
Machine assisted semantic instance
segmentation with interactive
improvement

Master’s thesis in Computer science and engineering

Elin Nordström
Karl Strigén

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2020

Master’s thesis 2020

Machine assisted semantic instance
segmentation with interactive

improvement

Elin Nordström
Karl Strigén

Department of Electrical Engineering
Chalmers University of Technology

Gothenburg, Sweden 2020

Machine assisted semantic instance segmentation with interactive improvement

Elin Nordström
Karl Strigén

© Elin Nordström, Karl Strigén 2020.

Supervisor: Lennart Svensson, Department of Electrical Engineering
Advisor: Isak Hjortgren & Adam Brinkman, Annotell
Examiner: Lennart Svensson, Department of Electrical Engineering

Master’s Thesis 2020
Department of Electrical Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Description of the picture on the cover page (if applicable)

Typeset in LATEX
Gothenburg, Sweden 2020

iv

Machine assisted semantic instance segmentation with interactive improvement

Elin Nordström
Karl Strigén
Department of Electrical Engineering
Chalmers University of Technology

Abstract
Semantic segmentation is a supervised learning problem, where each pixel in an
image is labelled with its category. This is of great importance when designing
autonomous vehicles. Supervised learning problems require plenty of labelled data
with a high level of detail. Annotating such data is currently done by human anno-
tators to meet the high quality requirements, which is why the annotation process
takes a lot of time. Having machine learning algorithms handle simple problems and
let the human annotator focus on annotating only the more difficult details could
therefore speed up this process, making it less costly.

We investigate the machine learning assisted annotation process, where the idea is
that an annotator interacts with a neural network to produce the segmentation.
The initial annotator input to the network is in the form of clicks on the object’s
extreme points, which allows the network to produce a first instance segmentation.
Given this suggestion, the annotator may provide additional input to the network
to further improve the segmentation.

In this thesis we simulate these user interactions and investigate their impact. We
also investigate different types of user input to improve the segmentation, such as
object contour clicks, positive clicks on the object pixels and negative clicks on the
background pixels. In order to evaluate the impact, we train one network based on
the ideas of a network model called DEXTR and another network with a network
module called PointRend.

The key findings in our experiments are that additional clicks improve performance,
but that most of the gain is achieved from the extreme clicks. Also, the type and
amount of additional clicks has a marginal impact on the final performance. This
suggests that user guidance to a network in the form of clicks is promising for
speeding up the annotation process while maintaining high quality.

Keywords: Computer vision, autonomous vehicles, semantic segmentation, instance
segmentation, assisted annotation, deep machine learning.

v

Acknowledgements
We would like to thank our supervisor Lennart Svensson for his guidance, interesting
discussions and tons of great ideas.

Thanks also to our advisors at Annotell, Isak Hjortgren and Adam Brinkman for
taking their time to answer all of our questions, even at inconvenient times. Special
thanks to Isak for more GPU power when we needed it the most. On that note we
would like to thank Daniel Langkilde and the Annotell team for believing in us and
letting us use your data for this thesis.

Finally we want to thank Niklas Gustafson, Gustav Rödström, Amanda Belfrage
and David Berg Marklund for their feedback on the drafts of this report.

Elin Nordström, Karl Strigén, Gothenburg, June 2020

vii

Contents

List of Figures xi

List of Tables xvii

1 Introduction 1
1.1 Problem statement . 2
1.2 Scope . 3
1.3 Contributions . 4
1.4 Related work . 4

2 Theory 7
2.1 Semantic segmentation and semantic instance segmentation 7
2.2 Deep convolutional networks . 8

2.2.1 ResNet . 9
2.2.2 Pyramid scene parsing . 10

2.3 Loss function . 11
2.3.1 Logits . 12

2.4 Extending the input data . 12
2.4.1 Extreme clicks . 12
2.4.2 DEXTR . 12

2.5 Interactive improvements to the segmentation 13
2.5.1 Contour click . 14
2.5.2 Positive and negative clicks 14

2.6 Segmentation as rendering . 14
2.6.1 PointRend architecture . 16

2.7 Evaluation metrics . 17

3 Methods 19
3.1 Dataset . 19
3.2 Network architecture . 21

3.2.1 ResNet with extreme clicks . 22
3.3 Random click policy . 23

3.3.1 Random policy with contour clicks 24
3.3.2 Random policy with positive/negative clicks 24

3.4 Smarter click policy . 26
3.4.1 Building the training data . 26
3.4.2 Smart policy with contour clicks 28

ix

Contents

3.4.3 Smart policy with positive/negative clicks 28
3.5 Pointrend . 29

3.5.1 Variations . 29

4 Results 31
4.1 Experimental setup . 31

4.1.1 Input data . 32
4.1.2 Baseline model . 32
4.1.3 Extreme clicks model . 32

4.2 Results for random click policy . 33
4.2.1 Contour clicks . 34
4.2.2 Positive/Negative clicks . 37

4.3 Results for the smarter click policy 40
4.3.1 Contour clicks . 40
4.3.2 Positive/Negative Clicks . 45

4.4 PointRend . 47

5 Discussion 53
5.1 Methodology . 53
5.2 Overall results . 54
5.3 Contour clicks . 55
5.4 Positive/negative clicks . 57
5.5 PointRend . 58
5.6 Pretraining . 59
5.7 Class agnostic segmentation . 60
5.8 Two networks for interactive improvement 61
5.9 Evaluation . 61
5.10 Ethical aspects . 62

6 Conclusion 63
6.1 Future work . 64

x

List of Figures

2.1 Residual block. The function F represents the residual mapping and
the operation F + x is performed by a shortcut connection and then
element-wise addition. Image taken from [15]. 9

2.2 The pyramid pooling module from the PSPNet. Image taken from
the paper Pyramid Scene Parsing Network by Zhao et. al. [32]. . . . 10

2.3 Example of one adaptive subsampling step in the PointRend module.
Image from [17]. Predictions are only calculated for the marked sub-
pixels and kept for all others. 15

3.1 Example of an image with a truck before it has been cropped. An
image can have multiple objects in them but one will be in focus at
a time. Each object in an image has a GeoJSON file connected to
it, which contains the polygon vertex coordinates of the annotated
segmentation of the object. 20

3.2 The data augmentation pipeline used to transform the original images
into the input used for our network training. The border is the pixels
we extend the crop with to adjust the ratio between foreground and
background. 20

3.3 Example of an image from the dataset, cropped with the help from the
extreme coordinates. The image was then extended by some pixels
surrounding the object in order to have more background pixels. . . . 21

3.4 Overview of the model idea with this network architecture. The RGB
image with concatenated extra clicks channels is input to the net-
works. The output is a segmentation of the object. Note that the
output image is an example segmentation and is not taken from our
results. 22

3.5 The extreme click model input. The red points represent the extreme
clicks and they are placed on the topmost, leftmost, rightmost and
bottom-most pixel coordinates of the object. 23

3.6 The data augmentation pipeline used to transform the original im-
ages into the input used for the contour click model and the posi-
tive/negative click model. Notice that all training data is constructed
before being input into the network. The extended data is constructed
by randomly generating contour clicks or positive/negative clicks re-
spectively. 24

xi

List of Figures

3.7 The contour click model input. The red clicks represent the ex-
treme clicks and the yellow point is the additional click, placed on
the boundary of the object. The contour point is placed randomly on
the boundary in this image. 25

3.8 The positive and negative clicks model input. The red clicks represent
the extreme clicks. The yellow points represent the negative clicks
which are placed outside of the object. The blue points represent the
positive clicks, which are placed on pixels that belong to the object.
Two positive and two negative points are placed in this image in order
to give an example of where the different clicks could be placed. . . . 25

3.9 Training policy overview for the interactive improvements. In phase
one, the input to the network is the RGB image along with extreme
clicks in an extra channel as before. The additional clicks, such as
contour clicks or positive and negative clicks are then chosen from
pixel coordinates where the prediction was wrong. In the image is an
example of how a contour click could be chosen. Then, in phase two,
the previously saved click(s) are concatenated to the input. 27

3.10 The data augmentation pipeline for the smart click policy. Here,
we transform the original images into the input used for the contour
click model and the positive/negative click model. Notice that the
extended input is dependent on the previous output of network and
is thus changing for each iteration. The new data is sampled from
previously misclassified pixels. 28

3.11 The variations on the PointRend input. Here, a) is the first input
which is the image without any edits. Second was the cropped image,
b). The third variation had a cropped image and concatenated extra
channel contatining the extreme clicks as seen in c). In the fourth
variation, d), a contour click was also added to the extra channel. . . 30

4.1 Semantic segmentation and extended image input for the network
trained on four contour clicks from the random policy. The clicks are
in regions of the image that would be difficult for the network. Many
clicks are also located around the rearview mirrors, which could be
beneficial since it is a tricky part to segment. The resulting segmen-
tation is rather good. 35

4.2 Semantic segmentation and extended image input for the network
trained on four contour clicks from the random policy. The right
rearview mirror is of particular importance, with only one click in the
input and a bad contour of the segmentation. The segmentation as a
whole is not particularly good. 36

4.3 The extended input and predicted segmentation produced by the net-
work trained on two clicks with the random policy. Notice that the
segmentation is of high quality and that all of the contour clicks seem
to be a part of the segmentation such that the network has learnt to
classify them correctly. 36

xii

List of Figures

4.4 Output segmentation from the random click policy with three contour
clicks. The input (left) shows a relatively clear image of a car that
has an antenna at the top, at which an extreme click is placed. The
resulting segmentation (right) is quite accurate in comparison to the
ground truth (middle), but has a hard time with the antenna. We note
that the extreme click guides the segmentation to stretch upwards,
but the model can not predict its exact shape. 37

4.5 The input, clicks and image, to the network trained on one contour
click with the random policy. This is an example of the downside of
the random click policy since the contour click is placed almost exactly
on one of the extreme clicks. The semantic segmentation output in
4.5b resulted from the input in 4.5a is overall not quite good enough
and it is hard to tell if the contour click has had any impact and if it
has guided the network at all. 38

4.6 Locations of the negative clicks, the positive clicks and the resulting
segmentation for the network trained on the random policy. The
positive and negative clicks are all far way from the contour and the
resulting contour is not perfect in the details. 39

4.7 Locations of the negative clicks, the positive clicks and the resulting
segmentation for the network trained on the random policy. The
positive clicks are close to the object boundary while the negative are
far away. This is often the case for small objects. The segmentation
is better on the bottom of the car, where there are more positive clicks. 39

4.8 The click input 4.8a to the network trained with the smarter click
policy on one contour click. Note that the contour click is still very
close to one of the extreme clicks. This input made the network
produce the output in figure 4.8b. We see that the object boundary
is not good and that the shadow under the car specifically is partly
labelled as car. 41

4.9 An example of a good segmentation from the contour click model
with one click. The click and image input 4.9a has evenly spread
out clicks, of which there is a contour click underneath the car. We
see that the segmentation in 4.9b manages to correctly predict the
shadows underneath the car. 42

4.10 Click and image input with which the network produced the seman-
tic segmentation in 4.10b. Semantic segmentation produced by the
network trained with the smart click policy and three contour clicks.
The overall contour of the object is a quite good fit. 42

4.11 The ground truth semantic mask, where other objects are marked
in grey, compared to the predicted segmentation from the network
trained on the smart click policy with 3 contour clicks. Note that
occlusion seems to be a big problem since large parts of the occluding
vehicle is also segmented. As can be seen in this ground truth image,
the annotation is not overlapping, so the pixels do only belong to the
current object. 43

xiii

List of Figures

4.12 The extended input, ground truth segmentation and predicted seg-
mentation respectively. This was produced by the network trained on
four contour clicks and the smarter click policy. It is clear that occlu-
sion is a problem, especially when a large part of the object in focus
is covered. It is also noticeable that the lower parts of the occluding
object is not at all segmented. 43

4.13 The extended input and predicted segmentation for the network trained
on the smarter policy with five contour clicks. It is noticeable how
the amount of extra clicks somewhat tells the shape of the object and
highly interesting is that the only part where the segmentation is a
bit off is where there are no extreme clicks, the left wheel in the picture. 44

4.14 Negative clicks on the left, positive clicks in the middle and segmen-
tation on the right. Input created with the smarter policy. There
is almost no possibility of seeing the difference between the negative
and positive clicks. The resulting segmentation is rather good. 45

4.15 Negative clicks on the left, positive clicks in the middle and segmen-
tation on the right. Input created with the smarter policy, in the first
iteration. The negative clicks are a bit outside of the contour, and
the positive are not at all on it. The segmentation completely misses
all of the positive clicks. 46

4.16 Negative clicks on the left, positive clicks in the middle and segmen-
tation on the right. Input created with the smarter policy, with five
clicks of each type. Both the positive and negative clicks are once
again very close to the contour as we near the end of the training. . . 47

4.17 PointRend segmentation example with the extreme clicks as input.
The PointRend module is not at all successful in its predictions for
this image. It is a quite hard image to classify correctly, but we can
clearly see that it is nowhere near correct. 48

4.18 PointRend segmentation example with the extreme clicks as input.
The PointRend module is rather successful in its predictions for this
object. Especially noteworthy is the precision along the underside of
the car even though its shadow is of almost the exact same color. . . 49

4.19 A bad semantic segmentation by the PointRend network with contour
clicks. This object is heavily occluded and even though the contour
click is on the boundary between the object in focus and the occluding
object it is not enough to succesfully segment the object in focus. The
network has not learned that the contour click is a delimitation of the
object. The clicks being in the alpha channel of the image is what
leaves some strange colors. 49

4.20 A bad semantic segmentation by the PointRend network with contour
clicks. We can see that parts of the occluding object is also segmented,
with the ground truth bitmap to the left and the predicted segmen-
tation to the right. We also see from the click placement that the
contour click is very close to one of the extreme clicks and as such
does not provide a lot of new information. The clicks being in the
alpha channel of the image is what leaves some strange colors. 50

xiv

List of Figures

4.21 A comparison of some of the best segmentations produced by the
PointRend module and the contour click model. 50

xv

List of Figures

xvi

List of Tables

4.1 Table showing overview test results. The comparison is between the
different models for the random click policy and smart click policy.
Furthermore, the comparison is done between the Baseline model, the
extreme click model, the contour click model and the positive and neg-
ative click model (PosNeg). We see that the models with additional
input perform better than the baseline model and the extreme click
model for both policies. 33

4.2 Table showing test results for the Contour click model. The models
listed in the table were trained with the same amount of clicks that
they were tested for. The results are not conclusively showing an
increase in performance as more clicks are used. 33

4.3 Table showing the test results for the positive and negative click
model. The comparison is between the random and smart policies
and between one and five extra clicks. The results show an increase
for the random policy but a decrease for the smart policy. 34

4.4 Table showing test results of the different variations of the PointRend
model. The performed tests are of different types of input. 47

xvii

List of Tables

xviii

1
Introduction

Autonomous vehicles is currently a hot topic around the world, since they have the
possibility of increasing safety and decreasing environmental impact of the automo-
tive sector. The safety requirements of a self-driving car are very high, which means
that its decision making systems need to be as accurate as possible. In order to
train these systems to a degree where they might be trusted with the responsibility
of human safety, an extensive amount of labeled training data is required. This is
because the machine learning algorithms for autonomous driving are often super-
vised learning algorithms.

One type of supervised learning problem for perceiving the world is semantic seg-
mentation. The task is to label each pixel in the image with its category, e.g.
pedestrian, car or road. In addition to distinguishing each category of objects in the
surroundings, it is also important to keep track of each object instance of a cate-
gory. This is called semantic instance segmentation and it provides a high level of
detail. This pixel accuracy of the perception of the surroundings is very important
for autonomous vehicles, in order to make the correct decisions when driving.

In recent years, semantic segmentation algorithms have improved their performance
remarkably. Many new challenges to measure the performance has also been de-
signed, such as the Cityscapes [8] dataset. It consists of city street images where
the task is to label each pixel in the image. The top performers currently reach an
accuracy of approximately 84% [31]. Although the accuracy of the machine learning
solutions for traffic scenes is increasing, it is still not accurate enough. This means
that the algorithms alone are not enough to produce training data of high enough
quality for autonomous vehicles. Because of the necessary high quality standards
of the data, it is currently created manually by human annotators that mark each
object in an image. Creating the data manually is a tedious process that requires a
lot of attention to detail and it takes a lot of time. Since it is highly time consuming,
it is also expensive to create the vast amounts of needed data.

If the human annotator could be assisted with an algorithm that provides sugges-
tions of the annotation, the process takes less time per image and becomes less
expensive. An intuitive way to accomplish this is to combine the strengths of a hu-
man annotator with the strengths of an algorithm for semantic segmentation. This
could mean to let the machine learning algorithm take care of more straightforward
problems and to let the annotator focus on more difficult areas and detecting the
objects. Ideally, the combination of a human and an algorithm then could produce

1

1. Introduction

data faster but still with the same high quality.

On the topic of machine learning assisted annotation, there exists some recent work
[1][17][20] where the authors incorporate user input to let an algorithm make a sug-
gestion. When provided with the suggestion, the annotator may interact with the
system in some way to hopefully guide the network into making better predictions.
Although these techniques reach good performance, they all use different methods of
incorporating the annotator input. As the input form varies between the solutions,
so does the resulting segmentation from the algorithm. Because of this, it is difficult
to find out what kind of user input affects the algorithm in a desirable way and
how it affects it. More work is therefore needed to decide definitely on which form
of annotator interactions are optimal for the performance of the algorithm and to
establish the respective impact of these interactions. We believe that there is a lot
of possible and necessary research left to be done on how the human and algorithm
can work together. This thesis will therefore focus on investigating two types of user
input, their impact on the resulting semantic segmentation and how to train net-
works that can make use of the annotator input. In order to study the impact more
thoroughly, the annotator input is also tested on networks not previously examined
with it.

1.1 Problem statement
This thesis aims to investigate different ways of incorporating user input into a neu-
ral network with the intention of improving the process of creating training image
data for autonomous vehicles. The thesis is done in collaboration with Annotell, a
company providing annotated training data for autonomous driving. A challenge
with annotating high quality training data is that it requires extensive manual work
and thus it is time consuming and costly to produce. The goal, from a business
perspective, is to improve on this process both in means of time spent on each data
sample but also to make the annotation experience more convenient for the annota-
tor.

Manual annotation of objects is done by labeling groups of pixels in the image as
either an object of a specific class or as background. Just detecting the objects is
generally not enough level of detail, but instead a classification of each object pixel
is needed. The problem of labeling each pixel in an image is in machine learning
referred to as semantic segmentation, and to also differentiate between instances of
the same class is referred to as semantic instance segmentation.

It is worth noting that when a human does this work, the difference between the two
problems of semantic segmentation and semantic instance segmentation is smaller
since a human generally has no problem distinguishing between different instances
of the same object class in an image. In the current workflow in Annotells applica-
tion the human detects the object by drawing its contour in full as a polygon. In
this thesis it is the user who detects the object instance by providing initial input

2

1. Introduction

to the algorithm, and the neural network does semantic segmentation of that object
instance.

The user input is easier and faster to provide than to manually label the whole
image. It will be used to provide guidance to a machine learning algorithm. After
this initial input is provided, the next goal is that it should be easy for the annotator
to improve the segmentation provided by the algorithm by providing further input.
That process is what we will often refer to as “interactive improvement” of the result
and it is needed due to the high quality requirements of the data.

Research questions

The research questions that the thesis attempts to answer are:
• How can the user input be incorporated to the algorithm input in order to

guide the segmentation?
• What kind of user input is best for interactive improvement of the segmenta-

tion.
• How could training data be created in order to simulate user behaviour?

Specifically, how can we create training data such that the network learns
to do interactive improvements to the segmentation?

We aim to examine existing techniques for machine assisted semantic instance seg-
mentation and extend them to better be able to incorporate user input and inter-
active improvements. This includes implementing different machine learning algo-
rithms with different network architectures. Some will be very similar to already
existing solutions while the interactive improvement methods might be more novel
in their approach. Different ideas on how to implement the interactive improvements
and how to construct training data that is useful for this process will be discussed
further on in the report.

1.2 Scope
This thesis builds upon the ideas for user input that was presented in DEXTR [20]
and how to extend them to make more use of interactive corrections to the provided
segmentation. We will also examine the PointRend [17] module and its potential in
combination with the user input data. Due to time concerns, the initial input from
the user will only be of one type and the network backbone will be the same for
all architectures. To simplify the use of the PointRend module, instead of applying
it as a separate final step to the architecture used for the other tests, it will be
implemented via the package made public by FAIR, which also builds on ResNet,
albeit with a somewhat different overall architecture.

As for annotated data, it could be of many types, but in this thesis the data is 2D
RGB-images of road environments. One image can contain multiple objects, but for
each sample we will only consider one object at a time. This simplifies the problem
and utilizes the human annotator to detect the object.

3

1. Introduction

The final delimitation is that there is no time to implement our work into an actual
application. This means that our findings can not be examined regarding the actual
decrease in annotation time and whether or not the quality improves in practice.
This is unfortunate, but hopefully the findings will warrant further study regarding
the impact of these algorithms on the work of the annotators.

1.3 Contributions
Our contributions are:

• Trying out more than one click on the contour as well as positive/negative
clicks as extended input for the network architecture presented in DEXTR.

• Using extended input data in combination with a PointRend module.
• We investigate some possibilities of creating training data to mimic the be-

havior of a human annotator and its impact on the segmentation.
• We show that extending the input generates better segmentation, while the

differences in how much we extend the data gives a rather small impact on the
segmentation.

• We show that the PointRend module can also make use of extended input,
and that it generates a very good segmentation when doing so. This would
merit using the PointRend module as a standalone module in networks used
for interactive annotation.

The results regarding the PointRend module are significant because it has not pre-
viously been evaluated with input extended in any of these ways. We also confirm
the findings of DEXTR regarding the impact of the extreme clicks and of adding
one contour click as well as showing that positive/negative clicks can be used in a
similar fashion.

Finally, our strategies on creating training data that tries to mimic the work of a
human annotator does not increase the accuracy of the segmentation. Our thoughts
on this will be presented more in depth in chapter 5.

1.4 Related work
Many existing techniques for semantic segmentation and semantic instance segmen-
tation build on convolutional neural networks(CNN). Current approaches that gen-
erate good results for semantic segmentation with deep CNNs are for example the
encoder-decoder architecture proposed by Chen et. al. in DeepLab v3 [7] and the
work by Yuan, Chen and Wang [31] where they make use of object-contextual rep-
resentation for their classification layer. These works are noteworthy since they are
some of the current state of the art solutions for semantic segmentation.

Another approach that makes use of the context in the image is the region-based
CNNs (R-CNNs)[11] where focus lies on a few regions of interest (RoI) for object
detection [24] [23]. Most current approaches for object detection builds on this
technique. This idea was extended in Mask R-CNN [14] where they combined the

4

1. Introduction

approach of object detection with mask prediction. This architecture is central in the
PointRend module [17] presented below and used frequently in this thesis. Other
approaches have replaced the CNN with a recurrent neural network (RNN) [25]
to show that this is a viable option. Another idea is to extend the CNN with a
Conditional Random Field (CRF) [2] to improve on predictions by getting more
information from the context. In DeepLabv2 [6], Chen et. al. included a fully con-
nected CRF to improve localization and also endorse parallel dilated convolutions
capturing contexts of various scale. Another work to capture multi-scale context is
the PSPNet [32] by Zhao et. al. which will be used as the classification module of
many of the networks in this thesis.

On the topic of interactive annotation, where a user is meant to adjust or edit the
segmentation in some way in order to improve the accuracy, there are a few differ-
ent approaches. Some take input by a user to guide the network and others create
polygons around the object for the user to adjust. An example of the latter is the
work by Acuna et. al. [1] where they have an encoding CNN, an RNN and a gated
graph sequence neural network (GGNN) model. The CNN extract image features
as an encoder and then the RNN decodes one polygon vertex at a time. Lastly, the
GGNN upscales the polygon to the required resolution. Their idea is to let an anno-
tator drag-and-drop a bounding box around the object and then possibly adjust the
resulting polygon vertices. Another solution, instead of sequentially predicting each
edge of the polygon, predicts all vertices at the same time by using a Graph Con-
volutional Network [19]. On the topic of polygons, the PolyTransform [18] instance
segmentation algorithm by Liang et. al. performs well. They use a segmentation
network to extract the instance masks in an image and then convert them to a set of
polygons. These are then fed to a deforming network that transforms the polygons
to better fit the object contour.

One interactive approach that does not use polygons and is more similar to our work
is to use clicks of the user in order to guide the network mask prediction. DEXTR
[20] took user clicks as additional input in the form of heatmap channels to enhance
performance. The extreme points of the object was used as an alternative to bound-
ing boxes, based on the idea from Papadopoulos et. al [21] and are marked by an
annotator on the four extreme coordinates of the object. This is the inspiration for
the extreme click model implemented in this thesis. Another approach is to take
two different types of clicks placed either on object pixels or non-object pixels [29].
This, in turn, is the inspiration for the positive/negative click model implemented
in this thesis. Another idea is to combine CNN models with level set evolution as
described by Wang et. al. [26]. This improves the accuracy even more while still
using the same extreme clicks as input from the annotator.

A rather different approach is to look at image segmentation as a rendering problem
and to use ideas from the field of computer graphics. In the recent work called
PointRend [17], their module takes a feature map output from a CNN and extracts a
feature representation for certain points where there is a need for a finer level of detail
in the segmentation and predicts a label from the point-wise feature representation

5

1. Introduction

for each of these points. The idea is partially based on the computer graphics
approaches of subdivision [27] to refine a coarse pixel grid where the values have
higher variance.

6

2
Theory

In this chapter are descriptions of the key theoretical concepts for the work pre-
sented in this thesis. Most central is the use of deep convolutional neural networks,
a machine learning architecture used for most modern approaches to computer vi-
sion tasks. The loss function we use to solve these problems will be highlighted, and
its key difference compared to other loss functions.

We will describe how our work relates to the most similar computer vision problems,
and what the key differences are. The differences are highlighted by the use of
extended input data, as described below, and how we can incorporate this into our
algorithms. We will also describe the theory behind the PointRend module that can
be used to improve the initial segmentation.

2.1 Semantic segmentation and semantic instance
segmentation

Semantic segmentation is the task of deciding, for every pixel in an image, what
class it belongs to. Formally: consider an image with a set P of size |P | pixels p,
such that:

pi,j ∈ P, (2.1)

where i and j are the coordinates of said pixels. We have the set of labels:

L = {l1, l2, ... , ln}. (2.2)

From that we wish to find the labelling function F such that:

∀p ∈ P,F(pi,j) = lx. (2.3)

Semantic instance segmentation aims to accomplish the same classification of the
pixels but to also distinguish between different instances. The task is not only
to label what class each pixels belongs to, but also which instance of that class.
Formally, this compares to the case described above such that each l ∈ L can exist
in many different instances. The sought after function F is still the same but the
set of labels can be defined as

L = {l11, l1m, l2m, ... , lnm}, (2.4)

7

2. Theory

where n is the number of classes and m is the number of objects of that class. m is
not necessarily the same for all n.

If the human annotator takes care of the object detection, the developed algorithms
can focus on semantic segmentation. Another part of the problem of semantic
segmentation that humans are quite good at solving is classification. If we also let
the human decide what type of object it is annotating, the algorithm only needs to
distinguish between foreground and background. This is known as class agnostic
instance segmentation and it corresponds to setting n = 1 in equations 2.2 and 2.4.
This also works well in combination with the annotation software of Annotell since
it gives the annotators the possibility to denote the class of the object they are
annotating. Thus, as the network solves semantic segmentation, the annotator can
solve object detection and classification.

2.2 Deep convolutional networks
Convolutional neural networks are commonly used in computer vision and through-
out the years there has been a trend of deepening the networks, adding more layers,
with the intention of learning harder problems. This is also the case for semantic
segmentation, with the recent top performers making use of deep network models.
In this thesis, deep networks is used for all the developed models and as such some
theory on how they work is beneficial.

Due to the sheer amount of learnable parameters of deep neural networks, it is not
feasible to have them operate on images of the same size as modern cameras pro-
duce. Images today tend to be thousands of pixels in both width and height and
no commercially available computers have the computational power to calculate se-
mantic segmentation for images of such sizes in a reasonable time frame. The simple
solution to this problem is to downsample both the input images and their ground
truth segmentations. All of the current state of the art methods require downsam-
pling in such fashion.

A technique that is of great importance when it comes to training deep networks is
transfer learning. A term first discussed by Pratt et. al. in 1991 [22], which sim-
ply refers to the concept of initializing one network with parameters from another
network that has trained for a long time on large amounts of data. Its importance
increases with the network depth, since training deeper networks takes longer time.
To “kick-start” the training with weights from another model is very beneficial. The
most common models from which to transfer weights are usually trained on the Im-
ageNet [9] data, used by for example [7], [14] and [20].

It stands clear that deep networks should be better at solving computer vision prob-
lems than their shallow counterparts. However, achieving the sought after network
depth by simply stacking layers upon each other is often followed by a network that
is harder to train. The difficulty arises due to the gradient being back-propagated to
earlier layers and becoming very small, and the issue is therefore called the vanishing

8

2. Theory

gradient problem, identified by Hochreiter in 1991 [16].

The vanishing gradient problem has been dealt with by batch normalization and
various other techniques, depending on the field of the application. This allows the
deeper networks to converge, but then there is still a problem of degradation [15],
which is a problem for deep networks where they perform worse than their shallow
counterparts. Such differences in performance are not caused by overfitting, but in-
stead the stacking of more layers leads to a higher training error. The phenomena is
not intuitive since there should be a way for the shallow network to be encompassed
in a deeper network, with all other connections being identity mappings. Such a
constructed example would theoretically mean that a deeper network should never
produce a higher training error than its shallow counterpart. The problem arises
from the underlying mapping being hard to learn for the network. Simply put, it is
theoretically possible to create a deep network in the way described above but an
actual network seem to never behave this way. This problem is discussed in length,
together with a proposed solution, by He et. al. in their paper on the network
architecture ResNet [15].

2.2.1 ResNet
ResNet [15] is one of the most widely used backbones for deep convolutional net-
works today. In the architectures presented further on in this chapter, a ResNet
backbone is always used, and the aim is to give an understanding of its merits and
why it is used for so many network architectures.

The main idea behind ResNet [15] is to use a shortcut connection and therefore
avoid the degradation that happens when stacking layers. He et. al. [15] notes that
previous algorithms seem unable to improve on this issue, and instead they propose
a solution to this by aiming the stacked layers to map towards a residual function
rather than the original one. The way that this works is by having residual building
blocks that typically have double- or triple-layer skip connections.

Figure 2.1: Residual block. The function F represents the residual mapping and
the operation F + x is performed by a shortcut connection and then element-wise
addition. Image taken from [15].

Formally, consider that one wishes the stacked layers to converge towards the un-
derlying mapping H(x). One can then construct the mapping F (x) := H(x) − x

9

2. Theory

and we have the original mapping as H(x) = F (x) + x. He et. al. prove [15] that
this greatly reduces the impact of the degradation problem.
The building block is formally defined as

y = F (x,Wi) + x, (2.5)
where x is the input vector and y is the output vector of the layers. The function F
represents the residual mapping and the operation F +x is performed by a shortcut
connection and then element-wise addition, as seen in figure 2.1.

2.2.2 Pyramid scene parsing
Semantic segmentation is pixel-wise classification task. When performing such a
task, the context of the image is highly relevant. Mostly because most pixels will
be of the same class as their neighbours. A neural network can make use of this via
the Pyramid Pooling module presented by Zhao et. al. [32].

The key point here is that the label of a pixel is highly dependent on its context, i.
e. the pixels around it. If this contextual information is incorporated in the learning
algorithm, the predicted labels tend to be better than when such information is not
used [32] [31]. The same thing goes for when the problem is not class agnostic,
for example it is very rare to find an object of the class car surrounded by pixels
classified as water. The correct label for the first object is then perhaps boat, which
shows the importance of information from the surrounding pixels.

Figure 2.2: The pyramid pooling module from the PSPNet. Image taken from the
paper Pyramid Scene Parsing Network by Zhao et. al. [32].

The scene parsing problems, which are based on semantic segmentation, are often
solved with deep convolutional neural networks (DCNN). The receptive field of a
DCNN is an indication of how much contextual information we make use of in every
layer, and is smaller for these types of deep networks in the high-level layers. This
means that the network may not take the global context into account and therefore
make mistakes that come from insufficient scene understanding.

In order to utilize global features, the pyramid scene parsing network (PSPNet)
was proposed by Zhao et. al [32]. The module of interest in the PSPNet is the

10

2. Theory

pyramid pooling module which is applied to an output feature map of a CNN. The
module combines the features under four different scales, where the coarsest level,
highlighted in red in figure 2.2, generates a single output and the finer levels divides
the feature map into different sub-regions. They apply a 1x1 convolutional layer
after each pyramid layer to reduce the dimension of the context representation and
therefore maintain the overall feature weight. The low-dimension feature maps are
then up-sampled to the same size as the original feature map and concatenated.
The final pyramid pooling global feature, which is the output of the PSPNet, is the
concatenated feature levels. An image of the pyramid pooling module can be seen
in figure 2.2.

2.3 Loss function
When a neural network “learns” something, what happens is that the weights of the
network is updated. This is done by backpropagation. When calculating the values
in this way, a loss function is needed to steer the weights in a direction that leads
to better output from the network. The choice of loss function generally depends
on the problem, and the choice is then between those usually used for semantic
segmentation.

For the task of class-agnostic instance segmentation we have considered the same
loss functions as examined by Maninis et. al. in the DEXTR paper [20]. The first
one is the standard cross-entropy loss which is described by Goodfellow et. al. [13]
(also by many others). However, since the occurrence of object and background
pixels is not necessarily equal in the images, especially not after data augmentation,
class balanced cross-entropy loss can be used to give importance to less frequent
classes. The difference between these loss functions can be noted by looking at their
equations,

Ls = −βY∗ log Ŷ − (1− β) (1−Y∗) log(1− Ŷ). (2.6)
Compare this to the loss function of the regular cross-entropy loss:

Ls = −Y∗ log Ŷ − (1−Y∗) log(1− Ŷ). (2.7)

In both equations, Y∗ signifies the prediction and Ŷ is the ground truth. It is im-
portant to note that Y∗ is not yet a binary classification but a value between 0 and
1 defining the prediction score that this specific pixel is part of an object. The loss
functions are also averaged over all samples when used in training.

We clearly see that the difference between equation 2.6 and equation 2.7 is the
β-term. It is defined as:

β = 1−
∑

y∗∈Y∗ y∗

|Y∗|
. (2.8)

This signifies the number of negative samples, i. e. the number of background pixels,
divided by the total number of samples. It helps with the class imbalance problem

11

2. Theory

by generating a smaller loss value when the dominant class is evaluated and thus
reduces its effect on the output.

2.3.1 Logits
Since the classification step is often a softmax function, it is common to have the
final representation of the output of the network in the form of logits. Logit is
a mathematical function mapping probabilities, that are in the range [0, 1] to the
range [−∞,∞]. This mapping is done according to equation 2.9 where L is the logit
and p is the probability,

L = ln p

1− p, p = 1
1 + e−L

. (2.9)

This is of importance because translation between logits and probabilities might be
needed to get correct values from the loss functions. The binary cross entropy loss
and the class-balanced cross entropy loss operates on the probabilities and not the
logits.

2.4 Extending the input data
To produce data such that the algorithm can do semantic segmentation for one
annotated instance, a method for denoting objects in an image is needed. In this
thesis we aim to utilize the user input to guide the network to a better segmentation,
and in order to understand that process we explain the founding solutions upon
which this thesis is built in this section .

2.4.1 Extreme clicks
When annotating objects in an image, the typical process is to draw a bounding
box around the object. Manual annotation in this case means that the annotator
needs to carefully draw a box around an object and match the x- and y-axis to
the object limits. The crowd-sourcing framework by Papadopoulos et. al. propose
an alternative way of annotating the object by instead of drawing a box around it,
clicking on the object’s extreme coordinates [21]. The extreme coordinates of an
object in an image are the top-, bottom-, left- and rightmost pixel coordinates that
belong to the object.

2.4.2 DEXTR
Exploring the previously mentioned extreme points as annotator input to a model
was done by Maninis et. al. [20]. In their solution DEXTR, they take advantage
of the fact that the extreme points lie on the boundary of the object and utilize
them as a guiding signal for the network in order to obtain more accurate object
segmentation in images.

12

2. Theory

The additional input to the image contains a heatmap with activations on the ex-
treme point locations. Each point has a 2D Gaussian around its center and the
heatmap containing all four points is concatenated to the RGB image as an extra
channel.

The extreme clicks were also used to crop the image to fit the bounding box created
by the points. In order to include some context to the image, the crop border is
then widened.

Architecture of DEXTR

The backbone of DEXTR is ResNet-101 [15], but without the fully connected layers
and the max pooling layers in the final two stages of their network. Instead, the
authors included atrous convolutions [6] in the last two stages in order to preserve
the receptive field. After the last stage of the ResNet-101 backbone, its output fea-
ture map is input to a pyramid pooling module in order to make use of the context
of the object. These changes are all to the final step of the network, the actual
classification.

The network output is a probability map that represents whether a pixel belongs
to the object or not, and the network is trained to minimize the class balanced
cross entropy loss previously explained in section 2.3. This balanced loss function
worked well for them since they used a centered crop of the image which had a
higher number of foreground pixels than background pixels.

Use cases for DEXTR

The authors of DEXTR list some of its use cases, among which class-agnostic in-
stance segmentation and annotation pipeline are the ones most promising for the
goals in this thesis. Class-agnostic instance segmentation is when the classes of the
objects do not matter, and in the case of DEXTR, this generalisation applies to
clicking on the extreme points of an object of any class. By annotation pipeline, we
refer to the workload and annotation time of an annotator. The authors of DEXTR
show that the annotation time decreases when using the extreme clicks as annotator
input instead of manually drawing the polygon around the object. Although in this
thesis we will not measure the actual annotation time for our methods, it is still of
importance to consider methods that decrease the annotation time since our prob-
lem statement relies around that.

2.5 Interactive improvements to the segmentation
Having a human annotator that produce the data gives new possibilities on how to
construct the algorithm to make use of this. To guarantee data of sufficient quality,
it is important that the segmentation given by the network is evaluated by the an-
notator. If it is deemed not good enough, there needs to be a way for the annotator

13

2. Theory

to tell the algorithm that a better segmentation is needed.

The trivial solution to this is to let the annotator simply mark the pixels deemed
to be wrong, and manually change their label. Since the initial segmentation is
produced by a machine learning algorithm, perhaps there are ways to, once again,
take input from the annotator that is more easily produced. Examples of that are
contour clicks or positive and negative clicks, which would be more easy to produce
than to manually correct the segmentation. This input is then used with the goal
of improving on the segmentation.

Adding input with the goal to improve the segmentation, can be included in the
training data. Improving on the segmentation can then in practice be performed by
having the annotator provide clicking in any of the forms described below and then
do a forward pass of the network with this, further extended, data. This produces
a new segmentation, hopefully of a higher quality due to more information being
included in the data.

2.5.1 Contour click
Taking further input from the annotator with the intention of improving a segmen-
tation is tested to some extent in DEXTR by Maninis et. al. [20]. They gathered
samples where the segmentation was not deemed to be good enough and sampled a
click on the contour in the erroneous area. They shift the click location a little in
order to simulate user behaviour and then let the network train with the extreme
clicks plus the one contour click, with the result of improved accuracy for those
samples.

2.5.2 Positive and negative clicks
Another idea is to have the annotator give different input whether or not the seg-
mentation mask should include more or less pixels in the noted area. This idea is
examined by Xu et. al. [29] where they label the different input formats as “positive”
or “negative” clicks, which is where the semantic segmentation should be extended
and decreased respectively.

2.6 Segmentation as rendering
In order to produce the best possible segmentation from the network, there are a lot
of different modules and tweaks that can be applied to the ResNet backbone. One
such module is the pyramid pooling module mentioned previously. Another such
module is the PointRend module, developed by Kirillov et. al. [17], based on the
idea of describing segmentation as a rendering problem.

Semantic instance segmentation performed by CNNs typically operate on a regular
grid of pixels. The input image is a regular grid of pixels, the hidden representations

14

2. Theory

Figure 2.3: Example of one adaptive subsampling step in the PointRend module.
Image from [17]. Predictions are only calculated for the marked sub-pixels and kept
for all others.

are feature vectors on a regular grid and the output is a prediction map on a regular
grid. This is not necessarily computationally efficient. The reason for this is that
the output from such a network should, in general, be smooth, i.e., neighbouring
pixels tend to have the same value. By the nature of performing operations on a
regular grid, these networks will oversample the smooth areas and undersample ob-
ject boundaries. Simply put, too much computational power will be put into regions
of the image where it is not needed, since every pixel not on a boundary will have
the same label as its neighbours.

The central idea to solve this problem in PointRend is to approach image segmen-
tation similarly to how the problem of rendering has been approached in computer
graphics for many years. Rendering is the problem of mapping a continuous model,
e.g. a 3D mesh, to a rasterized image, e.g., a regular grid of pixels. A common
strategy for solving this task is to compute pixel values at an irregular subset of
adaptively selected points. An example of this is the subdivision technique de-
scribed by Whitted [27].

With that in mind, Kirillov et. al. introduce PointRend as a neural network module
that uses the subdivision strategy to calculate pixel values at a non-uniform set of
points as seen in figure 2.3. A pointrend module consists of three main components:

• A point selection strategy. Avoiding excessive computation by selecting a small
number of points for which to make predictions on.

• Extracting a feature representation at each selected point to utilize sub-pixel
information by bilinear interpolation.

• A point head, a small neural network computing a label for the generated
feature representation of the selected point.

In itself, it is a general module that can take intermediate feature maps of a CNN
as input and output predictions per-pixel. In practice this results in an output of a
much higher resolution along the object boundaries compared to what would other-
wise be achieved by the same order of computational complexity.

15

2. Theory

2.6.1 PointRend architecture
In the PointRend module developed by FAIR, they build on their existing frame-
work Detectron [28]. It builds on a ResNet-50 backbone, but this acts as a backbone
in a Mask R-CNN [14] implementation. Mask R-CNN is one of the most successful
network architectures for solving semantic instance segmentation. It builds on the
architecture described in Faster R-CNN [23]. The main extension to this architec-
ture that is presented by He et al. in Mask R-CNN is to extended the output with
an object mask. Faster R-CNN outputs an object label and a bounding box offset,
aiming to solve the problem of object detection. It consists of two separate stages:
the first stage is called a Region Proposal network (RPN) proposing candidate ob-
ject bounding boxes. The second step extracts features from each candidate box and
performs classification and bounding box regression. The procedure of the second
step is practically identical to the process described in Fast R-CNN [12].

Mask R-CNN extends this second stage by, in parallel, calculating an object mask
for each candidate box. The candidate boxes and the region they contain is often
referred to as region of interest (ROI). Doing this in parallel is the main contribution
of Mask R-CNN compared to previous approaches.

This works by defining a combined loss function

L = Lcls + Lbox + Lmask. (2.10)

The classification loss Lcls and the bounding-box loss Lbox are used as defined in
[10].
That means that with a ground truth class u and a ground truth bounding box
offset target v, the loss is described as

Lcls = − log pu, (2.11)

and
Lbox (tu, v) =

∑
i∈{x,y,w,h}

smoothL1 (tui − vi) , (2.12)

where we have that

smoothL1(x) =
{

0.5x2 if |x| < 1
|x| − 0.5 otherwise . (2.13)

In the equation for the class loss (2.11) we simply have that Lcls is equal to the log
loss for the true class u.

Equation 2.12 for the bounding box loss is calculated over true bounding box regres-
sion targets u, v = (vx, vy, vw, vh) and the predicted tuple tu = (tux, tuy , tuw, tuh). Once
again, with the use of class agnostic segmentation we set the number of classes to 1.
The Lmask is what is new compared to Faster R-CNN. Lmask is of Km2 dimensional-
ity, which encodes K binary masks of size m ∗m, one for each of the K classes. For
an RoI associated with class k only the corresponding binary mask will be considered

16

2. Theory

when calculating the loss. This has the result that masks can be generated for each
class without competition among classes, a decoupling of the mask and class pre-
diction. They show in Mask R-CNN that this generates better segmentation results.

The PointRend architecture also contains a feature pyramid network (FPN). Its
purpose is similar to what the pyramid pooling module is used for in the DEXTR
networks, that is to take the global context into consideration. In short, it does so
by making use of feature maps from different levels of the ResNet backbone, also
in a similar way to the pyramid pooling module. The important thing to note is
that the last module in the PointRend architecture is not the same as in the other
architectures presented.

2.7 Evaluation metrics
In this section, a description of the evaluation metrics that are used in this thesis
is provided. In order to evaluate the results, Intersection over Union, IoU and
Dice coefficient are used. We start by explaining the IoU, sometimes called Jaccard
index, which measures the overlap between our ground truth and our predicted
segmentation divided by the union of them both and ranges between 0 and 1. It is
defined as

J(A,B) = | A ∩B |
| A ∪B |

, (2.14)

where A and B represents the ground truth and the prediction respectively.

The Dice coefficient is two times the overlap between the ground truth and the
segmentation, divided by the total number of pixels in them both. It is also used
to measure the similarity between two samples, where our samples again are the
ground truth and the prediction. Formally, it is defined as

DSC = 2 | A ∩B |
| A | + | B | , (2.15)

where the numerator is the amount of true positives and the denominator contains
the amount of true positives, false positives and false negatives.

Both the IOU and the Dice coefficient are set to 1 if the samples completely match,
which means that the prediction is one hundred percent correct and 0 if the predic-
tion is one hundred percent wrong. It is also noteworthy that if one model performs
better for one of the metrics, it also performs better under the other metric, although
they are not equivalent. In general, the IoU penalizes bad classifications more than
the Dice coefficient does, even if they both consider the classification to be, in some
sense, wrong. This means that the Dice coefficient will resemble the average perfor-
mance of that model, and the IoU measure will resemble the worst case performance.

17

2. Theory

18

3
Methods

To solve the problem of semantic instance segmentation where object detection is
performed by the annotator we implement a network architecture very similar to the
one presented in DEXTR [20]. We also investigate how to improve on the interactive
segmentation by using two types of extensions to the data, contour clicks and posi-
tive/negative clicks and how to use information about previous segmentation when
choosing the click positions. Furthermore, we analyze the performance of such data
combined with a PointRend module.

This chapter first gives insight on the data used for training the networks designed
in this thesis. After the data is presented, the network architecture used for the
baseline, extreme click model and extended models is presented. With the architec-
ture in mind, we then present our solutions on how to extend the input data, from
being simply extreme clicks to now contain even more information. This information
is what represents the interactive improvements to the segmentation. After that,
we will describe our work to generate more realistic training data for the solutions
on extending the input. Lastly we describe the use of the PointRend module to
generate segmentations, a separate architecture than the one previously described,
even though there are many similarities.

3.1 Dataset
The dataset was provided by Annotell and an example image from the dataset can
be seen in figure 3.1. Among the images in the dataset we also make sure to use only
the ones that actually contain objects, since we do not segment the surroundings
of the objects and thus have no need for images of only background. The dataset
consists of road images where the image objects’ segmentations are manually anno-
tated. This is done by clicking on the object boundary and sequentially drawing a
detailed polygon around the object, where the annotator clicks become the polygon
vertices. The result is a segmentation of the object in the image and its vertices are
saved as a Multi-Polygon. A Multi-Polygon is basically a list of the polygon vertex
coordinates, which could also contain inner lists if some occluding object divides the
visible object in several parts. These are saved in GeoJSON format [5]. From the
pixel coordinates it is simple to find the extreme points of the object and thereafter
simulate user extreme clicks. We simply find the extreme point coordinates corre-
sponding by finding the minimum and the maximum of the x and y coordinates of

19

3. Methods

the object.

The extreme points are not only used as input to the network, but also as a means
of augmenting the data. The full augmentation pipeline overview can be seen in
figure 3.2. As the figure displays, the extreme point coordinates will be used to crop
the image, which for figure 3.1 results in something like figure 3.3.

Figure 3.1: Example of an image with a truck before it has been cropped. An
image can have multiple objects in them but one will be in focus at a time. Each
object in an image has a GeoJSON file connected to it, which contains the polygon
vertex coordinates of the annotated segmentation of the object.

Ideally, the training data would include extreme clicks made in real time by human
annotators in order to capture human behaviour in the input. The data used here
does not have that, although it is an annotator that has marked the ground truth
coordinates that are used as extreme clicks. It is not feasible to collect the extreme
clicks data for this thesis, but for our purposes the already annotated coordinates
will suffice.

Figure 3.2: The data augmentation pipeline used to transform the original images
into the input used for our network training. The border is the pixels we extend the
crop with to adjust the ratio between foreground and background.

There can be multiple objects in one image but we will only be interested in training
towards predicting one of them at a time. We disregard the possible other objects
by not letting the pixels that belong to them have any effects on the loss-value.
This can easily be done, since the loss function is calculated for each pixel and then
averaged over all pixels. By setting the loss value to 0 for each pixel belonging to
another object; the prediction for these pixels will be considered correct which will

20

3. Methods

Figure 3.3: Example of an image from the dataset, cropped with the help from
the extreme coordinates. The image was then extended by some pixels surrounding
the object in order to have more background pixels.

minimize their impact on the averaged loss. By that, we do not allow the network
to learn anything from pixels of other objects.

Cropping the image further mitigates the problem of other objects in the image,
along with the solution of not allowing learning for their pixels. The reason for this
is that cropping the images brings focus on specific regions of the image that are
currently of interest rather than all of it. When the crop border of the object is
found, additional background pixels are added to it. This was inspired partly by
the definition of the loss function and partly by the data augmentation of DEXTR
[20]. By expanding the image border and including more context, the ratio between
the object pixels and the background pixels gets more balanced. The images are
also resized to be 256 x 256 pixels before we use them as input in the network,
this is important since there is a large difference in the size of the different object
depending on how far away they are in the image. Finally, when the image gets
cropped, the object coordinates need to be translated correspondingly in order to fit
the new scale. After being translated, the coordinates of the Multi-Polygon is used
to produce a ground truth mask. Before finally being used as input to the network,
the pictures are flipped along the horizontal axis with a probability p1 and a color
jitter transform that randomly changes the brightness, contrast and saturation of
an image is applied with a probability p2 in order to augment the data. During our
experiments, p1 = p2 = 0.5.

3.2 Network architecture
The first network that we created was similar to the network that is presented by
Maninis et. al. in DEXTR [20]. It was based on the ResNet backbone as described
in chapter 2. The only noticeable difference is that our model was trained with the
ResNet-34 backbone instead of the larger ResNet-101 [15], because of constraints on

21

3. Methods

computational power and time.

This network was used for most of the models that we implemented. We will discuss
the details of each model further on. We also used this architecture for the baseline
model, which simply takes the images without any of the extensions, crops them
around the object and uses the cropped RGB image as input to the network. The
baseline model then outputs the same sort of semantic segmentation as the other
models.

Figure 3.4: Overview of the model idea with this network architecture. The
RGB image with concatenated extra clicks channels is input to the networks. The
output is a segmentation of the object. Note that the output image is an example
segmentation and is not taken from our results.

In figure 3.4 is an overview of the model idea. The input in the figure is an RGB
image with a concatenated extra channel containing the simulated extra clicks, al-
though the type and amount of extra clicks varies between the models. The input is
then passed to the convolutional neural network (CNN), which for these models is
the ResNet-34 network. The CNN outputs a feature map which becomes input to
the pyramid pooling module from [32]. As explained in the theory section, the pyra-
mid pooling module uses convolutional filters of different scales to gather features
from smaller regions in the image. It then upsamples the features and concatenates
them into the final feature representation. This is used by the classifier to predict
which pixels belong to the object and which belong to the background. We note
that the pyramid pooling module might have more impact if the images would have
had even more background around the chosen object and when classifying more
categories, but looking at DEXTR [20], it could still be profitable for this model
architecture.

3.2.1 ResNet with extreme clicks
In this subsection we present one of our models that is used for comparison. This
model is in its core idea similar to DEXTR [20], but differs when it comes to the
dataset and the network depth. It uses the network architecture described above
and the simulated user input for this model is the extreme points of the object.
The reason for implementing a model so similar to existing work is to make a fair

22

3. Methods

comparison to the other types of user input that we will test (which are described
in detail in upcoming sections). Again, this is due to the fact that our other models
are trained with a different network depth and a different dataset, so in order to see
the impact of the extra clicks, we needed to make sure that the models we compared
them to are built in the same way. Then, the only thing that varies is the input
type.

Figure 3.5: The extreme click model input. The red points represent the extreme
clicks and they are placed on the topmost, leftmost, rightmost and bottom-most
pixel coordinates of the object.

As mentioned before, it is a trivial task to find the extreme points from the given
ground truth Multi-Polygon that describes the object in focus. When the extreme
points are found, the image is cropped based on the values of the extreme points.
Each extreme point is then represented as a Gaussian distribution with the point
coordinate at its center and added to a fourth channel of the image. The gaussian
is set up with the click location as the mean and the standard deviation is set to
σ = 10 as described in [20]. The model input can be seen in figure 3.5 and is an
image with four channels, three regular (RGB) channels and one channel with the
Gaussian distributions around the extreme clicks.

3.3 Random click policy
In this section we present two models with the extra input clicks where the click
positions were sampled randomly, still according to the type. All the models still
have the extreme clicks as input. For the models described below, the training data
was created in the input transforms by first extracting the coordinates of the object
and then sampling points required for the training of the respective models.

The first model that we present is a model that has contour clicks as additional
input. When used with this policy, the contour clicks are sampled randomly from
the object boundary. As mentioned before, the extreme clicks are still present. The

23

3. Methods

Figure 3.6: The data augmentation pipeline used to transform the original im-
ages into the input used for the contour click model and the positive/negative click
model. Notice that all training data is constructed before being input into the net-
work. The extended data is constructed by randomly generating contour clicks or
positive/negative clicks respectively.

second model that we present in this section is one that has positive and negative
clicks. Positive clicks are clicks sampled from the set of object pixels, and negative
clicks are sampled from the set of background pixels. When used with our random
policy as is described in this section, the clicks are sampled randomly from their
respective sets.

3.3.1 Random policy with contour clicks
This model had the same architecture as was mentioned in section 3.2. Like the
previous model, it used the simulated extreme clicks as input. In addition to the
extreme clicks, we randomly sampled a click from the contour of the object and
added it to the extra click channel.

Randomly sampling a click on the contour was the most naive strategy to begin
with. Although we believe that an annotator might place the clicks in a more
considerate manner on the boundary than randomly, this model adds robustness
to our investigation. The simulated contour click was represented in the same way
as the extreme clicks, as a Gaussian distribution around its point center with a
standard deviation σ set to 10. The contour click and the extreme clicks were then
placed in the same channel, so the input to the model was still four channels; the
RGB-channels from the image and the extra click channel. The data augmentation
pipeline for creating the data for this model was similar to how it was done for the
positive/negative clicks model, and the process overview can be seen in figure 3.6.

3.3.2 Random policy with positive/negative clicks
The third model that we implemented had the same backbone as the others with
the backbone and the pyramid pooling module, as described in section 3.2. It still

24

3. Methods

Figure 3.7: The contour click model input. The red clicks represent the extreme
clicks and the yellow point is the additional click, placed on the boundary of the
object. The contour point is placed randomly on the boundary in this image.

used the simulated extreme clicks in a fourth channel that was concatenated to the
image. The differences between this model and the Contour model was in this model
the type of the simulated extra user clicks and that the extra clicks were placed in
two additional channels. The model therefore has a six channel input, where the
RGB-channels and the extreme click channel form the first four. The fifth channel
contains positive clicks and the sixth channel contains the negative clicks. As men-
tioned, this data was created according to figure 3.6.

Figure 3.8: The positive and negative clicks model input. The red clicks represent
the extreme clicks. The yellow points represent the negative clicks which are placed
outside of the object. The blue points represent the positive clicks, which are placed
on pixels that belong to the object. Two positive and two negative points are placed
in this image in order to give an example of where the different clicks could be
placed.

This model was inspired by [30], where they used Euclidean distance maps to repre-

25

3. Methods

sent the clicks while we kept with the Gaussian distribution as for the other models
in order to evaluate the models in a fair manner. Our version of the model still had
two types of clicks for this model which were placed either on the object we want to
annotate or on the background pixels, as seen in figure 3.8. The background pixels
in this sense include other objects that were still visible after the image was cropped,
but those pixels were handled differently, as previously described. The simulated
clicks that were placed on object pixels are called positive clicks, and the ones places
on the background pixels are called negative clicks.

The clicks are sampled randomly from the set of object or background pixels, as
compared to [30] where they had different techniques for how to sample the negative
clicks. The reason for having different sampling techniques for the negative clicks
was that a random sampling strategy would be too hard to learn for the network.
We decided to keep with the random sampling strategy also for the negative clicks
since we crop the image around the object and the space of possible pixel positions
therefore is smaller, which means that the meaning of the negative clicks should be
easier to learn.

3.4 Smarter click policy
The smarter click policy differs from the random policy in that the extra clicks are
placed where the segmentation has previously failed for that sample instead of being
placed randomly. The smart policy was implemented in order to investigate if the
click positions made a difference for the network. We believe that an annotator
may choose to place the clicks carefully, and therefore it is interesting to see if the
click position matters. If it does, that would show some promise towards creating
training data that makes the networks better suited for improving on its created
segmentations.

We implemented two models that uses this click policy that use the same network
architecture as described in section 3.2. The first model is the contour click model
with this smart policy. These contour clicks are sampled on pixels of the object
boundary where the segmentation was previously wrong. The second model is the
positive and negative click model. Trained with this policy, the model places positive
clicks on object pixels that was previously wrong, and negative clicks on background
pixels that previously was incorrectly predicted.

3.4.1 Building the training data
The previously implemented models with ResNet as backbone sampled clicks ran-
domly, but given that an annotator will place a click with more thought we im-
plemented a training policy for the scenario of an annotator clicking where the
segmentation was incorrect. The idea behind this was to compare the learning ca-
pacity between placing the clicks randomly and placing them where the model had
previously been wrong and therefore guide the network more in areas that might be

26

3. Methods

difficult to predict correctly.

The training was divided into two phases, where the first phase only utilized the
extreme clicks as extra input, as seen in figure 3.9. Any other extra channels were
empty at this point of the training. The reason for beginning training with only the
extreme clicks as input for the first epochs was that the predictions from the first
few epochs performed quite poorly and we wanted to sample locations where the
erroneous areas in the image were less randomized in order to make a difference to
the random click policy. Even though the initial training performance was bad, we
still sampled sets of pixels that were wrongly classified for each sample in order to
have clicks ready for those samples once we entered phase two.

Figure 3.9: Training policy overview for the interactive improvements. In phase
one, the input to the network is the RGB image along with extreme clicks in an
extra channel as before. The additional clicks, such as contour clicks or positive
and negative clicks are then chosen from pixel coordinates where the prediction was
wrong. In the image is an example of how a contour click could be chosen. Then,
in phase two, the previously saved click(s) are concatenated to the input.

Phase two was initiated in the training when the validation loss was less than 0.6.
For most of our experiments, this happened already after the first epoch. In this
second phase, the samples had saved click locations where their segmentations had
been wrong in an earlier epoch. These click positions are from the erroneous pixels
from the previous time the network saw that sample. For samples that for some
reason had not yet been seen by the network, a click was randomly sampled, and
then the smarter click locations were saved for the next epoch by comparing that
sample’s generated output segmentation to the ground truth. The data is created
as described in figure 3.10.

Throughout the training, the predictions are different for each time the network sees
the sample, since the network learns and the segmentation improves. This means
that the click locations that are saved between the epoch are different. We will
discuss the implications of this in section 5. The sampled clicks were stored in a
dictionary, keeping each object as a key and its sampled click positions as the value.

27

3. Methods

The clicks were then added to an extra channel and concatenated to the RGB image
as for the previously described models.

Figure 3.10: The data augmentation pipeline for the smart click policy. Here, we
transform the original images into the input used for the contour click model and
the positive/negative click model. Notice that the extended input is dependent on
the previous output of network and is thus changing for each iteration. The new
data is sampled from previously misclassified pixels.

For the validation data samples, the clicks are still sampled randomly before con-
catenation. This is because when making predictions on the validation set we do not
backpropagate, meaning that there are no previous iterations over the same sample
from which we can construct the data according to these strategies.

3.4.2 Smart policy with contour clicks
The smarter click policy version of the contour click model stores, as previously men-
tioned, pixel coordinates from the object contour that has previously been predicted
incorrectly. The clicks are stored in a dictionary with one entry (key) for each data
sample. The clicks are selected by comparing the values of the ground truth bitmap
and the prediction bitmap for the coordinates on the boundary and sampling from
the ones that are incorrect. This is done every time the sample is processed, which
means that the clicks may have different positions for every epoch, every time the
image is seen by the network. The idea behind this is, as mentioned before, to guide
the model to the segmenting more difficult areas of the contour. For the validation,
the contour click is sampled randomly from the object boundary.

3.4.3 Smart policy with positive/negative clicks
This version of the positive and negative click model stores the sampled clicks in
one dictionary for each click type, containing one entry for each object. Finding
the positive clicks is done by comparing the ground truth bitmap to the prediction
bitmap and thereby find the coordinates for the false negatives in the prediction.
The semantics of the positive clicks are that they indicate an area where there should
be a segmentation. Once found, they are added to a channel and concatenated to
the input. The negative clicks are found by comparing the ground truth and the

28

3. Methods

prediction as before, but instead collecting the false positives and sampling pixel
coordinates from them. These are locations where there should be no segmenta-
tion, but where a previous prediction did segment the pixels. The negative clicks
coordinates still include both background pixels and other objects’ pixels. When
some negative clicks are found, they are also added to a channel and concatenated
to the input, which means that this model still has six input channels. Thus, the
only difference is that the clicks are sampled from points where the segmentation
has been wrong, instead of being sampled randomly from the object or background
respectively.

3.5 Pointrend
The PointRend module is released as a python package by FAIR (Facebook AI
Research) [28]. It is not released as a standalone component but rather as a part
of their object detection architecture called Detectron [28]. As such, there are two
options on how to examine the impact of a PointRend module on the data extended
by a human annotator.

• The first option is to implement the PointRend module as a separate module
and to use it for the classification part, i.e. the last layer, of the architectures
described above. As such it would then, theoretically, be used instead of the
pyramid scene parsing module.

• The other option is to make use of the existing packages in detectron and
create a training algorithm and a set of transforms to be able to use our data
with that implementation of the PointRend module.[28]

Since the network backbones are similar, the second option seemed to most clearly
indicate whether or not the PointRend module would be useful for data extended
by a human annotator. Some tweaking to the training setup, such as registering
our dataset in the dataset catalog built into the detectron, was needed to allow for
images with four channels to be used as input to the detectron with a PointRend
module as its classifier and to also make use of the instance detection performed by
the annotator.

3.5.1 Variations
For the PointRend tests, we developed four variations of input data in order to test
the effect of each element. The variations are an image that has not been cropped, a
cropped image, a cropped image with the extreme clicks and a cropped image with
both the extreme clicks and a contour click. The reason for the models without
simulated user input was that this has not been tested for the architecture that the
Pointrend module was tested for. Therefore, we believed that such a test was nec-
essary in order to have a clear evaluation of how the simulated user clicks affected
the result.

The variations of the PointRend input in the list below gives an insight on how much
the extended data helps the PointRend module in its predictions. Visualizations of
the different input variations can be seen in figure 3.11.

29

3. Methods

Figure 3.11: The variations on the PointRend input. Here, a) is the first input
which is the image without any edits. Second was the cropped image, b). The
third variation had a cropped image and concatenated extra channel contatining
the extreme clicks as seen in c). In the fourth variation, d), a contour click was also
added to the extra channel.

• Training the network on the full-size image. The extreme clicks are only used
to designate the chosen object but nothing more. In other words, the extreme
clicks are used to detect the object in the image.

• Training the network on an image that is cropped with help of the extreme
clicks. In this case the extreme clicks are used to crop the image and detect
the object in the cropped image, giving the algorithm a much smaller part of
the image to focus on.

• The “final” version, the one mentioned above, is to use the extreme clicks
both to crop the image but also as a fourth input channel in the image. This
is identical to the extended input used for the DEXTR model as previously
described. Thus the detectron network with the pointrend module is trained
on cropped images that are extended with a fourth dimension containing the
clicks.

• Lastly we created a model that takes on extra click on the contour, similar
to the input described in section 3.3.2. This was to examine if extending the
input in such a way would also be beneficial for the PointRend module.

The purpose of this experimental setup was to determine whether or not the exten-
sion of the input data that we had previously developed would work well together
with a PointRend module. If results showed that the PointRend module performed
better with a fourth channel in the input images that would imply great potential
for making use of it as a standalone model for other solutions to the machine assisted
annotation problem.

30

4
Results

This chapter presents the results from the experiments conducted in this thesis. The
different evaluated models are the extreme click model, the contour click model, the
positive/negative clicks model and the PointRend model. The different extended
models (contour clicks and positive/negative clicks) will be presented with different
amounts of clicks. This is to show whether or not more clicks are beneficial for
the segmentation. For the PointRend module, focus lies on whether or not it can
improve with the extended training data. In order to understand our experiments
and the results that we report, we start by describing the experimental setup.

In this thesis, focus is not on optimizing the results for state-of-the-art performance,
but rather to investigate tendencies and solutions for the interactive part of the
annotation. Achieving top performance would, by looking at current state-of-the-
art solutions, demand a more substantial network architecture, more training data
and longer training time. The results below are therefore to be seen as relative to
each other rather than for their absolute performance. In order to show the results
and analyze the components, we have conducted a study of our models with different
settings.

4.1 Experimental setup
Each of the models, except for those with a PointRend module, were trained until
they reached a validation holdout that stopped the training when the validation
loss did not decrease for five epochs, after a minimum of 40 epochs. This setup of
the validation holdout is to prevent overfitting and to handle the varying training
times for the models. The learning rate was lowered during training for the random
click policy, for every 40th epoch it was multiplied by 0.10. For the smarter click
policy, decreasing the learning rate was deemed unnecessary since the training was
usually finished after about 40 epochs. Most importantly, no models are trained for
a substantially longer time, enabling comparisons between the extreme click model,
contour click models and positive/negative click models.

For the PointRend networks, 25 epochs was enough to train on this amount of data
since they got high accuracy much faster than the other models. One reason for
this is probably the pretraining, which will be discussed in the next chapter. This
might complicate comparisons between the networks with PointRend modules and
the contour click and positive/negative click models due to different training setup.

31

4. Results

There are however substantial differences in the architectures that already compli-
cate such comparisons. As previously mentioned, the purpose is to investigate the
tendencies of the different models and for the PointRend module, the goal is to show
whether or not it benefits from the extended input. Thus it is not a problem that
comparisons between them are not straightforward, as long as we keep it in mind
when analyzing the results.

We report results for the different models in terms of mean Intersection over Union
(IoU), and mean Dice coefficient from the predictions on a test dataset, calculated
as previously described in the theory section. These metrics are used since the
main interest is to have an algorithm that improves on the annotation speed while
maintaining the accuracy of the segmentation. Since measuring the annotation times
is outside of the scope of this thesis it is a natural choice to evaluate the algorithms
based on the segmentation accuracy. The IoU and Dice scores reported in this
chapter generally comes from two separate training runs, three for some models.

4.1.1 Input data
All models were trained on 4000 images sampled from sequences, with images with-
out cars being removed which brings it down to 3573 images. Out of these, 20% of
the images were used in a validation dataset. The test dataset is taken from the
end of a sequence in order to make sure that the samples are different and it is
almost as large as the training dataset. The images are cropped around the object
for most models, and then downsampled to size 256 x 256 before being input to the
network. Apart from the image input, all models but the baseline model takes the
extreme clicks as input in order to crop the image around the object unless otherwise
specified.

4.1.2 Baseline model
As it was previously described in section 3, we implemented a Baseline model in
order to be able to analyze the results compared to it. The difference between the
baseline and the other models was that this model only took the RGB-images as
input, and not any simulated user input clicks. Input images were still cropped from
the extreme point positions in order to give a fair examination of the extreme point
impact, but they were not put in a channel and concatenated to the input for this
model.

4.1.3 Extreme clicks model
Before investigating the results for the different click policies, the model with only
extreme clicks is evaluated. As previously described, the input to this model is the
image as well as four extreme clicks that are concatenated as a fourth channel of the
image. This is exactly the same data extensions that is examined in the DEXTR
paper, but in order for us to evaluate properly, we implemented en extreme click
model in a similar way as the other models. As reported in DEXTR, the results

32

4. Results

Table 4.1: Table showing overview test results. The comparison is between the
different models for the random click policy and smart click policy. Furthermore,
the comparison is done between the Baseline model, the extreme click model, the
contour click model and the positive and negative click model (PosNeg). We see
that the models with additional input perform better than the baseline model and
the extreme click model for both policies.

Overviewing results Random policy Smart policy
Model IoU (%) Dice (%) IoU (%) Dice (%)
Baseline 70.43± 0.55 74.18± 0.60 70.43± 0.55 74.18± 0.60

Extreme clicks 73.45± 0.62 76.08± 0.51 73.45± 0.62 76.08± 0.51
Contour (1 click) 74.46± 0.17 76.69± 0.10 74.45± 0.33 76.77± 0.27

PosNeg (1 of each click) 74.63± 0.13 76.94± 0.20 74.97± 0.34 77.20± 0.36

Table 4.2: Table showing test results for the Contour click model. The models
listed in the table were trained with the same amount of clicks that they were tested
for. The results are not conclusively showing an increase in performance as more
clicks are used.

Contour clicks Random policy Smart policy
Model IoU (%) Dice (%) IoU (%) Dice (%)
1 click 74.46± 0.17 76.69± 0.10 74.45± 0.33 76.77± 0.27
2 clicks 74.34± 0.19 76.63± 0.22 74.44± 0.56 76.70± 0.55
3 clicks 74.59± 0.36 76.86± 0.33 74.30± 0.16 76.66± 0.22
4 clicks 74.43± 0.25 76.71± 0.19 74.42± 0.27 76.72± 0.21
5 clicks 74.46± 0.06 76.68± 0.04 74.56± 0.17 76.79± 0.15

of the experiments show that the segmentations are better when we use extreme
clicks compared to the baseline model. Results can be seen in table 4.1 with the ex-
treme click results reported together with results from the baseline and other models.

Overall, the models with simulated user input perform better than the baseline
model. Adding the extreme points gives better segmentations and adding the extra
contour or positive and negative clicks gives an additional increase to the perfor-
mance compared to using only the extreme clicks.

4.2 Results for random click policy
In this section we show the results for the models trained with the random click
policy, where the click positions were randomly chosen. These models used ResNet-
34 as backbone with the pyramid pooling module on top and simulated user input
for the training data was added in the data transforms for all of these models. The
images were cropped around the object for all models evaluated with the random
click policy.

33

4. Results

Table 4.3: Table showing the test results for the positive and negative click model.
The comparison is between the random and smart policies and between one and five
extra clicks. The results show an increase for the random policy but a decrease for
the smart policy.

Positive/negative clicks Random policy Smart policy
Model IoU (%) Dice (%) IoU (%) Dice (%)

1 click (of each) 74.63± 0.13 76.94± 0.20 74.97± 0.34 77.20± 0.36
5 clicks (of each) 74.71± 0.10 76.99± 0.11 74.65± 0.09 76.90± 0.15

In table 4.2 is an overview of the results for the random click policy for the contour
click model. The same data for the positive/negative model can be seen in figure
4.3. It is clear for both models that more clicks in general should result in a better
segmentation, even though some of the intermediate steps do not report an increase.
Our results are not conclusively showing this increase from adding more clicks. This
will be discussed more in depth in the next chapter.

4.2.1 Contour clicks
In order to evaluate how much one single click affects the model and if the model
could benefit from receiving multiple clicks, we designed a test comparing contour
models with varying amount of clicks.

We chose to perform the tests of one up to five extra contour clicks since there
should be a tendency of receiving better results with more clicks. Hypothetically, if
an annotator would place an infinite amount of clicks on the object contour, it would
be the same as drawing the detailed contour by hand. Therein lies the reasoning
behind this test, that more clicks should guide the network better. Since adding only
one click shows a difference, the effect of more clicks should be visible already when
increasing the number of contour clicks from one to five. Furthermore, a solution
where an annotator has to click more than four extreme clicks and an additional five
contour clicks is getting closer to the workload of manual annotation and we want
to minimize the needed user interaction. Therefore, we settled with five extra clicks
as the maximum in our tests.

In table 4.2 we have the overall results from the different contour click models trained
with the random click policy. Each model listed in the table was trained according
to the experimental setup mentioned previously. The models are tested with the
same amount of extra clicks that they were trained with in order to grant fairness
in the evaluation.

Table 4.2 shows that there is no distinct tendency of increased accuracy when adding
more contour clicks, which is not what was expected. Since one contour click in-
creased the accuracy compared to the extreme click, additional clicks were expected
to keep increasing the segmentation accuracy. The differences are not very large and

34

4. Results

Figure 4.1: Semantic segmentation and extended image input for the network
trained on four contour clicks from the random policy. The clicks are in regions
of the image that would be difficult for the network. Many clicks are also located
around the rearview mirrors, which could be beneficial since it is a tricky part to
segment. The resulting segmentation is rather good.

it is not a linear relation between the amount of clicks and the increase in accuracy.
We note that three and four contour clicks gave best performance in our tests, al-
though the deviations of the other models makes the results difficult to conclude.

The random click policy sometimes generates clicks at very beneficial locations on
the contour. Hypothetically, such locations are far away from the already existing
extreme clicks as the contour clicks will then provide more information on the ac-
tual contour. An example of this can be seen in figure 4.1 where we note that the
clicks are very well placed to generate a good segmentation for the rearview mirrors,
which is a part of a car that networks often struggle with. A visualisation of this
struggle can be seen in figure 4.2 where the initial extreme click is the only click
placed on the right rearview mirror and the resulting segmentation is not very good
for that part of the contour. Compare this to the segmentation in figure 4.3 where
the contour is much better and all of the clicks seem to be a part of the segmentation.

In figure 4.4 is an example of two interesting things. First off, the contour clicks
are spread out quite evenly along the border of the object, which is as previously
mentioned most likely good for the network since it gets more information about the
boundary. The other thing to note is the antenna, a tricky shape for the network
due to it being so thin. One extreme click is placed on the top of the antenna as it
is the top part of the car, and the segmentation reflects that by going above the roof
of the car. It is however too wide, and does not at all resemble the actual shape of
the antenna.

Another example of the random click policy resulting in very little additional infor-
mation can be seen in figure 4.5a. The contour click on the right wheel is difficult
to notice since it is so close to one of the extreme clicks. Most other positions for
the contour click would probably give the network more information and so this is a
clear example of the random policy not being ideal. The resulting semantic segmen-

35

4. Results

Figure 4.2: Semantic segmentation and extended image input for the network
trained on four contour clicks from the random policy. The right rearview mirror is
of particular importance, with only one click in the input and a bad contour of the
segmentation. The segmentation as a whole is not particularly good.

Figure 4.3: The extended input and predicted segmentation produced by the net-
work trained on two clicks with the random policy. Notice that the segmentation is
of high quality and that all of the contour clicks seem to be a part of the segmentation
such that the network has learnt to classify them correctly.

36

4. Results

Figure 4.4: Output segmentation from the random click policy with three contour
clicks. The input (left) shows a relatively clear image of a car that has an antenna
at the top, at which an extreme click is placed. The resulting segmentation (right)
is quite accurate in comparison to the ground truth (middle), but has a hard time
with the antenna. We note that the extreme click guides the segmentation to stretch
upwards, but the model can not predict its exact shape.

tation can be seen in figure 4.5b where the segmentation is not perfect. It is hard to
tell from the image if the contour click has provided any helpful information for the
network. We note that the rightmost extreme click is annotated on what supposedly
is the right rearview mirror. It is however hard even for the human eye to deduce
that there actually is a rearview mirror there. This is an example of the problems
of segmenting objects with low resolution due to the distance to the camera.

4.2.2 Positive/Negative clicks
In order to evaluate how the amount of positive and negative clicks affect the model,
we conducted a test with one positive and one negative click as input and another
test with five positive and five negative clicks as input. By definition, one of these
clicks contains less information than one on the contour. This is due to the points on
the contour not having the same labels as all their neighbours, which is more likely
the case for the locations chosen for the positive/negative clicks. As such, our main
interest was to investigate if more positive/negative clicks could guide the network
better than less clicks. This is why there are no results for the intermediate number
of positive/negative clicks. The small intermediate differences for the contour click
also merits not studying each and every case, but to instead get a grasp of the bigger
picture.

In table 4.3 are the results of the two models using the random click policy as well as
the smarter policy, whose results we will discuss further down in the report. We see
that the segmentation improves slightly by using more positive/negative clicks, but
since the deviations are as big as the differences between the models, it is difficult
to decide whether five clicks improve the segmentation. Since we received better re-
sults when adding positive and negative clicks compared to only having the extreme
clicks, this was an unexpected result.

Worth noting is that we report the amount of each type of click, thus there are twice

37

4. Results

(a) The input image with extra clicks. (b) Semantic segmentation output.

Figure 4.5: The input, clicks and image, to the network trained on one contour
click with the random policy. This is an example of the downside of the random
click policy since the contour click is placed almost exactly on one of the extreme
clicks. The semantic segmentation output in 4.5b resulted from the input in 4.5a is
overall not quite good enough and it is hard to tell if the contour click has had any
impact and if it has guided the network at all.

as many inputs as for the corresponding rows in the contour click table. This means
that there is twice as much input for an annotator to produce in a hypothetical
application. It could perhaps explain why the one click results are better for pos-
itive/negative clicks than for contour clicks, since that model has trained on twice
as many clicks as the contour model (2 ∗ 1 = 2).

In figure 4.6 is an example of the click locations being far away from the object
boundary. The positive clicks are all pretty well inside the object while the negative
clicks are much closer to it, but still not close to the contour. We note one gap in
the segmentation of the top of the truck, but it is not placed where the negative
click that is very close to the contour is. These areas of the object is something that
this network architecture typically has had no problem segmenting when only using
extreme clicks as input, and thus it seems that the positive and negative clicks do
not provide much extra information to the network in that case. This exemplifies
the problems of the random policy placing the clicks in irrelevant areas. This is
especially a problem for large objects, since the random policy has more pixels to
choose from for the positive clicks i. e. the contour is a smaller part of the whole
object. This does, on the other hand, increase the probability of the negative clicks
being placed closer to the border. The resulting segmentation is still rather good,
but without any noticeable impact from the positive and negative clicks.

An example of the random policy where positive clicks are close to the object border
can be seen in figure 4.7. The negative clicks, on the other hand, are scattered but

38

4. Results

Figure 4.6: Locations of the negative clicks, the positive clicks and the resulting
segmentation for the network trained on the random policy. The positive and neg-
ative clicks are all far way from the contour and the resulting contour is not perfect
in the details.

Figure 4.7: Locations of the negative clicks, the positive clicks and the resulting
segmentation for the network trained on the random policy. The positive clicks are
close to the object boundary while the negative are far away. This is often the case
for small objects. The segmentation is better on the bottom of the car, where there
are more positive clicks.

39

4. Results

nowhere near the contour. The segmentation is once again quite good, but it seems
very unlikely that especially the negative clicks have had any impact on the segmen-
tation. There are however some substantial problems classifying the top parts of
the car, where the segmentation stretches outside of the object. We note that there
are no positive clicks at that part of the car. We discuss this further in the section 5.

4.3 Results for the smarter click policy
In this section we report the results and show some segmentations from the smarter
click policy. The section is further divided into contour clicks and positive and neg-
ative clicks where their respective results are displayed. The smarter policy was
our strategy of constructing input data that mimics the imagined behaviour of a
human annotator. This behaviour was to click in an area where the segmentation
was wrong, with the intention to correct that area. Noteworthy is however that our
implementation of this policy still segments the entire object with this new input
data, and not just the area where the click was placed. The implications of this
solution will be discussed in chapter 5.

We start off by analyzing the results of the models using the smarter click policy
that collects one click position where segmentation was previously incorrect. The
only models that were affected by this policy are the contour clicks and the positive
and negative clicks, which is why the baseline and extreme clicks results are the
same as in the random policy. The tests were done in order to compare the random
click positions to instead placing the clicks where the model have had difficulties
predicting correctly. The extreme clicks are still present in every data sample in
both the contour click model and the positive and negative click model.

In table 4.1, in the rightmost columns, we see that adding extra clicks according
to the smart policy provides a better segmentation accuracy than having only the
extreme clicks as input. It also appears that the smart policy gives a slight increase
in performance when compared to the random policy for the PosNeg model with
one extra click, but a slight decrease for the contour click model. With regards to
that, one last thing to notice in the table is that the PosNeg model performs better
than the contour click model for this test.

4.3.1 Contour clicks
In this section we compare the amount of contour clicks for the smarter policy in
order to see if a difference in the amount of clicks makes a difference for this policy.
The motivation behind this test is the same as for the contour model test with the
random policy, and to make comparisons between the policies.

We see the results of the contour clicks test according to the smart policy in table
4.2, in the rightmost columns. Noticeable is that although the accuracy for the
smart policy does not seem to increase clearly when adding even more clicks, we

40

4. Results

(a) The input image with extra clicks. (b) Semantic segmentation output.

Figure 4.8: The click input 4.8a to the network trained with the smarter click
policy on one contour click. Note that the contour click is still very close to one of
the extreme clicks. This input made the network produce the output in figure 4.8b.
We see that the object boundary is not good and that the shadow under the car
specifically is partly labelled as car.

see that the deviation between runs is decreasing for the smart policy model with 5
clicks. There is also an increase in the segmentation quality from three to five clicks.
Combined with the large deviation for the models for one and two clicks it is not
unreasonable to think that more clicks does indeed improve the segmentation but
that some of our training runs for one and two clicks randomly performed better
than expected.

In figure 4.8 is an example of when the smarter click policy with one contour click
does not perform a segmentation that is good enough. The input that generated this
segmentation can be seen in figure 4.8a. We note that the contour click is placed
very close to one of the extreme clicks which is a sign that the previous segmentation
of this image was not correct at that location. We also see that both the upper left
extreme click and the contour click is outside of the segmentation. This tells us that
the network has not learnt that the clicks should always be part of the segmentation.

In figure 4.9 is a sample with one contour click that the network managed to predict
a much better semantic segmentation for, as seen in 4.9b. The clicks are evenly
spread out, which as mentioned before could be a reason for the better segmenta-
tion. We see that for this image, there seems to be no problems with the shadow
underneath the car. We note in figure 4.9a that the contour click is placed on the
bottom of the object border, inside the wheel. This could have helped the network
to separate the object from its shadow.

One example of the segmentation becoming somewhat more accurate can be seen in

41

4. Results

(a) The input image with extra clicks. (b) Semantic segmentation output.

Figure 4.9: An example of a good segmentation from the contour click model with
one click. The click and image input 4.9a has evenly spread out clicks, of which
there is a contour click underneath the car. We see that the segmentation in 4.9b
manages to correctly predict the shadows underneath the car.

(a) The input image with extra clicks. (b) Semantic segmentation output.

Figure 4.10: Click and image input with which the network produced the semantic
segmentation in 4.10b. Semantic segmentation produced by the network trained
with the smart click policy and three contour clicks. The overall contour of the
object is a quite good fit.

42

4. Results

Figure 4.11: The ground truth semantic mask, where other objects are marked in
grey, compared to the predicted segmentation from the network trained on the smart
click policy with 3 contour clicks. Note that occlusion seems to be a big problem
since large parts of the occluding vehicle is also segmented. As can be seen in this
ground truth image, the annotation is not overlapping, so the pixels do only belong
to the current object.

Figure 4.12: The extended input, ground truth segmentation and predicted seg-
mentation respectively. This was produced by the network trained on four contour
clicks and the smarter click policy. It is clear that occlusion is a problem, especially
when a large part of the object in focus is covered. It is also noticeable that the
lower parts of the occluding object is not at all segmented.

43

4. Results

Figure 4.13: The extended input and predicted segmentation for the network
trained on the smarter policy with five contour clicks. It is noticeable how the
amount of extra clicks somewhat tells the shape of the object and highly interesting
is that the only part where the segmentation is a bit off is where there are no extreme
clicks, the left wheel in the picture.

figure 4.10. This network was trained with three additional contour clicks, and as
can be seen in the input in figure 4.10a, the click positions were evenly spread out.
The resulting segmentation can be seen in 4.10b, and the most interesting thing
to note here is that all of the extreme clicks seem to be correctly segmented and
the overall quality of the segmentation is quite high. The image resolution is quite
good and the sample is one of the easier types of objects which also impacts the
segmentation.

The same network that produced the good segmentation in figure 4.10 has issues
when it comes to occlusion, as can be seen in figure 4.11. The white part in the left
figure is the object that the network is trying to segment. The resulting segmenta-
tion to the right in the figure covers the roof of the occluding car in the foreground.
We note that the left side of the object is not segmented correctly either, even though
an extreme click should have marked the left boundary of the car.

Another example of the problems with occluding objects is seen in figure 4.12 where
the model is trained on four contour clicks. The occluding trailer is covering a very
large part of the car that tows it, and the four contour clicks does not make up for
this. Instead almost all pixels belonging to the occluding object are segmented. It
is however noticeable that the extreme point coordinates has a lot of impact on the
network since the lower part of the occluding object is not segmented at all, due to
its placement below the lowest point of the object in focus. This tells us that the
network makes decisions based on the extreme click locations. We also note that the
contour clicks are positioned on the outside of the object, when an annotator might
have placed them on the border between the objects to mark the object shape more
precisely.

We conclude the contour clicks results by looking at figure 4.13 where five contour
clicks have been used with the smarter policy. These five clicks combined with the

44

4. Results

Figure 4.14: Negative clicks on the left, positive clicks in the middle and seg-
mentation on the right. Input created with the smarter policy. There is almost no
possibility of seeing the difference between the negative and positive clicks. The
resulting segmentation is rather good.

four extreme clicks give the human eye an intuition of the shape of the car. It is
especially interesting to note that the segmentation of the car is a bit off on the
outside of the left wheel in the picture, which is the only part of the car where there
are no contour clicks. The same can be said about the pixels in the front of the
car, where the segmentation stretches outside of the object boundary and there is
no click positioned at that area.

4.3.2 Positive/Negative Clicks
The setup for the positive/negative click model is similar for the smarter click policy
and for the random policy. The difference is that the positive clicks will be sampled
from previously misclassified pixels of the object and the negative clicks are sampled
in the same way, but from the background pixels. This means that as the segmen-
tation gets better from the training, there will be less points to sample from and
the positive and negative clicks will be closer to the object contour. This is because
when the network has trained for a while, and is rather good at segmenting, the
most uncertain points will generally be in that area of the image.

In table 4.3 we notice that the positive/negative clicks show improvements when
using the smart policy compared to the random policy for the model with only one
of each click. Quite surprisingly, the smart policy with five positive and five nega-
tive clicks instead had lower segmentation accuracy when compared to the random
policy model with five clicks of each.

In figure 4.14 we see that the clicks are chosen exclusively on the contour of the ob-
ject. This is at the end of the training where the previous segmentation was already
rather good. Compare this to the clicks seen in figure 4.15, which is taken from the
start of the training. There is a big difference in the click locations for these two
images, which shows that the patterns of the click locations changes as the network
learns. This is expected since the clicks will be drawn towards the more difficult
parts of the object, which are exclusively located on the object boundary.

We see in image 4.15 that the bus is also stretching all the way to the image bound-

45

4. Results

Figure 4.15: Negative clicks on the left, positive clicks in the middle and segmen-
tation on the right. Input created with the smarter policy, in the first iteration. The
negative clicks are a bit outside of the contour, and the positive are not at all on it.
The segmentation completely misses all of the positive clicks.

ary. In most of the data samples, we have some background surrounding the image,
so the network seems to have difficulties segmenting that part. This makes the lo-
cation of the clicks more important, but it still appears that they do not guide the
network well enough.

In figure 4.14, the segmentation is much better, but as said the network has had
more training to that point. We clearly see changes on the click locations and that
is primarily the reason for the smarter click policy performing better than the ran-
dom policy. However, it seems that even though four of the positive clicks are on
the rearview mirror to the left, the segmentation is not completely correct there.
This means that the the segmentation was wrong for that part also in the previous
iteration, which is why the clicks ended up there. It also shows that the network has
not yet learned to segment exactly according to the positive clicks. Perhaps future
iterations with the same click locations would be better and could perfectly segment
the mirror.

Another interesting thing to note in figure 4.15 is that the segmentation completely
misses all of the positive clicks. This is however only in the first epoch of training
and thus it is not unexpected that the segmentation is still rather bad at this point.
This also shows that that part of the image was not segmented in the previous epoch
either, since the positive clicks are sampled from that region of the image. Thus
we can, in this image, also see how little the segmentation improves between two
epochs giving further merit to training the networks for a long period of time.

One final example of the smart click policy for positive/negative clicks can be seen
in figure 4.16. The segmentation is quite good, but once again it is hard to see
the positive and negative clicks having any immediate impact on the segmentation.
We note that the click locations are very close to the contour of the object which
is expected from the smarter policy at this point in the training. The actual im-
provements of using the smart policy is however hard to deduce since the results are
worse for five clicks than for one. The results for one click is better than with the
random policy, while the opposite holds for five clicks.

46

4. Results

Figure 4.16: Negative clicks on the left, positive clicks in the middle and segmen-
tation on the right. Input created with the smarter policy, with five clicks of each
type. Both the positive and negative clicks are once again very close to the contour
as we near the end of the training.

4.4 PointRend
Since the PointRend model is different in its architecture as well as training setup
compared to the other models, we compare results between different variations of
the PointRend model by itself in order to make a just evaluation. The results from
the tests of the PointRend module is seen in table 4.4. Once again it is important
to note that comparing these numbers directly with the ones presented for previ-
ous models is a bit misguiding due to the differences in the training setup and the
network architecture. It is however still interesting to see that this network benefits
a lot from cropping the image and from the extra input. The implications of the
network differences will be discussed more in the next chapter.

Table 4.4: Table showing test results of the different variations of the PointRend
model. The performed tests are of different types of input.

PointRend model IoU (%) Dice (%)
RGB not cropped 69.57± 0.25 80.12± 0.05
RGB cropped 89.95± 0.09 94.28± 0.09

with extreme clicks 90.66± 0.26 94.74± 0.18
with extreme clicks and 1 contour click 91.01± 0.05 94.95± 0.01

The main interest here is to make comparisons between the results for the different
inputs to the PointRend module. Four different tests were conducted in order to
test the separate properties of each model. The first model had the RGB image as
input without cropping it around the object. The second model had a cropped RGB
image as input, butt only three channels still. The third model had cropped images
and the extreme clicks channel concatenated to the image. The fourth model had
cropped images and then an extra channel containing the extreme clicks and one
contour click. The contour click was placed randomly on the object boundary.

Noticeable in table 4.4 is that the model where we do not crop the images, the
only model where that is not done, performs much worse than the others. To our

47

4. Results

Figure 4.17: PointRend segmentation example with the extreme clicks as input.
The PointRend module is not at all successful in its predictions for this image. It
is a quite hard image to classify correctly, but we can clearly see that it is nowhere
near correct.

knowledge, cropping the images in this way has not been tried for the PointRend
module previously and our results show that the detectron setup of PointRend ben-
efits greatly from it.

The next improvement is between extending the image with the extreme clicks as a
fourth channel instead of only using them to crop the image. Our results show that
the PointRend module benefits from extending the input data with another chan-
nel, something that has not been tried before. Finally, extending the input with a
randomly placed contour click also increases performance a bit. This shows some
promise towards using the extensions to the input data developed in this thesis in
combination with the PointRend module. Due to time constraints, we did not test
the smart policy for this model, and not the positive and negative clicks either. We
will discuss this further in the discussion chapter.

When looking at figure 4.17, we can see an example of the PointRend architecture
that has the extreme clicks as its only extra input. Even though this is a tricky
image to segment, the PointRend module is supposed to be good at focusing on in-
teresting parts of the image such as the object boundary. We expected it to be able
to somewhat handle the poles in the vehicle since the PointRend module utilizes a
higher resolution along the contour in order to make a better segmentation. Predict-
ing difficult contours is where the PointRend module excels in the paper where it is
introduced and as such this bad segmentation was a bit unexpected. It seems that
the network gives a lot of importance to the ground truth bounding box and the
extreme points and has a hard time when so much of the area inside the bounding
box is classified as background. As said, this is a very tricky image, but still one
where the PointRend module was expected to be better than what is seen in this
figure.

48

4. Results

Figure 4.18: PointRend segmentation example with the extreme clicks as input.
The PointRend module is rather successful in its predictions for this object. Es-
pecially noteworthy is the precision along the underside of the car even though its
shadow is of almost the exact same color.

Figure 4.19: A bad semantic segmentation by the PointRend network with contour
clicks. This object is heavily occluded and even though the contour click is on the
boundary between the object in focus and the occluding object it is not enough
to succesfully segment the object in focus. The network has not learned that the
contour click is a delimitation of the object. The clicks being in the alpha channel
of the image is what leaves some strange colors.

Opposite of that, we note the segmentation in figure 4.18. We see that the segmen-
tation is very good, and especially that the network is able to distinguish between
the shadow beneath the car and the dark parts on its bottom. This problem is
however somewhat easier when the extreme clicks is provided as the object fills out
a lot more of the area of the ground truth bounding box.

For the PointRend model with extreme clicks and contour clicks as input, we note
that the IoU score of the segmentation is a bit higher. However, for the example
in figure 4.19 it is clear that the contour click does not always steer the segmen-
tation to predict a boundary where the click is placed. This network appears to
have problems with occluding objects, especially when a large part of the area in
the ground truth bounding box is not actually part of the object. Since most of
the data sampled are not occluded, the network may have difficulties separating the
objects.

49

4. Results

Figure 4.20: A bad semantic segmentation by the PointRend network with contour
clicks. We can see that parts of the occluding object is also segmented, with the
ground truth bitmap to the left and the predicted segmentation to the right. We
also see from the click placement that the contour click is very close to one of the
extreme clicks and as such does not provide a lot of new information. The clicks
being in the alpha channel of the image is what leaves some strange colors.

Figure 4.21: A comparison of some of the best segmentations produced by the
PointRend module and the contour click model.

Another example of the problem with occlusion and also the image resolution can
be seen in figure 4.20, where it is clear from the ground truth image to the left
that something is occluding the truck. The clicks are unfortunately placed in other
locations in the image and does therefore not guide the segmentation in the bottom
left area of the truck. As a result, the segmentation of the truck covers the occluded
area too. It is worth noting that the image resolution makes the features belonging
to each object quite difficult to distinguish even for a human.

As a final concluding element of the PointRend results, we provide an image com-
paring one of the better segmentation results of PointRend to one of the better
results from the contour click model with four contour clicks in figure 4.21. The
PointRend model produced the segmentation to the left in the image, and the right
image was produced by the contour clicks model. Although the images are different,
we choose to compare them since some characteristics of these two models still are
displayed in the images. Both the models segment the shape of the car well and
manage to distinguish the object from its shadows underneath. One thing to notice

50

4. Results

is that the PointRend solution manages to segment the shape of the rearview mirror
more precisely than the contour model. Although capturing the body of the car,
the contour clicks model is not always accurate along to boundary of the object, as
can be seen underneath the car.

51

4. Results

52

5
Discussion

This chapter starts with a discussion of the results presented in the previous chapter
and their implications. We discuss our choice of methods and their impact on the
results of the thesis. Followed by that is a discussion of our overall results and
the conclusions drawn from them. After that we will present individual discussions
for each of the models we have setup before we go into depth of the implications
of some of the design choices made for this thesis. The discussion of the models
are divided into Contour clicks, Positive and Negative clicks and PointRend and in
these sections we discuss the solutions respectively. Lastly we present the potential
ethical implications of the work in this thesis.

5.1 Methodology

Our methods were chosen due to their possibilities of showing the impact of many
sorts of data extensions for the task of machine assisted annotation. A lot of thought
went into the representation of the data extensions, with the main question being
how to make use of the extra input. We settled on the solution with contour click
and positive and negative click represented as Gaussian distributions partly because
that is what was used in the DEXTR paper and partly because it seemed to be the
most intuitive solution. Other forms of creating this input could probably be used
for a network to only improve on the segmentation instead of creating a new one
with each forward pass.

Another very important part of the chosen method is how to present the constructed
segmentation to the annotator. We chose to simply output the segmentation as
created and to train for the interactive improvements by using more clicks on that
segmentation. Another, very different idea, is to make use of the segmentation to
produce a polygon around the object. If that is done, the annotator can make the
corrections by only dragging the vertices of this polygon. We considered constructing
such a solution, inspired by the algorithm by Acuna et. al. [1]. Their patent on
the network architecture used for that solution was one of the things that made us
focus on a different sort of representation for the interactive improvements instead
of producing a polygon around the segmentation for the annotator to correct.

53

5. Discussion

5.2 Overall results

Our results show that extending the input data is better than not doing so, in all
tests conducted. The model trained with the extreme clicks as an input channel out-
performs the baseline model, which substantiates the potential of machine assisted
annotation since such simple forms of user input can improve the segmentation.
This is further emphasized by the contour click models and positive/negative click
models producing even better segmentation than with only the extreme clicks.

It is hard to tell which solution is best for a couple of different reasons. Our results
show that additional contour clicks or positive/negative clicks improves the segmen-
tation results. This leads to a straightforward conclusion that it is recommended to
use one of the click types. From the tests in this thesis it would seem that the pos-
itive and negative clicks are somewhat better than the contour clicks. One possible
reason for this is that there are simply more clicks since one of each of the positive
and negative clicks is two clicks, while one contour clicks is just that one click. As all
clicks are modelled in the same way in the data, more clicks means more information.

With that said, the results show very little difference in the segmentation precision
between the two click types, so it is hard to tell if one of them is better than the
other. Especially since our results do not show any clear increase in the segmen-
tation quality for either model when using more clicks, at least not so that we can
confidently say that more clicks increase the quality. Our results are simply not
certain enough for us to say that contour clicks are better than positive/negative
clicks or vice versa even though the scores obtained by the positive and negative
clicks are a bit better.

One factor to also consider is the amount of work that each click type would de-
mand from an annotator, where the contour clicks demand one interaction and the
positive and negative clicks demand two. Perhaps one of the input forms is also
less intuitive for the annotator to provide. Although a small difference, it could be
significant in a larger annotation project and would therefore need further research
in order to conclude which click type is more efficient.

It is worth noting that our setup of the training and creation of the training data
does not take the temporal difference in the input forms into consideration. What
we mean by this is that a network as designed in this thesis will always use either
only extreme clicks or extreme clicks plus the extended data. In an imagined ap-
plication for machine assisted annotation, the interactive improvements will not be
created by the annotator at the same time as the extreme clicks. The annotator
would first input the extreme clicks to extend the image. Then if the annotator is
not satisfied with the segmentation, more input would be provided. It is possible
that by taking the temporal difference into consideration, the algorithm could be
designed in another way. One idea that we had but did not have time to explore is
presented in section 5.8.

54

5. Discussion

An algorithm where the annotator provides input and receives segmentation in iter-
ations could hypothetically generate other results than showed here. Those results
could possibly make it easier to decide which one of the click policies is best for
such an application. This reasoning builds on the human notion that correcting
something is not the same thing as redoing it from scratch. It is not obvious that
a neural network could learn to correct segmentations based on this notion. The
networks designed in this thesis would not operate in such a way in an application,
but instead they would redo the segmentation for every time that new input is pro-
vided. Correcting only the immediate surroundings of a click requires well defined
rules, like how big the corrected area should be. It is therefore not obvious how
such a solution should be designed. We however believe that it would be interesting
to do some further research of a solution designed to correct existing segmentations
instead of simply constructing new ones.

One final thing that we believe to be of high importance when designing an ap-
plication for this machine assisted annotation flow, is the interaction between the
human and the algorithm. Perhaps one of these input forms for interactive im-
provements is more intuitive for the annotator than the other. If so, it would most
likely lead to the best results on the actual annotation time which, as mentioned,
is a core metric for such an application. We would recommend further studies into
both click types to be able to fully decide which one of these data extensions are best.

In conclusion; the results of this thesis confirm that the extreme clicks provides an
improvement in segmentation accuracy and that the extra clicks improve it further.
Our thesis does not show any significant difference between the different extra click
input formats (the contour clicks and the positive and negative clicks) and as such
we believe them to be equally suited for being used by an annotator based on the
segmentation quality achieved. However, as discussed here, there are many other
things than segmentation quality to take into consideration before implementing
either solution in an application.

5.3 Contour clicks
In chapter 4 we noticed that there was a small increase in performance between five
contour clicks and one contour click for the smart policy and none for the random
policy. For the difference between using one contour click and only extreme clicks we
found that there was an improvement that was a bit larger than between different
amounts of contour clicks. This is in line with the findings of DEXTR[20], where
they saw an impact from the additional contour click. The improvement observed
by them is however more substantial than what our tests show, although the contour
click was added only to the most difficult objects in their study. A probable reason
for the larger impact is their use of a deeper architecture as well as more data and
longer training times.

Even though our results do not show conclusively that more contour clicks generate
a better segmentation it is still our hypothesis that this is the case. Since we see

55

5. Discussion

improvements compared to using only the extreme clicks, we know that the network
is able to learn something from having one contour click. That makes us believe,
even though it does not show in our results, that the network should be able to learn
even more from more clicks.

In order to strengthen this belief, consider placing the maximum possible amount
of clicks on the contour of an object. That would be the same thing as drawing the
object contour just like what is done when manually annotating. If the whole con-
tour is in the input data, it has complete information about the object that we want
to segment. Since more clicks imply that we are closer to the maximum amount
of clicks, the intuition is that the segmentation should be better. This leads us to
believe that the training setup is what makes the results inconclusive, rather than
the network not benefiting from more contour clicks.

To test this hypothesis further, we tried training a contour model with 100 contour
clicks, to get a notion of how much the network can actually learn from the clicks.
While most contours are longer than 100 pixels this example clearly contains a lof of
information about the object. The IoU score was 75.88% which is an improvement
on the other contour click models but not very significant. This gives an insight
into what improvements that we can reasonably expect. If such an amount of input
only results in that little improvement, perhaps it is a better idea to explore other
architectures to make more use of the interactive improvements.

When comparing the results for the different contour click policies, we did not see
any clear tendencies. Similar to what we just described regarding the amount of
clicks. A possible reason for the rather small differences between the policies could
be that if the contour is largely misclassified, the selection strategy of the contour
point is pretty much the same as the random policy. This means that at the start
of the training, the strategy does not differ a lot from choosing at random. Further
on in the training, when more of the contour is correctly classified, the selection
strategy will be less similar to choosing at random. This similarity of click positions
between the two policies can also be an explanation for the segmentation precision
being rather alike for both of them.

Another reason for the small impact of constructing the data according to the smart
policy could be the fact that doing another, completely different, forward pass of
the network neglects a lot of the previous information. When training the network
in this way, we do not make use of the previous segmentation for anything else than
choosing positions for the simulated clicks for the training. This means that a lot
of information is lost and that could be a reason for the small differences on the
segmentation IoU for the policies. As mentioned before, a very interesting thing to
examine would be to construct a machine learning algorithm that only improves on
existing segmentation instead of creating new ones.

It could also be the case that constructing the training data according to the smart
policy has no particular impact on the decision making of any sort of networks, since

56

5. Discussion

it does not seem to impact our models more than the random policy. The smart
policy was an interesting thing to investigate since we believe that this is a likely
behaviour for an annotator. If the segmentations in our results do not cover the
click centers, their precise location might not matter. In that case, a random policy
could be enough even in a final application and a human annotator might not need
to put that much thought in where to place the click.

All in all, the test conducted in this thesis do not show any clear difference in using
the random click policy and the smarter click policy for the contour clicks. The
differences in the table are a bit too small and irregular for us to be able to say
anything definitely.

5.4 Positive/negative clicks
Adding extra positive and negative clicks to the input in addition to the initial ex-
treme click input gave better performance for the random policy and the smarter
policy, as seen in table 4.1. We do however only observe an increase in the segmen-
tation quality as we increase the amount of clicks for the random policy and not
for the smart policy. The result for the random policy was expected since previous
work received similar results and shows that it seems useful to guide the network
with this type of extra click. With that in mind, not observing the same thing for
the smart policy is surprising. As the different policies contradict each other we
can’t conclusively say anything about the impact of using more positive and nega-
tive clicks.

In the test that compared the effect of a varying amount of positive and negative
clicks as input we saw in table 4.3 that for the random policy, more clicks gave a
slight increase in accuracy. The opposite happened for the smarter policy, which is
quite hard to explain. Since the differences in the results are very small between
the policies, a theory is that more clicks are actually better for the smart policy
also, but that the training runs made for this thesis randomly ended up with worse
results. Since there is some variance in the exact training performance, this is pos-
sible. To solve this problem, the simple solution is to do more training runs. Of
course, the possibility that the network is not able to learn anything at all from the
increased amount of contour clicks can not be fully discarded. But since there is
a clear improvement when using one positive/negative click compared to only the
extreme click it does seem that the network can learn something from at least that
one click. And since that is the case, our conclusion is that more clicks should lead
to a better segmentation which is why we believe that the fault lies in the training
setup.

The results that we expected was that the smarter policy would outperform the
random policy quite substantially. This hypothesis build on the fact that it is less
likely that the randomly sampled positive/negative clicks are sampled from an in-
teresting part of the image, while the smart policy will choose locations where the
segmentation was wrong. As the network gets better, these locations will eventually

57

5. Discussion

be only difficult areas.

A possible reason for the outcome is that as the segmentation becomes better, the
variance in click positions decreases for the smart policy. In the images, the contour
is the hardest area to classify. This means that the sampled positive and negative
clicks will be closer to the actual contour when the predictions become better. Since
the segmentation learns the majority of the object pixels rather quickly, both the
positive and negative clicks may end up close to the contour already in the beginning
of the training. With this in mind, the network may have difficulties learning the
meaning of the respective clicks and therefore the positive and negative clicks makes
no difference to the network, but they are all considered the same way as contour
clicks.

Observations show that the rate at which the model reaches such good performance
that the clicks are placed along the boundary of the object is faster for more clicks.
For the model with only one extra click, it runs longer before the clicks are placed
tightly to the boundary. This observation gives merit to the argument that more
clicks gives the network less time to learn the implications of each click type which
could explain more clicks being worse for the smart policy.

As the positive and negative clicks for the smart policy will imitate the contour
clicks as the networks gets better, it would imply that contour clicks are superior
to positive/negative clicks. Our results show that this is however not the case, and
one possible explanation for this is that it could be beneficial to have different types
of information in different input channels. For the results that we have, the values
are changing a bit too irregularly for us to be able to say that one of the policies is
definitely better than the other. It is however clear that the smarter policy leads to
the positive and negative clicks being much closer to the object boundary.

5.5 PointRend
The PointRend model showed promising results when it comes to adding additional
input to the network, see table 4.4. Not surprisingly, cropping the image around the
object improved the result. A reason for this could be that distinguishing the object
from the background already before inputting the image to the network simplifies
the problem. Also, when not cropping the image, the background pixels outweigh
the object pixels by a large magnitude which complicates the problem for the net-
work.

What makes the PointRend results interesting is that adding the initial simulated
user extreme clicks to the image improves the performance more than just using the
extreme coordinates to crop the image. This suggests that the PointRend model
also benefits from the user guidance in the form of extreme points. The performance
appears to be further increasing when an extra contour click is added, although that
click is randomly sampled on the contour and an annotator probably would want to

58

5. Discussion

click where the segmentation was incorrect.

These results indicate that there is a lot of promise in using a PointRend module
for the classification step of machine assisted annotation networks. The PointRend
module seems to be able to perform classification based on the extended data in a
similar way to what was done with the DEXTR inspired network. In that archi-
tecture a ResNet backbone with a pyramid pooling module for classification was
used to learn from this data. Our results give merit to the hypothesis that using a
PointRend module as the classifier for such a ResNet backbone could generate even
better semantic segmentations. Even though our results can not necessarily be com-
pared straight off due to differences in the architecture, we show that the PointRend
can make use of the information contained in the extended data and that it per-
forms really well. A future study comparing the exact gains of a similar network
with a PointRend module and a pyramid pooling module could be highly interesting.

When looking at the results from the different models of this thesis, it is clear that
the PointRend model reaches a better absolute performance than the other mod-
els. This might be due to the fact that the PointRend model was pretrained for
problems that likely are more difficult to learn than ours, since our data is cropped
and contains only a few types of objects. The PointRend backbone also contains a
deeper network than the one used in the other models of this thesis, which could
affect the result even further.

One interesting thing about our use of the PointRend module is that it achieves very
low training loss and good IoU scores on the training set even after the first epoch.
This is interesting since the other architecture we used predicted bad segmentations
to begin with. This tells us that the setup of the pretraining for the PointRend
module in Detectron is perhaps better than the pretraining based on the DEXTR
architecture. The possible reasons for this will be discussed more in the next section.

5.6 Pretraining
When using the ResNet architecture that is pretrained with weights loaded from
the model developed in DEXTR we note that even though we make use of transfer
learning, the initial accuracy is bad. We believe that this is because one of three
things:

• One possibility is that the differences in the training data used in DEXTR
compared to the data used by us are so large that the weights from the DEXTR
model do not help at all in making predictions on our data. This seems a bit
unlikely since the DEXTR model is trained on data with objects of many
different classes. As such, the feature maps it learns should theoretically be
able to do some generalization on our data, which it does not. Especially since
the objects present in our data are also present in the training data for DEXTR,
such as cars and trucks. However, transferring weights from a network trained
on other classes is not necessarily improving the initial classification at all,
which is what is seen in our training as well.

59

5. Discussion

• The second possibility is that the transfer learning has a very low impact
because we are not using the same exact ResNet architecture. Since we are
using a more shallow model, we can only load the weights of the layers that are
present both in the DEXTR model and in our model. It might be that these
weights are only of use in that exact architecture and that they do not really
help with the initial classifications of our model after transferring them. This
seems more likely to be the case, that the weights transferred simply needs to
be in a deeper context for them to make an improvement on the classification
task at hand. It is also not really known that transfer learning from different
network architecture improves the results at all, and most likely it was a bad
hypothesis that it would work at all.

• The third possibility worth considering is that we have altered the input data
by for example adding input channels. DEXTR also trained with the extreme
clicks in an extra channel, so if the pretraining worked bad for us because
of the changed input, it should have shown a difference for the extreme click
model. No such difference was seen, which makes it less likely to be the sole
cause for the pretrainng not working correctly, although we can not exclude
the possibility that the input has affected it.

5.7 Class agnostic segmentation
In Annotell’s tool for annotating images, the annotator draws a shape around an
object and denotes which class it belongs to. This gives us the possibility of dis-
regarding the class of the object and train our networks for class agnostic segmen-
tation. We believe this to generally be a simpler problem to solve, since there are
fewer classes to make the predictions on. There might, however be some complica-
tions to the training due to this. The main complication with using class agnostic
segmentation is that things that do not look particularly similar are supposed to
be of the same class, i. e. object. This means that the feature maps will need to
“classify” very different features as all belong to this class. Perhaps this makes the
prediction task somewhat more difficult.

An interesting approach on how to solve this problem in an application would be to
have a separate network for each class. The annotator could then, before supplying
the extreme clicks, denote which network to input the data to by marking the class
of the object to be segmented. The problem with this approach is the amount of
training data needed for each class. Ideally, each network should only be trained on
objects of the class it is to do segmentation for. It also increases the storage used,
since a whole network would be needed for each class.

One idea of solving the problems discussed in this thesis is to simply let the network
also do the classification and let the user guide the network to perform semantic
segmentation and classification. We do however believe that such a solution does
not fully utilize the human annotator. Object classification for these sorts of images
is quite simple for humans and it is hard to see algorithms outperform humans on
data similar to what has been used for this thesis. The aim of this thesis has been

60

5. Discussion

to investigate solutions where humans can be aided by algorithms and not replaced
by them. Of course, there is a possibility that semantic instance segmentation
algorithms will one days be so good that human annotators are not needed anymore.
In conclusion, we believe that machine assisted annotation works best if approached
as a class agnostic problem, simply because it is easy for a human annotator by
detect what class an object belongs to.

5.8 Two networks for interactive improvement

As for the smarter click policy that was divided into phases, we note that the effect
of taking advantage of the previously incorrect segmentation could perhaps be mag-
nified by letting the network see the prediction that generated the click position.
Regarding the interactive parts of correcting the segmentation, one could think that
this type of solution could benefit from seeing what previously went wrong.

An idea that arose but was not implemented due to time constraints, is to divide
the model into two networks where one larger network handles the RGB image with
initial clicks as input and then outputs a segmentation. In an end-to-end manner, a
second network could then take that segmentation, the RGB image and initial clicks,
along with an additional click placed where the segmentation was wrong. This type
of solution opens up for the possibility of perhaps learning to correct only the sub-
region where the additional click was placed. Regarding the user experience of a
solution like this, since it is still humans that will interact with it, it is preferable if
a forward pass is fast and you as an annotator get to see the resulting segmentation
from your extra click as fast as possible. If the interactive corrections are then only
iterated by the second, smaller network, that forward pass might be faster.

5.9 Evaluation

In order to fairly evaluate our techniques for creating training data, their perfor-
mance would need to be measured compared to the performance on data produced
by human annotators. As mentioned, no training data with annotated extreme
clicks is available for this thesis and it is outside of its scope to construct a system
for generating such data as well as have it annotated. Because of this, no conclu-
sions can be drawn regarding the similarity of performance to a human annotator.
It is still possible to compare the training data of the smart policy, that is created
to mimic an annotator, against training data produced randomly. We hope that
further studies can more thoroughly evaluate the gains of constructing training data
in this way and whether or not it improves the performance of a network that is to
take input data from a human annotator.

61

5. Discussion

5.10 Ethical aspects
The ethical implications of the techniques developed in this thesis are in themselves
rather small. The work is performed in a field where ethical implication can theoret-
ically be extremely significant, that is when we consider both computer vision and
autonomous vehicles. Our work is not to develop autonomous vehicles but to help
with the creation of training data for them. Even though we certainly acknowledge
the ethical complications in autonomous vehicle development we do not believe that
this specific work has any implications on them. For interesting discussion on these
topics we recommend “The social dilemma of autonomous vehicles” by Bonnefon,
Shariff and Rahwan [4] as well as “The moral machine experiment” by Awad et. al.
[3] amongst many other articles available online.

One possible problem is of course if the annotations become incorrect due to in-
sufficient quality checks of the data. If an autonomous vehicle is then trained with
wrongly annotated data, this could lead to serious safety implications. In order to
avoid this situation, we believe that the very high quality requirements are impor-
tant, no matter how the annotated data is constructed.

Another, possible, ethical implication of this work is the problem of human workers
being replaced by algorithms. In this case, that problem would consider annotators
being replaced by algorithms similar to the ones discussed here. We however em-
phasize that this thesis in particular discuss techniques that can not work in the
way described here without human annotators. As such, these techniques are only
meant to increase the speed of the work of the annotators. There are, of course, also
possibilities of developing algorithm for annotation completely without humans but
that is out of scope for this thesis.

62

6
Conclusion

The purpose of this thesis was to investigate different ways of incorporating user
input in a neural network, with the intention of improving the process of annotat-
ing image training data for autonomous vehicles. The idea was to let an annotator
provide initial input to the network and in return receive a segmentation. Given
this suggestion, the annotator could then choose to provide additional input to the
network in order to improve the segmentation. This could let the network segment
simpler parts of the data and let the annotator focus on the more difficult prob-
lems, and hopefully decrease the annotation time. In order to answer the research
questions of this thesis and investigate the possible impact of machine assisted an-
notation, a few different models were implemented and evaluated with simulated
user input.

Previous work in the field encouraged the usage of extreme clicks instead of bound-
ing boxes to annotate the object in an image. Therefore we utilized the extreme
coordinates of an object and concatenated them to the image as an extra channel
containing simulated user clicks as the initial input form to guide the network. This
also helped the network to detect the object and perform semantic segmentation
instead of semantic instance segmentation, since the annotator takes care of the
object detection. Adding this simulated extreme clicks input to the network showed
an increase in performance for the models, compared to only cropping the image
around the object.

In order to investigate ways of improving the segmentation even more, two dif-
ferent types of simulated user interactions were implemented onto the previously
mentioned extreme click model. The first of these models carried additional clicks
on the boundary of the object in order to further guide the network. The second
technique instead carried additional positive and negative clicks, simulating a user
wanting to extend or decrease the segmentation respectively. This extra input was
concatenated to the initial input to the network. Both of these input types gave an
increase in the segmentation accuracy.

Since we imagine that an annotator would be likely to place a click where the seg-
mentation had previously failed, we decided to examine if a smarter positioning of
the extra clicks could affect the model more than simply placing them randomly
in accordance with the technique, i.e. a contour click randomly on the boundary.
This showed no particular effect for the contour clicks, which lead to the conclusion
that the placement of the contour click either does not matter or that its effect does

63

6. Conclusion

not show in the experiments that we conducted. The smarter click policy showed
a slight performance increase for the positive and negative clicks containing only
one click, but a decrease when trained and tested with five clicks. A reason for the
results could be that performance improvements for the smart policy model lead
to changes in the position patterns for the click types and therefore could make it
harder for the network to learn.

In an effort to boost the performance and try to confirm the results of the user guided
segmentation, we also tried the extreme click and contour techniques on a module
called PointRend. The extreme click input gave an increase to the performance
when compared to not inputting any clicks, and the randomly placed extra contour
click gave even more of a performance increase. We showed that the PointRend
module can also make use of the extensions to the input data. This indicates that
the extra input could have a lot of use in other network architectures used for in-
teractive annotation.

Concluding the findings of this thesis, we see and confirm that providing user input
in the form of extreme clicks gives the network useful guidance and simplifies the
problem since the object detection part is handled. The results also indicate that
additional input in the form of clicks either on the boundary or in the form of
positive and negative clicks increase the segmentation accuracy of the models. These
improvements were also showed for a model never tested with user inputs before,
which lead to the conclusion that there might be a lot to gain from machine assisted
annotation.

6.1 Future work
There seems to be quite some time until stand-alone semantic instance segmenta-
tion algorithms can match the quality accomplished by human annotators. Training
data for autonomous vehicles is reliant on vast amounts of such data and the expen-
sive process of creating it would benefit from any possible speed-up. We show that
there are possible ways of interactively improving the quality of the segmentation,
although there are many things left to examine in regard to this.

Our results do not show any specific improvements when using the smarter policy.
It might however be that creating this training data in another way is the best way
to go. Possibly, contour clicks and positive/negative clicks can be very impactful
but our idea on how to construct the training maybe was not good enough. Another
possible policy would be to sample the contour clicks to have them as spread out
as possible and thus provide as much information about the object as possible. A
similar idea for the positive and negative clicks is to choose the pixel that is mis-
classified and also has the most misclassififed neighbours. As such the training data
would focus even more on the interesting areas of the image.

An interesting extension to this work would be to manipulate the network structure
to make better use of input added in two separate iterations, so that there is an

64

6. Conclusion

initial input producing the first segmentation and then an extra input to correct
it. An interesting hypothesis is that there is a network structure, or a combination
of structures, that can make better use of the input used for correcting the initial
segmentation, as discussed in section 5.8.

We also believe that further improvements to networks performing semantic (in-
stance) segmentation will easily be applied to this field as well. As new architectures
become even better at doing semantic segmentation without a human-in-the-loop,
this same architectures can most likely use data extended in the ways examined in
this thesis to get even better results. An argument for this being the case is that the
very new PointRend module’s segmentation improved with these data extensions.
These findings can be evaluated more in depth regarding the possibilities of inte-
grating PointRend modules in networks used for machine assisted semantic instance
segmentation.

Many other works in machine assisted segmentation output a polygon around the
final segmentation to allow for easier corrections by the annotator. This is exam-
ined by Acuna et. al. [1] as well as Ling et. al. [19]. Comparisons between having
the annotator correct the segmentation with the help of polygons in this way and
correcting by extending the input with clicks, as discussed in this thesis, would be
interesting.

We have provided no clear consensus as to which of these methods are best regarding
time spent per image, a core metric in these tasks for many business purposes.
We believe that interactive annotation solutions need to be studied in detail with
regards to the annotation time. This is important both to understand the business
implication and speed-up achieved by using the algorithm but also to understand
the interaction between the annotator and the algorithm.

65

6. Conclusion

66

Bibliography

[1] David Acuna, Huan Ling, Amlan Kar, and Sanja Fidler. Efficient interactive
annotation of segmentation datasets with polygon-rnn++. In Proceedings of the
IEEE conference on Computer Vision and Pattern Recognition, pages 859–868,
2018.

[2] Anurag Arnab and Philip HS Torr. Bottom-up instance segmentation using
deep higher-order crfs. arXiv preprint arXiv:1609.02583, 2016.

[3] Edmond Awad, Sohan Dsouza, Richard Kim, Jonathan Schulz, Joseph Henrich,
Azim Shariff, Jean-François Bonnefon, and Iyad Rahwan. The moral machine
experiment. Nature, 563(7729):59–64, 2018.

[4] Jean-François Bonnefon, Azim Shariff, and Iyad Rahwan. The social dilemma
of autonomous vehicles. Science, 352(6293):1573–1576, 2016.

[5] Howard Butler, Martin Daly, Allan Doyle, Sean Gillies, Tim Schaub, and
Christopher Schmidt. The geojson format specification. Rapport technique,
67, 2008.

[6] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and
Alan L Yuille. Deeplab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern
analysis and machine intelligence, 40(4):834–848, 2017.

[7] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and
Hartwig Adam. Encoder-decoder with atrous separable convolution for seman-
tic image segmentation. In Proceedings of the European conference on computer
vision (ECCV), pages 801–818, 2018.

[8] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus
Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele.
The cityscapes dataset for semantic urban scene understanding. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 3213–
3223, 2016.

[9] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A
Large-Scale Hierarchical Image Database. In CVPR09, 2009.

[10] Ross Girshick. Fast r-cnn. In The IEEE International Conference on Computer
Vision (ICCV), December 2015.

[11] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature
hierarchies for accurate object detection and semantic segmentation. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,
pages 580–587, 2014.

[12] Ross B. Girshick. Fast R-CNN. CoRR, abs/1504.08083, 2015.

67

Bibliography

[13] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[14] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn.
In Proceedings of the IEEE international conference on computer vision, pages
2961–2969, 2017.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.

[16] Sepp Hochreiter. Untersuchungen zu dynamischen neuronalen netzen. Diploma,
Technische Universität München, 91(1), 1991.

[17] Alexander Kirillov, Yuxin Wu, Kaiming He, and Ross Girshick. Pointrend:
Image segmentation as rendering. arXiv preprint arXiv:1912.08193, 2019.

[18] Justin Liang, Namdar Homayounfar, Wei-Chiu Ma, Yuwen Xiong, Rui Hu,
and Raquel Urtasun. Polytransform: Deep polygon transformer for instance
segmentation. arXiv preprint arXiv:1912.02801, 2019.

[19] Huan Ling, Jun Gao, Amlan Kar, Wenzheng Chen, and Sanja Fidler. Fast
interactive object annotation with curve-gcn. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 5257–5266, 2019.

[20] Kevis-Kokitsi Maninis, Sergi Caelles, Jordi Pont-Tuset, and Luc Van Gool.
Deep extreme cut: From extreme points to object segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages
616–625, 2018.

[21] Dim P Papadopoulos, Jasper RR Uijlings, Frank Keller, and Vittorio Ferrari.
Extreme clicking for efficient object annotation. In Proceedings of the IEEE
international conference on computer vision, pages 4930–4939, 2017.

[22] Lorien Y Pratt, Jack Mostow, Candace A Kamm, and Ace A Kamm. Direct
transfer of learned information among neural networks. In AAAI, volume 91,
pages 584–589, 1991.

[23] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In Advances in neural
information processing systems, pages 91–99, 2015.

[24] Jasper RR Uijlings, Koen EA Van De Sande, Theo Gevers, and Arnold WM
Smeulders. Selective search for object recognition. International journal of
computer vision, 104(2):154–171, 2013.

[25] Francesco Visin, Kyle Kastner, Kyunghyun Cho, Matteo Matteucci, Aaron
Courville, and Yoshua Bengio. Renet: A recurrent neural network based alter-
native to convolutional networks. arXiv preprint arXiv:1505.00393, 2015.

[26] Zian Wang, David Acuna, Huan Ling, Amlan Kar, and Sanja Fidler. Object
instance annotation with deep extreme level set evolution. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 7500–
7508, 2019.

[27] Turner Whitted. An improved illumination model for shaded display. In Pro-
ceedings of the 6th annual conference on Computer graphics and interactive
techniques, page 14, 1979.

68

http://www.deeplearningbook.org

Bibliography

[28] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Gir-
shick. Detectron2. https://github.com/facebookresearch/detectron2,
2019.

[29] Ning Xu, Brian Price, Scott Cohen, Jimei Yang, and Thomas S Huang. Deep in-
teractive object selection. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 373–381, 2016.

[30] Ning Xu, Brian Price, Scott Cohen, Jimei Yang, and Thomas S Huang. Deep in-
teractive object selection. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 373–381, 2016.

[31] Yuhui Yuan, Xilin Chen, and Jingdong Wang. Object-contextual representa-
tions for semantic segmentation. arXiv preprint arXiv:1909.11065, 2019.

[32] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia.
Pyramid scene parsing network. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2881–2890, 2017.

69

https://github.com/facebookresearch/detectron2

Bibliography

70

	List of Figures
	List of Tables
	Introduction
	Problem statement
	Scope
	Contributions
	Related work

	Theory
	Semantic segmentation and semantic instance segmentation
	Deep convolutional networks
	ResNet
	Pyramid scene parsing

	Loss function
	Logits

	Extending the input data
	Extreme clicks
	DEXTR

	Interactive improvements to the segmentation
	Contour click
	Positive and negative clicks

	Segmentation as rendering
	PointRend architecture

	Evaluation metrics

	Methods
	Dataset
	Network architecture
	ResNet with extreme clicks

	Random click policy
	Random policy with contour clicks
	Random policy with positive/negative clicks

	Smarter click policy
	Building the training data
	Smart policy with contour clicks
	Smart policy with positive/negative clicks

	Pointrend
	Variations

	Results
	Experimental setup
	Input data
	Baseline model
	Extreme clicks model

	Results for random click policy
	Contour clicks
	Positive/Negative clicks

	Results for the smarter click policy
	Contour clicks
	Positive/Negative Clicks

	PointRend

	Discussion
	Methodology
	Overall results
	Contour clicks
	Positive/negative clicks
	PointRend
	Pretraining
	Class agnostic segmentation
	Two networks for interactive improvement
	Evaluation
	Ethical aspects

	Conclusion
	Future work

