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Predicting Severe Snow Loads Using Spatial Extremes
PETER HANSSON
VINCENT SZOLNOKY
Department of Mathematical Sciences Chalmers University of Technology

Abstract
Severe snow load, unlike severe snow fall, happens over a longer period of time for
which snow accumulates causing it to produce increasing amounts of down force on
the structure below it. When a structure is forced to bear a load it was not designed
for, structural wear and damage can take place and in the worst case scenario, total
failure in which the structure collapses.
To avoid such occurrences, extreme snow load should be modelled and the potential
risks identified so as to improve laws and regulation pertaining to the maximum
load a building must handle. This thesis makes use of spatial statistics and extreme
value theory to analyse weather data and create models that can aid in predict-
ing extreme snow depth which is directly linked to extreme snow load. Specifically
interpolation by Kriging and non-stationary GEV methods are used to obtain pre-
dictions between stations. The results are compared to maps already published by
the Swedish Building and Housing authority, Boverket, and the discrepancies be-
tween them show that certain regions in Sweden are currently being under-estimated.
This under-estimation can lead to buildings being constructed to withstand loads
less then what is predicted and therefore are at risk of structural fatigue. However
in areas of heavy snowfall where the danger is greater, the map by Boverket actually
overestimates predicted extreme values. Hence buildings constructed in areas where
the risk of very high snow loads is prevalent, should be well future-proofed, and be
able to withstand even more load that what is expected.

Keywords: geostatistics, extreme value theory, monte carlo simulation, kriging,
weather
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1
Introduction

Climate change is an ever encroaching problem that is likely to change known,
stable weather patterns making them more unpredictable and extreme. Snowfall is
one such pattern that is sensitive to a number of factors impacted by climate change,
but also for which the effects from extreme snow fall can be dangerous. It is for this
reason extreme snow fall should be modelled and better understood so as to minimise
risk and the potential for disastrous outcomes. A major concern with severe snow
fall is when it accumulates on buildings, increasing the structural load they must
bear. If a building was not designed to handle such an increase in load, it can be
fatigued or, in the worst case scenario, collapse. This is for good reason concerning
and something that the Swedish housing and building authority, Boverket, needs to
have a good grasp of. This is so they can create laws and regulations that enforce
a set of standards to ensure that such events are curtailed. This thesis aims to
investigate extreme snow fall in Sweden and its impact on snow load so as to help
improve the analysis and models Boverket use.
Currently Boverket distributes the map shown in figure 1.1 for deciding the amount
of down force, due to snow, a building must be constructed to handle. It currently
has a number of unknowns that affect its accuracy and reliability. There is little
description of the model used to produce the map nor the data used. According
to Boverket the data is from the Swedish Meteorology and Hydrological Institute
(SMHI), and consists of “measurements of snow depth at a large number of stations
during a long period of time”. As it will be later discussed in the paper however,
the data from SMHI is highly irregular which brings into the question the accuracy
of the model and whether these irregularities were properly handled. Additionally
the map has been simplified into a contour plot for which values have been placed
between isolines instead of on the isolines themselves. Similarly no measurement
of uncertainty has been given, nor is there any specification for whether the values
might already incorporate a measure of uncertainty.

1.1 Problem definition and aim

Although there are a number of uncertainties surrounding the current map that
Boverket uses, it is not necessarily incorrect. Therefore the ultimate goal of this
thesis is to verify whether this is the case or not. To start with, analysis will be
performed on the raw data from SMHI and to try and clean it up and mitigate
any faults in it. After which new models will be devised, tested and compared to
identify the ones with the best performance and accuracy. Finally the results from

1



1. Introduction

the models will be used to create updated maps that are comparable to the map by
Boverket and any incongruities can then be presented.

Figure 1.1: Boverket’s snow load map based on 50 year return levels [Olsson, 2011]

2



2
Theory

2.1 Extreme value theory

Let F (x) denote the CDF of the random variable X. Consider n independent ran-
dom variables X1, ...,Xn drawn from this distribution and let FM(x) denote the
distribution of the maximum value of X1, ...,Xn. The distribution of FM(x) is eas-
ily derived by

FM(x) = P (X1, ...,Xn ≤ x) = P (X1 ≤ x) · · ·P (Xn ≤ x) = F n(x). (2.1)

Thus theoretically, if we want to estimate FM(x) based on a set of n samples from
a random distribution, it is possible to first estimate F (x) and then take the power
of n of F (x) to derive FM(x). However in practice, this method is often not robust
because any small estimation error of F (x) is amplified of the power of n, which can
have a huge impact on FM(x), especially when n is large.
Another way, frequently used in practice, it to utilise the following theorem.

Theorem 1 Let X be a random variable. If there exist sequences of constants
an > 0 and bn such that

lim
n→∞

P

(
Mn − bn

an
≤ z

)
= G(z) (2.2)

where G is a non-degenerate distribution function and Mn is the maximum value
of n independent samples from X, then G belongs to one of the following families

G(z) = exp
(
−exp

(
−z − b

a

))
,−∞ < z <∞ (2.3)

G(z) =


0, z ≤ b

exp
(
−
(
z−b
a

)−α)
, z > b

(2.4)

G(z) =

exp
((

z−b
a

)α)
, z < b

1, z ≥ b
(2.5)

for parameters a > 0, b ∈ R and α > 0.
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2. Theory

The three distribution families defined in (2.3), (2.4) and (2.5) are known as the
Gumbel distribution, Fréchet distribution and Weibull distribution, respectively. It
can easily be checked that the three families can be merged into a single CDF on
the form

GEV(z; µ, σ, ξ) = exp
[
−
(

1 + ξ(z − µ
σ

)
)− 1

ξ

]
, z ∈

{
z : 1 + ξ(z − µ

σ
) > 0

}
, (2.6)

where −∞ < µ < ∞ is the location parameter, σ > 0 is the scale parameter and
−∞ < ξ < ∞ is the shape parameter. The distribution in (2.6) is known as the
generalised extreme value (GEV) distribution. When ξ > 0 the GEV distribution
coincides with the Fréchet distribution and when ξ < 0 the GEV distribution co-
incides with the Weibull distribution. In the special case when ξ = 0, the GEV
distribution as defined in (2.6) can not be used directly. The limit distribution of
(2.6) as ξ → 0 is used instead, which coincides with the distribution in (2.3) i.e.
the Gumbel distribution. Theorem 1 and the result that the three families can
be merged into one single distribution, is known as the Fisher-Tippett-Gnedenko
theorem.
The values of an and bn in (2.1) is rarely known in practice. Instead, the following
result is used. If we assume n is large, then by (2.1)

P

(
Mn − bn

an
≤ z

)
≈ G(z), (2.7)

which is equivalent to,

P (Mn ≤ z) ≈ G(z − bn
an

) = G
′(z). (2.8)

From (2.6), is easily to see that G′(z) is also in the GEV family.
An alternative method to the method described earlier to estimate FM(x), is by
dividing a set of samples from X into equal sized blocks of size n. From the earlier
discussion, assuming n is large, the maximum of each block follows approximately a
GEV distribution. Hence it is possible to estimate a GEV distribution to the block
maxima.
The independence assumption in Theorem 1 can be restrictive in many real applica-
tions. Consider, for example, the following situation where a stationary stochastic
process X(t), t ∈ R is sampled at discrete time steps t1, ..., tn. If the process is cor-
related in the sense that it exist t and t′ such that Cov(t, t′) 6= 0, then theorem 1 can
not applied by using the block maxima method for estimating the distributionX(t).
Luckily, there exists a generalisation of this theorem, which states that under some
assumptions of the correlation between observations of the process, the maximum of
the observations X(t1), . . . ,X(tn) does asymptotically follows a GEV distribution.
The correlation assumption implies informally, inter alia, that the dependency be-
tween any two samples from the time series with a minimal lag difference l, can be
arbitrary small for some choice of l. A formal statement and proof of the theorem
can be found in Leadbetter [1983].

4



2. Theory

For any probability 0 < p < 1, we define the return period as T = 1
p
and the return

level as zp = Q(1−p), whereQ is the quantile function corresponding to a given GEV
distribution. Consider a stochastic time series which has been partitioned into equal
sized blocks and assume that the maximum value follows a GEV distribution. Since
the CDF of the GEV distribution is invertible, there is a bijective mapping between
the return level and return period. Let the block size, i.e., the time difference
between the first and last observed values in the blocks, be one time unit. For such
a case, zp is expected to be exceeded once every T time units. In extreme value
theory the return period and return level are important statistics and since we are
often interested in extreme events, the value of p is often small since it considers
large values of the observations. The return level zp of a given GEV distribution
and return period 1

p
, is given by

zp =

µ−
σ
ξ

[
1− (− log(1− p)−ξ)

]
, ξ 6= 0

µ− σ log(− log(1− p)), ξ = 0.
(2.9)

There exists various frameworks to estimate a GEV distribution to a set of obser-
vations. Notable methods are maximum likelihood estimation (MLE), generalised
maximum likelihood estimation (GMLE), L-moments estimates and Bayesian meth-
ods. In this paper we restrict ourselves to using MLE only. One major advantage of
using MLE is that the MLE-estimators are asymptotically normally distributed if
certain regularity conditions are satisfied for the distribution of the model to be es-
timated. It can easily be showed that not all regularity conditions hold for the GEV
distribution. For example, one of the regularity conditions states that the support
must be constant, independent of the parameters. But it is clear from (2.6) that
this is not true. Nevertheless, it has been shown that if ξ > −1

2 , the ML-estimate
of the parameters of the GEV distribution is normally distributed [Smith, 1985].

2.2 Non-stationary GEV Models

As derived in (2.6), the generalised extreme value distribution has three parameters
µ, σ and ξ which are the location, scale and shape parameters respectively. For
the stationary case of the GEV distribution, these parameters are constant and
determined when constructing the distribution. This can however be expanded to
the non-stationary case which includes trends for each parameter. This means that
each parameter can be expressed as a linear function of covariates, such as spatial
data or time. Therefore each parameter can be expressed as a sum of covariates and
their corresponding coefficients:


µk = µ(sk) = β0

µ +∑nµ
i=1 β

i
µX

i
µ(sk) = βTµXµ

σk = σ(sk) = β0
σ +∑nσ

i=1 β
i
σX

i
σ(sk) = βTσXσ

ξk = ξ(sk) = β0
ξ +∑nξ

i=1 β
i
ξX

i
ξ(sk) = βTξXξ

(2.10)

where sk is the spatial location with index k, nµ, nσ and nξ are the number of covari-
ates for each respective parameter, βη = (β0

η , . . . , β
nη
η )T , Xη = (1, X1

η , . . . , X
nη
η )T ,

5



2. Theory

where η is any of the parameters µ, σ or ξ. Similarly βµ, βσ and βξ are the coeffi-
cients along with Xµ, Xσ, and Xξ being the covariates for µ, σ and ξ respectively.
sk are the locations in the model for which one has covariate values for.
The generalised likelihood function for this model is given by El Adlouni et al. [2007]
as

L
(
βµ,βσ,βξ|x

)
=

M∏
k=1

1
σk

exp
{
−
[
1− ξk

(
xk − µk
σk

)]− 1
ξk

}
·
[
1− ξk

(
xk − µk
σk

)]−(1− 1
ξk

)

·
N∏

i=M+1

1
σk

exp
{
−
(
xk − µk
σk

)}
· exp

{
−exp

[
−xk − µk

σk

]}
.

(2.11)

Where M is the number of observations where ξk 6= 0 and N the total number of
observations. This likelihood can then be used with MLE to estimate the hyper
parameters βµ, βσ and βξ.
The scale parameter σ is only viable for positive values in the GEV distribution.
If the estimated model in (2.10) is used for prediction, there might exist prediction
locations where σk is non-positive. For this reason, one often uses the following
expression for σk

σk = σ(sk) = exp(βTσXσ), (2.12)

which guarantees that prediction values for the scale parameter are always positive.

2.3 Spatial regression model

Consider a stochastic process Y on a domain D ⊆ Rd. Let Y (s) denote the random
variable at location s ∈ D of the stochastic process Y . In a spatial regression model,
we consider stochastic model on the form

Y (s) = m(s) + ε(s), (2.13)

where ε is a centred process on the domain D, referred to as the residual of Y
and m(s) is a deterministic value at location s. Since ε is centred, it holds that
E [Y (s)] = m(s). The deterministic part m(s) can be modelled in various ways and
henceforth we will consider m(s) to be linear function of some explanatory variables

m(s) = β0 +
p∑
i=1

Xs,iβi, (2.14)

where X1,s, ..., Xp,s are explanatory variables for location s and β0, ..., βp are the
linear coefficients. Equation (2.14) can be written in a vector format

m(s) = XT
s β, (2.15)

where Xs = (1, Xs,1, ..., Xs,p)T and β = (β0, ..., βp)T . Now consider N locations
s1, ..., sN and let Y N denote the joint distribution at theN locations of the stochastic

6



2. Theory

process Y . Analogously, let εN denote the joint distribution at the N locations of
the residual. Then Y N can be written as

Y N = Xβ + εN , (2.16)

where X is a N × p matrix consisting of explanatory variables where X i,· = XT
si
.

Assume now that the residual process is a Gaussian process. Let further assume
that the process is second order stationary and that the covariance structure of ε is
given by

∀s, t ∈ D, Cov(ε(s), ε(t)) = C(‖s− t‖) = C(‖h‖) = C(h), (2.17)

where ‖ · ‖ can be any norm in Rd and will henceforth be the Euclidean norm,
h = s − t, h = ‖h‖ and C(·) is a positive definite function C : R+ → R. A
stochastic process which satisfies the relationship in (2.17) is called an isotropic
process. In contrast, a process which is not isotropic is called anisotropic. Since
the residual is a centred Gaussian process, the isotropic covariance function C(·)
completely defines the process. Also, εN is distributed as

εN ∼ N (0,Σ), (2.18)

where

Σi,j = C(‖si − sj‖), ∀i, j ∈ {1, ..., N}. (2.19)

Instead of describing the covariance structure of the process with the isotropic covari-
ance function, it is often preferred in spatial statistics to use the isotropic variogram
function γ(h) = C(0)−C(h). The variogram can also be defined for a less restricted
model, not assuming isotropy or stationarity

2γ(s, t) = Var(Y (s)− Y (t)), γ : D ×D → R+. (2.20)

There exists various models for the variogram function γ(h). Spherical, Gaussian,
Exponential and Matérn are a few variogram models which are commonly used. The
Matérn variogram function, which is used in the method of this thesis, is given by

γ(h) = σ2
[
1− 21−ν

Γ(ν)

(
h

ρ

)ν
Kν

(
h

ρ

)]
, (2.21)

where ρ, ν and σ are positive parameters of the Matérn function, Kν is the modified
Bessel function with parameter ν, and Γ is the gamma function. The mentioned
variogram functions are all conditionally negative definite, which means that the
matrix defined by

A = (ai,j)ni,j=1 = C(‖si − sj‖), (2.22)

is positive semi-definite for all n and s1, ..., sn ∈ D. For any stochastic processX(s),
the corresponding matrix A in (2.22) is given by

A = (ai,j)ni,j=1 = Cov(X(s),X(s)). (2.23)

7



2. Theory

It can be shown, that for all stochastic processes, the matrix A in (2.23) is positive
semi-definite, for all n and s1, ..., sn ∈ D. Consequently, the use of the mentioned
variogram models does not violate this necessity.
To account for any measurement errors when sampling from Y , an extra stochastic
process ε can be added to model in (2.13). The stochastic process added for this
purpose of incorporating measurement errors is called nugget effect. The nugget
effect is often modelled as a centred Gaussian model with covariance structure

Cov(εsi
, εsj

) =

σ2
si
, if si = sj

0, if si 6= sj.
(2.24)

The nugget defined in (2.24) is quite general and the variance is often modelled such
that variance is location independent i.e. σsi = σ, ∀si ∈ D. The corresponding
isotropic variogram function for location independent nugget is given by

γ(h) = C(0)− C(h) =

0, ifh = 0
σ2, ifh > 0.

(2.25)

The variogram is additive in the sense that if two independent isotropic processes
Y 1 and Y 2 with variogram γ1 and γ2, then the process defined by Y 1 + Y 2 is also
isotropic with variogram γ1 + γ2. This means that when a nugget effect is added to
a variogram model, the variogram function is only elevated by a constant equal to
σ2 for h > 0. For many variogram models, the corresponding variogram function is
continuous for h ≥ 0. But when a nugget with a non zero variance is added to the
model, the resulting variogram function is discontinuous at h = 0.
Analogously to the denotation of the joint distribution in (2.16), the joint distribu-
tion of Y N in the case of an nugget effect, is given by

Y N = Xβ + εN + εN . (2.26)

2.4 Estimation of variogram parameters
In practical applications it is often desired to estimate the parameters of a spatial
model from a set of observations on the stochastic process Y . For this purpose,
we will describe two different methods, which often are used in estimating a spatial
linear model. Inference on this type of model estimates both the linear covariate
coefficients β0, ..., βp as in (2.14) and the parameters of the variogram function, and
in the case when nugget is included in the model and is unknown prior to the
inference, the nugget variance is also estimated.
Let Y ′ = (Y1, ..., YN)T denote the N observations of a single outcome of the stochas-
tic process Y at locations s1, ..., sN . Let further β̂ denote the estimate of the vector
β and η the vector of parameter values of the variogram model with corresponding
estimate η̂. The first inference method will now be described. A first estimate of β
is given by ordinary least squares (OLS)

β̂ = argminβ‖Xβ − Y ′‖ =
(
XTX

)−1
XTY ′. (2.27)

8



2. Theory

With first estimate we mean in the sense that it can later be heuristically improved,
which will be described later. An approximate realisation of the stochastic part εN
in (2.16) is given by ε̂N = Y ′ −Xβ̂. In the case of a nugget effect as in (2.26),
Y ′−Xβ̂ is an approximate realisation of εN + εN . An estimate of γ(h) is given by

γ̂(h) = 1
2#N(h)

∑
i,j∈N(h)

(ε̂i − ε̂j)2, (2.28)

where

N(h) = {i, j : ‖si,−sj‖ ∈ [h− τ, h+ τ ], si, sj ∈ D}, (2.29)

#N(h) is the number of elements in the set N(h) and τ is a positive tolerance
constant. Let now calculate γ̂(h) for a set of values h1, ..., hn with corresponding
sets Ni(hi), ..., Nn(hn). In practice, the points h1, ..., hn are often equally spaced.
Also, the sets Ni(hi), ..., Nn(hn) are mutual exclusive and all distances between the
pairwise permutations of locations are contained in the union of the sets. Now the
chosen variogram function γ is fitted to the set of points (h1, γ̂1), ..., (hn, γ̂n). This
is often done in practice by solving the weighted non-linear least square problem on
the form

η̂ = argminη
n∑
i=1

Wi (γ̂(hi)− γ(hi; η))2 , (2.30)

where the weight Wi for all i is given by #N(hi)
γ(hi;η) . This choice for Wi considers to

some extent the difference in reliability of the values γ̂1, ..., γ̂n, since the number of
observations used in the estimates of (2.29) differs.
At this stage, all the parameters of the model have been estimated. But as was
mentioned earlier, the covariates estimates contained in the vector β̂ can be fur-
ther improved. This is done by using generalised least squares (GLS), which is a
generalisation of OLS and new estimate of β̂ is given by

β̂ = argminβ(Y ′ −Xβ)TΣ−1(Y ′ −Xβ) = (XTΣ−1X)−1XTΣ−1Y ′, (2.31)

where Σ is the estimated covariance structure of the joint distribution εN defined
by the function γ̂(h; η̂). It is straightforward to derive that the estimator of β in
(2.31) is actually the ML-estimator of the parameters for known variogram in (2.16)
if the residual is Gaussian. A new realisation of ε̂N and η can now be estimated
analogously to how it was estimated previously. This cyclic framework of estimating
β̂ and η can be done any number of times and it is not unusual to repeat the process
more than twice.
The second used inference method to estimate the parameters of the linear spatial
model is a MLE-based approach. The likelihood function is given by

L(β,η, σ2
n) = N (Y ′; Xβ, Ση + Iσ2

n), (2.32)

where N is the multivariate normal distribution which is given by
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N (x; µ,Σ) = 1√
(2π)k|Σ|

exp(−1
2(x− µ)TΣ−1(x− µ)), (2.33)

where k is the number of elements in x.
Estimation of the parameters is found simply by maximising (2.32) in regards to
the parameters. There exists no closed form expression for maximising (2.32), for
any general choice of variogram model and thus a non linear optimisation solver is
needed. The MLE-inference based approach is of special interest since it is possible
to fix a location dependent nugget i.e. we fix each location si to have a fixed nugget
with variance σ2

i . Then the following ML function is maximised

L(β,η) = N (Y ′; Xβ, Ση + σ2), (2.34)
where

σ =


σ1 0 . . . 0
0 σ2 . . . 0
... ... . . . ...
0 0 . . . σn

 .
This model can be used when the variance of the measurement error is known or
can be estimated prior to the inference.

2.5 Kriging
Kriging is a geostatistical method used to estimate values at unobserved locations by
interpolating values from a number of surrounding observed locations. It does so by
modelling the data as a random field together with some predetermined covariances.
To obtain the new interpolated values, the Kriging weights are calculated and are
used to compute a weighted sum of values from nearby locations. Universal kriging
is one of the Kriging methods, which assumes that the distribution of Y follows a
spatial linear model.
Assume that we have a random field Y (·) which follows a linear spatial model
and an arbitrary unobserved location s0 at which we want to estimate the value
of Y at. Universal Kriging relies on that the covariance structure Σ is known for
the observed locations, which can be estimated from any of the methods discussed
in section 2.4 from the estimated variogram function. Let c denote the vector of
covariance structure between the unobserved stations and the observed stations i.e.
c = (Cov(Ys0 , Ys1), . . . ,Cov(Ys0 , YsN ))T , which is analogously determined from the
variogram function. Let further Xs0 denote the values of the explanatory values,
as in section 2.3, for the unobserved location. The Universal Kriging predictor for
location s0 is calculated from

Ŷ (s0) =
[
cTΣ−1 + (Xs0 −XTΣ−1c)T (XTΣ−1X)−TXΣ−1

]
Y N . (2.35)

The Kriging estimation is obviously linear, i.e., it can be written on the form Ŷ (s0) =
λTY N . If a Gaussian residual is assumed of the linear spatial model, the estimation
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is unbiased ,i.e., E
[
Ŷ (s0)

]
= E [Y (s0)]. With these two properties, the Kriging

predictor is classified as the best linear unbiased predictor (BLUP). This means
that it is a linear predictor that minimises the variance of the prediction error while
still maintaining an unbiased output. It is also possible to calculate the variance of
the Kriging prediction error σ2(s0) from

σ2(s0) = σ2
0 − cTΣ−1c+ (Xs0 −XTΣ−1c)(XTΣ−1X)−1(Xs0 −XTΣ−1c), (2.36)

where σ2
0 is the variance of Y (s0).

Unless there is zero nugget in the linear spatial model, Kriging is not a perfect in-
terpolation method in the sense that the interpolant at an observed location is not
necessary equal to the observed value at the location. This means that Kriging sup-
ports improved measurements at the observed locations in case of any measurement
errors included of the observed data.

2.6 Model validation
To be able to compare models without having to compute any complex statistics,
a flexible framework is needed that places on assumptions on the models. Cross-
validation is a technique that operates purely on the output of the models and
assesses their predictive performance.
Consider a model we want to evaluate which can predict unobserved data from
observed data from a number of locations s0, . . . , sN . Through an iterative process,
we remove a number of locations, the validation stations, from the observed ones
and assume the observed values for these stations are unknown. The model is then
trained on the remaining locations, the training stations, and the predictions for the
validation stations are obtained. Any error metric e.g. mean-squared error can then
be computed between the previously removed known data and the corresponding
predicted values for the data. This process is furthermore repeated a number of
times where at each new iteration, a different set of observed values are removed.
This is to work around any bias the model might have to a certain subset of the data
for which it performs better or worse than average. For each iteration, the error is
calculated, i.e., the difference between real value and predicted value by the model
of the validation stations.

2.7 Error metric for the GEV parameters
Consider a model which predicts the GEV parameters µ, σ and ξ for a set of locations
where the parameters are unknown. Using cross validation for validating this model
requires a suitable metric for calculating the error between the predicted and real val-
ues of the GEV parameters. A possible metric could be any metric which considers
only the predicted and the real parameters, e.g.,

√
(µ− µ̂)2 + (σ − σ̂)2 + (ξ − ξ̂)2.

But it is also possible to include, if any, observed realisations which are assumed to
follow a GEV distribution, into the metric. This is especially preferred when the
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parameters is not the real parameters of the distribution, but only estimated from
observed data. A frequently used method to include the observed data into the
metric is to calculate the difference between the empirical quantile function, which
are determined from the observed values, and the quantile function of the estimated
distribution which is determined by the predicted parameters. This is done by sort-
ing the observed values, where qi,k is the k’th sorted value for location si. Let Ki be
the number of observed values at location si and let q′i,k = Q(pk,i; µ̂i, σ̂i, ξ̂i) where
pk,i = k−0.5

Ki
and Q is the quantile function of the GEV distribution for the estimated

parameters at location si. The following error metrics can be used to validate the
estimated parameters

RMSE =

√√√√ 1
N

N∑
i=1

1
Ki

Ki∑
k=1

(q′i,k − qi,k)2 (2.37)

MAE = 1
N

N∑
i=1

1
Ki

Ki∑
k=1
|q′i,k − qi,k| (2.38)

MPE = max
{i=1,...,N}

max
{k=1,...,Ki}

|q′i,k − qi,k| (2.39)

BIAS = 1
N

N∑
i=1

1
Ki

Ki∑
k=1

(
q′i,k − qi,k

)
, (2.40)

where N is the number of validation stations.

2.8 A Monte Carlo method for uncertainty as-
sessment

The problem with the previous methods of interpolation is that it is difficult to get
a reliable measure of the total uncertainty for the interpolated values. Uncertainty
is introduced in multiple steps during the analysis, and there is no simple way to
reconcile all of them into a single value for assessment. A technique that is commonly
employed in this kind of scenario is the Monte Carlo (MC) method.
MC simulation itself is a very general concept but the driving principle behind MC
simulation, is to perturb the inputs to the function one wants to assess and observe
the deviation of the output. This is usually done by assigning a distribution to the
input parameters from which different input values are sampled from. The corre-
sponding output is then recorded and the process is done many times to evaluate the
distribution of the output from which one can draw conclusions from about eventual
risk or propagated uncertainties.
A common example used to illustrate how the MC method works is to estimate
the mathematical constant π. You first start with a unit square, and inscribe in
it a circle with radius 0.5. We know that the area of the circle is πr2, where r is
the radius being 0.5. Therefore we can calculate the ratio between the area of the
circle and the area of the square to be π·0.52

1·1 = π
4 . Now a large number of uniformly

distributed points are sampled in the square. The uniform distribution acts as the
distribution to sample the inputs from, as described earlier and the function we
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want to evaluate is to check if the input is within the circle or not. For each input
sampled from the distribution we keep track of the points that fall within the circle
or not. If we calculate the ratio between the number of points within the circle
and the total number of points, we should get an approximation of the same area
ratio from before. Therefore we can estimate π to be π ≈ 4Ninner

Ntotal
, where Ninner are

the number of points inside the circle and Ntotal are the total number of points. If
we only sample a small number of points, then the approximation will not be very
good, but the more points that are sampled the better the approximation becomes.
For our specific case, the goal is to create multi-variate distributions for the two
GEV parameters location and scale, over the surface of Sweden, from which they
can freely be sampled from. For each sample of them, the corresponding return
levels are calculated which allows for observations to be made about how they vary
as a whole. Because the underlying distribution of return levels is unknown, MC
simulations provides a flexible way to analyse them. This way we can get idea of the
uncertainty in the return levels themselves and therefore better handle possibilities
of higher risk than first anticipated purely by an interpolation method.

2.8.1 Unconditional Gaussian simulation
An unconditional simulation of a random field is the method of obtaining a realisa-
tion of that field with its intrinsic characteristics. Assuming one has a covariance
matrix C from the field associated with locations s1, . . . , sN at which one wants to
simulate. One can obtain such a simulation by means of LU-decomposition proposed
by Davis [1987]. Using LU-decomposition, C can be decomposed into the product
of a lower and upper triangular matrix as such C = LU . If one constructs a new
random vector z = Ly, where each element of the vector y is yn ∼ N(0, 1), then
it can be shown that z also has covariance C [Davis, 1987]. This in turn means
that z is in fact a realisation of the random field with covariance matrix C. It
should be noted that because C is a covariance matrix, it is therefore symmetric
and positive semi-definite. Therefore one should use Cholesky decomposition to de-
compose C into a lower triangular matrix and its conjugate compose as C = LL′.
This is because Cholesky decomposition is much more efficient at performing LU-
decomposition than the standard algorithm.

2.8.2 Conditional Gaussian simulation via Kriging
An extension of unconditional simulation is to condition it so that locations that
lie near ones which already have been observed, have simulated values that more
closely resemble the observed values. Formally one wants to simulate a field X
at unobserved locations su given already observed data at locations so to obtain
realisations z such that z ∼ (X(su)|X(so)).
The simplest method for simulating a conditional random field is Gaussian simula-
tion via Kriging [Emery, 2007]. The steps involve first performing Kriging on the
observed data yielding predictions ẑ at the unobserved locations. Then an uncon-
ditional simulation is performed, usually using the technique in the previous section
2.8.1, producing a realisation zsim. With the unconditional simulation, Kriging is
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performed together with the data at observed locations from the simulation itself.
This gives predictions for the unconditional simulation ẑsim. The error is then cal-
culated between the actual simulation and the prediction of the simulation giving
the residuals zsim − ẑsim. The final conditional simulation is then constructed as

zcondsim︸ ︷︷ ︸
Conditional simulation

= ẑ︸︷︷︸
Kriged from observed data

+ (zsim(s)− ẑsim(s))︸ ︷︷ ︸
Kriging error from unconditional simulation

. (2.41)

2.8.3 Conditional Gaussian simulation via LU-decomposition
An issue with simulating via Kriging, is that it is very computationally intensive
as a Kriging prediction must be done for every new realisation, unless one does
optimisations to store the decomposed covariance matrix. Therefore many other
methods have been devised to speed up this process. One such method is done via
LU-decomposition in a similar way as the unconditional simulation [Davis, 1987].
This method allows quick simulation of many realisations in one single step.
If one goes by the same assumptions as in the unconditional case but this time
with the distinction that the locations are divided up into observed and unobserved,
s = [s1; s2]. First, is to construct the covariance matrix C by using the covariance
matrices C11 and C22 which are the auto-covariance matrices of the observed points
s1 and s2 respectively. C12 and C21 are the cross-covariance matrices between the
observed and unobserved points and are each other’s transpose.
Performing LU-decomposition on this construction yields

C =
[
C11 C12
C21 C22

]
= LU =

[
L11 0
L21 L22

] [
U 11 U 12

0 U 22

]
. (2.42)

By using the lower triangular matrix L from equation (2.42), an unconditional
simulation can be obtained as[

z1
z2

]
=
[
L11 0
L21 L22

] [
y1
y2

]
. (2.43)

To condition this simulation, y1 is replaced with L−1
11 x1 where x1 are the values at

observed locations s1.[
L11 0
L21 L22

] [
L−1

11 x1
y2

]
=
[

x1
L21L

−1
11 x1 +L22y2

]
(2.44)

In conclusion equation 2.44 will produce the conditional simulation and multiple
simulations can be obtained by re-sampling y2 from a N(0, 1) multivariate normal
distribution. It is also worth mentioning that in the simulated term, L21L

−1
11 x1 can

be seen as the conditional term while L22y2 is the unconditional term, as these will
be referenced later.
One requirement that Davis [1987] states is that the data x1 should be normally
distributed. This is generally a requirement when doing any form of Gaussian sim-
ulation. This can be done by performing a normal score transformation before
simulation and then back transforming afterwards.
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3
Analysis of SMHI’s meteorological

data

The data was obtained from the Swedish Meteorological and Hydrological Institute
SMHI and contained daily measurements of the snow depth at multiple stations
around Sweden between 1939 and the 2019.
The data set from SMHI is not complete in the sense that daily snow depth measure-
ments are missing, and for the majority of the data up until 2007, large amounts of
measurements are missing. Additionally not all stations have been recording mea-
surements for equal time periods. Figure 3.1 shows the average number of daily
measurements for each year. For most of the period the average is well below 365
days. This introduces difficulties when attempting to model the data with extreme
value methods that will have to be solved before proceeding.

Figure 3.1: Average number of daily measurements per year
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3.1 The problem of missing observations
To extract the extreme value data we want to retrieve the maximum value that was
observed during each given year. Initially the data was grouped year-wise and the
maximum value was calculated for each group. A problem arises in the fact that
if daily measurements are missing then there is a chance that the true maximum
was not recorded. This issue is amplified when fitting an extreme value model to
this data as the extreme values will be underestimated. By underestimating the
extreme values, one will underestimate potential risk and therefore not draw correct
conclusions which are usually critical when risk is involved. Unsurprisingly, this
problem has also been documented by SMHI themselves when extracting record
snow depths from daily snow measurements [SMHI, 2016].

3.2 Refinement of data into winter months

(a) Number of measurements (b) Average snow depth

Figure 3.2: Basic monthly statistics for all stations

In figure 3.2a is a histogram of the total number of measurements for each month.
There is a steep decline during the summer months which is due to the fact that it
is highly unlikely to snow then and therefore unnecessary to perform any measure-
ments. Additionally in figure 3.2a during the same months when fewer measurements
are performed the average snow depth is also very low (in most of Sweden it is 0).
Using this information we only consider the months during the “winter months”,
which will be from December 1st to May 1st.
This is further backed up by figure 3.3 which shows in which month the yearly max
was measured. This means that we can focus on extracting stations that have a
good number of measurements during these months alone.
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Figure 3.3: Month the yearly maximum was measured

3.3 Discarding years with few daily measurements

Another concession we make to try to improve the quality of the data, is to discard
years in which a station does not have enough daily measurements. Ideally the
threshold which defines how many measurements a station must have for a given
year for it to be included, should be high so as to minimise the risk of missing an ex-
treme observation. Fortunately in the case of snow depth which is an accumulative
process, the measurement is unlikely to drastically change between daily measure-
ments. Contrast to, for example, precipitation which can change hourly. This is due
to the fact that the snow stays on the ground for long periods of time, hence having a
small number missing daily observations is unlikely to miss an extremal value. Even
if it is missed, the chance of surrounding observations to be close to that extremal
value is still great and should not be far off. In summary this means that in our
particular case, we can lower the threshold for the number of needed daily observa-
tions, which in turn increases the number of years we can include for a multitude
of stations. We approximate a good threshold to be that at least 70% of the days
between December 1st and May 1st, for a given year, should have measurements.
Such a year we will call an active year.
The intuition behind figure 3.4 is that we want to find an ideal trade-off between
total number of stations such that we cover enough of Sweden and retain enough
spatial data. While at the same time ensuring that each station included has enough
active years such that estimating a GEV distribution produces faithful estimation of
the parameters. As the number of years on the x-axis decreases, so does the number
of stations that have measured at least that many years.
Figure 3.4 shows that slightly less than half of the stations haven’t even obtained
one year with more than 70% daily measurements (number of stations with at least 1
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Figure 3.4: Number of stations vs. number of years which they have at least 70%
daily measurements

active year is 1100). At 20 years there is a good population of 234 stations, and at 30
years it has further decreased to 134. In the paper by Blanchet and Lehning [2010],
the authors determined that using 100 stations for their analysis of maximum snow
depth in Switzerland was adequate. The 100 stations that have at least 30 active
years do not cover the northern part of Sweden very well so a compromise is made
to instead reduce the limit to 20 active years which brings the total back up to 234.
20 measurements is probably the lowest amount of one wants to estimate a GEV
from but this is just a lower bound and many stations have more measurements
than that.
The plots in figures 3.5 shows where the stations are located after filtering. In total
there are 1800 stations that were active at some point, however more than half of
these have not even been active for more than a year. Filtering for stations that
have at least one year where they were actively conducting measurements shows
that there were 759 active stations, displayed in figure 3.5a. Figures 3.5b and 3.5c
show the spatial trade-off that occurs when requiring more active years per station.
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(a) 1 year (b) 20 years (c) 30 years

Figure 3.5: Plots of stations in Sweden. The most-left plot is all stations with at
least one year. The middle plot and last plot are stations with at least 20 and 30
years respectively

3.4 Initial fitment of point-wise GEV distribu-
tions

To get an overview of what the data looks like from a extreme value perspective, we
fit a GEV distribution to each station individually. This is using the filtered data
from figure 3.5b together with MLE estimation of the parameters from section 2.1.
The results are displayed in figure 3.6.
The location parameter, which is akin to the mean of the distribution, is seen to
increase with latitude in figure 3.6a. This seems reasonable as it snows more in
the north than in the south. The other two parameters in figures 3.6b and 3.6c
do not have any clear trends that can initially be seen by looking at the plots.
An interesting observation however, is that the shape parameter is mostly negative
which has the effect of placing an upper limit on the tail of the GEV distribution.
Generally this is not wanted and in other examples of modelling weather patterns
the shape parameter is either explicitly set to zero or used only when greater than
zero. This is also the case with the map produced by SMHI which uses an explicit
Gumbel distribution with the shape parameter set to 0 across Sweden.
To ensure that this is valid, a simple check to see whether the shape parameter
is statistically significantly non-zero, is done. Figure 3.7 shows the results and an
interesting pattern can be seen that divides Sweden into two distinct sections. A
north-western area where it is significantly non-zero indicating a GEV distribution
and a south-eastern area where it is the opposite and not significantly non-zero,
so a Gumbel distribution seems most appropriate for this area. A possibility is
to use two distribution assumptions, GEV for the north-west and Gumbel for the
south-east, however this adds an extra layer of complexity. Additionally, the shape
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parameter is negative for where it is significantly non-zero which means that there
is an upper limit on the tail of the GEV distribution. This is generally uncommon
when modelling weather patterns and it is usually set either to 0 or ensured that it
is positive . So for this article the same assumption as the one made in the map by
SMHI, i.e. a Gumbel distribution for the entire Sweden, will be used.

(a) Location (b) Scale (c) Shape

Figure 3.6: Plot of each parameter after being estimated for each station individ-
ually. From left to right: location, scale and shape.

Figure 3.7: Plot showing which stations the shape parameter is significantly non-
zero.

20



4
Method

4.1 Extreme value theory applied to annual snow
depth maxima

In the previous section the filtering of the data to obtain annual snow depth maxima
for the observed stations was discussed. The premise of this thesis is that the annual
maxima for a given location will follow a GEV distribution. The rationale is that the
daily observations are blocked into annual maxima and by theorem 1, assuming the
assumptions in the theorem holds, will asymptotically follow a GEV distribution.
This means that the daily observations must be equally distributed. This is of
course by intuition not true, since generally speaking, it will snow less in the summer
than in the winter. Nevertheless, it will still be assumed that the annual maxima
follows a GEV distribution, which of course for the reasons mentioned, is only an
approximation. This is very standard for any GEV analysis. This approximation
can at least be a little justified since we are mainly considering snowfall for the
months of the year which snowfall is frequent, as discussed in the previous section.
The considered months, by intuition, will differ less distribution wise compared, let
us say, to a month in the summer and in the winter.
The daily snow depth observations are of course correlated. This again contradicts
the independence assumption of theorem 1. But as discussed in section 2.1, there ex-
ists a generalisation of the theorem which considers dependency of the observations.
This relaxation of the independency assumption states informally, that observations
are almost uncorrelated, given that the lag difference between the observations are
large. A similar argument can be made for daily observations of snow depth, which
justifies the usage of a GEV distribution to model the annual maxima.

4.2 Kriging

From the observed annual block maxima, it is possible to estimate a single GEV
distribution to each of the observed locations. There are now two ways of obtaining
a continuous surface of return levels. The first way is to interpolate return levels
directly from each station while the second way is to interpolate the estimated
parameters from each station and then for each new point calculate the return level
explicitly from the interpolated parameters. The former is slightly simpler as it
only involves one interpolation step and the Kriging variance can be used as an
informal uncertainty estimate. The latter however has the capability to integrate
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more information from each station as it is interpolating 3 values instead of one,
each with their own covariance function and trend. However this also means that
each parameter has its own Kriging variance and combining them together to form a
singular estimation of uncertainty is not clear. For this another approach is needed,
such as the Monte Carlo method in section 2.8.
In section 2.4, two different methods were described to estimate the mean structure
and variogram of the linear spatial model prior to the kriging interpolation. Both
of these methods will used and compared.

4.3 Choice of Covariates
All prediction models used in this thesis use covariates. Both Universal Kriging and
non-stationary GEV distribution includes covariates in the model. The choice of
covariates depends on application and available data. The covariate values must
also be known for all prediction locations. In any type of linear regression model, it
is possible to include more then one transformation of the same covariate into the
model. In practice, this is often utilised by including different polynomials of the
covariate.
All covariate values are henceforth assumed to be normalised. Normalisation of co-
variates makes it possible to compare the influence of different covariates, by compar-
ing the corresponding estimated linear coefficients. The normalisation transforma-
tion for given covariate with values (xi)ni=1 is given by x′i = (xi−xmin)/(xmax−xmin),
where n is the number of covariate values, xmin and xmax is the minimum and maxi-
mum of the covariate values, respectively, and x′i is the new transformed value. This
normalises all covariate values to be in the interval [0, 1].
In geostatistics, the coordinates of the geographical position are often included in
the set of covariates, which also is used in our prediction models. The coordinates is
available from SMHI’s data, which to every observation location has a corresponding
set of coordinates in the WGS84 geodetic system. Altitude is also used as a covariate
and the data originates from the EU-DEM 1.1 [Copernicus, 2010] data set which
includes altitude data over Europe. Finally, the mean snow depth is also used as a
covariate. The mean snow depth is determined by calculating the mean of the snow
depth observations in the winter months. The mean snow depth values at prediction
stations are then determined by inverse distance weighting interpolation.

4.4 Estimators of linear coefficients
To determine the best model for each parameter, polynomial transformations of the
covariates is used and studied in the spatial regression model. The best choice of
polynomial degrees for each covariate needs to be found with a systematic approach.
The approach we used for this purpose, is by utilising cross validation with a RMSE
cost function, to compare different choices of polynomial covariate transformations.
More specifically, all combinations of the highest polynomial degree for each covari-
ate, with a maximum of degree 2, was tested and compared with cross validation.
This means that 64 (43) covariate functions were compared. This was done for all
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3 parameters of the GEV distribution with Universal Kriging as the predictor. The
Matérn covariance function is used along with MLE to estimate its parameters as
well as the parameters for the external trend in Universal Kriging. Observe however
that the model for the shape parameter is not actually used in any final models due
to section 3.4, it’s merely included to check any spatial structure that might exist.
The optimal trends for each GEV parameter using this procedure is displayed in
table 4.1.

Parameter Trend
Location elevation + mean + (mean)2

Shape longitude + (longitude)2 + elevation + mean + (mean)2

Scale latitude + (latitude)2 + mean + (mean)2

Table 4.1: The optimal trends for each parameter respectively

Parameter Intercept Longitude Latitude Elevation Mean
Location 0.0887 - - -0.0510 1.3820
Scale 0.0875 -0.2419 0 -0.0904 0.5670
Shape 0.1960 - 0.6283 - -1.7355

Table 4.2: Coefficients for intercept and 1st degree covariates in the external trend

Parameter Longitude2 Latitude2 Elevation2 Mean2

Location - - - -0.1385
Scale 0.2543 - - -0.2953
Shape - -0.9087 - 1.4371

Table 4.3: Coefficients for 2nd degree covariates in the external trend

It is interesting to note that shape and scale seem to be somewhat orthogonal to each
other, with shape relying on longitude and scale using latitude. The covariates for
each variable are displayed in tables 4.2 and 4.3 , each variable has been normalised
so the covariates can be reliably compared to each other. For all three trends, the
mean is the one with the biggest impact and is found to be the biggest indicator of
extreme snow fall. This is to no surprise as locations with a higher mean have more
snowfall hence a larger probability of having a greater max depth.
The plots in figure 4.1 show the interpolated parameters using the trends from table
4.1 and Universal Kriging. The shape and scale parameters vary somewhat similarly,
as can also be seen in their trends. This could be due to the fact that both have a
large effect on the magnitude of the GEV distribution and therefore work in tandem
as the amount of snow increases.
The shape parameter on the other hand seems to be trying to utilise the distance
from the coast and divides Sweden into two sections as seen in figure 4.1b. The
south which has a shape parameter close to zero and surrounded by coastline, while
the north has a more negative value and only a small bit of coastline to the east. It
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(a) Location (b) Shape (c) Scale

Figure 4.1: Kriging interpolation of GEV parameters

is known that proximity to large bodies of water, greatly affect the weather pattern.
As stated, the south of Sweden is surrounded by coast, but also has two large lakes
which behave similarly to the ocean. Additionally other phenomena such as snow-
cannons on the east coast of Sweden can also explain the two divisions of the shape
parameter. More meteorological analysis is needed however, to accurately determine
whether such distinct snowfall patterns are actually exhibited.
Using the interpolated parameters a new surface containing the 50 year return levels
can be calculated. This is displayed in figure 4.2. When comparing to the elevation
maps in figure 3.5, the return levels appear to increase with elevation.
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Figure 4.2: 50 year return levels of snow depth (in metres) using Kriging interpo-
lated parameters

4.5 Non-stationary GEV
Instead of doing point-wise estimation of the GEV parameters, one can instead
employ MLE-based optimisation together with the non-stationary GEV model from
section 2.2 to construct a continuous, spatial GEV that can be used to estimate
the parameters at any location. The ML-function can be found in equation (2.10),
where x is the vector of observed block maxima. Notice that such a ML-function
is only a product of marginal distributions and consequently, spatial dependency
is ignored between samples. This approximation is a special case of composite
likelihood and has been showed to give satisfying results for many applications
[Blanchet and Lehning, 2010].
The trends that were found to be the most optimal for Kriging in table 4.1 are used
as the trends in the GEV model as well. One concession is made, which is that
MLE does not work very well when optimising a non-stationary shape parameter
and is often not recommended [Coles and Dixon, 1999]. Instead one generally uses
either a constant shape parameter or simply the Gumbel distribution with the shape
parameter set to 0.

Parameter Intercept Longitude Latitude Elevation Mean
Location 0.1128 - - -0.0269 2.5399
Scale 0.0855 -0.0904 - 0.0953 -0.0160
Shape -0.0552 - - - -

Table 4.4: Coefficients for intercept and 1st degree covariates in the non-stationary
GEV model
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Parameter Longitude2 Latitude2 Elevation2 Mean2

Location - - - -0.9777
Scale 0.0127 - - 0.1922
Shape - - - -

Table 4.5: Coefficients for 2nd degree covariates in the non-stationary GEV model

The interpolation is conducted by constructing a linear model with the trends from
table 4.1 and the coefficients from tables 4.4 and 4.5. This is in contrast to Universal
Kriging which also incorporates spatial information when interpolating.
The coefficients are estimated using MLE however with a constant trend for shape
due to the problems when using a non-stationary trend as mentioned before. When
compared to the coefficients that were found when using MLE but for Kriging in
tables 4.2 and 4.3, there is not a huge difference between them, and all the parameters
have the same sign and similar magnitude.
The density plots of the non-stationary distributions in the case of both Gumbel
and GEV are shown in figure 4.3. The emperical density plots are derived by
transforming the non-stationary data to the standard Gumbel distribution. This
transformation is determined by the estimated parameters of the GEV distribution,
which are location specific. In relation to each other they are similar and mainly
because the estimated shape parameter from the GEV is estimated to -0.0552 from
table 4.4 which mostly only affects the tail behaviour of the distribution.

(a) Gumbel (b) GEV

Figure 4.3: Density plots of non-stationary Gumbel and GEV distributions re-
spectively.

The return level plots for both a Gumbel and GEV distribution are shown in figure4.4
which again are pretty much the same. This supports our initial assumption that a
Gumbel distribution should be used throughout Sweden.
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(a) Gumbel (b) GEV

Figure 4.4: 50 year return levels of snow depth (in metres) using linear models
with coefficient estimates from MLE of a Gumbel and GEV model respectively.

4.6 Simulations
Because the maps may be used for real-world applications when constructing build-
ings, it is important that an evaluation of the related uncertainty is also included.The
Kriging variance can be used as a measure of uncertainty, however it only accounts
for the spatial uncertainty in the model. One possible solution is to include any un-
certainty as a nugget effect as mentioned in 2.32. This may still not account for all
the error in the system as there are many points of entry where error is introduced
into the system. A more comprehensive solution to allow the propagation of error
through the model is the Monte Carlo method from section 2.8, specifically the Con-
ditional Gaussian Field simulation by LU-decomposition technique in section 2.8.3
is used.
The main reason that we can not simulate return levels directly by creating a Gaus-
sian Random Field (GRF) of them to simulate from, is because we can not assume
that the return levels are Gaussian distributed. However due to the MLE method,
the parameter estimates are in fact assumed to follow a Gaussian distribution [Coles,
2001]. Additionally more information might be retained by calculating return levels
from Monte Carlo simulations of both location and scale, which individually have
different spatial structures, instead of just simulating return levels directly.
So in our case, we wish to simulate the parameters, location and scale individu-
ally. Due to the use of MLE, under some regularity conditions, the approximat-
ing distribution of the parameters will in fact be multivariate normal such that
θ̂ ∼ N(θ,I−1(θ)), where I−1(θ) is the inverse of the Fisher information matrix
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evaluated at θ and θ are the parameters with θ̂ being the parameter estimates. It
also follows, under similar regularity conditions, that each parameter is univariate
normal as θ̂i ∼ N(θi, φi,i) where φi,i is the corresponding diagonal element from
I−1(θ).
Using this we can construct a GRF for each parameter, by using the parameter
estimate as the mean and an appropriate covariance matrix between all the points
we want to simulate. The covariance matrix is constructed by using the covariance
function and the estimated parameters for it, from Kriging interpolation in section
4.4. However an extra modification is done to the algorithm in section 2.8.3, which is
to incorporate the standard error estimate φ̂i,i that was obtained at every observed
location during the MLE procedure when estimating the GEV parameters in section
3.4, as a nugget effect on the diagonal of C11. This is to better represent the actual
distribution of the parameter estimates at already observed locations.
One thousand realisations are created for each parameter and after the simulations
are complete, 50 year return levels are calculated for each realisation of the param-
eters. From the simulated return levels we can also calculate the 95% confidence
intervals to get an idea of the uncertainty in the maps.
The maps in figure 4.5 show some example realisations from the Monte Carlo sim-
ulations. It can be observed, when compared later with the summary statistics in
figure 4.6, that the variability is in fact greater in areas with greater uncertainty.

(a) 2nd (b) 463rd (c) 927th

Figure 4.5: Example realisations from the MC simulations of the 50 year return
levels of snow depth in metres.

In figure 4.6a is the mean of all simulations, and we see is the same as the Kriging
prediction in figure 4.2 which is what was expected from the theory. The variance
of the simulations was also confirmed to be the same as the Kriging variance.
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(a) Mean (b) Upper CI 95% (c) Width CI 95%

Figure 4.6: Summary of 1000 Monte Carlo simulations of the 50 year return levels
of snow depth in metres. From left to right: The mean of all simulations, the upper
limit of the 95% confidence interval, and the width of the 95% confidence interval.
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5
Results

A table of the error metric values for the model comparisons with leave one out
cross validation can be found in table 5.1. It is clear from this table that Kriging
with the MLE approach to estimate the variogram performs best. For this reason,
all Kriging interpolation maps henceforth is assumed to be interpolated with this
method. Using the Kriging prediction from section 4.2 and the upper limit of the
95% CI from section 4.6, we can calculate the snow load from the snow depth maps.
Boverket has identified different densities for snow in different regions of Sweden, and
are published in a table as part of the Swedish construction regulation. This means
that the snow depth maps can not be trivially used to deduce areas of heavy snow
load [Olsson, 2011]. Instead the snow load maps must be calculated by applying
the different densities for each region and calculating the down force produced (in
kN/m2). The final results are produced in the maps in figure 5.1. These maps can
be directly compared to the map that Boverket has given and there are a number
of differences between them.

RMSE MAE MPE BIAS
Non-stationary GEV 0.11 0.09 0.29 0.02

Kriging 0.10 0.09 0.20 0.01
Kriging (MLE) 0.05 0.04 0.15 0.00

Table 5.1: Table of the error metric values defined in (2.37) for non-stationary
GEV model, Kriging without MLE and Kriging with MLE, respectively. Leave one
out cross validation for all stations was used to calculate the values.

To better analyse the discrepancy between the maps, Boverket has also published
the recommended snow load that a building should be able to withstand, for each
municipality in Sweden. We can now check if the values given by Boverket over or
underestimate potential extreme snow loads and assuming that buildings have been
built according to these values, how great the risk is for collapse. The maps which
show the discrepancies are displayed in figure 5.2.
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(a) (b)

Figure 5.1: 50 year return levels of snow load (in kN/m2). Figure (a) is with
the Kriging prediction and figure (b) is with the upper limit 95% of the confidence
interval from the MC simulations.
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(a) (b)

Figure 5.2: Discrepancy between estimated 50 year return levels of snow loads and
Boverket’s recommended snow loads (in kN/m2) that a building should be able to
withstand. Left is with the Kriging prediction and right is with the upper limit 95%
of the confidence interval from the MC simulations.
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6
Conclusion

The maps in figure 5.2 show that for a large portion Sweden, the map by Boverket is
generally understimating extreme snow load. This is of concern as it’s also happening
in areas that are densely populated in the south of Sweden where there are many
more buildings. This thesis does not attempt to identify what the cause of this
discrepancy is as it could be from a number of reasons, many of them not related to
the mathematical modelling such as the density of snow not being accurate. Luckily
in areas of very high snow load, such as around Åre, the map by Boverket actually
overestimates predicted extreme values. Therefore buildings in these areas, should
be well future-proofed and be well within safety margins to handle extreme load.
It is obvious from table 5.1 that interpolating by kriging is to be preferred over
interpolating by non-stationary GEV. It is hard to conclude why this is the case. It
is possible that the real parameters of the GEV distribution varies to much over the
spatial region. This means that the low polynomial covariate trends can not be fitted
to the real parameter values. In contrast, interpolating by kriging is more flexible,
since the residual is modeled by a gaussian random process. The reversed result
was found in Blanchet and Lehning [2010], which compared different interpolating
methods of snow depths in Switzerland. They showed that interpolating by non-
stationary GEV was to be preferred over interpolating the individual parameters
by kriging. It is possibly that the contrary results can simply be explained by that
the spatial regions of study differs. However, all nugget effects were excluded from
their spatial regression models, which can also explain why the kriging interpolation
underperformed.
One can argue if the methods used for comparing the two interpolation methods is
fair, since the prediction depends on the choice of covariates. It is plausible that
the reversed result would hold for some other choice of covariate trends. However,
the comparison were executed for many different choices of trends which all resulted
that kriging were indisputably to be preferred.
A disadvantage with the methods used in this project for interpolating univariate
GEV distributions is that any spatial multivariate analysis is not possible. Con-
sequently, the probability that the annual snow depth exceeds some given value,
for two or more locations can not be determined. Determining such probabilities
is of importance for applications such as land-use planning. In contrast, the us-
age of max-stable processes for modelling spatial extremes has the advantage that
spatial multivariate analysis is possible. The univariate marginal distribution for
any locations of a max-stable process has the max-stable property, i.e., it follows a
GEV distribution. The study of max-stable processes is a active topic of research
in spatial statistics.
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