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Abstract

Runaway electrons appear in tokamak plasmas during thermal quenches - disruptions
that change the plasma conductivity. This gives rise to an accelerating electric field,
which if, higher than the decelerating Coulomb friction force, can give electrons unlimited
acceleration, resulting in relativistic particles, which may damage the first wall of the
tokamak.

In this thesis, I am discussing the relevance and application of computer simulation
to model runaway electrons. The code that is used is called ARENA (Avalanche of
Runaway Electrons Numerical Analysis), which utilises a Monte Carlo approach to solve
the three-dimensional bounce averaged Fokker Planck equation. I also compare with the
LUKE finite difference solver for primary runaway generation, as well as numerical and
theoretical data [1, 2].

The majority of the thesis deals with performance and structural updates to the
decade-old ARENA code which has resulted in a new ARENA 90-code which is written
in the Fortran 90 language and is under active development by EFDA-ITM (European
Fusion Development Agreement - Integrated Tokamak Modelling) task force. I have also
made a proof of concept of a parallelised collision operator running on a GPU (Graphics
Processing Unit) using the OpenCL API (Application Programming Interface) standard,
which demonstrates the flexibility of the new ARENA code.

The thesis is primarily centred around two benchmarks, the preservation of a Maxwellian
distribution with no outer electric field, and primary runaway generation under a con-
stant electric field. In addition, there is an in-depth discussion of the simulation param-
eter space and design solutions of the ARENA code. Secondary generation from a seed
of runaway electrons is discussed, but not implemented in the new version of the code.

The final results show a good match of published data for all test cases considered.
The speed of simulations is greatly increased compared to the old ARENA code and
the portability and usability of the new code should help contribute to future works.
Together, this offers valuable insight on the possible applications and limitations of
runaway simulation and the ARENA code in particular.
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1
Introduction

P
ower generation for industrial applications and research is something
that our modern society have come to rely on for our very basic needs. The
discovery of nuclear processes and the invention of nuclear power reactors have
made possible a surplus of electricity and heat production without the need to

burn fossil fuels. While there is a significant benefit regarding power density, it is also a
complex procedure with a finite risk for nuclear contamination.

Power from fossil fuel is a result of chemical reactions, whereas nuclear power taps
the strong nuclear force. This allows the energy released (1 mole → 1.69 · 1012 Joules)
to become on the order of 106 times the energy released from propane combustion (1
mole → 2.043 · 106 Joules) [3]. Nuclear energy production comes with its own chal-
lenges, however. Today’s fission power production facilities produce nuclear waste which
must be handled and disposed of safely. In the prospect of replacing very large energy
production from fossil fuels, governments must also consider the connection to nuclear
weapon manufacturing. Above all fission power needs active safety solutions in the event
of a critical shut down. An active fission core needs cooling from pumping water, or it
will overheat, leading in the worst case scenario to a meltdown, which has been seen
throughout history. A fusion reactor allows for nuclear power production with passive
safety. If the reactor was to break down, the fusion plasma will quickly cool and the
nuclear processes would halt within seconds.

This is guaranteed by the low amount of fuel in the reactor at a single point in time.
While fuel rods in a fission reactor can contain years worth of fuel, the fusion material is
continuously inserted in small quantities. The total amount of fuel in the reactor cavity,
which is the size of a large hall, is about the weight of a postal stamp. In the event of an
accident, the total energy that can potentially be released is therefore relatively small.

In 2020, if all goes according schedule, a brand new fusion experiment, ITER will be
constructed in Cadarache, just north of Marseille on the French Côte d’Azur. It will be
twice the linear size, and many times the volume of the current largest fusion reactors

1



1.1. Fusion on Earth 2

and is based on the currently most efficient family of reactor designs, the tokamak. Since
the power gain factor

Q =
Pout
Pin

, (1.1)

where P is power, scales with size there is great hope that ITER will produce a net
power surplus and a self-sustained burning plasma. ITER is not a conceptual power
plant, but a necessary research project for establishing solutions to some of the major
hindrances that have been discovered throughout fusion research, for example runaway
electrons.

1.1 Fusion on Earth

In stars, fusion is the main source of power. The reaction counteracts the gravitational
pull of the stars’ huge mass and keeps it from collapsing onto itself. The excess energy is
radiated out in space, mainly as electromagnetic radiation. It is this energy from our Sun
that has enabled life on Earth. In the case of stars, fusion plasma confinement is intrinsic
from the gravitational force. For fusion power production on Earth, confining the fusion
reaction is a complex challenge that extends from the physical properties of the elements
at high temperatures. The most promising idea for a fusion power plant is confinement
in a magnetic field. Since the particles that make up the plasma are electrically charged,
they will stay bound to magnetic field lines, even at high temperatures due to the Lorentz
force.

Physical measurements of the mass of ions show them to be slightly lighter than
the individual nuclei that make them up. This is known as the mass defect and this
fact is used to theoretically explain the prospect of fusion power. The binding energy
released when elementary particles fuse to helium is the mass defect times the speed of
light squared: E = ∆mc2 = 5.0441 · 10−29 · 9 · 1016 = 4.54 · 10−12 J which for a mole is
several orders of magnitude higher than for a chemical fossil fuel reaction. In a fission
reaction, it works the other way around; excess energy is released when heavy atoms
are split by bombarding them with neutrons. In principal, there is a possibility to tap
nuclear power by fusing any element lighter than- or splitting any element heavier than
iron (Fe), which has a binding energy per nucleon-maximum that can be seen in figure
1.1.

Fission power reactions can be achieved at room temperature. The fact that an
incoming (speeding) neutron is not affected by the electrical Coulomb force allows it to
penetrate close to the nucleus. Fusion on the other hand, requires two charged particles
to get close for long enough time for the reaction to happen which requires breaching the
Coulomb barrier. The probability for a fusion reaction to happen between two elements
in a certain time is called the reaction cross section.

The difficulty with fusion on Earth, in a lot of ways, stem from the fact that very high
thermal energies are needed. The reaction cross section is a function of temperature - a
measure of a particle’s kinetic energy, which implies momentum. The equivalent cross
section for fission is a very large number in comparison. σU = 600 barns for a thermal
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Figure 1.1: The binding energy of some elements in the periodic table. When new elements
are formed through fusion (or fission) the difference in binding energy is released as kinetic
energy of the particles resulting from the reaction. The large difference in binding energy
between 2H 3H and 4He (4 and 6 MeV respectively) makes for a huge potential in excess
energy in the fusion reaction. (1.2). Adapted from [4].

neutron kn ≈ 0.025 eV colliding with 92U
235 whereas the maximum of the fusion cross

section of a Deuterium-Tritium reaction is σDT = 5 barns at kD ≈ 120 keV. A picture of
reaction cross-sections for different fusion reactions can be seen in figure 1.2. Note that
the cross section tends to peak at some temperature which is the optimum. Deuterium-
Tritium reactions is the popular candidate for fusion fuels since the cross section peaks
at a high number for relatively low temperature.

In a classical mechanics sense, the requirement for fusion becomes a high enough
(thermal) particle velocity of the fuels to overcome the Coulomb force. This corresponds
to very high temperatures, around 150 million degrees; much hotter than e.g. in the
core of the sun. For fusion researchers, it is usually convenient to express quantities
like temperature and electron rest mass in terms of energy measures in electronvolts
(eV). An electronvolt 1eV = 1.602 · 10−19 Joules, is the amount of energy gained when
a particle of charge e (the elementary charge) moves across the potential of 1 V. For
thermal energy it is proportional to Boltzmann’s constant kB = 1.38 · 10−23 J/K, so
Ethermal[eV ] = 3/2 · kbT ∼ T · 10−4 electronvolts. For T = 150 · 106K, Ethermal ≈
1.38/1.602 · 150 · 106−23+19 = 12.92 keV, which is close to the optimum temperature for
a D-T plasma. Temperatures in fusion physics are usually expressed in keV units with
Boltzmann’s constant baked into the temperature kBT/(1.602 · 10−19)→ T eV.

In the Sun, there is a three-step fusion process taking place where protons form
deuterium and 3He and finally 4He. The conditions for the reaction cross-section
is different than on Earth however. In a tokamak (see below), the pressure is much
lower and the reaction frequency cannot be arbitrarily low for a power plant because of
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Figure 1.2: The velocity averaged cross section of fusion reactions as a function of tem-
perature. This was obtained numerically from equal temperature Maxwell distributions.
The D-T reaction has a maximum reaction cross section at ∼ 70 keV (Note the logarithmic
scale). Adapted from [3]

effect, the energy output per second, reasons. Currently the main candidate for fuel is
deuterium 2H and tritium 3H in a so called D-T plasma.

2H + 3H → 4He+ n(17.6MeV). (1.2)

These elements resonate in a quantum mechanical sense at temperatures which are at-
tainable in todays tokamaks, which gives a comparably high cross-section.

Deuterium can be distilled from sea water and tritium, a radioactive isotope of hy-
drogen with a half-life of 12.3 years, can be produced from lithium in a sub-process inside
the fusion reactor.

In a reactor, neutrons will be responsible for net heat output, while the other resulting
4He alpha particles will help sustain the plasma temperature. Since neutrons lack a
charge, they will immediately escape the magnetic confinement and hit the reactor wall
where their energy must be absorbed. For the D-T reactors, the neutrons will also be
used to breed radioactive tritium fuel which is unavailable in nature. In the design for
ITER, a ”blanket” in the outer reactor wall will test an on-site production of tritium
which is a practical requirement for the first generation of fusion power plants. The
process is not uncomplicated, a single neutron for each fusion reaction will likely not be
sufficient so the neutrons must be multiplied in number. The heat load on the wall will
be considerable, and one must consider activation of the wall compounds which puts
constraints on the materials used.



1.2. Ignition and confinement 5

1.2 Ignition and confinement

The phrase ignition refers to a fusion plasma that is burning, self-sustained without the
need for outer heating. This is achieved when alpha particles from the fusion reaction
give enough energy back to the plasma. Mathematically this puts constraints on the
fusion triple-product nTτE . n = p/(2T ) is plasma (number) density, T is temperature
and τE confinement time.

The plasma density is the number of fuel ions per cubic meter. The energy confine-
ment time is a measure of power loss from the plasma and is defined as: τE ≡ E/P
where E is the total plasma energy and P is the rate of energy loss to the environment
(the wall). It is analogous to the time constant of e.g. a house cooling down. Since
the desire is to keep the plasma hot, τE becomes a measure of how good confinement is.
Eventually the heat energy from alpha particles should provide the energy required for
sustaining the temperature. This happens when the reaction rate is high enough. The
phenomena is called ignition, likened to how a barbecue can be ignited by an electrical
heating element, but will eventually sustain its own burn. The condition for ignition is
obtained by setting the alpha particle heating equal to the rate of loss of energy. The
energy loss (with Boltzmann’s constant baked into the temperature) is:

SL =
3nT

τE
. (1.3)

The energy gained from alpha particles in the fusion reaction is:

Sf = Sα = Eαp
2〈σv〉/(16T 2), (1.4)

with the number density n = p/2T , and p is the plasma pressure. The radiation loss
from Bremsstrahlung, the energy lost in particles reflecting off each other and radiating
energy according to energy conservation, is:

SB =
1

4
CBZeff

p2

T 3/2
, (1.5)

where CB is a radiation constant and Zeff is the effective charge of the plasma. A very
pure plasma has Zeff ' 1 and the balance equation becomes:

Sα + Sh = SL + SB, (1.6)

where Sh is the heating power from ohmic heating and auxiliary heating, from e.g.
microwave radiation, together. Ideal ignition assumes no losses and has Sα = SB while
full ignition is Sα = SB+SL. This leads to an approximate expression for the requirement
on the triple-product:

n̂T̂ τE > 5 · 1021m−3keVs (1.7)

where hat-variables denotes the peak values of density [m−1], and temperature [keV ] re-
spectively. The parabolic relationship between temperature and confinement time makes
optimising the product of these the objective rather than increasing either individually.
Indeed, the discovery that increased temperature could worsen confinement time was a
big blow to fusion research in the 70’s.
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1.3 The tokamak

The tokamak is a Russian reactor design that showed surprisingly good performance
when measures of confinement time and temperature were first announced. The name
is an abbreviation of Russian for: toroidal chamber magnetic coil magitnaya katushka
toroidalnaya kamera → toka·ma·k. The main objective of plasma confinement is to find
a configuration where the plasma is as stable as possible, i.e the confinement time is
very large. Many subjects of plasma physics are still being researched, and issues with
turbulence driven particle- and energy radial transport have continued to challenge the
research community. Although it is difficult to get detailed measurements on the inner
workings of a hot plasma, there are a multitude of diagnostics tools that have been
developed and experimental physics has continually been making discoveries that puts
new boundaries on theory.

A tokamak is rotation symmetric around the toroidal axis. A set of large ring-
electromagnets that are thread around the plasma induce the magnetic field B along the
toroidal axis (details in section A on torus geometry). A smaller magnetic field in the
poloidal direction is induced by a large current flowing through the plasma. This gives
a twist to the magnetic confinement field that nullifies radial drift effects that drives the
particles out of the plasma, see figure 1.3.

The large current must be produced in the plasma somehow, and the established
solution is to induce it with a large transformer. Since the induced current, according to
Lenz’s law FE = −N∆ΦB/∆t, (FE is electromagnetic force) is inherently pulsed because
of the ∆t dependence, a machine like this can only run in short time intervals. This is an
obstacle; a power plant would require continuous electricity output and materials tend
to wear faster when exposed to constantly changing temperatures. Solutions have been
proposed - for instance the bootstrap current, that stems from the fact that there is a
radial pressure gradient in the torus geometry, could possibly sustain large parts (70%) of
the toroidal current, with the rest being accounted for by neutral beam heating. Pulsed
operation could arguably also be manageable if the pulses were long (hours) and restart
time relatively short (minutes), but this inherent limitation in tokamak design creates a
practical need for research into alternative designs. The tokamak’s performance benefits
from the large current, which automatically heats the plasma through Ohmic heating
- similar to how the filament of a lightbulb is made to glow. The low plasma density
puts a limit on the temperature that can be gained from Ohmic heating at a certain
temperature however. Other auxiliary heating methods like radio frequency heating and
neutral beam injection are then applied to increase the temperature further.

The tokamak has been the most successful type of magnetic confinement device to
date. The second most established device, the stellarator is a steady state design with a
complex magnetic coil structure that does not require a driving current for the poloidal
field component. One major drawback to the stellarator is the complex design of the
magnetic confinement coils which complicates engineering as well as analysis. A tokamak
can often be regarded as a two-dimensional problems of the cross section, assuming
axisymmetry, where stellarators require three-dimensional computer simulations.
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Figure 1.3: A schematic picture of a tokamak. The large D-shaped magnetic coils are
responsible for the large toroidal magnetic field Btor, while the induced current (transformer
not visible) gives the poloidal twist. The large circular coils are schematic representations
of vertically stabilising coils. Adapted from [3].

There are many fusion research plants in the world today. Most of the active ones
in Asia, primarily Korea and Japan. Currently the world’s largest machine is the Joint
European Torus (JET), situated in Oxford in England. It was rebuilt with a divertor
configuration for improved confinement and has been used for some testing in anticipa-
tion of ITER.

To reach break-even, the confinement time and temperature have to be just right for
the fuels in question. Figure 1.4 shows the break-even region along with the current best
shots in JET. Past attempts to increase temperature has been seen to lower confinement
time, and it is currently believed that the reactor must be scaled up to reach ignition. A
large enough physical size of the reactor is an intrinsic requirement for fusion since the
outer area of the plasma is the only way for heat to escape. With a bigger cross-section
of the plasma, the temperature can be kept high at the core, while the periphery has a
larger area to dissipate heat Another benefit is that the electromagnet dimensions are
larger and more easily shielded from the hot plasma. This is important since super-
conducting magnets is likely a requirement to allow for high energy gain. With present
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Figure 1.4: Schematic picture of the fusion triple product as a function of plasma tem-
perature on the horizontal axis. An imagined third axis shows the Q−factor which needs to
be ≥ 1 for ignition. There is also a set of historical graphs showing how the Q−factor has
been steadily improving with more modern fusion devices.

day technology this implies that they must be kept in a cryostat close to absolute zero
temperature. There are also complications with a larger design, however. Besides a
higher construction cost, the required neutral beam injector for heating, and other sim-
ilar equipment, simply has not yet been created. Furthermore, disruptions, which hurt
the stability of the plasma, have been seen to scale with reactor size as well. This makes
it difficult to build a sturdy enough device to withstand the physical tear from disruptive
breakdowns. In an experiment reactor, these critical events are manageable as part of
experiments. In a power plant for commercial use these issues must be dealt with.

1.4 Disruptions and runaways

A disruption is a disturbance of plasma stability and confinement due to perturba-
tions. Disruptions appear because of the chaotic nature of ionised gas at very high
temperatures. Modern fusion experiments have computer controlled automatic control
systems that try to stabilise the plasma, using e.g. radio frequency heating to even out
temperature- and pressure profiles, in an attempt to nullify disruptions. But since the
complete physics of the plasma is still not known it is impossible to eliminate them all.
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Figure 1.5: The Chandrasekhar function showing the decrease of the friction force in a
plasma after the friction peak at the thermal energy Eth = mv2th = kB · T . Here the input
is x = v/vth so the peak is at x = 1. Note that the actual friction force in a fusion plasma
will not tend to 0 as x → ∞ like here because of relativistic effects such as synchrotron
radiation.

This creates a need to build a mechanically robust reactor device which can withstand
disruptions and continue sustained operation.

Runaway electrons appear in tokamaks during a so called thermal quench, when the
plasma is rapidly cooled locally due to a heat flow to the first wall. Because of the large
toroidal current, if the plasma is cooled rapidly, the electrical conductivity ρ ∼ 1/T 3/2

changes locally, and the electrons cannot immediately equalise the current. Instead they
experience an electric field, E because of the difference in electric potential. This electric
field acts as a force on electrons (and also ions, but they require a much higher momentum
to accelerate). Since electrons experience ”friction” only from Coulomb collisions they
can be accelerated indefinitely. This is very similar to how stars experience friction in
galaxies, and the same non-monotonic Chandrasekhar function;

G(x) ≡ φ(x)− xφ′(x)

2x2
→


2x

3
√
π
, x→ 0

1

2x2
, x→∞

(1.8)

can be used to describe the relationship (see figure 1.5). φ(x) is the error function

φ(x) =
2√
π

∫ x

0
e−y

2
dy. (1.9)

If the accelerating Lorentz force, Fa = eE is larger than the friction force for long enough,
electrons will accelerate indefinitely, building up momentum p → ∞. While there is a
speed limit for electrons at the speed of light c = 3 · 108 m/s, momentum p = mve is
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unlimited, since the relativistic mass increases as γm0, where m0 is the electron’s rest
mass and γ = 1/

√
1− v2/c2 the relativistic scaling. γ → ∞ as v → c). At this point,

electrons will lose energy to synchrotron radiation, and also actual close collisions with
the bulk (non-relativistic) plasma, effectively limiting their energy.

Runaway electrons carry an extremely high energy and build up a hazardous runaway
current which usually shoots into the first wall, damaging the reactor. This is known as a
major disruption which must be avoided. Keeping the plasma stable to avoid the creation
of the E-field is desirable, but still today a few percent of all shots in every operating
tokamak today ends in a major disruption, and problems are believed to increase with
larger machines like ITER. There are some ideas of how to mitigate the issue. Sending
in a killer pellet, a frozen piece of deuterium which is ejected from a powerful centrifuge
and vaporises inside the plasma, can create a target for the runaways to hit. Another
idea is to puff in gas in attempt to create a local (radially) higher density that could
possibly hinder the path of the runaways. Regardless of the method chosen, there is
large incentives to investigate the process further.

1.5 ARENA

ARENA is the name of the Monte Carlo-code that is used to solve the distribution
function time evolution differential equation (see section 2.2). It is an implementation
of the Monte Carlo operator formulation by Eriksson and Helander [2], [5] where the full
Fokker-Planck equation is reduced to three dimensions in phase space by averaging over
the toroidal symmetry. The code was originally written by Lars-Göran Eriksson in 1998
and then revised throughout 1999-2002 while he was in Cadarache in France.

Development of ARENA has then been mostly dormant until 2010 when the code base
was ported from Fortran 77 to Fortran 90 by Gergely Csépány and incorporated as a part
of the Integrated Tokamak Modelling (ITM) project at European Fusion Development
Agreement EFDA. EFDA is the umbrella organisation of all fusion research laboratories
in Europe [6], and the ITM task force is a subgroup that strives to create a full simulation
environment for ITER, though in principal it could be used to model any fusion device
[7]. The idea of ITM is that the full suite of software should be independent of a
programming language, but rely on a set of common rules for how to format the data
exchanged between the individual models, so called CPO:s (also see section 4.9).

Within ITM, ARENA is overseen by Gergely Pokol and labeled in development.
Some thorough changes were made to improve performance, including linking in pre-
compiled linear algebra routines as well as adding support for swapping random number
generators.

To get good reference data with similar input parameters as the ones I have used for
ARENA, I have visited Cadarache in France to make comparison runs with the finite
difference code LUKE. Using the output of LUKE has been important in deciding on a
good baseline for tests which are described in section 5.2. LUKE is written in MATLAB,
using .mex modules for some time critical calculations. It is a mature code which can
model electrons as well as fuel- and impurity ions by setting the charge and weight
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parameters up accordingly. The code is maintained and developed by Joan Decker and
Yves Peysson. It has a sustained number of current users and supporting staff, and has
been used in publications [8].

1.6 Roadmap

This was an introduction on fusion, plasmas and simulation in general. In section 2, I
will describe the physics of runaway electrons and briefly talk about the various ways
to model electrons in a fusion plasma. Section 3 introduces Monte Carlo techniques
which are used in ARENA. In section 4 I try to bridge the gap between the model and
the actual computer program. There is also some practical information on the software
and a description of the structure and features of the software package. In section 5 I
go through and comment on the program output and some of the discoveries that were
made during the course of this project. I also give examples on experiments that can be
of interest with a code like ARENA.

Finally, I put my thoughts and conclusions in section 6, which is followed by ap-
pended code and some additional explanatory sections. Appendix A contains common
expressions and definitions for reference. Appendix B contains some derivation of e.g.
Langevin equations and C includes comments on and examples of ARENA and the com-
panion MATLAB code.



2
The Physics Model

T
here are some standard approaches to model a fusion plasma that have
been researched over the years. They differ a bit in character and have advan-
tages and disadvantages when it comes to describing the actual physical reality
which is diagnosed in fusion experiments. The naive approach, which is not

possible in practice, or usually not even beneficial to model is the full plasma model,
where each particle, ions and electrons are modelled with position and velocity. Even
without modelling the slow ions, there are a lot of electrons in a fusion plasma. With
number density 2 · 1019 m−3 and plasma volume 100 m3, relevant parameters for JET,
the Joint European Torus, 2 · 1021 particles would have to be modelled with 6 variables,
three spatial and three velocity measures - a staggering number. Good prediction of the
dynamics can still be achieved with a simplified model and stochastic updating which is
in principle the Monte Carlo approach used in ARENA.

In general, there are two main types of approaches to plasma modelling: fluid models
and kinetic models.

The fluid model likens the plasma to a fluid using Navier-Stokes equations with an
addition of Maxwell’s equations to account for the electromagnetic properties of ionised
particles. The simplest of these is called magnetohydrodynamic model, where the plasma
is treated as a single fluid. It can also be useful to treat the electron- and the ion-
population separately, making for a slightly more complex model. The fluid model is
usually accurate when there is enough collisions to keep the plasma velocity distribution
close to a Maxwell-Boltzmann distribution.

The other approach is a kinetic model that centres around a distribution function
f = f(x,v,t), which counts the number of particles with a certain speed (vx,vy,vz) and
position (x,y,z) per unit volume in phase space1 at a time t.

An equation which takes into account long range Coulomb interactions (see section

1when velocities are treated alongside spatial variables one speaks of phase space rather then regular
three-dimensional space, the wording can also imply time

12
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2.1) can be found by solving the Vlasov equation

df

dt
=
∂f

∂t
+ v · ∇f +

e

me
(E + v ×B) · ∂f

∂v
= 0, (2.1)

which is a modification of the Boltzmann equation with the addition of Coulomb inter-
actions [5]. Because of the low density in a fusion plasma, Coulomb collisions is the main
way that the particles sense each others’ presence. A Fokker-Planck equation describes
the time evolution of a stochastic variable by its probability density function. It can
be applied to many stochastic differential equations and is used in financial models [9]
and for many other applications. By treating the high frequency fluctuations of the
electric and magnetic fields as perturbations, the E and B fields of the Vlasov equa-
tion become large scale fields which are macroscopic plasma parameters. The effects of
small scale fluctuations are accounted for by the so called collision operator, which is a
Fokker-Planck operator. So for the purpose of plasma modelling, the Vlasov equation
becomes a Fokker-Planck equation with the effects of small scale fluctuations gathered
in a collision term on the right hand side. Variations of this equation are wide spread
and well established for many applications [9]:

df

dt
= C(f) =

∑
a

Cab(fa, fb). (2.2)

The collision operator C(f) is a sum of collisions between particle species a and b,
including b = a. In ARENA, the Fokker-Planck equation is simplified to one spatial
dimension before being implemented into the model by integrating along the toroidal
shape of the tokamak and using symmetry, so called bounce-averaging [10].

The time evolution of the Fokker-Planck equation can be found in some different
ways, including analytically solving the steady state equation with no time dependence
(see section 2.2), or with finite element numerical methods. The fact that the run-
away electrons continuously accelerate throughout the simulation makes determining a
finite-element grid size and resolution difficult, however. The mean (kinetic) energy of
runaway electrons when secondary generation has been sustained has been shown to be
around 10-20 MeV [11], but there is no guarantee that this will be sufficient for a full
physical simulation. Furthermore, a strong radial variation of the characteristic radial
energy of the runaways complicate the calculation, the solution to which would require
unphysical modifications of the problem, i.e. artificially increasing the braking effect
from Bremsstrahlung [2].

These problems are not present with a Monte Carlo-approach, in which the Fokker-
Planck equation 2.17 is replaced by a discretised Langevin equation that can be formu-
lated as a number of Monte Carlo operators which are evaluated in each time iteration.
Each test particle represents a number of electrons from the continuous distribution and
is updated independently. The distribution function, f can then be reconstructed at any
time from the particle ensemble.

The main disadvantage of this technique is its slow convergence (∼
√
N), with the

number of test particles, N . This is handled in ARENA to some extent through a
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b

Figure 2.1: An electron scattering off a much heavier ion. The deflection angle α depends
on the impact parameter b

weighting scheme giving higher statistical weight to high energy particles, while main-
taining physical conservative quantities. The other, perhaps more modern, approach to
improving simulation time is to write code that runs calculations as parallel processes,
updating the test particles of the population simultaneously. This can be done on e.g.
a cluster of CPUs or a GPU, Graphics Processing Unit. The structure of a Monte Carlo
program, since every test particle is independent, actually lends itself well to this.

2.1 Coulomb collisions

Electrons in a plasma are not significantly deflected under the presence of an ion, or
another electron, but extremely rarely. The probability for a head on collision is very
small. Instead, the cumulative effect of several small angle deflections give rise to a
geometrically large effect in the time spans of interest. Because of this, one speaks of a
Coulomb collision meaning a change in particle velocity (the direction) after a certain
amount of time τ during which the particle has experienced the cumulative effect of
many Coulomb interactions with other particles.

Let us suppose that an electron with charge −e and mass me passes a stationary
ion at distance b with charge +Ze and substantially larger mass. The perpendicular
Coulomb force on electrically charged particles is given by:

FC⊥ =
1

4πε0

Ze2

b2
. (2.3)

The duration that the force acts on the electron is b/v and so the change in perpendicular
velocity is approximately given by:

∆mev⊥ ≈
Ze2

4πε0

1

vb
. (2.4)
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The deflection angle is α ∼ 1/v2 (figure 2.1). For a true collision event α should be close
to 90◦ [3]. Then the collision cross section σ can be estimated as:

σ ≈ πb2 =
πe4

(4πε0mev2)2
, (2.5)

with e.g. Z = 1, the particle is a proton. The collision frequency, for an ion-electron
interaction, becomes:

νei = nσv ≈ nπe4

(4πε0me)2v3
(2.6)

The effect from multiple ion-interactions on an electron can be seen as a diffusion of the
perpendicular momentum. The diffusion constant is found by integrating the individual
changes in momentum squared, multiplied by the rate of collisions in an interval, I =
[b,b+ db] which is nv · (2πbdb):

Dv⊥ =

∫ (
Ze2

4πε0

)2
1

v2b2
nv(2πbdb) =

(
Ze2

4πε0

)2
2πn

v

∫
db

b
(2.7)

Now there is just an integral over 1/b which is multiplied by a factor that is constant
in b. However, the integral diverges at both plus- and minus infinity, which does not
reflect physical reality, so there must be a lower- and upper bound. A reasonable upper
bound is chosen to be the initial momentum of the incoming particle. This is reasonable
since the total momentum should not change. The lower bound should be comparable
to the Debye length, λD =

√
ε0Te/(e2n0) (n0 is the plasma density), outside the reach

of which, no interaction is considered. Setting ∆mev⊥ = mv makes the lower bound:

blower =
Ze2

4πε0

1

mev2
(2.8)

The primitive function of 1/b is a logarithm function which by convention its written as
ln Λ, and evaluated at the lower and upper bounds. The value depends on the kinetic
energy of an incoming particle, v and the ion charge Z, which correspond to plasma
temperature and effective plasma charge for the fusion plasma case. A common value
for a tokamak is ln Λ ∈ [10,20] [12, pg. 4]. In ARENA, this is an input parameter: CNLAM.

2.2 Runaway electrons

If an electric field that is strong enough is applied to a plasma, some electrons will
experience unlimited acceleration in the toroidal direction and run away. This is due
to the fact that the breaking friction force, unlike in a normal fluid or air, does not
increase monotonically with the velocity of the plasma particles. Rather there is a
global maximum value of F (v) = mvνee(v) [5] at the thermal velocity v = vth.

The accelerating electric field is usually created due to a disruption. The origin of the
disruption is usually that turbulence forces part of the plasma outside of the magnetic
confinement region to the edge of the containment vessel where it essentially touches the
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Figure 1: The friction force as a function of electron energy [6]

runaway phenomena can also be described as that the fast electrons have such a
long mean free path that they do not collide enough to slow down while the strong
toroidal electric field accelerates them. This phenomenon is called the primary
or Dreicer generation and these fast electrons are called as runaway electrons
[7]. Runaway electrons are produced in large numbers in disruptions and because
of their high velocity they carry a substantial energy (10–100 MeV per runaway
electron whereas the thermal electrons have an energy of 5-25 keV). Other pri-
mary generation effects are also known, such as hot-tail generation [8], inverse
Compton scattering via energetic g rays, tritium decay [9] and others, but their
importance is low in this paper, since the simulation being discussed does not take
them into account and they are only significant in special scenarios.

The secondary generation is the avalanche effect when a high energy runaway
electron hits a thermal electron and passes enough energy to it to run away, while
the knocking particle still remains above the runaway threshold. The avalanche
generation is orders of magnitude stronger in large tokamaks, the gain is g ⇡
exp(2.5 · Ipl), where Ipl is the plasma current in MAs, which gives g ⇡ 104 for
JET (Ipl = 4 MA) and g ⇡ 1016 for ITER (Ipl = 15 MA) [4, 10]. Avalanche
generation can only happen if there are runaway electrons, which are produced by
the Dreicer or other primary generation mechanism.

1.2 Physical model of ARENA
ARENA was a breakthrough code in combining a significant number of effects in
one program and was famous for the self-consistent modeling of the electric field
induced by the runaway current [11, 12].

The physics model behind the code is derived from the six-dimensional kinetic
equation simplified to a three-dimensional Fokker-Planck by bounce-averaging,

4

Figure 2.2: The friction force on individual electrons as a function of their kinetic energy.
A faster moving electron will experience less friction, and if the acceleration due to an added
electric field is high enough, part of the population will become runaway electrons. Ec is
the critical field, below which, no runaways are created. ED is the Dreicer field for which
all electrons will run away. The maximum of the curve is at vth =

√
2Te/me. Image taken

from [13].

inner wall and picks up impurities. This could be carbon, or something else that the wall
is made of, which when it enters the plasma is excited and radiates heat when the excited
electrons fall back through the electron shells. This changes the plasma resistivity, ρ,
locally and an electric field, E is induced according to Ohms law;

E = ρj. (2.9)

This field accelerates the electrons. Ions are also accelerated but experience a higher
friction force which scales with the radius of the elementary particle squared.

The threshold for when electrons experience unbounded acceleration can be derived
analytically and is called the critical electric field limit, Ec. When the induced electric
field from a temperature change is lower than Ec, electrons will experience enough friction
to keep their thermal velocity.

At the Dreicer field limit ED(> Ec), all electrons will run away [5].

2.2.1 Primary generation

The friction force F (ve) depends linearly on the Coulomb collision frequency νee(ve).
The velocity and the forces are vectors in space, but the magnetic cage keeps electrons
well confined radially along the B-field. In the toroidal direction, however, friction is the
only retarding force, so we will consider scalar equations, velectrons = v|| velocity parallel
to the magnetic field.
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The braking ”friction” force is given by a complex equation that goes approximately
like the Chandrasekhar function (equation 1.8) with an added local minimum at the crit-
ical momentum pc due to relativistic effects such as synchrotron radiation. Synchrotron
radiation is broad band electromagnetic waves radiated by particles moving close to the
speed of light in a magnetic field to preserve momentum. A qualitative picture is plotted
in figure 2.2. For electrons moving faster than the friction curve maximum at v = vth,
the friction force Ff (ve) = meveνe(ve) ∼ νe(v) the collision frequency, decreases like [5]:

Ff (v) = mevνee ≈ mev
nee

4 ln Λ

4πε20m
2
ev

3
∼ 1

v2
(2.10)

For the thermal velocity, baking in Boltzmann’s constant in the temperature T and
neglecting constants which change the equation by less than an order of magnitude,
mev

2
th = T , and so the Dreicer field under which all electrons in the population run away

can be written:

ED =
nee

3 ln Λ

4πε20Te
(2.11)

This is usually called the Dreicer field, crediting Dreicer for the discovery of this primary
generation mechanism. Here, ne is the number density, the number of electrons per unit
volume, e the elementary charge, ln Λ the Coulomb Logarithm, Te the bulk electron
temperature and ε0 the electric permittivity of free space. This formulation also allows
for a possible approximation of the critical field, by replacing Te → mec

2 the electron
rest mass:

Ec =
nee

3 ln Λ

4πε20mec2
=
TeED
mec2

, (2.12)

with ED the Dreicer field, me the electron mass and c the speed of light. When an
electron is accelerated by an outer electric field E, the equation of motion for that one
electron becomes:

me
dve
dt

= eE −meνe(ve)ve, (2.13)

which can be rewritten using 2.10 to get an expression for the critical velocity :

me
dve
dt

= eE

(
1− venee

4 ln Λ

4πε20me(eE)

1

v3
e

)
= eE

(
1− v2

c

ve

)
(2.14)

v2
c ≡

nee
3 ln Λ

4πε20meE
(2.15)

a condition for when the net force will be strictly positive. In the limit where vc → vth,
mean speed of the bulk of the electrons, we have the Dreicer field.

At a lower field strength, only some of the electrons will meet the runaway condition
and if the field is so small that that eE < mevcνe(vc), there will be no runaway generation
at all.

In a normal tokamak plasma, the electric field is much lower than the Dreicer field,
but during a disruption, it can become many times the critical field, which will slowly
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allow some electrons to become runaways. The primary runaway generation rate γ
can be derived by making a quasi-steady state assumption, and deriving an analytical
solution valid in some parameter regions. Or alternatively, by making a simulation,
assuming that the bulk of the electrons are Maxwell-distributed with a small number
of electrons energetic enough to create a runaway tail that extends further from the
Maxwell equilibrium with time.

The mathematical problem becomes to solve the steady-state kinetic equation:

− eE

me

∂f

∂v
= C(f), (2.16)

which is the Vlasov equation 2.1 with zero velocity and no time dependence. C(f)
is the Fokker-Planck collision operator for fast electrons colliding with a Maxwellian
distribution of ions and electrons.

The Fokker-Planck equation becomes:

−
eE‖

me

(
∂f

∂v
+

1− ξ2

v

∂f

∂ξ

)
= νeev

3
Te

[
1 + Z

2v3

∂

∂ξ
(1− ξ2)

∂f

∂ξ
+

1

v2

∂

∂v

(
f +

Te
mev

∂f

∂v

)]
(2.17)

where ξ = v||/v = cos θ is the cosine of the pitch angle and Z the effective ion charge2.
Analytically calculating the flux of particles to infinity in velocity space is a non-

trivial calculation that has been carried out with some trouble in a classic series of
papers, arriving at the following growth rate, called the Kruskal-Bernstein rate [5]:

γD =
dnr
dt

= kneνee

(
E

ED

)−3(1+Zeff )/16

exp

(
−ED

4E
−
√
ED(1 + Zeff )

E

)
(2.18)

where k is a scaling factor of order unity and E is expressed as a fraction of the Dreicer
field, ED = ED(T ), Zeff is the effective charge of the plasma, a measure of the amount of
impurities present. The Kruskal-Bernstein runaway rate has been confirmed numerically
by Kulsrud [1] and in the rest of this thesis I will refer to this as the Kruskal-Bernstein-
or Kulsrud rate interchangeably.

2.2.2 Secondary generation

Experiments by Sokolov in 1979 and later experiments and measurements in the 80’s
and 90’s suggested that Dreicer generation cannot alone be responsible for the measured
high runaway generation rate at small electric field strengths.

In conventional primary generation, electrons diffuse into the high energy-runaway
tail, v/vTe & E at the rate γD = n′r(t). This is exponentially small in E, so primary
generation is negligible unless E & 0.03 [5]. The fundamental reason that particles have
a diffusive motion is that collisions resulting in small changes to the particles velocities
play a dominant role in the Fokker-Planck collision operator. In reality close collisions
do occur but at very small rates and they are nearly always unimportant for plasmas

2also see appendix A for an explanation of the normalised parameters
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(a) Primary generation (b) Avalanche ← close collisions

Figure 2.3: A schematic of the two types of runaway electron generation. To the left,
primary generation through a net accelerating electromagnetic force eE is show. To the
right is secondary generation by close collision. A fast (runaway) electron kicks a thermal
electron into the high energy spectrum.

with ln Λ � 1. This changes when a large enough part of the population is made up
of runaway electrons. The runaway electrons can kick a thermal electron above the
runaway velocity threshold while still retaining enough energy themselves to not slow
down, figure 2.3. This process leads to an exponential growth of the runaway population,
provided that there is a seed population of fast runaways. The necessity to have a seed
population leads to this mechanism being known as secondary generation and the rapid
growth of the runaway population has made secondary generation known as a runaway
avalanche.

Starting with the orbit-averaged relativistic version of the Fokker-Planck equation:

−
eE‖ξ

mec

(
∂f

∂p
− 2λ

p

∂f

∂λ

)
= C(f) + S, (2.19)

with p = γv/c = v/
√
c2 − v2: the normalised relativistic momentum and λ = (1− ξ)/B,

B = |B|. The relativistic collision operator becomes:

C(f) =
1

τcp2

[
∂

∂p
(1 + p2)f +

1 + Z

2

√
1 + p−2

∂

∂ξ
(1− ξ2)

∂f

∂ξ

]
, (2.20)

where τc = (c/vTe)
3 · τth is the collision time of the relativistic electrons. νee = 1/τth is

the thermal collision frequency which scales with the respective velocities. S a source of
secondary generation runaways, which is proportional to the density of existing runaways,
the seed, nr and the frequency of close collisions νee · ln Λ). is given explicitly in Ref. [5].

A mathematical treatment was made by Rosenbluth and Putvinski [11]. They start
with the bounce-averaged Fokker Planck equation and find analytical solutions in differ-
ent simplifying limits and then interpolate the solutions together to form a full expres-
sion, with some conditions (E = |E‖|/Ec � 1, Zeff = 1, r/R → 0). The full analytical
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Figure 1. Conventional (4) and avalanche (8) runaway generation rates versus electric field strength.
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2 = 0.01.

was solved. Here, the velocity-space coordinates are the normalized relativistic momentum
p = γ v/c = v/

√
c2 − v2 and magnetic moment variable λ = (1−ξ 2)/B, with B the magnetic

field strength. The relativistic Fokker–Planck collision operator,

C(f ) = 1
τp2

[
∂

∂p

(
1 + p2) f +

1 + Z

2

√
1 + p−2 ∂

∂ξ

(
1 − ξ 2) ∂f

∂ξ

]
, (7)

includes pitch-angle scattering and slowing-down, but not energy diffusion, which would give
rise to conventional generation. The collision time for relativistic electrons is denoted by
τ = (c/vTe)

3ν̂−1
ee . In equation (6) S is a source term of fast electrons produced by close

collisions between existing runaways and slow electrons, and is given explicitly in [12,13]. As
it should, this source is proportional to the density of existing runaways nr and to the frequency
of hard collisions 1/(τ ln ') rather than the usual Fokker–Planck collision frequency 1/τ .
Rosenbluth and Putvinski [12] solved the orbit-average of equation (6) analytically in several
limits and constructed an interpolation formula for the runaway production rate

dnr

dt
# (E − 1)nr

τ ln '

√
πϕ

3(Zeff + 5)

(
1 − 1

E
+

4π(Zeff + 1)2

3ϕ(Zeff + 5)(E2 + 4/ϕ2 − 1)

)−1/2

, (8)

whose correctness they confirmed numerically. Here E = |E‖|/Ec is the normalized electric
field, and ϕ = 1 − 1.46(r/R)1/2 + 1.72r/R describes the effect of finite aspect ratio R/r .
A much simpler, but more approximate, expression for the growth rate is obtained in the limit
E % 1, Zeff = 1, r/R → 0, where

dnr

dt
#

√
π

2
(E − 1)nr

3τ ln '
. (9)

The relative importance of conventional and avalanche generation of runaways depends
on the number of existing runaways, nr, in the plasma. However, as long as E > 1 and nr > 0,
avalanching tends to dominate at sufficiently weak electric field since conventional generation
is exponentially small in the parameter E, see figure 1. Note that the avalanche growth rate is
very nearly proportional to E − 1.

3.2. Tokamak experiments

The first experimental identification of runaway avalanches was made on TEXTOR [14] in
low-density discharges, where the Ohmic electric field exceeded the threshold (5). Following

Figure 2.4: Primary runaway generation compared to avalanching. The vertical axis is
generation rate n′r(t) and the horizontal axis is normalised electric field strength Ec/ED =
Te/mec

2. Image from [5].

expression of secondary generation:

γ =
dnr
dt

=
(E − 1)nr
τ ln Λ

√
πφ

3(Zeff + 5)

(
1− 1

E
+

4π(Zeff + 1)2

3φ(Zeff + 5)(E2 + 4/φ2 − 1)

)(−1/2)

,

(2.21)

φ(ε) =
3

4

∫
2π · λdλ∮ √
1− λb(θ)dθ

≈ (1 + 1.46
√
ε+ 1.72ε)−1, ε� 1, (2.22)

ε = r/R and E = |E|||/Ec is the electric field normalised to the critical electric field.
In the limit where E � 1, Zeff = 1 and when ε → 0 a further simplification can be
obtained:

dnr
dr
'
√
π

2

(E − 1)nr
3τ ln Λ

. (2.23)

This was shown to be within 20% of the value from simulation done in the same paper.
Which of the primary and secondary generation is the most significant varies during a
disruption, but it is clear that secondary generation becomes dominant once there is a
large enough seed of runaway electrons. Avalanching tends to dominate for quite small
fields, since primary generation is exponentially small in E, while secondary generation
goes like E − 1, see figure 2.4.

The fusion community has gradually realised that this secondary type of generation
probably occurs in a large range of tokamaks. Indeed, it seems to be the dominant source
of runaways once the seed has been created. It is also a motivation for ARENA which,
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being a Monte Carlo code, has a good outlook to make simulations with high energy
runaways.

2.3 Numerical methods

To express the full dynamics of runaway electrons in a plasma, the time evolution of
the Fokker Planck equation must be modelled numerically. This will more accurately
simulate the runaway process outside of the limits used in analytical derivations, which
is important to be able to make predictions. A numerical model also allows for sim-
ulating mitigation techniques such as killer pellet injection. The next chapter will go
into explaining Monte Carlo techniques, which the numerics in ARENA is based on, the
benefits when solving problems with large dimensionality and the relevance for ARENA.



3
Numerical Methods

A
RENA is based on a Monte Carlo technique to numerically iterate the
solution of the Fokker-Planck equation. The term Monte Carlo is a very gen-
eral description for any calculation which is not completely deterministic. The
idea is that the problem at hand approximately follows some simple function,

perhaps of a lower dimensionality than the starting problem, with a deviation that is, in
most cases, assumed to be from a Gaussian probability distribution. By iterating through
the (simple) model function with some stochastic deviating component, the solution to
a complex problem, like the electron distribution in a plasma during a disruption, can
be modelled in a reasonable time on a computer.

Below is a simple example of the idea behind the Monte Carlo method being used for
numerical integration, and also a description of the Metropolis algorithm, which is a well
established way of making numerical calculations on problems with high dimensionality.
ARENA is based on an algorithm of this kind.

3.1 The Monte Carlo method

A Monte Carlo method is a powerful way to do computationally intensive calculations
with the help of statistical averaging. In this descriptive example, imagine that you would
like to numerically calculate an integral which for simplicity is one-dimensional (1D). As
opposed to a numerical method like trapezoid integration, the Monte Carlo approach is
completely insensitive to the dimensionality of the problem. That is, the error does not
scale with the problem’s dimension. So if the integral was n-dimensional, the error would
decrease in the same way with the number of iterations for any dimensionality n > 1. If
the integral of some function f(x) is to be evaluated on the interval [0,1], the integral is

22
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taken as the mean value of some randomly chosen points xi on the interval [14]

IN =
1

N

N∑
i=1

f(xi). (3.1)

With f(xi) = fi, the error can be estimated, assuming the mean, µ ≡ E[fi] and variance
σ2 ≡ V ar[fi] = E[f2

i ] − µ2 exist. Then the sum IN is also a stochastic variable with
mean and variance:

E[IN ] = E[
1

N

N∑
i=1

fi] =
1

N

N∑
i=1

E[fi] = µ, (3.2)

V ar[IN ] = V ar[
1

N

N∑
i=1

fi] =
1

N2

N∑
i=1

V ar[fi] =
σ2

N
. (3.3)

Now, the central limit theorem states that the probability distribution for the stochastic
variable IN will tend to a normal- distribution as N → ∞, i.e. IN ∼ Norm(µ, σ2/N)
for large N . So the Monte Carlo integral takes on the form:

IN = 〈f〉 ± 1√
N

√
〈f2〉 − 〈f〉2, (3.4)

with plus or minus the error that is 1 standard deviation, which is the square root of the
variance.

There are two ways to lower the error: choosing a higher number of random points,
that is, increasing N , or by lowering the variance. This can be done by making a
weighted selection of points. Instead of choosing random points uniformly, they are
chosen according to some probability distribution that is similar to the function that is
being integrated. For example, consider integrating the 1D quadratic function

I =

∫ 1

0
x(1− x)dx. (3.5)

Then the weight function

P (x) =
π

2
sinx · π (3.6)

can be used to sample the parameter space, here just the line, and one then solves for:

IN =

∫ 1

0

x(1− x)

P (x)
P (x)dx. (3.7)

The weight function should have the same properties as the function of interest. Here,
for instance, P (x) has a similar curvature and the same maximum value as f(x).

An example in two dimensions is a circle, where the area can be integrated from
random points chosen on the surface r ∈ [−r,r]× [−r,r], where r is the circle radius.
simple example is to calculate the area of a circle by integration. The circle area is then
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Figure 3.1: The ratio between the surface of the circle and the surface of the square is π/4.

the fraction of random scattered points (test particles) that happen to appear inside the
circle times the square area: 4r2, see figure 3.1).

Ac =
pinside
ptot

· (2r)2 (3.8)

One of the main disadvantages with a Monte Carlo method in the context of ARENA
is its slow convergence (∼

√
N) compared to finite difference/finite element methods.

3.1.1 Metropolis, Markov chains and selection

In the Metropolis algorithm, the test points are selected in sequence where each new
point depends only on the previous one in a so called Markov chain. The next point in
the sequence is accepted depending on a fitting function with some probability. The fact
that the actual fitness function value (or energy state of some particle configuration) can
be hard to calculate is worked around in some sense by this algorithm, since only the
fraction of two subsequent states is considered. This cancels out constant terms in the
energy expression.

The Metropolis algorithm and its variations are examples of classical optimisation
techniques which are applicable for non-smooth problems and high dimensionality. It
can be distinguished from some similar approaches to a general optimisation problem,
like evolutionary algorithms or neural networks. If a test-function can be easily obtained,
and the fitness can be duly calculated, this is a good approach. It does however, have
limitations when it comes to the speed of convergence. Already in ARENA this is
present, where results tend to improve drastically with a higher number of test particles.
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As a simple example, consider the same integration problem as the one in equation
3.5, and using the weight function P (x) as a fitness function, the trial for each new test
point is whether

T (xk+1) =


P (xk+1)
P (xk) > 1,Always keep xk+1

P (xk+1)
P (xk) < 1,Keep xk+1 with some probability

(3.9)

Now, choose an arbitrary starting point, in principal this could be anywhere on the line,
and run the algorithm until a set of points xi are obtained. This is the Markov chain,
and the mean of the set of values fi = f(xi) will be the approximation for the integral
according to equation 3.4.

The test points do not have to be points in space, which are averaged over to calculate
an integral. One example is for describing an energy state of a helium atom, where the
Hamilton equation needs to be solved for some wave equation in space and time. Another
is variations of the Ising model for modelling a lattice of dipoles, where there is no simple
analytic solution (see e.g. [15]).

3.2 Monte Carlo in ARENA

In ARENA, particles count as runaways once they pass a specified threshold in the
momentum variable pc. When that happens, particles are kept at constant count by
using a stochastic normalisation technique. The particle parameters also have a random
component where the time updates of the model parameters (i.e. momentum ṗ) are
governed by Monte Carlo operators. These are explained in depth in the next section,
see specifically section 4.3. The fact that particle count is preserved, but the energies
of individual particles are uncorrelated, enables the Monte Carlo model to handle a
large span of energies, keeping the momentum variables p that can grow to infinity,
unbounded. A finite element method has troubles with a large parameter space, since
either the resolution becomes very low with large bins for the energy levels, or the number
of bins becomes very large which impacts performance. For the application of runaway
electrons, this is most important for secondary generation which directly depends on
the distribution of the runaway tail which can only be modelled to a maximum value
pmax in a finite element code. The finite element model can have a very much faster
convergence time tconv �

√
N . So, to model the distribution function for low energies,

i.e. for primary generation is really fast. This type of solution is employed in LUKE
[16].

In ARENA, the electrons in the fusion plasma are described by a smaller number
of modelled Monte Carlo particles (scaled up with the number density ne), and the
Fokker-Planck differential equation is solved by iterating the corresponding Monte Carlo
operators in time. The rigorous formulation is described in the next chapter.



4
ARENA Code

A
RENA is written in the Fortran programming language. It employs
a series of program blocks and an input-output system of text files. Since the
code has been in development throughout my thesis work, I will try to refer to
code outputs with a revision number to clarify what code has been used. The

prospect of making a parallel calculation code on a computer cluster or a graphics chip
has also been discussed and is included in section 4.10. I have been working closely with
Gergely Csépány and Gergely Papp with this, and they will be mentioned in the section
below.

To simulate the time evolution of the runaway generation from a disruption is in
principal a question of solving the Fokker-Planck equation of motion for the particles
of interest; the electrons. There are various approaches to this, some of which were
described in the section of general modelling (chapter 2), with advantages and disadvan-
tages to each approach.

The Monte Carlo model describes the continuous distribution function evolution with
a set of test particles which represent the population of electrons in the ensemble. They
can be categorised as either thermal- or runaway-electrons and have three phase space
variables (p,λ,r), describing their properties in phase space. There is also an additional
parameter σ ∈ [−1,1] which indicated the toroidal direction of the test particle. Recall
that the random velocity of a particle in the toroidal direction will determine its travel
direction, so ions and electrons will travel around the torus both ways. (if a particle is
trapped in a banana orbit σ = 0 since the particle adds to the current in both directions).

In each iteration the test particles are updated with a set of Monte Carlo operators
giving the phase space variables a random kick with an appropriate magnitude ∆I, I =
(p,ε,λ). The distribution function can then be recreated from the set of test particles.

Monte Carlo techniques have proven to be powerful when approaching multidimen-
sional diffusion problems. The benefits are e.g. that the main part of the computer
program is not too complex, and there are no particular problems with boundary con-
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ditions.
The electric field is calculated self-consistently, which is important, since the runaway

current will affect the field strength and profile during the time of the disruption. The loss
of energy due to synchrotron radiation will enter into the calculation once the runaways
are starting to reach the speed of light.

4.1 ARENA versions

In 2011, ARENA was updated from Fortran 77 to the newer Fortran 90 programming
language. This has several benefits; The old code was slow - making it very clear that
convergence time scales with

√
n. In the new code, precompiled libraries and smarter

reuse of code in combination with modern compilers and benchmarking tools has created
a completely different situation from a software development point of view. The two code
versions are referred to throughout this paper as ARENA 90 and the old ARENA.

The update was made in part by automatic conversion of the code, and in part by
manually going through the functions. The differences in the two versions have been
documented in several unpublished reports during the course of this spring (2012) which
are available from the SVN repository at ITM for reference. There has been a number
of additions to the original Fortran 77 code, such as an added quick testing framework
to be used in development as well as bug fixes and optimisations. The code is currently
checked into version control in ITMs Gforge, available to project collaborators.

It is important to understand the state that ARENA was in when we started working
with it. Lacking heavily in documentation and full of logical abbreviations, as well as
inconsistent algorithms compared to the published results [2], a significant portion of
the work on this code has been reverse-engineering and documentation work. I will
spend some time in this section describing the design choices of some calculations, as
well as some discoveries of code function that was made during the work. More detail on
ARENA and the iterative work on the code can be found in section C, documentation
in Gforge and relevant reports.

4.2 Code overview

The core program of ARENA is simple in principal, the input values are chosen appro-
priately and the program is then iterated for the desired amount of time, dt · ntimestep
with a set time step length and the desired number of test particles. A schematic picture
of the program structure can be seen in figure 4.1. The modelled variables that make up
phase space can be chosen somewhat arbitrarily. According to the general theory [17, p.
8], any invariants of motion are possible choices. The choice made in ARENA is inverse
aspect ratio, ε which indicates the radial position, normalised momentum p = mγv/(mc),
the particle’s energy and perpendicular momentum λ (see appendix A). The parameter
λ is defined to indicate whether a particles is running freely around the torus (passing:
λ < 1) or trapped (λ > 1) in a banana orbit. Finally, an electron’s direction is indicated
by σ = ±1 (or σ = 0 for trapped particles) this is assigned randomly and does not
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change over the course of the simulation. σ enters into the time derivative update of the
E-field’s influence on the electrons and is also important for recreating the distribution
function. The main program loop is in a file called arena.f90. The main program loop
calls the following subroutines in sequence:

1 call read_input
2 call initial_output
3 call initek
4 call init
5 ! outputs
6 call print_global_parameters
7 call initial_output
8 call momenta_output
9 if do quicktest

10 open raw_output.txt
11 end do
12 ! main loop
13 call write(p, eps, lam)
14 call momenta_output
15 control ! <− set sub−timestep and set flag
16 do 1, nparticles
17 call mccalc ! <− update MC values
18 call source ! <− create secondary particles
19 call diagn ! <− updates the runaway current, create output vars
20 ! call efind ! <− calculate parallel E−field for next time step
21 ! call updtpar ! <− update background parameters
22 ! call adjvel ! <− adjust velocity distribution to fit new params
23 end do
24 call momenta_output
25 call final_output
26 print_output
27 calculate runtime

The first routines read in input parameters and calculate static values that are
used throughout the simulation, this is read_input, initial_output, initek and init

with subroutines. momenta_output writes every test particle parameter value to a text
file for analysis outside of ARENA. This is always done at the end of the simulation,
but output can be created at time intervals by setting the plot_interval property in
arena_input.xml. In control, the program orders the test particles and assigns cal-
culation flags so that the appropriate update action is taken for runaway- and thermal
electrons respectively. mccalc applies the collision operator, the energy gain from the
E-field and the energy loss to synchrotron radiation. The source-subroutine has to do
with adding new runaway electrons from close collisions and sortmc does a sorting and
re-weighting of test particles.

Note that the efind, updpar() and adjvel() subroutines for running the self-
consistent electric field calculation were commented out with the Fortran ! comment
symbol. These routines serve the secondary generation which is still disabled in ARENA
90. final_output outputs the final results to text. The mcop subroutine is the most
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Figure 4.1: An overview of the execution order of ARENA and the output files.
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involved subroutine where the particle parameters are updated. A shortened version of
the execution order can be found in the code snippet below.

1 subroutine mccalc
2 call mcop ! get p_dot and A_p lam_dot, A_lam with collision op.
3 call mcspnb ! update eps (NOT IN FINAL CODE: deps = 0)
4 ! apply corrective drift terms at boundaries
5 lmax = 1.0 / (1.0−2.0*eps)
6 if (abs(lam−lmax) .lt. 1.0e−3) zalam = 0.0
7 call find_dtmin() ! find small enough timestep
8

9 ! update phase space variables (p, lam, eps)
10 dp = p_dot * dt + A_p * r_p * sqrt(dt)
11 p = zp + zdp
12 deps = eps_dot * dt + r_e * A_eps * sqrt(dt)
13 eps = eps + deps
14 dlam = lam_dot * dt + r_l * A_lam * sqrt(dt)
15 lam = lam + dlam
16

17 call currch ! update the runaway current
18 time = time + dt * tconv
19 end subroutine

4.3 Monte Carlo operators

The Monte Carlo operators are used in ARENA to update each term in the Fokker-Planck
equation iteratively [2]. The Fokker-Planck equation can be written down schematically
with the different terms affecting the time derivative of the test particle distribution in
the right hand side:

∂f

∂t
= 〈LE(f)〉+ 〈C(f)〉+ 〈Lsynch〉+ 〈Ls.t.(f)〉+ 〈S〉+ 〈lB〉. (4.1)

The terms in angled brackets are orbit-averages - they all share the common form:

〈Θ〉 =

∮
(Θ) dθ

2π
√

1−λb(θ)∮
dθ

2π
√

1−λb(θ)

(4.2)

These terms describe the modelled plasma properties: LE is a term to account for the
accelerating E-field, C is the collision operator that accounts for Coulomb collisions,
Lsynch The loss of energy to synchrotron radiation, Ls.t. is radial transport of particles
due to diffusion. S is a source of runaway electrons from secondary generation and lB a
loss term that balances the source term in order to keep the particle count constant.

The most involved term is the collision operator. It is described in the next section.
The others describe change in p and λ from radial transport through bremsstrahlung,
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synchrotron radiation and the impact of the outer electric field respectively. The full
update of the momentum p looks like:

p(k, ti + 1) = p(k, ti) + dt · ṗ(k, ti) + r ·Ap
√
dt (4.3)

where dt is a user input which is sometimes recalculated from the sub-time step dts (see
section 4.7.2, and r is a random uniform number with unit variance and mean zero. The
ṗ term is made up of three sub-terms:{

ṗ = ṗcoll + ṗE + ṗsynch

λ̇ = λ̇coll + λ̇E + λ̇synch
(4.4)

Here, 
ṗE =

σ

ζ1
· E
Ec

λ̇E = −2λσ

p
· E
Ec

(4.5)

with ζ1 the elliptic integral, σ the travel direction of the particle, and E/Ec the input
momentum normalised to the critical momentum.

ṗsynch = −p2
√

1 + 1/p2

[
λ+

( mec

eRB

)2
p2(1− λ)4

]
· 3.3 · 10−4B

2

Ec

λ̇synch = −2
ζ2

ζ1

ṗsynch
p(1 + p2)

(4.6)

with B, the magnetic field strength, me electron mass, e elementary charge, R the major
radius, c the speed of light and p the normalised momentum.

These equations are executed in the main loop (see figure 4.1).
The Monte Carlo operators are updated in the mccalc()-function which contains

some routines for setting a small enough time step as well as corrective drift-terms, as
well as the mcop() function which updates the program parameters (p,λ,ε). The code
has been edited for brevity, but the full formulation is available in the code at ITM.

1 subroutine mcop (peps, pp, plam, ...)
2 zltest = 1.0 + 0.2 * peps / (1.0−2.0*peps)
3

4 if (plam .gt. 0.98 .and. plam .lt. zltest) then
5 zlam = 0.98
6 call ifunc (peps, zlam, zi1, zi2) ! creates the elliptic integrals
7 call mccoll (peps, pp, zlam, zi1, zi2, zpdc1, zapc1, zldc1, ...

zalc1) ! gets
8

9 !... reiterations for numerical purposes
10

11 call ifunc (peps, plam, zi1, zi2) ! recalculate elliptic ...
integrals with new point values.



4.4. Collision operator 32

12 call mcelec (peps, pp, plam, ksig, zi1, zpdel, zldel, zpdeln, ...
zldeln)

13 call mcspat (peps, pp, plam, ksig, zi1, zi2, zepsd, zaeps)
14 call mcrad (peps, pp, plam, ksig, zi1, zi2, zpdrad, zldrad)
15 else
16 call ifunc (peps, plam, zi1, zi2)
17 call mccoll (peps, pp, plam, zi1, zi2, zpdc1, zapc1, ...

zldc1, zalc1)
18

19 call mcelec (peps, pp, plam, ksig, zi1, zpdel, zldel, zpdeln, ...
zldeln)

20 call mcspat (peps, pp, plam, ksig, zi1, zi2, zepsd, zaeps)
21 call mcrad (peps, pp, plam, ksig, zi1, zi2, zpdrad, zldrad)
22 end if
23

24 ppdot = zpdc1 + zpdel + zpdrad ! this outputs p_dot
25 pldot = zldc1 + zldel + zldrad ! this outputs lambda_dot
26 pap = zapc1
27 palam = zalc1
28 pedot = zepsd
29 pae = zaeps
30 ppdote = zpdel
31 pldote = zldel
32

33 return
34 end subroutine mcop

4.4 Collision operator

The collision operator which describes collisions between particles updates mainly the
particle momentum p → p + ṗdt, but also the pitch angle variable λ. The collision
operator in ARENA is a two-part expression. One part is valid for high energy particles
and one for low-energy ones. They are then splined together using a logistic function
which is plotted in the appendix (C). The low energy part of the collision operator
depends on the Chandrasekhar function, which the high energy expression does not.
The high energy expression is:

ṗHE = −pνp(p) + β

[
2νp(p)

p
+ ν ′p(p)

]√
1 + p2 +

pνp(p)√
1 + p2

+
νp(p)

√
1 + p2

(p+ 1) ln Λ
, (4.7)

Appcoll = 2νp(p)β
√

1 + p2, (4.8)

with

νD(p) = 2

√
1 + p2

p3

[
1 + Zeff − β

1 + 2p2

p2(1 + p2)

] [
1 + ln p+ 1

ln Λ

]
,

νp(p) =
1 + p2

τp3

[
1 + ln p+ 1

ln Λ

]
p4

p4 + (0.4pth)4
,

(4.9)



4.4. Collision operator 33

where β = Te/(m0c
2). ζ1 and ζ2 are full elliptic integrals over the poloidal angle θ. The

expressions used in the code are a generalised version of the expressions for the collision
Monte Carlo operators in [2]. It can be shown that this agrees with the published theory
in the relevant limit β � 1. The low energy expression is

ṗLE = pthνp(p)

[
1.1248 · e−x2

x
−G(x)(2 + 1/x)

]
, (4.10)

Appcoll = 2νp(p)p
2
th(1 + p2), (4.11)

with x = v/vth, vth the thermal velocity (corresponding to pth) and G(x) the Chan-
drasekhar function. The updates for the λ parameter is the same across all energy
levels.

λ̇coll = 2νD(p)

(
ζ2

ζ1
− λ

2

)
, (4.12)

Aλλcoll = 2νD(p)λ
ζ2

ζ1
. (4.13)

The elliptic integrals take on the approximate expressions in the limit ε = r/R� 1:

ζ1 =

∮
dθ

2π
√

1− λb(θ)
≈


2K(1/κ)

π
√

1− λ+ 2ελ
, trapped particles

2K(κ)

π
√

2ελ
, passing particles

(4.14)

ζ2 =

∮ √
1− λb(θ)dθ

2π
≈


2
√

1− λ+ 2ελ

π
E(1/κ), trapped particles

2
√

2ελ

π
(E(κ)− (1− κ)K(κ)), passing particles

(4.15)

Whether the particle is passing or trapped in a banana orbit is determined by the
trapping parameter κ which is related to λ = p2

⊥/p
2b(θ) as:

κ =
1− λ+ 2ελ

2ελ
. (4.16)

Here, bnorm(θ) is the normalised B-field on the poloidal angle θ.
In ARENA, the elliptic integrals are reused depending on the particles radial position

ε = r/R, however the values depend only on geometry, so the calculation can be made
outside of the loop over particles to save time. The logistic function in the collision oper-
ator returns a real valued number ∈ (0,1) and is used to spline together two components
pHE for high energies and pLE for low energies, of the collision operator

ṗcoll = logis(p) · ṗLE(p) + (1− logis(p)) · ṗHE(p) (4.17)

In the original ARENA code, the output value was cast to a logical which is either
exactly 0 or 1. The ARENA90 version has been patched up to perform a correct splining
of the two operators.
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Figure 4.2: The initial distribution of momenta for the test particles ARENA 90. In
the right hand side figure is the distribution of pitch angle variables λ = p2⊥/(p

2b(θ)), b(θ)
normalised magnetic field strength and θ the poloidal angle. The vertical line shows which
particles (λ > 1) are trapped in banana orbits.

4.5 Initial distribution

ARENA evolves the kinetic equation in time starting with an initial phase space distri-
bution ft=0(ε,p,λ). The collision operator is discussed in detail in section 4.4, while the
other calculations of interest are described here. The initial distribution for ARENA is
hard coded to be a Maxwellian population of thermal electrons. This is done with some
stochasticity via a series of loops which are documented in the manual checked into the
code repository.

A typical initial distribution from ARENA can be seen in figure 4.2. To the left
is the distribution of momenta p and to the right, the distribution of the pitch angle
variable λ. Not plotted is the inverse aspect ratio distribution ε = r/R, which is simply
a uniform distribution of particles along the simulation radius r ∈ [rmin,rmax]. The
starting distribution is generated in quite a complicated manner and should probably be
replaced by a more flexible input handler that could use different starting distributions.
The initial distribution is Maxwell distributed around the input temperature, here T =
1.0 keV. It can be written as

fMaxw = C · e
−
√

1+p2−1

p2
th

·p2

. (4.18)

Fitting the parameters C and p2
th, one obtains: C = 11000, p2

th = 0.0015 for the initial
distribution in figure 4.2. This distribution is the local energy minimum and should be
maintained when there are no runaway electrons or an electric field, which is the Maxwell
test.
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Figure 4.3: This is an example of the Maxwell test output. This image was generated
with the Python supporting software which does curve fitting and outputs the graphics.

4.6 Benchmarks

There are three basic tests that we want to be able to run to confirm the validity of the
code. These were run by Eriksson and Helander [2] and are basic sanity tests that verify
the physical relevance of the computer program.

The Maxwell test validates whether the particle velocity distribution will tend to-
wards a Maxwellian (Gaussian) distribution when there is no outer E-field, that is when
the outer electric field (E_applied_norm2cr) E/Ec = 0 which would be the case during
normal operation with no thermal quench.

An example of the histogram output of particle momenta can be seen in figure 4.3.
The Maxwell distribution function can be written according to equation 4.18, and fitting
the bar-chart to the Maxwellian will yield the fitting parameters C and p2

th.
The Dreicer test verifies whether the growth rate of runaway electrons increase with

the outer electric field E = E||/ED according to theory. The theoretical expression
used for reference is the Kruskal-Bernstein equation (2.18), with the parameter k =
0.35 ∼ 1, which was fitted from Kulsrud’s numerical values [1]. The effective plasma
charge Zeff = 1 indicates no or low impurities, and the derivative is calculated from
d(nr/ntot)/d(t/τth), with τth = ν−1

ee , the electron-electron thermal collision frequency.
formulations, normalised to a function of the thermal velocity: k ∼ (mec

2/2T )(3/2).
strength and E|| is the electric field component in the toroidal direction. The reference
curve plotted in figure 4.3 is:

γD =
dnr
dtτ

= 0.35(E/ED)−3/8 · e−
√

2ED/E+ED/4E (4.19)
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with the normalised fraction of runaways and time.

4.7 Inputs

ARENA is designed with an input XML-interface for making parameterised simulations.
There is a large number of possible inputs to vary and I have tried to list and comment
on the physically relevant ones here. The inputs appear in the file arena_input.xml

sectioned into part that describe their approximate impact on the ARENA simulation.
A full list can be found in section C.

The important inputs are the program parameters that decide the update frequency
and calculation parameters for ARENA and the physical parameters, which are set
appropriately for what simulation is to be run. To set up any simulation, one needs to
decide on a number of test particles np, time step size dt and number of iterations n.
Typically np = n ∼ 10000, dt ∼ τth ∼ 10−6. Since the time step is rescaled what mainly
affects simulation time is n and np.

The applied electric field E, which is input as fraction of critical electric field Ec,
under which no runaway generation occurs. Thus for E/Ec < 1, no runaway generation
should occur. Next, the plasma number density ne and core temperature Te which affect
the bulk of momenta for the test particles. The temperature is important in particular
since e.g. the Dreicer field is a function of temperature ED = ED(T ):

E

ED
=

E

Ec · c2/v2
th

=

{
v2
th =

T

me

}
=

E

Ec
· T

mec2
. (4.20)

Note that the Dreicer field |E|||/ED ∈ [0,1], since it is the limit for when all electrons
run away.

4.7.1 Radial profiles

The temperature profile and density profile as functions of radial position (ε = r/R)
are used to model the change in plasma temperature and density as one moves along
the radial coordinate. They are modelled as exponentially decreasing functions starting
from the magnetic axis:

T (ε) = Tc

(
1− Tb ·

(
ε

εmax

)2
)γT

, (4.21)

where Tc is the T_central_electron input parameter, Tb is bulk_tem_prof and γT is
bulk_tem_prof_exp, the exponent. Similarly the density profile is preprogrammed as
an exponential decreasing function, the equation reads:

ρ(ε) = nc

(
1− nb ·

(
ε

εmax

)2
)γn

, (4.22)
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with nc n_bulk_elec_central, nb bulk_dens_prof and γn bulk_dens_prof_exp. For
the cases tested here, the range of ε is small, ε ∈ [0.01,0.011] and it is assumed that these
functions are not sensitive to such a small change in ε, therefore, the temperature can
be approximately set equal to the central electron temperature: Tc.

4.7.2 Time step

To make each time step update consistent with the physics involved, recall that a
Coulomb collision is measured whenever an electron changes its velocity vector signifi-
cantly due to Coulomb interaction with other particles. It is from this that one defines
the collision time which depends on the velocity of each particle. The thermal collision
time τth therefore is defined from the bulk expectation particle velocity vth =

√
T/me.

It is necessary to update the particles every thermal collision time on average, lest the
updates cannot keep up with the change in velocity (dp/dt). ARENA changes the sub-
time step is dynamically over the course of the simulation, to account for this. Although
the user chooses an output time step for when to save the output data (see below). If the
output time step is chosen larger than a thermal collision time, the time step subdivided
into an integer number of steps that are smaller than a thermal collision time:

dtsub =
dt

ceil(dt/τth)
, (4.23)

where ceil() denotes the ceiling function that adds up to the nearest integer. Next, the
time step is checked for rapid changes in the time derivative of the modelled parameters.
For p normalised momentum, the timestep is set so ∆t ≤ ∆p(t):

1

100
· dtsub ≤ dtfinal ≤

∣∣∣∣ 1

10

p

ṗ

∣∣∣∣ . (4.24)

Note, that the minimum allowed time step is hard coded to 1/100th of the sub-time
step dtsub, this is apparently an arbitrary limit and could have all sorts of implications
on the time steps allowed to the simulation time required. strange behaviour if certain
time steps are chosen. It would probably be a good idea to change this behaviour to set
the dynamic time step to a fraction of the thermal collision time. In fact there is little
reason that the user should not get the maximum possible resolution of the output, so
the time step input parameter could be replaced with a programmatically set resolution
being perhaps equal to the thermal collision time. If this time changes, the output
frequency could stay the original thermal collision time τth while the sub-time step keeps
on adjusting as described here.

4.7.3 Weights

The test particles in the old ARENA are weighted to focus on runaway electrons in order
to not spend valuable computer cycles calculating collisions between thermal electrons,
which are known to be Maxwell distributed. Part of the momentum distribution is
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assigned a higher weight, while the rest of the distribution is weighted down to keep
the physical number of particles constant. The border is denoted by pw−cut = FWBpth
where FWB is an input parameter. The limit can be seen in figure 4.2. The weights are
initialised at the beginning of the simulation to be equal, they then change throughout
the simulation according to a re-weighting algorithm.

The ratio of the weights is usually in the order 1, however an issue with the code
tended to produce erroneous results with a factor 2 higher growth rate of runaways than
expected. Finally the weighting was disabled in ARENA 90. The impact on simulation
speed is less than what had been gained through other optimisation measures, and in fact
in some times the speed is better, i.e. when updating many electrons, since the resorting
and re-weighting itself takes up some computer cycles. The final output matches the
benchmark perfectly.

The weight output weight_fast and weight_bulk scale with the particle density ne,
so it is suitable to consider the weight ratio wr = wf/wb, normally wr > 1, with a higher
weight for high energy electrons. It is probable that the time saving effect or weighting
is more important for secondary generation, which we have not yet implemented in
ARENA 90.

4.8 Outputs

To process outputs from the Fortran output to text files, two code suites have been
developed: one was written by me using MATLAB and one was written by Gergely Csépány
using matplotlib and the Python programming language. Both plotting tool sets are
available in Gforge.

The main outputs that are considered are p, λ and ε for the particles. These cannot
be output for every iteration, but is output at the end of the simulation and at some
interval, given by input parameter plot_interval. Secondly, a time step output which
is an aggregate of distribution parameters, mainly the number of runaway electrons nr.
The time step output is needed to create the graph for the Dreicer primary generation
rate as a function of outer electric field, and the particle property output is required to
draw the p distribution graph. outer electric field, To plot a Dreicer curve similar to
the one in [2], I need to calculate the saturated growth-rate of runaways during the run.
For low E-fields, there is a reasonably long section of the curve which is flattened out,
indicating a sustained growth rate (see figure 5.7. For high E-fields, ∼ E/ED = 0.1 and
higher, the sustained rate is a limit rather than a maximum. I find the growth rate to plot
in figure 5.1, γ = dnr/dt, by choosing the maximum of the smoothened differentiation
of the fraction of runaway electrons from my output. It was considered plotting the
fraction of thermal electrons decreasing as more runaways are created, which is not
directly output from ARENA. But this is the exact same thing as the bulk population
minus the runaways, nthermal = ntot − nrw, and so:

nthermal
ntot

=
ntot − nrw

ntot
= 1− nrw

ntot
(4.25)
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A positive slope to plot for this value would imply that one plots −dnthermal/dt =
−d/dt(1−nrw/ntot) but this is of course just the same as d/dt(nrw/ntot) since, the time
derivative of the constant is 0.

It is also possible to calculate e.g. the runaway current, which is a constant multiple
of the fraction of runaways, however for quantitative comparisons with e.g. the LUKE
code, the fraction of runaways is the main output considered.

ARENA 90’s time step output is written to a file output_runaway_current, which
in fact outputs the number of runaway electrons and not the current, after scaling up test
particles to real electrons. The particle distribution is written to output_MC_particls

which can be used to recreate a distribution function of momenta, and is used in this
thesis for the Maxwell test. To get the actual number of particles, this output must be
multiplied with the rescaling weight weight_fast, which is equal to weight_bulk in the
final ARENA program. In the old ARENA code, the respective files are pl1.res for the
time step output and pl4.res for the particle output.

To verify the validity of the output, plotting the number of runaway electrons as a
fraction of the total number of electrons is a good idea. With a constant E-field, the
fraction should tend towards 1 after a certain simulation time, which is the case for the
simulations here.

To plot the output a series of MATLAB scripts are used. They read in the out-
put files along with input parameters from arena_input.xml and input.data (old
ARENA) respectively. Furthermore, some parameters which are used in analysing the
output, like τth, the thermal collision time are written to an output file called out-

put_initial_parameters (or arena.output). These files are also parsed with MAT-
LAB.

4.9 Development and documentation

While the old ARENA was used in publications, the code that I started working with
together with Gergely Csépány and Gergely Papp could not reliably reproduce the bench-
marks seen. It was unclear exactly how to interpret the inputs and outputs. The units
were not always stated and many physical quantities were not explicitly calculated, but
rather written down as a number of constants clumped together. Furthermore the use of
input parameters was not consequential, meaning that some input parameters, like the
Coulomb logarithm which is an input parameter Coulomb logarithm were hard-coded
into some equations to a default number. When we were certain of the interpretation of
the code, the primary generation tests would not pass but for an added multiple factor
of 2, and the start of the runaway generation process would not correspond in a timely
manner to the reference data.

Part of the issues were solved by removing ARENA’s weighting, letting all particles
have the same weight. This change made the primary generation test and Maxwell
test for low temperatures match perfectly and surprisingly also improved performance.
Probably the reason for this is that many of the thermal particles are still updated during
early phases of primary runaway generation and the added computation in assigning
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weights added computer cycles, while none were really saved.
The main benefit of ARENA 90 over old ARENA is that it is a completely modular

code with support for a modern program language (Fortran 90) and modern compilers.
It has been given a suite of additional software tools to process the output data and
create final figures based on the written output. Since Gergely Csépány and I have
worked separately on this, there is a redundancy in the tools available, which works to
confirm the validity of the results. To measure the speed upgrade of the code, I did a
suite of tests with the base test case for primary generation with different numbers of
particles and time step sizes - the results are in section 5.4.

ITM, the Integrated Tokamak Modelling task force, is an initiative to create a full
Tokamak simulation program that connects various more spearheaded projects, like
ARENA, through a set of data objects, so called CPO:s (Consistent Physical Objects).
This will require more work to be done with input/outputs, which is already initiated
to some degree. The current build of ARENA 90 will determine at run time whether
the current environment supports IPO:s (basically, looking to see if it is running on the
ITM Gateway computer cluster), and use them for input/output if that is the case.

Although EFDA integration requires a special design of input/output parameters to
conform to the CPO:s, routines for running the tools ad-hoc with a previously tested set
of parameters are still important to verify the code during development and to be able
to run standalone simulations.

Documentation is paramount for projects like this which span multiple generations
of students and researchers, but is easily moved last in the list of priorities. There are
some requirements, but also structures for keeping good documentation in the EFDA
ITM project [6]. ARENA is checked in under gforge.efda-itm.eu/svn/arena/trunk

and is documented using doxydocs which is freely available online. Furthermore the
documentation can be generated from comments in the Fortran code, and output into
various formats like TeX or HTML, which minimises maintenance. There is also a light
weight user’s manual in the repository under trunk/documentation/user-manual to
get you going in the form of a pdf and corresponding TeX file.

To read ARENAs documentation, one can check out the ARENA trunk by doing:

1 svn co http://gforge.efda−itm.eu/svn/arena/trunk arena90

in a command window with subversion installed. There should be a compiled doxydocs
generated pdf file and a html file under trunk/documentation/doxydocs/. Else it can
be generated by running

1 doxygen documentation/arena−doxygen.conf

from the trunk directory with doxydocs installed (do e.g. apt-get install doxydocs

on Linux to install).
More on the development of the ARENA 90 code can be found in appendix C.
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4.10 Parallel version

The notion of running ARENA updates in parallel has been around for some time. Just
to be clear on what parallel means in this regard - running ARENA for a range of input
parameters, e.g. a range of outer electric fields E/ED to produce a Dreicer graph (5.1)
can be done by running several processes side by side from linear code. Many of the
graphs in this thesis have been run on a workstation with multiple cores, which works
well since each individual process does not consume a lot of memory.

To get a good resolution of the output however, one might have to use several thou-
sand test particles, and each run will start to take some time. It would be desirable to
speed up the actual run-time of a single simulation, and this can be done by updating
the tests particles in parallel.

Each particle is updated independently of the others, so it is possible to run these cal-
culations simultaneously, in parallel. If not doing the self-consistent electric field update
(which depends on the strength of the runaway current), even updating subsequent time
steps could be done in parallel. This is usually not a good idea, except perhaps for code
verification purposes, so I will focus on parallelising the Monte Carlo particle updates.
Ideally, if the additional time taken to allocate resources on an array of computational
units is not too large, having 10 computational units would speed up the program 10
times.

There are some different ways of going about creating a parallel code. Many scientific
calculations are done on computer clusters that you log on to remotely over the internet
and submit your calculation to. This usually costs money for the university and many
researchers sharing a cluster could get in the way of each others’ simulations. If the
implementation is easy enough, these computers often offer great performance. There
are multiple processor cores in most PCs these days, and software is getting more clever
at using this power for multitasking all the time. This opens up for the possibility of
running a simulation locally, with perfect portability - still speedier than a code that
executes in sequence. I could run ARENA on my laptop, and literally have it running
without a wire. This requires a different kind of software implementation, usually centred
around an API (application programming interface) that offers a way to interact with
sub-processing units on a modern CPU without extensive knowledge about the inner
workings of it (the runtime drivers).

One such API, or really a framework for an API, is OpenCL, which is becoming
increasingly popular. In fact, many graphics chips, primarily responsible for displaying
graphics on the computer screen, offer OpenCL implementations letting you harness the
power of graphics, usually tens to hundreds of processing cores, to update ARENA test
particles.

There is an OpenCL library in the Fortran 90-language available from the Portland
Group called PGI OpenCL, which is commercial software www.pgroup.com. For a freely
available alternative, there is fortrancl, an open source project at Google Code (http:
//code.google.com/p/fortrancl/) which implements the OpenCL standard, and this
is what has been used here. The caveat is that any parallel code must be translated to

www.pgroup.com
http://code.google.com/p/fortrancl/
http://code.google.com/p/fortrancl/
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Figure 4.4: A comparison of run times for the collision operator, mccoll_v1 in an OpenCL
framework compared to a linear loop. The initial distributions are loaded from an initial
distribution generated by ARENA 90 and calculation of the elliptic integrals ζ1 and ζ2 has
been done before starting the timer. Unfortunately OpenCL under-performs a linear loop
in every number of iterations. There is likely a good reason for this that will have to be
researched. Note that CPU time measures the total time that the computational units
perform calculations for the program and system procedures combined. A higher CPU time
than real time indicates that the process has spawned child processes whose combined work
time are added together. Thus for this example, real time is the relevant metric.

C code. Not a terribly cumbersome task, but difficult to do throughout ARENA while
guaranteeing consistent physical results. I have created a test timing suite, translating
the collision operator to C-code, and timed the calculations against running the original
collision operator in Fortran code in sequence. At the end of each run I make sure that
the output from the OpenCL program is consistent with what I would get running the
old version, thus guaranteeing not breaking the program logic.

The results can be seen in figure 4.4. They indicate for this test, unfortunately that
the OpenCL implementation of the collision operator offers poorer performance than the
sequential code. This can be due to a number of reasons. To be able to do a calculation
in the OpenCL framework, a kernel must be created in software which does necessary
allocations of memory and synchronisations on the computation unit (i.e. the graphics
chip) that is to perform the calculation. Furthermore, the collision operator is the only
piece of code that I have parallelised. It may be that running more of the code in parallel
will make a greater improvement in pure calculation time, which would overcome the
set-up time in creating the OpenCL kernel.

Regardless the output is consistent with the sequential code and this test has shown
that it is quite possible to run ARENA in parallel, on a single computer with maximised
portability and standards compliance. Some more details on OpenCL, portability and
scalability can be found in Appendix C.



5
Results and Comparison

R
esults from benchmarking and testing of the ARENA code. This chap-
ter contains the results from a series of runs of the ARENA code along with
comparisons with the LUKE code and published numerical and theoretical re-
sults. The first section shows the output for the Maxwell test and the Dreicer

test explained in section 4.6. Next comes an introduction to the LUKE finite difference
code and a series of comparison graphs. Finally there is a comparison of the old ARENA
code and the new ARENA 90 and a discussion.

5.1 Benchmarks

The benchmarks published in [2] are plotted first for reference and shown side by side
with ARENA output. With the final ARENA 90 code they show good conformance
across all of parameter space. The Dreicer curve of the runaway generation rate as a
function of changing electric field (normalised to the Dreicer field) E/ED is plotted in
figure 5.1. I have also plotted the Kulsrud tabular values from Ref. [1]. For the lower
E/ED-values in figure 5.1, the conformance is worse due to noisy output data. To verify
that theory I tried running ARENA for the lowest input electric field E/ED = 0.04 with
2 ·10000 particles, and the error indeed goes down. The comparison can be seen in figure
5.2. Plot of the source data for all the data points in the plot are included in section C.

For the Maxwell test, the output shows good performance in maintaining the dis-
tribution of particle momenta with no outer electric field for several thousand collision
times. It also conforms well with the theoretical parameter pth =

√
T/mec2 = {T =

1keV} ≈ 0.0442 in equation 4.18. The output is plotted in figure 5.3. The fit does show
a slightly less peaked Maxwellian after 10000 iterations at dt = 10−6, than after ∼ 15
iterations, but there are clearly no runaway electrons with p > pc.

Increasing the temperature used to give issues with an older version of ARENA 90,
but are now successful for thousands of collision times up until temperatures of ∼ 25keV.

43
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Figure 5.1: The Dreicer generation rate as a function of the applied electric field. The
reference is the analytical expression by Kruskal-Bernstein and Kulsrud with parameters
like in equation 2.18, and also the table values from numerical simulation in [1]. The spread
of the markers in ARENA output are from runs with different time steps (see section 4.7.2).
The ARENA version used here revision 280 or the weighting-disabled branch.

This is plotted in figure 5.4. A comparison of the Maxwellians for different temperatures
is in figure 5.5. The issue at high temperatures is plotted in the appendix (figure C.6).

5.2 The LUKE code

For reference I have visited Cadarache in France and decided on a good baseline for tests
which is described below. At Cadarache the LUKE finite difference code is used, which is
based on a MATLAB container with .mex modules doing the time critical computations.
It can model electrons as well as fuel- and impurity ions by setting the charge and weight
parameters up accordingly. It can also be chained together with ray tracing code C3P0
to create a simulation environment for radio frequency heating experiments. The nature
of the code makes it very efficient when it comes to solving the Fokker-Planck equation
for primary generation. The drawback is the intrinsic limit on particle energies that can
be modelled, which comes from the fact that the distribution is modelled on a grid with
finite size. A Monte Carlo code like ARENA has no such limit since each test particle is
assigned an individual momentum value p which is a real valued number in the computer.
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Figure 5.2: The ratio between the Dreicer rate from ARENA and the Kruskal-Bernstein
theoretical value (equation 2.18) as a function of outer electric field E/ED. It is clear that
the ratio is close to 1 for all but the first data point. Increasing the number of data points
will mitigate this which is illustrated by an additional run with twice the number of test
particles, 20000 for E/ED = 0.04.
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Figure 5.3: The Maxwellian distribution of particle momenta at simulation start and
after 10,000 iterations. Here pc = 10.0 · pth, T = 1.0keV,dt = 10−6,nparticles = 6000. The
Maxwellian is preserved very well for an extended simulation time, which indicates that
the code does not produce runaway electrons with no electric field present, which confirms
the physicality of the other operators in the simulation. The theory curve is plotted with
p2th = 0.0016 in both curves to give a visual means of comparison.
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Figure 5.4: The Maxwell test for a higher temperature: 25keV. The test still passes
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(nt = 25000) look all but identical.
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Figure 5.5: A comparison of Maxwell distributions at different temperatures. When the
temperature goes up, the distribution is spread out, and the mean (expected) value increases
as pth increases.
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Thus, ARENA should be much better suited to calculate secondary generation effects.
LUKE creates the primary runaway generation outputs by calculating particles which
cross a certain limit momentum pc. ARENA does this too, but when particles increase
momentum even further, they are lost from the calculation in LUKE, whereas ARENA
can keep them and use them for the secondary generation calculation.

LUKE counts runaway electrons by considering the flux of particles through the
limiting surface of the simulation in phase space. Letting the runaway loss rate be ΓR,
the flux of particles in the distribution function at the simulation domain limit p = pmax;

ΓR(φ, θ) =

∫ ∫
Υ

Sp(ψ, pξ) · dS, (5.1)

dS(p) = p2dξdφp̂, symmetry giving
∫
dφ = 2π ⇒

ΓR(ψ, θ) = 2πp2
c

∫ +1

−1
Sp(ψ, pc, ξ)dξ, (5.2)

with pc the critical momentum: the limit where electrons run away. In LUKE, this value
is chosen to be sufficiently high that collision drag cannot counteract the accelerating
force eE which is dependent on the collisions model. Once a particle is across the limit
pc, it is counted as a runaway electron. It will then gain energy and eventually leave the
simulation parameter space p→ pmax.

Thus counting the flux through an arbitrary flux surface in momentum-space which
is above pc, will correspond to counting the number of runaways, making pc a free
parameter in the code. A source term of thermal electrons balances the loss of runaways
to preserve particle count, similar to what is done in ARENA [16].

The difference in the definition of when to count runaways could lead to slight differ-
ences in the shape of the fraction of runaway-curves (figure 5.6,5.7). Next, the runaway
rates are derived from numerical differentiation, which are the values that are then used
for the Dreicer test in figure 5.1. With the same physical boundary conditions, although
the curves may be different, these rates should align well.

LUKE is a finite element code whereas ARENA is a Monte Carlo code. They have
fundamentally different approaches to solving the time evolution of the bounce averaged
distribution function. Due to this, they have different benefits and limitations. When
solving for primary generation, LUKE greatly outperforms ARENA. A run of 1000 col-
lision times (ttot/τth = 103 ⇒ ttot = 8 ms if τth ∼ 8 · 10−6) in LUKE takes only a few
seconds, while the old ARENA can take several days. ARENA 90 is significantly faster
but a run can still take hours, thus LUKE beats it by several orders of magnitude. How-
ever, the finite element approach used by LUKE has an intrinsic limit in the maximum
momentum (energy) of the electrons. Picturing a grid that stretches across momentum-
space LUKE will slow down if the grid is made too large, and resolution will suffer if it is
made too sparse. ARENA does not slow down with the size of the problem at all. Each
particle is assigned an arbitrary value for each parameter (p being the one that grows to
large values) with no maximum.
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The performance and resolution is instead dependent on the number of test particles
on which Monte Carlo operators are applied. If too few particles are used, the statistics
will not be good enough to get reliable results or a detailed enough smoothed distribution
function. Since there is nothing that prevents updating all the test particles in parallel,
that is a possible solution to speed up ARENA. In fact, there is a loop of calls to each
operator in the Fokker-Planck equation:

∂f

∂t
= 〈LE(f)〉+ 〈C(f)〉+ 〈Lsynch〉+ 〈Ls.t.(f)〉+ 〈S〉+ 〈lB〉, (5.3)

all independent of one another in each time step that could be parallelised which was
investigated in section 4.10.

It is fair to ask whether simply increasing the simulation space and resolution of
LUKE would work just as well, or even better than optimising ARENA. At this point,
it is not clear that this would be enough to simulate the physical reality of avalanching,
since the seed of primary runaways reach very high momentum values. The bold solution
could be a merged code, where LUKE would handle the main simulation, creating Monte
Carlo test particles for when electron values leave LUKE’s phase space, only to be
reincorporated in the finite element code if and when they loose enough energy. With
LUKE being a MATLAB program, this could be realised using the .mex module files.
The fact that ARENAs collision operator is modular enough to be ported into a parallel
code shows that this is very much a possibility, although great care would have to
be taken to make sure that the physicality of the model is contained throughout the
simulation.

In figure 5.6 you can see the time-evolution of the runaway fraction from LUKE.
Figure 5.7 shows the numerical differentiation of the same. Note that the generation
rate takes some time to reach a saturated runaway growth rate, which corresponds to
the Kulsrud growth rate. It then falls when the bulk of the electrons have already become
runaways and there are no more electrons to simulate. The two curves show the volumic-
and boundary-losses, which together show the numerical accuracy of LUKE. Since the
fraction of runaways is plotted when applying a constant outer electric field, the fraction
of runaways will tend towards unity, but cannot be > 1.

5.3 Primary generation output

It was important to find a good reference test for a detailed benchmark comparison
with the LUKE code. The Dreicer- and Maxwell benchmarks (section 5.1) show a good
general performance of the code, but it hides information on actual code output. For
example, the runaway generation rate γ is calculated from a numerical differentiation
of the fraction of runaway electrons, which ARENA writes to file (see section C for
details). This output can be directly compared to LUKE output, which is done below.
To be able to directly compare to the Kulsrud rates, values from corresponding to the
published tabular values E/ED = 0.1 and E/ED = 0.04 were used. To be able to work
in a parameter space where ARENA is performing well, the temperature was set to
T = 1 keV, from which the ARENA input value E/Ec = E/ED is found.
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(a) E/ED = 0.04 (b) E/ED = 0.1

Figure 5.6: LUKE code output of the fraction of runaway electrons as a function of time
normalised to thermal collision times (here τth = 8.03 · 10−6). The growth is slower at the
start before the rate has saturated, it then pans out near t/τth = 2 · 106 when all electrons
have become runaways. This happens because the applied electric field is held constant.
The Volumic- and Boundary losses indicate two ways for the code to measure the fraction of
runaways and qualitatively shows the accuracy of the LUKE code at the chosen resolution.
Apparently, the measurement is more exact for a higher input E-field

(a) E/ED = 0.04 (b) E/ED = 0.1

Figure 5.7: Rate of change of the fraction of runaways as a function of time from LUKE.
Note the initial build-up time before the saturated rate is achieved, and then the fall in the
end of the simulation. In the saturated region there is good conformance with the Kulsrud
rate. The logarithmic time scale is normalised to thermal collision times τth.
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Figure 5.8: Runaway fraction nr/ntot and the runaway rate γ as a function of time
normalised to thermal collision time t/τth of ARENA 90, old ARENA and LUKE at E/ED =
0.04. ARENA shows a similar trend to LUKE, but the output of the rate is quite noisy and
it is hard to find a good saturated generation rate. Since ARENA converges slowly, setting
the sub-timestep dts ∼ τth, it takes a long time to simulate long time series. To get 105

collision times would require as many time steps, taking very long in real time. Confirming
that increasing the number of particles for this low value of E/ED (figure 5.2) will suffice
to say that the code is valid also for this low E-field.

The two main test cases are displayed in figure 5.8 and 5.9. From the output you
can see that ARENA is more stable for the higher electric field, and also the simula-
tions are faster since the runaway population will build up quicker. The E/ED = 0.04
case displays a sudden surge in the runaway generation for the old ARENA code when
weighting was used. Since it is not present with the new code, it is not likely that this is
a difference between the Monte Carlo and finite element models, but rather a code error
related to ARENA’s bad weighting (section 4.7.3).

Compared to the LUKE output (dashed line), the graphs have similar shapes for
the higher E-field case, although there is a linear translation in time, which is, however,
made smaller for ARENA 90. For the lower E-field case E/ED = 0.04, the curves align
well up until 6000 thermal collision times. The likely explanation for the difference in
when the generation starts is the different definitions of the cutoff momentum pc, see
section 5.5.

5.4 The new ARENA 90

ARENA was ported from Fortran 77 to Fortran 90 by a joint effort led by Gergely
Csépány in 2011. The goal was to create a fully modular, documented and managed
code base that could be more easily transitioned between researchers. The new code
employs e.g. precompiled libraries for speed improvements and is much easier to work



5.4. The new ARENA 90 51

10
−2

10
0

10
2

10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4
runaway fraction output

n
rw

 /
 n

to
t

t/τ
Th

, last τ
Th

 = 8.0385e−06

 

 

ARENA 77 E/ED=0.1

 ARENA 90 (r280) E/ED=0.1

LUKE

(a) runaway rate: d(nr/ntot)/dt

10
0

10
2

0

0.5

1

1.5

2

2.5
x 10

−3 runaway fraction output

d
n

rw
 /

 d
t

t/τ
Th

, here τ
Th

 = 8.0385e−06

 

 

ARENA 77 E/ED=0.1

 ARENA 90 (r280) E/ED=0.1

LUKE

(b) Fraction of runaways

Figure 5.9: This figure shows runaway fraction nr/ntot and the runaway rate γ as a
function of time normalised to thermal collision time t/τth of ARENA 90, ARENA 77 and
LUKE at E/ED = 0.1. The saturation of runaways happen faster at the higher electric field
which is expected. The output is a lot more stable than for the E/ED = 0.04 curve too,
which shows that this is a parameter region where ARENA performs well.

with because of the more modern syntax of Fortran 90.
A number of ARENA revisions have been around, producing results of varying accu-

racy. I have tried to include revision numbers wherever possible, mainly for ARENA 90.
The old ARENA, included for reference, is the so called Merlin-version. It was handed
down from the previous research team, who had used it for publications. It existed in
ITM:s SVN under svn/arena/tags/merljin-version on March 13 (revision 77). How-
ever it is questionable whether the code base that we started out with actually was the
original one, given the misalignment LUKE in figure 5.9, which was later fixed.

Most runs with ARENA 90 presented here use a version without weighting from May
23rd (revision 280). Removing the weighting part of the code, finally solved withstanding
issues with both the Maxwell test and Dreicer generation test leading to the belief that
that part of the code is broken. In actuality, what was done, was to remove the sortmc()
subroutine, and weighting initiation in the beginning of the program (section 4.2). This
fixed long withstanding issues with too early runaway generation regardless of the chosen
value of pc, the cut off-momentum, and the factor 2 higher runaway generation rate than
the Kulsrud value. The current best version is the branch weighting-removed in http:

//gforge.efda-itm.eu/svn/arena/branches/weighting-removed, revision 280. The
LUKE version used is the latest official distribution, version 1.9.1

ARENA 90 has undergone optimisation for a significant speed gain. Running a basic
test for 5000·dt = 5 milliseconds with varying number of particles, it is clear that the new
optimised code gives a speed gain of over 50 times the original ARENA runtime. This is
a significant improvement achieved even before getting to parallelising the computation.
A graph of the (real) times for the different runs can be seen in figure 5.10 along with

http://gforge.efda-itm.eu/svn/arena/branches/weighting-removed
http://gforge.efda-itm.eu/svn/arena/branches/weighting-removed
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Figure 5.10: The time it takes to run an entire simulation to find the fraction of runaways
as a function of the number of test particles with the new ARENA 90 and the old ARENA
codes is plotted in the left hand side picture. It is clear that the new code is a lot faster.
Here E/ED = 0.1956, dt = 1 · 10−6, nsteps = 5000. The fraction told/tnew is plotted in
the right hand side picture. The graph shows that the new code is > 50 times faster than
the old code for primary generation. A significant improvement with only sequential code
improvements.

the speed gain vnew/vold = told/tnew.

5.5 Parameter scans

This section contains some parameter scans to show the breadth of ARENA’s working
parameter space. First, does the generation rate depend on the definition of what to
count as a runaway electron? I.e. the value pc = RCPN · pth. The higher value for
RCPN = 10→ 25 shows that that is not the case (figure 5.11).

We tried to change the time step taken dt, to be able to speed up the ARENA
simulation. With a longer time step, the total simulation time should be able to be
extended without increasing the number of iterations. It is known that ARENA modifies
the time step to a smaller one if it is deemed to be too large to yield a reasonable
continuity between each iteration. This is done in two ways (section 4.7.2) and becomes
apparent when timing the simulations. I did not record any quantitative measurement,
but increasing the time step by a factor of 10 did almost no difference for the total
simulation time, because the sub-time step was set according to equation 4.24. As such,
staying with dt = 1 ·10−6 seemed an appropriate choice. The time step used is indicated
in most figures, although it should not impact the final result because of how the sub-
time step is calculated. A test is plotted in figure 5.12, where the time step was changed
between 5 different values, keeping all other parameters the same as for the base test
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Figure 5.11: Two outputs with different values of the RCPN input parameter, the cutoff
momentum pc = RCPN·pth. The output shows a slight drift to the right with higher RCPN, but
no major change in runaway rate, which makes the case that this parameter is not critical
for the output of generation rate.

case (figure 5.9).
We also tried changing the number of test particles. Supposedly a large number np ∼

10000 particles are needed. Initial test results showed that the overall trend could be
qualitatively measured with as little as 1000 particles. However, plotting the generation
rates, it becomes cleat that there is a greater dependence on particle resolution. This is
also apparent from the Dreicer generation test discrepancy in figure 5.2

5.6 Discussion

The outputs of the new ARENA confirm well with published results, and the parameter
sweeps show that ARENA gives stable output in a range of parameters. The claim that
the definition of what to count as a runaway electron, i.e. what to choose for pc does
not matter for the generation rate has been verified.

Whether a large number of test particles are needed has been going back and forth,
and apparently it depends on the magnitude of the outer electric field. To reliably
establish the the generation rate, which has been deemed the important measure, 10000
particles work well for E/ED ≥ 0.06. However for E/ED = 0.04 still 20000 particles,
(figure 5.2) gives too noisy output for the difference between ARENA’s simulation and
the Kruskal-Bernstein curve to be 0. It has been suggested that an automatic test
framework for ARENA run sanity tests with only a few hundred particles. To get a
good sense of the validity of the generation rate, this is too little to get anything but
noise in the calculations. It could possibly be used for sanity testing with a test seed of
non-random numbers r in equation 4.3, etc. to make sure there is no numerical deviation
- but that has yet to be seen.
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Figure 5.12: Plots of ARENA output when varying the time step dt, which is expected
not to impact the simulation at all. The change is not visible. Interestingly, the output
seems to be noisier with a smaller time step. This could have to do with the fact that
ARENA rescales the time step and actually runs more iterations with a higher dt, although
the output happens only at the input time step intervals. Or it could be related to the
time step bug (section 4.7.2). All runs use the same base parameters, T = 1.0keV, ne =
2 · 1019, E/ED = 0.1, also note that the shorter time steps run a shorter total simulation
time.
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Figure 5.13: A comparison of ARENA runs with different numbers of particles. It is clear
that the number of particles, which greatly impact total simulation time, do not significantly
change the overall trend of the curve. It does however, affect the generation rate, which is
seen to the right. The dashed line is the LUKE curve.
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ARENA with the Maxwell test shows an instability for high plasma temperatures
(thermal energies). In theory, with the external electric field set to zero, there should
be no change to the Maxwellian distribution. Instead, for very large energies, there is a
splitting of the Maxwell curve into two. It is possible that the reason for this is tied in
with the two-part collision operator. We were unable to confirm this by using the ANTS
operator for reasons described in section 4.4.

The current model is valid for background plasma temperatures below ∼ 15 keV.
This temperature is high enough for studying the runaway phenomena, but not for all
applications involving of actual fusion temperatures in large devices like ITER. Hopefully,
this limitation could be lifted if the collision operator from ANTS could be implemented,
which is valid for all energies (equation B.24) [18].



6
Conclusions

L
looking at the final output, ARENA does show good conformance with
published an theoretical results over a large range of parameter values. The
benchmarks of a code like this are mainly in place to gain confidence to be able
to run other simulated experiments. For such simulations to be meaningful,

the layout and structure of the code should be firmly based in theory. The theory
surrounding Monte Carlo simulations as such is broad ranging and can be verified in
small experiments and simulations like the one in section 4.3. The individual Monte
Carlo operators used in updating the model parameters of ARENA are documented in
less detail however, which has made this work heavy on understanding and reaffirming
calculations and sections of the code. In a sense, ARENA has now gone through some
post-finish thorough unit testing.

The stable verification of the two benchmarks across parameter space nevertheless
shows that ARENA is able to produce reliable results in the parameter space researched.
Extensive reverse engineering and testing done throughout this project shows that these
kinds of projects can be narrowed down to bare essentials and bear fruit in useful output,
albeit here in a lesser extent than we first envisioned.

One motivation for ARENA compared to other simulation software is the power
of Monte Carlo methods for modelling very high momentum particles. This is mainly
important for secondary runaway electron generation which we have not been able to
implement in ARENA 90 as of yet. Also, redundancy in research is always important,
and the fact that ARENA and LUKE show good conformance between each other show
that the two methods of iterating the Fokker Planck equation are both viable, producing
results that agree with theory.

The test with parallel programming with OpenCL confirms the notion that ARENA
can be parallelised without too much effort. By confirming that the output stays constant
running ARENAs collision operator with the OpenCL standard in a benchmarking envi-
ronment, it was shown that it is possible to pick out single modules of the new ARENA
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code to create separate programs using commonly available API:s and techniques, which
is important for any derivative work. The modularity of the new code should be of great
help if any attempt was to be made to implement parts of ARENA into LUKE, in order
to improve that code to better handle high energy electrons.

Today, ARENA 90 is a much more modern, easily workable, logical and efficient code
base which has been successfully made to conform with the old ARENA outputs and
published references. Additionally, it has been very beneficial for me to get a good look
at the breadth of fusion research and the struggles associated with it. Fusion is a broad
field of research that relies on breakthroughs in many subject areas in order to finalise
the design for a power plant of the future. To be able to design for the complex magnet
coil structure of the Wendelstein 7-X stellarator, numerical optimisation was crucial,
and that is just one example. Computer simulation is penetrating society as a tool for
anything from visual effects in entertainment to instant messaging, but plays a critical
role in research and development.
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A
Definitions and Explanations

B
asic terminology and definitions. This appendix contains explanations and
definitions that make it easier to follow the main text. Although most rele-
vant parameters should be presented in a straight-forward manner, some basic
concepts get an additional mention here.

A.1 Toroidal coordinates

Since the tokamak has a torus-like shape with a circular or close to elliptic cross-section,
it is natural to think about the spatial coordinates in a toroidal geometry. The basic
coordinates are the radial position r, the toroidal angle φ and the poloidal angle θ, see
figure A.1

To completely describe a point’s coordinates in space, the major radius of the torus
R must also be known. The full cartesian coordinate transformation then becomes:

x = R sinφ+ r cos θ

y = R cos θ

z = r sinφ,

(A.1)

or for space-polar coordinates: 
Rp = R+ r

φ = φ

θp = arcsin
− sin θ

R/r + 1
,

(A.2)

An illustration of the toroidal geometry and the implication of adding a poloidal and
a toroidal field component can be seen in figure A.1
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Figure A.1: This is a schematic picture of the spatial coordinates in toroidal geometry. r is
the radial variable, φ the toroidal angle and θ the poloidal angle. You can also qualitatively
see the twist of magnetic field lines going around the torus shape.

There is a number of ways that the plasma coordinates above are rewritten down in
various equations in this paper and it can be a bit difficult to keep track of. In ARENA,
calculations are made with normalised variables, since it can simplify the calculations to
not keep track of dimension and also because it helps mitigate problems with computer
precision. It is fair to say that convention also plays a role in this. The main normalised
variables are listed in table: A.1.

The tokamak has a toroidal geometry, and in a simplification ARENA uses a cir-
cular torus cross section to model the plasma. Here, the phase space variables are
(r, θ, φ, ṙ, θ̇, φ̇) and time. The torus volume occurs e.g. when calculating the number of
electrons in the plasma from the input plasma density variable nc. Total plasma density
ne = Vtorus · nc = Vtorusnc/(nb(1 + γn)) · [1− (1− nb)γn ], nc : input parameter;

Vtorus = (πr2)2πR = 2Rr2π2 (A.3)

basically a cross section area times the circumference of the centre of the big circle, with
r the minor radius, R the major radius.

The pitch angle θp is the angle between the direction of the plasma momentum
p = mav which is parallel to the magnetic field B, and the total momentum: see figure



A.1. Toroidal coordinates 62

Table A.1: Parameter definitions for reference.The subscript a is a species of particle. Since
the particle of concern for most calculations in this paper is the electron, I will frequently
write for a : e

param expression explanation

r r radial coordinate in a toroidal geometry (sect. A.1)
this can be the minor radius of a flux surface that the
particle in question sits on

R R major radius of the tokamak.

ε r
R inverse aspect radio used for simulating physical space

in ARENA

Z Zeff effective plasma charge measures the purity of the
plasma. Zeff > 1 is a plasma with impurities (higher
atom number) which change the plasma properties

ρL ρL Larmor radius of a particle’s gyration along a magnetic
field line

ξ v||/v = cos θp the cosine of the pitch angle θp, see figure A.1

p γv/c = v/
√
c2 − v2 normalised momentum. The third simulation variable

for ARENA

λ p2
⊥/(p2b(θ)) pitch angle variable, describing the particle toroidal

alignment. λ > 1 indicates a trapped particle

b(θ) B(θ)/Bmax normalised magnetic field along the magnetic field line

A.2. The pitch angle is implicitly referenced through the model parameter λ; the cosine
of this angle is the fraction of the parallel momentum cos θ = p||/p.
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p||

p
⊥

p

θ

Figure A.2: The angle between the particle velocity vector v = p/ma and the magnetic
field is non-zero due to the gyrating motion that a particle makes around a magnetic field
line when it enters the field with non-zero speed. The radius is given by balancing the
centripetal force and the magnetic force: mv2/rL = qv⊥B.



B
Physics in Depth

D
erivations of some relevant concepts and equations This section con-
tains definitions and derivations of relevant physics intended to give context
to the main text. It expands on appendix A and is more about in depth expla-
nation than understanding. The final appendix C talks about programming

suites and numerical solutions.

B.1 The Langevin equation

The Langevin equation is a stochastic differential equation that describes the time evolu-
tion of a subset of degrees of freedom which are typically macroscopic variables changing
slowly compared to the microscopic variables of the system. They are considered as
fluctuations, making the equation stochastic. The Fokker Planck equation (2.2) can be
written as an equivalent Langevin equation [2], which is used to derive the form of the
Monte Carlo operators used in time stepping.

There is a formal way to derive a generic Langevin equation from classical mechanics.
If A = {Ai} denotes the slow variables, the generic Langevin equation is [19]:

dAi
dt

= kBT
∑
j

[Ai,Aj ]
dH

dAj
−
∑
j

λi,j(A)
dH

dAj
+
∑
j

dλi,j(A)

dAj
+ ηi(t), (B.1)

where ηi is the fluctuating force with a Gaussian probability distribution and a correlation
function:

〈ηi(t), ηj(t′)〉 = 2λi,j(A)δ(t− t′). (B.2)

A special case is the Langevin description of Brownian motion:

m
d2x

dt2
= −λd

2x

dt2
+ η(t), (B.3)
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with the force η(t) with a Gaussian probability distribution having a correlation function:

〈ηi(t), ηj(t′)〉 = 2λkBTδi,jδ(t− t′), (B.4)

kB is Boltzmann’s constant, T is the temperature and the Dirac δ(∆t) is an approxi-
mation of the actual finite correlation time of the random force which depends on the
collision time of the molecules.

B.2 ARENA’s Monte Carlo operators

For ARENAs solution of equation 2.2 the Langevin operators {Ai} are derived from the
following (difference equation) expression:

∆Ii = ( ˙IiE + İic + İic + İic)∆t+ (Ai,jc +Ai,js.t.)ξ
j
√

∆t, (B.5)

where the ∆ denotes a step in time. The dotted variables are expectation values of
the phase-space random variables, Ai,jζ is a variance and i is a particle index. For the
momentum, p, this is equation 4.3. The subscripts for the different terms match the ones
in equation 4.1. ξ is a random variable, with a normal distribution with unit variance,
which introduces stochasticity through the variance of the collision term 〈C(f)〉 and the
radial transport term 〈Ls.t.(f)〉 of equation 4.1.

The derivation of collision operator terms was done in some detail in [17]. The general
expression for any term in the right hand side of equation 4.1 is found to be:

C(f) =
1√
g

∂

∂xi
(
√
g Γi), (B.6)

where Γi are contravariantly transformed components of Ci; Γi = Cj∂xi/∂zj and
√
g

is the transformation scaling Jacobi matrix. In the case of runaway electrons, the gen-
eral form of either right hand side term in equation 4.1, including the bounce-averaged
collision operator term (〈C(f)〉), becomes:

〈L〉 =
1√
g

∂

∂Ii

[√
g

(
ai + bij

∂f

∂Ij

)]
, (B.7)

and
√
g = Rminrp

2

∮
1

2π
√

1− λb(θ)
. (B.8)

At this point, the collision operator can be written down in terms of the mean and
covariances of each of the Langevin phase space variables I = (p,λ,r) which are given in
the following set of equations:

İi =

∫
Ii〈L(f(t = t0))〉√gd3I = −ai +

1√
g

∂

∂Ij
(
√
gbij),

˙sij =

∫
(I − Ii)(I − Ij)〈L(f(t = t0))〉√gd3I = AikAjk = 2bij .

(B.9)
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Here, the dotted variables are time derivatives and when there are no cross terms in
equation B.9, which is the case for the operators in all of equation 4.1, the variances
simplify to:

Akk =
√

2bkk. (B.10)

For the collision operator, starting with the mathematical expression in equation 4.7,
the time derivative update eqeuations for p and λ, ṗ = ṗ(p) and λ̇ = λ̇(λ) become:

ṗcoll = −νpp+ β
√

1 + p2
2p2 − 1

τcp4
, (B.11)

λ̇coll = 2νD

(
ζ2

ζ1
− λ

2

)
, (B.12)

Appcoll =
(

2βνp
√

1 + p2
) 1

2
, (B.13)

Aλλcoll =

(
2νDλ

ζ2

ζ1

)
, (B.14)

where

νD(p) =

√
1 + p2

τp3

[
1 + Z − β 1 + 2p2

p2(1 + p2)

]
,

νp(p) =
1 + p2

τp3
,

(B.15)

and β = Te/(m0c
2). ζ1 and ζ2 are full elliptic integrals over the poloidal angle θ, that

enter into the calculation.

B.3 Full range collision operator

The collision operator is a central part of code since it is responsible for the basic physical
simulation of the electrons time evolution in the plasma. The old ARENA’s original
collision operator is based on the analytical solution to the Fokker-Planck equation in
certain limits. For too high plasma temperatures, in the order of∼ 15keV, a zero-external
electric field will not retain the Maxwell distribution for the Maxwell test. This is an
anomaly, since the Maxwell test is supposed to be contained under any circumstances
where there is no outer E-field. In the current code, the collision operator ported from
Fortran 77 is a two part expression, each valid for a span of electron energies. The
parameters are adjusted so that the operator fits together (splined) in the centre energy
region. The high energy part of the collision operator, which is derived from the general
expression for any bounce-averaged variable (B.7), reads:

C(f) =
1

p2

∂

∂p
p2

(
A(p)

∂f

∂p
+ F (p)f

)
+

2B(p)

p2
L(f) (B.16)
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The abbreviated functions A(p), B(p), F (p) are:

A(p) =
Γv2

t

cv3
, (B.17)

B(p) =
Γ

2cv

(
1 + v2

t

v4 − 1

v2

)
, (B.18)

F (p) =
Γv2

t

Tev2
, (B.19)

(note that p = mev) and

Γ =
nee

4 ln Λ

4πε0
, (B.20)

is the collision cross section v is normalised so v → γv = q, γ = 1/
√

1− v2 and v2
t =

Te/mc
2 is the thermal velocity. This formulation of the collision operator is matched

asymptotically matched to a collision operator valid for lower energy but non-relativistic
electrons.

Here is for reference the derivation for the full range collision operator used e.g. in
ANTS by Papp et al. [18]. The goal is to implement this is ARENA, but as is explained
below, the operator it is not possible to directly insert the new operator in ARENA’s
code, also see figure B.1

To begin with, the parameter functions A(p), B(p) and F (p) are rewritten to conform
to the relativistic limit. This is done by means of the Chandrasekhar function G(x)
which describes the falling friction force from Coulomb collisions as a function of particle
velocity. The parameter functions become:

A(p) =
Γv2

t

cv3
2

(
v

2c2v2
t

)2

G

(
v

vTe

)
, (B.21)

B(p) =
Γ

2cv

[
φ

(
v

2c2v2
t

)
−G

(
v

2c2v2
t

)
+ v2

t v
2

]
, (B.22)

F (p) =
Γv2

t

Tev2
2

(
v

2c2v2
t

)2

G

(
v

2c2v2
t

)
= A(p) · Tev

c
. (B.23)

Now, the collision operator 4.7 can be rewritten and for to simplify the expression, the
following parameters are introduced: q = v/

√
1− v2, the normalised momentum and

τ−1 = Γ/(m2
ec

3) is the relativistic collision time and ε = v2
t is the thermal electron speed

squared.

C(f) =

√
1 + q2

τq3

[
Zeff + Φ

(
q√

2ε(1 + q2)

)
−G

(
q√

2ε(1 + q2)

)
+ ε

q

1 + q2

]
L(f)+

1

τq2

∂

∂q

[
q2

2ε(1 + q2)
G

(
q√

2ε(1 + q2)

)[
(1 + q2)f + ε

(1 + q2)3/2

q

∂f

∂q

]]
.

(B.24)



B.3. Full range collision operator 68

Now, to implement the iterative solution by Monte Carlo, operators need to be
derived that correspond to the mean and variance required to write down the Langevin
equation B.1.

The following expressions are constructed for brevity:

J (q) =
q2

ε(1 + q2)
G

(
q√

2ε(1 + q2)

)
, (B.25)

P(q) =
ε(1 + q2)3/2

q
, (B.26)

I(q) =

√
1 + q

τq3

[
Zeff + Φ

(
q√

2ε(1 + q2)

)
−G

(
q√

2ε(1 + q2)

)
+ ε

q2

1 + q2

]
. (B.27)

Now, the moment generating function is

〈qiλj〉 =
2π

n

∫ ∫
qiλjf(q,λ)q2dqdλ, (B.28)

so
d

dt
〈qiλj〉 =

2π

n

∫ ∫
qiλjC(f)q2dqdλ, (B.29)

where n is the number of particles and λ is the pitch angle relation v||/v. Integration by
parts with f(q,λ) = δ(q − q0)δ(λ− λ0) yields:

d

dt
λ̂ = −I(q)λ̂, (B.30)

d

dt
σ̂λ

2 = I(q)(1− λ̂2), (B.31)

d

dt
q̂ =

1

τ q̂2

[
−J (q̂)(q + q̂2) +

∂

∂q̂
[I(q̂)P(q̂)]

]
, (B.32)

d

dt
σ̂q

2 =
2

τ q̂2
J (q̂)P(q̂). (B.33)

A comparison of the three collision operators considered, the ARENA two-part operator,
the ANTS operator, and the expression published in [2] is plotted in figure B.1. Note
that the ANTS operator and the published expression look similar while the ARENA
operator expressions give a smaller change in momentum ṗ for lower momenta, close to
the thermal peak pth. If the ANTS operator could be rescaled in a way similar to the
ARENA operator, it is possible that it could be incorporated into ARENA 90. Tests
were made, but the ANTS operator tended to give too large changes in momenta when
iterating. The full Fortran 90 code is listed in section C.7
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Figure B.1: A comparison of three collision operator expressions: the line where ṗ(p)
increases for small p is the high energy operator implemented in ARENA. It does not include
a dependence on the Chandrasekhar function in its definition. The ARENA operator which
has been used for simulations throughout this thesis uses the low-energy operator up to a
splining point: pspl = 3 · pth, where it is gradually replaced by the high energy expression.



C
Computer Code

A
lgorithms and code structure are discussed in this appendix. I give
some general information on Fortran code and OpenCL, then comes descrip-
tions of some of the subroutines in ARENA with comments. Then there is a
section on ARENAs inputs and their physical meaning and how data is pro-

cessed from ARENAs output. Finally the full code of ARENA’s collision operator is
included. Many of these parts felt too involved to keep in the main text, but are im-
portant for understanding the function of ARENA in detail, and are available here for
reference.

C.1 Code and compilers

ARENA is written in Fortran, a programming language. It is an old standard - the
name Fortran 77 implies that the standard was set around 1977, almost 30 years ago.
Any programming language is interpreted and compiled to computer code by a compiler
program. The compiler is created to follow a standard, like Fortran 77 or Fortran 90. If
the compiler does not support a certain feature of a computer language it is said to not
be compatible with that language. Different compilers can also offer varying performance
of the output files. So arena-intel created by the ifort compiler by Intel, might perform
differently than arena-gfortran created by the open source gfortran compiler. There
are several compilers that can be used to compile Fortran 77 and Fortran 90 code. The
pgf compiler by the Portland Group is not freely available, whereas the ifort compiler
by Intel can be used on Linux-system free of charge if the software is not used for profit.

Portability refers to the possibility of copying code from one computer to another,
running the same program. To copy ARENA, since Fortran compiles to machine code
(Java rather, compiles to byte code which can be copied to any computer running a Java
virtual Machine) it must be recompiled whenever the program is moved to a new PC.
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C.2 OpenCL code

OpenCL is a framework used to create parallel programs on computer graphics chips
which usually have multiple processor units that work with very simple logic. Very
simple logic here means that a lot of work usually needs to be done by program authors
to be able to perform any calculations. OpenCL is a new standard for writing non-
graphics applications utilising the parallel power inherit in graphics processing chips
(GPU:s). A more mature standard developed by NVIDIA is called CUDA and does the
same thing, but it is tied in with NVIDIA hardware. Although CUDA is free to use for
non-profit applications, this limits portability. To actually write a program, an API is
needed. There is a core API for calling OpenCL routines available in the C language,
and other wrapper API:s available.

To create the ARENA collision operator parallel proof of concept, I have used the
fortrancl API available from Google Code: http://code.google.com/p/fortrancl/.
The code sets up a series of tunnels to memory on the graphics chip and creates a recipe
for performing the calculation. The end results can then be read back into the main
program and output, for instance to ARENA.

1 call clGetPlatformIDs(platform, num, ierr)
2

3 ! get the device ID
4 call clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, device, num, ierr)
5

6 ! get the device name and print it
7 call clGetDeviceInfo(device, CL_DEVICE_NAME, info, ierr)
8 print*, "CL device: ", info
9

10 context = clCreateContext(platform, device, ierr)
11 command_queue = clCreateCommandQueue(context, device, ...

CL_QUEUE_PROFILING_ENABLE, ierr)
12

13 ! BUILD THE KERNEL
14 ! read program source file
15 open(unit = iunit, file = 'coll_op.cl', access='direct', status = ...

'old', action = 'read', iostat = ierr, recl = 1)
16

17 source = ''
18 irec = 1
19 do
20 read(unit = iunit, rec = irec, iostat = ierr) source(irec:irec)
21 if (ierr /= 0) exit
22 if(irec == source_length) stop 'Error: CL source file is too big'
23 irec = irec + 1
24 end do
25 close(unit = iunit)
26

27 ! create the program
28 prog = clCreateProgramWithSource(context, source, ierr)
29

http://code.google.com/p/fortrancl/
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30 ! build
31 call clBuildProgram(prog, '−cl−mad−enable', ierr)
32

33 ! finally get the kernel and release the program
34 kernel = clCreateKernel(prog, 'coll_op', ierr)
35 call clReleaseProgram(prog, ierr)
36

37 ! RUN THE KERNEL
38 ! read in the ARENA distribution AND SIZE from file
39

40 vec1 = 1.0
41 vec2 = 2.0
42

43 temperature = 1.0
44 Z_{eff} = 1.0
45 lnLam = 18
46

47 ! loop here?
48 call cpu_time(time0)
49 call system_clock(tick, clock_rate0, clock_max)
50 do k = 1,nloop
51

52 ! allocate device memory
53 cl_peps = clCreateBuffer(context,CL_MEM_READ_ONLY, size_in_bytes, ierr)
54 cl_pp = clCreateBuffer(context,CL_MEM_READ_ONLY, size_in_bytes, ierr)
55 cl_plam = clCreateBuffer(context,CL_MEM_READ_ONLY, size_in_bytes, ierr)
56 ...
57

58 cl_ppcdot = clCreateBuffer(context,CL_MEM_READ_WRITE, size_in_bytes, ...
ierr)

59 cl_pacp = clCreateBuffer(context,CL_MEM_READ_WRITE, size_in_bytes, ierr)
60 cl_plcdot = clCreateBuffer(context,CL_MEM_READ_WRITE, size_in_bytes, ...

ierr)
61 cl_paclam = clCreateBuffer(context,CL_MEM_READ_WRITE, size_in_bytes, ...

ierr)
62

63

64 ! copy data to device memory
65 call clEnqueueWriteBuffer(command_queue, cl_vec1, cl_bool(.true.), ...

0_8, size_in_bytes, vec1(1), ierr)
66 call clEnqueueWriteBuffer(command_queue, cl_vec2, cl_bool(.true.), ...

0_8, size_in_bytes, vec2(1), ierr)
67 ...
68

69 call clEnqueueWriteBuffer(command_queue, cl_peps, cl_bool(.true.), ...
0_8, size_in_bytes, peps(1), ierr)

70 call clEnqueueWriteBuffer(command_queue, cl_pp, cl_bool(.true.), ...
0_8, size_in_bytes, pp(1), ierr)

71 call clEnqueueWriteBuffer(command_queue, cl_plam, cl_bool(.true.), ...
0_8, size_in_bytes, plam(1), ierr)

72

73

74 ! set the kernel arguments
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75 call clSetKernelArg(kernel, 0, size, ierr)
76 call clSetKernelArg(kernel, 1, cl_peps, ierr)
77 call clSetKernelArg(kernel, 2, cl_pp, ierr)
78 call clSetKernelArg(kernel, 3, cl_plam, ierr)
79 call clSetKernelArg(kernel, 4, cl_I1, ierr)
80 call clSetKernelArg(kernel, 5, cl_I2, ierr)
81 call clSetKernelArg(kernel, 6, cl_ppcdot, ierr)
82 call clSetKernelArg(kernel, 7, cl_pacp, ierr)
83 call clSetKernelArg(kernel, 8, cl_plcdot, ierr)
84 call clSetKernelArg(kernel, 9, cl_paclam, ierr)
85 call clSetKernelArg(kernel, 10, temperature, ierr)
86 call clSetKernelArg(kernel, 11, Z_{eff}, ierr)
87 call clSetKernelArg(kernel, 12, lnLam, ierr) ! 13 args total
88

89

90 ! execute the kernel
91 call clEnqueueNDRangeKernel(command_queue, kernel, (/globalsize/), ...

(/localsize/), ierr)
92 call clFinish(command_queue, ierr)
93

94 ! read the resulting vector from device memory
95 call clEnqueueReadBuffer(command_queue, cl_ppcdot, ...

cl_bool(.true.), 0_8, size_in_bytes, ppcdot(1), ierr)
96 call clEnqueueReadBuffer(command_queue, cl_pacp, cl_bool(.true.), ...

0_8, size_in_bytes, pacp(1), ierr)
97 call clEnqueueReadBuffer(command_queue, cl_plcdot, ...

cl_bool(.true.), 0_8, size_in_bytes, plcdot(1), ierr)
98 call clEnqueueReadBuffer(command_queue, cl_paclam, ...

cl_bool(.true.), 0_8, size_in_bytes, paclam(1), ierr)
99

100

101 ! RELEASE EVERYTHING
102 call clReleaseKernel(kernel, ierr)
103 call clReleaseCommandQueue(command_queue, ierr)
104 call clReleaseContext(context, ierr)

C.3 More ARENA details

This section serves to describe some of the subroutines in the ARENA code, explain what
role they play and to give possible explanations to certain effects in the final output.
This does not cover all parts of the code, but act to show that we went over many major
pieces of the code with great care when developing ARENA 90.

C.3.1 Cutoff momentum p

The momentum crossover value pc acts as a limit for when to count runaway electrons
having been created. It can be defined to some large value momentum p, which should
be large enough for the electrons to act like runaways in any meaningful way, i.e. con-
tributing to the runaway current and as a seed for secondary generation runaways.
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In both versions of ARENA, there are two definitions of the limit present, and it is
unclear how they overlap, i.e. the code might very well be using one limit in one sub-
routine, and the other limit somewhere else leading to inconsistent outputs and difficult
interpretion of the results.

The first definition of the cross-over momentum pc is a multiple of the thermal mo-
mentum

pc = n · pth = n ·
√

T

mec2
, (C.1)

if the temperature measured in keV:s. This is what was used in the Kulsrud reference
paper [1] with pc = 10pth.

Another definition comes from minimising a certain expression of the braking friction
force Ff (vnorm) which is hard-coded into ARENA:

Ff (p = vnorm/c) =

(
1 +

1

p2

)(
1 +

ln p+ p0

ln Λ

)
, (C.2)

with p0 = 0.1 and ln Λ the Coulomb logarithm. This definition is also limited by an
input parameter p_norm_min which is set to p_norm_min= 2 ·10−4 as default. It is likely
that this definition is related to the critical energy level, which is the minimum of the
friction force (figure 2.2).

In figure C.1 one can see how the first definition sets a higher bar for when a test
particle should be restructured into a runaway-test particle. However, if a relevant
parameter like the input electric field is changed to be closer to the critical field Ec:
E/Ec = 50→ 10, the opposite is true. As long as the definition is the same, this should
not be a problem, still this is a possible room for error that should be considered.

Two other cut-offs are present in ARENA, they are all multiples of the thermal
momentum pth. The second is the cut-off for weighting which is controlled from the
input parameter FWB. The third is the splining of the two collision operators. Splining is
made with a logistic function 4.17 centred in x0 = 3pth, an apparently arbitrary limit.
This can be seen in figure C.1, and the function value for the high energy ARENA
collision operator to the right of this limit should not be considered.

C.4 ARENA inputs

Tables C.1 through C.4 show ARENA input parameters in the XML input file of ARENA
90, a short description of each paramter’s role and their equivalences in ARENA 77 input
where applicable. The different tables have grouped the inputs by their function in the
code, similarly to how the input parameters are groups in the input file.

C.5 Plotting ARENA output

ARENA outputs particle data at the end of each run and aggregated data for each
time-step. The particle data can also be output several times during the simulation
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Figure C.1: The two different ways of defining the cut-off for when to count a runaway elec-
tron that are present in different versions of ARENAs code. The first way uses a multiple of
the thermal momentum pth while the second minimises equation C.2 with a Newton method.
A possible issue arises if a low electric field E/Ec is chosen (and then an appropriately high
temperature to keep E/ED constant, because the ”new” definition of pc = RCPNpth gives a
too low value for the cut-off compared to the minimisation algorithm gives. A solution to
this is to choose a higher value for RCPN, but it is important to keep in mind, and possibly
these definitions should not be separate.

Table C.1: Monte Carlo main simulation parameters. These parameters control the
number of test particles and the time step length.

Parameter name Description A77

number_of_particles number of Monte Carlo test particles NPART

number_of_timesteps number of iterations for the main loop, this is
rescaled into a sub-time step dts if dt < τth(T )

NTSTEP

timestep_length dt times the number of time steps gives the sim-
ulated time

TIMEST
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Table C.2: Parameters describing the physics of the tokamak, such as the reactor size and
the B-field strength. This section contains the parameters that are mainly of interest when
running a simulation, such as the magnitude of the applied E-field as a result of the thermal
quench and the plasma bulk temperature T , etc.

Parameter name Description A77

inverse_aspect_ratio_min εmin, the start of the radial simulation
border and is used e.g. when choosing a
random position of a new particle

EPSMIN

inverse_aspect_ratio_max εmax the maximum ε which is the end of
the simulation spatial domain

EPSMAX

inverse_aspect_ratio_iron used to find the wall spatial coordinate,
used for e.g. calculating the E-field pro-
file

EPSFE

E_applied_norm2cr outer magnetic field resulting from the
thermal quench normalised to the criti-
cal E-field E/Ec

EECRAT

Z_eff Zeff =
∑

i niZ
2
i /ne is the effective

charge of the plasma. This is a mea-
sure of plasma purity where Zeff = 1 is
a pure plasma. Usually this is the input
parameter. It comes in with the calcu-
lation of β in the collision operator

ZEFF

n_bulk_elec_central central bulk electron density, this is ap-
proximately the density of the plasma in
the simulation region. see section 4.7.1
and equation 4.22

CNE0

bulk_dens_prof density profile scaling factor ≈ 1 EQUDEN

bulk_dens_prof_exp density profile exponent ≈ 1 · 10−8 EXPDEN

T_e plasma electron temperature TEMPE0

bulk_tem_prof temperature profile scaling factor ≈ 1 EQUTEM

bulk_tem_prof_exp temperature profile exponent ≈ 1 · 10−8 EXPTEM

B_0 magnetic field on the centre axis of the
circular plasma

B0

R_major major radius of the tokamak at centre
axis

RMAJOR
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Table C.3: The physics relevant program parameters such as the number of flux surfaces
over which to do calculations like the elliptic integrals for the collision operator update. Also
the parameters for changing cut-off- and weight limits reside here.

Parameter name Description A77

p_norm_max a limit for the momentum after which it is
no longer interesting to simulate this test
particle. This is mainly used for saving
computation cycles.

CPMAX

p_norm_min minimum for the test particle momentum.
This is used as an additional user input
way of determining the minimum crossover
momentum pc

CPZERO

number_of_flux_surfaces is used in various context when calculating
profiles in the simulation, e.g. the E-field
is evaluated as a function of ε = r/R at
these many positions. Should be an uneven
number!

NSURF

FWB boundary in momentum space on the mag-
netic axis. Particles with momenta below
this boundary have the weight wghtb and
those with momenta above has the weight
wghtf, normally wghtb � wghtf

FWB

RCPN scaling parameter to set the cut-off mo-
mentum, pc = RCPN · pth

RCPN

dB_per_B ∇B/B, the normalised perturbed mag-
netic field

DBBRAT

Coulomb_logarithm ln Λ is the Coulomb logarithm (section 2.1) CLNLAM

ttedec electron temperature characteristic decay
time

TTEDEC

Te_min electron temperature lower limit, to keep
electron temperature higher than 0 at all
times

TEMIN

T_e_boundary electron edge temperature for a linear elec-
tron temperature profile

TEMPEB
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Table C.4: Program execution parameters and switches. These parameters control how
the simulation is executed, i.e. what calculations and diagnostics outputs are enabled.

Parameter name Description A77

frac_init_runaways initial fraction of runaways, this is not
currently enabled in the code and is used
for diagnostics purposes. 1 is the de-
fault, though the initial fraction of run-
aways is 0, when running ARENA

FRACIN

sw_selfcons_electric_field flag for enabling self consistent E-field
calculation

-

sw_source_term flag for enabling secondary runaway gen-
eration through close collisions

-

sw_sync flag for including synchrotron radiation
losses in the simulation

-

nepsd number of flux surfaces for some diag-
nostic output

-

npd number of momenta points for diagnos-
tic output

-

NTAV width of the moving average time win-
dow for self-consistent E-field calcula-
tion

do_maxwellian_test overrides the calculation setting for ther-
mal electrons so that collision are up-
dated even for low energy particles. This
is used to do the Maxwell test (section
4.6)

-

plot_interval number of iterations after which the par-
ticles’ momenta are dumped to a file.
This allows for outputting data during
the course of the simulation

-
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Table C.5: The ARENA version refers to the different default file names of each ARENA
version. The input file of ARENA 90 is an XML file with separate sections i.e. physics,
monte carlo etc., whereas the ARENA 77 input is read by row. Distribution output is the
output at the end of the run, showing individual test-particle data.

ARENA 77 ARENA 90

input file: input.data arena input.xml

parameter output file: arena.output output initial parameters

output file: pl1.res output runaway current

time output: pl4.res output MC particles

by setting the plot_interval option in the input file to a number 6= 0 (ARENA 90).
The output files and their contents are listed in table C.5. The full particle output
from mid-simulation of ARENA 90 are stored in files named output_momenta.[0]i,
i = 0,10,20... or whatever the plot interval is set to. There are two columns in each file,
the first is the normalised momentum value p = mγv/mc for each test particle. The
second is the weight associated with each particle wb and wrw (see section 4.7.3). The
weights also scale up the particle count to actual physical electrons, i.e. wi = wi(ne =
nc · Vtorus), i = bulk, runaway. Note that the weighting has been removed in the final
draft of the ARENA code.

To plot the output graphs I used a series of MATLAB scripts to get the input-
data and output for each time step. The important parameters are the number of
runaway electrons from ARENA. This will be a fraction of the total number of test
particles, so it makes sense to plot the fraction in the output, the total number of
electrons to is the value NETOT from arena.output in the Fortran 77 code and netot

from output_initial_parameters in the ARENA 90. The time has been normalised
to thermal collision times, τth this value is TAUT in ARENA 77 and tau_thermal in
ARENA 90. My MATLAB script parses each of these initial output files to a list of
key-value pairs.

The Dreicer generation curve as a function of outer electric field E/ED was created
from the raw output data from ARENA. The slope is calculated as the maximum value
of the smoothed differentiation of the fraction of runaway electrons;

γD = max(smooth(
dnr
dt

)), (C.3)

where smooth is a smoothing function in MATLAB using an average window of ∼
50...500 The size of the windows depends on how noisy the data was. For example,
a higher electric field makes for better parameter space for ARENA, so dnr/dt when
E/ED = 0.1 is a lot less noise than for e.g. E/ED = 0.04.

Examples of the numerical derivatives to find the growth rates can be seen in figures
C.2 through C.5.
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Figure C.2: The numerical differentiation of the runaway fraction of the total number of
electrons give the Dreicer generation rate. The fraction ends up at one, where the rate then
pans out, since no more runaway electrons can be generated. This is one of the main tests
of ARENA working according to expectations. Note that the rate does not quite reach the
kulsrud numerical rate in this picture, the reason being that the total number of electrons
become runaways too quickly for the rate to saturate. Also see LUKE rates in figure 5.7.
Here E/ED = 0.10, Te = 1 keV,ne = 2 · 1019 m−3.
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Figure C.3: E/ED = 0.08, Te = 1 keV,ne = 2 · 1019 m−3, as the Dreicer rate gets lower,
the rate gets a chance to saturate, however at the same time the data output gets noisier
and the simulation takes a longer time. Note that the Kulsrud rate here is still higher than
ARENAs rate.
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Figure C.4: The Dreicer rate when E/ED = 0.06, Te = 1 keV,ne = 2 · 1019 m−3.
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Figure C.5: The Dreicer rate with E/ED = 0.04, Te = 1 keV,ne = 2 · 1019 m−3. This
data is the worst fit, which is apparent from all the noise. Unfortunately, since this is the
lowest outer electric field, it also saturates slowest, so to get a simulation throughout the
rate increasing the number of particles cannot be set too high. Hopefully a parallelised code
could speed up the process. Also see the difference to the Dreicer rate as a function of
electric field strength in figure 5.2.
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Figure C.6: The Maxwellian test works for a range of temperatures, but not arbitrary
ones. If the temperature becomes T & 25 keV the maxwellian will start to display a cusp
in the distribution. This could be related to the weighting scheme or the two-part collision
operator.

C.6 ARENA’s evolution

ARENA has been going through many iterations. Primarily the new ARENA 90 version
which has been under development during most of the time that I have written this
thesis. Some of the major changes that have been made involves removing the faulty
weighting scheme which created a too high premature runaway generation rate and a
cusp in the Maxwell preservation test - see figure C.6. The Maxwell preservation test
would not work for arbitrary temperatures. One possibility is that this is related to the
way that the collision operator consists of two expressions. From a physics point of view,
the only variable effecting the Maxwell distribution is the applied electric field, so if this
is null, the Maxwellian should be preserved regardless of other parameter settings, thus
if the test does not pass it indicates a limitation in the parameter space which ARENA
models. In the final version, the Maxwell test passes for high temperatures up to 25keV,
like in picture 5.4.

Furthermore, experiments were made with different collision operators, primarily to
try to insert the ANTS collision operator in ARENA. A rescaling issue which can be seen
in figure B.1 prevented this from being done without reformulating the ANTS operator
to ARENA’s units, which in the end, we could not do qualitatively.

Figure C.7 shows the output of ARENA 90 at different stages of the development.
The three revisions 79, 258 and 280 that are plotted show qualitatively the difference
between the long running bad version of ARENA which had faulty ”corrections” to some
strange equations form the old ARENA; the version with weighting and the version
without weighting. Only the latest version met both the Dreicer benchmark and the
Maxwell test with temperatures up to 25keV.
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Figure C.7: Plots of ARENA output for different versions. This graph shows how the
fraction of runaways has been made to correspond better to the reference LUKE output over
time. The final revision also shows much better conformance with the differentiated curve
with no factor 2 difference from revision 258.

C.7 Code example

This is a code example of the new ARENA 90 code. The Collision operator that was
discussed in section 4.4 and also ported to a C-program for the parallel computing proof
of concept is included in full.

1 module collision_operator
2 use numeric_constants
3 use globals
4 use comdis
5 implicit none
6

7 contains
8 subroutine mccoll_v1 (peps, pp, plam, pi1, pi2, ppcdot, pacp, ...

plcdot, paclam)
9 use globals

10 use comdis
11 implicit none
12 real, intent (in) :: peps, pp, plam, pi1, pi2
13 real, intent (out) :: ppcdot, pacp, plcdot, paclam
14 ! ! define real valued variables
15 ! logisv and logder were logicals in the merljin and lge ...

versions since their
16 ! first letter is 'L'. However they are integers here, because ...

Gfortran
17 ! has problems of converting real−to−logical, but can do ...

real−to−integer conversion.
18 ! This is sufficient here since their value can be in the ...
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interval [0;1],
19 ! which upon conversion will be 0 or 1, which are equialent to ...

logical
20 ! .false. or .true., so in this special case using logical or ...

integer gives
21 ! the same results
22 ! CHANGE: fixed this error by using reals.
23 real :: logisv, logder
24

25 temperature=tempe(peps) ! getting the radially dependent temperature
26 !MJ: normalised thermal velocity
27 zpth = sqrt (temperature/electron_mass_in_ev)
28 zpth2 = temperature / electron_mass_in_ev
29 ! Second definition of thermal velocity for the low−energy part ...

of the coll.op
30 zzpth = zpth * sqrt (2.0)
31 !
32 zp = pp + 1.0E−6
33 zp2 = zp * zp
34 zp3 = zp2 * zp
35 zp4 = zp3 * zp
36 !
37 zpc = 0.4 * zpth
38 zpc4 = zpc * zpc * zpc * zpc
39 zpcpa = 2.0 * zpth
40 !
41 if (zp .lt. zpcpa) then
42 zpb = zpcpa
43 zpb2 = zpcpa * zpcpa
44 zpb3 = zpb2 * zpcpa
45 zpb4 = zpb3 * zpcpa
46 else
47 zpb2 = zp * zp
48 zpb3 = zp2 * zp
49 zpb4 = zp3 * zp
50 end if
51 !
52 ztheta = 1.9563E−3 * temperature
53 !
54 zt1 = (1.0+zp2)
55 zt2 = (1.0+log(zp+1.0)/codeparams%coulomb_logarithm)
56 zt3 = zpc4 + zp4
57 zt4 = sqrt (zt1)
58 zz = ztheta * (1.0+2.0*zpb2) / (zpb2*(1.0+zpb2))
59 zz = min (zz, 1.0)
60 !
61 zbeta = 2.0 * (1.0+physparams%Z_eff−zz) * sqrt (1.0+zpb2) / zpb3 ...

* &
62 (1.0+log(zp+1.0)/codeparams%coulomb_logarithm)
63

64 znu = zt1 * zt2 / zp3
65 znu = znu * zp4 / zt3
66 zdnu = (1.0+3.0*zp2−4.0*(1.0+zp2)*zp4/zt3) / zt3
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67 !
68 ppcdot1 = − zp * znu + ztheta * &
69 & ...

(((2.0*znu/zp+zdnu)*zt4+znu*zp/zt4)*zt2+znu*zt4/((zp+1.0)*codeparams%coulomb_logarithm))
70 !
71 pacp1 = sqrt (2.0*znu*ztheta*zt4)
72 plcdot = − zbeta * (0.5*plam−pi2/pi1)
73 paclam = sqrt (2.0*zbeta*plam*pi2/pi1)
74 !
75 ! LOW ENERGY Collision Operator part for p_dot
76 zx = zp / zzpth
77 zx2 = zx * zx
78 zg = gstix (zx)
79 zzpth2 = zzpth * zzpth
80 zve = speed_of_light * zzpth / sqrt (1.0+zzpth2)
81 znuve = speed_of_light * speed_of_light * speed_of_light / ...

(zve*zve*zve)
82 exp_x2 = exp (−zx2)
83 !
84 pacp2 = sqrt (2.0*znuve*zzpth2*zg/zx)
85 ppcdot2 = znuve * zzpth * (−zg*(2.0+1.0/zx2)+1.1248*exp_x2/zx)
86 !
87 ! Calculating final components of p_dot:
88 zalpha = zp / sqrt (2*zpth2*(1+zp2))
89 zb1 = zpth2 * zt1 * zt4 / zp3
90 zb2 = zpth2 * zt1 * zt4 * gstix (zalpha) / zp
91 !
92 ! logistics function for splining together the two energy region ...

expressions:
93 logisv = logistic (zp, temperature)
94 logder = logisv * (1−logisv)
95 !
96 pacp = pacp1 * logisv + pacp2 * (1−logisv)
97 ppcdot = ppcdot1 * logisv + ppcdot2 * (1−logisv) + zb1 * logder ...

− zb2 * logder
98

99 return
100 end subroutine mccoll_v1
101

102 ! G: The Chandrasekhar function: calculate gstix(x)=(erf(x) − x * ...
erf'(x) / (2 * x**2)

103 real function gstix (x)
104 implicit none
105 real :: x,x2,exp_x2
106 x2=x*x
107 if (x .lt. 0.01) then
108 gstix = 1.1284 * (0.33333D0*x+0.2D0*x2*x)
109 else
110 if (x2 .lt. 20.0D0) then
111 gstix=psi (x, x2, exp(−x2))
112 else
113 gstix = 1.0D0 / (2.0D0*x2)
114 end if
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115 end if
116 return
117 end function gstix
118

119 ! Logistic function: CALCULATE logistic(x) = 1/(1 + exp(−(x−x0)/∆x))
120 ! x0 = centering parameter, to be set by the user
121 real function logistic (px, temperature)
122 implicit none
123 real :: px, px0, pdx, temperature
124

125 !MJ: treshold for transition between low and high energy region
126 px0 = 3 * sqrt (temperature/electron_mass_in_ev)
127 pdx = 0.1 * px0
128

129 logistic = 1 / (1+exp(−(px−px0)/pdx))
130 return
131 end function logistic
132 end module collision_operator
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