
Impediments Associated with
Requirements in Agile Projects
Master’s thesis in Software Engineering

Fredrik Holmdahl

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2018

Master’s thesis March 2018

Impediments Associated with
Requirements in Agile Projects

Fredrik Holmdahl

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2018

Impediments Associated with Requirements in Agile Projects
Fredrik Holmdahl

© Fredrik Holmdahl, 2018.

Supervisor: Eric Knauss at Department of Computer Science and Engineering,
Philip Jungstedt at Avanade
Examiner: Robert Feldt, Department of Computer Science and Engineering

Master’s Thesis 2018
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Agile related words relevant to the thesis, created with WordClouds.

Typeset in LATEX
Gothenburg, Sweden 2018

iv

Impediments Associated with Requirements in Agile Projects
A Case Study at Avanade
Fredrik Holmdahl
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
The agile principles does not lean on heavy documentation, and support changes
by allowing changing requirements and even welcoming brand new during the de-
velopment. Agile practitioners specify requirements on different abstraction levels,
depending on the framework and personal preferences. Minimal documentation, no
upfront requirements, and rapid working software are some of the luring traits of
agile development. Terms like “just barely good enough” and “just in time” conflict
with agile practitioners wanting more defined user stories and acceptance criteria.
Organizations without existing agile knowledge can opt to outsource the develop-
ment over applying internal education. Customers juvenile in agile development, a
conflict of documentation levels in agile by different practitioners can cause chal-
lenges, such as customer availability, requirements lacking in detail, inappropriate
architecture and contract conflicts.
This study set out to identify and present these challenges and provide solutions
related to agile requirements engineering in an outsourced environment.
The data was gathered through a case study at a large consultant company. Inter-
views were used as the main source of collecting information, with the addition of
forms. Related research was also included to relate the findings too, and collect any
missing information not obtained from the case.
The results are presented as impediments that hinder the project, accompanied by
solutions on how to address them. The themes which include the impediments
are lacking customer availability and engagement, insufficient architecture, require-
ments lacking in detail and customers lacking agile knowledge. Solutions are ded-
icated product owner, improved initial architecture, greater requirement detail and
customer agile education.

Keywords: Agile, Scrum, Requirements Engineering, Impediments, Challenges, So-
lutions.

v

Acknowledgements
This research was performed as my master’s thesis at the Department of Computer
Science and Engineering at Chalmers University of Technology in Gothenburg, Swe-
den.
First and foremost I would like to thank my academical supervisor Eric Knauss for
providing great support and guidance during the whole process.
I would also like to thank Avanade for making the research possible by letting me
conduct the study with their personnel. Moreover, I would like to thank my indus-
trial supervisor Philip Jungstedt, and all the employees that participated.
Finally, I would like to thank my examiner Robert Feldt for providing great feedback
at the thesis’ milestones.

Fredrik Holmdahl, Gothenburg, March 2018

vii

Contents

1 Introduction 1

2 Background and related work 5
2.1 Agile development . 5

2.1.1 Agile methodologies . 6
2.1.2 Agile Manifesto . 6
2.1.3 Scrum . 6
2.1.4 Agile requirements engineering 7

2.2 Outsourced development . 8
2.3 Avanade Stockholm, Sweden . 8
2.4 Related work . 9

3 Methodology 11
3.1 Data collection . 11

3.1.1 Interviews . 12
3.1.2 Structure of interviews . 12
3.1.3 Sample . 12
3.1.4 Validation from participants 14

3.2 Data analysis . 14
3.2.1 Inductive approach . 14
3.2.2 Transcribing interviews . 14
3.2.3 Coding interviews . 15
3.2.4 Analyzing data . 15
3.2.5 Keeping track with memo . 15

3.3 Presenting the findings . 16

4 Results 17
4.1 RQ1: What impediments are associated with agile requirements en-

gineering? . 17
4.1.1 Impediments found in this study 17

4.1.1.1 Lacking customer availability and engagement 17
4.1.1.2 Insufficient architecture 19
4.1.1.3 Requirements lacking in detail 20
4.1.1.4 Customer lacking agile knowledge 22

4.1.2 Impediments from related research 23

ix

Contents

4.2 RQ2: How can the impediments caused by agile requirements engi-
neering be addressed? . 24
4.2.1 Improvements found in this study 24

4.2.1.1 Dedicated product owner 24
4.2.1.2 Improved initial architecture 25
4.2.1.3 Greater requirement detail 26
4.2.1.4 Customer agile education 27

4.2.2 Improvements from related research 28

5 Discussion 31
5.1 Contribution to research . 31
5.2 Implications for practice . 33
5.3 Threats to validity . 34
5.4 Significance of the study . 35
5.5 Future research . 35

6 Conclusion 37

Bibliography 39

A Appendix A I

B Appendix B III

x

1
Introduction

Traditional software development using the waterfall model follows a well planned
and executed process. The linearity of it makes it ideal for projects that require
being planned into great detail. Agile on the other hand was created as an alter-
native to the heavy documentation driven process by making it more lightweight
and flexible [1]. Agile thus aims to counter many of the challenges present in a
waterfall process, caused by e.g. following a strict plan. In particular, Requirements
engineering (RE) in agile development differ from traditional RE, as it allows for
requirements to change during the process. A systematic literature review (SLR)
done by Inayat et al mapped the traditional RE challenges and presented them to
be about e.g. communication issues, requirements validation, requirement docu-
mentation, as well as rare customer involvement [2]. All of these challenges were
solved by different agile RE practices such as frequent face-to-face meetings, on-site
customers, one continuous scope flow and user stories.
However, agile is not a silver bullet and its failure rate is according to Mersino (mea-
sured between 2011 and 2015) at 9 percent and challenged at 52 percent, leaving
a success rate at 39 percent [3]. The categories are are created by The Standish
Group and contains three constraints (schedule, cost and scope) which have to be
met in order for success, while two of three has to be met for challenged. Failed
projects are those that are cancelled or completed but ends up not used. The per-
centage of which agile projects fail and are challenges are therefore at a majority
with 61 percent, indicating that there is much room for improvements. A debated
area highlighted by Arthaud is the use of RE in agile projects, and how user stories
compare to traditional requirements [4]. The starting misconception lies with the
word “over”, used in each of the principles in the agile manifesto, see Figure 1, and
that there is only value on the left side in contrast to the right [5]. This misconcep-
tion creates a mindset that only the agile methods hold value in agile projects, and
anything from the traditional processes is thus neglected. The conclusion drawn by
Arthaud was that there is still room for traditional requirements in agile projects,
especially for large teams, complex systems, and systems which are expected to last
long. Another debated area is that detailed requirements are not as emphasized in
agile projects as they are prone to be changed. The term “good enough” is often
used to describe how agile requirements should be documented, although without
offering a concrete definition. The closely related term “just barely good enough”
(JBGE) is explained by Ambler to be the most efficient way of documenting, as it
yields the best value for the effort [6]. The graph used to illustrate JBGE is drawn
with one axis representing value and the other effort, where JBGE is marked as the
point before the value starts decreasing in a bell curve. However, the point of JBGE

1

1. Introduction

is something that changes between cases, and to determine when the optimal doc-
umentation can be hard, but according to Ambler, it comes sooner than expected.
Documentation is by this definition thus very minimal and is something that Meyer
includes on the list of the ugly parts of agile [7]. Meyer also includes on this list e.g.
no upfront requirements, abstract requirements replaced by user stories, and using
tests instead of a specification.
The SLR on agile RE practices and challenges by Inayat et al show findings of
minimal documentation, customer availability and inappropriate architecture that
can result in traceability issues, increase in rework and increase in cost [2]. RE in
agile could thus stand for many of the challenges in agile projects. It can, therefore,
be crucial that there is a good definition, template or guidelines to go on when
specifying the requirements in regards to them being “good enough” or JBGE. The
requirements in agile are usually specified on the form of user stories, which trans-
lates into tasks in the backlog.
A research done by Lunder set out to identify how thorough the requirements should
be specified in an agile RE process [23]. The results showed that it varied between
different stages in the process. In another study done by Zhu, who investigated
how to conduct RE in an Agile Scrum environment, showed findings that problems
were e.g. that requirements were often not specified enough, and not on any format
[24]. The key problem is that minimal documentation is too loosely defined and
that using different interpretations of it can result in many different outcomes. Out-
comes caused by incomplete or insufficient documentation can be very problematic
and could be related to the low 39 percent success rate among agile projects. The
purpose of this study is to identify these problems in a company that uses the agile
framework Scrum. It does so by investigating how different employees in different
departments in the company is affected by the use of agile RE. It also provides
suggestions on how to address these problems to decrease the failure and challenge
rates for future agile projects.
The definition of problems used in this research is impediments. This is because
impediments represent hinders that are not full stop obstacles, but rather problems
that can cause for a project to be challenging or cause it to fail if not handled prop-
erly.

Research question 1 (RQ1):
What impediments are associated with agile requirements engineering?

Research question 2 (RQ2):
How can the impediments caused by agile requirements engineering be
addressed?

These questions were answered based on an exploratory qualitative case study using
semi-structured interviews at a consultant company. The method was chosen as
it encapsulates how the agile process is impacted in a client-customer environment
which contains many of the agile specific challenges but also e.g. customer avail-
ability, customer involvement and contract negotiation. Four main themes were
identified, and four resulting suggestions on how to address them, which were vali-

2

1. Introduction

dated through feedback gathered from the participants in a follow-up form.
The scope of this research was limited to a case study at a consultant company for
business and IT solutions. They use the agile framework Scrum in their work, and
develop and provide different systems and solutions for their customers. More about
the company can be found in Chapter 2, Section 2.3.

Figure 1. The Agile Manifesto.

3

1. Introduction

4

2
Background and related work

Agile software development was officially created with the agile manifesto back in
2001 [1], yet it has traced all the way back to 1957 according to an article by C.
Larman and V. R. Basili from 2003 [11]. According to Gerald M. Weinberg, who
was quoted in that article, they used incremental development at IBM already at
that time, which was very close to the techniques used in Extreme programming
(XP). However, there are so many different agile techniques apart from XP, such
as Scrum, Kanban or Feature-driven development (FDD). There are also different
ways of using these in practice, such as using in-house development, off-shore de-
velopers or outsourcing. With so many different parameters and so many possible
implementations, to fully understand the benefits and drawbacks we need more ex-
tensive research in this. Some systems require a more detailed approach used in
traditional software engineering, but many software solutions today requires a more
agile approach to be able to adapt to the market. With an increased use of agile
principles in the industry, it becomes more and more important to understand the
benefits and drawbacks, Jeremiah [12]. The market for technology changes faster
today than ever and agile inherently fixes a lot of problems that traditional software
development tackles with, as presented by Inayat et al [2]. This chapter will first
cover agile development in Section 2.1, then briefly describe outsourced develop-
ment in Section 2.2. The company which participated in this research is presented
in Section 2.3, and related research in Section 2.4.

2.1 Agile development

Agile development is based on principles that allow for an adaptive process where the
system evolves through iterations. The priority lies in satisfying the customer, which
can be achieved by continuous delivery of valuable software. Many of the principles
in agile origins from lean development, which focuses on eliminating waste such as
excessive documentation, and instead focus on bringing value to the customer [13].
Value to the customer is not limited to working software as soon as possible, but also
the use of doing it often, in iterations. It is thus providing value in flexibility, which
lets the customer change or add requirements during the whole process. Having this
flexibility gives customers an edge in competitive markets.

5

2. Background and related work

2.1.1 Agile methodologies
There are many different lightweight methods in comparison to the heavier water-
fall method, in regards to the process, tools, and documentation. These different
lightweight methodologies aimed to solve the problems that waterfall development
had, and each method could be more or less beneficial depending on the different
needs of the project [14]. The methodologies include e.g. XP, Kanban, FDD and
Scrum, and all processes use an iterative or incremental approach. All of these also
have similar values that lie in minimal documentation and high user or product
owner involvement. Scrum is specifically in the scope of this research as the com-
pany involved uses this methodology, and is thus described in more detail below in
Section 2.1.3.

2.1.2 Agile Manifesto
The agile methodologies share similar values, and in 2001, many representatives
from the different methodologies gathered to find common ground [1]. The result
was the Agile Manifesto which combined 12 prominent principles and created 4 core
principles that made up the manifesto [15]. The Agile Manifesto can be seen in
Figure 1.
The first principle is about the importance of driven individuals, using face-to-face
communication instead of different processes to convey information. The second
principle is about delivering valuable software with as little waste as possible by
minimizing the amount of documentation. The third principle describes the impor-
tance of collaboration with the customer, and that business people and developers
work together to enhance rapid development instead of negotiating over contracts.
And lastly, the fourth principle highlights the need for flexibility by welcoming re-
quirements during the whole process instead of following a plan defined at the start.
The use of all principles assists in a sustainable process.

2.1.3 Scrum
Scrum is an agile methodology that sees itself as a framework which can within it-
self deploy several different techniques or processes [16]. Scrum uses self-organizing
teams which are cross-functional to best accomplish tasks. They can manage to
plan and execute tasks alone without being directed or obtaining help by personnel
outside of the team. The Scrum team consists of several members. The product
owner is responsible for the delivery of the product and is selected because of his/her
expertise in the product or market. As an expert, the product owner is in charge of
organizing the backlog to maximize the value for each iteration. The product owner
is working as a bridge between the customer and developers to ensure the products
best interest with all stakeholders opinions and developers suggestions in mind.
The development team is made up of developers, with cross-functional skills and
there are no titles among them. The development team itself chooses how to tackle
the items in the backlog, but there are no sub-teams. However, the skills may vary
among the members so the self-organizing team may allow for specializations for the
most efficient implementations, although everyone has the same accountability.

6

2. Background and related work

The Scrum Master works differently with different parties. To the development
team, the Scrum Master works in a supporting way to coach and facilitate Scrum
events.The Scrum Master also helps the product owner to ensure that the develop-
ment team understands the goal and scope of the product. The Scrum Master also
helps the product owner arrange the backlog to maximize value.
Daily Scrum is a daily event which is held by the development team and is no longer
than 15 minutes. The Scrum Master makes sure that the event is happening but is
not taking part in it, as the questions are related to the developers. The questions
each member has to answer is:

• What did I do yesterday that helped the Development Team meet the Sprint
Goal?

• What will I do today to help the Development Team meet the Sprint Goal?
• Do I see any impediment that prevents me or the Development Team from

meeting the Sprint Goal?

The questions are constructed to enhance collaboration between members of the
team, and they usually meet afterward to adapt or replan the rest of the sprint.
The sprint is a period no longer than one month were goals are set to be accom-
plished. Each sprint is planned and no changes can be made to it that would
endanger the set goals. The end of a sprint is a resultant increment of the product
that is developed.
The product backlog is a list of ordered items which are everything known to be
needed in the end product. The backlog is never complete and it evolves during the
whole development process. Each sprint has a set of items from the backlog which
are to be completed by the sprints end.

2.1.4 Agile requirements engineering
Instead of eliciting all requirements in the beginning, and detailing them before the
development starts as in traditional waterfall development, agile RE promotes the
requirements to be introduced during the whole development. This enhances the
flexibility of a product to adapt to changing customer needs or development obsta-
cles. Creating a comprehensive documentation at the start is therefore considered
to be waste. Eliciting requirements from stakeholders, specifying the requirements
in grand detail and verifying the end product before the development starts could
result in the development of the wrong product by the time it is finished. Another
consequence could be that competitors could manage to launch their equivalent
product earlier. Such consequences are avoided by agile, as the development starts
earlier, and working software is presented early. This makes it possible to launch
the product faster and continuously work on it after release to ensure an advantage
over competitors on the market.
Traditional requirements engineering elicit a great number of requirements and spec-
ify them into a comprehensive documentation [17]. The document contains func-
tional and quality requirements as well as thorough depictions of the dependencies

7

2. Background and related work

on different forms, such as different diagrams and tables. In Agile RE there are
usually only user stories that depict the requirements. User stories are high-level
definitions of requirements and are containing just enough information so that devel-
opers can create estimates of effort for implementing it [18]. User stories are simple
and provide little detail. It can, therefore, be beneficial to let the stakeholders write
them as they are easy to learn, and they can thus help formulate requirements with
their own words. User stories are often focused on functional requirements, and
does not take quality requirements into account. It is therefore important to keep
them in mind while writing the user stories so they can be specified were possible, or
they might be absent altogether. There are guidelines and frameworks to follow for
specifying user stories which specify formats to use. A format could be a skeleton
template consisting of the crucial information, which is the role, the means, and the
end [8]. The format is often written as “As a <role>, I want to <means>, so that
<end>”, and neglecting any of these parts would make the user story incomplete.

2.2 Outsourced development
There are many reasons for companies outsourcing development to a third party. It
can be the lack of having own developers in-house, having no developers available,
a question of money, and much more. The outsourced developers are usually part
of a consultant firm which can be specialized in developing software systems, but
also designing them. The company who outsources the development, containing the
stakeholders, is considered to be the customer to the developers, who are also usually
referred to as consultants, or suppliers [13]. Developers in outsourced projects often
use a person that works closely with the customer and stakeholders. This person
should be an expert in the product, or market for the product, be available, and
have decision power to both support and guide the development adequately. This
person is in agile projects often an onsite customer as in XP [19], a product owner
in Scrum [16], or a separate entrepreneur [20].

2.3 Avanade Stockholm, Sweden
Avanade is a joint venture between Accenture and Microsoft, who joined forces to
create an IT consulting firm with Accenture’s consulting expertise and Microsoft
scalable platforms and technologies. In Sweden, they work with consulting services
to provide and develop software solutions. They use both their own development
team as well as Accenture’s, in e.g. India, and work closely with the Microsoft
platform for business solutions, such as the Office 365 platform. This research was
performed at Avanade in Stockholm, Sweden, where agile development is in focus us-
ing the Scrum framework, whom they also have a partnership with [21]. Avanade is
thus on many levels ideal for this research, but it also has a few disadvantages which
can cause different threats to validity. These disadvantages lie in that Avanade is
potentially already very potent in agile, and has eliminated many agile RE impedi-
ments already. A full breakdown of the threats can be found in Chapter 5, Section
5.3.

8

2. Background and related work

2.4 Related work

The terms “just in time” and “just enough” are concepts that are closely related to
the agile methodology, yet they are seldom specified and serve more as guidelines
[22]. As a result, Lunder set out to identify how thorough requirements should be
specified [23]. However, the research found that the subjects did not agree on the
requirements level of detail before the projects are started. Although they wished
for the requirements to be specified as early as possible to easier find dependencies
and problems. When the development was ongoing and during sprints, the subjects
were in larger agreement on the specification level, concluding that it shouldn’t ei-
ther require them spending time interpreting, or taking away their imagination of
implementing it. The paper also investigated when user stories could be enough as a
requirement, which it could if the project wasn’t too complex and were an in-house
project. The results were obtained from a case study at a consultant company who
used the agile framework Scrum.
The systematic literature review (SLR) done by Inayat et al gathered information in
order to map RE practices and challenges faced by agile teams to understand how
traditional RE problems are solved using agile RE [2]. In the results of the adopted
practices, we can find face-to-face communication, customer involvement, user sto-
ries, iterative requirements, requirements modeling etc. Challenges found for agile
RE include minimal documentation, customer availability, customer inability, and
agreement. The SLR gathered their data through 21 studies that discussed agile
RE.
A study conducted by Zhu investigated how to conduct requirements engineering in
a Scrum environment [24]. Obtained results relate to the problems and suggestions
of possible solutions to the requirements detail level or lack of. The problem was
that the requirements were often not specified enough, and additionally, they were
not written in any format. Other findings pointed toward no formal documentation
in general, where only backlog items where found, which were far from formal. There
was also no trace of any non-functional requirements. Minimal documentation and
lack of detail level thus pointed towards possible traceability issues. Suggestions
were, therefore, to write user stories on a specific format, and include them in a new
recommended template for writing requirements. The study used a case study on
two different development teams at the same company.
Cao and Ramesh conducted an empirical study about benefits and challenges of
agile RE practices [29]. In regards to iterative RE, minimal documentation was
one of the discovered challenges, along with neglecting non-functional requirements,
and cost and schedule estimation. Minimal documentation was concluded to be
the reason for many types of problems, such as scaling the software, evolving the
application over time, and introducing new members to the development team. It
was also shown in the same study that face-to-face communication can be the root
cause of problems associated with minimal documentation. Projects which cannot
achieve high-quality interaction has a high risk of requirements lacking in detail or
being completely wrong. The main challenges were customer availability and trust
between customer and developers. In regards to changing requirements during the
development, the biggest challenges lied in redesigns, which could result in refactor-

9

2. Background and related work

ing code, or throwing away complete modules because of inappropriate architecture.
This means that the cost of the project would potentially increase significantly.
The results of this study were obtained from 16 organizations which used agile ap-
proaches.
Berry wrote in 2002 a paper, based on own experience and observations of oth-
ers, about pains caused by requirements when it comes to developing software in
computer-based systems [30]. He means that neglecting requirements because they
will change later is not a great argument. Berry adds that the code refactoring
that needs to be done because of inappropriate or absent architecture is painful
and time-consuming. Rewriting or throwing away code because the architecture has
changed is both wasteful and increases the development cost. In addition to that,
programmers will in time learn that any code is written has a high risk of needing
refactoring, and as refactoring is a painful step, it is also subject to be postponed.
Each time refactoring is postponed into the next iterations, it will be harder and
harder to do.
Meyer published a book in 2014 called “Agile: The Good, the Hype and the Ugly”.
The book contains, as the title suggests, what Meyer considers the ugly and good
parts of agile. Related ugly parts consist of no upfront requirements, using user
stories instead of abstract requirements and tests as replacement for specification.
The related good parts consist of daily meetings, focus on working code, frequent
iterations and acceptance of change.
Miller identified and provided solutions for agile problems, challenges, and failures
[32]. The related results include findings of problems such as communicating; manag-
ing day-to-day operational problems; gaining buy-in from management, customers,
and team members; changing culture and mindset; and gaining experience and mak-
ing it work. These include approximately fifty sub-challenges, e.g. company culture,
no single product owner authority, too many meetings and new to agile. The data
was gathered through literature from books, internet research, and reference mate-
rials.

10

3
Methodology

This research is fundamentally based upon understanding the problems that are
caused by the requirements in agile projects. It sets out to ask the question what,
but also why and how, to discover problems, causes, and solutions. The questions
are formulated for answers ideal to obtain from the use a qualitative approach to
research design. The data was collected from a consultant company with broad
experience in the agile field, with Scrum in particular, and as such it characterizes
itself as purposeful, meaning that it is considered information-rich in the selected
domain [25]. There are many benefits of performing a case study on a real company
and the biggest is the rich and in-depth data of real-life uses, which is harder to
obtain in experimental research methods [26].

3.1 Data collection

The company used for collecting data was selected because of its vast experience
in agile principles and is thus related to both the purpose of this research and the
related work by e.g Lunder [23]. Using a case study where the company itself func-
tions as the subject allowed for the data gathered to be looked at as one entity and
therefore analyzed as such, and not individually.
As a case study, there are several ways of collecting the relevant data, including
interviews, looking at old documentation and performing observations. Documen-
tation over requirements from previous projects was however not obtainable as it
was protected by a company policy to protect the customer. Observations were also
excluded as they fell under the same policy. Interviews thus became the main source
of data collection, with forms added as a secondary method. The interviews were
thus modified to include questions about the documentation in order to fill that
possible loss of data from observations and old documents. Nevertheless, it is also
unclear how much documentation that exists in regards to requirements, and inter-
views presumably supply the richest data. In-depth interviews allowed for detailed
data which was focused to answer the particular research questions in this study.
On top of this, feedback was gathered from the participants after the result had
been analyzed to validate the findings. The interview template and validation form
can be found in Appendix A and B and is described Chapter 3, Section 3.1.2 and
Section 3.1.4 respectively.

11

3. Methodology

3.1.1 Interviews
Using interviews for data gathering offers a high flexibility, as it allows for either
probing questions, adapting existing questing or even adding new questions de-
pending on the situation. Because of the nature of a consultant company, many
employees in the organization will have different views on the research questions as
their contact with requirements may differ. This is good for variety in the sample
and such different opinions could possibly not been captured in any other way than
by interviews. The interviews were thus kept semi-structured, with both defined
questions and room for probing and diverging questions, to adapt to the different
participants and their viewpoints. The flexibility which semi-structured interviews
provide was therefore important to obtain rich data.
Another benefit of using interviews, or specifically face-to-face interviews, is that
you can read and understand body language, voice tone, and notice where the par-
ticipant’s focus is. This makes it easier to understand their situation and adapt
and steer the interview by it. The questions in the interviews were built around
the subjects own experience, opinions, and feelings regarding obstacles, problems,
possible solutions, the process of specifying requirements and what works good right
now.

3.1.2 Structure of interviews
All questions were created to fulfill certain goals. First was questions about the par-
ticipant, which related to their title and tasks. These questions were introduced to
identify how the participants came in contact with the requirements, which helped
steer the interview later, as well as provided context for each subject when analyz-
ing.
Then came questions related to Avanade itself, how things were done and what
differed from theoretical knowledge previously learned. This gave more practical
knowledge into the context of the case that is Avanade, and thus helped with adapt-
ing the interview from learned theoretical knowledge to more relevant case questions.
These questions were also present to make up for the loss of obtaining physical doc-
umentation and conducting observations.
After the contextual questions, more specific about the research at hand were intro-
duced. These questions, like the ones before, was exploratory and focused on the
requirements and the RE process. The questions were about opinions about how re-
quirements were handled, what problems that could occur and what the participants
personally would fix to solve them. The final question related to the participant’s
optimal way of specifying requirements. The interview template can be found in
Appendix A, and an overview can be seen in Table 1.

3.1.3 Sample
The research focused on getting real-life data by doing a case study at a global
IT consultant company. The sample is therefore only the company and interview
subjects are chosen by convenience [27]. The convenience sampling is based on
their knowledge in the area as well as their availability. The company does not use

12

3. Methodology

traditional titles, however, in the sample, we could find titles that are similar or
equivalents to project leader, business analyst, Scrum master and system architect
to name a few, see Table 2 for all participants. The company uses both in-house and
offshore development, which differs from previous research by Lunder [23]. There
was, however, no developers interviewed in the sample of this study because the
purpose of this study is focused more towards the specification of the requirements,
and not the implementation. The relevance of the subjects was therefore judged
based on their contact with the requirements in regards to eliciting requirements
from the customer, acting link between developer and customer, or the writing of
the requirements themselves. This allowed for a varied sample of subjects having a
deeper understanding of different areas. Typically, industrial case studies need to
balance sample size between availability of interviewees and ability to draw valid
conclusions. 6 interviewees were selected for this case study, which is on the lower
end of subjects. However, a saturation point could already be seen by the fifth in-
terview with less novel data being found.

Table 1. Table with an overview of the questions asked during the interview.

Table 2. Table over the participants with their titles and responsibilites.

13

3. Methodology

3.1.4 Validation from participants
Feedback was obtained from the participants after the analysis was completed and a
theory for the results could be presented to them. The participants were asked to fill
in a form where statements of the results were written, and the participants could
share their opinion on how correct the statements were. The form was created using
Google Forms and the participants were able to fill it in optionally at their own
time. The reason for this was to obtain feedback that was sincere and not rushed
through. The participants answering the form would then be genuinely interested in
making sure the research got their opinions right. Half of the participants answered
the form, and each result of the form can be seen in each section of the result.
This method was preferred at this stage of the research, as it was considered more
important than e.g. reaching out to more people for additional interviews. This
was both because confirming findings seemed more relevant and that an additional
form of data gathering was preferred over extending the single existing one. Time
limitation attached to this research gave time for only one, and the preferred method
was the one which would add the most evident value.

3.2 Data analysis
An inductive approach was used to group data and look for relationships [28]. Tran-
scribing the recorded interviews was, therefore, the starting point. The transcripts
were systematically reviewed in an iterative cycle containing coding, analyzing and
writing a memo. Using a similar formal language for all codes helped with identifying
interesting themes and connections.

3.2.1 Inductive approach
The inductive approach is a ground-up approach focused on building theories based
on patterns and relationships from the collected data [28]. It does not set out to
prove a theory by collecting data, but rather collecting data to create a theory,
which suited the research question well. The interview questions were not written
to answer a defined hypothesis, but rather enabling the research to be exploratory.
The inductive analysis is, therefore, suitable as it builds on learning from experience
[28]. The experience from the subjects is, as mentioned earlier in this chapter,
very relevant. The process of an inductive analysis includes coding the transcripts,
identifying trends, form relationships between them and generate a solution theory
based on emerging themes and patterns. A memo was written during the analysis
phase to record thoughts and findings to keep track during the analysis cycle.

3.2.2 Transcribing interviews
All interviews were recorded and transcribed into different documents, or transcripts.
No dedicated transcribing software was used. Instead, the audio file was played
back and the content written down systematically. There was thus no additional
functionality added to this process, such as automated speech to text.

14

3. Methodology

Everything said during the interviews was written down, both from the interviewee
and the interviewer to make the context clear for the analysis. Even sections during
the interview with less or no apparent relevance were written down for thoroughness.

3.2.3 Coding interviews
The coding of interviews was an iterative process. Codes were first written on the
first read through based on initial thoughts and feelings after reading text segments.
Most codes were unique, even for similar excerpts. By reading the transcripts over
and over, and by using a memo, the codes could be refined and defined more properly.
The codes could thus help shape patterns already at this stage, making connections
between current approaches, problems and solutions clearer each time they were
refined. Codes could first be written in general about a topic, such as “initial cus-
tomer contract negotiation”, and be refined to be more specific underlying problem
e.g. “customer agile knowledge problem”, thus making the code clearer to what was
described.

3.2.4 Analyzing data
An Excel sheet was created in order to get a higher level overview of the codes.
Each code represented a row, and analysis sections were added into columns to
grow horizontally. Each code had, first of all, a description and a trend column. The
trend column was obtained by calculating the frequency of each code. The codes
were then rearranged based on their description and general type. This allowed
for a relationship column which explained how the particular code related to other
codes. Each code did not relate to any other code within the same type, which
created cross-relationship between different types. This relationship was described
in a new relationship-describing column to explain how they related, e.g. causation
or similar. These columns together then gave an overview for each codes importance
in the whole picture.
When a theory was created, it resulted in four categories of impediments, and four
categories of solutions. Each category was written as a statement and put into a
document, where each statement became a section. Each section was then filled
with all quotes coming from the related codes. The document then contained every
quote which validated each finding, i.e. statement. Tables were also created over
how the statements related to each other, as well as to which research question.

3.2.5 Keeping track with memo
Transcribing interviews, assigning codes and analyzing them is not always done
sequentially but rather in a cycle. The memo helps to keep track of anything notable.
It contains first of all thoughts, ideas and early trends found when transcribing the
interviews. It also keeps track of codes used when coding the transcripts, helping
to see all codes from all interviews compiled. The overview of codes allowed for
easier code reusing where relevant as well as observing the first patterns. Thoughts
were also captured during analysis when trying to find themes, as not all themes

15

3. Methodology

worked out, keeping the old theories intact allowed for a more structured analysis
experience.

3.3 Presenting the findings
In order to answer the research questions, we must first define how to present the
findings. As mentioned earlier, all results gathered are put together into one entity.
This is fundamental because of the nature of this research, where the company lies
in focus in this case study, not the subjects that were interviewed. The results gath-
ered are therefore a generalization and are not the thoughts and experiences of every
participant. The participants had all varying roles and titles which made a good
representation of the company. A larger sample size would have been preferable but
even at this size, answers already had similarities or more exact matches.

16

4
Results

This chapter covers all impediments found at Avanade in this study. It also provides
impediments (or challenges) found in related studies which were not found in this
study, along with possible reasons to why. On a similar form, this chapter also
provides suggested solutions on how to address the impediments, and lastly solutions
found in related research. It also reveals where Avanade has already solved known
impediments, and how. The two research questions are presented separately in two
main sections, with two subsections that first provide the findings from this research,
followed by the findings from related research.
Both impediments and solutions are presented below as part of underlying themes.
A full overview over the results from RQ1 and RQ2 can be found in Table 4 and a
heat map over the participants answers in the form can be found in Table 3, both
at the end of this chapter.

4.1 RQ1: What impediments are associated with
agile requirements engineering?

This section presents the findings of research question 1. It includes found imped-
iments, how they relate to previous research and known impediments from related
studies not discovered in this study.

4.1.1 Impediments found in this study
The sections below are problem areas, or themes, which consists of the impediments.
The themes were created as many of the impediments closely relates in regards to
the main underlying problem.

4.1.1.1 Lacking customer availability and engagement

As mentioned in the Chapter 2, Section 2.1.2, agile development depends heavily on
customer collaboration to be successful. It is one of the core principles of the Agile
Manifesto. Different agile practices uses different methods to achieve this crucial
collaboration, which in the case of Scrum, is the use of a product owner. There
was two main impediments found associated with the product owner and customer
collaboration.
First, the product owner not staffed properly. There was many reasons found why
this is considered an impediment to the project. First of all, it was revealed that

17

4. Results

it is the single most important role on the customers side in regards to driving the
whole project and the requirements. The product owner has a huge responsibility to
the planning process, with both backlog management and sprint verification. Other
responsibilities includes making the right architectural decisions and supplying ap-
parent goals for the developers. The product owner must thus be staffed properly
to be able to handle these demanding and crucial tasks for project success.
It was also revealed from the participants that when it is not working smoothly, it
can impact the project in a negative way on several levels, including development
and management. In addition, the product owner is also the link for the develop-
ment team to the customers, and an additional responsibility thus lies in making it
work to enhance collaboration. And as mentioned earlier, participants also agreed
that the amount of collaboration with a customer can make or break a project. For
these reasons, the product owner should be a dedicated position for a single person
as a full time job, and not half staffed because it is required by the Scrum process.
As mentioned in Chapter 2, Section 2.4, Cao and Ramesh revealed two of the main
challenges in agile RE to be customer availability and trust between customer and
developers [29]. This directly ties into the findings in this study, with participants
acknowledging that the product owner should be a full time job, and being able to
make decisions and provide goals for the developers.
Second, the Lacking customer vision. The reasons for this impediment is due to sev-
eral causes. The first cause being not providing enough detail to the development
team. The cause for this was found to be of two reasons, either the customer did
not entirely know their end vision, or they failed to provide it. In the latter case,
an example was given for a project where the customers had a clear vision of a new
intranet, but took for granted that the developers knew about their old specifica-
tions, leaving some of them out. Other similar examples was provided during the
interviews, however those contained scenarios where the customer was specifying
requirements, but too vaguely. This leads to the next cause, which is misinterpre-
tations.
Misinterpretations can be caused by either being too vaguely defined or too short.
Both leaves out information which causes the misinterpretation. A reason for this
is not thinking of the others point of view, which hinders from giving out a proper
explanation. One participant recognized this issue as it was personally experienced
the other way around when communicating with developers in India. The last cause
for this impediment ties in with the previous about customer availability. There are
cases when customers have a lacking presence in the specification process. Those
cases were found to be rarer, but with a potential higher negative impact to the
project.
The findings here is also validated by Cao and Ramesh, who reveals that face-to-face
communication requires high quality interactions to avoid the high risk of require-
ments lacking in detail, or being completely wrong [29].
The participants from Avanade validated this result with 1 selecting strongly agree
and 2 selecting agree, see Diagram 1.

18

4. Results

Diagram 1. Participant validation over lacking customer engagement.

4.1.1.2 Insufficient architecture

Working software over comprehensive documentation is one of the principles in the
Agile Manifesto [1]. This commonly results in minimal documentation with user
stories as requirements. However, participants in this study showed a tendency to
it being insufficient for understandability of the system.
The data behind this lies in one major impediment found, which is lack of system
understandability. A great focus is on user stories and acceptance criteria which
validate the implementation of user stories. There are also implementation tasks,
which are used for developers. However, when specifying the project, the lack of
visual representations can cause understandability issues. The data shows that the
majority did not desire a comprehensive documentation with e.g. component di-
agrams, but preferred a visualization in line with a mock-up or sketch (usually
wireframes). It also showed acknowledgment of the short lifespan and high cost of
such visualizations, in comparison to user stories and acceptance criteria. Despite
that, it was requested to have it at the start of the project, but without the need to
update it during development. Some participants provided examples where the use
of wireframes and HTML mock-ups helped the execution of projects tremendously.
This impediment relates to the customer’s vision not getting through, as a clear vi-
sion would allow for less architectural changes, giving sketches and mock-ups longer
lifespans. It also relates to what the customer is concerned with, which is mostly
user stories and acceptance criteria because that is what is needed to validate the
product against the contract. Adding time, and cost, to other areas not valuable
to the customers, is considered waste. It was thus identified to be a very fine line
dependent on the different customers.
Creating too much documentation will cause for redesigns when requirements change,
which is the biggest reason for avoiding it. However, as Berry described it, this is
not a solid argument [30]. Code refactoring caused by an inappropriate or absent

19

4. Results

architecture is painful for the developers, but also time-consuming. This, in turn,
adds cost to the project. In addition, rewriting or throwing away code because of
architectural changes is wasteful on its own.
Cao and Ramesh also found that the biggest challenge in changing requirements lies
in redesigns and refactoring, also concluding a resulting increased cost. It is thus
easy to understand that the single most requested improvement was, with a clear
customer vision, visualization of the system from the start. This enhances both
understandability as well as decreasing potential architectural changes during the
development.
From the validation, it was shown that 2 answered that they strongly agree with
this, while 1 selected agree, see Diagram 2.

Diagram 2. Participant validation over visualizations.

4.1.1.3 Requirements lacking in detail

User stories are the primary form for requirements in different agile frameworks,
e.g. Scrum. The purpose of user stories is to provide developers with just enough
information to estimate the time to implement it [18]. The data showed tow imped-
iments that occurs due to lacking detail in user stories.
First, requirements impede development. Data showed that there were different rea-
sons for requirements to impede the development process. As shown in the sample
in Chapter 3, Section 3.1.3, no developers were interviewed. However, the partici-
pants explained that more structured written requirements would not only help the
developers but all parties who come in contact with them. Problems included mis-
understandings between parties, but also about the requirement itself. There is no
format used for specifying requirements at Avanade, which results in detail levels to
be different in different projects, depending on different stakeholders. For example,
the relationship with the customer or the maturity in the customer’s organization
can determine how detailed information Avanade manages to obtain. A participant

20

4. Results

states that perfect user stories can thus be hard to specify in reality.
The findings show that requirements written more specific could benefit the process
greatly. However, not all participants were in agreement on using a dedicated for-
mat, as it could be hard to adapt requirements to use the same parameters between
different projects. Guidelines were instead favorable for specifying e.g. user stories,
to decrease possible ambiguity, and remove the potential time for interpretation.
It was also found that language barriers could be a cause for misunderstandings.
Resources in different countries can have different interpretations of the same re-
quirement. Findings show that misunderstandings, from either the lack detail or
language barriers, can cause collisions down the road on different levels. The worst
effect can be developers implementing the feature wrong, or the wrong feature. This
impediment can cause the need for refactoring and adds time and cost to the project.
Second, requirements causing sign-off conflicts. It was found that not only require-
ments in the form of user stories was requested to be specified in greater detail,
but also the acceptance criteria. While acceptance criteria was found to be ex-
tremely beneficial when working as intended, it was not without its problems if it
was not. Smallest impediments caused for misunderstanding, and sometimes even
better solutions implemented than the validation required. However the bigger mis-
understandings due to ambiguity could lead to a contract twist. Ambiguity in the
documentation leads to traceability issues, and results in a word against word con-
flict.
Zhu uncovered similar results, reporting findings of requirements that were often
not specified enough, or written on any format [24]. The minimal documentation
and lack of detail level thus also pointed towards possible traceability issues.
Lunder revealed that the detail level of requirements during the project should not
require time for interpreting them[23]. The same study also uncovered that user
stories could be enough as requirements if the project wasn’t too complex or an
in-house project. Meyer goes even further and puts user stories as a replacement
for abstract requirements as one of the ugly parts of agile development [7]. Even
Cao and Ramesh reveals minimal documentation to be a great challenge, being the
the reason of many problems such as challenges scaling the software, evolving the
application over time, and introducing new members to the development team [29].
Diagram 3 reveals how 2 of the participants selecting strongly agree and 1 selecting
agree in the form, as seen in Diagram 3.

21

4. Results

Diagram 3. Participant validation over the detail level of requirements.

4.1.1.4 Customer lacking agile knowledge

Agile has become increasingly popular and more and more are opting for an agile
development process. The problem: few know how to work agile, according to the
participants in this study. The main impediment, company culture, is backed by
several findings. This impediment can spread causes to different impediments pre-
viously mentioned in this chapter but big enough to be listed on its own. Findings
show that customers who wish to work agile contact Avanade because of their ex-
pertise as well as their ability to coach agile. Impediments occur as the customer
don’t partake in the agile process as much as needed. This means that the little
or no knowledge the customer had from the start does not evolve, and can cripple
the project. Occurring problems include not participating in backlog meetings, not
keeping up with the required speed, or velocity, which results in falling behind the
schedule. The problems originate in the culture of the organization, who can have a
hard time adapting to a new methodology. Participants explain how customers are
not used to the iterative process, and that the initial RE work of a waterfall method
is somewhat instead spread out during the whole development. This requires hard
work during the whole process, which according to participants, inexperienced cus-
tomers do not realize. Data shows that project success can be dependent on the
maturity of the customer’s organization in agile. It also shows that it is dependent
on the complexity of the project. Customers juvenile to agile has a bigger risk of
disregarding documentation completely, which can lead to awkward conversations
over the project outcome.
Miller provides several results of agile challenges and problems, including related
challenges such as new to agile, company culture, and too many meetings [32].
Miller also provides suggested solutions on how to educate and improve, which is
something Avanade reveals to be doing on different levels already, as reported in the
next section of this chapter (Chapter 4, Section 4.2).

22

4. Results

Validation through the feedback showed 2 selecting strongly agree and 1 selecting
agree, as seen in Diagram 4.

Diagram 4. Participant validation over customers agile knowledge.

4.1.2 Impediments from related research
The related work, described in Chapter 2, Section 2.4, reveals findings related to
those of this study. However, the related studies also report additional findings not
revealed, or investigated further, in this study. This section provides these findings,
and Section 5.1 brings up the discussion on how they relate.
One common challenge to agile requirements engineering, reported by Zhu and
Cao and Ramesh, is the absence of non-functional requirements [24][29]. Cao and
Ramesh report that customers often puts focus on core functionality and neglects
non-functional requirements such as scalability, maintainability, portability, safety,
and performance. Zhu also reveals that developers and product owners almost never
handle non-functional requirements unless there was a relevant defect reported, usu-
ally tied to the performance of a functionality. During the interviews of this study,
however, there were similar indications. One participant revealed non-functional
requirements do not fit the normal agile structure, which could result in potential
problems later as non-functional requirements are not addressed in the agile mod-
els. This was only briefly discussed by one participant and is thus not part of the
main results over impediments provided above, as it was not enough data to verify
a common problem tied to it.
Another reported challenge by Cao and Ramesh is tied to cost and schedule esti-
mation [29]. The initial estimation is usually based on known user stories, but as
new evolve and current change, cost and estimation can vary greatly and must be
adjusted. This challenge was not found in this study, except the reported impedi-
ments related to customer lacking agile knowledge, resulting in e.g. absence during
planning meetings.

23

4. Results

An additional reported challenge by Cao and Ramesh is contractual limitations as
summarized by the SLR done by Inayat et al [29][2]. This challenge is tied to written
contracts and changing requirements. Changing requirements can e.g. lead to new
contracts needed, change of the cost of implementation, and change of implemen-
tation time. In this study, however, it was only revealed that contracts need to be
specified so it can be broken down into tangible tasks. It was also revealed that the
customer does not always partake in this, but is presented with the tasks later to
verify it to the contract. No findings of cost and schedule estimations, only the effect
of contract conflicts that can occur due to e.g. misunderstandings and traceability
issues.
One challenge reported by Berry and Cao and Ramesh, that is an agile method, is
refactoring [29][30]. This method is a solution to changing requirements but is a
challenge as it causes rewriting or throwing away code completely. This subject was
not discussed in depth in this study, except defining the architecture earlier in the
process to increase understandability and traceability.

4.2 RQ2: How can the impediments caused by
agile requirements engineering be addressed?

This section presents the findings of research question 2. It reveals suggested, re-
quested and already implemented solutions by Avanade. It also provides known
solutions found in related research not discovered in this study.

4.2.1 Improvements found in this study
The sections below are suggested improvements to address the impediments revealed
above. The improvements are presented to address the themes consisting the im-
pediments but are not limited to a single theme.

4.2.1.1 Dedicated product owner

Avanade describes the perfect customer to be the ones serious about the agile ap-
proach. There is no requirement of knowing everything from the start, but prefer-
ably engaged and motivated to improve and take part in the process. The most
requested way to achieve this was revealed to use a dedicated product owner. The
product owner position could either be staffed full time temporarily for the duration
of the project, or long-term if the organization is serious about continuing to work
agile. The latter can be preferable in the long run, as the product owner would be
more experienced and efficient to drive the project. Participants requested that the
customer should take part in more activities than showing up to weekly grooming
meetings, which has happened in earlier projects. A product owner which acts as
a link between the consultants and the customer can engage both parties to take
part in all necessary activities. Additional activities could include being involved
in writing acceptance criteria, and preferably have what is known ready before the
project start. It was also revealed that Avanade has had discussions on making that

24

4. Results

a reality, however, the fine line is to not press the customer with a rigorous process
right from the start. Avanade is already to engaging the customer by giving out
preparatory work, which is not always finished in time but still considered benefi-
cial.
Lacking presence and engagement from the customer are revealed by Cao and
Ramesh to be solved by a surrogate customer [29]. However, they also found that is
was seldom a full-time job, and only allowed for part-time access. Similar is reported
in this study, and the solution thus emphasizes on full-time, or dedicated.
Validation from the participants in this study showed that 2 selected strongly agree
and 1 selected neutral, as seen in Diagram 5. The neutral selection can be inter-
preted differently. It can be seen as that participant is not affected by this solution,
and are thus indifferent, or that they would be affected but did not agree that this
would provide a sufficient solution.

Diagram 5. Participant validation over higher customer engagement.

4.2.1.2 Improved initial architecture

Understanding a requirement is one thing, understanding the system another. Sys-
tem visualizations such as HTML mock-ups and wireframe sketches can according
to the participants both help with understandability and verifying the customer’s
vision. User stories and acceptance criteria are fast, easy and have a low cost in
contrast to mock-ups and sketches. Especially so with changing requirements, or
even a change in vision, which can happen for longer developments in a changing
and evolving market. However, system and contract validation for the customer
are more efficient with acceptance criteria, as long as it works. Some participants
revealed that sketches would be desired on everything, however acknowledging that
such a case is not realistic. What some participants ultimately agreed on, however,
was the use of initial sketches and mock-ups. As no developers were interviewed,
which can be seen in Table 2, there was no data on refactoring code.

25

4. Results

In related work, as reported by Berry, refactoring code is the solution to inappro-
priate architecture [30]. Berry although reports refactoring code as a painful and
wasteful step. The conclusion to this solution of using more initial visualization
is, therefore, to address the problem before it becomes a painful task. This would,
in theory, increase understandability, easier initial contract sign-offs and decrease
painful solutions later.
Most of the participants, 2, agreed to this solution, while 1 disagreed, as seen in Di-
agram 6. The participants who disagreed could have selected so due to this creating
more documentation, which goes against their agile mindset. It could also be that
it would not help in their work, or a combination of the two.

Diagram 6. Participant validation over more architectural artifacts.

4.2.1.3 Greater requirement detail

Data in this study shows that “just in time” (JIT) and “just barely good enough”
(JBGE) is not sufficient for most projects. To avoid misunderstandings, leading to
possible wrong implementations and contract conflicts, greater requirement detail
was desired by most participants. Specifically desired was that acceptance criteria
should be specified in greater detail, which would also require the customer to take
part in this make it correct, and facilitate sign-offs. Data shows that participants
found acceptance criteria to be extremely beneficial, especially when working as in-
tended, and a larger focus should be spent on specifying them correct. User stories
were also requested to be specified in greater detail, to avoid ambiguity. However,
the participant was not in agreement on how to achieve it, as some explicitly stated
they did not want to lock either customer or scrum master in a fixed template.
Related studies, e.g. by Lucassen, shows how a template can help write clearer
requirements [8]. Writing consistent user stories in a template such as the one de-
scribed by Lunder will make user stories appear on the same form across all projects,
potentially increase learnability, understandability, readability, and maintainability.

26

4. Results

A middle ground between JIT or JBGE and a fixed template is to define according
to guidelines. Most participants revealed that the amount of detail would prefer-
able be higher and that guidelines could be the answer. Avanade helps customers
from the drawing board to a finished solution, but the means depends on the scrum
master and customer.
This is validated by the participants, with 2 selecting strongly agree and 1 selecting
agree, as seen in Diagram 7.

Diagram 7. Participant validation over higher requirement detail level.

4.2.1.4 Customer agile education

Participants explained that a customer intending to work agile is not required to
know everything about agile, but preferably have fundamental knowledge about the
agile principles and what it means in practice. In addition, participants also ex-
plained that a project increases its success rate with customers eager to improve
their agile knowledge. Data shows that either internal or external education is rec-
ommended. Internal is often beneficial for big organizations with many projects.
Having their own agile coach, or even as mentioned earlier in this chapter, dedi-
cated product owners can potentially improve the success of their projects. Another
reason for internal education is for an organization to guard their own interests.
Greater internal agile knowledge can minimize mistakes that can be made for a cus-
tomer juvenile in agile.
A smaller organization, or a larger who is just getting into agile development, can
start with external education. The use of an external coach can, however, be more
expensive in the long run. Avanade is already solving the customer agile education
impediment by providing the option to use agile coaches. However, not all customers
take advantage of this. It is also worth noting that even with an agile coach, it re-
quires the customer to engage and commit to the process. Data, however, shows
that coaches have been effective to increase the number of requirements and the

27

4. Results

formality of them. It also helps with customers that are not used to the speed of the
agile projects. To conclude, data showed that customers comfortable with working
agile was executed better, and had increased success rate.
It can be seen in Diagram 8 that participants strongly agree, agree and are neutral
to this with 1 selection respectively. Thus showing that the majority finds it impor-
tant that the customer is better prepared or educated for agile development. The
neutral selection is not interpreted as a disagreement, but rather that this solution
would not affect their daily work as much as for the ones selecting agree or strongly
agree.

Diagram 8. Participant validation over customer education.

4.2.2 Improvements from related research

Chapter 2, Section 2.4, reveals findings from related work. A lot of the improve-
ments, or solutions, reported in those studies relate to what was found in this one.
Some solutions, however, did not appear in this study, such as code refactoring and
following a user story format. Similar to Section 4.1.2, this section provides the
solutions found in related research, and Section 5.1 brings up the discussion on how
they relate.
Cao and Ramesh, as well as Berry, reports how code refactoring is a solution to
inappropriate architecture and changing requirements [29][30]. However, Cao and
Ramesh report that this solution depends on several factors, including the devel-
opers’ expertise and schedule pressure. Findings also showed that refactoring did
not completely address the problem of inadequate or inappropriate architecture. It
could e.g. lead to throwing away code and rewriting entire modules. Berry reports
similar experiences, with refactoring being both painful and wasteful.
The next solution from related work, as reported by Lucassen, involved using a
format for specifying user stories [8]. While this study showed a tendency to this

28

4. Results

solution, committing to always use a strict format was not desired as a solution.

Table 3. Overview over validation from participants.

29

4.
R
esults

Table 4. Summary over the results.

30

5
Discussion

The impediments and suggested solutions are not all agile specific. There are thus
many contexts these results can be interpreted and adapted to, both in practice and
in research. There is, therefore, a section about the contribution to research and
the implications to practice here, as well as discussions about significance, validity
and future work.

5.1 Contribution to research
The results presented in this research is related to previous work mentioned specif-
ically in Chapter 2, Section 2.4. This section will focus on how the impediments
and solutions found relate to previous research and how it contributes to the bigger
picture in this research area.
The results provide findings from both this study as well as from related research.
Some of the findings are more domain specific than others, making the results con-
tribute more to the research of this domain. Customers use Avanade for their agile
expertise and domain knowledge of the Microsoft platform. The results are thus
providing a lot of contextual findings. However, there are a lot of similarities be-
tween in-house and outsourced agile development, and the related research covers
both.
First, there is the impediment about the customer’s role during development. In
the SLR by Inayat et al, one major challenge in agile RE is the customer availability
[2]. The research cited there is from Ramesh et al who presents challenges in the
availability of customer for requirements negotiation, clarification and feedback [29].
The impact is stated to increase in rework and that the solution to this challenge
is to use surrogate customers. In practice, the surrogate customer can e.g. either
be playing the role of a product owner or be an on-site developer to be a represen-
tative on the customer’s side. The findings in this research however points toward
more work for the consultants, time they could use on more valuable tasks, and
not specifically to rework. The end cause is however the same, that extra work is
needed which could be avoided by a customer taking a bigger, more present role in
the development. Ramesh et al suggested in their research that the solution to the
customer availability challenge is to use surrogate customers, which relates to the
suggestion provided here about using a dedicated product owner [29]. The solutions
are similar, but the suggestion by Ramesh is more focused on what the developers
could do, and less what the customer could. From the the data gathered in this re-
search, it seemed to be more desired that the customer took a bigger role in driving

31

5. Discussion

the development, preferably with a dedicated product owner.
Most of the related research gathered did not state any challenges specific to the cus-
tomers knowledge. It can be suggested that the minimal documentation or customer
availability is a cause of lacking knowledge however. But this was found to be an
explicit impediment in this research, which was highly validated by the participants
with 66,7% answering strongly agree and 33,7% selected agree, as seen in Diagram
2. When it comes to the solution about a higher focus on customer education to
solve this impediment, the participants selected strongly agree, agree and neutral
with 33,3% respectively, as seen in Diagram 6.
Minimal documentation and inappropriate architecture are two challenges found in
the SLR by Inayat et al, about agile RE challenges, which strongly relates to the
impediment about depicting requirements thoroughly [2]. The data is provided by
Zhu who shows that user stories and product backlogs are the only documents in ag-
ile methods and that it is the major cause for traceability issues [24]. The challenge
lies in that there is only user stories and product backlog to lean on, which was also
an impediment in this study in some cases. The difference found in this research is
however that the main challenge that arise is the decreasing understandability of the
scope. Traceability is however a closely related attribute, since they both lean on
learnability in some way. The difference being that understandability (in this case
specifically) is considered short-term while traceability is long term. Meyer is on
the same page calling the fact that user stories are being a replacement for abstract
requirements one of the ugly parts of agile [7].
Inappropriate architecture is also relevant to this study, and the impact found in
that SLR was about increasing cost, which can now be verified again by this study.
Ramesh et al explains that early depictions of the architecture becomes inadequate
in later stages with new or changing requirements [29]. This was also found and
validated by this research as 66,7% of the participants selected strongly agree and
33,7% selected agree about this statement, as seen in Diagram 3.
The solution for architectural changes are code refactoring, which is an ongoing ag-
ile practice. This is thus not specifically related to depicting of the architecture.
The data found in this research points towards the systems visualization, which can
avoid the need of adapting code later. The solution provided in this research is that
mock-ups and sketches are desired mostly in the beginning of the project, keeping
them up to date is thus not necessary as they are likely to change. This means that
with initial sketches, less refactoring is needed, which according to Berry is a painful
procedure anyway [30].
Findings in the research by Lunder states as previously mentioned that user stories
could work well if the project is not too complex or is an in-house project [23]. The
challenges found was e.g. that user stories became unmanageable in big projects,
that they did not cover enough or that they were too user oriented. Impediments
found in this study thus relate to those challenges as both studies identified that
user stories are not always clear enough. This is validated through the feedback,
where it shows that 66,7% strongly agreed and 33,7% agreed, as seen in Diagram 4.
Meyer emphasized this even more stating that user stories are to requirements what
tests are to software specification [7]. Even though there are differences here, the
bottom line is that user stories are seldom as specified as they are needed to be.

32

5. Discussion

Meyer stresses the importance of user stories being written the right way, using in
practice the same template provided by Lucassen et al about the role, means and
end [8]. This was also validated by the participants in this study, with most of them
specifically desiring a clearer specified end.

5.2 Implications for practice

Not all of the solutions provided in this study are specific to agile development. They
are nonetheless present and important in software development, so the implications
to practice can differ in a traditional waterfall development to an agile development.
Other parameters that can vary in practice are in-house development or the use of
other agile practices. The company in this research used Scrum, but other agile
frameworks that could be used instead are e.g. Kanban or Extreme programming.
But any of these agile methodologies would benefit somewhat equally, as they all
are derived from the agile principles. All suggested solutions are not to be taken as
musts to fix all impediments. A single solution could impact many areas, such as
putting larger focus to customer engagement can in practice lead to better collabo-
ration, which could lead to better-written requirements, better testing, feedback and
a faster more efficient development. A larger focus on customer education facilitates
both the customer engagement in current projects, but also for upcoming future
agile projects. Both these solutions require more time and effort from the customer,
which would increase cost and manpower in the short term. However, in long-term,
it would be beneficial to have employees knowledgeable in agile, especially if they
intend to keep working agile. A downside is however if they put time and money to
train personnel in agile, which short-term adds cost, and personnel later leaves the
company and obviates the long-term benefits.
For consultants or the in-house development team for that matter, to increase the
focus on the thoroughness of the requirements will also add time and effort, resulting
in short-term costs. It will also add waste if the system changes a lot. However, it
will also add cost if the requirements are less thoroughly written and it causes con-
fusions, impediments or complete schedule stops. The short-term benefits are that
the projects will run smoother for more or less all parties. The long-term benefits
could include e.g. learnability, which is good for both junior and senior employees,
to know what works and what doesn’t.
Traditional waterfall projects could also benefit from the suggested solutions in prac-
tice. Customer engagement would result similarly to agile projects, while customer
education in agile can be disregarded completely. Customer education, in general,
can, however, give positive benefits, but that would only apply to at most junior
employees. Perhaps not even them, as many are already schooled in the traditional
ways from college, high school or similar. A larger focus on depicting or specifying
requirements thoroughly is probably also something that is already taught and al-
ready has high focus since waterfall projects want everything in grand detail already
from the start.

33

5. Discussion

5.3 Threats to validity

The threats to validity in this research comes from e.g. case study as research design,
sample selection and researcher’s bias. The threats are not presented in any order
of significance, but many relate to the threats presented by Maxwell, in regards to
performing a qualitative research [31].
First off there is the threat to bias in regards to answer the research questions.
Researcher’s bias is both a threat and an asset in that it helps dig deeper into
the analysis to prove or discover what was set out for. Noticed when analyzing
the data was that the participants were generally asked about problems, and not
impediments or hinders. The answers obtained were therefore mostly strong opinions
and it showed that not all of these are problems, but actually impediments. Some
were minor and some more significant. As it was an exploratory research, there was
however no problem to pivot it slightly. Thus, the questions in this study changed
from being about proving or solving a problem, to explore and provide solutions
based on the findings. The bias therefore shifted during the research, which made
the questions asked following one line, and the analysis following a different. This
somewhat eliminated the bias to prove the research question since there was no
chance later to pivot the questions which could be done during the interviews. To
validate the findings there was however a feedback process where the participants
in the study could fill in a form about the findings. This form acted as both a way
to eliminate the researcher’s bias, as well as validating the results in the study.
Another threat is that it is done at only one company. Gathering data from more
companies could be another way of doing it, or to single down on e.g. project
managers or Scrum masters only. The way this was handled was to only use a
single company, but to interview as many different subjects as possible, that still
had contact with requirements in agile processes. It is still a threat in selecting a
sample this way, since they were contacted based on their involvement, and choice
to participate, which could be based on their own interest or stake in this matter
[27]. It could be that they are genuinely interested in helping the research, or
that they have strong feeling towards the research questions, or want to impact
something. A random sample would solve this, but could also include employees
who are not interested and give less detailed answers, or simply does not have
contact with requirements and therefore mostly supplies data that is not needed, or
adding outliers. Both ways of choosing the sample has benefits and drawbacks, but
it is still an important threat the the validity to keep in mind.
The company itself, Avanade, who works with the agile framework Scrum, can add
a threat related to their agile knowledge. The fact that they are not juvenile makes
it great for this kind of research, as this research does not focus on inexperienced
agile companies. There are however both positives and negatives by collecting data
from a company that has a functioning agile culture. With them having knowledge
and a working processes already, some impediments could be considered minor for
them but bigger for other companies. It was revealed during the interview that the
way they work now works good, but the impediments could still be present and
improvements could also be added. Data gathered can be seen to be normal agile
concerns, and not novice agile mistakes.

34

5. Discussion

Another threat is how the sample was treated as one entity. If they would have a lot
off different opinions it would not be possible. But fortunately the company seemed
to have all similar experiences with what worked and what didn’t, and that can be
due to a good culture within the company where problems are talked about and
highlighted for improvement purposes. Many therefore seemed genuinely interested
in participating in this research. A drawback on the same note is however that it was
only the company that was interviewed, and not customers they have or are working
with currently. This makes the data one-sided from the company’s perspective, and
though it makes it easier for comparison to other companies in similar studies, it
still causes a validity threat.
In regards to the data gathering itself, the threat present there is of course the
primary method of gathering data by using interviews. The other intended data to
be gathered could not be performed due to reasons such as e.g. client data protection
policies. Fortunately it was possible to get feedback on the result from the same
participants, which makes the findings more validated at the end.

5.4 Significance of the study
The findings in this study are significant to both practitioners and researchers. It
affects practitioners in one direction and one indirect way with the direction being
the results taken straight from this research. The indirect way being the long-term
effect of this area being more researched, which contributes so the best contextual
practice can be achieved.
The definition of practitioners is anyone who is related in similar cases as the one
presented in this study. That means both to the customer and the consultant’s side.
A customer who is making the jump to agile, or already works agile but strives
for improvement should see great significance in the findings and results presented.
That concerns both product owners and project leaders as well as Scrum masters
and developers who can see the importance of education and knowledge in practice.
It affects the consultant side similarly with it being just as important for everyone
affected. The difference can lie in that the consultants at an IT-firm are perhaps
already schooled in agile, so the significance can vary.
The significance to researchers also diverges. Just as this research expands on previ-
ous, so can further research expand on this, which can be done by either replicating
or changing variables. It is therefore significant both for this type of case, but also
among all agile research to give broader and more complete pictures of agile in prac-
tice.
The significance of this research in the context of this case is high, but not complete.
Further studies are needed in different cases to factually validate the results, and
thence it should hold a complete significance.

5.5 Future research
There are many possibilities for future research, most notably to replicate this case
at another company. It is then possible to both compare results if they differ and

35

5. Discussion

validate if they are similar or equal.
A variant of this is to use several companies, and perhaps to focus on participants of
a single employment position, such as system architects or project managers. That
would yield a more consistent data in term of position but a different view between
companies.
Another example of future research is to conduct a similar research as this but with
a focus on quality requirements instead. It could also be interesting to see that
research from the customer’s side, how their quality requirements are handled by
the outsourced company.
There are also findings in this study about the importance of the customer’s knowl-
edge in agile. There seems to be little research about this in regards to outsourcing
agile development, making this a very interesting topic for future research.

36

6
Conclusion

The data found in this research shows that there are challenges in agile requirements
engineering, and several impediments are presented as a result. Additional results
present ways of addressing these impediments. The focus of this study was to obtain
information from practitioners, with the compliment of related research in this area.
The impediments found was related to customer’s role and agile knowledge as well
as the depicting and specification of the requirements. Solutions were based on
engaging and educating the customer in agile, as well as increasing the focus on
thoroughly depicted and specified requirements.
The data was gathered through interviews, processed and then validated through
feedback from the same participating interviewees. Related work in this area had
similar findings which made for good external comparisons and validations.
The findings show that there are a lot of hinders in agile development, as well as
many possible solutions. A conclusion to be made after relating findings in this
thesis to related research is that a lot of problems and solutions are contextual. The
domain in which this study was performed in provided impediments and solutions
which can be more or less unique to the domain, in contrast to those of related
studies. Using a product owner for example can be standard for an in-house agile
development team, but less obvious for a customer to staff when using outsourced
development. The same could be applied for the impediment with a lacking cus-
tomer vision and engagement, as customers can take for granted that the consultants
will solve their issues by handing them over without further taking sufficient part
and responsibility for it.
The most domain specific impediment is however how requirements can cause for
sign-off conflicts. In contrast to related findings which focused on changing require-
ments, this impediment focused on the ambiguity of the requirements in the first
place. This kind of impediment is thus more improbable to occur outside of this
domain’s context. And lastly there is the impediment with customers lacking agile
knowledge. As mentioned in the results, many interviewees stated that a customers
usually wants to work agile, but lacks the knowledge in it. This can of course also
occur in an in-house team, however most developers are familiar with agile through
education or practice, making it an impediment more probable in outsourced envi-
ronments.

37

6. Conclusion

38

Bibliography

[1] K. Beck, M. Beedle, A. van Bennekum, et al. (2001). The Agile Manifesto
[Online]. Available: http://agilemanifesto.org/history.html

[2] I. Inayat, S. Salwah Salmim, S. Marczak, M. Deneva, S. Shamshirband, “A
systematic literature review on agile requirements engineering practices and
challenges,” Computers in Human Behavior, 51:915-929, 2015.

[3] A. Mersino. (2016, Aug. 1). Agile Projects are More Successful than Tra-
ditional Projects [Online]. Available: http://vitalitychicago.com/blog/
agile-projects-are-more-successful-traditional-projects

[4] R. Arthaud. (2015, March). When every new iteration can vio-
late previously satisfied requirements [Online]. Available: https:
//re-magazine.ireb.org/issues/2015-3-thinking-without-limits/
are-requirements-still-needed

[5] K. Beck, M. Beedle, A. van Bennekum, et al. (2001). Manifesto for Agile Soft-
ware Development [Online]. Available: http://agilemanifesto.org/

[6] S. W. Ambler. Just Barely Good Enough Models and Documents: An Ag-
ile Best Practice [Online]. Available: http://agilemodeling.com/essays/
barelyGoodEnough.html

[7] B. Meyer. Agile! The Good, the Hype and the Ugly, 1 ed. Switzerland, Springer
International Publishing, 2014

[8] Lucassen, G., Dalpiaz, F., van der Werf, J.M.E.M. et al. Requirements Eng
(2016) 21: 383. https://doi.org/10.1007/s00766-016-0250-x

[9] S. W. Ambler. Agile Requirements Best Practices [Online]. Available: http:
//agilemodeling.com/essays/agileRequirementsBestPractices.htm

[10] S. Snow (2015, Oct. 15) The Problem With Best Practices
[Online]. Available: https://www.fastcompany.com/3052222/
the-problem-with-best-practices

[11] C. Larman, V. R. Basili. (2003). Iterative and Incremental Development: A
Brief History [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.14.2138&rep=rep1&type=pdf/

[12] J. Jeremiah (2015, May 25). Survey: Is agile the new norm? [Online]. Available:
https://techbeacon.com/survey-agile-new-norm

[13] Sillitti A., Succi G. (2005) Requirements Engineering for Agile Methods. In:
Aurum A., Wohlin C. (eds) Engineering and Managing Software Requirements.
Springer, Berlin, Heidelberg

[14] M. Phil. (2015, Mar). Comparative Analysis of Different Agile Methodologies
[Online]. Available: www.researchpublish.com

39

http://agilemanifesto.org/history.html
http://vitalitychicago.com/blog/agile-projects-are-more-successful-traditional-projects
http://vitalitychicago.com/blog/agile-projects-are-more-successful-traditional-projects
https://re-magazine.ireb.org/issues/2015-3-thinking-without-limits/are-requirements-still-needed
https://re-magazine.ireb.org/issues/2015-3-thinking-without-limits/are-requirements-still-needed
https://re-magazine.ireb.org/issues/2015-3-thinking-without-limits/are-requirements-still-needed
http://agilemanifesto.org/
http://agilemodeling.com/essays/barelyGoodEnough.html
http://agilemodeling.com/essays/barelyGoodEnough.html
https://doi.org/10.1007/s00766-016-0250-x
http://agilemodeling.com/essays/agileRequirementsBestPractices.htm
http://agilemodeling.com/essays/agileRequirementsBestPractices.htm
https://www.fastcompany.com/3052222/the-problem-with-best-practices
https://www.fastcompany.com/3052222/the-problem-with-best-practices
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.14.2138&rep=rep1&type=pdf/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.14.2138&rep=rep1&type=pdf/
https://techbeacon.com/survey-agile-new-norm
www.researchpublish.com

Bibliography

[15] K. Beck, M. Beedle, A. van Bennekum, et al. (2001). Principles behind the Ag-
ile Manifesto [Online]. Available: http://agilemanifesto.org/principles.
html

[16] K. Schwaber, J. Sutherland (2017). The Scrum Guide [Online] Available:
https://www.scrumalliance.org/why-scrum/scrum-guide

[17] Donn Le Vie, Jr. on (2010, Aug. 29). Writing Software Require-
ments Specifications (SRS) [Online]. Available: https://techwhirl.com/
writing-software-requirements-specifications/

[18] S. W. Ambler. User Stories: An Agile Introduction [Online]. Available: http:
//www.agilemodeling.com/artifacts/userStory.htm

[19] D. Wells (1999). The Customer is Always Available [Online]. Available: http:
//www.extremeprogramming.org/rules/customer.html

[20] Selleo (2014, Jun 20). Key Players in Outsourced Software Product Develop-
ment [Online]. Available: http://selleo.com/blog/software-outsourcing/
key-players-in-successful-outsourced-software-product-development/

[21] Scrum.org. Scrum.org Continues to Help Avanade Build Its Worldwide
Agile Capabilities [Online]. Available: https://www.scrum.org/resources/
scrumorg-continues-help-avanade-build-its-worldwide-agile-capabilities-1

[22] B. Hartman. (2009, Feb 23). New to agile? Remember one thing:
Just enough, just in time [Online]. Available: http://agileforall.com/
new-to-agile-remember-one-thing-just-enough-just-in-time/

[23] K. Lunder, “A Case Study of Requirements Specification in an Agile Project,”
M.S. thesis, Dept. of Informatics, Univ. of Oslo, Oslo 2014

[24] Y. Zhu, “Requirements Engineering in an Agile Environment,” M.S. thesis,
Dept. of IT, Univ. of Uppsala, Uppsala 2009

[25] USC Libraries. Research Guides [Online]. Available: http://libguides.usc.
edu/writingguide/qualitative

[26] Z. Zainal, “Case study as a research method,” Journal of Humanity, Fac. of.
Mgmt and Human Res. Dev., Univ. of Techn. Malaysia, 2007

[27] J. Dudovskiy. Convenience sampling [Online]. Available: https:
//research-methodology.net/sampling-in-primary-data-collection/
convenience-sampling/

[28] J. Dudovskiy. Inductive Approach (Inductive Reasoning) [Online]. Avail-
able: https://research-methodology.net/research-methodology/
research-approach/inductive-approach-2/

[29] Cao, L. C. L., Ramesh, B. (2008). Agile Requirements Engi- neering Practices:
An Empirical Study. IEEE Software, 25(1), 60–67.

[30] Berry, D. M. (2002). The inevitable pain of software development, including of
extreme programming, caused by requirements volatility University of Water-
loo. In Proceedings of the international workshop on time constrained require-
ments engineering (pp. 1–11).

[31] Maxwell, Joseph A (1992). Understanding and Validity in Qualitative Research.
Harvard Educational Review; Research Library Core pg. 279

[32] Miller, G. J. (2013). Agile problems, challenges, and failures. Paper presented
at PMI® Global Congress 2013—North America, New Orleans, LA. Newtown
Square, PA: Project Management Institute.

40

http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html
https://www.scrumalliance.org/why-scrum/scrum-guide
https://techwhirl.com/writing-software-requirements-specifications/
https://techwhirl.com/writing-software-requirements-specifications/
http://www.agilemodeling.com/artifacts/userStory.htm
http://www.agilemodeling.com/artifacts/userStory.htm
http://www.extremeprogramming.org/rules/customer.html
http://www.extremeprogramming.org/rules/customer.html
http://selleo.com/blog/software-outsourcing/key-players-in-successful-outsourced-software-product-development/
http://selleo.com/blog/software-outsourcing/key-players-in-successful-outsourced-software-product-development/
https://www.scrum.org/resources/scrumorg-continues-help-avanade-build-its-worldwide-agile-capabilities-1
https://www.scrum.org/resources/scrumorg-continues-help-avanade-build-its-worldwide-agile-capabilities-1
http://agileforall.com/new-to-agile-remember-one-thing-just-enough-just-in-time/
http://agileforall.com/new-to-agile-remember-one-thing-just-enough-just-in-time/
http://libguides.usc.edu/writingguide/qualitative
http://libguides.usc.edu/writingguide/qualitative
https://research-methodology.net/sampling-in-primary-data-collection/convenience-sampling/
https://research-methodology.net/sampling-in-primary-data-collection/convenience-sampling/
https://research-methodology.net/sampling-in-primary-data-collection/convenience-sampling/
https://research-methodology.net/research-methodology/research-approach/inductive-approach-2/
https://research-methodology.net/research-methodology/research-approach/inductive-approach-2/

A
Appendix A

I

A. Appendix A

II

B

Appendix B

III

B. Appendix B

IV

B. Appendix B

V

B. Appendix B

VI

	Introduction
	Background and related work
	Agile development
	Agile methodologies
	Agile Manifesto
	Scrum
	Agile requirements engineering

	Outsourced development
	Avanade Stockholm, Sweden
	Related work

	Methodology
	Data collection
	Interviews
	Structure of interviews
	Sample
	Validation from participants

	Data analysis
	Inductive approach
	Transcribing interviews
	Coding interviews
	Analyzing data
	Keeping track with memo

	Presenting the findings

	Results
	RQ1: What impediments are associated with agile requirements engineering?
	Impediments found in this study
	Lacking customer availability and engagement
	Insufficient architecture
	Requirements lacking in detail
	Customer lacking agile knowledge

	Impediments from related research

	RQ2: How can the impediments caused by agile requirements engineering be addressed?
	Improvements found in this study
	Dedicated product owner
	Improved initial architecture
	Greater requirement detail
	Customer agile education

	Improvements from related research

	Discussion
	Contribution to research
	Implications for practice
	Threats to validity
	Significance of the study
	Future research

	Conclusion
	Bibliography
	Appendix A
	Appendix B

