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Disturbance Detection and Classification in Large Microwave Networks
Time series classification using deep convolutional neural networks
Tobias Olausson
Victor Sandell
Department of Electrical Engineering
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Abstract
This thesis explores how disturbances in a microwave network can be detected and
classified using neural networks. The data was segmented into chunks consisting
of one day measurements in one link. Each segment was then classified as normal
behavior, weather disturbances, or disturbances caused by the construction cranes.
Additionally, a general class for other disturbances was also used.
Two convolutional neural network structures were evaluated. One structure has a
single link input, while the other uses the data of the nearby links. The networks
were able to achieve an accuracy of 100% and 98%, respectively. This confirms that
convolutional neural networks can be used to classify disturbances in a microwave
network.
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1
Introduction

In recent years there has been a rapid increase in the amount of collected and stored
data. The analysis and manipulation of big data is one of the important aspects of
the ever growing computer industry. Companies collect large amounts of data from
various services potentially, for further analyzing.
Machine learning algorithms provide solutions which are efficient at analyzing and
finding hidden data patterns. Machine learning techniques such as neural networks
is used for a large variety of tasks related to data analysis such as image and speech
recognition. Developing and applying machine learning algorithms to automate and
improve data analytics is beneficial for companies, as it unlocks the potential use of
the unused data. The continuing increase in computing power combined with the
progress in the field of machine learning extends these possibilities further.
There are currently (2016), approximately 4 million operating microwave links all
over the world. These microwave links connect radio sites, and is used in addition
to fiber and copper links [1]. The use of fiber is expected to increase, while copper
is being phased out. Microwave links will still connect 65% of radio sites in 2021.
Due to the size of the microwave networks located all over the world, large amounts
of data is generated and machine learning solutions can potentially be beneficial to
the network operators.

1.1 Background
Ericsson collects data from a network of microwave links located in Gothenburg.
The data includes the transmitted and received power for each link. The attenua-
tion, deviation from the expected received power, is currently used to approximate
precipitation in Gothenburg. When the received power is lower than the expected
power, it is expected that the power attenuation was due to the rain or snow.
While the changes in the received power are often caused by the weather, it is not
always the case. Some of these disturbances are instead caused by construction
cranes, trees, and other unknown disturbances. At this time, Ericsson does not
have a way of knowing what is the cause of fluctuations and drops in the received
power without manual analysis of the link’s data.
In order to find any potential problems in the network, large amounts of data must
be analyzed manually which is time-consuming.
Time series analysis extracts patterns in time series data, in order to obtain useful
features. The data gathered by Ericsson falls into the field of time series analysis
since the data for the received power is directly linked to a point in time, forming
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1. Introduction

time series data.
This thesis explores the application of machine learning algorithms on time series
data in order to classify and separate anomalies from normal behaviour within a
large microwave network.

1.2 Purpose
The primary aim of this thesis is to explore the respective benefits of different
machine learning algorithms for anomaly detection and classification for a single-
variable time series. Furthermore, the findings will be used to simplify and improve
efficiency of fault detection and handling in a microwave network.

Our thesis will seek to answer the following questions:
• How can problems be detected in a microwave network using the collected

data about the received power over an extended period of time?
• Which kind of input data and neural network structure produces the best

classification results?

1.3 Limitations
The data used for this thesis is only gathered for Gothenburg. As such, the program
will only be required to work for this limited area. While some thought may be
given to the future scalability, it will not be a high priority.
Predicting faults may be even more useful than detecting them in real-time. How-
ever, due to the limitations in time and data quality, this would be out of the scope
of this thesis.
The thesis will examine ways to differentiate between normal disturbances caused
by precipitation and more significant disturbances. This thesis will be limited to
identifying a few prominent categories among these significant disturbances.

1.4 Related Work
There are a wide range of research topics surrounding the applications of machine
learning for time series analysis. The main machine learning approach that will be
explored in this thesis is the convolutional neural networks (CNNs), an extension
of neural networks. Classification tasks usually require knowledge about the data
in order for feature extraction by human experts. CNNs have the advantage of
extracting and learning features, thus not requiring human experts [2]. This feature
extraction capability is useful for all kinds of data. Since the data used for this thesis
likely contains patterns and behaviour only found in microwave data, the automatic
feature extraction of CNNs is applicable.
CNNs have successfully been applied to time series data within a range of fields,
including speech recognition and audio classification. The results obtained by [3]
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1. Introduction

show that the CNN, compared to a corresponding deep neural network (DNN),
performed much better for the same speech recognition task.
Furthermore, CNNs have been proven to be successful in image classification tasks.
To make use of these results when classifying time series, the data can be transformed
and represented as an image in order to treat the problem as an image classification
task [4].
Another widely used method for time series classification is 1-nearest neighbour (1-
NN) with dynamic time warping as a similarity measurement. This approach has
been found to produce similar results to a multi-layer perceptron (MLP) with fully
connected layers. However, in comparison to the convolutional networks, they have
been shown to achieve lower classification accuracy when tested on 44 different time
series data sets [5].
Multi-Channels Deep Convolution Neural Networks (MC-DCNN) [6], divides a multi-
variate time series into univariate time series and performs feature learning on each
time series separately using CNNs. The feature learning for each time series is then
concatenated into a MLP, in order to carry out classification. MC-DCNN outper-
form both 1-NN and MLP used on health care data. The health care data sets used
are Physical Activity Monitoring Data (PAMAP2) and the Beth Israel Deaconess
Medical Center (BIDMC) data set [7], containing multi-variate time series data.

1.5 Outline
In section 2, the reader is introduced to the general concepts of microwave transmis-
sion. This chapter presents the theory behind artificial neural networks and more
specifically convolutional neural networks. Section 2 also presents the concepts used
for preprocessing, and finally how training and validation is performed in an arti-
ficial neural network. Section 3 introduces the methodology. This section begins
with a description of the analyzed data, including classification and preprocessing.
Section 3.2 presents the machine learning approach, the utilized machine learning
library and how the network was set up. Section 4 presents the results of this thesis.
The different network structures are compared with regards to accuracy, confidence,
and time consumption. Section 5 includes a discussion and conclusion of the results.
Finally, in section 6, the potential future work is discussed.
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2
Theory

In this section the theory behind this thesis is presented, focusing on artificial neural
networks and in particular convolutional neural networks. Additionally, the theory
behind data preprocessing used for this thesis is introduced.

2.1 Microwave Transmission
Microwave transmission is used to transfer information between two points, and
is used in communication systems such as cellular and telecommunications. Mi-
crowave frequencies range from 3 Gigahertz (GHz) to 300 GHz, which is equivalent
to wavelengths between 10 and 0.1 centimeters [8]. Antennas are used to direct
and transmit the microwave signal. A microwave network is constructed by plac-
ing antennas, forming point-to-point communication links. Careful placement of
the antennas allow for several links to use the same frequency. This is due to the
fact that the microwave beams are highly narrow and precisely oriented, thus not
interfering with other beams. Microwave transmission is done using high frequency
which in turn leads to have a high bandwidth. However, due to the high frequency
transmission, the signals have difficulties passing through mountains and other ter-
rains. Therefore, it is essential to place the antennas strategically in order to avoid
obstacles.

2.1.1 Quadrature Amplitude Modulation
Quadrature amplitude modulation (QAM) is a method of encoding information in a
microwave signal. Using QAM the microwave signal is composed of two underlying
signals, cosin and sinusoidal functions, given in (2.1). The symbol ω denotes the
angular velocity, t is the time, φ is the phase delay, Q, I, and A are the amplitudes.
The resulting signal is a sinusoidal function with varying phase and amplitude based
on the underlying values of Q and I. Either using the phase and amplitude of the
final signal or by decoding the values of Q and I, one can infer the actual value of
the signal as can be seen in Fig. 2.1.

Q ∗ cos(ωt) + I ∗ sin(ωt) = A ∗ sin(ωt+ φ) (2.1)

However, much higher modulations are possible. Since microwave signals are analog,
they can encode an arbitrary number of values. This is, however, only true in a
theoretical environment. In reality, there will always be noise in a signal, and as
the modulation increases, the difference between signals become smaller. As such,
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2. Theory

a higher order of QAM demands a higher signal-to-noise ratio. Nowadays, some
microwave transmissions are based on the 2048-QAM.
The quality of microwave transmission varies significantly over time, especially when
environmental factors such as rain is taken into account. Therefore, one can vary
the modulation order to combat these factors and maintain the low error rate.

Figure 2.1: The binary points of 16-QAM.

2.1.2 Attenuation
Attenuation is the loss in power of a signal transmitted through a medium. Com-
pared to lower radio frequencies, signals in the microwave range suffer more from
attenuation caused by the rain. This becomes especially apparent at frequencies
above 10 GHz [9]. Terrain, buildings and trees are obstacles that can cause attenu-
ation, thus the path between the transmitting and receiving antennas must remain
unobstructed.

2.2 Artificial Neural Networks
Artificial neural networks (ANNs) is a prominent computational model in machine
learning. ANNs are inspired by the network of neurons in a biological brain. An
ANN consists of an input layer, an output layer and several hidden layers. The
neurons are connected between the layers by weights that determine the output of
each layer to the next. ANNs are trained instead of explicitly programmed, using
training examples to achieve a desired output corresponding to the input by updating
the weights between the neurons in the network. The method used to update the
weights and biases between neurons is called backpropagation, which is explained
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2. Theory

further in section 2.5.1. An ANN with a sufficient amount of neurons and layers
can be a exceptional tool for feature detection and classification. An example of an
ANN can be seen in 2.2.

Figure 2.2: An example of a feed forward neural network. The circles represent
neurons and the lines between the neurons are the weighted connections. This
network consists of three input neurons, one hidden layer with four neurons and the
output layer with three neurons.

There are different types of ANNs, e.g. feed forward neural networks and recurrent
neural networks. Another type of ANN is the convolutional neural network, which
will be described further in the next section.

2.2.1 Supervised Learning
Training a neural network requires selection of the input and output format. One
of these training schemes is called supervised learning. Training examples with a
corresponding label are required in order to train a neural network using a super-
vised approach. The goal is to achieve an inferred function from the training set,
which produces accurate labels for unfamiliar data. This is the same as training the
network to generalize.
Supervised learning can in turn be grouped into further categories, classification and
regression. In the classification approach, each training example is assigned a class,
and the neural network is trained to output an integer corresponding to a class. In
a regression network, each training example is instead labeled with a real value, and
the output is also a real value.

2.3 Convolutional Neural Networks
Conventional artificial neural networks have several downsides. Each of the neurons
of a layer in a fully connected neural network, is connected to all of the neurons
in the next layer, making the amount of neurons required for the large data infea-
sible. CNNs handle large input by reducing the spatial size of the input. CNNs
have performed exceptionally well in complex classification tasks, particularly in
image classification [10, 11]. This section will describe the most commonly used
components of a CNN, convolutional layers and pooling layers.
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2. Theory

2.3.1 Convolutional Layer

The primary component in a CNN is the convolutional layer. This layer consists of
a set of filters. The filters in each layer is moved across the input in order to produce
an activation map. This process is known as the convolutional step in the network.
CNNs utilize sparse connectivity, meaning that only a portion of the input is given
as an input to a neuron, as seen in Fig. 2.3. The spatial connectivity between the
filter and the neuron is known as the receptive field. The stride of the filters decides
how much a filter is moved in each dimension across the data. A stride of 1 results in
a filter moving one data point in each step. The stride determines the dimensions of
the output, since a smaller filter size leads to less overlapping of the receptive fields.
Sometimes it is beneficial to obtain the same input and output dimensions, which
can be achieved using padding. Padding is done by adding data, commonly zeroes,
to the edges of the input. In order to adjust the amount of parameters, a filter in a
convolutional layer uses the same weights and biases across the entire input space.
The weight sharing makes the filters in the convolutional layer behave as feature
maps. These feature maps achieve spatial translation. Since features can be located
everywhere on the input, weight sharing is done. If spatial translation was to be
removed, the training set would have to be significantly larger and generalization to
new data would be worse.

Figure 2.3: A segment, defined by the filter size, is extracted and given as an input
to a neuron in the feature map. Subsampling using pooling is then performed and
followed by inputting the results of the feature maps to a fully connected layer.

After the convolution has been performed, an activation function is applied. Recti-
fied linear unit (ReLU) (2.2) is one of the most commonly used activation functions.
Compared to other activation functions, such as the hyperbolic tangent or the sig-
moid function, ReLU achieves shorter training time [10].

f(x) = max(0, x) (2.2)

8



2. Theory

2.3.2 Pooling Layer
The next major component in a convolutional network is the pooling layer. Pooling
is performed in order to reduce the overall complexity, and is usually applied after
a convolutional layer. In order to perform pooling, a filter is moved across the data,
downsampling over each filter by discarding data. One of the most common pooling
methods is max pooling. In each region, the maximum value is extracted, as shown
in Fig. 2.4. Although pooling reduces the complexity of the data, [12] suggests that
simply applying pooling after each convolutional layer reduces performance due to
the spatial reduction. In [13], it is proposed to remove the pooling layer in favor
of either increasing the stride of the convolutional layers, or replacing the pooling
layer with a convolutional layer where the stride is larger than one.

Figure 2.4: An example of maximum pooling.

2.4 Preprocessing
Data used for machine learning purposes can be noisy and not always entirely re-
liable. In order to achieve valuable results, some degree of data preprocessing is
usually needed. The data used for this thesis is time series data.

2.4.1 Time Series
A time series is a set of data points, each indexed at a point in time. The data points
in a time series are collected at a fixed interval, where the frequency in which the
data points are collected determines the resolution of the time series. Time series
data can be represented as a function of time, f(t), where t is a point in time and
f(t) is the corresponding value.

2.4.2 Normalization
Normalization of the input data for the ANNs has been shown to make the network
perform better generalization and achieve faster network training convergence [14].
Normalizing the input from one layer to another within the network during training
enables the use of higher learning rates, and has the potential to eliminate the need
for dropout [15]. There are different methods used for normalization, one being
zero-mean and unit-variance, shown in (2.3). The normalized data is calculated by
subtracting the mean and dividing by the standard deviation.
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2. Theory

x′ = x− x̄

σ
(2.3)

2.5 Training
In terms of neural networks, training is the process of iteratively updating the
weights in the network to minimize the cost function. Common cost functions
include 0-1 loss, mean squared error and cross-entropy, but the cost function can be
defined in many different ways. During training of a neural network, the task is to
fit the network to a training set. One of the problems which can arise while training
a neural network is overfitting. Overfitting commonly occurs when the parameter
size exceeds the number of training examples, or due to excessive training. This
can result in the neural network learning features which are not found outside of
the training data. Overfitting leads to noise in the data becoming more prominent
while training, and the underlying pattern which the neural network should learn
is instead obscured by the noise. Various methods exist to avoid overfitting, one
example of such a method is dropout, which is described further in section 2.5.4.

2.5.1 Backpropagation
A loss function is used to determine how well a model is performing. In the case
of an ANN, the loss function is a value of how accurate the predictions are. In
backpropagation the derivatives of the network weights are calculated with respect to
the loss function. Based on the derivatives, the weights are then updated according
to the chosen optimization method.

Stochastic Optimization

Gradient descent is a method used in conjunction with backpropagation to minimize
an objective function, usually also referred to as the loss function, cost function or
error function. Minimization is done stepping in the steepest direction using the
derivative of the objective function, updated by iteration over each value in the
data set. The new gradient is calculated according to (2.4). The goal is to find the
value of θ which minimizes the objective function J(θ). η represents the step size,
determining how much each iteration should affect the value of θ.

θ := θ − η
d

dθ
J(θ). (2.4)

Stochastic gradient descent (SGD) is an extension of gradient descent which suc-
cessfully handles large data sets [16]. In order to handle large data sets, the training
data is randomly arranged, and each training sample is used to update the value of
θ. (2.5) shows the update step when using SGD. Training item x and corresponding
label y is a randomly chosen pair from the training set. Computing the gradient
based on a high number of data points can lead to the incorrect steps, resulting
in a higher value of J(θ). However, setting a low value for the step size achieves
convergence by computing the gradient a large number of times. The fluctuations
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of the SGD algorithm enables it to potentially jump and find a better local minima.
SGD in combination with backpropagation is the standard algorithm used for the
ANNs.

θ := θ − η
d

dθ
J(θ;x(i), y(i)). (2.5)

Adam

Adaptive moment estimation (Adam), is an adaptation of stochastic gradient descent
[17]. The previous updates contain information about the direction of the minimum.
Adam utilizes the previous updates, adding momentum when calculating the next
update. The direction of a minimum builds momentum, increasing the rate in
which a local minima is reached. Adding a momentum component prevents heavy
fluctuations due to constantly updating the direction. Another feature of Adam is
the adaptive parameter updates. Parameters benefit differently for a set learning
rate. Therefore, using separate learning rates for each individual parameter, the
learning process becomes faster. Compared to the other optimization methods,
Adam performs well in practice due to being computationally efficient and having
low memory requirements.

2.5.2 Learning Rate
The learning rate of a network is a measure of how aggressively it adapts according
to the value of the loss function. A higher learning rate means that the network is
quicker to adapt, but less capable of fine-tuning. If a network has too low learning
rate, it will take longer to converge and increases the risk of converging to a local
optima.
Introducing a decay rate, causing the learning rate to be gradually lowered, can
potentially allow the network to converge quickly and be tuned finely in the later
stages of training.

2.5.3 Cross Entropy
The squared loss function can be used in cases where a large deviation from the
target should be punished more heavily than several smaller ones. This is due to
the fact that a very large deviation will cause the learning rate to slow down. The
cross-entropy cost function targets this weakness by making the learning rate be
controlled by the error in the output [18].

2.5.4 Dropout
Dropout is the process of randomly discarding a portion of the hidden and input
units. This is done to punish the network for over-reliance on a few units. In each
training step, a neuron and its connections are dropped with a probability of 1 − p
and retained with probability of p. After training, the resulting neural network
can be seen as a combination of several smaller neural networks with the shared

11



2. Theory

weights. The resulting neural network has less risk of overfitting and better ability
to generalize [19].

2.6 Validation
Even with steps taken to avoid overfitting, there are no guarantees that it will not
happen. Therefore, the accuracy and loss metrics from training can be misleading.
It is therefore common to divide the data into training and validation sets. The
validation set is not fed to the network during the training phase, but tested on
after to give more reliable performance metrics. Feeding the validation set to the
network outputs performance metrics about accuracy and loss.
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3
Methods

This chapter presents the methodology used in this thesis. The classifications used
and the structure for the neural network is described.

3.1 Data
The data used in the thesis consists of the received power from around 700 links
in the area surrounding Gothenburg. The data has been logged every 10 seconds,
beginning in 2015-04-28. The data was split into 24 hour segments, consisting of
8640 samples.

3.1.1 Expected Behaviour
Most of the time the received power is expected to remain level. Variations tend
to lie within 2dB of the mean, however exceptions to this exist for links in certain
environments such as over water. An example of a link with received power in the
expected range can be seen in Fig. 3.1.

Figure 3.1: The blue line in the top graph depicts the data for the main link over
one day, and the red lines are the nearby links. The bottom graph shows the rain
for the same day.

13
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The received power is impacted by environmental effects such as rain and snow.
While this can cause significant drops in performance, the effects can only be miti-
gated, not avoided completely.
Regardless of whether it is raining or not, the links are expected to behave similarly
to those nearby. Fig. 3.2 shows an example of a link affected by rain. The rain
occurred at the same time as the drop in the received power, and the nearby links
showed the same pattern.

Figure 3.2: An example of a weather disturbance. The blue line in the top graph
depicts the data for the main link over one day, and the red lines are the nearby
links. The bottom graph shows the rain for the same day.

3.1.2 Common Disturbances

In urban environments, such as Gothenburg, construction sites and in particular the
cranes used in the construction can interfere with the transmissions. These distur-
bances cause a very distinct pattern in the received power as the cranes normally
only move during the standard working hours. In fact, during the working hours
the received power can fluctuate heavily in very short time spans. Fig. 3.3 shows a
link with a crane disturbance.

3.1.3 Normalization

The mean received power can vary greatly, but the deviations from the mean appear
similarly for the same situations. As such, normalizing the data to a zero-mean
makes a lot of sense. It is common to also normalize to unit-variance, however it
leads to the information loss about the severity of the power fluctuations.
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Figure 3.3: An example of a crane disturbances. The blue line in the top graph
depicts the data for the main link over one day, and the red lines are the nearby
links. The bottom graph shows the rain for the same day.

3.1.4 Labelling
To use a supervised approach, the data should be labeled. While automatic labelling
to some extent is possible, high number of the underlying parameters make it com-
plex and unreliable. Therefore, human evaluation was used, where an expert user
was given rain and snow data and received power measurements for both the link
in question and links near it. The data was then classified into one of 4 different
categories, normal behaviour, weather disturbance, crane disturbance and unknown
disturbance. Fig. 3.4 shows the received power for a main link and the 4 closest
links. Rain does not seem to affect the main link similar to the nearby links, and the
pattern is very distinct, thus this example was labelled as an unknown disturbance.

3.2 Machine Learning Approach
This section describes the machine learning library that was used to construct the
neural network. The design of the neural network is presented, including the various
parameters used.

3.2.1 TensorFlow
The neural networks was designed using TensorFlow. TensorFlow is an open-source
interface which allows for implementation and experimentation of machine learning
algorithms [20]. The usage of both Central Processing Units (CPU) and Graphics
Processing Units (GPU) is supported by TensorFlow, which is a necessity when
handling large data sets. In addition to the TensorFlow interface, the high level Ap-
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Figure 3.4: The blue line in the top graph depicts the data for the main link over
one day, and the red lines are the nearby links. The bottom graph shows the rain
for the same day.

plication Programming Interface (API) called TFLearn was used, which builds upon
the basic functionality of TensorFlow and allows for more agile experimentation.

3.2.2 Neural Network Design
Selecting a model which perform well, both in classification performance and time
consumption, was crucial. A convolutional neural network (CNN) approach was
chosen, since CNNs perform well in classification tasks with large input. The input
size was structured to provide sufficient data, in order to improve feature extraction.
The initial approach was a neural network structure which used a single link as
the input. An advantage of this structure is the time consumption compared to a
structure using a larger input size.
When constructing the neural network, several data characteristics were taken into
consideration. Since a link is expected to behave similarly to its nearby links, having
the nearby links as the input data could potentially lead to better feature extraction.
However, due to the input size of this neural network structure, the potential increase
in classification performance comes at the cost of time consumption.
The depth and the number of hidden layers in the neural network, affect the perfor-
mance. Several hidden layers provide additional convolution, which in turn leads to
improve feature extraction and classification performance. However, a neural net-
work can be unnecessarily large, leading to increased time consumption. Between
one and five convolutional layers were tested.
There does not exist one correct architecture for convolutional neural networks in
general. However, there are existing widely tested architectures for some specific
data sets. While these architectures might be applicable to similar data sets, the data
used for this thesis likely contains behaviour only found in microwave data. Thus,
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an architecture that achieves good results for microwave data had to be created.
Several combinations of parameters were tested by trial and error. A high number
of tests were performed with combinations of the parameters listed in the next
section. Apart from the trial and error approach, existing CNN architectures were
taken into consideration.

3.2.3 Parameter Settings
In order to achieve a satisfactory result, a range of parameters for the neural network
had to be considered. Several neural network structures with different combinations
of learning rate, filters and pooling layers were tested to find out how to achieve the
highest accuracy.

Learning Rate

The learning rate was set to 0.005 with an exponential decay of 0.99 for the first
moment estimates and 0.999 for the second moment estimates.

Filters

A higher amount of filters increases training time, but does not necessarily improve
the accuracy of the neural network. An arbitrary number of filters was chosen for
each layer, ranging between 20 and 50 filters. Different filter sizes were used for each
layer. Too small filter sizes can lead to an excessive amount of parameters within the
network, and possibly also overfitting. Filter sizes between 5 and 100 were chosen
as a baseline.

Pooling

Pooling can be useful due to reducing the complexity of the input data between
layers. However, this is not always the case since pooling has a negative effect on
classification performance due to the spatial reduction. Different neural network
structures were tested, with and without pooling, in order to find out whether
pooling improved the accuracy in conjunction with other parameter values.
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4
Results

This chapter presents the results from the convolutional neural network structures
from chapter 3. A comparison of neural network structures with regards to accuracy
and loss, is presented.

4.1 Classification Performance
The results were gathered by running the neural networks for a set amount of epochs.
The single link structure typically converged rather fast, and was thereby only run for
100-250 epochs. Training the structure using nearby links was more time consuming
due to a larger input size and slower convergence. We found that adjusting the
learning rate for different network structures did not seem to have a significant
effect on the classification. The best obtained results can be seen in Table 4.1.

Results
CNN structure Validation Accuracy (%) Validation Loss
Single link 100 0.02
Nearby link with single link
parameters 98.2 0.1

Nearby link 98.2 0.07

Table 4.1: The results obtained from the best convolutional neural network struc-
tures.

4.1.1 Normalization
In Fig. 4.1, the comparison between the results obtained by normalizing the data
to the zero-mean and unit-variance data and normalizing to only zero-mean data is
shown. As can be seen, the results based on variance normalization yielded both
a higher loss and lower accuracy. Similar results were obtained when comparing
the same normalization methods in the neural network structure by addition of the
nearby links as an input, in Fig. 4.2.

4.1.2 Network Comparison
Two neural network structures were considered in this thesis. The first one is the
convolutional networks with a single time series for a link as an input, while the
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(a) Validation accuracy (b) Validation loss

Figure 4.1: Comparison of zero-mean normalization (green line), with the zero-
mean unit-variance normalization (blue line) for the input data of the single link
structure.

(a) Validation accuracy (b) Validation loss

Figure 4.2: Comparison of the zero-mean normalization (green line), with the zero-
mean unit-variance normalization (turquoise line) for the nearby link structure.

second one used a main link’s time series data combined with the four nearest links’
time series data, requiring a two-dimensional convolutional neural network. The
structure of the neural network using nearby links can be seen in Fig. 4.5.
The networks consisted of three sequential convolutional layers. All convolutional
layers used a ReLU activation function. After these layers, dropout was performed
and ultimately there was a fully connected layer with four outputs, corresponding
to the four different classes. Cross entropy was the loss function used for each of the
neural network structures. We remark that Adam, see section 2.5.1, was selected as
the optimizer.
The best result produced by the neural network with a single link as an input, was
obtained with the parameters listed in Table 4.2. Pooling layers were not utilized
in conjunction with the listed parameters, since it resulted in higher loss and lower
accuracy. We also found that training without pooling did not have a significant
impact on the time consumption.
The results obtained by adding nearby links as an input, compared to feeding the
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Single Link Structure
Number of filters Filter size Stride

Convolutional layer 1 20 5 5
Convolutional layer 2 20 25 5
Convolutional layer 3 20 25 5

Table 4.2: The parameters for the best performing neural network using a single
link as an input.

main link can be seen in Fig. 4.3. The structure for the network without nearby links
was the best one obtained through our experimentation. Using the same network
structure, the network using nearby nodes takes significantly longer time to converge
and results in a slightly lower accuracy and loss.

(a) Validation accuracy (b) Validation loss

Figure 4.3: The orange lines show the best obtained accuracy and loss when using
the single link structure. The turquoise lines show the result of using the same
structure, but with the addition of nearby links.

However, the network using nearby nodes was able to perform significantly better
using a different structure and setup parameters. The comparison of the two ap-
proaches using the best tested structure can be seen in Fig. 4.4. This shows a much
more similar performance to the neural network using a single time series as an
input.
Even with the improved structure, the network using nearby links takes longer time
to converge. Furthermore, the increased input size causes training to be significantly
slower.
The best classification accuracy and loss for the network structure using the nearby
links was achieved when applying larger filter sizes, compared to the structure using
a single link. Pooling was also used in the neural network structure with the nearby
links, as it showed improvements in both time consumption and classification per-
formance. Furthermore, small filter strides for each convolutional layer produced
the best result. The parameters used can be seen in Table 4.3.
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(a) Validation accuracy (b) Validation loss

Figure 4.4: The neural network structures with the highest obtained accuracy and
lowest loss. The turquoise line represents the structure using the nearby links, and
the orange line represents the structure using a single line link as an input.

Nearby Links Structure
Number of filters Filter size Stride

Convolutional layer 1 20 100 5
Convolutional layer 2 20 100 5
Convolutional layer 3 20 100 5

Table 4.3: The parameters for the best performing neural network by addition of
the nearby links as an input.
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Figure 4.5: This figure shows the structure of a convolutional neural network
using time series data of the main link and its nearby links as an input data. The
neural network consists of three convolutional layers, followed by dropout, and then
supplied to a fully connected layer which returns a classification.
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5
Conclusion

Immense amounts of data is gathered by companies such as Ericsson. This data
might be useful for other purposes, potentially providing a monetary benefit. How-
ever, due to the sheer size of the available data, efficient and precise methods have to
be devised. Machine learning provides the capability to manage, and find patterns
in large amounts of data.
In this thesis, we have evaluated large amounts of data which Ericsson has gathered
from a microwave network in Gothenburg. A model, using a convolutional neu-
ral network, which detects and classifies disturbances in a microwave network was
developed.
The neural network structure, achieving the highest classification performance was
trained on 24-hour segments of the received power, each segment containing the data
for one link. This neural network achieved a very high classification performance.
A second structure was developed, which was trained based on the data of a main
link and the data of the nearby links, for the same 24-hour segment. Although this
neural network did not perform as we had hoped for our classifications, it could
potentially perform better generalization for other disturbances.
The obtained results are promising, and it is apparent that machine learning can be
used to detect and classify disturbances in a microwave network.
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6
Future Work

In this chapter, possible future work is presented. Additional implementation and
improvements for this project are discussed.

6.1 Worldwide Deployment
Since the current results are promising, there is a possibility of deploying the program
across the rest of world. With this, there will come many new possibilities and
challenges.

6.1.1 Scalability
One effect of including more areas will be a vast increase in the amount of the stored
data. Therefore, scalability is an important issue.

Training Time

For every classified data sample, there will be one iteration required for each epoch
in the training. As such, the training time for the network scales linearly with the
amount of training data. This is only true excluding hardware limitations, however,
and for example some changes may need to be made with respect to what data is
held in random-access memory (RAM).
The amount of labeled data required, however, will not be expected to increase
linearly with the number of microwave links. Urban areas similar to Gothenburg
will require few or no additional labels. Even a rural environment in a similar
climate is expected to at least share the behaviour during precipitation. Overall,
the training time would be expected to scale significantly better than linear scaling
with respect to the number of microwave links, assuming no other types of labels
are needed.

Classification Time

While training only need to be done when a significant amount of new labels have
been added, classification need to be done every day for continuous updates. There-
fore, the efficiency of the updates is an important issue. Each segment consists of
one days measurements for one link, and each of these segments will have to be
classified independently of the rest. Therefore, the time required for classifying the
segments for one day can, at best, scale linearly with the number of links.
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6.1.2 Location Dependence
The data used was only from Gothenburg. Since this is a homogeneous urban area,
it might not be possible to simply deploy the same solution across the world.
Other regions may have new types of disturbances that are not present elsewhere.
One might, for example, have to take sand storms into account in desert areas, in
which another classification is required to be added to the problem. In the areas
where sand storms are not present, however, this means a potential classification
which can only be wrong, never correct, has been added. This could reduce the
classification performance.
Another possible scenario is that the same type of disturbance could have different
characteristics in different environments.
A solution might be decentralizing the classifications. This means that we split
the world into similar regions and consider independent classifications for each of
them. This would require more classified examples but could potentially improve
the performance.
Another approach is to include metadata to the neural network, i.e., include data
about the type of the environment, the link is located in.

6.2 Network Modifications
Performing an exhaustive search for all possible network structures and parameters is
not possible, so there is no guarantee that the currently highest performing structure
is optimal. Tweaking parameters may allow for slight performance improvement but
changing the type of neural network could unlock entirely new possibilities.

6.2.1 Semi-supervised
One can change the approach to the semi-supervised one. This allows the network
to make use of the unlabelled data, in addition to what has already been labelled.

Self-classifying

One of the simplest semi-supervised approaches is to let the network be self classified.
This starts in the usual way by training the network and classifying all data points.
However, afterwards, the most confident classifications are converted into real labels.
The process is then repeated many times, each time giving the network more labelled
data to train on.
It has been shown that self-classifying can produce better performance [21], but
these results may not be applied to our algorithm and dataset.

Ladder Networks

The semi-supervised ladder network structure has shown a lot of promise. It has
achieved state of the art performance for classification in both semi-supervised Mod-
ified National Institute of Standards and Technology (MNIST) and Canadian Insti-
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tute for Advanced Research 10 (CIFAR-10) [22], two datasets for object recognition
in images.
Any conventional neural network can be converted to a ladder network. The initial
structure is considered the clean encoder path. Another path, a corrupted encoder,
is then added in which also adds noise to the signal in every layer. A denoising
function is then used to reconstruct the original output of the activation function.
The difference between the reconstructed output and the clean one is the denoising
cost for each layer.
The supervised cost is based on the difference in output between the corrupted
encoder and the actual target. The unsupervised cost is simply the sum of the
denoising costs for each layer. For the supervised data the final cost is the sum of
the unsupervised and supervised costs.
The ladder network can also be trained on unlabeled data, using only the unsu-
pervised cost. While the ability to incorporate unlabeled data is a key feature, the
ladder network architecture achieves good performance even in a fully supervised
scenario [22, 23].

6.2.2 Additional Data
In the neural network structures that were evaluated in this thesis, only data of the
received power was used as an input. The dataset that was used contained both
transmitted and received power, but it is possible to store additional variables with
configuration of the data collection. In [6], an approach which uses multi-variate
time series is proposed. Such a method could potentially be used, since additional
variables create new time series. This variables from the microwave network might
provide useful features for the neural network. Furthermore, metadata can possibly
be given as an input to a separate fully connected layer in the neural network.
Metadata such as transmission frequency or the hop length of the links, could provide
additional information concerning the behaviour of a link.
The number of classes used for the neural networks were limited to four, but it is
possible to add additional categories. Overwater links are located across a pool of
water such as a lake or the ocean. These links show a pattern of high fluctuations
due to surface reflection and movement of the water. Multipath, which is due to
receiving the transmitted signal from several paths, causing interference, could be
possibly added. Additionally, during maintenance, a link’s received power drops
significantly, showing a clear pattern since maintenance is usually scheduled for
evenings and nights. It would also potentially be possible for maintenance workers
to report a link which is undergoing maintenance, in order to be classified and used
as the training data. These are a few examples of behaviours in the microwave
network which can be categorized and classified.
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