CHALMERS

Viability of Graph Databases in

Pipeline Traceability Systems

Bachelor’s thesis in Computer Science and Engineering

David Andersson
Max Villing

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG

Gothenburg, Sweden 2021

Free Hand

DEGREE PROJECT REPORT

Viability of Graph Databases in Pipeline Traceability
Systems

David Andersson
Max Villing

Free Hand

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2021

Free Hand

Viability of Graph Databases in Pipeline Traceability Systems

David Andersson
Max Villing

© David Andersson, Max Villing, 2021

Examiner: Peter Lundin

Department of Computer Science and Engineering

Chalmers University of Technology / University of Gothenburg
SE-412 96 Goteborg

Sweden

Telephone: +46 (0)31-772 1000

The Author grants to Chalmers University of Technology and University of
Gothenburg the non-exclusive right to publish the Work electronically and in a
non-commercial purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the
Work does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for
example a publisher or a company), acknowledge the third party about this
agreement. If the Author has signed a copyright agreement with a third party
regarding the Work, the Author warrants hereby that he/she has obtained any
necessary permission from this third party to let Chalmers University of
Technology and University of Gothenburg store the Work electronically and make
it accessible on the Internet.

Department of Computer Science and Engineering
Gothenburg 2021

Free Hand

ABSTRACT

Establishing traceability is a continuous problem in modern distributed
development environments. In this report the feasibility of using technology
agnostic event-based protocols in tandem with graph databases for establishing
automated traceability is evaluated. Two different graph databases are evaluated
and two different event-based protocols are discussed. It is concluded that it is
possible to establish scalable traceability tracking, but that more research is
needed for practical applications and that for the traceability to be useful it is not
enough to only store the data but it must also be backed by analytics tools.

Keywords: traceability, graph database

Free Hand

Sammanfattning

Hur man faststaller sparbarhet ar ett kontinuerligt problem i moderna
utvecklingsmiljoer for mjukvarusystem. | denna rapport utvarderas maojligheten att
anvanda tekniska agnostiska handelsebaserade protokoll(sparbarhets protokoll)
tillsammans med grafdatabaser for att uppratta automatisk sparbarhet. Tva olika
grafdatabaser kommer utvarderas och tva olika traceability protokoll diskuteras.
Det dras slutsatsen att det ar mojligt att faststalla skalbar sparbarhet, men att mer
forskning kravs for praktiska tillampningar. Rapporten visar att for att
sparbarheten ska vara anvandbar racker det inte att bara lagra data utan den
maste ocksa stddjas av analysverktyg.

Keywords: traceability, grafdatabas

Free Hand

PREFACE

This report is our thesis report for the bachelor program in computer science at
Chalmers University of Technology. The report is written by David Andersson and
Max Villing, during the spring term of 2021. We would like to give special thanks
to Samuel Alinder and Edvin Agnas at Volvo as well as Jonas Duregard at
Chalmers. We would also like to thank the employees at Volvo who helped us
during this project.

Free Hand

Table of Contents

1. Introduction

2. Technical Background
2.1 Continuous Integration and Delivery (CI/CD)
2.1.1 Continuous Integration (ClI)
2.1.2 Continuous Delivery (CD)
2.2 Software Traceability
2.2.1 The Eiffel Protocol
2.2.2 The Deep Insight Protocol
2.3 Graph Databases
2.3.1 Neo4j and Cypher
2.3.2 Tigergraph and GSQL
2.4 RabbitMQ
2.5 Microsoft Azure
2.6 Elasticsearch
2.7 JSON

3. Previous research

4. Method
4.1 Performance Tests
4.2 System Construction
4.3 Usability Tests

5. Results
5.1 Performance Test Results
5.2 System Construction
5.3 Usability Test Results

6. Conclusion
7. Discussion

Bibliography

-—

© 0O ~NNooooooo oo~ DMDBADS

=
N N ©

N D) -
- 0 01 O

N N DN
N O »w

Free Hand

1. Introduction

As software development continues to evolve, several new practices and
methodologies have been created to ease the development process. Continuous
Integration (Cl) and Continuous Delivery (CD) are modern practices put forth to
make software development more flexible and reliable. They entail frequently
integrating code changes from different developers (Cl) and frequently serving
clients with updates (CD). Properly applied, these methodologies allows for a
great deal of flexibility for software developers and the ability to quickly identify
problems with the codebase [1]. But even if this is handled well a common
problem is that there is no traceability in the system, making it hard to track a
certain change and what effects it had downstream in the development process.
Having full knowledge of all the changes made during development has a wide
variety of applications, ranging from knowing what certifications it will need, to
being able to estimate the current status of the project, being sure it meets the
clients requirements and being able to identify bottlenecks in the development
process [2].

While traceability can easily be achieved in more traditional development settings
where all work is conducted under one roof and developers work in the same
physical location it becomes significantly harder in modern distributed settings
where work is conducted over large physical distances. The sheer scale and
communication problems inherent to such a setting means the context of a
change can easily be “lost” within the development pipeline. A solution to this is
extensive manual documentation but this comes at the cost of time and
resources [2].

This has become an increasingly pressing issue since the software industry is
moving towards more distributed development where every team has a large
responsibility for their own development environment, priorities, deliveries and
planning. Meaning communication between teams is often difficult as they do not
necessarily have a clear understanding of each other's work. Having an
automatic system in place could help address this via establishing a clear
protocol for what data to communicate and how communication should occur.
The system would accomplish this by automatically recording what is occurring in
the development pipeline. In order to establish such a tracking process, two
things would be necessary. Firstly, a protocol would be needed to establish how
tracking data should be recorded. Secondly, the tracking data would need to be
stored and easily traversed in a database system.

When databases are brought up in conversation most commonly it refers to
relational databases. These types of databases store data in tables, with internal
constraints and relationships between tables that ensure data is valid and
consistent. Relational databases are traditionally manipulated via the Structured
Query Language (SQL). In recent years, however, there has been an increase of
non-relational databases that use different means to store data[3]. As these
databases do not use SQL they are commonly known as NoSQL databases. One
of the foremost of the different types of NoSQL databases is Graph Databases,
which store data as graphs, with objects represented as vertices (henceforth
‘nodes”) and relations between objects as edges (henceforth “relationships”) [4].
Graph databases have a great deal of flexibility when it comes to data analytics
and have increasingly been adopted for use in fields such as machine learning [5]
and fraud detection [6]. Since graph databases are designed to track how
different data points relate to one another they are an attractive option for
tracking project events and their causes.

Two protocols that could be suited for generating such data are the Eiffel protocol
and Volvo's Deep Insight Protocol. With such a protocol in place it would be
possible to track both changes in the development environment and also record
what prompted those changes to be made. By translating this data into a Graph
Database, it should then be possible to write queries which could show statistics
of the entire development history of a project and easily display what prompted
any one change. Both the Eiffel and Deep Insight protocols are technology
agnostic and should be applicable in any development environment that uses the
principles of CI/CD. Furthermore, the protocols can be customized to provide
more or less information to fit the needs of any one project.

Given a suitable protocol and database the question then is how to construct a
system that establishes system traceability in a way that does not require more
effort than existing solutions and is flexible enough to fit different types of
projects. An automated system that required more effort than manual systems
would be of little use. Care must also be taken to ensure that the implementation
of the system is not too complex. If the system is easy to use once implemented
but the implementation process is too demanding then the system will do little
good. The system therefore will need to be able to handle multiple different types
of infrastructure and not be specific to any one setup. Finally, the system must
also possess tools that can analyze the stored data and make practical use of it.

The goal of this report was to evaluate if traceability data could be efficiently
stored in a graph database. To that end different graph databases were evaluated
based on their merits, in particular scalability, before one was selected as the
basis for the rest of the testing. Then a system was constructed to facilitate a
graph database which could both insert and query traceability data. Finally, some
usability tests were conducted to see if traceability data stored in a graph

database could be used efficiently and provide value for the developers. The
ultimate aim is that the use of these tools will provide for an automated way to
achieve traceability and provide greater understanding regarding the impact of
any given change made during the development process in a distributed project.

In order to ensure the scope of this project did not grow beyond the time frame
allotted limitations were put in place on the study. Firstly only two different
databases were evaluated. Secondly only a limited amount of usability tests were
performed and no collection of real-world data occurred, instead existing data
already collected by Volvo (with whom this study was conducted) was utilized.
The findings here were primarily meant as a proof of concept to prove if full scale
software traceability can be stored automatically in a graph database and if this is
a viable option at a large scale.

2. Technical Background

In this chapter a number of technologies and tools will be described that were
used during the project.

2.1 Continuous Integration and Delivery (CI/CD)

Continuous Integration and Delivery, or CI/CD as they are more commonly
known, are two closely related software development methodologies. Their
practice ensures that a codebase is frequently built, tested and distributed (often
automatically) which gives developers a more efficient workflow as well as the
opportunity to find problems earlier in development [1].

2.1.1 Continuous Integration (ClI)

Continuous Integration is a methodology where developers integrate their local
changes more frequently than in a traditional workflow. By doing so more people
are exposed to the code allowing for faster error discovery. This kind of workflow
is usually combined with automatic tests to make sure no previous functionality
gets lost and the code will behave as it should after new updates [1].

2.1.2 Continuous Delivery (CD)

Continuous Delivery is a methodology where developers strive to cut down the
time between software revisions. This allows the codebase to continuously stay
tested and up to date with a relatively new release candidate always at hand.
This way of developing software reduces many of the risks of more traditional
development processes as it's easier to see how well the project is proceeding
and if it has potential. This workflow also allows for new features to be brought to
the market more quickly [7].

2.2 Software Traceability

Software traceability is a concept where any change in a software project should
be stored alongside information relating to what caused the change. By doing so
it allows the developers to get an overview of the project which is especially
useful in large distributed development environments [8].

2.2.1 The Eiffel Protocol

The Eiffel protocol is an open source project originally developed by the company
Ericsson. The protocol consists of multiple JSON schemas on how traceability
data should be stored. The goal of the protocol is to achieve full traceability in a
CI/CD development environment. This is achieved by using events to represent
different stages of software development. When activities or changes occur in a

system using Eiffel they are recorded as events and broadcasted throughout the
system, allowing all interested parties to input how they plan to handle the
change. Eiffel supports a wide variety of different event types for use in different
situations [9].

2.2.2 The Deep Insight Protocol

The Deep Insight protocol is very similar to the Eiffel protocol in functionality but
was developed in-house by Volvo. It is still in active development and thus its
exact specifications are not fully settled. Similarly to Eiffel, Deep Insight is also
based around storing traceability data as events. While Deep Insight is designed
to contain traceability data it does so in a looser manner than Eiffel. Compared to
Eiffel which formally categorizes many different types of events and mandates
how they present its data. Deep Insight uses one general event template instead
of multiple different ones.

2.3 Graph Databases

Graph databases are a type of database that stores data in the form of nodes
and relations between nodes. For example, a “person” would be a node and if
they owned a car, “owns” would be a relation and “car” another node. These
nodes and relations can both include additional information, in the person/car
example the person could include information such as name and age while the
owns relation could store when the relationship was established. Figure 1 below
illustrates a simple graph database including a couple of nodes and relations [10].

Person name: Michael

:IS_FRIENDS_WITH Company name: Neo4j

type: Graphs | Technology slince: 2018

‘WORKS_FOR
‘LIKES

Person

name: Jennifer

Figure 1: Graph database visualization done in neo4J showcasing a couple of
different nodes and relations

Source: [11]

2.3.1 Neodj and Cypher

Neo4j is one of the most popular graph database systems and is widely used in
commercial applications by companies such as IBM and Microsoft. Neo4j uses
the query language Cypher to communicate with its databases. Cypher is made
with graph databases in mind, which differentiates its syntax from most other
solutions based on the Structured Query Language (SQL) [11].

2.3.2 Tigergraph and GSQL

TigerGraph is a graph database management system released in 2017. Unlike
Neo4J, TigerGraph is not open source, it is a commercially developed product.
TigerGraph was developed with scalability in mind and uses the query language
GSAQL, developed specifically for TigerGraph. GSQL is built with the intention of
being similar to SQL but adapted for graph databases. A distinguishing feature of
TigerGraph is its extensive use of parallelism to achieve high performance [12].

2.4 RabbitMQ

RabbitMQ is an open source message broker for use in distributed systems. It
serves as a middleware program allowing for message producers (publishers)
and message receivers (subscribers) to efficiently communicate with each other
without a direct line of communication. The message is instead sent to a queue
where those who are subscribed will receive the message. Thus, communication
is possible even in cases where neither side is aware of the other's existence
[13].

2.5 Microsoft Azure

Microsoft Azure is a common term for many of the cloud services Microsoft offers.
This report will however mainly focus on their virtual machine rental service, since
it is used to host many of the services and applications used. The way the rental
process operates is that the renter selects a virtual machine suited to their needs
and how long they plan to use it. The renter then pays a different amount based
on the options they picked [14].

2.6 Elasticsearch

Elasticsearch is an open source distributed search and analytics engine. It is
useful for sifting through and analyzing large sets of data. Elasticsearch is part of
the Elastic Stack, a set of open source tools meant to be used together for data
intake, storage, manipulation, analysis and visualization [15].

2.7 JSON

JSON or JavaScript Object Notation is a standardized data format designed to be
an easy to use medium for exchanging data between different sources. JSON
has a standardized notation based around nesting data in different levels and any
data that follows the JSON format can easily be parsed and generated by other
programs [16].

3. Previous research

This is not the first work looking at traceability, event-based protocols nor graph
databases. Some notable previous works include:

A 2019 study by Rusu and Huang that compared the performance of Neo4J and
TigerGraph when it came to executing a variety of queries on differently sized
datasets [17]. That study was what led to the evaluation of TigerGraph in this
report.

A 2017 study by Stahl, Hallén and Bosch that looked into the viability of using the
Eiffel Protocol for achieving traceability as well as whether traceability was
desirable. Their study concluded that not only was there a desire for traceability
but that Eiffel could fulfil it [2].

And a 2019 thesis by Hramyka and Wingvist which looked at the process of
adopting the Eiffel protocol in a pipeline environment and the development of a
proof-of-concept[18]. A modified version of the means with which this study
generated data was used when conducting certain tests in this study.

4. Method

The project was organized using a modified version of the development
methodology scrum[19]. In this case that meant scrum meetings were held where
tasks were handed out and the previous week was discussed. To organize the
project Github was used to structure the scrum board and give an overview of
what had to be done. As the project only had two project members the
organizational models were used quite loosely and more as guidelines. This was
done in order to prevent a scenario where more time was spent on administration
rather than working on the project.

The project was primarily performed at Volvo but when meeting in person wasn’t
an option due to covid-19 pandemic, meetings over Discord [20] and Microsoft
Teams [21] were held. Both Discord and Teams allowed the meeting participants
to share their screens as well as other resources with each other seamlessly.

The software side of this project was primarily written in the programming
language Python as it is a language the group is familiar with and also well suited
for testing and communicating with the graph databases.

4.1 Performance Tests

The first step of the project was to determine what graph database is most
suitable for the application. In this case that meant good query performance when
operating on large data sets. After some initial research two databases were up
for evaluation, Neo4J and Tigergraph. It was decided that Neo4J would be run
through their own desktop application and TigerGraph would be run as a
container in a Docker [22] installation. The reason only TigerGraph was running
in Docker was because it does not have a Windows version and when Neo4J
was attempted to run in Docker several problems occurred.

Two programs were then constructed that could fill the databases with Eiffel
events. Eiffel events were used in this case since they could easily be
automatically generated in order to get a large amount of data. In order to enter
the events into the database the Eiffel JSON schema had to be interpreted into a
graph database schema. An example of how an Eiffel event of the type
EiffelActivityCanceledEvent is stored in JSON format can be seen in figure 2.

"meta”: {

"type": "EiffelActivityCanceledEvent”,
"version": "3.8.8",
"time": 1234567800,
"id": "@aza@aaza-bbbb-5ccc-8ddd-eseeceececel”
:'.l
"data": {
"reason™: "Made irrelevant by newly scheduled execution.™
:'J
"links™:
"type": "ACTIVITY EXECUTION",
"target™: "asaaaasa-bbbb-5ccc-Bddd-eeceececeesl”
I
{

"type”: "CAUSE",

"target™: "asasaazaa-bbbb-5ccc-8ddd-eecepcesoes?”

}

Figure 22: Example of an Eiffel event of type EiffelActivityCanceledEvent stored
in JSON format [23].

The interpretation was done by converting the entire event to a node and adding
auxiliary JSON objects and arrays as support nodes. These support nodes held
all the additional data of the event and the relation to the main node clarified what
type of data it was. These event nodes were then linked together with relations
matching the corresponding event type. This allowed all event types to share a
base schema and made the traversal of the graph easier. Below is an illustration
of how the schema looks in TigerGraph, the Neo4J schema is constructed in the
exact same way.

10

source

Figure 3: Eiffel Event represented as nodes and edges in TigerGraph

To the left of the event node are all available event types linking back to itself,
and to the right are all the available types of data an Eiffel event can be made up
of. The programs communicated with the databases through the Python libraries
neomodel [24] and pyTigerGraph[25] respectively for Neo4 and TigerGraph.
Three documents were then created containing 100 000, 200 000 and 400 000
Eiffel events which were grouped into subgraphs containing roughly 1000 events
each. These events were generated by a program based on the event generator
provided on the Eiffel-community github [26]. The event generator can both
generate and link events together in a realistic way very similar to how it would
look like in a real work environment. The insertion programs entered the
generated events into their respective databases and timed how long this took.
When all the data was in the database a test suite was run multiple times probing
different locations in the database. These tests were timed and the results were
saved in an excel document for easy comparison.

The test suite includes:

find a node

find a subgraph

find all children of a node

find all parents of a node

find all neighbors of a node 1, 2, 5 and 10 steps away

In this case a subgraph refers to all nodes that can be reached by starting at a

11

given node (including the starting node) and a node's children refers to all nodes
who refer to it (and a node is the parent of all its children).

When this testing phase was concluded the project moved on to constructing a
traceability system in which the graph database could be further tested.

4.2 System Construction

To start constructing a traceability system it is important to recognize where the
data would come from. In this case Volvo already had a system for collecting
traceability data formatted in their own traceability protocol, called Deep Insight.
So for the purpose of not having to start from scratch their system was used.
Deep Insight and Eiffel are basically interchangeable for the purpose of testing
the viability of graph databases for a traceability system. They differ in how they
represent data and what data they contain but they work on the same principle
and if the system proves to work for one it would most certainly work for the
other.

Volvo’s system mainly consisted of three parts:
e Data collection, where data gets collected from some of their developers.
e Communication, where data was communicated through the message
broker RabbitMQ.
e Data Storage, where the data was saved for long term storage and
accessed via the use of Elasticsearch.

To get these to integrate with the system two programs were created. The first
one was used to insert all existing data acquired through Elasticsearch into the
graph database. The second was used to listen for new data from RabbitMQ and
insert it as well. Lastly a program was created that could take user input and
query the graph database for a result. This program would later be used for the
usability tests.

All of these programs were then hosted in the cloud through Microsoft Azure to
decentralize the system and allow multiple users to work on the same database.

4.3 Usability Tests

The last step of the project was to perform usability tests. The purpose of these
tests were to prove the usability of the system in both what data it can provide
and if it could deliver it in a timely manner. It was decided that if the usability tests
would take longer than one second to complete they were deemed too slow.
Therefore, a test suite was created containing multiple sampling queries which
could pick out specific data from the database.

12

The usability tests were conducted with Deeplnsight instead of the Eiffel Protocol.
Since Volvo already had a setup that could generate Deeplnsight events based
on the work of some of their employees, it was decided to go with that protocol
for the sake of having real world data. While the mismatch in protocol is not
desirable it was ultimately deemed to be acceptable. The performance tests are
mainly concerned with testing database performance under high loads and so
were mostly protocol agnostic as long as the datasets were sufficiently large and
therefore were perfectly suited for our randomly generated Eiffel events.
Meanwhile the usability tests are mainly concerned with providing value to the
users and are more suited to real data in order to showcase practical results.

The dataset consists of downloaded copies of all Deeplnsight events generated
by Volvo that were available to us at that time. This encompassed roughly
160,000 events. For the usability tests a test suite was constructed for different
usability cases. Compared to the performance tests the execution time was not
considered to be significant here. While execution time was recorded, that was
only done in order to be sure the queries would not take an inordinate amount of
time to perform. Hence a time limit of 1 second was introduced to spot outliers,
anything above that would perform significantly worse then what the baseline
from the performance test had shown. The use cases that were identified (after
consulting with Volvo employees) are listed below accompanied by a sample
scenario:

e Finding all nodes without child nodes. This would identify the current
status of all projects.

e Find all children of a given node that lack children of their own. Similar to
the above, this could be used to identify completed projects and/or dead
ends.

e Finding all children of a given node. Can be used to see how a project
branches over time.

e Finding all nodes that belong to a given group. Can be used to gain a
comprehensive view of a certain subset of the graph.

e Finding which groups have the most nodes in them. Can be used to
identify the largest projects in the database.

e Finding all deep insights created by a given author. Can be used to identify
who is responsible for which features.

e Finding which publishers most insights were generated on. Allows
checking of how many different platforms are used.

e Finding the timestamp difference between two events. Can be used to
estimate how long different tasks take.

e Finding all parents of a node. Allows identifying the history behind a given
change.

e Find all nodes N hops away from a given node. Allows one to easily gather
all nodes with a given amount of relation to the specified node.

13

e Finding the subgraph that can be reached from a given node. Allows
identification of everything that’s related to the node, regardless of how
strong that relation is.

e Finding how long each event in a series took to complete.

The last use case is the one Volvo was most keen on, since this information
would allow them to more easily identify bottlenecks in the pipeline.

The analysis on the practicality of this system could have benefitted from even
more tests being conducted. However, considering the given time and resource
constraints, it was decided that while the current test suite was not ideal it was
acceptable. Had more time and resources been available more use cases would
have been devised and more extensive analysis would have occurred.

14

5. Results

5.1 Performance Test Results

The performance tests provided a lot of insight regarding what database would
be most suitable to construct the system around. Figure 3 showcases the
difference in execution times between Neo4J and TigerGraph when it comes to
executing certain queries. The time differences were found via the use of a
Python program that measured the time each database needed to execute the
query and compared the two. When performing the tests the latest versions of
each respective database were used. At the time this was Neo4J 4.2.1 and
TigerGraph 3.1.0. For each query multiple tests were performed and the results
were averaged. The tests were performed on 3 different data sets, containing
approximately 100,000, 200,000 and 400,000 eiffel events each. The events
were randomly generated and were identical on both databases. A complete
spreadsheet of all the test results can be found in appendices 1 through 3.

15

Diffrenece in times between queries (seconds)
(neodj query time - tigerGraph query time)

0.4

0.2

find node find find find find 1hop find2hop find5hop find 10 hop
children parents subgraph

@ 100000 W 200000 = 400000

Figure 4: Bar chart showing difference in average query times between
neo4dJ and tigerGraphin in different sized data sets of 100 000, 200 000, and 400
000 Eiffel events. Data can be found in appendix 4, results shown in seconds.

After the databases had been compared to each other the two databases were
evaluated in a vacuum to decide if they scaled well when the data set grew
larger. If the time to query would grow at a faster rate than linearly with regards to
the data set, query times could quickly grow out of control and the system would
become unusable. Test results for that can be seen in figure 4 for TigerGraph and
figure 5 for Neo4J.

16

difference in query time based on number of events (seconds)

(TigerGraph)
0.25
0.2
0.15
0.1
0.05
0
find node find find find find Lhop find2hop find5hop find 10 hop
children parents subgraph

® 100000 m 200000 m= 400000

Figure 5: Bar chart showing average query performance for TigerGraph in
different sized data sets of 100 000, 200 000, and 400 000 Eiffel events. Data can
be found in appendix 4, results shown in seconds.

17

0.5

0.4

0.3

0.2

0.1

difference in query time based on number of events (seconds)
(Neo4d))

find node find find find find 1hop find2hop find5hop find 10 hop
children parents subgraph

@ 100000 = 200000 m= 400000

Figure 6: Bar chart showing average query performance for Neo4J in different
sized data sets of 100 000, 200 000, and 400 000 Eiffel events. Data can be
found in appendix 4, results shown in seconds.

5.2 System Construction

When the performance tests were finished a mockup workflow diagram of a
traceability system was created which can be seen in figure 6.

18

Message Broker Database Inserter Graph Database

A A

h 4

Event creation Subscription Cluery Program
A I
Data Collection User

I J

Figure 7: Mockup workflow diagram of a traceability system. The diagram
showcases how traceability data will move throughout the system.

This is a general overview of what a complete system could look like. Users
working on projects would lead to traceability data being generated in response
to their activities. This data would be recorded into events compliant with a
protocol such as Eiffel or Deep Insights. The event would then be propagated
throughout the system by a message broker, which would ensure the event is
both stored in the long term and that any relevant parties are notified. For
example, if the event details that a piece of software is ready for testing the
message broker would notify the testing team. Users would be able to use a
program to query the graph database and receive various kinds of relevant
analytics data for the project they are working on. Since the main focus of this
project is to see if a graph database could work as a storage medium, an already
established data collection system was used and the subscription system
omitted. TigerGraph was selected as the graph database for this system due to
the performance tests indicating it scaling better than Neo4J. The system created
is represented as an infrastructure diagram shown in figure 7.

19

elasticsearch

~

Y

TigerGraph

» »

Tiger _graph _inserter.py

Microsoft
Azure

o /

Volvo's internal
data collection

platform

Tiger_graph_queries.py

}

User

Figure 8: Infrastructure diagram of the traceability testing suite for TigerGraph

Here, traceability data is collected and turned into Deep Insight events by Volvo’s
own internal data collection platform. The events are then sent to RabbitMQ
which forwards them to the rest of the system as well as Volvo's internal data
storage solution which could be accessed through Elasticsearch. The system
constructed in figure 7 used Elasticsearch to access the already recorded Deep
Insight events and used them to fill the graph database with all the previously
collected data up until that point. The system then switched to just listening to the
rabbitMQ message queue for further data. This was done with a Python script
(tiger_graph_inserter.py) which could translate and insert Deep Insight events

20

formatted in JSON as a usable representation in TigerGraph very similar to how
Eiffel events were formatted in chapter 7.1. RabbitMQ, the Python insert script
and the Tiger graph database are all hosted on Microsoft Azure virtual machines.
This allows the core functionality of the system to easily be accessed from any
number of different computers. The final link in the chain was another Python
script (Tiger_graph_queries.py) which could retrieve information from TigerGraph
on user request. This script used pre-defined queries written in TigerGraphs own
scripting language GSQL which had to be pre-installed in the database.

5.3 Usability Test Results

When the traceability system had been designed and constructed it was time to
test the usability of the system. This was done by designing and running a
number of usability tests whose main purpose was to see if the data stored was
of any use to the user. The tests designed were evaluated based on two metrics,
if they could provide the data specified and if they could do so in a timely manner.
All of the tests listed in chapter 4.3 were constructed successfully and could
retrieve the data specified, with all except for one test finishing well under 1
second. All test times can be found in appendix 5 with the average times listed
here:

e findInsightsWithoutChildren 1.627s
e findAllIChildrenWithoutChildren 0.194s
e findTimeBetweenTwolnsights 0.212s
e findInsightByAuthor 0.428s
e findAllChildren 0.191s
e findAllParents 0.194s
e findMostCommonGroup 0.185s
e findMostCommonSource 0.170s
e findNHops 0.178s
e findSubgraph 0.181s

In particular the test for estimating how much time each event in a series took
was proven to work. Volvo had been most keen on gaining that data but had
worried that the Deep Insight protocol did not yet record enough data for it to be
possible, but testing proved otherwise. While it was impossible to estimate how
much time the first event in a series took it was possible to estimate times for all
subsequent events by looking and comparing their timestamps.

It should be noted that as these tests were conducted on a TigerGraph
installation running in Microsoft Azure, TigerGraph version 3.0.5 was used for
these tests. This was the latest version of TigerGraph that could be run on an
Azure virtual machine. The major difference between the two versions is that
3.0.5 lacks a feature known as SQL-like syntax which is present in 3.1.0. While

21

none of the tested use cases needed this feature to run, the query
findTimeBetweenTwolnsights could have been made faster if this feature was
used.

22

6. Conclusion

Based on the results from both performance tests it can be seen that the time
needed to find a node or set of nodes seems to scale linearly with the size of the
database. Other queries however behaved differently between the databases,
Neo4J had major performance losses when the data sets grew while TigerGraph
was not significantly affected. The tests also showed that when it came to
scalability TigerGraph was superior to Neo4J. While Neo4J performed better at
low database loads in some cases, TigerGraph had a clear advantage as more
and more data was added. If one is looking to establish traceability in a small
system, Neo4J may merit consideration. However, based on the metric we were
most keen on, namely scalability, TigerGraph was the superior option in terms of
performance. Our findings regarding Neo4J and TigerGraph are consistent with
previous research that indicate TigerGraph is the more scalable option. A 2019
study [17] found TigerGraph to be vastly superior (by two or more orders of
magnitude) than Neo4J when dealing with several different complex queries.
While we did not find as significant of a difference as said study, it both used
more complex queries and a larger data set from, 1 GB up to 1 TB, in comparison
to our tests which was in the range of 0.1 GB to 0.5 GB. We find no reason to
suspect that as the complexity and size of the operations in the system grow
larger, the advantage of TigerGraph over Neo4J would not continue to widen.

One thing that should be noted though is that Neo4J, owing to its greater
popularity and age, enjoys a greater amount of support across platforms. While
TigerGraph has an active community, Neo4J has existed for over a decade and
has much more public documentation regarding ways to use it. For small teams
that lack dedicated resources with which to learn how to use TigerGraph, Neo4J
may be a good choice, even if scalability will take a significant hit.

Regarding the usability tests we quickly realized that the primary limitation with
making useful queries and analytics tools was not the quantity of data available
but what said data described. While many use cases can be conceived, queries
to support those use cases can only be supported if the appropriate data has
been recorded. The protocol for recording traceability data is hence the main
limiting factor when it comes to making useful queries. So picking the right
protocol and what it will include is essential to creating a useful system. The more
a protocol covers, the more one can do with the data it records. At the same time,
it must be kept in mind that the more a protocol requires the less applicable it is
across systems, as not all systems will be able to generate the data the protocol
requires. The choice of a protocol cannot solely be made on the basis of which
one is most helpful for analytics.

Worth noting is that one of the usability tests took way longer than the others and
failed the acceptable limit we had set beforehand. The query in question

23

findInsightsWithoutChildren took almost 2 seconds and almost 4 times longer
than the second worst performing query. There could be several possible reasons
for this, for example the query created was unoptimized or tigerGraph might not
be the best at these kinds of queries. This was longer than the predetermined
acceptable time limit, though future optimization may address this..

Based on these findings we can conclude that a graph database can be a
suitable option for establishing system traceability. It is however worth mentioning
that some complementing functionality had to be constructed outside of the
database's native query languages for them to be meaningful to a human reader.
An example of this would be that neither GSQL nor Cypher had an intuitive way
of comparing timestamps to one another and had to be done in the Python query
program. It is also important to keep in mind that the system only works if the
graph database can be backed with a suitable data collection and analytic tools.

Graph databases, due to their flexible nature, are a good foundation to build
upon, but as is always the case with Big Data, making it useful requires much
more than a good storage medium. It should be noted though that our
conclusions may not necessarily hold for how a much larger system would
behave, a system consisting of millions of nodes in a single subgraph might see
worse performance degradation then what our numbers indicate.

24

7. Discussion

This project is far from a conclusive look at this topic. Handling and analysing large
amounts of data is still a new and developing field and distributed development
environments are likewise continuously evolving. Due to the sheer breadth of the topic at
hand we have had to concern ourselves to a narrow topic and an investigation into a
different area may result in sharply different conclusions. Our findings should mainly be
taken as a confirmation that graph databases are a viable option for storing traceability
data and are worthy of further investigation. Further research would doubtlessly uncover
much more about the extent of their applicability and additional ways they could be
utilized. In particular, looking into the size of the needed data would be interesting as
while we have shown that TigerGraph is more scalable under high load those benefits
are not as noticable when it comes to a smaller set of data. If a team knows that they will
never have to deal with large amounts of traceability data the advantages of Neo4J may
outweigh those of TigerGraph. We also only looked at two traceability protocols, other
protocols might have been better or worse suited for use in a graph database. But we
believe that due to how flexible graph databases are most if not all traceability protocols
should be able to work to some degree.

The methodology used in this project, in particular regarding the performance tests, is
not bereft of flaws. Importantly we cannot guarantee that the queries used were optimal
when conducting the tests. When databases execute queries they can wildly differ in
times depending on how the queries are written. We ourselves noticed this during our
testing. At one point a badly written TigerGraph query made it roughly 750x slower than
Neo4dJ. We optimized the queries used as much as possible, but we cannot rule out that
there are more optimal queries that would give different results. Additionally the tests
were executed via the use of a Python program reliant on external functionality to
execute the queries. The use of this software may have introduced some bias favoring
one database over the other. Finally, it should be noted that Neo4J was installed and run
on the test computer while TigerGraph was used via a Docker container. These different
environments may have favored one system over the other. Nevertheless, we believe
that, considering the scale of the data sets we used, any bias would not be significant
enough to tilt the results. The tests showed a clear and consistent lean in the results and
were considered sufficiently objective to make a final decision.

Regarding TigerGraph it should be noted that while the tests were mainly conducted on a
Docker version of TigerGraph the system construction runs TigerGraph on Azure. In
most regards the difference is immaterial however Docker runs TigerGraph 3.1.0 and
Azure uses 3.0.5. TigerGraph 3.1.0 is a later version of the program and so supports
additional features, including SQL-like statements which allows for more flexible queries.
Some of the tests were written to use these and when converted to run on they lost these
features and had to be rewritten. While most functionality was retained the rewritten
queries are less efficient.

During the course of this project we considered whether there were any ethical
implications or questions regarding this research. We were however unable to find any.

25

Likewise we also considered the topic of sustainability. And besides general platitudes
such as more efficient systems consuming less power we were unable to identify any
way in which this research would affect sustainable development.

26

Bibliography

[1] M. Virmani, "Understanding DevOps & bridging the gap from continuous integration to
continuous delivery," Fifth International Conference on the Innovative Computing
Technology (INTECH 2015), 2015. [Online]. Available:

https://ieeexplore.ieee.org/document/7173368 , [Accessed 05/12-2021]

[2] D. Stahl, K. Hallen, J. Bosh, “Achieving traceability in large scale continuous
integration and delivery deployment, usage and validation of the eiffel framework”,
Empirical Software Engineering, vol. 22, ss. 967-995, 2017, doi:
https://doi.org/10.1007/s10664-016-9457-1 , [Accessed 05/12-2021]

[3] Microsoft, “NoSQL-databas — Vad ar NoSQL?”, 2021. [Online]. Available:
https://azure.microsoft.com/sv-se/overview/nosql-database/ , [Accessed 05/12-2021]

[4] Neo4d, “What is a Graph Database?”, 2021. [Online]. Available:
https://neo4j.com/developer/graph-database/ , [Accessed 05/12-2021]

[5] F. Eaves, “Moving Toward Smarter Data: Graph Databases and Machine Learning”,
“‘Database Zone”, Aug. 2020. [Online]. Available:
https://dzone.com/articl raph-dat -machine-learning , [Accessed 05/12-2021]

[6] G.C.G van Erven, M. Holanda , R.N. Carvalho, “Detecting Evidence of Fraud in the
Brazilian Government Using Graph Databases” in “Advances in Intelligent Systems and
Computing”, vol 570, A. Rocha , A. Correia, H. Adeli, L. Reis , S. Costanzo , Springer,
2017. [Online]. Available: https://doi.org/10.1007/978-3-319-56538-5_47 , [Accessed
05/12-2021]

[7] P. Swartout, “Continuous Delivery and DevOps : A Quickstart guide”, Packt
Publishing, Limited, 2012. [Online]. Available:
https://ebookcentral.proguest.com/lib/chalmers/reader.action?doclD=1069746&query= ,
[Accessed 05/12-2021]

[8] J. Huang, O. Gotel, A. Zisman, “Software and Systems Traceability”, Great Britain:
Springer, 2012. [Online]. Available:
https://link-springer-com.proxy.lib.chalmers.se/book/10.1007%2F978-1-4471-2239-5#ab
out , [Accessed 05/12-2021]

[9] Eiffel Community, “Eiffel”, 2021. [Online]. Available: https://eiffel-community.qgithub.io/ ,
[Accessed 05/12-2021]

[10] M. Besta, E. Peter, R. Gerstenberger, M. Fischer, M. Podstawski, C. Barthels, T.
Hoefler, “Demystifying Graph Databases: Analysis and Taxonomy of Data Organization,
System Designs, and Graph Queries”, 2019. [Online], Available:
https://arxiv.org/abs/1910.09017 , [Accessed 05/12-2021]

27

https://ieeexplore.ieee.org/document/7173368
https://doi.org/10.1007/s10664-016-9457-1
https://azure.microsoft.com/sv-se/overview/nosql-database/
https://neo4j.com/developer/graph-database/
https://dzone.com/articles/graph-databases-machine-learning
https://doi.org/10.1007/978-3-319-56538-5_47
https://ebookcentral.proquest.com/lib/chalmers/reader.action?docID=1069746&query=
https://link-springer-com.proxy.lib.chalmers.se/book/10.1007%2F978-1-4471-2239-5#about
https://link-springer-com.proxy.lib.chalmers.se/book/10.1007%2F978-1-4471-2239-5#about
https://eiffel-community.github.io/
https://arxiv.org/abs/1910.09017

[11] Neo4J, “Getting Started with Cypher”, 2021. [Online]. Available:
https://neo4j.com/developer/cypher/intro-cypher/ , [Accessed 05/12-2021]

[12] A. Deutsch, Y. Xu, M. Wu, V. Lee, “TigerGraph: A Native MPP Graph Database”.
2019. [Online], Available: https://arxiv.ora/abs/1901.08248 , [Accessed 05/12-2021]

[13] RabbitMQ, “RabbitMQ”, 2021. [Online]. Available: https://www.rabbitmg.com/ ,
[Accessed 05/12-2021]

[14] Microsoft, “Llnux Virtual Machlnes Prlcmg” 2021 [Onllne] Avallable
, [Accessed

05/12 -2021]

[15] Elasticsearch, “What is Elasticsearch”. 2021. [Online]. Available:
https://www.elastic.co/what-is/elasticsearch , [Accessed 05/12-2021]

[16] JSON, “Introducing JSON”. 2021. [Online]. Available:
https://www.json.org/ison-en.html , [Accessed 05/17-2021]

[17] F. Rusu, Z. Huang, “In-Depth Benchmarking of Graph Database Systems with the
Linked Data Benchmark Council (LDBC) Social Network Benchmark (SNB)”. 2019 .

[Online]. Available: https:/arxiv.org/abs/1907.07405 , [Accessed 05/12-2021]

[18] A. Hramyka, M. Winqvist, “Traceability in continuous integration
pipelines using the Eiffel protocol”, Malmé university, Malmo, Sverige, 2019. [Online].
Available:

http://muep.mau.se/bitstream/handle/2043/29176/Alena%20Hramyka%20Martin%20Win
qvist.pdf?sequence=1&isAllowed=y , [Accessed 05/12-2021]

[19] Scrum, “WHAT IS SCRUM?”, 2021. [Online]. Available:
https://www.scrum.org/r rces/what-is-scrum/ , [Accessed 05/12-2021]

[20] Discord, “What makes Discord different?”, 2021. [Online]. Available:
https://discord.com/why-discord-is-different , [Accessed 05/12-2021]

[21] Microsoft, “What is Microsoft Teams?”, 2021. [Online]. Available:
https://support.microsoft.com/en-us/topic/what-is-microsoft-teams-3de4d369-0167-8def-b
93b-0eb5286d7a29 , [Accessed 05/12-2021]

[22] Docker, “What is a Container”, 2021. [Online]. Available:
https://www.docker.com/resources/what-container , [Accessed 05/12-2021]

[23] Eiffel Community, “EiffelActivityCanceledEvent”, 2021. [Online]. Available:
https://github.com/eiffel-community/eiffel , [Accessed 05/26-2021]

[24] R.Edwards , “Neomodel documentation”, 2021. [Online]. Available:
https://neomodel.readthedocs.io/en/latest/ , [Accessed 05/12-2021]

28

https://neo4j.com/developer/cypher/intro-cypher/
https://arxiv.org/abs/1901.08248
https://www.rabbitmq.com/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/
https://www.elastic.co/what-is/elasticsearch
https://www.json.org/json-en.html
https://arxiv.org/abs/1907.07405
http://muep.mau.se/bitstream/handle/2043/29176/Alena%20Hramyka%20Martin%20Winqvist.pdf?sequence=1&isAllowed=y
http://muep.mau.se/bitstream/handle/2043/29176/Alena%20Hramyka%20Martin%20Winqvist.pdf?sequence=1&isAllowed=y
https://www.scrum.org/resources/what-is-scrum/
https://discord.com/why-discord-is-different
https://support.microsoft.com/en-us/topic/what-is-microsoft-teams-3de4d369-0167-8def-b93b-0eb5286d7a29
https://support.microsoft.com/en-us/topic/what-is-microsoft-teams-3de4d369-0167-8def-b93b-0eb5286d7a29
https://www.docker.com/resources/what-container
https://github.com/eiffel-community/eiffel
https://neomodel.readthedocs.io/en/latest/

[25] pyTigerGraph, “pyTigerGraph”, 2021. [Online]. Available:
https://pytigergraph.github.io/pyTigerGraph/ , [Accessed 05/12-2021]

[26] Eiffel Community, “Eiffel”, 2021. [Online]. Available:
https://aithub.com/eiffel-community/eiffel , [Accessed 05/12-2021]

29

https://pytigergraph.github.io/pyTigerGraph/
https://github.com/eiffel-community/eiffel

Appendix 1. Performance Test Results: 100,000 Events

find node find children find parents find subgraph
neodj tigerGraph neo4j tigerGraph neoéj tigerGraph neo4j tigerGraph

0.07924509048 0.018338 0.08399438858 0.051656 0.08199691772 0.046525 0.001994609833 0.20263
0.07599663734 0.017256 0.07653403282 0.033445 0.08561038971 0.055459 | 0.001999139786 0.211
0.07546401024 0.022466 0.07499909401 0.049414 0.08638381958 0.045641 0.000964403152¢ 0.194767
0.07899999619 0.019886 0.07699751854 0.045342 0.08426046371 0.043173 0.001593351364 0.205048
0.1060059071 0.021677 0.09499287605 (0.045753 0.1029992104 0.042718 0.002001047134 0.196053
0.1158883572 0.018723 0.1049575806 0.055592 0.1015241146 0.062129 | 0.002000570297 0.245473
0.08230876923 0.041898 0.08900594711 ' 0.055611 0.09699440002 0.051455 0.00200009346 0.229896
0.08099842072 0.027001 0.08600354195 0.064029 0.09299468994 0.060863 0.000993251800¢ 0.282851
0.07898449898 0.018955 0.08200359344 0.047342 0.07803225517 0.041857 0.002025127411 0.213753
0.07605338097 0.019358 0.07594823837 0.048845 0.07701158524 0.048155 0.001988887787 0.218697
0.1189949512 0.021003 0.1071946621 ' 0.045999 0.1049969196 0.045727 0.03200078011 0.212787
0.0929877758 0.025527 0.09499740601 0.046946 0.09100246429 0.040663 0.02699708939 0.207682
0.07599854469 0.031276 0.08900117874 0.04645 0.08199548721 0.042218 0.02800107002 0.203374
0.07599639893 0.028511 0.0769970417 ' 0.044383 0.08501195908 0.044992 0.0207221508 0.196569
0.08299541473 0.017 0.07900190353 ' 0.042331 0.08921217918 0.04446 0.02003693581 0.191017
0.08102464676 0.015646 0.08111071587 0.063059 0.08199954033 0.047134 0.01799893379 0.212835
0.07800340652 0.017425 0.08567023277 0.042696 0.08600020409 0.044383 0.01900172234 0.203705
0.07599949837 0.01319 0.09510207176 ' 0.048602 0.09929442406 0.042743 0.01999282837 0.199484
0.07800388336 0.029533 0.08399915695 0.046056 0.08410525322 0.044406 0.01698756218 0.198255
0.08299803734 0.02603 0.2113423347 0.048537 0.07885789871 0.042986 0.0199944973 0.204422
0.1068394184 0.021564 0.1185958385 (0.044062 0.1109972 0.03943 0.05273747444 0.232244
0.1039972305 0.019254 0.08400154114 0.047447 0.08798766136 0.04653 0.04400682449 0.24561
0.07399821281 0.022002 0.09477996826 (0.086654 0.08798313141 0.081001 0.0424516201 0.300027
0.08713984489 0.020001 0.06925535202 0.065619 0.07000112534 0.046497 0.02899241447 0.22089
0.08200001717 0.019006 0.07799601555 0.042994 0.07900357246 0.050079 0.03300094604 0.220306
0.07899785042 0.020083 0.07898974419 0.046001 0.08000826836 0.044519 0.02798938751 0.232144
0.09299826622 0.019523 0.08301591873 0.052035 0.07698345184 0.05654 0.0309984684 0.230119
0.08699011803 0.019515 0.07199859619 0.045051 0.07996726036 0.057514 0.0259988308 0.269906
0.08199715614 0.020003 0.07603907585 0.04878 0.07695293427 0.051705 0.02699828148 0.268152
0.0769970417 0.019 0.07999992371 0.059573 0.07699680328 0.053525 0.02795910835 0.231976
0.10155797 0.021001 0.1117472649 0.045005 0.1120023727 0.044582 0.05800056458 0.220382
0.09701013565 0.021245 0.0859670639 ' 0.045003 0.09401035309 0.045509 0.05513739586 0.221609

0.08065724373 0.020003 0.09399747849 0.045518 0.08900356293 0.045518 0.04199624062 0.229354
0.08802103996 0.019999 0.08898639679 0.052185 0.09400343895 0.054036 0.05200076103 0.24616
0.07800555229 0.019 0.07754158974 0.045058 0.07987833023 0.045553 0.03904247284 0.215699
0.09600138664 0.020641 0.06914663315 (0.044523 0.07400107384 0.042522 0.03799700737 0.220804
0.08500146866 0.019999 0.09920883179 0.045999 0.09500193596 0.043564 0.0360019207 0.246171
0.07301521301 0.024996 0.08010673523 0.059097 0.08312225342 0.052001 0.0390021801 0.248745
0.07703185081 0.019994 0.07700061798 0.058061 0.08842277527 0.053028 0.03988289833 0.275193
0.1040039063 0.019745 0.1495292187 ' 0.056002 0.1685738564 0.056035 0.04799509048 0.242561

0.1761233807 0.03 0.2673134804 0.063082 0.2510061264 0.055592 0.2540032864 0.266035
0.1716995239 0.027002 0.1850066185 ' 0.080002 0.184497118 0.07183 0.2164883614 0.275114
0.1957836151 0.020994 0.3199088573 | 0.050524 0.3169808388 0.063081 0.2689511776 0.255336
0.179497242 0.024877 0.1807193756 0.053765 0.1873688698 0.047 0.1210048199 0.230573
0.1595118046 0.019001 0.1395375729 0.056517 0.2045874596 0.065571 0.1355040073 0.297743
0.19486022 0.021518 0.187877655 0.051406 0.2160069942 0.049754 0.1684365273 0.254615

0.1490077972 0.019013 0.1330096722 0.045996 0.1440050602 0.049515 0.1130049229 0.222031
0.08401632309 0.021353 0.0846760273 0.04851 0.08600139618 0.049637 0.05800223351 0.208261
0.07300066948 0.018001 0.08291554451 0.049803 0.07901978493 0.048205 0.06717586517 0.217906
0.08093452454 0.018002 0.07900524139 0.045033 0.07897830009 0.046994 0.06169104576 0.212143

Average Average Average Average
0.098192873 0.02154068 0.1055545473 0.0510278¢ 0.1064727497 0.04989108 0.04983492375 0.22976214

Difference(Neodj - TigerGraph) Difference(Neodj - TigerGraph) Difference(Neodj - TigerGraph) Difference(Neodj - TigerGraph)
0.076652193 0.05452668731 0.05658166971 -0.1799272163

find 1 hop
neo4j

0.09122347832
0.07679510117
0.08466506004
0.0626616478
0.06086301804
0.06069159508
0.06091213226
0.09239864349
0.080037117
0.06151127815
0.08884739876
0.06908416748
0.06900572777
0.05323529243
0.07143115997
0.06902694702
0.06172800064
0.0847132206
0.06080579758
0.08467435837
0.09131360054
0.0534901619
0.06060910225
0.06250190735
0.06916666031
0.06910133362
0.07813715935
0.0468351841
0.06251239777
0.07048940659
0.08896207809
0.06250357628
0.06910872459
0.06891441345
0.06251168251
0.07817196846
0.06384086609

tigerGraph
0.027173
0.016703
0.032109
0.022208
0.025415
0.01824
0.027974
0.014436
0.019646
0.023859
0.0223
0.019002
0.019
0.018147
0.028273
0.017917
0.022273
0.027355
0.03301
0.019799
0.020002
0.026999
0.069045
0.025047
0.020009
0.020001
0.021519
0.024997
0.024
0.021002
0.021001
0.022986
0.020046
0.022
0.02017
0.020524
0.029524

find 2 hop
neo4j
0.000999212265
0.002003908157
0.001997470856
0.001011610031
0.003000974655
0.001995563507
0.002000331879
0.00200009346
0.001998901367
0.002004384995
0.1095757484
0.08800435066
0.0870013237
0.08503198624
0.09299874306
0.09600543976
0.0740339756
0.07299828529
0.0700006485
0.08201527596
0.05999994278
0.02799916267
0.04099869728
0.03500008583
0.03199791908
0.02498078346
0.02599740028
0.02900099754
0.02800178528
0.03000259399
0.09999966621
0.1119992733
0.0939719677
0.0880177021
0.09101247787
0.07600140572
0.07500433922

tigerGraph
0.01009
0.016353
0.01951
0.020903
0.020436
0.028131
0.017653
0.030538
0.020432
0.021452
0.019671
0.017571
0.011907
0.01058
0.01572
0.01675
0.023147
0.011486
0.019399
0.017355
0.021997
0.023002
0.08452
0.019463
0.020967
0.023999
0.019523
0.022533
0.02
0.023013
0.021068
0.021457
0.020999
0.026
0.022015
0.019034
0.039998

find 5 hop
neo4j
0.002002954483
0.00200009346
0.00200843811
0.001003742218
0.002006292343
0.00200009346
0.002001285553
0.0009982585901
0.000998973846¢
0.002003908157
0.05399608612
0.02500009537
0.031001091
0.02000951767
0.02799963951
0.02000141144
0.01699995995
0.01600074768
0.01800107956
0.01699924469
0.06901454926
0.04299020767
0.04200005531
0.04100441933
0.02799630165
0.03101086617
0.02499651909
0.02501487732
0.02400422096
0.02503395081
0.05400300026
0.07799744606
0.04599809647
0.05099773407
0.04001188278
0.04500389099
0.04000115395

tigerGraph

0.057048
0.052428
0.042375
0.037179
0.045619
0.05338
0.051785
0.046232
0.044615
0.047231
0.050609
0.055068
0.056535
0.049898
0.051994
0.059344
0.050762
0.060947
0.04974
0.055968
0.048999
0.045336
0.105601
0.048103
0.048046
0.048522
0.048527
0.048
0.051
0.049988
0.096098
0.097992
0.092522
0.097001
0.092505
0.12004
0.121555

find 10 hop
neo4j
0.002001523972
0.001001119614
0.001000404358
0.002001285553
0.001996517181
0.002003669739
0.002000331879
0.002003192902
0.001000404358
0.002000808716
0.03699922562
0.02599906921
0.03317046165
0.02199864388
0.02199935913
0.01900291443
0.01799893379
0.01720046997
0.01596164703
0.02829051018
0.04799962044
0.04301357269
0.03501319885
0.03299880028
0.03900313377
0.02999544144
0.02700138092
0.02600026131
0.02900195122
0.02699923515
0.0668656826
0.06799864769
0.05201482773
0.04896259308
0.04000020027
0.03502130508
0.03599953651

tigerGraph
0.224273
0.201618
0.206847
0.209787
0.235391
0.289608
0.243537
0.216226
0.230274
0.201674
0.227857
0.186825
0.198632
0.216501
0.197882
0.212162
0.205713
0.196639
0.209651
0.192288
0.217733
0.216298
0.273494
0.210723
0.213517
0.227555
0.217786
0.203912
0.234612
0.203679
0.246528
0.219048
0.294307
0.212572
0.215123
0.238618
0.248519

0.08468866348
0.06152319908
0.07954621315
0.06759190559
0.08462047577
0.06900167465
0.06653952599
0.06899404526
0.08880734444
0.07115244865
0.06902837753
0.07062244415
0.07253098488
Average
0.07114257336

0.021001
0.019001
0.023532
0.020005
0.027859
0.025996

0.024

0.027
0.069523
0.022002

0.023
0.021001
0.024007

0.02463276

Difference(Neo4j - TigerGraph)

0.04650981336

0.07000041008
0.07598996162

0.1178987026
0.1948258877
0.1730041504
0.1953129768
0.2250788212
0.1430130005
0.1783266068
0.1091685295

0.07600045204
0.08234453201
0.08221936226

Average

0.07139695644

0.04875511644

0.035568
0.021
0.02152
0.021546
0.024654
0.024004
0.023
0.028043
0.028516
0.021045
0.020526
0.021004
0.022994

0.0226418¢

Difference(Neo4j - TigerGraph)

0.03403401375
0.04296875
0.1090033054
0.1865477562
0.1809709072
0.1810061932
0.1791632175
0.1000013351
0.1720461845
0.1030085087
0.06347727776
0.06249666214
0.05800032616

Average

0.111458

0.10652
0.109138
0.043005
0.028994
0.030959
0.029011
0.032055
0.034998
0.028005
0.026783
0.027304
0.028031

0.04885673046 0.05829706

Difference(Neodj - TigerGraph)
-0.009440329541

0.03399753571
0.03800201416
0.0610024929
0.2569534779
0.1750068665
0.1647822857
0.20135355
0.1369640827
0.1655879021
0.1510055065
0.06796908379
0.06100153923
0.05743765831

Average

0.249694
0.287598
0.269423
0.286098
0.235275
0.242975
0.260037
0.269107

0.22719
0.225521
0.210575
0.222036
0.215091

0.05021167755 0.22796058

Difference(Neodj - TigerGraph)
-0.1777489024

Appendix 2. Performance Test Results: 200,000 Events

find node
neo4j

0.3113510609
0.2612457275
0.1848974228
0.2160565853
0.1845836639
0.2075212002

0.188076973
0.2192838192
0.1831665039
0.2101838589
0.1966519356
0.1972310543
0.2054386139
0.1910238266
0.1849832535
0.1998391151
0.2087767124
0.1902463436
0.2001743317
0.2890350819
0.4009363651
0.3342003822
0.3697104454
0.3577001095
0.2509975433
0.2400052547
0.2297744751
0.2559990883
0.2390003204
0.2620298862

0.255875349
0.2275218964
0.2509989738

0.232229948
0.2411262989

tigerGraph

0.050092
0.425919
0.031031
0.032001
0.033509
0.031006
0.034008
0.038006
0.037031
0.035568
0.034001
0.031993
0.037049
0.032563

0.03105
0.035039
0.036523
0.030008
0.032538
0.030911
0.029492
0.030557
0.029855
0.025998
0.035784
0.035169
0.032229
0.031778
0.031909
0.028974
0.232917
0.050596

0.03324
0.030041
0.042989

find children
neo4j

0.2849123478
0.2352454662
0.2001011372
0.2005221844
0.2154705524
0.1781368256
0.2016792297
0.1967368126
0.2007052898

0.214148283
0.1987636089
0.2038984299
0.2069189548
0.1808171272
0.2000381947
0.1842331886
0.1988933086
0.1746101379

0.196408987
0.3218996525

0.478107214
0.3301022053
0.3193695545
0.3375165462
0.2424468994

0.238399744
0.2530081272
0.2703864574
0.2531962395
0.2629842758
0.2780001163
0.2517280579
0.2293424606
0.2621231079
0.2368240356

tigerGraph

0.146079
0.110957
0.094311
0.104129
0.130335
0.099559
0.107587
0.107096
0.132119
0.128728
0.127605
0.106756
0.108667
0.131395
0.109967
0.113273
0.109575
0.100117
0.098136
0.088113
0.085032
0.083555
0.088078
0.086982
0.094031
0.109712
0.111994
0.087006
0.086027
0.161034
0.109581
0.126999
0.096622

0.08913
0.144797

find parents
neo4j

0.2686817646
0.3020789623
0.2509143353

0.184350729
0.1846041679

0.200527668
0.1960828304
0.1971170902
0.1984012127
0.1734468937
0.1875295639
0.1849381924

0.168943882

0.195145607
0.2030053139
0.1994044781

0.185147047
0.1932051182
0.1882636547
0.3105902672
0.3589978218

0.324226141
0.3085019588
0.3083789349
0.2574830055
0.2641203403
0.2352278233
0.2440001965
0.2520005703
0.2559542656
0.2642478943
0.2657322884
0.2536873817
0.2563772202
0.2581915855

tigerGraph

0.158782
0.109084
0.111304
0.104173
0.136148
0.108144
0.118927
0.092604
0.13769
0.110261
0.106091
0.101129
0.105162
0.147789
0.111139
0.116739
0.102843
0.14202
0.103127
0.093625
0.089554
0.08816
0.090222
0.086045
0.104845
0.094418
0.139131
0.090552
0.0934
0.153008
0.113358
0.098859
0.092657
0.094216
0.121701

find subgraph
neo4;

0.1002697945
0.1007950306
0.08046245575
0.07813715935
0.07813620567
0.08197212219
0.07070541382
0.05648350716
0.05488634109
0.07506966591
0.116771698
0.1146390438
0.111385107
0.1057729721
0.09793972969
0.1113545895
0.1002297401
0.1198985577
0.08055090904
0.1731693745
0.2780742645
0.2089989185
0.1908018589
0.2520000935
0.1729516983
0.1994187832
0.1627111435
0.1737999916
0.1757566929
0.2030005455
0.1981568336
0.1971437931
0.2100007534
0.1879079342
0.2043597698

tigerGraph

0.278802
0.257165
0.260767
0.289876
0.263132
0.23356
0.2265
0.23824
0.231336
0.2321
0.227513
0.236109
0.242095
0.229103
0.24214
0.237948
0.240341
0.234551
0.24077
0.245745
0.257156
0.234666
0.226986
0.215634
0.224112
0.213701
0.218016
0.223204
0.20653
0.216922
0.217215
0.223831
0.212282
0.217273
0.224062

0.2459981441
0.2541518211
0.2289748192
0.3226413727
0.2415697575
0.3285207748
0.2940056324
0.3618686199
0.2904956341
0.2943832874
0.2961206436
0.2464327812
0.248552084
0.2172236443
0.2339949608
Average:

0.249656148

0.030087
0.035701
0.029999
0.029042
0.143269
0.039371
0.033514
0.034044
0.030002
0.031454
0.030889
0.033166
0.029051
0.031059
0.041534

0.04767112

Difference(Neo4j - TigerGraph)

0.201985028

0.2701280117
0.2517950535
0.2589931488
0.3192870617
0.2882204056
0.3140077591
0.3104822636
0.3669919968
0.2739953995
0.2819981575
0.2785162926
0.2379984856
0.2385573387
0.2583198547
0.2774546146
Average:
0.2532884121

0.095104

0.09253
0.112556
0.096033
0.101537
0.096162
0.119225
0.119383
0.109135
0.122074
0.113938
0.111798
0.103112
0.099029
0.100681

0.10814762

Difference(Neo4j - TigerGraph)

0.1451407921

0.2799911499
0.287217617
0.2545213699
0.3282723427
0.3133215904
0.3690357208
0.3152444363
0.3330571651
0.2845139503
0.2972457409
0.3025579453
0.2579984665
0.2170307636
0.224562645
0.2479991913
Average:

0.251841526

0.105131
0.094025
0.131078
0.121819
0.113647
0.095593
0.118667
0.100598
0.094638
0.206745
0.106558
0.1102
0.095129
0.10258
0.100583

0.11127796

Difference(Neo4j - TigerGraph)

0.140563566

0.2022008896
0.2124361992
0.2031767368
0.2214980125
0.2764794827

0.270945549
0.2783207893
0.3102135658
0.2408902645
0.2469990253

0.266900301
0.2201390266
0.1959998608
0.1857550144
0.2129890919

Average:

0.169373126

-0.06395055397

0.212547
0.216239
0.221355
0.219638
0.218004
0.219932
0.233763
0.220921
0.252535
0.240216
0.243259
0.240332
0.237881
0.252595
0.217584

0.23332368

Difference(Neo4j - TigerGraph)

find 1 hop
neo4j

0.25745821
0.2143244743
0.2663071156
0.1937170029
0.1899333
0.1939599514
0.2002122402
0.1848397255
0.1779081821
0.1801013947
0.1928896904
0.200189352
0.2015142441
0.2030022144
0.2376778126
0.1948699951
0.2098779678
0.1870684624
0.1931397915
0.3283705711
0.5084600449
0.2710170746
0.3265926838
0.458687067
0.2574002743
0.2685182095
0.2210943699
0.262488842
0.2824580669
0.2640938759
0.2340481281
0.2583031654
0.2497951984
0.2459983826
0.2494211197
0.341391325
0.264165163

tigerGraph

0.035019
0.033998
0.034045
0.035518
0.034989
0.037524

0.03552
0.032525
0.036524
0.034004

0.03502
0.042046
0.037056
0.036999
0.046197
0.039073
0.033529
0.034198

0.03499
0.033008
0.034672
0.032271
0.033514
0.035035
0.036512
0.035544
0.033092
0.031841
0.031523
0.038021
0.034566
0.034874

0.03281
0.033523
0.040064

0.03303
0.033588

find 2 hop
neo4j

0.2216482162
0.1784715652
0.1963956356
0.2067973614
0.2003610134
0.1797661781
0.2001035213
0.2426550388
0.1975016594
0.1910357475
0.1759080887
0.1992714405
0.2382481098
0.1932439804
0.2430820465
0.1934847832
0.1909868717
0.1857638359

0.190359354
0.2450006008
0.5440526009
0.3019952774
0.3850164413
0.4359414577
0.2430210114
0.2907280922
0.2532398701

0.247543335
0.2319989204
0.2521839142
0.2484343052
0.2640714645
0.2584476471
0.2561886311
0.2546391487

0.319327116

0.270806551

tigerGraph

0.037
0.032523
0.058833
0.033529
0.036223
0.034
0.031907
0.033521
0.039577
0.037005
0.034172
0.036029
0.037236
0.039523
0.040311
0.038519
0.033181
0.032505
0.033614
0.03301
0.034049
0.033272
0.036061
0.03198
0.035
0.034041
0.032732
0.033
0.033563
0.033
0.038992
0.037723
0.038659
0.037854
0.038421
0.037587
0.040424

find 5 hop
neo4j
0.09825944901
0.06566643715
0.08694934845
0.07814216614
0.06903076172
0.1009972095
0.06776881218
0.05324435234
0.07200932503
0.06895875931
0.1164181232
0.1009151936
0.1177709103
0.0869550705
0.08608579636
0.1074008942
0.1032881737
0.0957775116
0.1005241871
0.1530003548
0.3069989681
0.2250387669
0.183031559
0.2369990349
0.1537265778
0.1837117672
0.1482067108
0.1714096069
0.1793322563
0.1601967812
0.2095179558
0.1950008869
0.1909997463
0.1690139771
0.1859970093
0.1669998169
0.1840062141

tigerGraph

0.044999
0.042011
0.042999
0.041566
0.040554
0.0433
0.039554
0.040523
0.04179
0.041522
0.038527
0.044041
0.041038
0.04252
0.043052
0.046527
0.040043
0.050837
0.039527
0.037991
0.105014
0.102727
0.106567
0.107513
0.112575
0.105482
0.106182
0.105617
0.101565
0.108558
0.180996
0.182086
0.17432
0.176523
0.173077
0.170088
0.174202

find 10 hop
neo4j

0.1002669334
0.08321523666
0.07316231728
0.06752991676
0.05928277969

0.0775282383
0.08401346207
0.09376072884
0.07814073563
0.08335351944

0.1002719402
0.08502912521

0.1158947945

0.1157970428

0.1002731323

0.1003069878
0.09513187408

0.1088006496

0.1027014256

0.1660585403

0.3419997692

0.2079980373

0.2543292046

0.1698203087

0.1470835209

0.1721959114

0.1762599945

0.1691465378

0.1591908932

0.1951491833

0.1907320023

0.1890823841

0.2091023922

0.1655087471

0.1670000553

0.2318255901

0.1879985332

tigerGraph

0.230624
0.221079
0.223247
0.218668
0.212658
0.221182
0.208309
0.224068
0.219658
0.220267
0.226552
0.233111
0.250779
0.261082
0.247616
0.233763
0.211669
0.222347
0.216538
0.218932
0.231697
0.216056
0.221062
0.211128
0.220699
0.208416

0.21937
0.215202

0.22105
0.219778
0.213154
0.224087
0.219619
0.218035
0.219405
0.208904
0.219942

0.2531888485
0.3219981194
0.4243843555
0.3587248325
0.3552541733
0.4094188213
0.2892105579
0.2811894417
0.2434837818
0.1978600025
0.2123916149

0.236577034
0.2618513107

Average:
0.2603365517

0.036053
0.037705
0.035999
0.035537
0.031999
0.033823

0.032
0.032985
0.033998
0.032005
0.033648
0.033054
0.039041

0.03508218

Difference(Neo4j - TigerGraph)

0.2252543717

0.2553293705
0.3125133514
0.3190362453
0.3482375145
0.3209688663
0.3953425884
0.2983481884
0.307308197
0.2611460686
0.2219996452
0.2408745289
0.2549104691
0.2522051334
Average:

0.25831882

0.036036
0.037537
0.038049
0.034989
0.033541
0.034518
0.032548

0.03617
0.034521

0.03277
0.032794
0.031835
0.033523

0.03574814

Difference(Neo4j - TigerGraph)

0.22257068

0.1882510185
0.2186214924
0.2369997501
0.3020019531
0.2831242085
0.2931976318
0.2565498352
0.2549910545

0.233212471
0.2008113861
0.2203342915
0.2303602695
0.1835854053

Average:
0.1636278248

0.168559
0.190862
0.177168
0.066033
0.071098
0.065672
0.066447

0.065
0.063657
0.069571
0.067138
0.069666
0.065513

0.08684794

Difference(Neodj - TigerGraph)

0.07677988478

0.1909980774
0.2139976025
0.2768120766

0.253184557
0.2820410728
0.2776141167
0.2480049133
0.2287340164
0.2367677689
0.2179992199
0.1989986897
0.1799938679
0.1579890251

Average:

0.163761549

-0.0287856155

0.218735
0.215687
0.210841
0.222213
0.222708
0.224328
0.218553
0.207075
0.224369
0.215793
0.221077
0.214265
0.221242

0.1925471645

Difference(Neo4j - TigerGraph)

Appendix 3. Performance Test Results: 400,000 Events

find node
neo4j

0.5230715275
0.4364416599

0.450350523

0.436286211
0.4230196476
0.4197380543

0.417170763
0.4311273098

0.421826601
0.4238858223
0.4693601131
0.4405863285

0.437349081
0.4271466732
0.4352319241
0.4480564594
0.4300332069
0.4509410858
0.4772593975
0.4448764324
0.4698603153
0.4565355778
0.4232439995
0.4250648022
0.4198431969
0.4318776131
0.4258141518
0.4251987934
0.4426307678
0.4340679646
0.4943449497

0.439132452
0.4663658142
0.4388022423
0.4258606434

tigerGraph

0.076785
0.054083

0.05553
0.056203
0.046691
0.051512
0.053875
0.054694
0.054003
0.050909
0.053818
0.049368
0.051405
0.054586
0.052073
0.048741

0.04961
0.054059
0.053991
0.051639

0.05584
0.060007
0.045697
0.052137
0.051113
0.054173
0.048397
0.053132
0.053391
0.050463

0.06012

0.05604
0.052149
0.059635
0.049405

find children
neo4j

0.4637334347
0.4752640724
0.4346525669
0.4226510525
0.4318492413
0.4379458427
0.4374530315
0.4265418053
0.4317970276
0.4307150841
0.4851789474
0.4422228336
0.4276094437
0.4333589077
0.4292373657
0.4265623093
0.4195365906
0.4274215698
0.4866652489
0.4187412262
0.4985439777
0.434109211
0.4313342571
0.4477822781
0.4321160316
0.4386284351
0.4379951954
0.4653503895
0.4212884903
0.4399273396
0.4763412476
0.45388937
0.5016088486
0.4298439026
0.4375500679

tigerGraph

0.281016
0.222367
0.205033
0.195338
0.185024
0.199478
0.176412
0.192215
0.178013
0.197107
0.186794
0.194729
0.185544
0.197756
0.177263
0.188513
0.193763
0.200692
0.202478
0.186118
0.195735
0.179658
0.183623
0.187297
0.187089
0.176032

0.18664
0.184108
0.185491
0.188534
0.184124
0.186289
0.181484
0.173176
0.174937

find parents
neo4j

0.4536166191
0.4520924091
0.4125845432
0.4422497749
0.4152834415
0.4319939613
0.4266624451
0.440766573
0.4207162857
0.4308283329
0.4705626965
0.4421980381
0.42237854
0.4268300533
0.4531803131
0.4437983036
0.414788723
0.4209201336
0.4375367165
0.4412994385
0.4623980522
0.4259324074
0.4263138771
0.4694154263
0.4317445755
0.4166059494
0.4103078842
0.4134142399
0.429813385
0.4314465523
0.4405722618
0.4474327564
0.4531495571
0.424710989
0.4466934204

tigerGraph

0.212945
0.229745
0.187471
0.180905
0.182628
0.181722
0.177195
0.183456

0.18778
0.176736
0.178447
0.186675
0.181237
0.194865
0.186486

0.19464
0.193966
0.197534
0.193428
0.191653
0.194214
0.179131
0.175573
0.179198
0.178773
0.177618
0.180867
0.178653
0.191761
0.178946
0.184433
0.183091
0.180568
0.179707
0.190503

find subgraph

neo4j
0.4739663601
0.4468355179
0.4618487358
0.4401917458
0.4399006367
0.4166588783
0.4275443554
0.4271397591
0.4394221306
0.4174571037
0.4896326065
0.4280023575
0.4410769939
0.4269194603
0.4345152378
0.4231216908
0.4321000576
0.4387226105

0.423248291

0.429046154
0.4971907139
0.4857308865
0.4320986271
0.5492663383
0.4286739826
0.4335801601

0.438107729
0.5355832577
0.4296095371

0.407558918
0.4752264023
0.4535448551

0.413472414
0.4554300308
0.4173223972

tigerGraph

0.051535
0.058557
0.055172
0.046845
0.051349
0.051623
0.057624
0.057148
0.045303
0.046573
0.051481
0.049321

0.05644
0.050211
0.053502
0.051967
0.056543
0.049164
0.052987
0.051987
0.055314
0.052012
0.056623

0.05304
0.055049
0.055118
0.047986
0.055968

0.05322
0.049596
0.050529
0.053511
0.047893
0.056713
0.050913

0.4920909405

0.417828083
0.4293739796
0.4415750504
0.4161677361
0.4635090828
0.4320459366
0.4376547337
0.4525215626
0.4411230087
0.4413893223
0.4450025558
0.4318912029
0.4466695786
0.4329464436

Average

0.4416838264

0.052514
0.053477
0.052087
0.049336
0.050193
0.052721
0.049222
0.059949
0.049277
0.052984
0.050849
0.053531
0.051882
0.055471

0.04984

0.05317214

Difference(Neo4j - TigerGraph)

0.3885116864

0.4503321648
0.4263188839
0.4264347553
0.4419250488
0.4328939915
0.4916400909

0.466896534
0.4190342426
0.4460971355
0.4238123894
0.4250707626
0.4202442169
0.4421722889
0.4390776157
0.4112195969

Average

0.4419723272

0.188295
0.181921

0.18744

0.18244
0.181852
0.185558
0.175543
0.196237
0.192858
0.211582
0.191346
0.197641
0.189702
0.199467
0.179849

0.19083202

Difference(Neo4j - TigerGraph)

0.2511403072

0.4492294788
0.4397881031
0.5074210167
0.4249002934
0.4147837162
0.4750397205
0.4772434235
0.4246046543
0.6841144562
0.4328503609
0.4245536327
0.4414989948
0.4234673977
0.4329550266
0.4247410297
Average
0.4421485996

0.181954
0.203321
0.184625
0.183211
0.176936
0.184887

0.17752
0.188594
0.177129
0.197564
0.189146
0.180955
0.191457
0.187052
0.191839

0.1865748

Difference(Neo4j - TigerGraph)

0.2555737996

0.4804570675
0.4202272892
0.4117801189
0.4235134125
0.4377734661
0.4692194462
0.4433467388
0.4426379204
0.4345238209
0.4311206341
0.4357383251
0.4284996986
0.4211583138
0.4164426327
0.4391379356
Average
0.4429064751

0.048328
0.057826
0.052301
0.051092
0.050402
0.054566
0.053652

0.0532
0.057102
0.055545
0.051802
0.060103
0.053005
0.051359
0.049238

0.05276676

Difference(Neo4j - TigerGraph)

0.3901397151

find 1 hop
neo4j
0.4874796867
0.425399065
0.4025287628
0.4192605019
0.4426088333
0.4384059906
0.4348080158

x0.4317779541(

0.4253008366
0.4315917492
0.4581980705
0.4389531612
0.4179399014
0.4318919182
0.4223647118
0.4279716015
0.4381849766
0.4170026779
0.4428389072
0.4358234406
0.4434843063
0.4186673164
0.4275536537
0.4185788631
0.4353165627
0.4250366688
0.4317705631
0.4794447422
0.4379403591
0.4262127876
0.4528326988
0.5161888599
0.4328110218

0.444961071
0.4491686821
0.4558498859
0.4325203896

tigerGraph

0.065803

0.05677
0.056532

0.05052
0.052043
0.054024
0.051299
0.050602
0.060896
0.054755
0.053928
0.054204
0.049622
0.056283
0.053325
0.047851
0.052482
0.059864
0.052874
0.049644
0.050556
0.055288
0.051103
0.048604
0.053843
0.054389
0.051029
0.051869
0.047561
0.054648

0.05008
0.045701

0.05422
0.052763
0.051265
0.052893
0.052327

find 2 hop
neo4j

0.451038599
0.4353582859
0.4256331921
0.4286506176
0.4319593906
0.4315598011
0.4207532406
0.4368989468
0.4159324169

0.438816309
0.4607470036
0.4629569054
0.4430658817
0.4420976639
0.4317889214
0.4337246418
0.4329469204

0.448028326
0.4382090569
0.4323854446
0.4790101051
0.4217252731
0.4318141937
0.4662020206
0.4396266937
0.4409821033
0.4266147614

0.475123167

0.432104826
0.4340724945
0.4616949558
0.4668092728
0.4178218842
0.4229955673
0.4303400517

x0.4846158027¢

0.4458804131

tigerGraph

0.060947
0.056481
0.050449
0.056065
0.048418
0.053186
0.050445
0.052027
0.050969
0.054017
0.050406
0.061393
0.049516
0.049812
0.051143
0.056607
0.050002
0.052327
0.055959
0.054544
0.050127
0.056815

0.04917
0.054024
0.049048
0.055029
0.049888
0.051783
0.054024
0.050842
0.053203
0.052876
0.051778
0.051262
0.047515
0.053481
0.059643

find 5 hop
neo4j

0.5732722282
0.4543004036
0.4335093498
0.4260251522
0.4257285595
0.4317858219
0.4467759132
0.4456367493
0.4348459244
0.4295148849
0.4607329369
0.446120739
0.4289038181
0.4285843372
0.4277834892
0.431987524
0.4120724201
0.4142949581
0.47229743
0.4475901127
0.4698774815
0.4755706787
0.4455704689
0.4275381565
0.4247801304
0.4192993641
0.4223911762
0.4280061722
0.4266211987
0.4381482601
0.4624710083
0.4544730186
0.4352834225
0.4444088936
0.4433939457
0.4654495716
0.4358885288

tigerGraph

0.067589
0.060896
0.053756
0.052223
0.053678
0.052401
0.051441
0.046924
0.053083
0.046496
0.050421
0.050409
0.052694

0.05411
0.051803
0.051242
0.053843
0.052818
0.054632
0.052234
0.056084
0.050672
0.048702
0.050921
0.058338
0.053065
0.054666
0.051905
0.049971

0.04993
0.046132
0.058692
0.055747
0.052853

0.05613
0.052163
0.046767

find 10 hop
neo4j

0.4582295418
0.4438388348
0.4321863651
0.4322392941
0.4162456989
0.4441454411
0.4106998444
0.4192230701
0.4426651001
0.4259631634
0.5129585266
0.44257617
0.4378848076
0.4673006535
0.4323265553
0.4391078949
0.4367640018
0.5432906151
0.3966126442
0.441838026
0.4641771317
0.4462981224
0.4246373177
0.4310648441
0.4282677174
0.4394638538
0.4386854172
0.422896862
0.4259669781
0.5160758495
0.4567992687
0.4357156754
0.5239481926
0.4248454571
0.4251630306
0.4698998928
0.4263143539

tigerGraph

0.062815
0.061763
0.060895
0.051101
0.054342
0.044726
0.048155
0.053221
0.048944

0.05564
0.050389
0.047784

0.05005
0.051932
0.051718
0.049505
0.057999
0.050327
0.054279
0.052642
0.046649
0.051701
0.051505
0.050937
0.051664
0.049348
0.053309
0.050024
0.051113

0.04878
0.054559
0.047208
0.048733
0.045612
0.048758

0.04864
0.054135

0.4332177639
0.4250986576
0.4401707649
0.4652957916
0.4141516685
0.4250178337
0.4331371784
0.4311196804
0.4261035919
0.4415621758
0.4333434105
0.4315598011
0.4321291447
Average
0.4367101776

0.053208
0.053939
0.057307
0.049146
0.049745
0.049499
0.053532
0.056288
0.048922
0.048546
0.050324
0.048362
0.052233

0.05265022

Difference(Neo4j - TigerGraph)

0.3840599576

0.4160792828
0.5940425396
0.4210031033
0.4679481983
0.4498393536
0.4509501457
0.4303705692
0.4142227173
0.4314782619
0.4250311852
0.4120733738

0.438192606
0.4207792282

Average
0.440966937

0.047229
0.050922
0.052818
0.060831
0.053591

0.05664

0.05551
0.049835
0.058948
0.054394
0.053931
0.050622
0.051771

0.05304526

Difference(Neo4j - TigerGraph)

0.387921677

0.4318840504
0.4513428211
0.4336192608
0.4624547958
0.4373049736
0.5010342598
0.4351291656
0.4337613583
0.4305067062
0.4610373974
0.4339015484
0.4289062023
0.4403135777
Average
0.4434426069

0.048513
0.057449
0.047693
0.045705
0.047103
0.052098
0.052696
0.052407
0.053997
0.047448
0.051506
0.050981
0.053473

0.05233

Difference(Neo4j - TigerGraph)

0.3911126069

0.4288361073
0.4538552761
0.4238402843
0.4610664845
0.4353497028
0.3995406628
0.4297418594
0.4272010326
0.4441859722
0.4397993088
0.4381966591
0.4398386478
0.4266326427
Average
0.4424880171

0.058989
0.054169
0.051918
0.057517
0.057085
0.054229
0.054485
0.051634
0.051419
0.057421
0.055058
0.054999
0.047724

0.05235098

Difference(Neo4j - TigerGraph)

0.3901370371

Appendix 4. Performance Test Diagrams

Performance diagrams

200000
400000

find node find children find parents find subgraph find 1 hop find 2 hop find 5 hop
100000 0.076652193 0.054526687 0.056581669 -0.179927216 0.046509813 0.048755116 -0.009440321

Diffrenece in times between queries (seconds)
(neodj query time - tigerGraph query time)

0.4

0.2

-0.2
find node find find parents find find1lhop find2hop find5hop find 10 hop

children subgraph

@ 100000 = 200000 @ 400000

find 10 hop
-0.177748901

0.201985028 0.1451407921 0.140563566 -0.06395055397 0.2252543717 0.22257068 0.07677988478 -0.0287856155
0.388511 0.25114 0.255573 0.390139 0.384059 0.38792 0.391112

0.390137

Tigergraph performance

find node
100000
200000
400000

0.02154068
0.04767112
0.053172

find children find parents find subgraph find 1 hop find 2 hop
0.05102786 0.04989108 0.22976214 0.02463276 0.02264184
0.10814762 0.11127796 0.23332368 0.03508218 0.03574814
0.190832 0.186574 0.052766 0.05265 0.053045

find 5 hop
0.05829706
0.08684794
0.05233

0.25

0.2

0.15

0.1

0.05

difference in query time based on number of events (seconds)

(TigerGraph)
find node find find find find1hop find2hop find5hop find 10 hop
children parents subgraph

@ 100000 m 200000 m 400000

find 10 hop
0.22796058
0.1925471645
0.05235

Neo4) performance

find node find children find parents find subgraph find 1 hop find 2 hop find 5 hop find 10 hop
100000 0.098192873 0.1055545473 0.106472749 0.049834923 0.071142573 0.071396956 0.0485673 0.050211677
200000 0.24965561 0.2532884121 0.251841526 0.169373126 0.2603365517 0.25831882 0.0163627824¢ 0.163761549
400000 0.4416838264 0.4419723272 0.4421485996 0.4429064751 0.4367101776 0.440966937 0.4434426069 0.4424880171

difference in query time based on number of events (seconds)
(Neo4))
0.5
0.4
0.3
0.2
0.1
0
find node find find find find1hop find2hop find5hop find10 hop
children parents subgraph
® 100000 m 200000 m 400000

Appendix 5. Usability Test Results: Time Taken

findInsightsWithoutChildren findAlIChildrenWithoutChild findTimeBetweenTwolnsigh findinsightByAuthor

1.5045135021209717
1.4716386795043945
1.4827876091003418
1.5787813663482666
1.5827631950378418
1.532705307006836

1.5165462493896484
1.9454221725463867
1.5881109237670898
2.065751791000366

Average:

1.62690208

findAllParents
0.19040298461914062
0.20135164260864258
0.18918395042419434
0.1902143955230713
0.18693232536315918
0.220383882522583
0.1889796257019043
0.18563294410705566
0.20124387741088867
0.18488502502441406

0.1939210653

0.22494006156921387
0.193037748336792
0.18024420738220215
0.20462751388549805
0.19044756889343262
0.195601224899292
0.1822504997253418
0.20300889015197754
0.18677783012390137
0.18212318420410156

0.1943058729

findMostCommonGroup
0.18945813179016113
0.17561578750610352
0.18521904945373535
0.18111109733581543
0.1691875457763672
0.20437169075012207
0.1863994598388672
0.18228721618652344
0.18524789810180664
0.19373631477355957

0.1852634192

0.1951279640197754

0.19563889503479004
0.1888573169708252

0.18233847618103027
0.17781305313110352
0.33997488021850586
0.25237464904785156
0.18845725059509277
0.19889497756958008
0.2006697654724121

0.2120147228

findMostCommonSource

0.16379594802856445
0.1641712188720703

0.1585235595703125

0.16579151153564453
0.15846562385559082
0.18975067138671875
0.1694197654724121

0.19346213340759277
0.16893577575683594
0.16823029518127441

0.1700546503

0.4388847351074219
0.41860389709472656
0.41016340255737305
0.41429638862609863
0.4037296772003174
0.42287588119506836
0.524219274520874
0.4067118167877197
0.40612292289733887
0.4311563968658447

0.4276764393

findNHops
0.1741483211517334
0.17518019676208496
0.17749834060668945
0.18814349174499512
0.17094779014587402
0.19214558601379395
0.1667768955230713
0.17601513862609863
0.17854928970336914
0.1788499355316162

0.1778254986

findAlIChildren
0.19041132926940918
0.1913299560546875
0.1881999969482422
0.195281982421875
0.18555855751037598
0.1995983123779297
0.18846487998962402
0.1890418529510498
0.17766833305358887
0.20517444610595703

0.1910729647

findSubgraph
0.18532896041870117
0.17975401878356934
0.19055438041687012
0.17094945907592773
0.17662835121154785
0.1799015998840332
0.2091984748840332
0.1732959747314453
0.16748309135437012
0.18116354942321777

0.181425786

