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Abstract

This master’s thesis carried out at the CSTB establishment in Grenoble (France) focuses
on nonlinear effects in sound propagation. This restrict the kind of signals considered
to high amplitude waves, usually higher than 100 Pa (134 dB re 20 µPa). Such acoustic
pressures can come from sonic boom, gunshots or explosion waves. Nonlinearities in
sound propagation will be responsible for wave signature modifications and the need
to know exactly in which way the signal will change can be crucial in some applica-
tions, for example in the frame of military surveillance, or to study buildings response
to blast wave. A time-domain numerical method that allows to simulate nonlinear
propagation in a realistic environment is described and the validation of results is pre-
sented. The model established is then used to study the propagation of a blast wave.
This case study is inspired from the explosion of a chemical warehouse that happened
in the city of Toulouse (south-west of France) in September 2001. The last part of this
master’s thesis states a methodology that allows to couple different numerical models.
This can be interesting for instance for using boundary element methods to study pro-
tection screen efficiency.

Keywords: nonlinear acoustics, outdoor sound propagation, long-range sound propa-
gation, finite differences, explosion, blast wave, shock, N-wave.

CHALMERS, Master’s Thesis 2007:13 iii



iv CHALMERS, Master’s Thesis 2007:13



Contents

Abstract iii

Contents iii

Acknowledgements vii

1. Introduction 1

1.1. CSTB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3. Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. Nonlinear outdoor sound propagation 5

2.1. Geometrical spreading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2. Atmospherical absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3. Features due to the ground . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1. Path-length differences (PLD) . . . . . . . . . . . . . . . . . . . . . 7
2.3.2. Ground impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4. Meteorological effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.1. Relevant meteorological phenomena . . . . . . . . . . . . . . . . . 9
2.4.2. Refraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5. Nonlinear acoustics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.1. Wave equations of nonlinear acoustics . . . . . . . . . . . . . . . . 14

3. Computational method 17

3.1. State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.1. General time domain algorithm . . . . . . . . . . . . . . . . . . . 18
3.1.2. Time domain algorithm based on the NPE . . . . . . . . . . . . . 19

3.2. The nonlinear progressive wave equation . . . . . . . . . . . . . . . . . . 20
3.2.1. Derivation and original formulation . . . . . . . . . . . . . . . . . 21
3.2.2. Cylindrical coordinates formulation . . . . . . . . . . . . . . . . . 24
3.2.3. High-angle formulation . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.4. Thermoviscous effects . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3. Implementation of the NPE . . . . . . . . . . . . . . . . . . . . . . . . . . 26

v



3.3.1. Operator splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.2. Nonlinear effects and refraction . . . . . . . . . . . . . . . . . . . 27
3.3.3. Cylindrical decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.4. Thermoviscous effects . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.5. Diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.6. Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4. Numerical considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4. Model validation 37

4.1. Nonlinear effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1.1. Fubini’s solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2. Complex linear case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.1. ATMOS sound propagation code . . . . . . . . . . . . . . . . . . . 38
4.2.2. Coupling with ATMOS . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5. Case study 47

5.1. Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3. Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4. Prediction model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4.1. Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.4.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6. Conclusion and perspectives 59

6.1. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2. Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Bibliography 61

Appendix 65

A. Crank-Nicolson scheme and Thomas algorithm 67

B. User interface to the NPE propagation code 69

vi CHALMERS, Master’s Thesis 2007:13



Acknowledgements

I would like to first thank my advisors, Jérôme Defrance and Philippe Jean, for support-
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1. Introduction

Environmental noise, including sounds from road/rail/air traffic, industries, construc-
tion, public work, and the neighbourhood, is often the main cause of environmental
distress in terms of the number of complaints received. Research has been carried out
in the area of environmental acoustics, including noise propagation prediction, noise
control techniques, as well as psychological, physiological, social and economic effects
of community noise.

This master’s thesis carried out at the CSTB establishment in Grenoble (France) fo-
cuses on nonlinear effects in sound propagation. This restrict the kind of signals con-
sidered to high amplitude waves, usually higher than 100 Pa (134 dB re 20 µPa). Such
acoustic pressures can come from sonic boom, gunshots or explosion waves. Nonlin-
earities in sound propagation will be responsible for wave signature modifications and
the need to know exactly in which way the signal will change can be crucial in some
applications, for example in the frame of military surveillance, or to study buildings
response to blast wave. Nonlinear acoustics is a young discipline which interest arose
with the apparition of high amplitude waves generators (jet noise, explosions). As a
result different models, theoretical and numerical, have been developed during the last
two decades to provide simulation tools. The ability to study and understand non-
linear propagation has become of great importance, especially for military (explosion
surveillance, detection) and civil (buildings response) applications.

1.1. CSTB

This master’s thesis has been carried out in the CSTB establishment of Grenoble (France)
from early july to december 2007. CSTB carries out research into a broad range of dis-
ciplines and technologies in every field of construction, including the urban environ-
ment, health, communications, economics and sociology. The research furthers public
policies and makes it possible to develop skills and showcase French engineering in
major international projects. In addition to carrying out the basic research required
to improve fundamental knowledge, the research teams focus on structural themes
and transversal projects. These themes highlight not only problems relating to risks
and sustainable development, but also the tools and applications of information and
communication technologies. They respond to trends in construction-related trades

1



towards more management and renovation of real property, in particular via specific
multi-disciplinary procedures.

Three main priorities:

• Sustainable development (environmental quality, energy, health). The aim is to
provide both public authorities and professionals with the technical, economic
and sociological skills required for the elaboration of evaluation methods, decision-
making tools, design rules, etc. A large proportion of the work relates to the en-
ergy efficiency of buildings with a view to stronger thermal regulations.

• Safety and risks. Strengthening research potential into risks relating to buildings,
urban environments and climate change is a response to increasing demand from
society.

• Applications and uses of new information and communication technologies (NICTs).
This research deals with data processing, the modelling of project information,
the management of information flows for the construction sector and property
management.

Three transversal projects:

• The virtual laboratory. This project involves the development of simulation tools
composed of a range of intercommunicating software and databases, thus making
it possible to analyse the performance of building components or parts of building
structures.

• The enriched virtual environments platform. This project aims to develop tools to
assist in the design of architectural and urban projects and evaluate their perfor-
mance. It will lead to the development of innovative methods to assist in decision-
making (virtual models which can be used for public inquiries), design (cooper-
ative work based on virtual models), or to carry out complex projects (visits to
virtual construction sites), etc.

• Existing buildings. The work aims to develop skills relating either to assistance
for major contracting authorities and managers of large building stocks or for
complex operations. CSTB plays a very active role in EU and international re-
search projects. In addition to its cooperative activities, it submits new research
directions to networks to which it belongs, and rallies the most effective orga-
nizations to these projects. CSTB chairs several committees in various research
networks relating to construction.

To accelerate research processes and broaden the international spectrum of skills, CSTB
is developing an active policy of partnerships and exchanges with foreign universities
and research centres.

2 CHALMERS, Master’s Thesis 2007:13



1.2. Goals

Numerical codes previously developed at the CSTB don’t include nonlinear effects.
The main goal of this research period is to develop a tool for nonlinear outdoor sound
propagation, so that the propagation of high amplitude waves in a realistic environ-
ment can be simulated. The results of such developments can be used for military
applications: target detection or nuclear activity monitoring. Another aim is to pro-
vide a tool that allows to be used as an input to other methods: the calculation of time
signals at a building frontage can be used to study the structure dynamic response to
shock wave excitation. Boundary element methods could also be used to design pro-
tections to buildings or sensitive structures. A methodology has then to be developed
to accomplish this coupling between numerical methods in an efficient way.

1.3. Content

Chapter 2 is a review of most areas of nonlinear outdoor sound propagation that are of
interest for the control of community noise and/or environmental acoustics. Because
the field is so diffuse only the dominant mechanisms are presented. Sections 2.1 to 2.4
present basic principles of wave propagation in a complex environment while section
2.5 introduces the basic principles and fundamental equations of nonlinear acoustics.

Chapter 3 describe the selected numerical model. First a brief state of the art is given
in section 3.1 and the choice of the numerical method is explained. Section 3.2 gives in-
depth explainations of the governing equations, which implementations are described
in section 3.3.

Chapter 4 presents the model validation process. The validation is done in two steps:
first nonlinear effects calculations are assessed (section 4.1) and then linear propagation
results are compared to another (linear) wave propagation code (section 4.2).

The last chapter (chapter 5) uses all the results obtained to analyze the propagation of
a blast wave. A chemical factory called AZF exploded in september 2001 causing many
injured and damages in the city of Toulouse (south-west of France). A study performed
at the CSTB in 2002 is recast with nonlinear effects included in the model. The coupling
of the developed method with a different numerical model is then examined in sec-
tion 5.3. This work on combining several methods emphasized the need to know when
nonlinear effects can be neglected in wave propagation. A simple prediction model
is developed and described in section 5.4. Finally, conclusion and perspectives to the
work accomplished are given in chapter 6.

CHALMERS, Master’s Thesis 2007:13 3
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2. Nonlinear outdoor sound propagation

This chapter is a review of most areas of sound propagation outdoors that are of in-
terest for the control of community noise and/or environmental acoustics. Because
the field is so diffuse only the dominant mechanisms will be presented here; more de-
tailed information can be found in articles by Embleton [16], Piercy [45] or Ingård [23].
The first two areas covered in this chapter are geometrical spreading (section 2.1) and
atmospherical absorption (section 2.2). Together, these are the dominant mechanisms
determining the sound levels in sound propagation outdoors. The ground effects are
treated in section 2.3 and the meteorological effects in section 2.4. The latter (section
2.5) includes a brief description of nonlinear acoustics and special phenomena, such as
wave steepening and shock wave formation, and also presents the main model equa-
tions used in nonlinear acoustics.

2.1. Geometrical spreading

Waves spread in three dimensions when the sound source is small compared to the
distances being considered. The resulting attenuation depends on the propagation dis-
tance, and is frequency independant. For a spherical sound source in an homogenous
medium in free field, the acoustic power is uniformly spread on a spherical wavefront.
The wavefront area being proportional to the square of the sphere radius, the acous-
tic intensity decays by 1/R and the acoustic pressure by 1/R2. At twice the distance
from the source, the wavefront area is four times as large, and sound pressure levels
decrease by 6 dB. Each time the distance is doubled, the sound pressure levels decrease
by 6 dB. Sound waves spread cylindrically from a line of sources which are all similar
but radiate independently. The area of the cylindrical wavefront is proportional to the
distance, the sound pressure level thus decreases by 3 dB per doubling of distance, at
half the rate of spherical spreading (see Figure 2.1).

2.2. Atmospherical absorption

Atmospheric absorption is a feature of wave propagation that is always present in out-
door sound propagation. Although it may be neglected in some applications, this phe-
nomena has to be carrefully taken care of in long-rangepropagation. The global absorp-
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Figure 2.1.: Schematic diagram for cylindrical spreading. Area A of cylindrical wave-
fronts is proportional to the distance d from the line of sources, A2 = 2A1

when d2 = 2d1. Sound pressure levels decrease by 3 dB per doubling of
distance. This Figure is taken from Piercy [45].

tion phenomenum is mainly due to three physical effects:

• Classical absorption caused by the transport processes of classical physics (shear
viscosity, thermal conductivity, mass diffusion and thermal diffusion).

• Rotational relaxation of molecules in air.

• Vibrational relaxation of molecules of oxygen and nitrogen.

The atmospherical absorption due to the different physical effects is shown on Figure
2.2. Note that the attenuation by absorption is constant for a given difference in propa-
gation path lengths unlike geometrical spreading, where it is constant for a given ratio
of propagation path lengths. Thus attenuation tends to be more and more important
with increasing distance between source and receiver. This Figure also shows the fre-
quency dependency of the absorption coefficient: the sound attenuation is more and
more important as the freqency increases; only low frequency noise are able to propa-
gate through large distances.

2.3. Features due to the ground

In this section the different roles of the ground in sound propagation are detailed. First
the case of sound reflexions on a flat, rigid ground and the resulting interference pat-
tern is detailed (section 2.3.1). The second section (section 2.3.2) deals with the case
of non-rigid ground; different impedance models are quickly reviewed. Propagation
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Figure 2.2.: Atmosheric absorption in dB/100 m for a pressure of 1 atm, temperature of
20 ◦C and relative humidity of 70 %. This Figure is taken from Piercy [45].

through city streets, attenuation due to barriers and in general, propagation over ter-
rain with complex topography are excluded; these subjects would require a lot of time
to be treated in detail.

2.3.1. Path-length differences (PLD)

When both the source and receiver are above the ground a phase change occurs due
to the different lengths of direct and reflected waves paths. This phase change occurs
in addition to the change due to the ground characteristic, but we’ll consider here the
ground totally rigid so that PLD effects can be studied (see Figure 2.3 for a schematic
of the configuration). Provided the grazing angle ψ is small, the path-length difference
between direct and reflected wave can be calculated with the formula:

PLD ≈ 2hshr/d

The effect of path-length difference is a cancellation of pressure at the receiver for PLD’s
of an odd numbers of half-wavelengths. Some examples of measured excess attenua-
tion spectra are shown in Figure 2.4.

2.3.2. Ground impedance

The reflection coefficient for a plane wave on a locally reacting surface is:

Rp =
sin(ψ)− Z1/Z2

sin(ψ) + Z1/Z2

CHALMERS, Master’s Thesis 2007:13 7



Figure 2.3.: Reflection of sound on a flat ground. This Figure is taken from Piercy [45].

Figure 2.4.: Measured excess atenuation for propagation from a point source over as-
phalt, hs = 0.3 m, hr = 1.2. This Figure is taken from Piercy [45].
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where ψ is the grazing angle, Z1 = ρc is the characteristic impedance of air and Z2 is
the acoustic impedance of the surface. The acoustic characteristics of a locally reacting
surface may be represented by its acoustical impedance Z2 = R2 + jX2. This impedance
value may depend on the frequency but not on the grazing angle. The hypothesis of a
locally reacting ground has been proven to be valid for most of the surface used in out-
door sound propagation (see for example the article by Attenborough [4] or the book by
Salomons [49]). Attenborough, Bérengier, Delany and Bazley, Biot or Allard developed
different impedance models which validity depends on the frequency and the material
considered. They are based on different theoretical models and differ by their complex-
ity. The Delany and Bazley model is presented here; it is an empirical model that allow
to model absorbing fibrous materials. The expression of the normalized impedance for
a material of flow resistivity σ is:

Z2 = 1 + 9.8
(

f
σ

)−0.75

+ j11.9
(

f
σ

)−0.73

Although this model is simple –the impedance only depends on the frequency and the
flow resistivity– it has been shown that the results obtained are in good agreement with
the measurements. This model is commonly used in outdoor sound propagation. Note
that for low frequencies, the ground impedance absolute value becomes very high and
thus, the reflection coefficient is close to unity (rigid ground).

2.4. Meteorological effects

In this section the meteorological conditions usually encountered in outdoor sound
propagation are described (section 2.4.1) and their effects on wave propagation is de-
tailed in section 2.4.2.

2.4.1. Relevant meteorological phenomena

The complete meteorological description of an environment is a complex task: a lot
of quantities such as temperature, wind velocity, air density, air pressure, turbulences,
intervene in this description. These values are obviously not independant and most of
the time vary in time and space. Taking into account all of these parameters in a numer-
ical model is a work that can’t be done here. Nevertheless, from an acoustician point
of view, we can denote two dominant parameters that will modify sound propagation
paths: wind speed and temperature gradients. These two quantities locally affect the
effective sound celerity and thus change the way sound propagates.

CHALMERS, Master’s Thesis 2007:13 9



Temperature gradients

During the daytime the variation of temperature with height for a large flat area may
be represented by the expression:

T = T0 − Kt log (z/z0) (2.1)

where T0 is the temprature for z 6 z0. During night the ground surface will cool due
to radiation to the air. This phenomena is known as an inversion; examples of such
temperature profiles are shown in Figure 2.5.

Figure 2.5.: Variation of temperature; examples of lapse and inversion conditions. This
Figure is taken from Munn [41].

Wind velocity gradients

Wind velocity is a three-dimensional vectorial quantity difficult to represent due to its
spatial and temporal instability. The variation of the average windspeed V with height
z in the vicinity of the ground for a flat area is approximately as shown in Figure 2.6.
This speed profile may be represented with a logarithmic law; for altitudes greater than
z0 the wind speed can be expressed by:

V = Kv log (z/z0) (2.2)

Parameter z0 is determined by the roughness of the surface, and is often approximately
the height of a consistent obstacle. The constant Kv is determined by the roughness

10 CHALMERS, Master’s Thesis 2007:13



of the surface and the wind velocity above this layer. If we neglect the vertical com-
ponent of the wind speed (which is often very small in comparison to the horizontal
component), we can write the sound speed with the following formula:

c(x, z) = c0+ ‖
−−−−→
V(x, z) ‖≈ c0 + Vx

Figure 2.6.: Variation of wind velocity and temperature in the vicinity of a flat ground
surface. This Figure is taken from Piercy [45].

2.4.2. Refraction

The wave celerity variations with the altitude will be responsible for a phenomena
called refraction. Refraction caused by wind and temperature variations are different:
temperature is a scalar quantity, and thus the refraction will be identical in all hori-
zontal (compass) directions. However, the refraction caused by wind depends on the
sound direction of propagation. If the sound propagates directly crosswind, the re-
fraction from wind is zero, and increases progressively as the direction of propagation
deviates from its direction. Two types of refraction can be denoted: downwards and
upwards refraction.

Downwards refraction

Downwards refraction occurs when the sound speed increases with the altitude: the
sound field curves downwards as shown in Figure 2.7. If the source and receiver are
both above the ground, downward refraction will cause multiple reflections on the
ground (see Figure 2.8). This phenomena has two consequences: amplifying the ground
effects and increasing the pressure at the receiver.

CHALMERS, Master’s Thesis 2007:13 11



Figure 2.7.: Schematic diagram for a downwind situation. This Figure is taken from
Piercy [45].

Figure 2.8.: Multiple reflections resulting from a downwind situation described in Fig-
ure 2.7. This Figure is taken from [16].

Upwards refraction

Upwards refraction occurs, at the opposite, when the sound speed is deacreasing with
altitude, typically at daytime. If the source and receiver are above the ground the sound
rays will be bent upwards. This will create a shadow zone where the pressure will be
zero; the ray delimiting this area is tangent to the ground surface (see Figure 2.9).

Figure 2.9.: Schematic diagram for an upwind situation. This Figure is taken from
Piercy [45].
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Complex situations

Combined effects of temperature and wind gradients can lead to very complex situa-
tions where sound ray paths can adopt various trajectories. Below are presented two
cases taken from the article by Ingård [23] which describe complex situations that can
be found in outdoor sound propagation.

First case (see Figure 2.10) In this particular case there is a change of wind gradient
at the layer 3 km above the ground. Above this layer the wind gradient can no longer
compensate for the temperature gradient, and the rays will all be bent upwards in this
region. The rays in the vertical plane in the wind direction are shown to reach out to a
distance of 38.8 km from the source. Beyond this distance there will be a shadow zone.

Figure 2.10.: Illustration of a combined effects of temperature and wind (case 1). This
Figure is taken from Ingård [23].

Second case (see Figure 2.11) In this different configuration the wind gradient is
everywhere the same except in a thin layer located 1 km above the ground. The velocity
jumps here from a value u1 to u2 and the sound rays are refracted as shown. The ray
that is tangent to the layer at a height of 1 km represents the limiting ray for the first
audible region. Rays with larger angles of elevation will enter the second layer and
thus be bent downwards to form a second audible region, as shown in Figure 2.11.

2.5. Nonlinear acoustics

This section introduces the basic principles and fundamental equations of nonlinear
acoustics; the reader may refer to two books by Enflo and Hedberg [17] or Blackstock
and Hamilton [20] for complete information on the topic. Since long time ago it has
been known that there are acoustical phenomena that cannot be described by linear
acoustic. In fact the condition for linear acoustics to be applicable is that the amplitude

CHALMERS, Master’s Thesis 2007:13 13



Figure 2.11.: Illustration of a combined effects of temperature and wind (case 2). This
Figure is taken from Ingård [23].

of the sound wave is sufficiently small; finite amplitude sound must be described by
nonlinear acoustics. Nonlinear acoustics began its development as a specialty within
the science of acoustic as late as in the middle of the twentieth century.

The fundamental problem of deformation and decay of a sine-wave has been inves-
tigated during the 60’s. This phenomena comes from the fact that the wave celerity is
no more independant of the wave properties. Indeed, the wave speed depends on the
particle velocity amplitude. As the amplitude grows, the wave celerity increases (and
vice-versa). This is an accumulative process and it increases when the wave proceeds;
it means that even a relatively weak wave can steepen into a shock (provided losses are
not significant).

Figure 2.12.: Wave deformation and decay.

2.5.1. Wave equations of nonlinear acoustics

In this section, three fundamental equations of nonlinear acoustics are presented: these
are the Fubini’s solution, the Burgers equation and the KZK equation. These three
equations differ by their complexity and their field of application.

14 CHALMERS, Master’s Thesis 2007:13



Fubini’s solution

Fubini developed a solution for the nonlinear propagation of monofrequency sources.
This solution is valid only before the shock formation. The pressure distribution is ex-
pressed by an infinite sum of weighted Bessel functions:

p (σ, τ) = p0

∞

∑
n=1

2
nσ

Jn (nσ) sin (nωτ) (2.3)

where σ = x/x, τ = t − x/c0, p0 is the initial sinusoı̈d amplitude and Jn is the Bessel
function of order n. x is the shock formation distance; as said before, equation 2.3
is valid fo σ < 1, in the pre-shock region. The Fubini’s solution is fast and easy to
implement and solve, but this formulation cannot handle complex problems:

• The solution is valid only before the shock formation.

• Losses can’t be included in the model.

• The model gives solutions for 1D problems only.

Figure 2.13 presents the deformation and decay of a sine wave calculated with the Fu-
bini’s solution.
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Figure 2.13.: Deformation of a sine-wave calculated with the Fubini’s solution.

The Burgers equation

The Burgers equation is the simplest model that properly describes the combined effects
of nonlinearity and losses on the propagation of plane progressive waves. The Burgers
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equation is:
∂p
∂x

− ξ

2c3
0

∂2 p
∂τ2 =

β

2ρ0c3
0

∂p2

∂τ
(2.4)

where ξ is the sound diffusivity, a parameter that accounts for dissipation (see section
3.2.4 page 25 for a detailed definition). τ = t− x/c0 represents a retarded time frame,
i.e. a reference frame moving at speed c0, and β = γ+1

2 is the nonlinearity coefficient of
the medium (γ is the ratio of specific heat at constant volume and pressure).

Equation 2.4 is the most widely used equation model for studying the combined
effects of dissipation and nonlinearity on progressive plane waves. The above equa-
tion can be extended to handle divergence (or convergence) of progressive spherical or
cylindrical waves. This new equation, the generalized Burgers equation, allows to con-
sider more configurations and in the case of plane waves, reduces to equation 2.4.

The KZK equation

The KZK (Khokhlov-Zabolotskaya-Kuznetsov) equation is an augmentation of the Burg-
ers equation presented in section 2.5.1 that accounts for the effects of diffraction, absorp-
tion and nonlinearity for directional sound beams. The KZK equation is:

∂2 p
∂z∂τ

− c0

2
∇2
⊥p− ξ

2c3
0

∂3 p
∂τ3 =

β

2ρ0c3
0

∂2 p2

∂τ2 (2.5)

where z is the beam propagation direction, ∇2
⊥ = ∂2/∂x2 + ∂2/∂y2 is a Laplacian that

operates in the plane perpendicular to the axis of the beam. Note that in the abscence
of diffraction (∇2

⊥p = 0) equation 2.5 reduces to the Burgers equation (equation 2.4).
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3. Computational method

In this section the computational method chosen is described. First a brief state of the
art is given in section 3.1 and the choice of the model is explained. Section 3.2 gives in-
depth explainations of the governing equations, which implementations are described
in section 3.3.

3.1. State of the art

Numerical simulations in acoustics benefit from a large panel of different methods,
which greatly differ by their complexity, but the choice is restricted for nonlinear prop-
agation in complex environments. The selected method will have to:

• Recreate nonlinear effects (at least weak nonlinearities).

• Accurately simulate absorption from air.

• Allow the use of spatially varying quantities (such as temperature or wind veloc-
ity).

• Solve the problem in a two dimensional space in a reasonable amount of time
(possibly extendable to 3D configurations).

Although the ability to handle non-rigid grounds and complex topographies can be
of great interest in outdoor sound propagation, these features have not been retained
as being determinant in the choice of the numerical method. The assumption of rigid
ground is to be balanced by the context of numerical simulations: explosions produce
broad-band signals, but the wave will propagate over several kilometers. For the dis-
tances considered, the high-frequency content of the signal will be attenuated quickly
by atmospherical absorption, and for very low frequencies, the reflection coefficient is
often close to unity. The calculation time required by the calculation is a crucial parame-
ter: although computational power considerably increased during the last two decades,
it is still a determinant parameter in the choice of a numerical method. Two different
methods are commonly used to solve for such problems; these are:

1. General time domain algorithms (see section 3.1.1).
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2. Time domain algorithms based on the nonlinear progressive wave equation (NPE)
(see section 3.1.2).

Complete information and references about these methods can be found in the book by
Hamilton and Blackstock [20].

3.1.1. General time domain algorithm

Pierce [44] derived a set of equations inspired by fluid dynamics for nonlinear sound
propagation. The fluid dynamic equations that govern the wave propagation are the
continuity equation, the Navier-Stokes equation (momentum equation), the entropy
balance equation and the relaxation equation. The latest developed models (see Wochner
[60] or Sparrow [52]) are very complete: a lot of features from outdoor sound propa-
gation can be included. The numerical model established by Wochner [60] can recreate
nonlinear phenomena accurately, simulate absorption and dissipation1, and represent
realistic atmospheric conditions (spatially varying quantities). The equations deriva-
tion leads to a system of differential equations which can be written whith the time
derivatives of the constitutive equations in the w vector, the x derivatives in the F vec-
tor, the y derivatives in the G vector, and the source terms in H.

∂w
∂t

+
∂F
∂x

+
∂G
∂y

= H (3.1)

where

w =



ρ

ρu
ρv

ρs f r

ρTN2

ρTO2


, F =



ρu
ρu2

ρuv
ρus f r

ρuTN2

ρuTO2


, G =



ρv
ρuv
ρv2

ρvs f r

ρvTN2

ρvTO2


and

H =



0

− ∂p
∂x + µB

(
∂2u
∂x2 + ∂2v

∂x∂y

)
+ µ

(
∂Φxx

∂x + ∂Φxy
∂y

)
− ∂p

∂y + µB

(
∂2v
∂y2 + ∂2u

∂y∂x

)
+ µ

(
∂Φyx

∂x + ∂Φyy
∂y

)
σs −∑ν

ρ
Tν Cvν

DTν
Dt +∇ �

(
κ
T∇T

)
ρ

τN2
(T − TN2)

ρ
τO2

(T − TO2)


1Due to shear viscosity and Bulk viscosity, thermal conductivity, and molecular relaxation processes.
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In the above equation, ρ is the density, t the time, u and v the component of the velocity
vector, p the pressure, µ and µB the shear and Bulk viscosity, Φ the rate of shear tensor,
s f r the frozen entropy, T the absolute temperature, κ the coefficient of thermal conduc-
tion, cνv the specific heat at constant volume associated with the ν-type molecule, σs

a variable used to represent the source terms, and Tν and τν the apparent vibration
temperature and relaxation time of the ν-type molecule, respectively. Equations in the
form of equation 3.1, in which all of the variables on the left hand side are within the
derivative operators of t, x, or y, may be solved by many explicit finite-difference ap-
proximations.

Although the numerical model presented above leads to very accurate solutions for
nonlinear sound propagation, the computational time needed makes it difficult to use
for long-rangepropagation. A convenient resolution for acoustic waves is 20 points/λ;
a frequency of 20 Hz leads to maximum spatial steps of 0.85 meters. Simulating the
propagation of this wave over a domain which is 10 km wide and 2 km high would
result in a grid which contains more than 27 billion points! Grids of this size can’t be
managed on a “simple” workstation. Several methods exist to lower the numerical
effort: adaptive mesh refinement (AMR) techniques rely on the principle that it is not
necessary to mesh the entire grid. These kind of numerical methods would be well
adapted to the problems envisaged: since finite-length signals are considered only a
small area around the wavefront would have to be meshed. The implementation of such
algorithms is a very complex task that can’t be done in the framework of this master’s
thesis.

3.1.2. Time domain algorithm based on the NPE

Nonlinear progressive wave equation (NPE) is a time domain approach used to model
finite amplitude sound waves propagation in complex environments. This method has
first been developed by McDonald and Kuperman [39] in 1987 and has been success-
fully used for underwater acoustics simulations (see for example McDonald [54]). The
method can be adapted to simulate the propagation of high-amplitude signals through
air. Indeed, in its original formulation the NPE cannot be used to accurately simulate
atmospherical propagation: features like geometrical decay and thermoviscous effects
need to be added. These modifications, described in several articles, lead to a new,
augmented equation, which is able to simulate propagation through a complex atmo-
sphere.

The NPE is a kind of simplification of the Euler equation finite difference model. Its
fundamental principle is the calculation of the wave evolution in a “moving window”,
and not over the complete physical domain (see Figure 3.1 for a schematic). A moving
grid that surrounds the signal moves at speed cwin, and the wave evolution is calculated
within the window. The results are post-processed to get back to the physical wave
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movements.
The main advantage of such method is the reduced computational time: the mesh is

just wide enough to contain the signal, thus avoiding to mesh several kilometers for the
whole domain. This imply some restrictions:

1. As the wave is calculated over a window surrounding it, only finite-length signals
can be used. Stationnary conditions can’t be simulated.

2. The method simulate propagation in only one direction. Back-propagation, for
example in case of an obstacle, can’t be taken into account.

Figure 3.1.: The wave-following NPE grid moves at speed c0 in the r direction to inte-
grate nonlinear wave evolution in the time domain.

These two restrictions are in accordance with the type of simulations considered:
signals are finite in length, and one-way propagation is a good assumption for long-
rangesimulations.

Although the nonlinear progressive wave equation is restricted to one-way, finite-
length signals propagation it is totally adapted to explosion-type signals modelisation.
By adding geometrical spreading and thermoviscous effects (absorption and dissipa-
tion) to the original NPE, nonlinear atmospherical propagation can be accurately sim-
ulated by the method.

3.2. The nonlinear progressive wave equation

This chapter presents the selected numerical model: the original formulation is first
given and additional features (geometrical spreading, thermoviscous effects, high-angle
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formulation are then detailed to lead to a new, augmented NPE.

3.2.1. Derivation and original formulation

In this section the derivation of the constitutive equations that lead to the original
nonlinear progressive wave equation (NPE) formulation is recast in a cartesian, two-
dimensional coordinates system. The aim of this section is to provide the reader the
theoretical background and fundations of the NPE; the derivation is taken from a ref-
erence article by McDonald and Kuperman [39] (similar derivations can be found in
other references such as Caine [7][11] or James [26]).
The cartesian formulation of the continuity equation is:

∂ρT

∂t
+

∂

∂x
(ρTu) +

∂

∂y
(ρTv) = 0 (3.2)

where the flow velocity vector is U = (u, v). The quantity ρT is a total variable ;
it includes the density of air at rest and the acoustic density perturbation, so that:
ρT = ρ0 + ρ. We assume here an irrotational flow in the y-axis direction (the main
propagation direction is along the x-axis); this allows to get an expression for the y-
component of the flow velocity vector:

v =
∫

∂u
∂y

dx (3.3)

Replacing the total quantity ρT by ρ0 + ρ, equation 3.2 becomes:

∂ρ

∂t
+

∂

∂x
((ρ0 + ρ) u (ρ0 + ρ)) +

∂

∂y

(
(ρ0 + ρ)

∫
g (ρ0 + ρ)

∂ρ

∂y
dx
)

= 0 (3.4)

with:

g (ρ0 + ρ) =
du (ρ0 + ρ)

dρ
(3.5)

Note that only two hypotheses are made to get equation 3.4:

1. u is a function of ρT.

2. The flow is irrotational in the transverse propagation direction.

One has now to determine an expression for the quantity u = u (ρT); the momentum
equation along the x-axis is used:

∂ (ρTu)
∂t

+
∂

∂x
(

pT + ρTu2)+
∂

∂y
(ρTuv) = 0

Integrating with respect to time leads to an expression for ρTu:

ρTu = −
∫ [

∂

∂x
(

pT + ρTu2)+
∂

∂y
(ρTuv)

]
dt (3.6)
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Inserting equations 3.6 and 3.3 in 3.4 gives:

∂ρT

∂t
− ∂

∂x

{∫ [
∂

∂x
(

pT + ρTu2)+
∂

∂y

(
ρTu +

(∫
∂u
∂y

dx
))]

dt
}

+
∂

∂y

(
ρT

(∫
∂u
∂y

dx
))

= 0 (3.7)

The last term in equation 3.7 is associated with the diffraction term in the y-axis di-
rection. The pressure pT and the flow velocity component u are now developed with
Taylor series:

pT = p (ρ0) +
(

∂p
∂ρ

)
0
(ρT − ρ0) +

1
2

(
∂2 p
∂ρ2

)
0
(ρT − ρ0)

2 + · · ·

u =
(

∂u
∂ρ

)
0
(ρT − ρ0) +

1
2

(
∂2u
∂ρ2

)
0
(ρT − ρ0)

2 + · · · (3.8)

To the first order, equation 3.8 becomes:

u =
c

ρ0
ρ

The next step is to insert this expression into equation 3.5:

g =
c

ρ0

These operations let equation 3.7 be transformed:

∂ρT

∂t
− ∂

∂x

{∫
∂

∂x
(

pT + ρTu2) dt
}

+ c
∂2

∂y2

{∫
ρdx

}
= 0 (3.9)

It is important to note that the diffraction operator c ∂2

∂y2

{∫
ρdx

}
is developed to the

first order only. The integral in the above equation can be removed by differentating
3.9 with respect to time.

∂2ρ

∂t2 −
∂2

∂x2

(
pT + ρTu2)+ c

∂2

∂y2

(∫
∂ρ

∂t
dx
)

= 0 (3.10)

One can now use the linearized momentum equation to simplify equation 3.10:

∂2ρ

∂t2 −
∂2

∂x2

(
pT + ρTu2)− c2 ∂2ρ

∂y2 = 0 (3.11)

An important remark has to be done at this stage: the classical (linear) wave equa-
tion can easily be derived from equation 3.11. If the ambiant medium pressure is con-
stant then pT = p = c2ρ (linear case), and if high order terms are neglected one gets:
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∂2ρ
∂t2 − c2∇2ρ = 0, which is the well-known wave equation.
A one-way propagation has now to be assumed, i.e. there is no backward propaga-
tion. Although this hypothesis is quite restrictive, it is well adapted to long-rangesound
propagation. Thanks to this new assumption equation 3.11 can be expressed in a mov-
ing window, which speed is cwin, a value close to the wave celerity at rest. A new
“moving window” operator is introduced:

D
Dt

=
∂

∂t
+ cwin

∂

∂x
(3.12)

where cwin is the window celerity. Assuming spatially-varying sound celerity c (x, y),
cwin is defined by:

cwin = max (c (x, y)) (3.13)

With this moving window celerity, the sound speed perturbation in the window c1 (x, y) =
cwin − c (x, y) becomes negative. Indeed, the NPE can only propagates the signal in one
direction; the wave front evoluates backward in the window, but propagates forward in
the entire domain. It can be proved that D2

t ρ ' 0 (see for example Caine [11]); one then
gets:

∂2ρ

∂t2 = −2c
∂2ρ

∂x∂t
− c2 ∂2ρ

∂x2

And equation 3.11 becomes:

∂2ρ

∂x∂t
+

1
2c

∂2

∂x2

[
pT + ρTu2 + c2ρ

]
+

c
2

∂2ρ

∂y2 = 0 (3.14)

So that a second order accuracy can be retained in equation 3.14, pT is transformed
with the help of expression 3.8 with the derivatives coefficients corresponding to an
isentropic flow:

(
∂p
∂ρ

)
0

= c2 and
(

∂2 p
∂ρ2

)
0

= c2

ρ0
(γ− 1) where γ is the ratio of specific

heats at constant pressure and volume. One gets the following equations:

pT ' p0 + c2ρ +
1
2

(γ− 1) c2

ρ0
ρ2

u ' c
ρ

ρ0
(3.15)

Terms of order higher than two are neglected in the bracketed expression; this leads to
a new formulation for equation 3.14:

∂2ρ

∂x∂t
+

1
2c

∂2

∂x2

[
2c2
(

ρ +
βρ2

2ρ0

)]
+

c
2

∂2ρ

∂y2 = 0

For gazes, the coefficient of nonlinearity is calculated with the help of the ratio of spe-
cific heat at constant volume and pressure γ: β = (γ + 1) /2 and is approximately equal
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to 1.2 for air under normal conditions. Applying the replacements above in equation
3.14 and integrating with respect to x let one finally get an expression for the NPE in a
two-dimensional cartesian coordinates system:

Dρ

Dt
+

∂

∂x

(
cρ + c

β

2ρ0
ρ2
)

+
c
2

∂2

∂y2

(∫
ρdx

)
= 0 (3.16)

The final step is to replace the density ρ by the dimensionless variable R = ρ
ρ0

to get a
simpler formulation:

DR
Dt

+
∂

∂x

(
cR + c

β

2
R2
)

+
c
2

∂2

∂y2

(∫
Rdx

)
= 0 (3.17)

The wave celerity c may be spatially varying; with this assumption the equation 3.17
can be replaced by:

DR
Dt

+
∂

∂x

(
c1R + c0

β

2
R2
)

+
c0

2
∂2

∂y2

(∫
Rdx

)
= 0 (3.18)

The equation above is the original formulation of the nonlinear progressive wave equa-
tion. It will be later refered to as the original NPE. This equation contain three different
terms accounting for three different effects in nonlinear outdoor sound propagation:

• The term: ∂
∂x (c1R) takes into account refraction effects; it allows the signal to be

propagated within the moving window.

• The term: ∂
∂x

(
c0

β
2 R2

)
takes into account nonlinear effects; wave steepening and

shock formation are calculated with this operator.

• The term: ∂2

∂y2

(∫
Rdx

)
takes into account the diffraction effects, which can be seen

as a propagation operator in the transverse direction.

From these previous notes about the operators follows an important remark: geomet-
rical spreading and thermoviscous effects (atmospheric absorption) are not included in
this formulation of the NPE.

3.2.2. Cylindrical coordinates formulation

A formulation of the NPE for azimuthaly symetric configurations is more adapted to
the kind of problems considered. A derivation for cylindrical coordinates system can be
found in another article by McDonald [38]. The nonlinear progressive wave equation
expressed in a cylindrical coordinate system is:

∂R
∂t

+
c0

2
R
r

+
∂

∂r

(
c1R + c0

β

2
R2
)

+
c0

2
∂2

∂y2

(∫
Rdr

)
= 0 (3.19)
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In the above equation r is the distance from the vertical axis: r = x + cwint, where x is
the position inside the window. The equation 3.19 is very similar to the original NPE
(equation 3.18 in section 3.2.1): a cylindrical decay term c0

2
R
r has been added to the

original equation.

3.2.3. High-angle formulation

A high-angle formulation of the original NPE has been derived by McDonald [38] in
2000. This new formulation allows to get a better accuracy at high propagation angle
close to the source. This is made possible by taking into account into the diffraction
operators the terms that are of order two. It is important to note that this development
to higher orders only concerns the diffraction operator and not the nonlinear operator.
The nonlinearities are still taken to the first order.

∂R
∂t

+
c0

2
R
r

+
∂

∂r

(
c1R + c0

β

2
R2
)

+
∫ { c0

2
∂2R
∂y2 + c0

R
r2 −

1
2c0

D2R
Dt2

}
dr = 0 (3.20)

This equation differs from 3.18 by the addition of two terms in the integral.

3.2.4. Thermoviscous effects

In its original formulation, the NPE does not take into account the atmospherical ab-
sorption. This has been later included by Too and Lee [54]; the new equation is:

∂R
∂t

+
c0

2
R
r

+
∂

∂r

(
c1R + c0

β

2
R2
)

+
c0

2
∂2

∂y2

(∫
Rdr

)
− 1

2
ξ

(
∂2R
∂r2 +

1
r

∂R
∂r

)
= 0 (3.21)

with:

ξ =

[
η + 4

3 µ + κ
(

1
Cv
− 1

Cp

)]
ρ0

(3.22)

where:

• η is the Bulk viscosity.

• µ is the shear viscosity.

• κ is the medium thermal conductivity.

• Cv is the specific heat of air at constant volume.

• Cp is the specific heat of air at constant pressure.

One more time, one can notice than the formulation of the above equation 3.21 is similar
to the original NPE 3.18 (as well as the NPE in cylindrical coordinates 3.19); the operator
1
2 ξ
(

∂2R
∂r2 + 1

r
∂R
∂r

)
has been added to include thermoviscous effects.
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3.3. Implementation of the NPE

Equation 3.21 is the best candidate for implementation: the model established is able
to recreate weakly nonlinear effects, simulate absorption from air, allow the use of
spatially-varying quantities (sound celerity, medium density) and solve complex con-
figurations in a reasonable amount of time. The ground is assumed flat and rigid; the
problem of impedant ground and complex topography is not adressed in this study.
The implementation of equation 3.21 is decribed in the following section. The equation
to be implemented is written below for simplicity:

∂R
∂t

+
c0

2
R
r

+
∂

∂r

(
c1R + c0

β

2
R2
)

+
c0

2
∂2

∂y2

(∫
Rdr

)
− 1

2
ξ

(
∂2R
∂r2 +

1
r

∂R
∂r

)
= 0

This equation features:

• cylindrical decay.

• small-angle approximation.

• thermoviscous absorption.

• nonlinearities taken to the first order.

The high-angle approximation presented in section 3.2.3 has not been retained for the
implementation. Considering usual distances in this type of calculations (several kilo-
meters), a higher accuracy close to the source is a weak improvement compared to the
numerical effort needed to integrate the additional terms. Equation 3.21 is implemented
using an operator splitting method. The resulting differential operators are integrated
with a Crank-Nicolson (see appendix A) and first order finite differences schemes, ex-
cept the operator calculating nonlinear effects, which receives a special treatment. It is
handled with a flux corrected transport (FCT) algorithm that allows to accurately model
shock formation. The boundary conditions on the moving window are then discussed
and finally some notes and recommendations on numerical issues that may arise are
given.

3.3.1. Operator splitting

An operator splitting method is used to solve the differential equation 3.21. The acous-
tic pressure field at time n + 1 is calculated in four successive steps:

Rn+ 1
4

i,j = Γ1Rn
i,j

Rn+ 1
2

i,j = Γ2Rn+ 1
4

i,j

Rn+ 3
4

i,j = Γ3Rn+ 1
2

i,j

Rn+1
i,j = Γ4Rn+ 3

4
i,j (3.23)
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where Rn
i,j is the numerical solution at location and time

(
xi, yj; tn

)
. The numerical im-

plementation of the different operators is detailed in the following sections:

• Γ1 = − c0
2

∂
∂r

(
c1R + βc0

2 R2
)

: nonlinear effects and refraction: section 3.3.2.

• Γ2 = − c0R
2r : cylindrical decay: section 3.3.3.

• Γ3 = 1
2 ξ
(

∂2R
∂r2 + 1

r
∂R
∂r

)
: thermoviscous effects: section 3.3.4.

• Γ4 = − c0
2

∫ r
r f

∂2R
∂y2 dr: diffraction: section 3.3.5.

3.3.2. Nonlinear effects and refraction

The differential equation to be solved is:

DR
Dt

= − ∂

∂r

(
c1R +

βc0

2
R2
)

(3.24)

Equation 3.24 is a hyperbolic differential equation that can’t be solved with tradi-
tional finite difference schemes. Discontinuities in the solution (during shock forma-
tion) are handled with a flux corrected transport (FCT) algorithm. Such methods show
high quality shock resolution and allow to simulate shock formation without introduc-
ing numerical oscillations (Gibb’s oscillations). Fundamental principles of such algo-
rithms are not given here, only main calculation steps are Given. Detailed descriptions
can be found in articles by Védy [58], Sjögreen [51] or Boris [10]. The following nota-
tions will be used:

∆+Rn
i,j = Rn

i+1,j − Rn
i,j

∆−Rn
i,j = Rn

i,j − Rn
i−1,j (3.25)

The flux function of equation 3.24 is:

f
(

Rn
i,j

)
= c1Rn

i,j +
βc0

2

(
Rn

i,j

)2
(3.26)

We define:

• The local wave celerity:

ai+ 1
2 ,j =


f
(

Rn
i+1,j

)
− f
(

Rn
i,j

)
Rn

i+1,j−Rn
i,j

if Rn
i+1,j 6= Rn

i,j

f
′
(

Rn
i,j

)
if Rn

i+1,j = Rn
i,j
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• The numerical flux of a first order total variation diminishing (TVD) scheme:

hn
i+ 1

2 ,j =

 f
(

Rn
i+1,j

)
if ai+ 1

2 ,j < 0

f
(

Rn
i,j

)
if ai+ 1

2 ,j > 0

• The numerical viscosity of an upwind-scheme:

Qi+ 1
2 ,j =

δt
δx

| ai+ 1
2 ,j |

• The numerical viscosity of a Lax-Wendroff sheme:

QLW
i+ 1

2 ,j =
(

δt
δx

)2

a2
i+ 1

2 ,j

The acoustic pressure field is calculated in two successive steps:

R∗
i,j = Rn

i,j −
δt
δx

∆−hn
i+ 1

2 ,j

Rn+1
i,j = R∗

i,j −
(

bi+ 1
2 ,j − bi− 1

2 ,j

)
(3.27)

With:
di+ 1

2 ,j =
1
2

(
Qi+ 1

2 ,j −QLW
i+ 1

2 ,j

)
and:

bi+ 1
2 ,j =

{
0 if ∆+R∗i,j∆−R∗i,j < 0 or ∆+R∗i+1,j∆−R∗i+1,j < 0

sign
(

∆+R∗i,j
) [

min
(

1
2 | ∆−R∗i+1,j |, di+ 1

2 ,j | ∆+R∗i,j |,
1
2 | ∆+R∗i+1,j |

)]
otherwise

Another advantage of this algorithm is that it allows to use a high Courant number.
Theoretically, the Courant-Friedrich-Levy condition for this finite difference scheme
allows to use a Courant number δt

δx ai+ 1
2 ,j < 1; in practice, this number will be limited to

0.8 to ensure numerical stability. A shock formation calculated with the FCT algorithm
is shown in Figure 3.2. The peak amplitude of the sinusoı̈d is ρc2

0 ; the nonlinearity
coefficient used is β = 1.2, corresponding to air under normal atmospheric conditions
(1013 hPa, 20 ◦C).

3.3.3. Cylindrical decay

The differential equation to be solved is:

DR
Dt

= − c0R
2r

(3.28)

First order finite differences schemes and Crank-Nicolson method (see appendix A) are
used:
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Figure 3.2.: Shock formation from a sinusoı̈d: the initial wave slowly evoluate to a N-
wave. The amplitude is here normalized to ρc2

0. The nonlinearity coefficient
used is β = 1.2 (air at 20 ◦C under 1013 hPa).
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Rn+1
i,j − Rn

i,j = − c0δt
4r

(
Rn+1

i,j + Rn
i,j

)
(3.29)

We define α = − c0δt
4r . Gathering together the common terms one can find from equation

3.29:
Rn+1

i,j =
1 + α

1− α
Rn

i,j (3.30)

The new field Rn+1
i,j can be calculated by multiplying the previous pressure distribution

by a coefficient depending on the distance already traveled. The parameter α being
negative, the wave amplitude is decreasing as it propagates, as expected.

3.3.4. Thermoviscous effects

The differential equation to be solved is:

DR
Dt

=
1
2

ξ

(
∂2R
∂r2 +

1
r

∂R
∂r

)
(3.31)

First order finite differences scheme and Crank-Nicolson (see appendix A) method are
used:

Rn+1
i,j − Rn

i,j =
δtξ
(
2rδy + δy2)
8rδy3

(
Rn+1

i+1,j − 2Rn+1
i,j + Rn+1

i−1,j

)
+

δtξ
(
2rδy + δy2)
8rδy3

(
Rn

i+1,j − 2Rn
i,j + Rn

i−1,j

)
We define β =

δtξ(2rδy+δy2)
8rδy3 . Equation 3.32 becomes:

Rn+1
i,j − Rn

i,j = −2β
(

Rn+1
i,j + Rn

i,j

)
+ β

(
Rn+1

i+1,j + Rn+1
i−1,j

)
+ β

(
Rn

i+1,j + Rn
i−1,j

)
(3.32)

Gathering together the common terms one can find:

Rn+1
i,j (1 + 2β)− β

(
Rn+1

i+1,j + Rn+1
i−1,j

)
= Rn

i,j (1− 2β) + β
(

Rn
i+1,j + Rn

i−1,j

)
(3.33)

Equation 3.33 can be written as a tridiagonal linear equations system which can easily
be solved with a Thomas algorithm (see appendix A): (1 + 2β) −β

. . . . . . . . .
−β (1 + 2β)

 ·


Rn+1
1,j
...

Rn+1
Nx ,j


= (1− 2β) β

. . . . . . . . .
β (1− 2β)

 ·


Rn
1,j
...

Rn
Nx ,j
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3.3.5. Diffraction

The diffraction operator is:
DR
Dt

= − c0

2

∫ r

r f

∂2R
∂z2 dr (3.34)

where r f is a point in the moving window ahead of the wave, where the medium is
quiescent. A Crank-Nicolson scheme (see appendix A) for the spatial derivatives and
a centered finite difference scheme for the temporal derivative are used. Equation 3.34
can be transformed:

Rn+1
i,j − Rn

i,j = − c0δt
4δz2

∫ r

r f

{
Rn+1

i,j+1 − 2Rn+1
i,j + Rn+1

i,j−1

}
dr

− c0δt
4δz2

∫ r

r f

{
Rn

i,j+1 − 2Rn
i,j + Rn

i,j−1

}
dr (3.35)

A trapezoı̈dal law is used to calculate the integral2:

∫ r

r f

Rn
i,j = δx

[
1
2

(
Rn

Nx ,j + Rn
i,j

)
+

i+1

∑
m=Nx−1

Rn
m,j

]
(3.36)

The fact that Rn
Nx ,j = 0 (point ahead of the perturbation) is used to eliminate it in the

above expression. One can now use the expression of the integral to insert it in equation
3.35:

Rn+1
i,j (1 + 2A)− A

(
Rn+1

i,j+1 + Rn+1
i,j−1

)
= Rn

i,j (1− 2A) + A
(

Rn+1
i,j+1 + Rn+1

i,j−1

)
+2A

i+1

∑
m=Nx−1

[
Rn+1

m,j+1 − 2Rn+1
m,j + Rn+1

m,j−1

]
+2A

i+1

∑
m=Nx−1

[
Rn

m,j+1 − 2Rn
m,j + Rn

m,j−1

]
(3.37)

Where A = − c0δtδx
8δz2 . One more time all terms containing the field at time n + 1 are

moved to the right-hand side and the equation is written in a matricial form:

(1 + 2A) −A
. . . . . . . . .

−A (1 + 2A) −A
. . . . . . . . .

−A (1 + 2A)


·



Rn+1
i,1
...

Rn+1
i,j
...

Rn+1
i,Nz


2The order of the sum limits may seem inversed: the integration is done from right to left, taking the

right-most point as initial point.

CHALMERS, Master’s Thesis 2007:13 31



=

(1− 2A) A
. . . . . . . . .

A (1− 2A) A
. . . . . . . . .

A (1− 2A)


·



Rn
i,1
...

Rn
i,j
...

Rn
i,Nz


+

∑i+1
m=Nx−1

[
Rn

m,2 − 2Rn
m,1 + Rn+1

m,2 − 2Rn+1
m,1

]
...

∑i+1
m=Nx−1

[
Rn

m,j+1 − 2Rn
m,j + Rn

m,j−1 + Rn+1
m,j+1 − 2Rn+1

m,j + Rn+1
m,j−1

]
...

∑i+1
m=Nx−1

[
−2Rn

m,Nz
+ Rn

m,Nz−1 − 2Rn+1
m,Nz

+ Rn+1
m,Nz−1

]


One more time the above equation leads to a tridiagonal linear equations system solved
with a Thomas algorithm (see appendix A). Numerical integration is made column by
column, from the right side of the window to the left side, so that the terms appearing
in the sums are known.

3.3.6. Boundary conditions

In this section the boundary conditions used in the model are detailed. Three types of
boundary conditions are needed to completely bound the calculation grid: the lateral
boundaries (right-most and left-most points of the grid), the bottom row of the domain
and the absorbing layer at the top of the grid.

Lateral conditions

The lateral boundaries of the moving window have no physical meaning. The window
represents a domain where the signal can evoluate; it must not reach the lateral bound-
aries, otherwise it will exit the computational domain. One has to be very carefull with
this restriction and choose a window that is large enough considering the wave celerity
within the window, so that the signal stays in the computational grid. This condition is
ensured by setting the left-most column to 0 and checking at each time iteration that it
remains null. In addition, the right-most point has been taken as the initial point in the
expression of the integral of the diffraction term so that it can be eliminated (equation
3.36 in section 3.3.5). This force the last column of the grid to be equal to 0.
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Ground

The ground is numerically represented by the first row of the computational grid. Al-
though ground impedance could be used in this finite difference model, only rigid
ground conditions are implemented. This choice is made to simplify the model and
allow to spend more time on other important topics. This assumption of a rigid ground
is not so restrictive: propagated signals have a low frequency content, and at these fre-
quencies the reflection coefficient is close to unity. A rigid boundary condition ∂p/∂n =
0 is incorporated by assuming a solution which is symmetric with respect to the bound-
ary and modifying the recurrence accordingly for the boundary nodes. Note that this
boundary condition only appears in the diffraction operator; the other finite difference
schemes don’t use pressure value at location (i, j − 1). The reformulation of equation
3.37 including the rigid boundary condition gives an expression for the field on the
ground layer:

Rn+1
i,0 (1 + 2A)− 2ARn+1

i,1 = Rn
i,0 (1− 2A) + 2ARn+1

i,1

+4A

(
i+1

∑
m=Nx−1

[
Rn+1

m,1 − Rn+1
m,0

]
+

i+1

∑
m=Nx−1

[
Rn

m,1 − Rn
m,0
])

(3.38)

Absorbing layer

Physically, the domain is semi-infinite, i.e. sound waves can propagate beyond the
top layer with no restrictions. An absorbing layer has to be implemented to artificially
absorb the waves that would exceed the top layer and preventing them from being re-
flected into the computational domain. A lossy medium is used near the computational
edge to attenuate outgoing waves. However, since there is always a reflection between
layers with difference absorption coefficients, this boundary condition requires a sub-
stantial number of layers with a tapered profile of absorption. The absorption in the
layer is incorporated with the help of a new finite difference operator:

DR
Dt

= − 1
τ

R (3.39)

Where τ is an absorption coefficient chosen according to Abbaléa [2] (Phd thesis in
french) and is equal to:

τ =
δt
2

(
z− zsup

zmax − zsup

)2

(3.40)

Where zmax is the maximum altitude of the domain (including the absorptive layer) and
zsup is the maximum altitude of the physical domain. This operator is implemented in
a similar way as for the other finite difference operator: a Crank-Nicolson and centered
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finite differnece schemes are used. We end with the following equation:

Rn+1
i,j = −

(
1− δt

2τ

1 + δt
2τ

)
Rn

i,j (3.41)

One can note that the application of the operator 3.39 results in the multiplication of the
field by an absorption coefficient:

A = −
1− δt

2τ

1 + δt
2τ

(3.42)

Figure 3.3 shows this coefficient along with the altitude. The absorption coefficient
gradually increases from 0 to 100 %. This slowly-varying absorption is extremely im-
portant to prevent reflections between two consecutive layers. During the implementa-

0 20 40 60 80 100
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Zmax

Absorption coefficient (in %)

A
lti

tu
de

Figure 3.3.: Absorption coefficient in the absorbing layer. The absorption slowly in-
creases from 0 to 1, providing progressive attenuation to prevent reflections.

tion and testing period, a lot of different expressions for this absorption coefficient have
been assessed. It appears that the quantity described in equation 3.42 was the most ef-
fective; nevertheless, the number of absorption layers has still to be large: typically one
fifth to one third of the physical domain, which greatly increase the computational ef-
fort. Figure 3.4 shows a schematic diagram representing all the boundary conditions
(absorption layer, lateral and ground boundaries) on the moving window.
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Figure 3.4.: Schematic representation of the computational grid. The values at points
on ground layer are calculated by assuming a symetric solution; the edge
columns are set to 0. The absorption area contains several layers with pro-
gressive absorption to prevent from reflections of outgoing waves.

3.4. Numerical considerations

The semi-implicit time advancement scheme presented for cylindrical decay, thermo-
viscous effects and diffraction is stable for all δt. The Courant-Friedrich-Lewy (CFL)
stability condition for the nonlinear effects and refraction operator is:

δt <
δx

ai+ 1
2 ,j

where ai+ 1
2 ,j is the local wave celerity and is defined as:

ai+ 1
2 ,j =


f
(

Rn
i+1,j

)
− f
(

Rn
i,j

)
Rn

i+1,j−Rn
i,j

si Rn
i+1,j 6= Rn

i,j

f
′
(

Rn
i,j

)
si Rn

i+1,j = Rn
i,j

In practise, the CFL number must be limited to lower values (typically 0.8) to ensure
stability. The local wave celerity depends on the signal amplitude, the CFL condition
has thus to be checked for every position in the grid. A good choice for the time step
δt is to fix it to δt = δx/cwin. In this way, for each time iteration, the window advances
one spatial step. This produces clean time signal (no spatial interpolation needed) and
also ensure numerical stability even for very high amplitudes.
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The window wave celerity cwin has been chosen so that the sound speed perturba-
tion c1 (x, y) is negative, and thus, the signal propagates backward in the window. One
could think about the opposite solution: defining cwin = min (x, y) gives a positive
sound celerity perturbation and thus a forward propagation in the window. This solu-
tion may appear simpler but is not necessarily a good choice. The signal will have to be
placed somehow in the middle of the window so that diffraction effects can occur in the
left side of the window and that wave propagation, due to sound speed perturbations,
can occur in the right side of the window. This solution would require a larger window
and thus significantly increases the computational time. In the case of constant sound
speed profile, both methods could be used.

Nonlinear effects and refraction, cylindrical decay and thermoviscous effects oper-
ators operates only along a single line (the diffraction operator is the only one to use
quantities up and down the calculated value). It means that to gain computational time,
it is not necessary to apply this operators inside the absorption layer.

Diffraction operator leads to a tridiagonal linear equations system that is solved with
a Thomas algorithm. One may consider calculating the left hand side matrix before the
iteration loop. Indeed, coefficients appearing in the left hand side terms are constant;
calculating these values previously to the iteration loop may save a substantial amount
of computational time. If sound diffusivity is chosen constant with altitude the same
method can be applied to the thermoviscous effects operator.

One tricky task in the choice of parameters is the determination of the window width
through the parameters δx and the number of points. While the spatial discretiza-
tion step δx can’t vary a lot for accuracy reasons, the number of points can adopt a
wide range of values depending on the problem configuration. In the case of spatially-
varying sound celerity, the number of points has to be sufficient so that the wave can
evoluate within the window without reaching the edges of the domain, but the num-
ber of points chosen should be kept as low as possible to limit the computational time.
For complex configurations, a hand calculation is more than recommended: taking the
maximum sound celerity perturbation in the window and multiplying with the propaga-
tion time wanted gives the maximum distance traveled by the wave within the window.
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4. Model validation

The aim of this chapter is to present the model validation process. Correcting bugs,
testing, improving the code and adding functionalities is a very long procedure that
preceded the model validation. The full validation of the model has been separated in
two tasks: first nonlinear effects are assessed using 1D analytical solutions and then a
linear propagation configuration is studied to validate phenomena such as refraction,
sound celerity, reflections on the ground or atmospherical absorption. Although many
validation cases have been studied, from the simplest to very complex cases, only one
simulation that allows to fully validate the numerical method is presented. For this
linear propagation configuration the solutions are compared to the results given by the
ATMOS (Advanced Theoretical Model for Outdoor Sound propagation) propagation
code, an implementation of the parabolic equation previously developed at the CSTB.

4.1. Nonlinear effects

4.1.1. Fubini’s solution

Fubini developed a solution for the nonlinear propagation of monofrequency sources.
The solution is presented in section 2.5.1 and is reminded here for simplicity. The pres-
sure distribution is expressed by an infinite sum of weighted Bessel functions:

p (σ, τ) = p0

∞

∑
n=1

2
nσ

Jn (nσ) sin (nωτ) (4.1)

where σ = x/x, τ = t − x/c0, p0 is the initial sinusoı̈d amplitude, Jn is the Bessel
function of order n and x is the shock formation distance. The formulation presented in
equation 4.1 gives valid solutions for 1D problems only in the pre-shock region (σ < 1).
In addition, losses are not included in the model.

4.1.2. Results

Results of nonlinear calculations given by the NPE are compared to analytical Fubini’s
solution. Since the operator calculating nonlinear effects and refraction operates over a
single direction the problem is considered one-dimensional. The wave celerity used is
c = 343 m/s and the nonlinearity coefficient is β = 1.2 (air at 20 ◦C under 1 atm). The
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peak amplitude of the wave is 10 kPa (174 dB re 20 µPa) and its frequency is 0.1 Hz. The
wave deformation can be observed on Figure 4.1, which presents the original sine wave
together with two snapshots at time 6.4 and 12.8 seconds. The criteria to evaluate the
performances of the NPE is the harmonics amplitudes evolution. During the sine-wave
deformation, the amplitude of the fundamental frequency decreases, and the amplitude
of higher harmonics increases. Figure 4.2 presents the evolution of the fundamental
frequency, first and second harmonics amplitudes over time. The simulation ran for
120 time steps and has been stopped just before the shock formation, where the Fubini’s
solution is no longer valid.

The results given by the implemented NPE are close to the analytical solution. The
maximum relative error is 0.4% for the fundamental frequeny amplitude. For the first
and second harmonics the maximum relative errors are 2 % and 3.5 %, respectively,
provided their values are much greater than numerical uncertainty. Indeed, one may
note that the relative difference between the models may be very high (for example:
third harmonic amplitude, at the beginning of the simulation). This is due to the fact
that the amplitude is extremely low at this stage of the simulation. As a result relative
errors are large, but as the simulation goes on it quickly decreases. Nonlinear effects
are accurately simulated by the implemented NPE.

4.2. Complex linear case

4.2.1. ATMOS sound propagation code

ATMOS stands for Advanced Theoretical Model for Oudoor Sound propagation. De-
signed and developed by CSTB researchers, ATMOS is a software which determines the
acoustic impact of all types of infrastructures, both near and far away, on their environ-
ment, taking the geometry of the site into account as well as the meteorological factors
inherent to each local climate. Furthermore, ATMOS is also being used as a “reference
numerical model” within the European Harmonoise and Imagine projects dedicated to
developing a harmonised method for predicting outdoor noise, in accordance with Eu-
ropean Directive 2002/49/EC of 25 June 2002, relating to the assessment and manage-
ment of environmental noise. It implements a parabolic equation, a frequency domain
method that allows to simulate long-rangesound propagation. This code is used in this
study as a validation tool for linear propagation problems. Transmission losses from
both calculations will be compared to assess the accuracy of the implemented nonlin-
ear progressive wave equation. The transmission loss is defined as the ratio in decibels
between the acoustic intensity I (x, y) at a field point and the intensity I0 at 1 m distance
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Figure 4.1.: Deformation of a sine wave calculated with the Fubini’s solution and the
NPE. The three plots show the wave at time: 0, 6.4 and 12.8 seconds.
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Figure 4.2.: Fundamental and harmonics amplitudes evolution. The curves present so-
lutions given by Fubuni and NPE calculations. From top to bottom: funda-
mental amplitude, first and second harmonics amplitudes, respectively.

from the source, i.e.,

TL = −10 log
I (x, y)

I0

= −20 log
| p (x, y) |

p0
[dB re 1m]. (4.2)

4.2.2. Coupling with ATMOS

In order to use this propagation code as a comparison tool, the sources used in the
NPE calculations, that are spatial pressure distributions, have to be transformed into
frequency domain “starter” that serve as an input in the ATMOS software. The pres-
sure signal is recorded along a vertical line and transformed into frequency domain
with the help of a Fourier transform. This coupling method has been validated with
a simple configuration: the (linear) propagation of a monofrequency wave is studied
both with the NPE and ATMOS. The sound celerity is constant with altitude and the
source is placed on the ground. The coupling between the models has been done at
two different distances: 46 km and 112 km. Figure 4.3 shows the transmission loss at 2
m high, calculated with ATMOS, NPE+ATMOS (coupling at 46 km) and NPE+ATMOS
(coupling at 112 km). All the calculations lead to the same results. Note that the curves
calculated with the coupling method take some time to converge to the exact solution.
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Figure 4.3.: Transmission loss calculated with single ATMOS calculations, and two cou-
pled simulations. Spatial steps are used instead of distance for simplicity.

With this method, one could think of using the NPE to handle nonlinear effects and
then use the coupling method and finish the calculations with ATMOS (see schematic
in Figure 4.4). The advantage is that ATMOS can handle more complex configurations
(non-rigid and non-flat ground) and that it is faster for monofrequency calculation. Indeed
the parabolic equation is a very fast method, but for broad-band signals, the calculation
has to be repeated for each frequency line and this may result in an extremely long
calculation for high-resolution spectra. Many cases were tested and it appeared that
unless a specific and reduced frequency range is of interest, it is much faster to use the
time domain NPE.

Now arise the question: When should we initialize the coupling ?. The most convenient
(and most used) criteria is the maximum amplitude of the signal. The limit under which
one can consider that nonlinear effects are weak is 100 Pa (134 dB re 20 µPa). This limit
is taken from the litterature and comes from simulations and experiments, it has no
physical fundations. The choice of the parameter and its value are discussed in the next
chapter: Case Study, where an explosion signal propagation is simulated.
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Figure 4.4.: Schematic of the coupling method between the NPE and ATMOS.

4.2.3. Results

The propagation of a low frequency wave is studied. The calculation window is 2001
points large in both directions and the absorption layer is 1000 points high (one third
of the computational domain). The spatial discretization steps have both been chosen
equal to 1 m. With a minimum resolution of 10 pt/λ, these spatial steps allow to model
waves containing frequencies up to 34.3 Hz (with c = 343 m/s). The simulation ran for
30 000 iterations which resulted in the calculation over a domain which is 2 km high
and 30 km wide. The time step is chosen according to the recommendations explained
in section 3.4 and is equal to 2.7 ms. The source is a gaussian spatial distribution, which
central frequency is 10 Hz and peak amplitude is 1 kPa (154 dB re 20 µPa); it is set
at altitude y = 400 m close to the right edge of the computational domain (the signal
propagates backward in the window). The sound speed profile chosen is shown in Fig-
ure 4.5 (the wave speed only varies with the altitude). Although this profile may not be
extremely realistic it has the advantage of presenting a lot of variations and thus allows
to fully estimate the accuracy of refraction effects calculations. The window is moving
with the maximum wave speed which is 363.2 m/s and the maximum wave celerity
perturbation is c1,max = 22.2m/s and occurs at a 1550 m altitude. The medium prop-
erties at rest are those found for a temperature of 20 ◦C under 1 atm (the nonlinearity
coefficient β is here set to zero, since we only consider linear propagation).

The pressure field over the calculation grid was recorded during the iteration process;
some of these recordings are shown on Figure 4.6. These six snapshots were taken
every 6.85 s starting from time 1.37 s (time evolution in the subplots is from left to
right and top to bottom). The white dot in the first subplot represents the position of
the source. One can see the spherical wavefront in the first plot, then the reflection on
the ground (second plot) and the gradual deformation into a complex shape, due to
refraction effects on the following subplots.
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Figure 4.5.: Sound speed profile used in the linear complex case.

Although these movie snapshots can help understand the refraction phenomena,
they can hardly be used for quantitative assessment. Transmission loss is calculated
with the NPE and ATMOS. The map obtained from the NPE calculations is presented
in Figure 4.7. Again one can clearly see on this Figure the effects of spatially-varying
meteorological conditions. The globally increasing sound speed produces a downward
refraction. The transmission loss is also calculated with ATMOS and the relative differ-
ence between models is shown on Figure 4.8. White areas denote a relative difference
lower than 2 dB. Transmission loss at three different altitudes (0.5, 1 and 1.5 km) for both
linear simulations are also shown on Figure 4.9. On most of the domain the difference
between the models is acceptable. A zone near the source presents higher differences:
around 3∼4 dB. This zone of lower accuracy is due to the coupling method: as shown in
section 4.2 the solution from coupled NPE-ATMOS models take some time to converge
to the exact solution. Some small and localized areas also present variations higher than
2 dB but the relative difference never exceeds 4 dB.

4.3. Conclusion

The implemented NPE has been proven to accurately recreate nonlinear effects, such
as wave steepening or dissipation at the shock. This test-case has been done for a
one-dimensional problem, but the one-way propagation hypothesis of the nonlinear
progressive wave equation ensures the validity of nonlinearity calculations for two-
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Figure 4.6.: Wave front evolution. These six snapshots were taken every 6.85 s starting
from time 1.37 s. Time evolution in the subplots is from left to right and top
to bottom. The white dot in the first subplot represents the position of the
source.
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Figure 4.7.: Transmission loss vertical maps obtained with the NPE calculations.
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tions. White areas are below 2 dB.
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Figure 4.9.: Transmission loss at three different altitudes (0.5, 1 and 1.5 km) for ATMOS
and NPE simulations.

dimensional configurations. The numerical method has also been tested regarding me-
teorological conditions. It appeared that refraction, atmospherical absorption, reflec-
tions and interferences were reproduced within a 2 dB relative error range. Of course
a full validation problem, including nonlinear effects and complex meteorological con-
ditions would have been of great interest. But the lack of data in the litterature and the
problems inherent to explosion measurements make it impossible to realize.

The coupling between two different numerical methods has been shown to be suc-
cessfull. Although algorithms used are very different (time domain/frequency do-
main), the different methods can be made compatible. Coupling between NPE and,
for example, BEM or FEM could be done to study sound barriers or dynamic response
of buildings.
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5. Case study

In this chapter the nonlinear progressive wave equation implemented is used to model
the propagation of an explosion born sound wave. The 21st of September 2001 a ware-
house belonging to the AZF chemical factory in Toulouse (south-west of France) ex-
ploded. This accident resulted in many deaths or injured and caused huge damages to
buidings in a wide area. The explosion strenght was equivalent to 30 000 tons of TNT.
Such powerful detonation produced an acoustic wave of very high amplitude which
impact on buildings has been studied at the CSTB in September 2002. Time wave-
forms were determined with analytical models for explosions (the Kinney-Graham [34]
model, see section 5.1). The same model is used at short distances to initialize the cal-
culation window and then the NPE is used to get time waveforms at long ranges. This
study focuses on nonlinearities, and their potential effects on structures, due to the high
amplitudes of the wave. In section 5.3 the coupling with ATMOS (or any other numer-
ical model) is detailed. Several criteria that could be used to initialize the coupling are
compared, and a method to efficiently determine the parameter value is explained. The
last section presents a very simple prediction model that allows to know when non-
linearities can be neglected prior to the numerical simulation. This analytical model is
restricted to a specific class of signals, but it showed to give good results.

5.1. Configuration

Geometry and meteorological conditions

The nonlinear propagation of the explosion signal is simulated over a domain which is
45 km wide and 1.5 km high. Spatial steps are set to 1.55 meters along the x-axis and
3.10 meters along the vertical axis. The time step is δt = 4.5 ms and the simulation ran
for 30000 iterations.

The sound speed has been chosen constant over altitude, so that this case study is
focused on nonlinear effects. Since the wave will not move within the computational
window (constant sound celerity), the grid has been chosen just wide enough to contain
the source signal. The window is 120 points large and 500 points high. Chosing a
small window reduces the computational time: this simulation ran for 14 minutes on
a “normal” desktop computer. A fully linear calculation has also been run to evaluate
nonlinearities.
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Four receivers are placed in the domain: they are positioned 2 meters high and at
500 m, 1 km, 5 km and 10 km from the source. The source is on the ground and is
spherically radiating.

Source signal

The source signal is determined according to the Kinney-Graham [34] model. This
model defines waveforms from chemical and nuclear explosions for an explosion equiv-
alent to 1 kg of TNT:

p (t) = p0 (1− t/td) eαt/td (5.1)

where p (t) is the overpressure at time t, p0 is the peak overpressure at time t = 0
(t = 0 at the shock arrival time) and td is the positive phase duration. For a chemical
explosion, the ratio of the overpressure to the ambient pressure can be calculated with:

p0

pa
=

808
[
1 +

( Z
4.5

)2
]

√
1 +

( Z
0.048

)2
√

1 +
( Z

0.32

)2
√

1 +
( Z

1.35

)2
(5.2)

where Z is a reduced distance which units is [m/kg1/3]. The positive phase duration td

is calculated with (again, for a chemical explosion):

td

W
=

980
[
1 +

( Z
0.54

)10
]

[
1 +

( Z
0.02

)3
] [

1 +
( Z

0.74

)6
]√

1 +
( Z

16.9

)2
(5.3)

where W is a reduced mass. The arrival time ta (t=0 in equation 5.1) is calculated with:

ta =
1
c0

∫ r

rc

 1

1 + 6p0
7pa

 dr (5.4)

where rc is the charge radius and r is the distance from the source. With this set of
equations, time waveforms (and thus spatial waveforms) can be calculated. The TNT
equivalent for the AZF explosion has previously been determined to be 30 kT. This
value is used in the model; it is assumed that the Kinney-Graham formulas are valid for
such explosion strenght. Figure 5.1 presents the source signal used for the calculation
and Table 5.1 summarizes the signal characteristics.

5.2. Results

Figure 5.2 presents the signals at the receivers for linear (dashed line) and nonlinear
(thick line) calculations and Table 5.2 summarizes the evolutions of the properties at
the last receiver position (10 km away from the source).
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Figure 5.1.: Source signal used in the simulation, calculated with the Kinney-Graham
model, for an explosion of 30 kT of TNT.

Positive peak amplitude [kPa] 49
Negative peak amplitude [kPa] 1.65

Positive phase duration [ms] 67.9
Negative phase duration [ms] 108.7

Total duration [ms] 176.6

Table 5.1.: Signal characteristics.

Linear Nonlinear Difference
Arrival time [s] 29.19 29.11 -0.08

Signal duration [ms] 170 270 +100 ms / +58 %
Positive peak amplitude [Pa] 453.4 215.8 -237.6 Pa / -52 %

Positive amplitude duration [ms] 70 150 +80 ms / +53 %
Negative peak amplitude [| Pa|] 152.4 146.3 -6.1 Pa / -4 %

Negative amplitude duration [ms] 100 120 +20 ms / +20 %
Energy [kPa2.s] 5.61 3.17 -2.44 / -43 %

Table 5.2.: Signal properties at 10 km distance; comparison of nonlinear and linear cal-
culations.
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Figure 5.2.: Time signals at the receivers.

Nonlinear effects are clearly visible on all time signals. As expected, the signal from
nonlinear calculations travels faster than for linear calculations; the arrival time differ-
ence is 80 ms. This value is not crucial for long-rangesound propagation, but it may
have its importance in other situations (e.g. room acoustics). One can see on Figure
5.2 that the waveform slowly evoluate to an N-wave (or shock wave). The process is
gradual and accumulative: effects are still visible even if the signal amplitude is much
lower (less than 400 Pa, see two last subplots in Figure 5.2). The positive peak ampli-
tude is greatly reduced (-43 %) by the shock dissipation process; it is less visible (only -6
%) for the negative peak amplitude, since the shock formation occurs later (see two last
subplots) and at this time, the wave amplitude approches nonlinear/linear limit (less
than 200 Pa). Another effect of shock formation and dissipation is the modification of
signal duration: the signal length is increased (+100 ms / +58%); again, this change is
mainly due to the positive amplitude peak. Both peak amplitudes are reduced (in ab-
solute values) but the duration increase is not large enough to compensate for energy
losses: it is reduced by 43 %.

Figure 5.3 shows the Fourier transform of signals presented in Figure 5.2. The fun-
damental frequency shifts from 5 Hz to 2.70 Hz (-46 %) because of the increase of sig-
nal duration. This could be of importance regarding building response to explosion
noise. First resonance modes of heavy structure are typically below 10 Hz. The fact that

50 CHALMERS, Master’s Thesis 2007:13



the fundamental frequency decreases with time could lead to high excitation of heavy
construction. It could also be noted that the high frequency content changes through
propagation: high frequency harmonics are generated.
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Figure 5.3.: Frequency content of time signals presented in Figure 5.2.

5.3. Coupling

Coupling the results of the NPE can be of interest: faster linear propagation code
or BEM method could be used to evaluate, for example, the efficiency of protection
screens. These methods being linear, the nonlinear effects have to be weak so that out-
put from the NPE can be used as an input for another method. In this section the choice
of the parameter (and its value) for an efficient coupling with a linear numerical method
is studied. Three parameters are selected:

• The ratio of positive amplitude (nonlinear/linear).

• The ratio of signal durations (linear/nonlinear).

• The ratio of fundamental frequencies (nonlinear/linear).

Figure 5.4 presents the evolution of these parameters through time. All curves follow
the same tendency: equal to 1 a time t = 0, they slowly decrease to their asymptotic
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values, as nonlinear effects become less important. The derivatives with respect to time
are shown on Figure 5.5: all are very similar. From this observation the hypothesis
that the coupling parameter can be chosen arbitrarily can be made. The positive peak
amplitude is chosen as a coupling parameter: it is simple and fast to implement (no
FFT needed). The curves presented in Figure 5.4 and their derivatives (Figure 5.5) can
be modeled by simple equations:

f (t) = E + Ae(−t/τ) (5.5)

f ′ (t) = −A
τ

e(−t/τ) (5.6)

where E is the final ratio (asymptotic value), A is the variation amplitude and τ is a time
constant. The analogy with RLC circuits is straightforward: the constant τ represents
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Figure 5.4.: Selected coupling parameters evolution through time.

the time where 63 % of nonlinear effects have already been taken into account. The
value of τ can geometrically be determined: it is the value where the tangent at t = 0
crosses the x-axis. The value of 63 % is too low to accomplish an efficient coupling; the
time where 90 % of nonlinear effects have already been taken into account is chosen
instead. Depending on the curve chosen we find the values for t90:

• Ratio of positive amplitudes (nonlinear/linear): t90 = 51.5 s.

• Ratio of signal durations (linear/nonlinear): t90 = 56.2 s.

• Ratio of fundamental frequencies (nonlinear/linear): t90 = 54 s.
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Figure 5.5.: Coupling parameters derivatives evolution through time.

These values are similar and are in accordance with the assumption that the coupling
parameter can be chosen arbitrarily. A mean value of t90 = 54 s is chosen; at this time,
the positive peak amplitude of the signal is ppeak = 145.5 Pa. This value is consistent
with what is found in the litterature: the limiting value where nonlinear effects can be
neglected is usually 100 Pa.

To assess the selected parameter value, a fully linear, fully nonlinear and four other
coupling values are tested with the configuration presented in section 5.1. The trans-
mission loss is calculated and compared for these seven cases. The selected coupling
parameter is the positive peak amplitude and its used values are 500 Pa, 250 Pa, 175 Pa,
145.5 Pa (the value determined above) and 100 Pa. The results are presented in Figure
5.6; the extreme cases, fully linear and fully nonlinear calculations are represented by
circle and square lines, respectively. As the coupling value decreases, the curves reach
the exact solution, the fully nonlinear line. One can see that the value of 145.5 Pa, previ-
ously determined with the help of curves in Figure 5.4 and 5.5, gives very good results.
While the coupling value of 175 Pa is (relatively) far from the exact solution, the selected
value, only 30 Pa below, in undistinguishable from the exact solution. One should also
note that the coupling value of 100 Pa does not give much additional accuracy.
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Figure 5.6.: Transmission loss calculated for fully linear, fully nonlinear, and 5 coupling
values configurations.

5.4. Prediction model

The determination of the coupling parameter value explained above appeared to give
excellent results. But the interest stays limited if we’re unable to predict the value of the
coupling parameter prior to the numerical simulation. One could establish an empirical
model: testing a lot of different source signals with different characteristics would lead
to empirical rules that could be used to predict when nonlinear effects can be neglected.
This solution would take a lot of time; another option is to create a simple analytical
model for a specific class of signals.

5.4.1. Derivation

The aim of this model is to allow someone to know when nonlinear effects can be ne-
glected, with the help of few information on the source signal. The selected criteria is
the time t90, where 90 % of nonlinearities have already been taken into account. For the
model to work, source signals must follow some simple rules: the signal must contain
only one maximum, one minimum and it must cross the x-axis in only one position.
These rules are not so restrictive: explosion signals often respect these hypothesis. The
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model is based on signal duration increase: it is assumed that before shock formation
the signal length remains unchanged and that the shock from positive peak amplitude
occurs before the shock from negative peak amplitude. The following notations will be
used:

• A+ (t) and A− (t) : positive and negative peak amplitudes.

• d+ (t) and d− (t) : distance from positive (negative) peak amplitude to the right
(left) end of the source signal.

• L+ (t) and L− (t) : positive (negative) phase distance.

• τ+ and τ− : positive and negative shock formation time.

• ∆c+ (t) and ∆c− (t) : wave celerity increase (decrease) at positive (negative) peak
amplitude.

• ∆L (t) : signal length increase.

Only six parameters describing the source signal are needed for the calculation: A+(0)
and A−(0), d+(0) and d−(0) and L+(0) and L−(0). To the first order, the increase (or
decrease) of sound celerity at the peaks can be expressed by:

∆c+ (t) =
βA+ (t)

2ρ0c0
, and ∆c− (t) =

βA− (t)
2ρ0c0

(5.7)

Before shock formation, the signal amplitude obeys cylindrical decay rules:

A+ (t) =
A+(0)√

c0t
, and A− (t) =

A−(0)√
c0t

(5.8)

With equations 5.7 and 5.8 an expression can be found for the distances from the peak
to the ends of the signal:

d+ (0) =
∫ τ+

0

A+ (t) β

2ρ0c0
tdt , and d− (0) =

∫ τ−

0

A− (t) β

2ρ0c0
tdt (5.9)

From the above integral, equations for τ+ and τ−, the shock formation times, are set:

τ+ = 3/2

√
3ρ0c3/2

0 d+

A+ (0) β
, and τ− = 3/2

√
3ρ0c3/2

0 d−
A− (0) β

(5.10)

Three phases in the wave propagation can be denoted:

1. Before any shock formation: t < τ+ < τ−: no increase of signal duration.

2. After front shock formation and before back shock formation: τ+ < t < τ−:
increase in signal duration is only due to positive amplitude shock.
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3. After back shock formation: τ+ < τ− < t: increase in signal length is due to both
shocks.

Dissipation at the shocks must be taken into account in the expression of the ampli-
tudes. Once the shocks are formed, peak amplitudes decrease at a faster rate than
simple cylindrical decay. A correction term is added to the expressions in equation 5.8:

A+,d (tn) =
A+(0)√

c0t
− A2

+ (tn−1) dtβ

2ρ0c0 (Lini + d+ (tn−1))
for t > τ+

A−,d (tn) =
A−(0)√

c0t
− A2

− (tn−1) dtβ

2ρ0c0 (Lini + d− (tn−1))
for t > τ− (5.11)

This correction term arise from geometrical considerations. It allows to approximate
dissipation effects with the help of the peak amplitudes and distances from peaks to
signal ends at the previous time step. The increase of signal length can now be calcu-
lated:

∆L (t) =


0 if t < τ+ < τ−

∆c+ (t) (t− τ+) if τ+ < t < τ−

[∆c+ (t) + ∆c− (t)] [2t− (τ+ + τ−)] if τ+ < τ− < t

In the model above, constant sound speed is used. Spatially-varying wave celerity
could be used by taking the extreme cases: c0 is replaced by max (c (x, z)) for the posi-
tive peak and c0 is replaced by min (c (x, z)) for the negative peak. This choice doesn’t
lead to accurate results, but the time t90 found can’t be lower than the exact t90 and thus
leads to efficient coupling.

5.4.2. Results

The model has been used with the initial conditions and configuration presented in
section 5.1. Table 5.4.2 sums up the six parameters used for the source signal and the
meteorological conditions are those found in section 5.1.

The evolution of signal lengths ratio (linear/nonlinear) are calculated and shown
on Figure 5.7. Both curves follow the same variations. The prediction from the model
present slightly higher values (dashed line), especially when nonlinear effects are strong,
at the beginning of the simulation. As nonlinear effects become weak, both curves tend
to the same asymptotic value. The coupling value has been previously set to the time
t90 where 90 % of nonlinear effects have already been taken into account. According
to the numerical simulation, this time was t90 = 54 s; with the prediction model we
find t90 = 73 s. Values are quite different due to the fact that the curves are very flat:
a small difference on the y-axis leads to great variations on the x-axis. In spite of these
variations on numerical values the model established reproduces the variations of the
signal length with a good accuracy. Its simplicity (only 6 values describing the source

56 CHALMERS, Master’s Thesis 2007:13



Signal property Value
A+ (0) [kPa] 49
A− (0) [kPa] 1.65
d+ (0) [m] 6.21
d− (0) [m] 23.30
L+ (0) [m] 23.42
L− (0) [m] 37.29

Table 5.3.: Signal properties used for the prediction model.

signal) makes it a powerful tool to estimate on which area/time range nonlinearaties
have substantial effects.
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Figure 5.7.: Evolution of signal duration ratio for prediction model and simulation.
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6. Conclusion and perspectives

6.1. Conclusion

The implemented nonlinear progressive wave equation has been proven to give excel-
lent results for the problems considered. This tool allows to simulate high-amplitude
sound waves in a complex envoronment with a good accuracy. The assumptions on
which the method is based, one-way propagation and finite-length signals, lead to
fast computation: even for very complex and large computations only some hours are
needed to complete the simulation.

Although used algorithms are very different, the coupling between the NPE and a
parabolic equation implementation turned out to give excellent results whith the cou-
pling criteria value described in section 5.3. The simple analytical model developed
allows to get an estimation of the strenght of nonlinearities for a specific problem. Al-
though these simple formulas can’t be used for complex configurations, it can help to
know when to stop the calculations or to couple two different software.

Nonlinearities have been shown to have an important effect on high amplitude sound
propagation. Signals are greatly modified: time signals characteristics as well as signals
frequency content can vary a lot. This could be of importance regarding applications.
Buildings in sensitive areas, where explosions can happen, could receive a special treat-
ment compared to unexposed structures. Protection screens can also be designed in
accordance to the signals characteristics.

These six months of work lead to a friendly and powerful tool. The user interfaces
developed (see appendix B) and the program features will enable the CSTB to study
high amplitude sound propagation problems, where nonlinearities play an important
role.

6.2. Perspectives

The nonlinear progressive wave equation presented through this document could be
improved in many ways. First non rigid grounds can be implemented. Impedance
models for finite-difference time domain simulations have recently been introduced by
Heutschi [31]. The polynomial representation of ground impedance explained in this
article avoid the long and complex convolution previously needed to use frequency
dependant impedance models.
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Non flat ground could also be implemented: several methods exists: Heimann [33]
developed an Eulerian finite difference time domain propagation model with terrain
following coordinates: the topography is taken into account with the help of a transfor-
mation in the sound celerity expression.

The absorption layer boundary condition could also be improved: the typical thick-
ness of this layer is about a quarter of the physical domain; the additional computa-
tional time is extremely important. Berenger [8] developed a very efficent absorbing
boundary condition for electromagnetic waves: the perfectly matched layer. This ab-
sorbing boundary condition allows to absorb outgoing wave with a single layer. This
method has recently been adapted to acoustic finite difference simulations (see Hu [21])
and could be implemented on the nonlinear progressive wave equation.

During this master’s thesis only one numerical model has been coupled to the NPE:
ATMOS, a software that solves for linear propagation. The CSTB owns very accurate
tools to study sound propagation. Boundary element methods and the nonlinear pro-
gressive wave equation could be combined to allow modeling the propagation over
complex surfaces.
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A. Crank-Nicolson scheme and Thomas

algorithm

Crank-Nicolson scheme

The Crank-Nicolson method is a finite difference scheme used to numerically solve
differential equations such as the heat equation. The method was developed by John
Crank and Phyllis Nicolson in the mid twentieth century. The scheme is second order
in time, and stable for all δt. It involves taking the space derivatives half way between
the beginning and the end of the time space, i.e.:

∂u
∂x

≡ 1
2

[
un+1

i+1,j − 2un+1
i,j + un+1

i−1,j

2δx
+

un
i+1,j − 2un

i,j + un
i−1,j

2δx

]
∂2u
∂x2 ≡ 1

2

[
un+1

i+1,j − 2un+1
i,j + un+1

i−1,j

δx2 +
un

i+1,j − 2un
i,j + un

i−1,j

δx2

]

It is hence an average between fully explicit and fully implicit models of PDE’s. This
is where the second order convergence comes from. This leads to solve a tridiagonal
linear equations system that can fastly be solved with a Thomas algorithm.

Thomas algorithm

Semi-implicit schemes require a linear system of equations to be solved where the ma-
trix is tridiagonal. The Thomas algorithm is an efficient method to solve the system
Bu = d where B is tridiagonal and of size N × N.

B =


α1 β1

γ1 α2 β2
. . . . . . . . .

γN−2 αN−1 βN−1

γN−1 αN

 (A.1)

The Thomas algorithm is decomposed in three steps:

1. A LR decomposition.
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2. A forward substitution.

3. A backward substitution.

First step: LR decomposition

The matrix B can be decomposed in a lower bidiagonal matrix and an upper bidiagonal
matrix:

L =


1
l1 1

. . . . . .
lN−1 1



R =


m1 r1

. . . . . .
mN−1 rN−1

mN


One can note that ri = βi for all i; the coefficients mi and li can be obtained as follow:

m1 := α1

For i = 1, 2, · · · , N do:
li := γi/mi

mi+1 := αi+1 − liβi

Second step: forward substitution

The system Ly = d is solved; we get:

y1 := d1

For i = 2, · · · , N do:
yi := di − li−1yi−1

Third step: backward substitution

The system Ru = y is solved; we get:

uN := yN/mN

For i = N − 1, N − 2, · · · , 1 do:
ui := (yi − βiui+1) /mi
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B. User interface to the NPE propagation

code

Four user interfaces have been created to interact with the NPE code. Developed with
Matalb, it allows to use the simulation program in an easy way.

The first interface (see Figure B.1) is used to enter parameters such as window length
and spatial steps, medium properties or sound speed profile. This interface writes a file
on the disk that will be read by the program.

Another interface allows to easily create input signals (see Figure B.2). Several kind
of signals can be designed either with the help of analytical expression (Matlab syntax)
or by loading Matlab array files. A file containing signal data is written and then read
during program execution.

The third interface (see Figure B.3) is used to visualize results. It can be used to plot
transmission loss or excess attenuation maps, time signals at the receivers or snapshots
at recorded time steps.

The last interface can be used to facilitate the use and configuration of ATMOS in case
of a coupling between the NPE code and ATMOS (see Figure B.4). It allows to transform
time signals into frequency domain starter that can be directly used in ATMOS.
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Figure B.1.: Parameters interface.

Figure B.2.: Source signal creation interface.
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Figure B.3.: Post processing interface.

Figure B.4.: Coupling interface.
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