Model Predictive Control of Engine Idle Speed

Master of Science Thesis

LENNIE EDMAN
PATRIK LJUNGVALL

Department of Signals and Systems

Division of Automatic Control

CHALMERS UNIVERSITY OF TECHNOLOGY
Goteborg, Sweden, 2007

Report No. EX100/2007



Abstract

The aim with this thesis work was to investigate if there is a possibility to reduce
the torque reserve in vehicles during idle conditions using a model predictive
controller (MPC) instead of the present PID controller. The reason for having
a torque reserve is to prevent the engine speed from dipping to an unacceptable
level, caused by unexpected disturbances, but since the torque reserve also af-
fects the fuel consumption it is important to keep it as low as possible.

The MPC was designed based on a black-box system identification of the
engine air mass flow dynamics of the intake system. Measurements were per-
formed in a rig and the identification results were later on compared to an engine
model (MODEC).

The results showed that the torque reserve could be reduced from 8 Nm to
5 Nm without violating any constraints. Thus, replacing a PID controller with
a model predictive controller is considered to be plausible. However, one must
keep in mind that the results are based on an engine model and not on a real
vehicle.
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Thesis outline

e Chapter 1 - Introduction
Problem formulation, used methods along with the framework for the
thesis.

e Chapter 2 - Modelling
Description of the system that is the subject for the control strategy.

e Chapter 3 - System Identification
Identification of the intake air dynamics through statistical models.

e Chapter 4 - Model Predictive Control
Construction of a Model Predictive Controller along with the results of
this controller controlling the system and a comparison to the existing
PID controller.

e Chapter 5 - Conclusions and future work
Closer discussion of the results and recommendations to future work.
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Notations
All quantities in this thesis are given in SI-units unless else stated. Abbrevia-

tions and variables are used to simplify explanations and calculations. These
abbreviations and variables are presented in the tables below.

Abbreviation Explanation

ARMAX Auto Regressive Moving Average model with eXogenous inputs
ARX Auto Regressive model with eXogenous inputs
CPU Central Processing Unit

ECR Equal Concern for the Relaxation

FP FunktionsProvning (Functional testing)

FPD FunktionsProvning Dynamisk (Functional testing Dynamic)
HIL Hardware In the Loop

I/0 Input/Output

INCA Integrated Calibration and Application tools
ISC Idle Speed Control

LPF Low Pass Filter

LSQ Least Square

MBT Maximum Brake Torque

MIMO Multi Input, Multi Output

MODEC MODels for Engine Control

MPC Model Predictive Control

MV Manipulated Variables

MVEM Mean Value Engine Model

n.a. Not available

ov Output Variables

PID Proportional Integral Derivative

PPP Peak Pressure Position

PRBS Pseudo Random Binary Signal

SI6 Short Inline 6

SISO Single Input, Single Output

TDC Top Dead Centre

vVCC Volvo Car Corporation

VvT Variable Valve Timing

Table 1: Abbreviations used in the thesis.
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Nomenclature Explanation Units
€ Relaxation

TNign,ch Gross indicated efficiency (including chamber losses)

Nign Efficiency corresponding to the ignition angle

Twol Volumetric efficiency

5 Ratio of specific heats

A Air/Fuel-ratio

w Mean value

Q Observability matrix

wB Cut-off frequency rad/s
We Engine speed rad/s
We Differentiated engine speed rad/s?
wWN Nyquist frequency rad/s
Ws Sampling frequency rad/s
o Standard deviation

T63 Time constant of the system

Teh Time constant for the throttle response

Td Ignition delay

Oign Ignition angle deg
Oign,opt Optimum ignition angle deg

¢ Controllability matrix

Ct0,C1,Cfo Constants derived from the friction mean effective pressure

Co,C1,C2 Constants for the volumetric efficiency

e(t) Gaussian white noise

G(q,0) Transfer function of the system

H, Control Horizon

o, Prediction Horizon

H(q,9) Transfer function of the disturbances

J Moment of inertia kg -m?
M Maximum length PRBS

my Fuel mass in the cylinder kg
My Fuel mass flow into the cylinder kg/m?
Mac Air mass flow into the cylinder kg/m?
Mat Air mass flow past the throttle plate kg/m?
Mat,ref Reference air mass flow past the throttle plate kg/m?
N PRBS clock period

N, Engine speed rpm

Table 2: Nomenclature used in the thesis.



Nomenclature Explanation Units
TN Number of manipulated variables

Ny Number of engine revolutions per cycle

Ny Number of plant outputs

Deyl Pressure in the cylinder Pa
Pem Exhaust manifold pressure Pa
Dim Intake manifold pressure Pa
q Discrete shift operator

qHV Specific heat value for the fuel J/kg
R Specific gas constant J/(kg- K)
re Compression ratio

r(t) Reference trajectory

s(t) Set-point trajectory

T; Intake manifold temperature C
T, Sampling interval s
TqBase Torque delivered by the air dynamics in the intake system Nm
TqBaseT gt Desired torque delivered by the air dynamics in the intake system Nm
TqBrkBase Break base torque Nm
TqBrkInst Break inst torque Nm
Tqlnst Torque corresponding to the ignition positioning Nm
TqlInstT gt Desired torque corresponding to the ignition positioning Nm
TqOut Output engine torque Nm
TqRsv Torque reserve Nm
u(t) Input signal

Va Displaced volume (one cylinder or whole engine) dm?
Vim Intake manifold volume dm?
w* Manipulated variables weights

wY Output variables weights

Wig Indicated gross work per cycle [J]
Wy Friction work [J]
W, Pumping work [J]
y(t) Output signal

Table 3: Nomenclature used in the thesis.
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Chapter 1

Introduction

In this chapter a brief background and a motivation behind this thesis work is
presented. The methods used to perform the work and the framework for this
thesis are found in this chapter along with a problem formulation divided into
three parts; formulation of modelling problem, formulation of control problem
and formulation of simulation problem.

1.1 Motivation and background

The fact that vehicles now are computerized machines has an enormous effect
on the possibilities for functionality of vehicles. This fact together with require-
ments and needs from customers and society have caused energetic activities in
the field of research and development. New mechanical designs are made possi-
ble by the existence of control systems. Together with the upcoming availability
of network and computing technology, completely new areas has been opened
revealing many interesting possibilities [Eri05].

Emissions from the sector of transports are considered one of the major
contributors to pollution and global warming. There is a need to develop alter-
native and more efficient ways of vehicle control and propulsion since there is
an increasing consumption of limited energy sources such as oil [Pet06]. Legis-
lation demands in the emission area together with increasing oil prices, forces
the industry to find more efficient solutions.

In this thesis a somewhat new control strategy, namely model predictive
control (MPC), has been constructed and compared to the present Proportional-
Integral-Derivative (PID) controller. The reason for constructing the MPC was
to investigate if there is a possibility to reduce the fuel consumption during idle
speed using this new control strategy instead of the present PID.

1.2 Method and limitations

The procedure of this thesis was as follows

e First a literature study was performed in order to understand the physical



model of the system which was going to be identified and later on con-
trolled.

e The behaviour of the present PID controller, controlling the Models for
engine control (MODEC) was studied. MODEC is a model developed at
Volvo Car Corporation, that is used for simulations in the Matlab/Simulink
environment.

e A literature study on the field of system identification was performed.

e Tests in vehicle, FPD-rig and on MODEC engine model were performed
on the intake air dynamics in order to obtain valuable input/output (I/0)
signals for the forthcoming system identification.

e A system identification process of the intake air dynamics was performed
in System Identification Toolbox in the Matlab environment.

e Resulting models from the system identification process were evaluated
and a proper model was selected for the controlling task.

e A literature study on the field of model predictive control was performed.

e A model predictive controller was created in Model Predictive Control
Toolbox in the Matlab environment.

e The model predictive controller along with its control strategy was simu-
lated in Simulink environment against a simplified model and the MODEC
engine model.

e An Optimization algorithm was applied to the controller parameters.

e Finally, the simulation results were evaluated and the system behaviour
under influence of the MPC was compared to the PID controller.

Limitations

Some limitations had to be made in order to meet the time aspect and com-
plexity of the project:

e The procedure for collecting data in the FPD-rig, later used for system
identification of the intake air mass flow dynamics, was kept short and
simple due to a very limited amount of time available for testing.



e The controller parameters in the model predictive controller were not op-
timized.

e The work was to develop a test version of an MPC used for evaluation of
the method in Simulink environment simulated against a virtual engine
model and not to implement an MPC for use in a vehicle.

e The MODEC engine model was improved during the project which led to
changed conditions for the analysis and experiments.

1.3 Problem formulation

This thesis has three major parts. The first part contains modelling and a
study of the system. The second part is to develop a control system, MPC,
for controlling the engine speed and the torque reserve during idle speed. The
third part concerns the evaluation of the models and the control strategy. The
evaluation is to be done by simulations of the system.

1.3.1 Formulation of modelling problem

Models are to be developed to represent the intake air flow dynamics and the
ignition positioning. These models are later on used as an important part of
the model predictive controller, namely for prediction of future plant behaviour.
The models will be developed in Matlab and the Matlab/Simulink environment.

1.3.2 Formulation of control problem

A control system is to be developed for controlling the engine speed and the
available amount of torque reserve during idle conditions. The controller shall
be based upon model predictive control theory. The torque reserve is to be kept
as small as possible without having a major impact on the controller perfor-
mance.

The control system is to be implemented together with the system models
in Matlab/Simulink environment.

1.3.3 Formulation of evaluation problem

The aim of the simulations is to evaluate the developed models of the system
and the control strategy. The main outputs are the engine speed and the torque
reserve. It is also important how the system behaves under influence of different
kind of disturbances. The engine speed and the torque reserve for the model
predictive controller should be compared to PID controller ditto. The model
predictive controller should also manage to handle the same magnitude of the
disturbances as the existing PID controller.



Chapter 2

Modelling

To be able to understand the system, which is going to be modelled and also later
on controlled, a brief system overview is needed. This chapter provides such an
overview which includes the different subparts of the total system that will be
focused on. More detailed parts which will be presented are the air dynamics,
ignition positioning and the creation of a torque reserve. These parts are divided
into several subsections which will be of interest in for instance the forthcoming
system identification. As main reference in this chapter, Lars Eriksson and Lars
Nielsen’s “Modeling and Control of Internal Combustion Engines” has been used.

2.1 Air dynamics

One of the major and vital parts in the engine is the air path or in this thesis
called the air dynamics. This part in turn consists of two different parts namely
the air flow past the throttle plate and the air flow and pressure characteristics of
the intake manifold. Modelling of these areas will be processed in the following
sections.

2.1.1 Throttle dynamics

The throttle is a metal plate, (see figure 2.1), which controls the rate of air mass
flow into the engine, or more directly into the intake manifold. Positioning of
this metal plate is performed by a positioning servo called a throttle servo. A
direct current (DC) electrical motor is controlled by a simple controller to po-
sition the throttle plate in a desired position in order to get the needed amount
of output torque in the other end of the engine. When a reduction of air flow is
desired the air path is being reduced by closing the throttle not only by the DC
electrical motor but also by a spring attached to the metal plate. This is done
to increase the speed of the system.

The air mass flow past the throttle, 114, can be approximated as the output
of a first order low pass filter, LPF.

dmat _ 1 . .
& (at,ref — Tat(t)) (2.1)



2.1 and ?? describes the air mass flow past the throttle plate.

Fuel
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Figure 2.1: Air mass flow through the engine. [Eri05]

2.1 describes the air mass flow past the throttle plate, where g ey is the
reference air mass flow past the throttle at a certain operation point and 7, is
the time constant of the throttle response.

2.1.2 Intake manifold

The intake manifold is the volume of the pipe connected to the cylinder, figure
2.1. The primary function of the intake manifold is to evenly distribute the
combustion mixture (or just air in a direct injection case) to each intake port
in the cylinders heads. Even distribution is important to optimize the efficiency
and performance of the engine.

The intake manifold pressure dynamics can in the same way as the air flow
past the throttle be approximated by a first order LPF.

The pressure dynamics of the intake manifold is described by
dpim _ RT;

d ~—V

where the air mass flow into the cylinder, 1., is given by

(Mar — Mac) (2.2)

VdNep'im

mac(Ne;pz’m;Tz’m) = TNwol (Ne;pz'm; ) n, RT; (2'3)
and the volumetric efficiency is given by
Mol = €0 + €14/Pim + c2\/ Ne (2.4)



where n, is the number of engine revolutions per cycle, N, is the engine speed,
R is the specific gas constant, V;,, is the intake manifold volume, V; is the
displaced volume, T3, is the intake manifold temperature, p;, is the intake
manifold pressure and finally the constants cg,c; and c¢2 are used for black box
identification of the volumetric efficiency denoted 7),0;.

2.2 Ignition positioning

This section describes the effects of ignition positioning, starting with a brief
description of the operating principles of a four stroke spark ignited engine. The
expressions Spark advance and Maximum brake torque are explained and finally
a mean value model for the engine torque is presented.

2.2.1 The four stroke cycle

In a four stroke spark ignited engine, an important property is the pressure in
the cylinder, pcyi, which settles the output torque of the engine, due to the fact
that it creates the force on the piston.

The four strokes are called intake, compression, expansion and exhaust. Dur-
ing the intake stroke, the cylinder is filled with a mixture of air and fuel. The
piston is moving downwards and the intake valve is open, which makes the pres-
sure in the cylinder become close to the intake manifold pressure, p;,,. When
the piston moves further, the mixture of air and fuel is compressed to a higher
temperature and pressure. This is the compression stroke and in this phase also
a spark ignites the mixture and starts the combustion (around 25 degrees before
top dead centre (TDC)). The expansion stroke starts when the combustion is
about to finish (around 40 degrees after top dead centre). Here, work is done
by the fluid in the combustion chamber when the volume expands. The exhaust
stroke occurs around 130 degrees after top dead centre when the exhaust valve
is opened. The fluid in the combustion chamber is pushed out into the exhaust
system and the pressure in the cylinder gets close to the exhaust manifold pres-
sure, pen,. Eventually, the piston reaches the top dead centre and a new stroke
cycle takes place.

2.2.2 Spark advance

By controlling the timing of the spark it is possible to affect the output torque.
This is called spark advance control. Spark advance is measured in crank angles
before top dead centre and is used to position the combustion relatively to the
crank shaft rotation. Besides the output torque, which will be the focus in this
thesis, the spark advance also affects emissions, efficiency and engine knock.
Mostly, the spark advance is controlled using the intake manifold pressure and
the engine speed.



2.2.3 Maximum brake torque

An early ignition results in an early pressure build-up and a lower pressure dur-
ing the later part of the expansion stroke. Consequently, a late ignition results
in a later pressure build-up and a higher pressure during the expansion stroke.
An optimum ignition timing results in maximum brake torque (MBT). Timings
that are advanced or retarded from MBT results in a lower output torque. The
MBT gives a certain peak pressure position (PPP), which commonly lies around
15-16 degrees after top dead centre. The PPP varies from cycle-to-cycle, which
leads to cycle-to-cycle variations in the output torque, but when the mean PPP
is at optimum the variations in the output torque are minimal. Figure 2.2 shows
the output torque as a function of PPP.
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Figure 2.2: Output torque as a function of the peak pressure position (PPP).

At a, in figure 2.2, the mean PPP lies at optimum which gives small varia-
tions in the output torque at al. At b, the mean PPP deviates from its optimum
which gives larger variations in the output torque at bl.

2.2.4 Engine torque
The output engine torque, T'qOut is given by

Wig - Wp - Wf

TqOut =
Ny - 2w

(2.5)
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where W), is the pumping work from the difference in intake and exhaust man-
ifold pressure, Wy is the friction work and W, is the gross indicated work per
cycle. These are given by the following expressions:

WIJ = Vd(pem - pim) (26)

Wf = Vd(Cfo + Clee + CfQNeQ) (2.7)

1 .
Wz’g =my - qHV (1 — ,r.’Y—l) . mzn(l, )‘c) . nign(a’ign) . nign,ch(we, Vd) (28)

where Cjg, Cs1 and Cyg are constants derived from the friction work, my is the
fuel mass in the cylinder (see 2.9), . is the fuel mass flow into the cylinder,
qmv is the specific heat value for a certain fuel, r. is the compression ratio and v
is the ratio of specific heats. 84y, is the ignition timing and 7y, is the efficiency
corresponding to 0;4y, (see equation 2.10). 7;g.cp is the gross indicated efficiency
that take combustion chamber losses (like heat transfer) into account.

Ny

e

Nign (ezgn) =1- Ci_qn : (ozgn - eign,opt (wea mpy, /\))2 (2'10)

The latter is a simplified model, describing the efficiency decrease due to
deviations from the optimum ignition timing, ;g 0pt- For each engine speed
(we) and load (specified by my and A) there is an optimal position and ignition
timing.

2.3 Moment of inertia

The rotational dynamics of the engine crank shaft gives a moment of inertia, J.
According to Newton’s second law, it can be written as [Nor06]

Jw, = TqOut (2.11)

Here, w, is the derivative of the engine speed, given in radians per square-
second.

2.4 System overview

Figure 2.3 shows a simplified, linearized overview of the system. Here, TqBaseT gt
is the desired torque and T'qBase the actual torque delivered by the air dy-
namics in the intake system. T'gBase is the maximum available torque in the
system. T'qInstT gt is the desired torque related to the ignition timing. T'qInst
is considered to be instantaneous, that is, it is considered to have no dynamics
at all. However, there is a time delay that differs between the desired torque,
TqInstT gt and the actual torque, T'qInst.

11



TqlInst is directly corresponding to the output torque, T'qOut, but TqOut
is limited by the air mass flow in the intake system. This is illustrated by the
rightmost saturation block in figure 2.3 and it means that it is not possible to
get a higher output torque in the system than the maximum torque available,
TqBase. Thus, a requirement is that T'qBase is greater than T'qInst, which
means that we will always get a difference between the two. This difference is
called the torque reserve, T'qRsv (see section 2.4.1).

The air dynamics in the intake system is more complex to model than the
ignition part. Obviously, it has physical limitations, since it is impossible for the
intake system to handle an infinite amount of air. The system is also limited by
the time it takes to open and close the throttle. These limitations are represented
by the leftmost saturation block and the rate limiter, in figure 2.3, respectively.
There are also two separate first order low pass filters in the figure, which
approximates the air flow through the throttle and pressure dynamics of the
intake manifold, as mentioned in section 2.1.1 and 2.1.2. Tj,4s represents the
losses in the output torque, due to pumping work and friction work.

Tosmsor ™) e

Rate Limiter LPF Throttle LPF Aircharge
Throttle

| a

Tqinstrgt [&(
Tok [“Tamnst
Variable
I
i

Figure 2.3: A simplified overview of the system

2.4.1 Torque reserve

As mentioned in the previous section 2.4, the torque reserve, T'qRsv, is the
difference between T'qBase and T'qInst.

TqRsv = TqBase — Tqlnst (2.12)

The advantage having a torque reserve is that the engine easier can handle
unexpected disturbances without decreasing the engine speed to an unaccept-
able level. However, the torque reserve should not be unnecessary large, since it
increases the fuel consumption. Thus, a control problem is a trade-off between
having enough torque reserve to handle disturbances and at the same time min-
imize the fuel consumption.

According to (2.12), the TqRsv is affected by increasing or decreasing the
air mass flow in the intake system and by changing the torque related to the
ignition timing.

By letting the spark advance deviate from its optimum, a contribution to

the torque reserve is created. This margin is later used for quick compensations
for disturbances. When this is not enough for compensating the disturbances,
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the air mass flow in the intake system can be increased and used for further
compensations. The latter method takes more time to carry out why it is
necessary to let the ignition timing deviate from its optimum during steady
state and thereby making quick compensations possible.

2.4.2 Simplified modelling of the system

Due to the complexity of the system and to its nonlinear behaviour, a system
identification, based on a black-box model was decided to be made. Therefore,
the air dynamics was considered a black-box, later represented by an Auto Re-
gressive model with exogenous inputs, ARX-model, while the ignition part was
modelled as a time delay. Figure 2.4 shows a simplified model of the system,
where the air dynamics is represented by a black-box and the ignition position-
ing is represented by a time delay.

Air Dynamics

y(n)=Cx(n)+Du(n)
X(n+1)=Ax(n)+Bu(n)

TqBaseTgt

. Manipulated Variables » Measured Outputs » .

TqinstTgt Tainst

TainstTgt Tainst  Tainst

60/(2*pi*d)

Ignition Delay

Figure 2.4: A simplified model of the system.

The controllable variables are T'qBaseT gt and T'qInstT gt and the outputs
are the engine speed, N, and the torque reserve, TqRsv. As can be seen in
the figure, the torque reserve is calculated according to 2.12. The necessity
that T'qBase must be greater than T'qInst was later handled by the model
predictive controller, that was given the condition that the torque reserve must
not be negative. The output torque was directly converted into engine speed
by using 2.13 where the moment of inertia was determined by experiments (see
section 3.3 and Appendix A).

N, dt (2.13)

_ @/t TqOut
_271' 0 J

2.5 MODEC

To be able to perform simulations of both the existing controller and the MPC
that is to be constructed there is a need of a model containing the most vital
parts of the engine. MODEC is a model that is used for simulations in the Mat-
lab/Simulink environment. An overview of the systems involved in the MODEC
model can be seen in figure 2.5. This model has been developed over the years at
Volvo Car Corporation (VCC) and in the beginning its focus was primarily on
the mean value engine models (MVEM) concerning the air path and the torque
generation in the engine. As the work proceeded it now also contains turbo
charging, variable valve timing (VVT) dynamics and fuel dynamics. There are
also a number of systems implemented for automatic control of different parts
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in the engine.

The main purpose for MODEC is to provide a fundament of dynamic real-
time capable models to be used in VCC’s hardware in the loop (HIL) simulators.
There are several versions of the MODEC model available but the version used
in this thesis is a model of the short inline 6 (SI6) engine. Several releases have
also been used through the period of this thesis work. The release dates of these
different versions were 2007-05-07, 2007-08-23 and finally 2007-08-31 where the
last one was used to generate the control results seen in section 4.5. [Rub07]

Modules defined within the Engine Model Architecture standard

Powerplant || Powerplant Inlet Fuel q Exhaust " External
Environment|| Electrical System Ctée;]rger System Basg Engine System ExtEe):tnaI oil Sg?tem Cooling
(Env) (Ele) (inlet) (Chrg) (Fuel) (Base) (Exh) (Ext) (©i (CInt)

A A 4 A A 4 A . A 4 A A 4 A A 4

Output busses from modules are
split and merged to a common
v v sensor, global and plant bus

Figure 2.5: An overview of the systems involved in MODEC

14



Chapter 3

System identification

To be able to identify and later on control the air dynamics, represented as a
black-box, a system identification was decided to be made. This chapter de-
scribes this system identification process. The basic theory of Black-box models
and general advices for preparing the experiments and later on handle the data
sets are given in section 3.2. The experiments are reviewed in section 3.3 and
the identification and treatment of the data in section 3.4. The results from the
system identification are finally presented in section 3.5.

3.1 Introduction

“System identification is the subject of constructing or selecting models of dy-
namical systems to serve certain purposes.” [Lju99]

The first thing to do in a system identification procedure is to collect data.
Here, a number of choices have to be made, such as selecting input signal and
sampling time. This is included in the experiment design-part (see section 3.2.2.
After the data has been collected, it usually needs to be filtered due to distur-
bances and deficiencies. This procedure is called preprocessing the data. Finally,
a suitable model set is to be selected and from this set the most appropriate
model should be chosen. If the model is not considered good enough, a new
model has to be found. [Lju99]

System identification methods can be divided into the two main groups,
non-parametric methods and parametric methods. This thesis will only focus
at parametric methods.

Parametric methods

As the name suggests, the purpose of parametric methods is to estimate param-
eters using statistical methods. If the physics behind the model is well-known,
it is appropriate to use tailor-made models. Here, the parameters represent un-
known values that are physically interpretable. Black-box models are used when
the physical background of a system is unknown or too complicated to model. In
these cases the parameters have no physical meaning. They are just parameters
used for describing the input-output relationship of the system. [Lju04]
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3.2 Theory

In this section, the Black-box models ARX (Auto Regressive model with eX-
ogenous inputs) and ARMAX (Auto Regressive Moving Average model with
eXogenous inputs) are explained and derived. Basic principles for experiment
design and preprocessing data are also given.

3.2.1 Black-box models

When the physical background of a system is unknown or too complicated to
model, a convenient way is to use a standard linear model, a black-box model.
Such a model set contains adjustable parameters to be determined by estima-
tion procedures. [Lju04]

If the parameters to be determined are denoted by the vector 6, then a
complete model set can be described as

y(t) = G(g,0)u(t) + H(g, 0)e(?) (3-1)

where y(t) is the output signal, u(¢) is the input signal and e(t) is white Gaus-
sian noise. G(q, ) and H(q,8) are the transfer functions of the system and the
disturbances, respectively.

By representing G and H as rational functions of the discrete shift operator
q and letting the parameters be the numerator and denominator coefficients, G
and H can be parameterized as follows [Lju99]

B(q) blq—nk + bzq—nk—f-l et ban—nk—nb-',-l
Flg) L+ frgt + o+ fopg ™

Clg) 1+ecg '+ +cpeqg™
D(q) 1+4+digt+---+dngg ™

H(q,0) =

ARX (Auto Regressive model with eXogenous inputs)

A simple input-output relationship can be described as a linear difference equa-
tion. If it also includes a white-noise term e(t), as a direct error, it is called an
equation error model.

y(t)+ary(t—1)+-- -+ any(t—na) = byu(t—1)+- - -+ bppu(t —nb) +e(t) (3.4)

where the coefficients a; ...an,, and by ...b,, are the parameters to be deter-
mined in the vector 6, which becomes

0=[a1 ... Gna b1 ... bpy]" (3.5)
where

1

Al)=14a1q +---+an g ™ (3.6)

and
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B(g) =1+big™" + -+ bug ™™ (3.7)
If the denominators in (3.2) and (3.3) are equal to A(g), we have

A(g) = F(q) = D(q) (3.8)
Combining (3.8) with (3.1) gives the ARX model
y(t) = %u(t) + ﬁe(t) (3.9)

The advantage of the ARX model is its simplicity which makes it easy to
calculate. The backside is that the A(g) polynomial is also used to describe the
properties of the disturbance term, which causes some errors in the estimation
of the system dynamics. [Lju04]

ARMAX (Auto Regressive Moving Average model with eXogenous
inputs)

For the ARMAX model, the equation error model is described as

y(t)+ary(t—1)+- - +anay(t—na) = bu(t—1)+- - -+bppu(t—nb)+e(t)+cre(t—1)+- - -+cpce(t—nc)

(3.10)
where
Cle)=1+ecqg t +- +ang ™ (3.11)
Now the adjustable parameters are
0=1[ar-..ana br-..bpp C1..-Cnc] (3.12)
The ARMAX model is then given by
B(q) Cla)
t) = —=u(t) + —=e(t 3.13
y(t) = Toru(®) + e (3.13)

Both ARX and ARMAX are useful models when the disturbance enters the
system at an early stage. This is because the disturbance term e(t) and the
input signal u(t) share the same poles. [Lju99]

3.2.2 Experiment design

Before the experiments can be performed, it is important to make some impor-
tant choices, such as selecting input signal and sampling interval.

Selecting input signal

The purpose of the input signal is to excite all frequencies of interest in the
system. Thus, it has to contain sufficiently many distinct frequencies. A good
idea for linear systems is to use a binary signal that has a certain probability
to change from one level to another. When the changes between the two levels
are random, the signal will contain all frequencies. The two levels should be set
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to the maximum variation that is allowed. The input signal should change be-
tween its levels fast enough to catch the shortest time constant, but also remain
constant for a period of time, letting the system settle. [Lju99], [Lju04]

Pseudo-Random Binary Signal (PRBS)

A common input signal for system identification is the Pseudo-Random Binary
Signal. A PRBS is a periodic, deterministic signal with white-noise-properties
and it can be generated by letting

u(t) = rem[A(Q)u(t),2] = rem[a1u(t — 1) + - - - + anu(t — n), 2] (3.14)

where rem|z, 2] is the remainder as z is divided by 2. Here, u(t) can only be-
come 0 or 1, but after the signal has been generated, it could assume any value.
The PRBS is a periodic signal, with the maximum periodic length, M = 2™ —1.
Choosing different A(q) polynomials in (3.14) gives different actual periods. Ta-
ble 3.1 shows choices of A(q) polynomials that gives the maximum length PRBS
for different orders n. [Lju99|

Ordern | M =2" -1
2 3
7
15
31
63
127
255
511
1023
2047

© 00O Utk Ww

—
- O

Table 3.1: A(q) polynomials that generate maximum length PRBS for different
orders n.

A maximum length PRBS has white-noise second order properties, which is
described by its signal spectrum, but to make sure that the PRBS preserve its
good properties, it must be generated over one full period, M = 2" — 1, and
then be repeated. [Lju99]

The PRBS has a clock period (IV), which is the minimum number of samples
that the signal is held constant. According to [dK02] it is suitable to choose the
clock period to be a 10th of the slowest time constant of the system.

Choice of sampling interval

Sampling always causes information losses. To make these losses insignificant,
it is important to select an appropriate sampling interval, Ts. [Lju99]
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The choice of sampling interval depends on the time constants of the sys-
tem. If the sampling is much faster than the system dynamics, the new data
points will not add any new relevant information. If the sampling is too slow,
informative data will be missing. A good choice of sampling interval should be a
trade-off between noise reduction and relevance for the dynamics. In general, it
is better to choose a short sampling interval than one that is too long. [Lju99],
[Lju04]

Aliasing

Sampling the data affects the signal spectrum. The sampling frequency is de-
noted as

27
s = — 1
w T, (3.15)

and the Nyquist frequency as

Wg ™
= — = — 1
WN D) 2 (3 6)

Frequencies higher than the Nyquist frequency will be interpreted as contri-
butions from lower frequencies. Hence, information about these higher frequen-
cies is lost by sampling. This is known as the alias phenomenon. [Lju99]

To avoid these misinterpretations, an antialiasing filter is being applied be-
fore the sampling. The antialiasing filter is a low-pass filter with a cut-off
frequency (wg) just below the Nyquist frequency (wy). [Rob03]

3.2.3 Preprocessing data

When the identification experiment is all set, it could be a good idea to plot the
collected data. There are probably several deficiencies in the data and these are
easier to detect in a plot. Due to these deficiencies, it is important to preprocess
the data before going into the procedure of identification.

Some common deficiencies in the data are high-frequency disturbances, out-
liers, missing data, drifts, offsets and trends. [Lju99], [Lju04]

High-frequency disturbances

High-frequency disturbances can be removed by low-pass filtering the data be-
fore the work of identification starts. If the sampling interval turned out to be
too short, the data can also be decimated. [Lju99], [Lju04]

Outliers and missing data

Sometimes single data points are missing in the measurement output or input.
This is often due to malfunctions in the sensors. A similar problem is the so-
called outliers, which are obvious bad errors that are caused by failures in the
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measurement. These bad values are often easier to detect in a residual plot.
[Lju99]

One way to avoid getting missing data and outliers into the identification
procedure is to cut out segments of the data set. Later, it is possible to use these
different parts separately for estimation and validation, respectively. [Lju99],
[Lju04]

Drifts and offsets

Low frequency disturbances like drift, offset and trend often occurs during the
measurement. These slow variations can be taken care of by high-pass filtering
the data before the identification process takes place. [Lju99]

3.2.4 Model validation

To investigate and decide if a model is good enough for the intended purpose is
called model validation. [Lju99]

Choice of model structure

First, a model structure has to be chosen. Decisions regarding type of model,
model order and model parameterization are to be made. [Lju99]

Controllability

Controllability is related to the possibility of forcing the system into a particular
state by using an appropriate control signal. [Lju03]

For a discrete-time linear state-space system, the state equation is

x(k+1) = Ax(k)+ Bu(k) (3.17)
y(k) = Cx(k)+ Du(k) (3.18)

where A is a n X n matrix. Then, the controllability matrix ( is defined as

(=[B AB A?B .. A"B| (3.19)

If the controllability matrix ¢ has full rank, the system is said to be controllable.
[Lju03]

Observability

Again, for a discrete-time linear state-space system, the state equation can be
written as (3.17) and (3.18). A system is then said to be observable if, for
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any possible sequence of state and control vectors, the current state can be
determined in finite time using only the inputs and outputs.
Let the observability matrix 2 be defined as

c
CA

= | CA? (3.20)

cAnt
The system is observable if the rank of 2 is equal to n. [Lju03]

3.3 Experiments

The system identification experiments were performed in three different envi-
ronments. The first time, the measurements took place in a vehicle (Experiment
1). Second, the measurements were performed in an FPD-rig (Experiment 2).
In experiment 3, no measurements were performed. Instead, the collecting of
data was done by simulating the MODEC engine model.

For collecting the data from the measurements we used the software INCA
(Integrated Calibration and Application tools). The step functions were imple-
mented manually during the measurements and the PRBS signal was generated
by using the command idinput in Matlab.

During this thesis work, the MODEC engine model was updated and im-
proved as model errors were discovered. Consequently, simulation results from
the engine model may vary from different experiments. Primarily, overshoot
characteristics and offset errors were reduced. This also affected the time con-
stants of the model, which made us change the clock period of the PRBS input
signal during the project.

3.3.1 Experiment design

Before going into the real measurements, an early version of the MODEC engine
model was simulated to approximate the time constants, 743, and the delay, 74,
of the system. The slowest time constant was found out to be 763 = 138 ms
and the delay 7; = 80 ms. The approximated time constant was then used to
generate an appropriate PRBS signal, that had a clock period which excited the
important frequencies of the system.

The objectives of the experiments were to collect data that made it possible
to:

e Identify the air dynamics of the system.
e Validate the air dynamics of the MODEC engine model.

e Determine the two time constants of the system, 7g3.
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e Determine the built-in delay for the ignition part of the system, 7.

e Calculate the moment of inertia from the crank shaft dynamics, J.

Choice of sampling interval

When simulating the MODEC engine model, the sampling interval is Ty = 1
ms. Such a high resolution is not necessary and more important, it is not viable
in the measurements, why we chose 75 = 8 ms as the sampling interval.

Choice of input signals

For the measurements, we used two different types of input signals. In both
cases, the input signal represents the T'qRsv target. The first input signal was a
number of step functions. The steps differed in amplitude and the purpose was
to determine the time constants, 743, of the system and the moment of inertia, J.

Second, a PRBS signal was chosen as an input signal. The purpose here was
to identify the air dynamics of the system.

After generating the PRBS in Matlab, the signal was cut, so that the period
length became M = 2" — 1. The maximum length PRBS was then divided
into two equally long parts; one part for estimation and one for validation.
Finally, we duplicated the two parts into three identical estimation parts and
three identical validation parts. The reason for the duplication was to get a
periodic behaviour, making it easier for the identification process to sort out
disturbances. All together, the six parts built the PRBS input signal.

3.3.2 Data collection

This section presents the experiments made for collecting data. The data were
later used for identification.

Measurements in vehicle - Experiment 1

The first experiment was performed in a Volvo XC90, SI 6.

From the simulation of the engine model, we got the time constant 7463 = 138
ms and according to [dK02], the clock period for the PRBS was then calculated
to N = 14 samples.

Figure 3.2 shows a comparison between the measured and simulated T'qBase
during the measurement that was given step functions as the input signal. It
should be noticed that the input target signal corresponds to the torque reserve
TqRsv and the output is the torque given by the air from the intake system,
TqBase. For analysis convenience, the amplitude of TqRsv has in the plot been
modified to the same magnitude as the output T'¢Base. The heavy overshoot
behaviour that the simulated model (red curve) shows was later reduced by
changes in the MODEC engine model, as it turned out that the engine model
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Figure 3.1: Picture of a Volvo XC 90, the type of car used in experiment 1.

needed improvements.
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Figure 3.2: Experiment 1 - Comparison between measured and simulated torque
with step functions as the input signal.

As can be seen in figure 3.2, the measured torque is fluctuating a lot. This is
because the engine speed did not succeed to remain constant at its target level
of N, = 650 rpm as desired. Figure 3.3 shows the unfiltered engine speed for
the two different input signals. Clearly, the engine speed varies in a way that
can not only be explained by measurement disturbances. For the step input,
the standard deviation of the engine speed was calculated to be ¢ = 3.48 rpm
and for the PRBS input ¢ = 24.08 rpm. The means for the step input and the
PRBS input were calculated to 4 = 649.9 rpm and pu = 655.6 rpm, respectively.
Since the target for the engine speed is N, = 650 rpm, this indicates that the
deviation for the PRBS from its target is even larger than the results for the
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standard deviation shows.

Engine Speed during Experiment 1. Input signal: Step functions
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Figure 3.3: Experiment 1 - The unfiltered engine speed for the step input and
the PRBS input, respectively.

Due to the fluctuation of the engine speed, a system identification based on
this data set would not be suitable for our purpose. The engine speed need to
be steady and hence we decided to carry out the following measurements in an
FPD-rig. The moment of inertia was also decided to be calculated from future
measurements, since the various engine speed made the results unreliable.

Measurements in FPD-rig - Experiment 2

The second experiment was performed in an FPD-rig. The FPD-rig is an en-
vironment for dynamical testing of functions. The rig consists of a real engine
with a simulated gearbox. The dynamical environment makes it possible to
perform driving cycles tests that simulate how the engine will behave in reality
during certain conditions. An older version is the FP-rig, which only allows
statically testing. The FP-rig does not include a simulated gearbox.

We used the same PRBS signal as in the vehicle measurements. One prob-
lem though, was that INCA was not able to update the changes in the input
signal as fast as desired. This problem was solved by a decimation of the input
signal.

In the FPD-rig, the engine brake keeps the engine speed at a constant level.
As figure 3.5 shows, the engine speed is now kept closer to its target value,
N, = 650 rpm. The standard deviations are now ¢ = 1.07 rpm and o = 0.89 rpm
for the step input and the PRBS input, respectively. The means are p = 649.9
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Figure 3.4: Picture of the FPD-rig environment, used for measurements in
experiment 2.

rpm for both input signals. These data was considered stable enough to go on
with the system identification procedure.
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Figure 3.5: Experiment 2 - The unfiltered engine speed for the step input and
the PRBS input, respectively.

Figure 3.6 shows that the measured and the simulated torque now are much
more similar than in the vehicle measurements. The small variations in the
measured torque come from small engine speed fluctuations and from measure-
ment disturbances. From these results the moment of inertia was calculated to
be J = 0.22 kg - m2. A detailed description of how the moment of inertia was
determined is found in Appendix A. The delay was determined to be 74 = 80 ms.

Again, we were at this time in the project using an older version of the engine
model, which explains the distinguished overshoots for the simulated torque. As
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Figure 3.6: Experiment 2 - Comparison between measured and simulated torque
with several step functions as the input signal.

we discovered that the overshoots are not that substantial for the real measure-
ments, the engine model was later improved to behave more like reality.

Simulation in MODEC engine model - Experiment 3

A final experiment was to run a simulation in the MODEC engine model and
later use these results for system identification. At this stage, the improved en-
gine model was used. Figure 3.7 shows the differences between an older version
of the MODEC engine model and the latest version. Obviously, the overshoot
characteristics from the older model have been reduced significantly.

The time constants for the latest engine model were determined to 743 =

108 ms and 763 = 191 ms for the uphill and downhill slope, respectively. We
calculated the clock period to N = 19 samples.

3.4 Identification

This section describes the identification procedure including the part of prepro-
cessing data. It also contains the procedure of model validation.

3.4.1 Preprocessing data

After the experiments were finished, the data was preprocessed before the iden-
tification procedure took place.
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Comparison between Modec engine models
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Figure 3.7: Comparison between an older version of the MODEC engine model
and the latest version, used in experiment 3.

Detrend/Remove means

By using the Matlab-command detrend, the mean value from the original out-
put data was removed. A possible linear trend was also removed by the same
command. Figure 3.8 illustrates the original and detrended output data from
the measurements in the FPD-rig (experiment 2) and from the simulation of
the MODEC engine model (experiment 3). In both cases, a PRBS signal was
used as the input signal.

Filtering

In experiment 2 there were high-frequency disturbances that were unwanted in
the identification procedure. A Butterworth-filter of the 10" order was used
to low-pass filter the data from the output signal in experiment 2. In this
experiment, the Nyquist frequency was calculated to

™ ™
= — = _—— =392. = 62.0H 21
WN T, = 0.008 392.7rad/s = 62.5H 2 (3.21)

The fastest time constant was in experiment 2 determined to be 743 = 56.5
ms, which corresponds to a frequency of f = r%s = 17.7 Hz. Frequencies above
this have no significance and were decided to be filtered. However, it was not
possible to determine the time constant in an accurate way and for that reason
we chose to filter frequencies above f = 20 Hz. These are frequencies that cor-

respond to a time constant that is less or equal to 743 = 50 ms.

The Butterworth filter frequency response can be seen in figure 3.9. To
implement the filter, the Matlab-command filtfilt was used. The advantage of

27



Comparison between original and detrended output signal
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Figure 3.8: Original and detrended output data. (a) Data from measurements
in the FPD-rig (experiment 2). (b) Data from simulation of the MODEC engine
model (experiment 3).

filtfilt is the zero phase modification. After filtering in the forward direction,
the filtered sequence is reversed and run back through the filter. [?]

An extract from the filtered and non-filtered output signal is illustrated in
figure 3.10. The figure shows that the behaviour from the highest frequencies
is reduced by the filter and the filtered signal demonstrates a smooth curve in
comparison. Figure 3.11 shows the spectrum of the filtered and non-filtered
output signal. Here, the peaks that occur at frequencies above f = 20 Hz have
been heavily reduced.

Downsampling/decimation

As mentioned in section 3.3.1, the sampling time of the MODEC engine model
is T, = 1 ms. By picking every 8" point from the input and output signal, we
downsampled the signals and the new sampling interval was Ts = 8 ms.

However, questions arose whether the signals should be downsampled even
more. Trials were made with the sampling times of T = 16 ms and Ts = 32 ms
and the data sequences were stored to be used later in the identification process.

Outliers and missing data

In experiment 3 there could not be any missing data or outliers. In experiment
2, we wanted to avoid the starting period because it could contain data that
are not representative. The start-up sequence was avoided by letting the engine
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Frequency response for a 10™ order Butterworth filter
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Figure 3.9: Characteristics of the applied Butterworth 10t order filter, having
a cut-off frequency, wg = 20 Hz.
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Figure 3.10: An extract of the output signal. The non-filtered output signal
compared to the output signal, filtered by a Butterworth 10" order filter

run for a while before the measurements started. In both experiments, half the
data set was used for estimation and the other half for validation.
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Spectrum of the filtered and non-filtered output signals
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Figure 3.11: The spectrum of the non-filtered output signal compared to the
spectrum of the output signal, filtered by a Butterworth 10t* order filter

3.4.2 Model validation

When the data was preprocessed and ready for identification, we created a script
in Matlab that read the input and output signals and looped through a number
of models. If the model passed certain stability requirements its properties were
printed out for further analysis. The stability requirements were that all poles
and zeroes must be within the unit circle and that the Nyquist curve must be
to the right of -1 [Ben02]. Furthermore, the model had to be observable and
controllable.

Choice of model structure

In the choice of model structure, we decided to go by the principle "Try simple
things first". Since the physical background of the system is complicated, we
chose to focus at Black-box models and we especially put our effort into the
investigation of ARX-models. A problem with the Black-box models is that
they are linear models. The system is in fact a nonlinear system, but since this
thesis focus only at idle speed, we decided to consider the system as a linear
system close to its operation point, N, = 650 rpm.

This assumption is a simplification and in figure 3.12, it is possible to see
that the system is not linear. One indication of this is that the system is acting
faster on its way up than on the way down. The MODEC engine model is trying
to catch this behaviour and clearly shows an overshoot on its way up, which
does not exist on its way down. A Black-box model could never reproduce this
behaviour, why we had to find a Black-box model that goes in the middle of the
road.
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Comparison between measured and simulated torque. NE:GSO pm.
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Figure 3.12: An extract of T'qBase. The simulated torque from the MODEC
engine model (experiment 3) compared to the measured torque from the FPD-
rig (experiment 2).

Data from experiment 2 and experiment 3 were used to find an appropriate
model. For the identification procedure a PRBS signal with a clock period of
% = 565! was used in both cases. After preprocessing the data, the input and
output signals were used for system identification in Matlab, using the com-
mands arz and armaz. These commands compute ARX and ARMAX models,
given the input and output signals and the orders and delays of the models.
The delay was earlier determined to be 74 = 80 ms which means that when
the sampling time was Ty = 8 ms, the delay should be 10 sample points, since
80 divided by 8 equals 10. The different combinations of parameters tested are
listed in table 3.2

Model T, g The Tk
ARX, T, = 8 ms 1-10 | 1-10 | n.a. | 10-12
ARX, T; = 16 ms 1-10 | 1-10 | n.a. | 4-6
ARX, Ty = 32 ms 1-10 | 1-10 | n.a. | 2-3
ARMAX, Ty =8 ms | 1-10 | 1-10 | 1-5 | 10-12
ARMAX, T, =16 ms | 1-10 | 1-10 | 1-5 | 4-6
ARMAX, T, =32ms | 1-10 | 1-10 | 1-5 | 2-3

Table 3.2: Different model orders tested for ARX and ARMAX models with
three different sampling intervals. All combinations of the parameters in the
table were tested.

Here n,=number of poles, ny=number of zeroes plus 1, n.=number of C
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coefficients, ny=delay. The parameters n,,np, and n. (for ARMAX) is said to
be the model order. The selected models turned out to be ARX-models with
two poles, three zeroes and a delay of 11 sample points for both the FPD-
rig measurements and the MODEC simulations. Note that even if the same
model order and delay were chosen for both the experiments, it is in fact two
different ARX-models, based on different output data. The models are denoted
ARX2411ppp and ARX 2411y 0pEC, respectively and some of their properties
are listed in table 3.3.

Model Steady state Fit T63
ARX2411rpp 18,9% 43,9% | 232 ms
ARX2411MODEC 78,1% 73,2% 248 ms

Table 3.3: Some properties for ARX2411rpp and ARX2411py0pec. The
steady-state gain and fit are compared to the measured output signal (in per-
cent).

Model validation

All combinations of the parameters in table 3.3 were tested using several nestled
for-loops in Matlab. For all model sets, its steady-state gain and its dominant
time constant were calculated. Due to the fact that the Black-box models are
linear, it has only one dominant time constant, 743, that is the same for the uphill
part as for the downhill part. The hard part here was to find a model that was
fast enough at the uphill part and at the same time did not overshoot too much.

The ARMAX-models were overshooting too much and hence these models
were abandoned. For the ARX-models the time constant was too slow when the
steady-state value was close to 1, but when the time constant was fast enough,
the steady-state value became too low. This problem was solved by normalizing
the ARX-model, making sure that the steady-state always was equal to one. By
letting

) bi +ba+...b, -1 k:1+a1+a2+"'+an
l+ar+ax+---+ap b +by+...by,

(3.22)

the parameter k was calculated and then used to manipulate the b-coefficients,
making the steady-state level always become equal to one. The downside of this
manipulation is that it will lead to changes in the frequency domain. The mag-
nitude curve in a Bode plot will increase if the steady-state was too small before
the normalization. The Bode plot for ARX2411ppp and ARX 2411y 0pEC 18
shown in the upper left in figure 3.13 and figure 3.14 respectively.

In the Bode plot it is clear that the normalized model (green curve) has a
greater magnitude than the original model. When the model has been normal-
ized, it is no longer adapted in the best way corresponding to the data sets given
in the identification. On the other hand, the steady state value becomes exactly
1.
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Figure 3.13: Bode diagram, step response, Nyquist diagram and a pole-zero
map for ARX 2411 ppp.

Looking at figure 3.14, the magnitude of the normalized model and the orig-
inal model are much closer to each other. Obviously, this is because the steady
state for the ARX?2411;0pEc is much closer to 1.

Normalizing the models does not affect the phase, but it does change the
stability margin. This can be observed in the Nyquist diagram, where the nor-
malized model apparently moves closer to -1. The poles and zeroes are not
affected by the normalizing procedure and since they are within the unit circle
at the same time as the Nyquist curve is to the right of -1, the models are con-
sidered to be stable.

According to (3.9), a general ARX-model can be re-written as

A(q)y(t) = B(g)u(t) + e(t) (3.23)

The A- and B-polynomials for the normalized and original ARX2411ppp
and ARX?24110pec are shown in table 3.4 and 3.5.

Model A(q)

Original ARX2411rpp 1-1.905q ' +0.9081¢ 2
Normalized ARX2411rpp 1-1.905 g~ +0.9081¢2
Original ARX2411y0ppc | 1 - 1.843 g~ + 0.8509¢ 2

Normalized ARX 2411 y0pEc | 1 - 1.843 g~ + 0.8509¢ 2

Table 3.4: A-polynomials for original and normalized ARX2411ppp and
ARX2411MODEC’
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Figure 3.14: Bode diagram, step response, Nyquist diagram and a pole-zero
map for ARX 2411 y0pEc-

As expected, the normalization caused no changes in the A-polynomials
(see 3.22). In the B-polynomials, however, the difference between the origi-
nal and normalized ARX-models is significant. Since the steady-state value for
ARX2411ppp is as low as 18,9%, its B-polynomial increased substantially after
normalization. The B-polynomial related to ARX?2411y0ppc did also increase
after normalization, but the difference here is not as large, since its steady-state
value was closer to 1 for the original model.

Model B(q)

Original ARX2411ppp 0.00365 q— T — 0.0001957¢— 2 — 0.001016¢ > — 0.001843¢~ 1%
Normalized ARX2411ppp | 0.01934 q~'! — 0.001037¢—'2 — 0.005382¢—3 — 0.009764¢ 4

Original ARX2411p0prc | 0.005073 't + 0.002064¢—'? + 0.001168¢— 3 — 0.002195¢—
Normalized ARX2411y0prc | 0.006493 g~ 4 0.002642¢ 2 + 0.001495¢ 3 — 0.002809¢ 4

Table 3.5: B-polynomials for original and normalized ARX2411ppp and
ARX2411 moDEC

Another part of the model validation was to confirm that the models were
controllable and observable. This was done by the Matlab commands ctrb and
obsv, respectively. The command ctrb computes the controllability matrix ¢
and obsv computes the observability matrix 2. Observability is necessary for
calculations in MPC (see section 4.2.1).
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3.5 Results

This section provides the results from the system identification. The results
from both the FPD measurements and the MODEC simulation are presented
and compared. The model validation results have already been demonstrated
in the previous section.

Figure 3.15 shows the scenario that has been used for result analysis. The in-

put signals represents disturbances of different magnitude. The aim was to find a
model that catches the systems behaviour for both small and large disturbances.

ARX2411 compared to measured and simulated torque.

T T T T I
ARX2411,
ok ARX2411,
TqTgt
TqBaseMeasured
65 TqBaseSim

[Nm]
g
T

Torque

Figure 3.15: Scenario for result analysis.

Figure 3.16, illustrates selected parts from the scenario above. Both the
ARX2411-models are compared to the measured and simulated torque. The
comparison focus at two different disturbances; 32 Nm represents a large dis-
turbance and 8 Nm represents a small. Since the characteristics for the positive
flank and negative flank differ, these parts are plotted separately.

ARX?2411ppp has a slightly shorter dominant time constant than ARX 2411 y,0pEc
and as expected this can be seen in figure 3.16. The two ARX-models are very
similar despite the fact that their properties differs a lot (see table 3.4.2). The
dominant time constants were crucial in the process of model selection, since
this play an important role in describing the system. Both models have one
sample point (8 ms) extra delay compared to the true delay.

For the large disturbance of 32 Nm, (Figure 3.16 (a) and (b)), the ARX-

models are too slow on the way up (a), but slightly too fast on the way down
(b). This is a price we had to pay for using a linear model, representing a non-
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ARX2411 compared to measured and simulated torque. Disturbance: 32 Nm ARX2411 compared to measured and simulated torque. Disturbance: 32 Nm
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Figure 3.16: ARX2411 compared to measured and simulated torque for distur-
bances 8 and 32 Nm.

linear system.
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Figure 3.17: Comparison between ARX?2411ppp and the measured output.

Figure 3.17 and 3.18 show the overall fit for ARX 2411 ppp and ARX 2411 p0pEC,
respectively. The simulated output results from the models are here compared
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Measured Output and Simulated Model Output
T T

Measured Output
arx2411Modec Fit: 71.8%

15|

101

yl

51

—10-

151

Time

Figure 3.18: Comparison between ARX2411;0pgc and the measured output.

to the measured output results. In figure 3.17 it is clear that the steady-state for
ARX?2411ppp is very low (see also table 3.4.2), but the model manage to follow
the output characteristics in a relatively satisfying way. For ARX24110pEC
the steady-state value is higher, which is illustrated in figure 3.18. It is hard to
tell the difference between the models when it comes to following high-frequency
dynamics. Both ARX2411ppp and ARX 2411 y0pEc are considered to imitate
the output characteristics quite well.
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Chapter 4

MPC

In this chapter a thorough examination of the control strategy of model predic-
tive control will be made. First the background of MPC along with aspects as
early history of MPC, advantages using MPC etc. will be presented. Secondly
a review of the available theoretical framework will be outlined. Thereafter a
modelling part along with a simulation section will be presented which deals
with the construction phase and the outline and the conditions present during
the simulations. Finally the results of the simulations will be presented followed
up by a discussion of ditto.

4.1 Background

In this section a brief survey of the historical background for model predictive
control will be given. This will be presented along with a definition of the
term model predictive control, its use in the industry today and also some
thoughts about the future of MPC. Some advantages of using MPC compared
with one of the most widespread control strategies, namely PID control, will
also be presented. As main reference in the theoretical part of Model Predictive
Control, J.M. Maciejowski’s Predictive Control with Constraints, from 2002,
has been used.

4.1.1 What is Model Predictive Control (MPC)?

There are many different kinds of control strategies out at the market today.
Many of the strategies are quite old and well tested, but there are also a few
upcoming, not that old, methods trying to make new ways on the field of au-
tomatic control. Many of these relatively recent methods of automatic control
are based on some kind of predictive control; MPC belongs to this group of
methods.

4.1.2 Predictive control in the control hierarchy

Today’s typical use of model predictive control in the process industry can be
seen in figure 4.1. The top level in the hierarchy contains the determination of
set-points, usually by means of steady-state optimization, which in turn may
be performed at more than one level; plant-wide static set-point optimization
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may be performed daily, while the set-point optimization at unit level may be
performed hourly or even more often. This set-point optimization is based upon
economic requirements but it excludes, usually, the dynamic behaviour of the
system (plant).

Plant-wide slatic set-point optimization
(daily)

Set-point optimization at unit level
{hiourly)

Predictive Conirol

[Legic, Owverrides, Decoupling,
Exception handling)

Local loop contr ollers
(R Pl PID

Actualars
(Malve servos etc)

Figure 4.1: Today’s typical use of model predictive control [Mac02]

Below predictive control in the hierarchy, traditional local controllers, which
control for instance temperatures, flows and pressures, can be found. Typically
these controllers consist of proportional and proportional-integral (PI) parts or
sometimes even a part with derivative action added (PID). At the lowest layer
in the hierarchy all the actuators, associated with individual control loops, are
situated.

At the position where the predictive control is located, traditionally there is
a complex layer containing overrides, exception handling, decoupling networks
and logic, to deal with the variety of conditions which set-point single loop col-
laboration can not take care of. Usually this kind of layer is compound by a
series of features constructed to solve individual problems and so tends to evolve
during the lifetime of the system or plant. The behaviour of the entire plant
is unlikely to be included in each solution which results in a badly optimized
layer. Predictive control can thus be seen as a potential, and also powerful,
link between the levels of set-point optimization at unit level and local loop
controllers in the process industry. Figure 4.2 shows the future use of Model
Predictive Control.

The reason why predictive control is being more and more accepted in the

industry is that it is usually implemented on top of traditional local controllers.
The method of predictive control is a highly integrated solution handling the
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most common kind of exception handling problems and can thus provide a much
better performance than the technology which it is replacing. When the pre-
dictive control technology is applied on top of the usually very reliable local
loop controllers, the operating companies is allowed to increase their audacity
in introducing this relatively new technology. If the predictive controller starts
to misbehave, it is relatively easy to disable it and let the local loop controllers
hold the plant at the last set-point and the process will still be safe to run.

In this analysis performed on the combustion engine trying to control the
engine speed and the torque reserve the Model Predictive Controller will be
used as a controller controlling local loop controllers, but also as a replacement
of another more simple kind of controller; a PID type controller.

Plant-wide stalic set-point oplimization
{claily)

Predictive
Gontrol

Actuators
(Valve servos eic.)

Figure 4.2: Future use of model predictive control [Mac02]

4.1.3 Advantages of MPC

The main reasons for the success of predictive control used in applications in the
industry are several. The most important reason is the handling of constraints.
Predictive controllers can take account of existing limitations of the actuators
which are used to control the system. It will also allow operating-points closer
to constraints, introduced to make the operation more profitable, in case of com-
parison to conventional control methods. Another important advantage of using
model predictive control, which will also facilitate control of complex system, is
that it handles multivariable control problems naturally.

4.2 Theory

Predictive control is model based since it uses an explicit internal model to
generate predictions of future plant behaviour. This part containing the theory
behind model predictive control will be revealing a variety of fundaments which
is vital for both understanding and to be able to construct a model predictive
controller. Closer examination of the receding horizon idea, the internal model,
optimal inputs, optimization and constraints will be performed in this section.
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4.2.1 Receding Horizon
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Figure 4.3: The basic idea of Model Predictive Control [Mac02]

The basic idea of model predictive control is illustrated in figure 4.3. In
this overview of the general idea behind MPC, a plant configured as a system
having one input signal as well as one output signal (SISO), is illustrated. y(k)
is denoted as the plant output the current time, where a discrete time setting
is applied. The past output trajectory as well as a set-point trajectory, s(t),
which is the trajectory that the output should follow in case of ideal conditions
is also shown in the figure. Denoted as r(¢|k) is the reference trajectory, which
starts at the current output value y(k) and defines an ideal trajectory along
which the plant should return to the set-point trajectory. The plant is not nec-
essarily driven back to the set-point trajectory as fast as possible which reveals
the importance of the reference trajectory as a very vital part of the closed-loop
mechanism. The reference trajectory is often assumed to be approaching the
set-point exponentially from the current output value with a time constant of
the exponential, T}.r, which also defines the speed of the actual response.
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The existing current error 4.1, constitutes as a base for calculating the ref-
erence trajectory, which will be chosen so that the error would be like described
in 4.2 if the output would follow it precisely.

(k) = s(k) —y(k) (4.1)
e(k+i) = e Tt e(k) (4.2)

where T is the sampling time. The reference trajectory can thus be described
as

r(k +ilk) = s(k +1) — e(k +4) = s(k +1) — e Tn7 (k) (4.3)

According to the name of the controller, predictions are made starting at
the current time over a prediction horizon, and these are made by an internal
model. The assumed input trajectory states the predicted future values, which
can be defined as 4(k + i|k), where ¢ = 0,1,...,H, — 1, and will be applied
over the entire prediction horizon. This strategy of predictive character aims to
achieve a appropriate predicted behaviour.

One way of utilizing this strategy is to choose the input trajectory such as
to bring the output value of the plant to the required reference value r(k + Hj)
at the end of the prediction horizon k + Hj,. The result of this action is referred
to having one single coincidence point at the time of k + H,. Most often there
are not only one way to achieve this goal and since there are more than one
input trajectory that satiefies this aim, there are also more than one solution;
a(k|k),a(k + 1|k), ..., 4(k + Hp — 1]k). One have to make a choice what to pri-
oritize and for instance one could choose the solution which requires the smallest
input energy, but it is preferable to impose some kind of simple structure on the
input trajectory.

In the case shown in figure 4.3, the input @ is assumed to vary over the
first three steps of the prediction horizon, but to remain constant thereafter:
w(k+2|k) = a(k+3lk) =...a(k+ Hp — 1|k), there are thus three parameters to
choose; G4(k|k), a(k+1|k), 4(k+2|k). If the input is assumed to remain constant
over the prediction horizon one receive a structure that is the simplest possible:
a(k|k) = u(k + 1|k) = --- = 4(k + H, — 1|k). Since there is only one equation
to satisfy, i(k|k) is the only parameter; there is a unique solution.

A input trajectory which is representing the future has now been chosen. In
this trajectory the first element is applied to the plant representing the input
signal; 4(k) = u(k), where u(k) is the signal which is actually applied. The
first cycle of the algorithm is now to end. Every new sampling interval, this cy-
cle is repeated, and thus performing the output measurement, prediction, and
determination of input trajectory. The result of this cycle is a new output mea-
surement y(k + 1), a new trajectory r(k + i|k + 1), predictions, a new input
trajectory 4(k+1+1i|k+1) is chosen and in the end the next input is applied to
the plant. If a plant is being controlled this way, it is often referred to receding
horizon control since the length of the prediction horizon remains the same as
before, but slides along by one sampling interval at each step.
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Internal Model

The internal model is linear, which in turn makes the calculations of the
best input relatively straightforward. Owur internal model is strictly proper,
that is that we have the output measurement y(k) available when deciding the
value of the input u(k) and thus the model output y(k) depends on past inputs
u(k—1),u(k—2),..., but not on the input u(k). Further, the internal model has
to be presented in a proven form granting observability to assure the prediction
functionality of the internal model.

The internal model is formulated as a state-space model in discrete-time.
The following notation in state-space-form is used:

xz(k +1) = Az(k) + Bu(k)
y(k) = Cyx(k)
z(k) = C,z(k)

where z contains the outputs which are supposed to be controlled, either to
particular set-points or to satisfy some constraints, or both.

4.2.2 Optimization and Constraints

An important function of the model predictive controller is how to make the
movements of the manipulated variables not only in a desired way, without
violating different constraints, but also how to perform this in an optimal way
not to make the movements more cost full than necessary. Therefore, set-point
tracking, different kinds of constraints and cost functions will be dealt with in
this part.

Set-point tracking

A vital part of the predictive control is set-point tracking. A primary control
objective is to force the plant outputs to track certain set-points. If a case
of no constraints is considered the controller predicts, within the prediction
horizon, how much the outputs will deviate from its set-points. Each deviation
is multiplied with the outputs weights, and then this product is squared and
summed up as 4.4. [Bem07]

Hp ny

Sy(k) =33 wllr;(k + i) — y;(k +14))” (4.4)

i=1 j=1

where k is the current sampling interval, k+i is a future sampling interval within
the prediction horizon, n, is the number of plant outputs, H, is the prediction
horizon and w¥ is the weight of output j.

There are several methods of set-point tracking; zones, funnels and coinci-
dence points. In this thesis the focus has been at a funnel objective with a
straight line boundary, since this is the way Matlab/Simulink:s Model Predic-
tive Control Toolbox works. Figure 4.4 shows the strategy of funnels with a
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straight line boundary.
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Figure 4.4: Set-point tracking using funnel objective [Mac02]

The controller might choose to make unnecessary large adjustments in the
manipulated variables, if the controller exclusively focuses on the set-point track-
ing task, that could be impossible to achieve and lead to an unstable control
system but also accelerate equipment wear. The Model Predictive Controller
therefore manages a way of suppressing moves in the manipulated variables.
This is done by monitoring a weighted sum of controller adjustments according
to 4.5. [BemO7]

H: nmo
Sau®) =3 wh Auy(k +i—1)° (4.5)

i=1 j=1

where H, is the control horizon, m,,, is the number of manipulated variables
and ij" is the weight put on the manipulated variables.

These weights put on the manipulated variables will have the effect of:

e Degraded set-point tracking of the controller.

e Less sensitiveness in the controller to inaccuracies in prediction.

The ability to move freely (within a constrained area) for the manipulated
variables is most often not restricted, because the desire to compensate for set-
point changes and disturbances. If a manipulated variable is being hold in a
region the set-point tracking will also degrade, but some plants have more ma-
nipulated variables than output set-points. If all manipulated variables were
allowed to move freely in such a plant, the values of the manipulated variables
needed to achieve a particular set-point to reject for instance a disturbance
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would be non unique; the manipulated variables would be drifting within the
operating region. To address this, set-points for manipulated variables are de-

fined as:
He N
=) wia; —uj(k +i—1)] (4.6)
i=1 j=1
where @; is the manipulated variables set-point with w} as the corresponding
weight. [Bem07]

Constrained inputs/outputs

Constraints on the inputs and/or outputs forces a change from the simple least-
square solution which is linear, to a least-squares solution that is constrained.
In this case some kind of iterative optimization algorithm has to be employed
because it is no longer possible to make use of a closed form solution. If the
constraints are constructed as some kind of linear inequalities, the problem is of
quadratic programming type. Since predictive control problems usually include
constraints, the resulting control law is usually nonlinear. As long as the con-
straints are inactive the controller is linear and will act as if the controller was
unconstrained, but if constraints become active then the controller is nonlinear,
because the optimization function computes a nonlinear function of its inputs.

Constraints

Constraints exist in two types; hard and soft. Hard constraints must not be
violated while soft constraints could be violated to some extent. Under some
conditions a violation of a constraint is inevitable, for instance under influence
of an unexpected large disturbance, and a realistic controller should be able to
handle these kind of situations. This calls for softening of the otherwise hard
constraints, by specifying the degree of softness for different constraints lead-
ing to acceptable violations and it is also possible to direct the violations to
less dangerous areas, by specifying different tolerance bands of the constraints.
[Mac02]

Cost function
Besides trying to reach the set-point there are also other kinds of control objec-
tives to be satisfied. One of the most important control objectives is to minimize
some kind of cost function. This function could be described in many ways but
usually as some kind of quadratic criterion. The model predictive control action
at time k is thus obtained by solving the optimization problem according to 4.7.

p—1 ny

Z(Z lw¥yy (yi(k+i+1]k) —rj(k+i+ 1) +

min
Au(klk),...,Au(m—1+k|k),e =1 o

Mmoo Mmoo

+ Z |w “Auj(k +i|k)|? + z |wi; (ui(k + i|k) —a;(k +9)?) +pee? (4.7
j=1

This cost function provides the control strategy with penalties for neglect-
ing the constraints, and it also gives the inputs/outputs penalties moving in a
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non advantageous way. In this cost function, constants p. and € are relaxation
factors. [Bem07]

4.2.3 Stability

Predictive control is a type of feedback policy, when using the receding horizon
idea. The resulting closed loop might suffer from instability, even though the
performance of the plant is being optimized over the prediction horizon and
even though the optimization keeps being repeated; each optimization will not
consider the actions beyond the prediction horizon and will thus maybe posi-
tion the plant in such a state that it will eventually be impossible to stabilize it.
These kinds of situations are particularly likely to occur when there are several
constraints on the available control input signals. One might also guess that a
reason why this kind of problem can occur is for instance when the prediction
horizon is too short, which in turn will result in a too short-sighted control hori-
zon. The solution to very short prediction horizons is of course an increment
of ditto; stability can usually be ensured by making the prediction horizon long
enough or even infinite long.

There are several other ways of ensuring stability for the closed loop system.
One way is to have any length of horizon, but to add some kind of terminal
constraint which will force the state to take a particular value at the end of the
prediction horizon, H,. This is done by assuming that the optimization problem
has a solution at each step, and that the global optimum can be found at each
step. Constrained optimization problems in general can be difficult to solve,
and just adding a terminal constraint could cause infeasibility in some cases.
There is however possible to achieve stability without imposing conditions as
severe as single-point terminal constraints.

There are several methods that could be regarded as modifying the weight
on the terminal control error in some way. These methods are for instance the
already mentioned way of imposing terminal constraints and the way of using
infinite horizons, but it could also be done using fake algebraic Riccati equa-
tions. In the sense of modifying the weight put on the terminal control error the
three different approaches are not that different from each other but one can
note that the way of achieving stability through imposing terminal constraints
is in general unnecessarily severe since one does not have to make the terminal
weight infinitely large in order to obtain stability.

4.3 Controller design

A very vital part of the model predictive controller is the internal model used
for estimation of future plant behaviour. The model, which was more carefully
described earlier in chapter 2, consists of two major parts (air dynamics and
ignition positioning). These parts were implemented in Matlab/Simulink. The
part describing the air dynamics was identified and modelled as an ARX-model.
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4.3.1 Internal model

The internal model, depicted in figure 4.5, was connected to the MPC-block in
Simulink, to be able to use the design tool in MPC-toolbox. After having in-
serted the MPC-block in the Simulink diagram, the Input/Output (I/O) points
were declared. The inputs, also called Manipulated Variables (MV), are ignition
based, instantaneous torque, T'¢InstT gt, and the air based torque, T'qBaseT gt,
while the outputs are the engine speed, Ne, and the torque reserve, TqRsv. I/0
points have to be declared since the design function in the MPC-toolbox will try
to linearize the model and finally create a state space model representing the
connected simulink system. This linearized state space model will then serve as
the internal model embedded into the model predictive controller.

mo |« Measured Outputs I : Ne
NeTgt TqRsv
i i ig I::fT RsvTgt
Manipulated Variables mv MPC ref Reference signals q 9

Disturbance
male surbance gy
" Disturbance]

Controller

Air Dynamics

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

TqRsv

Disturbance

z-1 e

60/(2*pi*d)

—Tqml—b TqlnstTqt Tqlnst

Tqglnst

Ignition Delay

Figure 4.5: Simulink model of the internal model containing the MPC- block.

Operating point

The operating point of interest in this case is where the idle speed controller is
supposed to operate the majority of its time in respect to N., TqRsv, TqBase
and T'qInst. In case of no influence of external, output disturbances T'qInst
has its operating point at T'¢Inst = 0 Nm while in order to enforce the desired
steady state torque reserve, both T'qBase and T'qRsv have their operating point
at the desired nominal value of torque reserve; in the standard case T'qRsv = 8
Nm.

Trimming the model

After having identified the operating point for the internal model, the Simulink
model is subject to a trimming operation. During the design of the internal
model for the model predictive controller in the MPC toolbox the command
trim is used to compute the steady state values of the MPC-controller state
for given input and output values. The exact description of the command trim
taken from the MPC toolbox documentation is:
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"The trim function finds a steady state values of the plant state vector such
that £ = Ax + Bu, y = Cx + Du or the best approximation of such an z in
least squares sense, sets noise and disturbance model state at zero, and forms
the extended state vector" [Bem07]

Behaviour of the internal model

In figure 4.6 the resulting behaviour of a unit step applied on the inputs T'qBase
and T'qInst respectively, is shown. This is performed to receive some kind of
validation of the plant behaviour. A step applied on T'qInst results in a ramp-
like increment of the engine speed, while the resulting behaviour of the torque
reserve is an inversion of the positive unit step. When the positive unit step is
applied on T'gBase the result is a second order filter-like increment in the torque
reserve, while the engine speed remains none affected. Overall plant behaviour
was expected and thus the model behaves in a desired way.

Step Response
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Figure 4.6: The result when applying a unit step to the input signals for the
internal model

4.3.2 Controller construction

After having constructed an internal model that will be used for estimation
purposes in the controller, there are still several parameters to set to make the
controller work in a desired way.
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Parameter selection

Parameters that have to be chosen during the controller construction phase are
different horizons (how far in the future should the controller be able to predict
plant behaviour?), set-points (target values for both input and output signals),
input as well as output weights (which one of the I/O: s is more important when
talking about set-point tracking?), and constraints (are there any constraints,
or forbidden areas, for the signals?).

Sampling interval

The sampling interval is an important factor when choosing the upcoming pre-
diction and control horizons. In today’s existing idle speed controller a sampling
interval of Ts = 16 ms is being used. Many of the systems onboard the vehicle
has a sampling interval which is based on the engine speed, and not directly
in time. This leads to increased availability in CPU power when the operating
point of the system is located in an area where only lower engine speed is al-
lowed. The chosen ARX-model for the air dynamics is triggered every Ty = 8
ms (the reason behind this has been declared earlier in chapter 3) and the model
predictive controller will also be using this trigger timing.

Horizons
When trying to assure stability of the closed-loop system (plant including the
controller), the length of the prediction as well as the control horizon are es-
sential, since the controller when forcing the control signals to perform large
changes can put the system in an unstable mode. The choice of prediction hori-
zon was in this case to have a prediction horizon that is long enough to both be
as fast as desirable but also assure stability for the closed-loop system. A pre-
diction horizon of about H, = 35 sample intervals was chosen in the simulations
performed trying to suppress disturbances of different magnitudes. The length
of the control horizon which also decides the response speed when trying to
suppress different kinds of disturbances is also essential for the stability as ear-
lier discussions statutes. The length of the control horizon was chosen to about
H, = 5 sample intervals. The mutual relation between the prediction horizon
and the control horizon says that H. < H, which is assured by the choices made.

Nominal values or Set-point selection
There are set-points which have to be chosen for each of the inputs and outputs.
These set-points are the same as the operating points for the system. Set-points
used in the basic simulation setup are shown in table 4.1. The reason behind the
value T'qInst = 0 Nm is that no excessive torque is needed to run the engine at
N, = 650 rpm; all internal disturbances, such as frictions etc., are compensated
for. Nominal standard idle engine speed was set to N, = 650 rpm and in the
initial simulations the torque reserve was chosen as T'qRsv = 8 Nm, because
this value is also the default value for the PID controller.

Weights
Set-point tracking of the torque reserve is generally less important than ditto for
the engine speed; the weight put on the engine speed should be higher than the
weight associated with the torque reserve. In respect to the weights related to
the input signals their task is secondary to the set-point tracking of the output
signals. Hence, the resulting weights related to the input signals are set to zero
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Signal | Set-point value
TqBase 8 Nm
Tqlnst 0 Nm

N, 650 rpm

TqRsv 8 Nm

Table 4.1: T/0 set-points used in the MPC.

to provide the largest possible quantity of freedom in the task of keeping the en-
gine speed at N, = 650 rpm as well as keeping the torque reserve at T'qRsv = 8
Nm. In table 4.2 the values of the inputs/outputs related weights are compiled.
An optimization algorithm has been applied to find the best values possible for
each weight (see section 4.4.2).

Signal | Weight
TqBase 0
Tqlnst 0

N, 1860

TqRsv 4.8

Table 4.2: Input and output variables weights.

Constraints

There are several constraints on the input as well as output signals, since cer-
tain movements are not allowed. Signals are not supposed to enter areas which
are either not possible to enter, are adverse in some sense, or even hazardous.
Constraints can be issued for entering a restricted area as a kind of hard bound-
aries, but also as regulations on the derivative of the movement on the signal.
In the modelled system there are hard boundaries on the manipulated variables,
namely —50 Nm< T'qBaseT gt < 150 Nm, —50 Nm< T'qInstTgt < 150 Nm.
These constraints are due to functional restrictions, maz and min values, and
it is thus impossible to end up in the area outside these restrictions.

Constraints are also necessary on the output signals, to penalize entrance to
certain areas. The torque reserve has a hard lower boundary that is practically
impossible to violate; TqRsv can not be negative, that is 1 < T'qRswv is a valid
lower limit that ensures a safety margin, which in turn implies that T'qInst
can not be greater than T'qBase in any moment, TqInst < TqBase. As an
upper boundary for the Torque reserve TqRsv = 150 Nm can not be infringed;
TqRsv < 150 Nm.

Constraints related to the engine speed can be considered as more relaxed
compared to other constraints. The upper boundary for the engine speed is set
to N, = 750 rpm but this is of minor importance. The lower boundary for the
engine speed is set to N, = 500 rpm and is preferred to be a very strict limit,
but it’s possible to violate this constraint in.

Not only constraints upon instantaneous values are introduced but also con-
straints related to the movement of the manipulated variables. These constraints
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are denoted as RateMin and RateM ax further on. As the constraints depend
on the properties of the internal model of the model predictive controller, the
constraints can be seen as limitations of the behaviour of the internal model.
As mentioned earlier (in chapter 3), the air dynamics are not really as fast as
desired responding to changes from negative to positive flank and not as slow as
desired responding to changes from positive to negative flank. This can be com-
pensated for, but only partially; the system can not be forced to respond faster,
but it can be forced to respond slower. This calls for a constraint on move-
ments in negative direction (defined as movements towards a smaller value).
Therefore TgBase has to be constrained introducing a RateMin = —30 (The
value T'qBase = —30 has been determined through an optimization algorithm,
see section 4.4.2). All other signals are unconstrained with respect to RateMin
and RateMaz. A summary of all constraints can be found in table 4.3.

Constraints | TqBaseT gt TqlInstT gt N, TqRsv
Max 150 Nm 150 Nm 750 rpm | 150 Nm
Min -50 Nm -50 Nm 500 rpm | 1 Nm

RateMax | Inf Nm/unit | Inf Nm/unit n.a. n.a.
RateMin | -30 Nm/unit | -Inf Nm/unit n.a. n.a.

Table 4.3: Constraints on manipulated as well as output variables.

Constraints softening

In all cases, constraints of hard character are not necessary and sometimes one
utilizes a kind of safety margins so that the constraints applied are a constrained
zone with a certain width, rather than a constrained border with an infinitely
small width. This way of exploiting constraints can be seen as applying soft
constraints, or even softening the already hard constraints, rather than using
hard constraints. There are yet another reason to change all hard constraints
into soft ones, as discussed in earlier theory for stability of MPC, see section
4.2, namely to reduce the risk of infeasibility in the optimization algorithm. The
higher the value of the relaxation factor the higher softness is applied, see table
4.4.

Constraint softening | TqBaseT gt | TqlnstTgt | N, | TqRsv
MaxECR 0.001 0.001 0.001 | 0.001
MinECR 0.001 0.001 0.001 | 0.001

RateMaxECR 3.73.107* 0.001 n.a. n.a.
RateMinECR 2.20-107'* | 2.20-10~ | n.a. n.a.

Table 4.4: Constraint softening on manipulated as well as output variables.

4.4 Simulation
This section will present the conditions under which the model predictive con-

troller and also the PID controller were controlling both a simplified model and
also the MODEC serving as the system. A disturbance scenario will be defined
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facilitating comparison between different controllers. Finally a part dealing with
the chosen strategy of finding the optimal parameter values for the model pre-
dictive controller will be presented.

4.4.1 Simulation prerequisites

Conditions which were applied to the organization of the simulations consisted
of mainly two parts. First the MPC was connected to the plant which consists
of the internal model which in turn means that plant equals the internal model
and internal model errors are thus non-existent. Arrangements can be seen in
figure 4.5. The decision to make this kind of previous validation of the MPC was
due to the complexity provided by the more extended MODEC model which
would make the survey more manageable but it would also offer the possibility
to study the behaviour of the model predictive controller under the conditions
where internal model errors were non-existent.

When tuning the MPC in a more rough way there is an advantage not hav-
ing a too complex, but correct enough, plant used for simulations. The MPC
was inserted in the arrangements provided in the Modec model, which implies
that there are now a number of model errors affecting the performance of the
model predictive controller. This model is also as close to the reality as the
possibilities concedes.

When performing the simulations using both the simplified plant (internal
MPC model equals the plant) and using the MODEC version a T'qRsv = 8
Nm is being the standard magnitude of the torque reserve. This is valid for
both MPC and the PID controller. Later on when both controllers behaviour
have been examined and compared the torque reserve will be decreased in the
sequence of TqRsv = 8,7,6,5 Nm to see if it is possible to use a lower magnitude
of torque reserve while still preserving the disturbance rejecting performance of
the controller.

Scenario

To make it easier to compare the behaviour of the model predictive controller
and the PID controller, the disturbances scenario were standardized. As the
major disturbance affecting the engine is related to handling the steering wheel,
the assumed appearance of this disturbance was approximated with a series of
pulses. The reason choosing a pulse-like approximation is to resemble the reality,
modelling the steering wheel servo, but also to create some kind of worst case
scenario since the pulse-like approximation is more harmful than for instance a
ramp-like ditto.

An important distinction to make is the one separating small and large dis-
turbances. In this case the decision to categorize small disturbances as < 10 Nm
while large disturbances are > 25 Nm. Finally a pulse train containing three
small disturbances, 2, 4 and 8 Nm respectively, and three large disturbances, 20,
30 and 40 Nm respectively, was composed. In figure 4.7 the pulse train which
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was applied as disturbances can be seen.
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Figure 4.7: Pulse train describing the disturbance scenario used in the simula-
tions.

4.4.2 Finding the optimal values for the parameters

There are several methods of finding the optimal values for the many param-
eters that are involved in the controller. In this thesis three different kind of
strategies were applied; trial and error, least square error (LSQ) and finally
one factor experiments. The first of these three methods was used only in the
early starting phase of the tuning procedure to perform rougher tuning while
the other two methods were used to fine tune the controller.

Optimization through least square error
One way of performing an optimization of the parameters used in the controller
is to focus on the LSQ. This error is subject to the difference between the ac-
tual output value from the controller and a target function describing the desired
value for the output. The objective for the optimization was to keep the engine
speed, Ne, as close to the desired idle speed for the engine, N, = 650 rpm, as
possible. Realization of the LSQ algorithm in Matlab was done utilizing the
LSQ command. This command provides the option to fine tune several of the
parameters at the same time to be able to reach the final optimal value for each
parameter. One major problem that occurred during the optimization process
was that the starting values provided to the LS@Q command most often resulted
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in an optimal solution not too far away from the same values, almost no mat-
ter where the initial values were located. This indicates that there are a large
number of local minima in which the optimization algorithm gets stuck. Thus
there is a problem not being able to find the global minima, referring to the
least square error, for the optimal values.

One factor experiment

Another way of finding the optimal values for the controller parameters is to
make use of one factor experiments. The outline of the experiment was to change
one parameter at the time, within a predefined area, while trying to track the
effect of the changes and at the same time striving to minimize the error between
the target function for the engine idle speed and the output value of the engine
speed from the plant. This work is done very simple using for-loops in Matlab.
The major disadvantage using this method is that it is very time consuming
and not as effective as the LS@Q command alternative.

4.5 Results

This section will provide the results from the earlier described scenarios and
simulation conditions. Results from four different groups of simulation activities
will be presented. First of all the MPC will be examined when trying to control
the simplified model (denoted as plant) where the plant and the internal model
of the MPC are equal. Secondly the MPC will be examined when striving to
control the MODEC model which implies that the internal model is not equal
to the plant. The performance of the MPC will be compared to the behaviour
of the PID controller. The final intention is to present the results from the
simulations showing the comparison between the MPC and the PID controller
decreasing the level of torque reserve.

4.5.1 Simplified model

The MPC was connected to the plant (as in figure 4.5). As a disturbance sce-
nario the one shown in figure 4.7 was applied. The result from these conditions
can be seen in figure 4.8, where the behaviour of the output variables (OV)
is plotted, and in figure 4.9, where the behaviour of the manipulated variables
(MV) is plotted.

As can be seen in figure 4.8 the engine speed, N, returns quite fast to
its set-point value and suppresses the disturbances in a desirable way. The
MPC deals with small as well as large disturbances without violating too many
constraints; in fact the torque reserve, T'qRsv, adopts negative values which is
a distinct violation of a constraint. The torque reserve is also responding very
fast to the disturbances and for small ditto indications of a possible decrement
of the set-point for the torque reserve is present. In figure 4.9 the control signal
activity can be seen as a function of time. The control signals, both T'qBase
and T'qInst, follow their target values in a preferable way and the activity
seems normal; no violations of constraints for the manipulated variables. This
examination of the controller behaviour, when the MPC is trying to control the
simplified plant, does mainly serve one purpose; to benchmark the early rougher
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Figure 4.8: Behaviour of OV: s MPC controlling the simplified plant.
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Figure 4.9: Behaviour of MV: s MPC controlling the simplified plant.

tuning of the model predictive controller parameters. The simplified plant itself
is not valid enough to make any major conclusions as it differs a great deal from
the controller performance when trying to control the more complex MODEC
version of the plant. It is important to catch misbehaviour, such as constraint
violations etc., in this early state of the simulation process to reduce the more
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time consuming optimization process and make it less demanding if possible.
Already in this state it is possible to see the importance of an accurate, and
most of all fast enough, internal model dealing with the air dynamics of the
plant. The control signal activity is much greater in respect to T'qBaseT gt
than T'qInstT gt and there is also a much higher activity in T'¢BaseT gt control
signal than needed.

4.5.2 MODEC

The MPC was connected to the plant, which now consists of the MODEC model.
Thisimplies that there is a significant difference between the internal model
within the model predictive controller and the plant representing the physical
engine. Disturbances influencing the output engine speed, N, behave as the
scenario described in earlier which is also the same scenario as was used when
examining the model predictive controller performance controlling the simpli-
fied plant.
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Figure 4.10: Engine speed, N, and torque reserve, TqRsv, affected by small
and large disturbances respectively.

In figure 4.10 the engine speed, N,, and the resulting torque reserve, T'qRsv,
is shown. When the controller is sensing small disturbances the fluctuation in
engine speed is also small. These small disturbances, 2,4,8 Nm do not have
any major impact on the engine speed nor the torque reserve, as expected. The
largest among the small disturbances, 8 Nm, forces the engine speed down to
N, = 627 rpm before returning to its set-point of N, = 650 rpm only three
seconds later. The corresponding torque reserve for this disturbance reaches its
lowest value, TqRsv = 1 Nm before returning to its set point T'qRsv = 8 Nm
two seconds later. There are no violations of the constraints when the controller
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only senses small disturbances.

Large disturbances have greater impact on the engine speed than the small
ditto. When the controller is sensing large disturbances the engine speed drops
to a much lower value than in the case of a small disturbance. For example when
the disturbance of 30 Nm occurs the engine speed drops to about N, = 480 rpm
before returning to the set-point two seconds later. This drop in engine speed
is also noted as a necessary violation of the lower boundary, N, = 500 rpm,
for the engine speed. In this case the disturbance is of such magnitude that all
the available torque reserve is consumed (it reaches TqRsv = 0 Nm for more
than 1 second). The focus will mainly be on the disturbance of magnitude 30
Nm in future examination and also in case of comparison to the PID controller
performance later on.
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Figure 4.11: Manipulated variables, TqBase and T'qInst, behaviour when out-
put signals are affected by small and large disturbances respectively.

Control signals, or manipulated variables activity is shown in figure 4.11.
The performance of the control signals are in this figure divided into behaviour
during small and large disturbances. During small disturbances the control
signal activity is generally small, while during large disturbances much higher.
The activity is maybe even higher than what is needed to achieve the same per-
formance, since there are substantial differences between target and actual value.

In figure 4.12 (small disturbances) and figure 4.13 (large disturbances) throt-
tle angle opening, average air mass flow into cylinder, different ignition angles
and different torque efficiencies can be seen. These parameter values are the
result of the disturbance scenario applied on the output variable engine speed.
Variations in the measured parameters in these figures are naturally very small
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Figure 4.12: Closed loop system behaviour during small disturbances; throttle
angle, average cylinger air, ignition angle and ignition efficiency.

when there are influences of categorized small disturbances present, while ex-
periencing large disturbances the variations become greater. Looking deeper
into the behaviour of the throttle opening angle and the ignition angle, when
the large interesting disturbance of 30 Nm affects the engine output torque at
the time of ¢ = 90 s the throttle angle opening increases rapidly from a very
small opening percentage to about 10%. At the same time the ignition efficiency
changes quickly towards its optimal point as the ignition angle strives towards
its optimal values.

4.5.3 Comparison to PID controller

To be able to evaluate the performance of the model predictive controller some
kind of comparison has to be made to the existing PID controller. In this part
such a comparison will be made where both small and large disturbances will
be examined.

In figure 4.14 the PID controller performance, compared to the MPC, of
tracking engine speed and torque reserve under similar conditions is shown.
The engine speed tracking is slower for PID which naturally results in poorer
ability of rejecting both small and large disturbances, but in return the effect
in terms of control signal activity, figure 4.15, will be less when rejecting larger
disturbances. It takes more than twice the time for the PID controller compared
to the MPC to reach the set-point value after each disturbance entrance. In all
six disturbance cases the magnitude of the speed is less for the model predic-
tive controller than the PID controller. Regarding the non PID-like behaviour
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Figure 4.13: Cloesd loop system behaviour during large disturbances; throttle
angle, average cylinger air, ignition angle and ignition efficiency.

with respect to the torque reserve, seen in figure 4.14, there is an extra feature
implemented in the existing idle speed controller which provides the PID with
an extra torque reserve in case of influence of a significant large disturbance.
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Figure 4.14: Comparison of engine speed and torque reserve set-point tracking

for MPC and

PID controllers.
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Figure 4.15: Control signal activity at small and large disturbances, respectively
for PID controller.

To clarify the comparison between the MPC and the PID controller the fo-
cus will now be on the disturbance having the magnitude of 30 Nm. In figure
4.16 a closer examination of the controller behaviour at this time is shown.
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Figure 4.16: Comparison between PID and MPC closed loop system behaviour
during influence of a 30 Nm disturbance
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4.5.4 Extended scenarios

Now when the MPC and the PID controller has been compared, it may be
interesting to examine the impact of the nominal values, or set-point, for the
torque reserve, TqRsv. Figures 4.17, 4.18, 4.19 and 4.20, shows the results of
simulations using the sequence of T'qRsv = 8,7,6,5 Nm as nominal values for
the torque reserve. The overall behaviour of the model predictive controller in
all these cases, varying the nominal value of the torque reserve, is quite similar.
With respect to the engine speed there are two major effects coming from de-
creasing the nominal T'¢Rsv value which are the magnitude of the lowest point
of the engine speed in the interval but also the time which the controller needs
to be able to return to the set-point; decreased nominal T'qRsv leads to a lower
lowest engine speed value and also a larger overall correction time to suppress
the disturbance. When comparing this performance of the MPC to the PID
controller it seems possible to use a MPC with a decreased nominal T'qRsv
value to about T'qRsv = 5 Nm and at the same time be able to not let the
engine speed below the lowest value for the PID controller that in turn make
use of TqRsv = 8 Nm as its nominal value. The lowest engine speed value under
influence of a 30 Nm disturbance for the PID controller is about N, = 461 rpm
(TqRsv = 8 Nm) while ditto for the model predictive controller is N, = 467
rpm (T'qRsv = 5 Nm).

Engine speed for different nominal TqRsv when disturbance equals 30Nm
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Figure 4.17: Engine speed for different nominal values of torque reserve when
controlled by MPC.

There are also some significant differences in the control signal activity, see
figures 4.19 and 4.20, comparing the cases when using different nominal value of
the torque reserve. When this particular nominal value is decreased the control
signal activities tend to increase, which can be explained by reduction of the
margins available to suppress disturbances and especially large disturbances;
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Torque reserve for different nominal TqRsv when disturbance equals 30Nm
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Figure 4.18: Torque reserve for different nominal values of torque reserve when
controlled by MPC.
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Figure 4.19: TqBase for different nominal values of torque reserve when con-
trolled by MPC.

the margins are still enough in the region of categorized smaller disturbances
and will thus not have such a significant increment in control signal activity
under those conditions.
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Tqlnst for nominal TqRsv = 8Nm when disturbance equals 30Nm Tqlnst for nominal TqRsv = 6Nm when disturbance equals 30Nm
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Figure 4.20: TqInst for different nominal values of torque reserve when con-
trolled by MPC.

The risk of ending up in constraint violations increases when the safety mar-
gins are decreased, and in case of the nominal T'qRsv = 5 Nm, even drastically
decreased (almost 40% lowered torque reserve). When the nominal value of
TqRsv = 5 Nm is applied the manipulated variable TqBaseT gt is in the vicin-
ity of its lower boundary —50 Nm. Indications of constraints violations in any
of the manipulated variables are not present. On the other hand there are con-
straint violations with respect to the engine speeds lower boundary but this is
inevitable since there is not enough buffer of torque reserve available to fend off
the large disturbance.
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Chapter 5

Conclusion and future work

5.1 Conclusion

In this master thesis a model predictive idle speed controller was constructed
based on a black box identification of the engine intake air mass flow dynamics.
This model predictive controller was then allowed to control two different kinds
of plants or system models; a simplified version and the more advanced version
called MODEC, representing the engine. The target for the controller was to
be able to withstand disturbances, of a on beforehand determined quantity and
characteristics, without letting the engine speed during idle conditions assume
too low levels and at the same time managing to preserve the level of torque
reserve needed at a reasonable low level.

The results from the simulations of the model predictive controller under
influence of a predetermined disturbance scenario shows that the engine speed
at idle conditions is faster re-established to the desired set-point value when
compared to the today used PID controller as a reference in case of using the
same nominal value for the torque reserve for both controllers. Comparing the
lowest assumed value of the engine idle speed for MPC and PID gives a signifi-
cant advantage for the model predictive controller.

Examining the role of the nominal value for the torque reserve resulted in
a possible reduction of the nominal value for the torque reserve, from 8 Nm
to 5 Nm, without being forced to forgo the advantageous aspects for the MPC
compared to the PID controller. This fact implies in an early state that the
probability of being able to reduce the fuel consumption during idle speed is
considerable, when not having performed tests in a vehicle. Hence, the poten-
tial of implementing a proper model predictive controller as a replacement of
the PID controller that is being used today has to be considered plausible.

When performing the system identification of the intake air mass flow dy-
namics, difficulties were encountered which made it difficult to create a model
of this part of the system that was of such quality that it could meet the ex-
pectations. The received ARX-model from the system identification part serves
as a limitation of the performance of the model predictive controller, which can
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be considered one of the plausible causes of the controller not being able to
make use of an even further reduction of the nominal value put on the available
amount of torque reserve.

5.2

Recommendations to future work

As we encountered different kinds of problem during this thesis work, some
recommendations of future work can be made. The most important aspects are
as follows:

More thorough tests in vehicle so that better statistical models can be
developed for use as internal models in the model predictive controller.

If possible abandon the statistical ARX model and instead make way for a
model based on the law of physics and thus can capture the non linearities
of the system (both MODEC engine model and the physical engine).

The result of the optimization strategy for the model predictive controller
had the consequence that only local minima where investigated which im-
plies that the possibility of optimal parameters are plausible. Hence, there
is a need of some kind of optimization algorithm which has a global min-
imum as an outcome.

Is there a possibility to reduce the computer power needed for the MPC
further; can the length of the horizons be decreased not losing the advan-
tageous performance?

Improvements of the MODEC model can be made so that this model
captures the physical behaviour of the engine in a more precise way. Im-
plementation of model predictive controller in vehicle to be able to decide
whether or not the MPC will outperform the existing PID controller.

Is there a more efficient way of choosing control strategy than the focus
put on the engine speed and the torque reserve?
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Appendix A

Determining the moment of
inertia

The moment of inertia, J, was determined for two reasons. First, a proper value
for J was desired in the MODEC engine model and second, J was needed for
converting the output torque into engine speed (see equation 2.13).

The determination of J was based on the data collected from experiment 2
(see section 3.3.2). From equation 2.11, the moment of inertia can be solved
according to equation A.1

T
Jwe=Tq& J= w—q (A1)

e
A vector containing the measured engine speed as a function of time was
stored and then differentiated to get the acceleration, N,. The new vector con-
taining the acceleration was then filtered by the Matlab command filtfilt to
reduce the high frequencies. The high frequencies due to measurement distur-
bances would make the results unreliable.

The measured output torque was stored after the means and trends was
removed by the Matlab command detrend. A new vector with output torque
as a function of time was then calculated for different values of J, according to
equation A.1. The calculated torque was compared to the measured torque and
analyzed by the least square method. The value of J that gave the most similar
results between the calculated torque and the measured torque was considered
to be the moment of inertia for the crank shaft dynamics. The moment of inertia
was determined to be J = 0.21914 [kg - m?2].
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