End-to-end Autoencoder Learning
for fiber-optic communication systems

Master’s thesis in Master Programme of Communication Engineering

SHEN LI

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

MASTER’S THESIS 2018:NN

End-to-end Autoencoder Learning for
Fiber-optic Communication Systems

Shen Li

<4

S
CHALMERS

UNIVERSITY OF TECHNOLOGY

Department of Electrical Engineering
Master Programme of Communication Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

End-to-end Autoencoder Learning for Fiber-optic Communication Systems
Shen Li

© Shen Li, 2018.

Supervisor: Henk Wymeersch, Christian Héger
Examiner: Henk Wymeersch

Master’s Thesis 2018:NN

Department of Electrical Engineering

Master Programme of Communication Engineering
Chalmers University of Technology

SE-412 96 Gothenburg

Telephone +46 79 039 8286

Typeset in BKTEX
Printed by Chalmers Reproservice

Gothenburg, Sweden 2018

v

End-to-end Autoencoder Learning forFiber-optic Communication Systems
Shen Li

Department of Electrical Engineering

Chalmers University of Technology

Abstract

Modulation formats that can achieve high spectral efficiency like multi-level quadra-
ture amplitude modulation (M-QAM) are employed by fiber-optic communication
systems to increase data rates. However, M-QAM has more compacted constella-
tions, which means it’s more sensitive to noise and higher input power is needed.
Kerr effect becomes one of the main difficulties as it constrains the optimal input
power. Autoencoders (AEs) in machine learning field is a promising tool to jointly
optimize the transmitter and the receiver in a single process to not only realize con-
stellation shaping but also design an optimal receiver.

In this thesis, we develop an AE for a simplified memoryless fiber channel model.
The AE can approach maximum likelihood (ML) performance and leads to opti-
mized constellations that are more robust against nonlinear signal-noise interac-
tion (NLSNI) than conventional quadrature amplitude modulation (QAM) formats.
Moreover, it is shown that the AE approach can be used to establish tight lower
bounds on the channel capacity by computing achievable information rates (AIRs).

Keywords: fiber-optic communication, autoencoder, neural networks, nonlinear phase
noise, achievable information rate.

Acknowledgements

I would like to thank Prof. Henk Wymeersch and Dr. Chistian Héger first who
proposed this thesis topic and gives me this valuable opportunity to do this master
thesis project in which I really learned a lot.

I would like to sincerely express my gratitude to my two supervisors Henk Wymeer-
sch and Christian Hager for their continuous guidance, patience and encouragement
not only on the academic research, but also on my life. I also appreciate the help
of Nil Garcia for a lot of inspiring discussions about my thesis work. Thank you all
again a lot for the work and guidance on the writing of the conference paper as well
as the thesis report. Moreover, I am genuine thankful to Chalmers C3SE to provide
the PC-cluster which saves a lot of my time for running simulations.

In a word, I sincerely thank all the people who were involved during my one-year
master thesis. This thesis experience would be unforgettable for me as I really has

harvested a lot of new knowledge and gain confidence and inspiration of life with
the help of them all.

Shen Li, Gothenburg, June 2018

vii

Contents

List of Figures

1 Introduction
1.1 Limits of nonlinear fiber-optical communication
1.2 Conventional approaches
1.3 Machine learning approaches
1.4 Goal of the Thesis
1.5 FEthics in machine learningo

2 Theory
2.1 Nonlinear phase noise in fiber-optic channels
2.2 Maximum likelihood detection for nonlinear fiber-optic channels . . .
2.3 Neural networks basics oo
2.3.1 Basic structure and components of neural networks
2.3.2 Autoencoder
2.3.3 TensorFlow

3 Proposed autoencoder structure
3.1 Imntroduction
3.2 Proposed AE structure
3.3 AE constellations and detectors
3.4 AE for bounding the capacity

4 Performance Analysis
4.1 Simulation scenario
4.2 Selection of number of layers and activation functions
4.3 Symbol Error Rate oo
4.4 Learned constellations 0oL
4.5 Achievable Information Rate

5 Conclusion

Bibliography

xi

19
19
19
20
20

23
23
23
25
27
29

31

33

ix

Contents

1.1
1.2

2.1
2.2
2.3
24
2.5
2.6

2.7
2.8
2.9

3.1
3.2

4.1
4.2

4.3

4.4

4.5
4.6

4.7

List of Figures

Received 16 QAM constellation with nonlinear phase noise
SER as a function of input power in the presence of nonlinear phase
noise for 16 QAM assuming that the fiber length is 100 km, the
nonlinear parameter is 1.27, the total noise power is —21.3 dBm and
the number of iterations to simulate the model is 50.

A simple artificial neural network
The structure of aneuron L.
Activation functions L
[ustration of gradient descent on a level set
[ustration of stochastic gradient descent on a level set
Backpropagation: First, the input al” is fed into the neural network
and forward-propagated until the loss function L(7,y) at the end.
Then the gradients of each layers’ weights and biases dW! and db
are calculated from the end to the front. Finally, all the weights and
biases are updated according to the gradients.
Illustration of the structure of an AE
General structure of a DAE
Data flow graph of an one-layer neural network in TensorFlow

A simpliest communication system0
Autoencoder structure assuming 2 hidden layers in both the trans-
mitter and receiver neural network00

Data flow graph of the AE for M = 16 in Tensorflow
SER as a function of number of training iterations for appropriate
network patameters (left) and insufficient parameters (right) for M =
16. . o e
SER as a function of P, for M =16.
ML decision boundaries for the AE constellation at P, = 0 dBm
(left) and learned AE decision regions (right).
Learned 16-point constellation for AWGN channel
Learned 16-point constellations for the nonlinear fiber channel under
different P,o
Learned 256-point constellations for the nonlinear fiber channel under
different P,o

26

X1

List of Figures

4.8 Comparison of the AIR of the AE to various information-theoretic
capacity bounds and 16-QAM.

xii

1

Introduction

1.1 Limits of nonlinear fiber-optical communica-
tion

Nowadays, the amount of information is increasing rapidly. In order to increase
the transmission speed and information capacity, optical fiber communication has
become the most important way of wired communication and provides for over 99%
of global data traffic because of its high transmission bandwidth, large capacity,
low transmission loss and long transmission distance. Fiber transmission rates can
be increased by using high order constellations, like multi-level quadrature ampli-
tude modulation (M-QAM). However, these constellations are more compact and
require higher input power [1] and thus more susceptible to nonlinear impairments
such as nonlinear signal-noise interaction (NLSNI). Due to the Kerr effect [2], the
fiber channel will cause a rotation of the transmitted constellation symbols and the
rotation degree is proportional to the symbols’ energy. Thus, the nonlinear Kerr
effect constrains the optimal input power of signals and becomes one of the main
difficulties of fiber-optical communication.

To visualize the effect on symbols, a 16-QAM constellation pattern after going
through a channel with Kerr effect and amplified spontaneous emission (ASE) noise
is shown in Figure 1.1. Symbols with high energy rotates more than those with
lower energy. Figure 1.2 shows the symbol error rate (SER) as a function of input
power for the linear additive white Gaussian noise (AWGN) channel and the non-
linear fiber channel only considering the Kerr effect and ASE noise. Both systems
use the Euclidean distance detection. From this figure, the SER of nonlinear fiber
channel first decreases as the input power increases like the linear channel because
the signal-to-noise ratio (SNR) is higher and then goes up again as the nonlinear
effect becomes the main distortion.

Due to NLSNI, the challenge is that the optimal constellation and the optimal
receiver for a fiber communication system are unknown. The achievable transmission
rates are themselves upper-bounded by the channel capacity, which is also unknown
for optical channels with NLSNI, even for simplified nondispersive scenarios, though
upper [3] and lower [3-5] capacity bounds have been established for the simplified
non-dispersive channel.

1. Introduction

0.05
0.04 ¢
0.03 1
0.02 ¢
0.01

0
-0.01 ¢+
-0.02
-0.03 ¢
-0.04 ¢
-0.05

20.05 0 0.05
in-phase

quadrature

Figure 1.1: Received 16 QAM constellation with nonlinear phase noise

10°; . .

E

107}
o
L
wn

102

: —+— Nonlinear fiber channel
——AWGN channel
10

-20 45 -10 -5
input power/dBm

Figure 1.2: SER as a function of input power in the presence of nonlinear phase
noise for 16 QAM assuming that the fiber length is 100 km, the nonlinear parameter
is 1.27, the total noise power is —21.3 dBm and the number of iterations to simulate
the model is 50.

1. Introduction

1.2 Conventional approaches

Conventional techniques to deal with NLSNT include improved detector designs |1,
6,7] and optimized modulation formats [7-9] (constellation shaping). In order to
avoid complexity and focus on the Kerr nonlinearity, simplified memoryless and
dispersionless models are often studied. In [7], the expression of the maximum
likelihood (ML) detection boundaries are derived and 4-point constellation formats
different from 4-QAM are studied, yielding better SER performance than 4-QAM.
A closed-form ML-based detector for such a channel model was developed in [1] and
the SER performance was compared with those of some other common sub-optimal
detectors, showing a better trade-off of complexity and performance. In [8], a “joint
optimization” approach was used to optimize amplitude-phase shift keying (APSK)
constellations under a improved version of the two-stage (T'S) detector [7] including
the amplitude direction, a phase rotation and the phase direction. This constellation
shaping approach used brute-force gird search to first list all the possible cases in
which how many constellation rings there are and how the points distributed in
those rings and then determines the optimal radii of all the rings for each case.
The limitation of these methods is that they only focus on the design of either the
detector or the transmitter (constellation shaping), but cannot jointly optimize both
of them at the same time.

1.3 Machine learning approaches

A different approach for constellation or detector design is to rely on machine learn-
ing and deep learning, including [10-13,15-17]. Recently, autoencoders (AEs) have
emerged as a promising tool for end-to-end design and have been shown to lead to
good performance for wireless [10, 11], noncoherent optical [16], as well as visible
light communication [17]. A new way was first proposed in [10] to regard commu-
nication system design as a single optimization process using deep neural networks
and learns interesting constellations for the linear AWGN channel. In [13], deep
neural network is used to unroll the split-step Fourier method (SSFM) of digital
backpropagation (DBP) [14]. The result shows that the learned DBP significantly
reduces the complexity of conventional DBP. In [16], end-to-end AE learning for op-
tical communication systems was first implemented by experiment. The AE learns
the samples of the transmitted wave form as well as a good receiver resulting in
better performance than some conventional modulations and receivers.

1.4 Goal of the Thesis

Different from conventional sub-optimal approaches, AE can jointly optimize the
transmitter and the receiver in a single process. In this thesis, we apply an AE
to a simplified memory-less fiber channel model similar to [1,3-8]. As the chan-
nel model we used is simplified, the channel probability density function (PDF) is
known analytically [4-6], which allows us to get access to an ML decoder. With this
benchmark, the goal is to find a good constellation format and a near-ML receiver

3

1. Introduction

for this channel and then good performance will follow. The performance is evalu-
ated by comparing the SERs and achievable information rates (AIRs) [18-21] of the
systems using conventional constellation formats like M-QAM and an ML decoder.
Moreover, we use AE to find good input distributions and auxiliary channels dis-
tribution to create a lower bound of channel capacity by calculating the achievable
information rate (AIR).

1.5 Ethics in machine learning

Continuous progress and widespread use of machine learning brings huge advantages
to human society. However, there are still some underlying ethical issues we cannot
neglect.

First, machine learning usually needs a lot of training data to learn algorithms,
which leads to privacy concern. The training data can be some personal informa-
tion which is not open source and public. For example, a search engine algorithm
may use internet users’ sensitive information including searching habits, searching
content, et cetera, to learn and recommand users’ content of interest. Users’ per-
sonal data may be stolen by other services and used illegally.

Second, algorithms can be biased and discriminational [22]. Algorithms sometimes
are actually predicting future trends according to previous data. The algorithm
model and the input of the algorithm determine the result of prediction. If the
training dataset is discriminational, incomplete, or even incorrect. The trained al-
gorithm using this kind of training data will also be biased. On the other hand,
the design of algorithms itself may contain discrimination of developers. No matter
where the discrimination is from, algorithms may retain and magnify the discrimina-
tion. For example, if discriminational algorithms are used for crime risk assessment
or credit assessment, unfair results will cause a loss to people.

Third, safety and responsibility problem is another issue. For example, if a traffic
accident happens to a self-driving car, who should take the responsibility? How the
safety of artificial intelligence products can be guaranteed?

In this thesis, machine learning is used in fiber-optic communication systems to find
a good set of transceiver and the above-mentioned ethical problems will not happen
in our work.

2

Theory

In this chapter, we first briefly introduce the nonlinear phase noise in fiber-optic
channels. The basic theory behind deep learning such as the components of a neural
network, different optimizer algorithms and backpropagation is discussed. We also
introduce the concept of AEs in machine learning field and the software library that
we use in this thesis work.

2.1 Nonlinear phase noise in fiber-optic channels

The propagation of signals in a fiber with ideal distributed amplification is modeled
by the nonlinear Schrédinger equation (NLSE) [23].

aX(Z, t) . 2 .52 82X<Zv t)
7 :Z’}/HX(Z',t)H X(Z,t) —Z?T —H(Z,ZL,) (21)
where x(z,t) £ [x, x,]T is the transmitted signal, z and ¢ are time and distance

coordinates, v is the nonlinearity parameter, (5 is the group velocity dispersion co-
efficient, n(z,t) is Gaussian noise. The first term on the right side of the equation
represents the Kerr effect in fiber-optic system causing a phase shift which is propor-
tional to the signal’s power. This nonlinear phase noise is one of the most important
distortion in fiber-optic communication systems. The second term on the right side
of the equation represents dispersion. Since the likelihood function of the channel
in Eq. 2.1 is unknown, we consider a simplified nondispersive memoryless channel
which is obtained by neglecting 85 in Eq. 2.1. The resulting per-sample model is
defined by the recursion [3]

Tpp1 = xkejL'”Zk'Q/K +npr1, 0<Ek<K, (2.2)

where xy = z is the (complex-valued) channel input, y = x is the channel output,
ngr1 ~ CN(0, Py/K), L is the total link length, Py is the noise power, and ~ is
the nonlinearity parameter. The model assumes ideal distributed amplification and
K — o0.

2.2 Maximum likelihood detection for nonlinear
fiber-optic channels

ML detection, which is widely used for linear channels, requires the PDF of the re-
ceived signal, but for nonlinear fiber-optic channels, the PDF of the received signal

5

2. Theory

is hard to compute. However, for the simplified channel model in (2.2), the channel
PDF is known analytically. In [7], ML decision boundaries are derived for a similar
channel model only considering nonlinear phase noise and using distributed ampli-
fication.

Let z; € Q2 be one transmitted symbol from constellation pattern ©? with input
power P and phase 6, and y be the received signal with received amplitude r and
phase 0. 02 denotes the variance of the ASE noise and r denotes the received electric
field amplitude divided by o. The conditional PDF p(y|x;) is the joint PDF of r
and 6 [6,7]:

plole) = fro(r:0) = D4 L 5 Re G (2

where
fr(r, P) = 2re " HPI7) [(20 /P /5?) (2.4)

is the Rice PDF of r and C,,(r) is the Fourier coefficient:

Cnlr) = LT o [P i Vi~ 3k 0Ty ()
_ yPL 1/4 _ tan+/jmx N s
where x = NI Qm = (P/o*) 4 sec/jmz, s, = 5=t and I,(+) is the

mth-order modified Bessel function of the first kind.

With the known fiber channel PDF, the ML detector is defined as:

; = argmax p(y|v;) (2.6)
;€02

After receiving a signal y, the ML detector find the x; that yields the largest condi-
tional PDF p(y|x;), thus realizing ML detection.

2.3 Neural networks basics

Artificial Neural Network (ANN) was inspired by biological neural networks that
exist in animal neural systems and brains. ANN has a long history of evolution,
and it is widely used in nowadays research. In 1943, Warren McCulloch and Walter
Pitts proposed a neuron model that outputs either 1 or 0 based on a threshold value,
and successfully modeled NOT/OR/AND logic functions [24]. In 1958, Rosenblatt
proposed the concept of perceptron whose output depends on the linear combination
of inputs and weights. By adjusting the weights, it can solve linearly separable clas-
sification problem [25]. Geoffrey Hinton solved non-linear classification problem by
introducing sigmoid function into a perceptron and using backpropagation for train-
ing [26], which is the prototype of more advanced ANN model, such as Recurrent
Neural Network (RNN), Convolution Neural Network (CNN) | sparse auto-encoding,
ete.

2. Theory

Universal approximation theorem [27] shows that an ANN with single hidden layer
has ability to approximate continuous functions on compact subsets RY, and people
found that ANNs with multiple hidden layers always have better performance than
ANNSs with single hidden layer. A deep learning model or a Deep Neural Network
(DNN) is simply an ANN with multiple hidden layers, and these is no clear definition
about the number of hidden layers that a DNN has. Compared with conventional
algorithmic approaches, DNN can be trained and adjust itself automatically to solve
the problem at hand, avoiding developing extremely complicated algorithms. Struc-
tures, activation functions and training rules of DNN may be modified according to
different applications, and we can find the information of interest that are deeply
hiding inside of the training data. For example, RNN is widely used in Natural
Language Processing (NLP) [28], CNN is heavily used in image processing such as
pattern recognition and image identification [29], sparse auto-encoding can be used
for representation learning [30], etc.

2.3.1 Basic structure and components of neural networks

2.3.1.1 Neural network structure

ANNSs are mathematical models or computing models simulating the structures and
functions of biological neural networks [31] . An ANN usually comprises an input
layer, an output layer and one or more hidden layers. A simple ANN with 3 hidden
layers is illustrated in Figure 2.1. Each layer consists of many computing units called
neurons. Figure 2.2 shows the structure of a single neuron.

Hidden layers

)
o

\
N 3

o/ 1) A0 ’/ \ %\"/ ‘ X/
O

.r X \
AR \

% . A
AN
SR A
R

Figure 2.1: A simple artificial neural network

The neuron takes inputs from the previous layer and generates an output according
toy = f(wTx+b), where w is a vector of weights, x = [z} 25 ... 7,,], b € R is a bias,
and f(-) is an activation function. The role of nonlinear activation functions is to
make the network nonlinear so that the neural network can approximate arbitrary
complex functions. If we don’t use them, the neural network will be always linear
and there is no point to use many layers to simulate complex computing processes.
Table 2.1 lists some widely used activation functions.

2. Theory

Figure 2.2: The structure of a neuron

fCO)

Table 2.1: List of some common-used activation functions

Name f(z) Range
Identity = (—o0,00)
. . 1
SlngId Tre = (07 1)
eT_e— T
TanH e (—=1,1)
ReLU max(z,0) [0,00)
e%i
Softmax S o (0, 1]
6 1
4 0.8
2| 06
> o
= o
c 0 € 04
S 2
2! 0.2
4! o) —
-6 L L L L L -0.2 L L
6 -4 2 0 2 4 6 6 4 2 0
X X
1 ‘ 8 ,
/ |
0 /
5 / Al
/
/ 3
< /
E 0 /’/' %
/ 2+
05/ !
// 0
1 T)) . -1 . . \
6 4 2 0 2 4 6 -6 -4 2 0

Figure 2.3: Activation functions

2. Theory

Different activation functions have different features. For instance, as shown in Fig-
ure 2.3, sigmoid function will saturate (the gradient of sigmoid function is close to
zero) when the input is very large, which results in slow convergence rate because
the gradient of the activation function is needed to update parameters in backprop-
agation (details in 2.3.1.5). TanH function also has this saturated gradient problem
but TanH is better than sigmoid because its output is zero-centered. However, the
computation complexity of both sigmoid and TanH are high as they have to do ex-
ponential computation. ReLLU function is much simpler and computationally more
efficient than sigmoid and TanH. ReLLU can also avoid the saturated gradient prob-
lem as it is linear for x > 0. Nevertheless, the biggest drawback of ReLU is called
“dying ReLU” problem. When the input of a ReLU neuron is less than zero, the
gradient will also be zero during the backpropagation causing that the weights of
this neuron will not be updated. If too many such neurons die, the neural network
will not learn any more.

2.3.1.2 Machine learning tasks

The task of machine learning is to establish mathematic models such as neural
networks to learn or predict from data. The establishment of the neural network
structure is directly based on the training data, a set of input data used for training
the network. Typically, machine learning tasks are classified into two broad cat-
egories, supervised learning and unsupervised learning depending on whether the
training data is labeled (i.e., data is classified) or there is a feedback for each train-
ing data [32].

Supervised learning

In standard supervised learning tasks, the input data always have labels which are
the desired output of the input. Given a set of N training examples {(x1,y1), (X2, ¥2),
vy (XN, yn)}, where x; refers to the i-th training example’s feature vector and y;
refers to the i-th training example’s label, the goal is to find a function f: X — Y
that maps the input data to their labels as much as possible.

Different from standard supervised learning tasks, If the training data is not labeled
but there is a feedback (reward or punishment) corresponding to each training data,
this kind of learning tasks belongs to reinforcement learning. Reinforcement learn-
ing seeks a set of actions that the agent should take in a dynamic environment to
maximize the cumulative rewards and get the best performance.

Unsupervised learning

In unsupervised learning, the input data don’t have any labels. The goal can be
finding hidden laws or learning features of the input data. Typical algorithms used in
unsupervised learning includes clustering [33], autoencoders, generative adversarial
networks (GAN) [34], self-organizing map (SOM) [35], adaptive resonance theory
(ART) [36,37], etc.

2. Theory

2.3.1.3 Cost function

In order to train a neural network, a loss function is needed to calculate the differ-
ence, the so-called “loss” between the real output and the desired output of each
training example. For instance, in supervised learning tasks, the loss is calculated
between the neural network’s output ¢; and their labels y; for each training exam-
ple. The following equation shows two common-used loss functions. A cost function
J(W.b) = &+ XN, L(9;,y;) parameterized by W and b is the average loss of all the
training examples, where N is the number of training examples. The neural network
can be trained by a certain optimizer to find the best weights and bias to minimize
the objective cost function.

o[Wi w)? MSE
L(yza yl) - { Yi log(y\z) Cross entropy (27)

Sometimes a regularization item is added to the cost function to avoid over-fitting.
Eq. 2.8 shows a common regularization method called L2 regularization:

J LA A
J(W,b) = N S L(9i,yi) + oN W3 (2.8)

=1

where A is the regularization parameter and A > 0.

2.3.1.4 Practical optimizers

Some of the most popular and common optimizers used for deep learning are intro-
duced in the following.

Gradient descent

Gradient descent is one of the most common ways to minimize an objective function
J(0) by updating the parameters 6 recursively in the direction of the negative gra-
dient of J(#) at the current point, where 6 are the weights and biases of the neural
network. For example, suppose J(#)’s graph has a bowl shape, from a top view
shown in Fig. 2.4 [38], J(0) is represented by a set of blue contour lines on which
the value of .J(#) is constant. The red arrows represent the direction of the negative
gradient at some points. We start from a point 6, at which the negative gradient is
—VyJ(6;). Then the parameter 6 is updated by:

0t+1 = (9t - CKVQJ(@t) (29)

where « is a learning step size. Finally, gradient descent will lead to the minimal
value of J(0), that is around the smallest circle in Fig. 2.4.

10

2. Theory

Figure 2.4: Illustration of gradient descent on a level set

If we calculate the negative gradient of our loss function L(#) over the entire training
set, that is to average the gradients of all training data points, the method is batch
gradient descent (BGD). The direction of the calculated average negative gradient
using BGD is the fastest direction to reach a local minimum. However, calculating
the loss of all data points to perform only one update is inefficient when the training
data set is large as every data point’s gradient is required. Stochastic gradient
descent (SGD) is designed to accelerate the training speed. SGD method updates the
parameter by calculating the loss of only one stochastic training example (z;, y;) [39]:

01 =0, — aveJ;(0y; (x(i)a ?J(i))) (2.10)

Figure 2.5: Illustration of stochastic gradient descent on a level set

11

2. Theory

Although SGD method needs more steps to reach the global minimum than BGD
as the gradient is not the best, as shown in Fig. 2.5, the convergence is much faster
when the training set is large because less computation is used for updating. Another
compromise method is mini-batch gradient descent [39]. This method performs an
update over a small set of n training examples (%47, y(#+n)):

001 = 0y — aVeJ;(0y; (x(i:”"), y(i:”"))) (2.11)

Gradient descent with momentum

The learning steps of SGD or mini-batch gradient descent are fluctuated, which
makes learning slow. Momentum is a method that takes past gradients into account
to smooth out the steps of gradient descent and can accelerate the learning process
[39]. First, we initialize vy = 0. The recursive updating rules at time ¢ are:

Vs = 5vt_1 + (1 - 5)V9Jz(0t> (212)

Qt-l—l = Qt — Q¢ (213)

where the factor f is called momentum and the most common value for 5 is 0.9.
When 5 = 0, then method it’s the same as gradient descent without momentum.
Higher 5 means that more past gradients are taken into consideration so the learn-
ing steps are smoother.

RMSProp

Root mean square propagation (RMSProp) is another method that can also speed up
mini-batch gradient descent. This method takes a moving average of the gradient’s
square and then divide the gradient by the square root of this mean square:

vy = Buiy + (1= B) (Ve i(6;))? (2.14)

VoJi(0;)
VU + €

where € is a small value used to avoid that the gradient is divided by zero.

0t+1 = ¢9t — (215)

Adam

Adam optimizer [40] is an important common-used algorithm proposed recently.
This method not only take a exponentially weighted average of the gradient but
also the gradient’s square (the first moment and second moment of the gradient).
Then update parameters in the same way as RMSProp but using the bias-corrected
version of the gradient and gradient’s square:

Vs = 611)15_1 + (]. - 51>VQJ1‘(015> (2].6)
st = Pasi—1 + (1= B2)(VeJi(6:))? (2.17)
vtcorrected _ - jtﬂf (218)

12

2. Theory

corrected __ St

ot T1-4

,Ugorrected

/Sgorrected + €

B1 and S5 are also two hyper-parameters need to be chose. It’s proven to be effective
for a wide variety of different kinds of neural network architectures.

Selecting an appropriate learning rate is important for training. If the learning rate
is too large, the neural network will not converge while too small learning rates will
make the training process very slow. The choice of the learning rate depends on the
specific problem at hand. We might start with a large learning rate such as 0.1 to
observe the training process, and then try exponentially smaller values 0.01, 0.001,
etc. After knowing the reasonable smaller range of the learning rate for example
[0.001,0.01], then we might uniformly sample from this range until finding the best
suitable one.

(2.19)

9t+1 = et — (220)

Sometimes a learning rate can make the training process fast at first but fluctuated
around the minimum and not really converged. If we change this learning rate into
a smaller one, then the whole training process is not efficient. It is usually useful to
reduce the learning rate gradually during the training process. Here are the formulas
of some examples of reducing the learning rate:

0T
a=< am (2.21)
o7
where « denotes the initial value of the learning rate, ¢ denotes the current number

of training epochs, n € (0,1) is the decay rate and ¢ > 0 is a constant adjusted
according to the need.

2.3.1.5 Backpropagation

The training process in deep learning is the process of minimizing the cost function.
Gradient descent is the most common solution which needs to calculate gradients
first. Backpropagation [41] is used to calculate and backpropagate all parameters’
gradients accroding to which the parameters can be updated.

Let W' and b’ denote the weight matrix and bias vector of the [* hidden layer,
fU(.) denote the I* layer’s activation function, fI¥'(-) is the derivative of fU(.), a is
the output vector of the I*" hidden layer and z' = W'a'~! + b'. Suppose the neural
network has L + 1 layers in total (the 0" layer represents the input layer and the
L' is the output layer). Fig. 2.6 illustrated how a neural network’s parameters are
updated through backpropagation.

13

2. Theory

) w 2 g e win | 2 L4 a7 Wi gy [2=4
bl bl bl
alol al-1 alt-1 L, y)
I P win| 4 | et | 4B,] dat
pl1] bl plti
dawtil awt dwlt]
a1 dblt dblt]

Figure 2.6: Backpropagation: First, the input al” is fed into the neural network
and forward-propagated until the loss function L(7, y) at the end. Then the gradients
of each layers’ weights and biases dW and db! are calculated from the end to the
front. Finally, a