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Abstract

The gravitational instability of galactic discs has been investigated for over 50 years, and
several stability criteria have been proposed. A common approach is to consider a two-
component disc of stars and gas, where both components are treated as fluids. A more
realistic, but mathematically more complex, approach is to treat the stellar component as
collisionless, using kinetic theory. In recent years, sensitive and high-resolution observa-
tions of nearby galaxies have provided data of unprecedented value. It is then important
to assess the accuracy of those stability criteria when used for analysing such data. We
therefore perform a rigorous comparative analysis, using a full set of stability diagnostics,
of stability criteria based on the two approaches mentioned above. We find that the fluid-
fluid stability criterion has almost the same accuracy as the kinetic-fluid criterion. We also
find that, except in a small region of the parameter plane, the fluid-fluid approximation
can be reliably used for finding the wavenumber at which the disc is most unstable. Under
certain conditions, the contributions of stars and gas to the gravitational instability of
the disc can decouple. We find that these conditions only change slightly when using the
fluid-fluid approximation.
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1
Introduction

Gravitational instabilities in galactic discs were studied already in the 1960’s by Safronov
(1960) and Toomre (1964), who considered one-component discs of stars or gas. The
importance of considering discs consisting of both stars and cold interstellar gas was soon
realized by Lin & Shu (1966), who were the first to use a two-component disc model.
The threshold for such instabilities is an important stability diagnostic since it seems to
be associated to the onset of galactic scale star formation (Kennicutt, 1989; Elmegreen,
1999).

Recently, nearby galaxies have been observed with high resolution and sensitivity
in several surveys: The HI Nearby Galaxy Survey (THINGS) in which the 21-cm line
of neutral hydrogen was observed (Walter et al., 2008), the Galaxy Evolution Explorer
(GALEX) Nearby Galaxies Survey in which observations were made in the UV (Gil de Paz
et al., 2007), the Spitzer Infrared Nearby Galaxies Survey (SINGS) in which observations
were made in the IR (Kennicutt et al., 2003) and the HERA CO-Line Extragalactic Survey
(HERACLES) in which CO line emission was observed (Leroy et al., 2009). Using data
from such surveys one can, for example, study the rate of star formation (Leroy et al.,
2008), a process in which gravitational instabilities play an important part (McKee &
Ostriker, 2007; Elmegreen, 1999).

At high redshifts, observations have revealed that galaxies are richer in gas than those
in the local universe (Daddi et al., 2008, 2010; Tacconi et al., 2008, 2010). These galax-
ies are also often dominated by kpc-sized star-forming clumps (e.g. Cowie et al., 1995;
Elmegreen et al., 2004; Elmegreen & Elmegreen, 2005; Förster Schreiber et al., 2009).
Observations indicate that these clumps and the discs where they reside are subject to
gravitational instabilities (Genzel et al., 2011). With the construction of observatories
like ALMA, it will soon be possible to observe these high-redshift galaxies at higher res-
olutions.

As present and future observations can provide us with data of unprecedented value,
it is important to assess the accuracy of the approximations used in analysing such data.
In the case of gravitational instabilities, a common approximation is to regard the galactic
disc as made of two components, and to treat both gas and stars as fluids (Jog & Solomon,
1984; Bertin & Romeo, 1988; Elmegreen, 1995; Jog, 1996; Rafikov, 2001). In this thesis we
will compare instability criteria based on this approximation with a more realistic criterion
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2 CHAPTER 1. INTRODUCTION

that treats stars as a collisionless component (Rafikov, 2001). In Chap. 2, we will overview
the gravitational instability of galactic discs. A rigorous comparative analysis will then
be carried out in Chap. 3 using a full set of stability diagnostics. We will also compare a
simpler approximation, introduced by Romeo & Wiegert (2011), with the criterion based
on the kinetic-fluid approach. The main conclusions that can be drawn from the analysis
are then summarized in Chap. 4.



2
Gravitational instability of galactic
discs: overview of previous work

Real galaxies are complex systems consisting of multiple components of stars and gas. In
Sect. 2.1, we discuss the stability of a disc consisting of only one such component, either a
gaseous or a stellar one. To account for the fact that the gas behaves like a fluid while the
stellar populations are non-collisional, two different approaches to this one-component case
are used. In Sect. 2.2, the discussion is expanded to include two components, studying
the results of combining the two approaches from the one-component case.

2.1 One-component case

In both approaches, the response of a one-component axisymmetric disc is studied when
it is subjected to perturbations in its density distribution. An important result of this
study is the dispersion relation. This is an equation that relates the angular frequency, ω,
of the perturbation to its wavenumber, k. The wavenumber is in its turn related to the
wavelength like k = 2π/λ.

For the derivation of the dispersion relations, as well as a discussion of the various
approximations used, see Binney & Tremaine (2008).

2.1.1 Fluid approach

In a gaseous disc, the behavior of the system is determined by both the short-range
interparticle forces and the long-range force of gravity. Since gas is dominated by collisions,
the disc can be described as a fluid using Euler’s equation and the continuity equation,
complemented by a polytropic equation of state and Poisson’s equation.

These equations can then be used to find the dispersion relation for the gaseous disc:

ω2 = κ2 − 2πGΣ|k|+ σ2
gk

2, (2.1)

where ω is the angular frequency and k is the wavenumber of the density wave, while
κ is the epicyclic frequency, σg is the sound speed and Σ is the surface density in the
unperturbed disc.

3



4 CHAPTER 2. GRAVITATIONAL INSTABILITY OF GALACTIC DISCS

As the density perturbation is proportional to exp(−iωt), the stability of the disc is
determined by the sign of the left-hand side of this dispersion relation. If it is positive, ω
will be real, the perturbation will oscillate with frequency ω and the disc will be stable. If,
on the other hand, the left-hand side is negative, ω will be imaginary and the perturbation
will grow exponentially, rendering the disc unstable.

In the light of the above discussion on the condition of stability, the effect of the three
terms on the right-hand side of Eq. (2.1) on the disc can be understood. The first term,
κ2, which is related to the rotation, is always positive and tends to stabilize the disc. The
second term, −2πGΣ|k|, is related to the self-gravity and it is always negative, having
a destabilizing effect. The last term is due to the pressure and is again always positive,
working to stabilize the disc.

Now, for the disc to always be stable, ω2 has to be greater than zero for all wavenum-
bers. Inserting this condition into the dispersion relation (2.1) gives the following condition
for stability:

Qg ≡
κσg

πGΣ
> 1. (2.2)

This is known as Toomre’s stability criterion1.

2.1.2 Kinetic approach

In the stellar case, the fluid equations cannot in principle be used to describe the disc
since the ensamble of stars in a galactic disc is collisionless. Instead, a kinetic approach
to the problem has to be used, describing the disc with a distribution function f , where
f(x,v,t)d3xd3v describes the probability to find a randomly chosen star in the phase-space
volume d3xd3v around x and v at time t. For the unperturbed disc, a Schwarzschild dis-
tribution function is assumed. The time evolution of the distribution function is described
by the collisionless Boltzmann equation2.

Together with Poisson’s equation, these equations can be used to calculate the stellar
dispersion relation

ω2 = κ2 − 2πGΣ|k|F . (2.3)

The reduction factor F in the dispersion relation is given by

F(
ω

κ
,
σ2
?k

2

κ2
) = F(s,χ) =

2

χ
(1− s2)e−χ

∞∑
n=1

In(χ)

1− s2/n2
, (2.4)

where σ? is the radial velocity dispersion and In(χ) is a modified Bessel function.
Like in the fluid approach, a stability criterion for the stellar disc can be formulated:

Q?c ≡
κσ?

3.36GΣ
> 1. (2.5)

This Toomre criterion for the stellar disc is almost identical to the one for the fluid disc
(see fig 6.13 of Binney & Tremaine, 2008). The two differences are that π is changed to
3.36 and that the sound speed is replaced by the radial velocity dispersion.

Note, however, that for mathematical convenience the fluid approach is often used
when analysing stellar discs.

1Sometimes the Safronov-Toomre stability criterion.
2Also called the Vlasov equation.
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2.2 Two-component case

With the simpler one-component case studied in Sect. 2.1, it is now time to discuss
the case of two components coexisting in the same galactic disc, coupled through their
combined gravitational potential. The disc can then be modeled either as consisting of
two fluid components or, in the more realistic but also more mathematically complex way,
as one kinetic and one fluid component. The problem of gravitational instability in such
discs has been studied by several authors.

The first of the cases, the fluid-fluid approximation, has been studied by Jog & Solomon
(1984) [who where also the first to find its dispersion relation], Bertin & Romeo (1988),
Elmegreen (1995) and Jog (1996). The kinetic-fluid case along with its dispersion relation
was studied already by Lin & Shu (1966) [See also Lin et al. (1969)].

Relatively recently, Rafikov (2001) presented a dispersion relation for a disc composed
of gas and multiple stellar components:

2πGk
Σg

κ2 + k2σ2
g − ω2

+ 2πGk
ns∑
j=1

ΣjFj
κ2 − ω2

= 1, (2.6)

where Σg and Σj are the surface densities of the gaseous and stellar components and Fj
are the reduction factors, as in Eq. (2.4), for the different stellar components.

Apart from the dispersion relation, Rafikov also presented instability conditions for the
two-component disc in the fluid-fluid and the kinetic-fluid case. To write these conditions
in a simple form, the following dimensionless quantities can be used:

Q? =
κσ?
πGΣ?

, q =
Qg

Q?

(2.7)

K =
kσ?
κ
, s =

σg

σ?
. (2.8)

Note that Q? is different from Toomre’s stability parameter for stellar systems by a factor
of 1.07. Romeo & Wiegert (2011) used data of nearby galaxies from Leroy et al. (2008),
and found that they fall within the ranges 0.01 . s . 1 and 0.1 . q . 10. In the solar
neighbourhood, the values are found to be s ≈ 0.2 and q ≈ 0.6 (see Binney & Tremaine,
2008, p. 497).

Written using these quantities, the instability conditions are

2

Q?

K

1 +K2
+

2

Q?

1

q

Ks

1 +K2s2
> 1, (2.9)

in the fluid-fluid case and

2

Q?K
[1− e−K2

I0(K2)] +
2

Q?

1

q

Ks

1 +K2s2
> 1, (2.10)

in the kinetic-fluid case. Due to the fact that Q? is different from Toomre’s stability
parameter for stellar systems, a purely stellar disc is gravitationally unstable for Q? < 1.07
in this parametrization. If it is preferred to use the stellar Toomre parameter, this can be
accomplished by a simple reparametrization.
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3
Comparative stability analysis of

two-component discs

In this chapter, we use Eqs (2.9) and (2.10) to study some different stability diagnostics
in the s-q plane. In Sect. 3.1, we evaluate the left-hand sides of these conditions as
functions of K, the dimensionless wavenumber, for different values of the parameters
s, q and Q?. The regions where the contributions of stars and gas to the gravitational
instability decouple are then explored in Sect. 3.2. In Sect. 3.3, we study the threshold for
gravitational stability along with the error made when using the fluid-fluid approximation
for an effective stability parameter. We also make a comparison with an even simpler
approximation by Romeo & Wiegert (2011) here. In Sect. 3.4, we study the most unstable
wavenumber, along with the error made when using the fluid-fluid approximation, or a
simpler approximation, for this wavenumber. Finally, in Sect. 3.5, we compare Rafikov’s
criteria to the works of Lin & Shu (1966), Bertin & Romeo (1988), Elmegreen (1995) and
Jog (1996).

3.1 Stability curves

To understand how the parameters s, q and Q? affect the stability of the disc, we first
study the left-hand sides of the instability conditions in Eqs (2.9) and (2.10) as functions
of K. As they tell us for which wavenumbers the disc is stable, the resulting curves are
referred to as the stability curves. Keep in mind that wherever the stability curve has a
value greater than one, the disc is gravitationally unstable against perturbations with the
corresponding wavenumber.

In both of Eqs (2.9) and (2.10), the first and the second term on the left-hand side
correspond to the stellar and the gaseous component, respectively. When studied indi-
vidually as functions of K, the stellar term forms a curve peaking at a low wavenumber
while the curve of the gaseous term peaks at a higher, s-dependant, wavenumber. The
total stability curve is then a superposition of these two curves.

7



8 CHAPTER 3. COMPARATIVE STABILITY ANALYSIS

The first parameter to be studied, s, affects where the gaseous component has its
maximum, thus deciding how close together the two peaks are. For sufficiently high s the
two peaks join to form a single maximum, and when s becomes equal to one the gas and
stars act like a single component. We illustrate this in Fig. 3.1, where s is varied from
0.1 to 1.0.

Figure 3.1: Illustration of how the stability curves vary with changing s, note how the
peaks move closer and eventually join together in a single peak for the higher values of s.

The second parameter, q, affects the height of the gaseous peak relative to the stellar
one, a higher q meaning a more dominant stellar component. This is illustrated in Fig.
3.2. Note that even with the same values of s and Q? as in the first curve of Fig. 3.1, the
total curve can exhibit only one peak if one of the components is sufficiently dominant.

The final parameter that we vary is Q?, which only affects the scaling of the curves. As
is seen in Fig. 3.3, the shapes of the curves are identical, but the scaling of the left-hand
side axis changes with changing Q?.

Something that is evident in all of Figs 3.1-3.3 is that the curves describing the fluid-
fluid approximation are not very different from the ones describing the more realistic
kinetic-fluid case. The small difference that does show is mainly located around the
stellar peak. This is due to the fact that the stellar term of the kinetic case is slightly
more peaked, reaching a higher maximum value, than the one of the fluid approximation.
That is also why the error is most noticeable around the stellar peak.
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Figure 3.2: Illustration of how the stability curves vary with changing q. Compare also
with the first curve of Fig. 3.1 where q is equal to one.

Figure 3.3: Illustration of how the stability curves vary with Q?. Note that it is only the
scaling of the left-hand side axis that changes.

3.2 The condition for star-gas decoupling

We saw in Sect. 3.1 that depending on the parameters, the stability curve can have
either one or two distinct peaks. When the curve exhibits only one peak, the maximum
corresponds to a well defined wavenumber at which the disc will first encounter instability.
When, on the other hand, the curve has two distinct peaks, there are two wavenumbers
at which the instability can first set in, depending on which peak is the highest.

The region in the s-q plane where the stability curve exhibits two peaks is the same as
the two-phase region investigated by Bertin & Romeo (1988). In the left panel of Fig. 3.4
we outline this region for both the kinetic-fluid and the fluid-fluid case. The right panel
shows the same thing with the kinetic-fluid case parametrized using Q?c = κσ?/3.36GΣ?

as discussed at the end of Sect. 2.2. Note that in both panels, the two-phase region
expands in the kinetic-fluid case, but also that it is displaced downwards when using
Rafikov’s original parametrization.
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Stellar phase

Gaseous phase

Stellar phase

Gaseous phase

Figure 3.4: The two-phase regions for the fluid-fluid (RF) approximation and the more
realistic kinetic-fluid (RK) treatment. To the left, the kinetic-fluid case is treated in the same
way as by Rafikov. To the right, the stability condition for this case has been reparametrized
to use the Toomre parameter for stellar discs.

For each of the two-phase regions in Fig. 3.4 there is a special important point in
the parameter plane, by Bertin & Romeo (1988) called the triple point. This is the point
where the boundaries of the two-phase region intersect with the transition line between
the stellar and gaseous phases within the region. The nature of the triple point leads to
a single very flat maximum of the stability curve for the parameters in question.

We have listed the coordinates of the triple point in the parameter plane in Table 3.1,
together with the stability threshold and the least stable wavenumber at these coordinates.
The last two quantities are examples of important diagnostics which are discussed further
in Sects 3.3 and 3.4.

Table 3.1: Location of the triple point in the s-q plane and the stability threshold Q and
least stable wavenumber Kmax at these coordinates.

Case s0 q0 Q0 Kmax0

Fluid-fluid 0.17 1.00 1.4 1.9

Kinetic-fluid 0.21 0.88 1.6 2.4

Kinetic-fluid(corr) 0.21 0.94 1.5 2.5
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3.3 The stability threshold

From the instability conditions in Eqs (2.9) and (2.10) we see that the disc is gravitation-
ally stable at all wavenumbers if the value of the stability curve is always less than one.
Thus, we can define effective stability parameters which have values higher or lower than
one for stable or unstable discs, respectively, like

1

QRF

= max
K

(
2

Q?

K

1 +K2
+

2

Q?

1

q

Ks

1 +K2s2

)
, (3.1)

in the fluid-fluid approximation and

1

QRK

= max
K

(
2

Q?K

[
1− e−K2

I0(K2)
]

+
2

Q?

1

q

Ks

1 +K2s2

)
, (3.2)

in the kinetic-fluid case.
We can rewrite these effective stability parameters as

Qeff =
Q?

Q
(3.3)

where Q is the stability threshold above which the disc is stable and Qeff is the effective
stability parameter. We show the contour lines of these stability thresholds in the fluid-
fluid approximation and the kinetic-fluid case in the left panel of Fig. 3.5. In the right
panel, we have reparametrized the kinetic-fluid case as described in the end of Sect. 2.2.
For the three first contours in both panels, the transition from the gaseous to the stellar
phase within the two-phase region is apparent.

As the stability threshold varies slowly in the upper part of the s-q plane, even a small
difference will show up as a large displacement of the contour lines. In the left panel of
Fig. 3.5, this leads to large discrepancies between the contours of the approximation and
the kinetic-fluid case, even though the quantitative differences are small.

A better way to visualize the quantitative accuracy is to use the relative error of the
two cases, (QRF − QRK)/QRK. In this case it is equal to the relative error of the inverse
stability threshold (1/QRF − 1/QRK) · QRK. This is displayed in Fig. 3.6 where we can
see that the maximum error actually is less than 7%. As usual, the right panel shows the
same thing but with a reparametrization. From this figure it is evident that the fluid-
fluid approximation fits better when we compare it to the reparametrized kinetic-fluid
case. Not only is the absolute maximum error less, the larger errors are also confined to a
smaller region in the s-q plane. Note also that the error when we do the reparametrization
is always negative, while the error when we use original parametrization changes sign in
a small region around the triple-point.

From the above analysis, it is evident that the fluid-fluid approximation works well for
most values of the parameters s and q, especially when compared to the reparametrized
kinetic-fluid case. An even simpler, approximate, form of the effective stability parameter
in the fluid-fluid case was suggested by Romeo & Wiegert (2011). They also showed that
the relative error when using their approximation instead of the real fluid-fluid approxi-
mation is always less than 9%.
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Figure 3.5: Contour lines of the stability thresholds Q in the fluid-fluid approximation and
the kinetic-fluid case. To the right, the kinetic-fluid case is parametrized using the stellar
Toomre parameter. Note the abrupt change in slope as the lines pass the transition line
between the gaseous and stellar phases within the two-phase region.

Figure 3.6: Contour lines of the relative error (QRF − QRK)/QRK, in the right panel the
kinetic-fluid case is reparametrized as discussed in the end of Sect. 2.2. In both panels the
image is superimposed on the two-phase region of the kinetic-fluid case.
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The Romeo-Wiegert approximation is defined as follows:

1

Q
=


W (s)

Q?

+
1

Q?

1

q
if q ≤ 1 ,

1

Q?

+
W (s)

Q?

1

q
if q ≥ 1 ,

(3.4)

where W (s) is defined as

W (s) =
2s

1 + s2
. (3.5)

In Fig. 3.7, contour lines of the stability threshold calculated from this approximation
are shown together with the ones of the kinetic-fluid case, both the original and the
reparametrized one.

Figure 3.7: Contour lines of the stability thresholds Q in the Romeo-Wiegert approxima-
tion and the kinetic-fluid case. To the right, we have reparametrized the kinetic-fluid case
as described in the end of Sect. 2.2.

The relative error of the Romeo-Wiegert approximation against the kinetic fluid case
is shown in the left panel of Fig. 3.8. In the right panel, we show the same thing with
the the kinetic-fluid case reparametrized. The maximum error when compared to the
reparametrized case is actually smaller, 6% against 9%, than the one Romeo & Wiegert
found when comparing with the fluid-fluid approximation.
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Figure 3.8: Contour lines of the relative error of the Romeo-Wiegert approximation against
the kinetic-fluid case, in the right panel the latter is again reparametrized. In both panels
the image is superimposed on the two-phase region of the kinetic-fluid case.

3.4 The most unstable wavenumber

Another important stability diagnostic is the most unstable wavenumber, the wavenumber
at which ω2(k) is at its minimum. At the stability threshold, this is the same as the
wavenumber that maximizes the stability curve, Kmax. Contours of Kmax in both the
fluid-fluid approximation and the kinetic-fluid case are illustrated in Fig. 3.9. In the
upper, star-dominated, region of the parameter plane Kmax varies slowly, so even though
the contours of the two cases are far away from each other, the quantitative error is not
large.

The relative error (Kmax,RF − Kmax,RK)/Kmax,RK of the least stable wavenumber in
the fluid-fluid approximation is shown in Fig. 3.10. Here we see that the fluid-fluid
approximation works reasonably well almost everywhere in the parameter plane, it only
starts to deteriorate close to the triple-point. There is also a very tight region, surrounding
the transition line inside the two-phase region, where the error in Kmax is larger than
100%. This is because the phase change occurs at different q in the two cases [see Fig.
3.4], meaning that in this region the two cases are dominated by different components.
In the fluid-fluid case the gaseous peak is the highest, while in the kinetic-fluid case the
stellar peak, at a much lower wavenumber, is higher. With the reparametrization, the
transition lines of the two cases are closer, making the region of large error much smaller.
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Figure 3.9: The least stable wavenumber at the stability threshold, both the fluid-fluid ap-
proximation and the kinetic-fluid case. To the right, we have applied the reparametrization
of Sect. 2.2 to the kinetic-fluid case.

Figure 3.10: The relative error of Kmax in the fluid-fluid approximation, note how the error
goes above 100% around the transition line in the two-phase region. In the right panel, the
kinetic-fluid case has been reparametrized as discussed in the end of Sect. 2.2. With this
reparametrization, the region of very large error is much smaller.
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The stability curves, i.e. the left-hand sides of Eqs (2.9) and (2.10), both consist of
two terms, each with its own distinct maximum. Guided by this form, we can construct
a simple approximation for Kmax by using the wavenumber that maximizes the dominant
term. If we take q = 1 to be the transition line between gas- and stellar domination, the
approximation is:

Kmax,app =


1

s
if q < 1 ,

1 if q > 1 .

(3.6)

The Kmax from this approximation are shown, together with the ones from the kinetic-fluid
treatment, in Fig. 3.11. Again, in the upper, star-dominated, region of the parameter
plane Kmax varies slowly and is always close to one. Setting Kmax,app to one in this
region therefore produces no large quantitative errors, even though it cannot reproduce
the qualitative behaviour of Kmax.

Figure 3.11: The approximation of Kmax together with Kmax from the kinetic-fluid case.
To the right, the kinetic-fluid case is reparametrized as discussed at the end of Sect. 2.2.
The only difference that comes out of this is a vertical displacement of the contours.

In Fig. 3.12 we show the relative error, (Kmax,app −Kmax,RK)/Kmax,RK, of the approx-
imate Kmax. There we see that the approximation works fairly good everywhere except
close to the triple-point. Like in the fluid-fluid approximation, there is again a tight re-
gion around the transition line in the two-phase region where the error is much larger
than 100%. Because the real Kmax is always in between the maxima of the two single
components, the approximation is underestimating Kmax for q > 1 and overestimating it
for q < 1.
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Figure 3.12: The relative error of Kmax from the simple approximation in Eq. (3.6), note
how the error again goes above 100% around the transition line in the two-phase region. To
the right, we have applied the reparametrization of Sect. 2.2 to the kinetic-fluid case. Here
the region of very large error is again much smaller.

Finally, if we use this approximation for Kmax in Eq. (3.1) for the effective stability
parameter, we obtain the Romeo-Wiegert approximation of Eq. (3.4) in a new way.
Comparing Figs 3.12 and 3.8 we see that even though the error of the approximate Kmax

can be very large, the error in the effective stability parameter obtained using it never
exceeds 10%.

3.5 Comparison between various stability criteria

Over the years, a variety of stability criteria has been presented by different authors. In
this section, we compare the stability thresholds found in section 3.3 with those found by
analysing the works of Lin & Shu (1966) in the kinetic-fluid case, and Bertin & Romeo
(1988), Elmegreen (1995) and Jog (1996) in the fluid-fluid approximation.

Although these criteria all look different from each other, they are actually based on
the same dispersion relation and should prove to be the same when compared. In the
literature, there has been no such comparison between stability criteria so far, so we make
it here.

In Sects 3.5.1-3.5.4 we compare the criteria in detail. This comparison is summarized
in Fig. 3.13 where we see that, where they are defined, the stability thresholds agree with
the ones of Rafikov from Sect. 3.3.
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Lin & Shu (1966) Bertin & Romeo (1988)

Elmegreen (1995) Jog (1996)

Figure 3.13: Contours of the stability thresholds discussed in Sects 3.5.1-3.5.4 vs. those
of Rafikov (2001).
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3.5.1 Lin & Shu (1966)

Lin & Shu (1966) found the dispersion relation in the kinetic-fluid case and wrote it like:

|k| = κ2 − ω2

2πG[ΣgFν,g(xg) + Σ?Fν(x)]
, (3.7)

where ν = ω/κ, x = k2σ2
?/κ

2(= K2) and xg = k2σ2
g/κ

2(= K2s2). In parentheses, the
quantities are expressed using our parameters as defined in Eqs (2.7) and (2.8). The
reduction factor for the stars, Fν(x), is given by

Fν(x) =
1− ν2

x

(
1− νπ

sin νπ
· 1

2π

∫ π

−π
e−x(1+cos s) cos νs ds

)
. (3.8)

The reduction factor for the gas is not a part of their original dispersion relation, but they
state that it has to be included to get realistic results. As they don’t supply it, we use
the one of a later paper (Lin et al., 1969):

Fν,g(xg) =
1

1 + xg/(1− ν2)
. (3.9)

When we combine Eqs (3.7)-(3.9), set ω2 = 0 and find the maximum value of Q?

which is able to satisfy the equation, we obtain the stability thresholds illustrated in the
upper left panel of Fig. 3.13. There we see that these stability thresholds agree with the
ones of Rafikov’s kinetic-fluid case. Because of the integral that has to be evaluated every
iteration, they are, however, slower to compute than the ones of Rafikov.

3.5.2 Bertin & Romeo (1988)

In their paper, Bertin & Romeo (1988) define a marginal stability curve in the (λ,Q2
?)-

plane as

MSC(λ) =

(
2λ

β

)
·
[
(α + β)− λ(1 + β)

+

√
λ

2
(1− β)2 − 2λ(1− β)(α− β) + (α + β)2

]
,

(3.10)

where α = Σg/Σ?(= s/q), β = σ2
g/σ

2
?(= s2) and λ is a dimensionless wavelength. This

marginal stability curve constitutes the border between stability and instability. Wherever
the value of Q2

? is above the curve, the disc is stable. To find the stability threshold, we
maximize the curve and take the square root of the maximum value. The result of this
process is shown in the upper right panel of Fig. 3.13, where we see that the stability
thresholds are identical to the ones of Rafikov’s fluid-fluid case.
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3.5.3 Elmegreen (1995)

Elmegreen (1995) defines the effective stability parameter as

Q2
Elm =

Q2
A

Kmin[1 + (1 + C)1/2]−K2
min]

(3.11)

where QA is given by

QA =
κ
√
σ2
? + σ2

g√
2πG(Σ? + Σg)

= Q?

√
1
2
(1 + s2)

1 + s
q

 , (3.12)

and C is given by

C =
1

4

(
k(σ2

? − σ2
g)

πG(Σ? + Σg)

)2

− Σ? − Σg

Σ? + Σg

(
k(σ2

? − σ2
g)

πG(Σ? + Σg)

)
(

=

(
K1− s2

1 + s2

)2

−
1− s

q

1 + s
q

(
K1− s2

1 + s2

))
.

(3.13)

The dimensionless wavenumber K is defined as

K =
k(σ2

? + σ2
g)

2πG(Σ? + Σg)

(
=
KQ?

2

1 + s2

1 + s
q

)
, (3.14)

and Kmin, the K that minimizes ω2(k), is found analytically by Elmegreen. The analytical
expression for Kmin returns the correct value as long as ω2(k) only has one minimum, but
when there are two minima present it will not always return the smallest one. From Sect.
3.2 we know that inside the two-phase region of Bertin & Romeo (1988) there are two
minima. This entirely analytical expression can thus only be trusted outside the two-phase
region, or when we know that the smallest minimum is found.

As QElm is a purely analytical parameter, the stability thresholds of Elmegreen are
faster to compute than the other fluid-fluid stability thresholds, in which a minimum or
maximum must be found numerically. The drawback is of course that it is not valid in
the whole s-q plane.

In the lower left panel of Fig. 3.13, we show the contours of the stability threshold
calculated from this effective stability parameter. Besides the region where we know that
the effective stability parameter is valid, we have also included the results from inside
the two-phase region. We see that the contours of the stability threshold found from
Elmegreen (1995) agree with those found from Eq. (3.1) everywhere except in the stellar
phase of the two-phase region.
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3.5.4 Jog (1996)

The last comparison is made with the stability thresholds computed from Jog (1996). She
defines the effective stability parameter as

1

1 + (QJog)2
=

1− ε
ls−g{1 + [Q2

?(1− ε)2]/(l2s−g4)}
+

ε

ls−g[1 +Q2
gε

2/(l2s−g4)]
, (3.15)

where ε is given by

ε =
Σg

Σ? + Σg

(
=

1

1 + q
s

)
, (3.16)

and ls−g is the dimensionless least stable wavelength, a quantity that has to be found
numerically by minimizing the dispersion relation.

As this effective stability parameter cannot be written on the simple form QJog = Q?/Q
we have to find the stability threshold by numerically computing the value of Q? at which
the disc is marginally stable. The contours of this threshold are shown in the lower right
panel of Fig. 3.13, where we see that they coincide with the ones of Rafikov’s fluid-fluid
case.
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4
Conclusions

In this thesis, we have compared two instability criteria, introduced by Rafikov (2001), for
two-component galactic discs consisting of stars and gas. The first of these criteria is based
on a fluid-fluid approximation, where both stars and gas are treated as fluids, while the
other one is based on a more realistic kinetic-fluid approach, where stars are treated as a
collisionless component. We have analysed various stability diagnostics: the condition for
star-gas decoupling, the stability threshold and the most unstable wavenumber. We have
also compared the kinetic-fluid stability threshold with a simple approximation introduced
by Romeo & Wiegert (2011). Finally, we have compared Rafikov’s stability thresholds
with those found by other authors (Lin & Shu, 1966; Bertin & Romeo, 1988; Elmegreen,
1995; Jog, 1996).

From this comparison, we draw the following main conclusions:

• The region where stars and gas decouple is slightly larger in the kinetic-fluid case
than in the fluid-fluid approximation. The most affected part is the gaseous phase,
i.e. where the gas dominates the onset of gravitational instability in the disc. Al-
though the difference is not large, it can be important in places where the parameter
values are close to the boundary of the region.

• The fluid-fluid approximation is able to reproduce the qualitative behaviour of the
stability threshold. The relative error of the effective stability parameter is never
larger than 7%. The simpler approximation by Romeo & Wiegert (2011) also works
well when compared to the kinetic-fluid case: the relative error is never above 10%
and it is always positive.

• Concerning the most unstable wavenumber, the fluid-fluid approximation performs
well in most of the parameter plane. There is however a tight region, around the
transition between the stellar and gaseous phases, where the approximation breaks
down and the error gets very large.

• The fluid-fluid stability thresholds of Bertin & Romeo (1988), Elmegreen (1995) and
Jog (1996) are all identical to those of Rafikov. The same is true for the kinetic-fluid
stability threshold of Lin & Shu (1966).

23
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Possible future work includes the extension of the approximation proposed by Romeo
& Wiegert (2011) to include N-component discs, as well as application to data of nearby
galaxies.
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