𝑦

Figure 3.1: A simpliest communication system

Fig. 3.2 illustrates the proposed auto-encoder structure. The goal is to transmit a
message s chosen from a set of M possible messages {1, 2, ...,M} ,M. Following
[10], the messages are first mapped to M -dimensional “one-hot” vectors where the
s-th element is 1 and all other elements are 0. The one-hot vectors denoted by u are
the inputs to a transmitter NN, which consists of multiple dense layers of neurons.
The values of the two transmitter output neurons (zr and zi) in Fig. 3.2 are used to
form the channel input. To meet the average power constraint, a normalization is
applied using M different training inputs to the NN. The channel input x is drawn
randomly from an M -point constellation with E{|X|2} = Pin, where Pin is the input
power. Then the normalized output is assumed to be sent over the channel (2.2),
leading to an observation y. The real and imaginary parts of y are taken as the input
to a receiver NN, the output of which we denote by fy(s′) ∈ [0, 1], s′ ∈ M, where

19

3. Proposed autoencoder structure

we assume a sigmoid in the last layer and then normalize the sum of the output to
1. Finally, we set ŝ = arg maxs′ fy(s′).

receivertransmitter

s ∈ M

m
ap

0

1

0

0

b
b

b

“one-hot”
vector

b
b

b
b
b

b
b
b

b

no
rm

al
iz

at
io

nzr

zi

fib
er

ch
an

ne
lxr

xi

yr

yi
b
b

b
b
b

b
b
b

b

0.01

0.88

0.15

0.07

b
b

b

ŝ

fin
d

la
rg

es
ti

nd
ex

Figure 3.2: Autoencoder structure assuming 2 hidden layers in both the transmit-
ter and receiver neural network

3.3 AE constellations and detectors
The AE is trained using many batches of training data averaging over different
messages and channel noise configurations. In particular, the weights and biases of
all neurons in both the transmitter and receiver NN are optimized with respect to
1
N

∑N
i=1 `(u(i)

s , fy(s′)(i)), where

`(u(i)
s , fy(s′)(i)) = −u(i)

s log fy(s′)(i). (3.1)

is the cross-entropy loss, N is the batch size (a multiple of M), and the superscript
refers to different training data realizations, the subscript s refers to the sth element
of u(i). The optimization is performed using a variant of stochastic gradient descent
with an appropriate learning rate.

After training, the learned constellation can be obtained from the output of the
normalization layer. x is two-dimensional and xr and xi can be regarded as the real
and imaginary parts of the transmitted constellation points. The learned receiver
part of the AE is a classifier that can decode message ŝ from observed signal y.

3.4 AE for bounding the capacity
For a given discrete channel, channel capacity is the supremum of the information
rate at which signals can be transmitted through this channel with arbitrarily little
errors when the information block length gose to infinity. Let random variables X
and Y denote the input and output of the channel and pX(x) denotes the marginal
distribution of X. Channel capacity is defined as [47]:

C = lim
N→∞

1
N

sup
pX(x)

I(X;Y) (3.2)

where
I(X, Y) =

∑
x

∫
p(x, y) log2

p(y|x)
p(y) dy (3.3)

20

3. Proposed autoencoder structure

is the MI [18–21] between X and Y , channel is represented by the conditional prob-
ability distribution p(y|x), p(x, y) is the joint probability distribution of X and Y
and N is the block length of information. From this definition, we can know that for
a given channel model and a fixed modulation format, as well as the ML decoder for
this channel, channel MI represents the highest information rate the communication
system can reach, that is AIR of the system.

However, the problem is that we don’t know the capacity of the fiber-optic channel
because the channel MI is hard to calculate for complexity reasons [48]. A lower
bound of channel MI can be obtained by replacing the channel law p(y|x) with an
auxiliary one q(y|x) [49]. This method is called mismatched decoding. Both the
channel MI and the AIR calculated by auxiliary channel law are lower bounds of the
channel capacity. Even with known p(y|x), the optimization of channel capacity in
Eq. 3.2 over input distribution p(x) is hard.

If we have a distribution fy(x) over x. Then, fy(x)p(y) is a valid joint distribution
over x and y, so that, due to the non-negativity of the Kullback-Leibler divergence,
KL(p(x, y)||p(y)fy(x)) ≥ 0, that is:

∑
x

∫
p(x, y) log2

p(x, y)
p(y)fy(x)dy ≥ 0 (3.4)

Then we can deduct it as follows:∑
x

∫
p(x, y) log2(p(x, y)− p(y)fy(x))dy ≥ 0 (3.5)

∑
x

∫
p(x, y) log2 p(x, y)dy ≥

∑
x

∫
p(x, y) log2 p(y)fy(x)dy (3.6)

According to Bayes’ theorem, replace p(x, y) with p(y|x)p(x):
∑
x

∫
p(x, y) log2 p(y|x)p(x)dy ≥

∑
x

∫
p(x, y) log2 p(y)fy(x)dy (3.7)

Both sides divide p(x)p(y) inside log yielding:

∑
x

∫
p(x, y) log2

p(y|x)
p(y) dy ≥

∑
x

∫
p(x, y) log2

fy(x)
p(x) dy (3.8)

The right-hand side of (3.8) can be regarded as the AIR of the AE, which can easily
be evaluated via Monte Carlo integration. Both the mutual information and the
AIR are lower bounds on the channel capacity.

21

3. Proposed autoencoder structure

22

4
Performance Analysis

4.1 Simulation scenario
For the numerical results, we assume L = 5000 km, γ = 1.27, and PN = −21.3 dBm
in the fiber model (2.2). The number of iterations to simulate the model is set to
K = 50, which is sufficient to approximate the true asymptotic channel PDF [6].
The AE is trained separately for different values of Pin using the Adam optimizer
in TensorFlow. The AE structure parameters for M = 16 and M = 256 are sum-
marized in Tab. 4.1 and Tab. 4.2. The data flow graph of the AE for M = 16 in
Tensorflow is illustrated in Figure 4.1.

Table 4.1: Autoencoder parameters for M = 16

transmitter receiver
layer 1 2 3 1 2–3 4
neurons 16 50 2 2 50 16
f(·) - tanh iden. - tanh sigm.

Table 4.2: Autoencoder parameters for M = 256

transmitter receiver
layer 1 2–6 7 1 2–7 8
neurons 256 256 2 2 256 256
f(·) - tanh iden. - tanh sigm.

4.2 Selection of number of layers and activation
functions

The number of neurons both in the input layer and output layer must beM because
the input is M-dimensional “one-hot” vectors and the output is a distribution over
the input. The chosen number of layers as well as the number of neurons in each
hidden layer need to be enough to get good performance. For M = 16 system, the
hyper-parameters are selected to get the minimum SER, while the goal of M = 256
system is to make the AIR as high as possible. Different activation functions and
ways of initialization have different effects on the neural networks. The choice needs
to be careful especially when the network is quite large like M = 256 system,

23

4. Performance Analysis

input

MatMul𝑊"

𝑏"

tanh

Add

normalization

MatMul𝑊$

𝑏$

linear

Add

MatMul𝑊%

𝑏%

tanh

Add

MatMul𝑊&

𝑏&

tanh

Add

Cross-
entropy

Gradients

Adam optimizer

MatMul𝑊'

𝑏'

sigmoid

Add

𝑊"

Update 𝑊"

𝑏"

Update 𝑏"

𝑊$

Update 𝑊$

𝑏$

Update 𝑏$

𝑊%

Update 𝑊%

𝑏%

Update 𝑏%

𝑊&

Update 𝑊&

𝑏&

Update 𝑏&

𝑊'

Update 𝑊'

𝑏'

Update 𝑏'

Figure 4.1: Data flow graph of the AE for M = 16 in Tensorflow

24

4. Performance Analysis

0 0.5 1 1.5 2
number of iterations #104

10-3

10-2

10-1

100

S
E

R

0 0.5 1 1.5 2
number of iterations #104

10-3

10-2

10-1

100

S
E

R

Figure 4.2: SER as a function of number of training iterations for appropriate
network patameters (left) and insufficient parameters (right) for M = 16.

otherwise the network cannot converge, for example when encountered with “dying
ReLU” problem or vanishing gradient problem. After trying different structures
many times, we select the above-mentioned neural network structure which can
lead to good performances. If without enough number of layers or neurons, the
performance cannot converge to the global optima. For example, Figure 4.2 shows
the SER as a function of number of training iterations for appropriate network
parameters (Table 4.1) and insufficient parameters for M = 16.

4.3 Symbol Error Rate
We start by comparing the SER, i.e., p(s 6= ŝ), of the AE to the SER of an ML
detector applied to (a) standard 16-QAM and (b) the signal constellation optimized
by the AE. The results are shown in Figure 4.3. The optimal input power for 16-
QAM under ML detection is around −2 dBm, after which the SER increases due to
NLPN. The SER of the AE decreases with input power, showing that the AE can
find more suitable constellations in the presence of NLPN. If we replace the receiver
part of the AE with an ML detector, the SER improves only slightly. This indicates
that the AE can not only learn good constellations, but also learn to approximate
the correct channel distribution, thus achieving near-ML performance. To visualize
this, in Fig. 4.4, we compare the effective decision regions implemented by the AE
after training (right) to the optimal ML decision regions for the optimized AE con-
stellation at Pin = 0 dBm (left), showing excellent agreement.

25

4. Performance Analysis

−14 −12 −10 −8 −6 −4 −2 0 2 4 6 8 10
10−5

10−4

10−3

10−2

10−1

100

input power Pin [dBm]

sy
m

bo
le

rr
or

ra
te

(S
E

R
)

16-QAM,
ML detector
AE constellation,
AE detector
AE constellation,
ML detector

Figure 4.3: SER as a function of Pin for M = 16.

26

4. Performance Analysis

Figure 4.4: ML decision boundaries for the AE constellation at Pin = 0 dBm (left)
and learned AE decision regions (right).

4.4 Learned constellations

First, for comparison, we apply the AE to a linear AWGN channel silimar to [10].
The AE parameters are summarized in Table 4.3. Training is done at Eb/N0 = 7dB
using Adam optimizer. Figure 4.5 illustrates the learned 16-point constellation. The
constellation shape is pentagonal and the points are almost equally spaced as the
noise in the channel is Gaussian distributed.

Figure 4.5: Learned 16-point constellation for AWGN channel

27

4. Performance Analysis

Table 4.3: AE parameters for AWGN channel (M = 16)

transmitter receiver
layer 1 2 1 2 3
neurons 16 2 2 16 16
f(·) - iden. - relu sigm.

Figure 4.6: Learned 16-point constellations for the nonlinear fiber channel under
Pin = −12 dBm (top left), Pin = −8 dBm (top right), Pin = 3 dBm (bottom left)
and Pin = 10 dBm (bottom right).

Figure 4.6 shows the learned 16-point constellations for the simplified fiber chan-
nel under different Pin. From the figure, we see that at very low input power, the
constellation is more like that of the AWGN channel. At −8 dBm, the constel-
lation shape looks like a windmill which has four similar blades composed of four
points. For highly-nonlinear regimes, the constellations look random but actually
those constellation points with high energy all have different radii, so that after

28

4. Performance Analysis

rotation caused by the nonlinear fiber channel, they don’t overlap with other points
and the larger the radius of the point, the farther the point is away from other points.

Figure 4.7 illustrates the learned 256-point constellations under Pin = −5 and 6
dBm. In both constellations, the points with higher energy are farther away from
other points. Compared with the constellation under −5 dBm, more constellation
points gather in the center under Pin = 6 dBm.

Figure 4.7: Learned 256-point constellations for the nonlinear fiber channel under
Pin = −5 dBm (left), Pin = 6 dBm (right).

4.5 Achievable Information Rate

We calculate the AIR according to the right-hand side of Eq. 3.8, where fy(x) is
the normalized output of the neural network and p(x) is a uniform prior 1/M . In
Figure 4.8, the AIR of the AE for M = 16 and M = 256 is shown. We first compare
the case M = 16 to the channel MI I(X;Y) assuming 16-QAM as the input distri-
bution. Note that the MI (3.3) can also be evaluated via Monte Carlo integration
since the channel PDF p(y|x) is known. As expected, the mutual information for
16-QAM decreases with input power, whereas the AIR of the AE flattens out at the
maximum value log2 16 = 4. Lastly, we compare the AIR of the AE for M = 256 to
three information-theoretic bounds on the channel capacity: the solid black line cor-
responds to a recently derived upper bound [3], whereas the dashed and dash-dotted
lines correspond to lower bounds based on a Gaussian [3] and half-Gaussian [5] in-
put distribution, respectively. The AIR of the AE closely follows the maximum of
the two lower bounds, slightly exceeding them at the crossover point at around 0
dBm. These results indicate that the optimized AE constellations are close to being
capacity-achieving and that the upper capacity bound can be further tightened.

29

4. Performance Analysis

−14 −12 −10 −8 −6 −4 −2 0 2 4 6 8 10
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

input power Pin [dBm]

ac
hi

ev
ab

le
in

fo
rm

at
io

n
ra

te
(A

IR
)

[b
pc

u]
upper bound [3]
lower bound [3]
lower bound [5]
AE M = 256
AE M = 16
16-QAM

Figure 4.8: Comparison of the AIR of the AE to various information-theoretic
capacity bounds and 16-QAM.

30

5
Conclusion

Kerr effect is one of the most challenging problems in fiber-optic communication
systems. To deal with this problem, traditional methods most concentrate on de-
coders designs and constellation shaping. Inspired by the concept of AE, we have
presented an AE approach to communicate over a simplified nonlinear fiber chan-
nel. The approach allows for end-to-end learning of good signal constellations and
the channel posterior distribution. It was shown that the autoencoder can learn
constellations that are robust to nonlinear phase noise and outperform conventional
M -QAM constellations. Moreover, near-ML performance can be obtained without
explicit channel knowledge. We also evaluated the achievable information rate of
the AE, showing that the obtained lower capacity bounds are comparable to, and
sometimes slightly exceed, two existing lower bounds for the considered nonlinear
fiber channel model.

However, there are some aspects still need to be improved. Dispersion is neglected
in this simplified channel model which cannot represent the real fiber channel ac-
curately but still captures nonlinear phase noise. The trainings of AEs under each
input power are separate, which is not efficient. A more robust AE model is under
study. Moreover, our AE algorithm always needs a certain channel model to calcu-
late gradients in backpropagation. Thus, this approach is not suitable for real fiber
channels as the exact mathematical relation between a real fiber channel input and
output is unclear. Reinforcement learning [50] can be a promising method for opti-
mizing the transmitter and the receiver separately without any channel knowledge.

31

5. Conclusion

32

Bibliography

[1] A. S. Tan et al., “An ML-Based Detector for Optical Communication in the
Presence of Nonlinear Phase Noise,” Proc. ICC (Kyoto, Japan, 2011).

[2] P. Weinberger, “John Kerr and his effects found in 1877 and 1878,” Philosoph-
ical Magazine Letters, 88:12, 897-907 (2008).

[3] K. Keykhosravi et al., “A Tighter Upper Bound on the Capacity of the Nondis-
persive Optical Fiber Channel,” in Proc. ECOC (Gothenburg, Sweden, 2017)

[4] K. S. Turitsyn et al., “Information capacity of optical fiber channels with zero
average dispersion,” Phys. Rev. Lett. 91 (2003).

[5] M. I. Yousefi and F. R. Kschischang, “On the per-sample capacity of nondis-
persive optical fibers,” IEEE Trans. Inf. Theory 57, 7522-7541 (2011).

[6] K. P. Ho, “Phase-Modulated Optical Communication Systems,” Springer
(2005).

[7] A. P. T. Lau et al., “Signal Design and Detection in Presence of Nonlinear
Phase Noise,” J. Lightw. Technol. 25, 3008-3016 (2007).

[8] C. Häger et al., “Design of APSK constellations for coherent optical channels
with nonlinear phase noise,” IEEE Trans. Commun. 61, 3362-3373 (2013).

[9] O. Geller et al., “A Shaping Algorithm for Mitigating Inter-Channel Nonlinear
Phase-Noise in Nonlinear Fiber Systems,” J. Lightwave Technol. 34, 3884-3889
(2016).

[10] T. O’Shea and J. Hoydis, “An Introduction to Deep Learning for the Physical
Layer,” in IEEE Trans. Cogn. Commun. Netw., Vol. 3, 563-575 (2017).

[11] S. Dörner et al., “Deep Learning Based Communication Over the Air,” in IEEE
J. Sel. Topics Signal Process. 12, 132-143 (2018).

[12] D. Zibar et al., “Machine learning techniques in optical communication,”
J. Lightw. Techn. 34, 1442-1452 (2016).

[13] C. Häger and H. D. Pfister, “Nonlinear Interference Mitigation via Deep Neural
Networks,” Proc. OFC (Los Angeles, USA, 2018).

[14] E. Ip and J. M. Kahn, “Compensation of Dispersion and Nonlinear Impairments
Using Digital Backpropagation,” J. Lightw. Technol. 26, 3416-3425 (2008).

[15] ——, “Deep learning of the nonlinear Schrödinger equation in fiber-optic com-
munications,” Proc. ISIT, (Rome, Italy, 2018).

[16] B. Karanov et al., “End-to-end Deep Learning of Optical Fiber Communica-
tions,” arXiv:1804.04097 [cs.IT] (2018).

[17] H. Lee et al., “Deep learning based transceiver design for multi-colored VLC
systems,” Opt. Express 26, 6222-6238 (2018).

[18] D.-M. Arnold et al., “Simulation-based computation of information rates for
channels with memory,” IEEE Trans. Inf. Theory 52, 3498-3508 (2006).

33

Bibliography

[19] I. B. Djordjevic et al., “Achievable information rates for high-speed long-haul
optical transmission,” J. Lightw. Techn. 23, 3755-3763 (2005).

[20] M. Secondini et al., “Achievable information rate in nonlinear WDM fiber-
optic systems with arbitrary modulation formats and dispersion maps,”
J. Lightw. Techn. 31, 3839-3852 (2013).

[21] T. Fehenberger et al., “On achievable rates for long-haul fiber-optic communi-
cations,” Opt. Express 23, 9183-9191 (2015).

[22] Executive Office of the President, “Big Data: A Report on Algorithmic Systems,
Opportunity, and Civil Rights,” Obama White House (2016).

[23] G. P. Agrawal, “Fiber-Optic Communications Systems,” 3rd ed. Wiley (2002).
[24] W. S. McCulloch et al., “A logical calculus of the ideas immanent in nervous

activity,” The bulletin of mathematical biophysics 5, 115-133 (1943).
[25] F. Rosenblatt, “The Perceptron: A Probabilistic Model for Information Storage

and Organization in The Brain,” Psychological Review, 65-386 (1958).
[26] D. E. Rumelhart, “Neurocomputing: Foundations of Research,” MIT Press

(1988).
[27] H. White, “Artificial Neural Networks: Approximation and Learning Theory,”

Blackwell Publishers, Inc. (1992)
[28] T. Young et al., “Recent Trends in Deep Learning Based Natural Language

Processing,” CoRR, abs/1708.02709 (2017).
[29] J. Schmidhuber, “Deep Learning in Neural Networks: An Overview,” Neural

Networks, 61 85-117 (2015).
[30] P. Vincent, “Stacked Denoising Autoencoders: Learning Useful Representations

in a Deep Network with a Local Denoising Criterion,” J. Mach. Learn. Res. 11
3371-3408 (2010).

[31] V. Gerven et al., “Editorial: Artificial Neural Networks as Models of Neural
Information Processing,” Frontiers in Computational Neuroscience 11 (2017).

[32] Wikipedia contributors, “Machine learning,” Wikipedia, The Free Encyclopedia.
Wikipedia, The Free Encyclopedia, 21 Aug. 2018. Web. 21 Aug. 2018.

[33] K. Bailey, “Numerical Taxonomy and Cluster Analysis,” Typologies and Tax-
onomies, 34, ISBN 9780803952591 (1994).

[34] I. Goodfellow et al., “Generative Adversarial Network,” arXiv:1406.2661 (2014).
[35] T. Kohonen et al., “Kohonen Network,” Scholarpedia (2007).
[36] G. A. Carpenter et al., “Adaptive Resonance Theory,” In Michael A. Arbib

(Ed.), The Handbook of Brain Theory and Neural Networks, Second Edition,
87-90, Cambridge, MA: MIT Press (2003).

[37] S. Grossberg, (1987), “Competitive learning: From interactive activation to
adaptive resonance,” Cognitive Science (Publication), 11, 23-63 (1987).

[38] Wikipedia contributors. “Gradient descent,” Wikipedia, The Free Encyclopedia.
Wikipedia, The Free Encyclopedia, 28 May. 2018. Web. 31 May. 2018.

[39] S. Ruder, “An overview of gradient descent optimization algorithms,” CoRR,
abs/1609.04747 (2016).

[40] D. P. Kingma et al., “Adam: A Method for Stochastic Optimization,” CoRR,
abs/1412.6980 (2014).

[41] Rumelhart et al., “Learning representations by back-propagating errors,” Na-
ture 323.6088: 533-536 (1986).

34

Bibliography

[42] C.Y. Liou et al., "Autoencoder for words," Neurocomputing, 139: 84 (2014).
[43] I. Goodfellow et al., “Deep Learning,” MIT Press (2016).
[44] P. Vincent et al., “Extracting and Composing Robust Features with Denoising

Autoencoders,” Proc. ICML (Helsinki, Finland, 2008).
[45] Y. Bengio et al., “Generalized Denoising Auto-Encoders as Generative Models,”

CoRR, abs/1305.6663 (2013).
[46] M. Abadi, “TensorFlow: Large-scale machine learning on heterogeneous sys-

tems,” Software available from tensorflow.org (2015).
[47] T. M. Cover et al., “Elements of Information Theory,” 2nd ed. Hoboken, NJ:

Wiley (2006).
[48] E. Agrell, “Capacity Bounds in Optical Communications,” in Proc. ECOC

(Gothenburg, Sweden, 2017).
[49] G. Liga et al., “Information Rates of Next-Generation Long-Haul Optical Fiber

Systems Using Coded Modulation,” J. Lightw. Technol. 35, 113-123 (2017).
[50] F. A. Aoudia et al., “End-to-End Learning of Communications Systems With-

out a Channel Model,” CoRR, abs/1804.02276 (2018).

35

Bibliography

36

	List of Figures
	Introduction
	Limits of nonlinear fiber-optical communication
	Conventional approaches
	Machine learning approaches
	Goal of the Thesis
	Ethics in machine learning

	Theory
	Nonlinear phase noise in fiber-optic channels
	Maximum likelihood detection for nonlinear fiber-optic channels
	Neural networks basics
	Basic structure and components of neural networks
	Autoencoder
	TensorFlow

	Proposed autoencoder structure
	Introduction
	Proposed AE structure
	AE constellations and detectors
	AE for bounding the capacity

	Performance Analysis
	Simulation scenario
	Selection of number of layers and activation functions
	Symbol Error Rate
	Learned constellations
	Achievable Information Rate

	Conclusion
	Bibliography

