
Remote Automatic Control of Robots via
Wireless Communication Networks
Formation Control
Bachelor’s thesis at the Department of Electrical Engineering

ROBERT BRENICK
NEDA FARHAND
AXEL KÅBERGER
MATTIAS STRID

Supervisor: MOHAMMAD ALI NAZARI, Co-Supervisor: MARKUS FRÖHLE
Examiner: HENK WYMEERSCH

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2017

Bachelors’s thesis 2017:SSYX02-17-82

Remote Automatic Control of Robots via
Wireless Communication Networks

Formation Control

Robert Brenick
Neda Farhand
Axel Kåberger
Mattias Strid

Department of Electrical Engineering
Chalmers University of Technology

Gothenburg, Sweden 2017

Remote Automatic Control of Robots via Wireless Communication Networks
Formation Control

Robert Brenick
Neda Farhand
Axel Kåberger
Mattias Strid

© ROBERT BRENICK, 2017.
© NEDA FARHAND, 2017.
© AXEL KÅBERGER, 2017.
© MATTIAS STRID, 2017.

Supervisor: Mohammad Ali Nazari, Department of Electrical Engineering
Co-Supervisor: Markus Fröhle, Department of Electrical Engineering
Examiner: Henk Wymeersch, Department of Electrical Engineering

Bachelors’s Thesis 2017: SSYX02-17-82
Department of Electrical Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

The Authors grant to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial pur-
pose make it accessible on the Internet. The Authors warrant that they are the authors
to the Work, and warrant that the Work does not contain text, pictures or other material
that violates copyright law.

The Authors shall, when transferring the rights of the Work to a third party (for example
a publisher or a company), acknowledge the third party about this agreement. If the
Authors have signed a copyright agreement with a third party regarding the Work, the
Authors warrant hereby that they have obtained any necessary permission from this third
party to let Chalmers University of Technology and University of Gothenburg store the
Work electronically and make it accessible on the Internet.

Cover: Movement of three robots in a formation, along a path around obstacles.

iii

Typeset in LATEX
Gothenburg, Sweden 2017

iv

Abstract
In this project, we design a controller to remotely move a system of robots from an origin
to a target point via an optimal path, while they keep a predetermined formation.

Several pieces of equipment are used during the project. We exploit three robots, a master
controller, and a camera serving for positioning the robots. The positioning system is able
to extrapolate the position of a number of tags, seen by the camera. The infrastructure
also consists of a wireless local area network (WLAN) enabling communication between
the controller, the positioning system, and the robots. This communication was handled
through a set of open source libraries, going by the common name Robot Operating System.

Using PID controllers and a set of movement algorithms, the controller was able to ad-
missibly maintain the robots in formation, as they moved to a target point while avoiding
obstacles.

Keywords: Formation, Control, Wireless, PID, Robot, Network, Localisation, GulliView,
ROS.

v

Sammanfattning
I detta projekt utformar vi ett kontrollprogram som trådlöst förflyttar ett system av rob-
otar från deras startpositioner till ett mål längs en distansoptimerad väg, medan de håller
en fördefinierad formation.

Utrustningen som används är tre robotar, en central kontrollenhet, och en kamera för
att lokalisera robotarna. Lokaliseringssystemet kan extrapolera positionerna hos ett an-
tal etiketter, som i sin tur registreras av kameran. Infrastrukturen består också av ett
trådlöst lokalt nätverk (WLAN), vilket möjliggör kommunikation mellan kontrollenheten,
lokaliseringssystemet, samt robotarna. Denna kommunikation sköttes av en uppsättning
bibliotek, vilka går under det gemensamma namnet Robot Operating System.

Genom att använda PID-regulatorer och en uppsättning kontrollalgoritmer, kunde kontroll-
enheten på ett tillfredsställande sätt upprätthålla robotarnas formation, då de förflyttade
sig till ett mål samtidigt som de undvek hinder.

Keywords: Formation, Kontroll, Trådlöst, PID, Robot, Nätverk, Lokalisering, GulliView,
ROS.

vi

Acknowledgements
We would like to thank our main supervisor Mohammad Ali Nazari for guiding us, as well
as Markus Fröhle for his valuable input throughout the project. Thomas Petig has also
given us a lot of help with the camera positioning system which we are very grateful for.

The support from the other Bachelor and Master groups at Communication and Antenna
Systems has been vital for this projects success.

And of course, we owe great gratitude to Henk Wymeersch, our examiner.

Robert Brenick, Neda Farhand, Axel Kåberger and Mattias Strid

Gothenburg, May 2017

viii

Contents

List of Figures xii

1 Introduction 1
1.1 Aim and scope . 1
1.2 Problem description . 2

2 Theory 3
2.1 Variations of formation control . 3
2.2 PID controller . 4
2.3 Path finding and shortest-path algorithm 5

2.3.1 A*-algorithm . 5
2.3.2 Graph model and representation of the map 6

2.4 Smooth movement . 7

3 Hardware and Software 9
3.1 Hardware . 9
3.2 ROS and ROSARIA . 10

3.2.1 ROS fundamentals . 10
3.3 GulliView . 11

4 Method 12
4.1 Communication . 12

4.1.1 System setup . 13
4.2 Formation control . 13

4.2.1 Setting the leader . 13
4.2.2 Path finding . 14
4.2.3 Leader movement . 15
4.2.4 Follower movement . 15

4.3 Testing . 16
4.3.1 Tracking setup . 16
4.3.2 PID tuning . 17
4.3.3 Speed of the leader . 18
4.3.4 Formation control . 18

5 Results 19
5.1 PID tuning . 19
5.2 Speed of the leader . 21
5.3 Formation movement . 22
5.4 Code . 24

x

Contents

6 Discussion 25
6.1 Hardware and software . 25

6.1.1 Size of the robots . 25
6.1.2 GulliView as tracking system . 25

6.2 Movement algorithm . 26
6.2.1 PID controller . 27
6.2.2 Follower direction . 27

6.3 Future improvements . 28
6.3.1 Alternative positioning systems . 28
6.3.2 Dynamic leader reassignment . 28

7 Conclusion 29

Appendix A Assignment of nodes I

Appendix B Additional results III
B.1 Discarding leader alignment . III
B.2 Sharp turns . IV

Appendix C Algorithms V

xi

List of Figures

2.1 Three different kinds of controllers. 3
2.2 Flowchart of a SISO PID controller. 4
2.3 Angles for calculation of desired robot alignment. 8

4.1 GulliView system set up. 12
4.2 Flowchart of connections between ROS-nodes. 13
4.3 Visualisation of the scaling factor for going in the leader’s orientation in

regard to the control commands ul and uf received from the PID controllers. 16
4.4 Overview of the set up of the camera tracking system. 17

5.1 Distances in between robots for KP = 0.4, KI = 1 and KD = 0.0002, and
KP = 0.7, KI = 1.3, KD = 0.0003. 20

5.2 Distances in between robots for KP = 0.4, KI = 1, KD = 0.0002, and
KP = 0.7, KI = 1.3, KD = 0.0003. 20

5.3 Distances in between robots (KP = 0.7, KI = 1.3, KD = 0.0003) (2). 21
5.4 Distances in between robots for leader speeds of 0.20m/s and 0.25m/s. . . 22
5.5 Distances in between robots in the formation moving around an obstacle

(a) and (b). 22
5.6 Positions of robots in the formation moving around an obstacle (a) and (b). 23

6.1 Tracking problems using multiple cameras. 26

B.1 Distance between robots without using leader orientation. III
B.2 Doing U-turns around obstacles. IV
B.3 Distances in between robots during a U-turn. IV

xii

1
Introduction

Autonomous robotics has been around since the middle of the 20th century, with the
earliest being the robot tortoises Elmer and Elsie who were built to autonomously find
their way to the recharge station [1]. Although slow, the robotic reptiles paved the way for
the technology to quickly develop for a wide range of applications. After a couple of decades
autonomous industrial robots were made available, revolutionising how manufacturing is
done. This marked the beginning of an era, in which robots have an ever increasing impact
on our daily lives. Since then, much of the development has focused on designing robots
to do tasks deemed either too dangerous or tedious for people. One example from the
current frontier is the use of drones to clear dust from solar panels, sparing people from
working in often dry and inhospitable places [2].

One of the most sought-after goals in autonomous robotics is to create affordable and safe
autonomous vehicles. Many prototypes already exist, and several companies aim to have
these cars on the market within the next couple of years [3]. The large investments in this
area are benefiting autonomous robots in general, as some vital parts can be produced at a
fraction of the original cost. One example is LIDAR-systems1, whose cost has dropped by
more than 99% during the last 5 years [4]. These developments and drops in prices have
made larger systems viable, consisting of multiple robots cooperating to complete tasks
much faster than humans could. Companies like Amazon utilise such systems to sort and
send packages with increased rates and decreased costs [5].

We want to add functionality to a system of logistic-robots, similar to that used by Ama-
zon. As of now, mainly small robots are used to transport small packages – however,
robots of similar sizes could carry a much larger object if organised in the correct way.

1.1 Aim and scope

The purpose of this project is to design a controller that moves three robots to a point,
taking the shortest possible path while keeping a predetermined formation. It is desired
that the resulting system shows that a formation of robots could be a viable way of
transporting large objects in a limited area. Being in an enclosed environment allows the
system to utilise a global coordinate system, where the coordinates of every robot can be
sent to a master controller with negligible delay. The tracking of positions is done by a
camera connected to the network. Using the camera data, the controller does calculations

1Light Detection and Ranging, used to determine distances to objects with pulsed laser beams.

1

1. Introduction

and send control commands to the robots. The system is leader-based, utilising a position-
based formation control.

1.2 Problem description

The problem is divided into subproblems. A group of robots are connected to the con-
troller using suitable hardware and software. Then, a system to track the positions of the
robots is implemented. Finally a program is developed to have the robots move along an
optimised path, keeping a formation that can carry a larger load than the robots can carry
individually.

2

2
Theory

This section describes the main theory used during this project. This includes how the
robots can be organised, how a PID controller functions, and how a path planning algo-
rithm should be exploited to avoid obstacles while optimising the path. Lastly, a movement
algorithm that allows a robot to drive and rotate at the same time is described.

2.1 Variations of formation control

Depending on what information the robots receive and how they interact within the sys-
tem, there are different ways to approach formation control. Interaction is mainly done
in one of two ways – namely leader-based control, or swarm control. In a leader-based
system, one robot is assigned to be the leader. The leader receives all relevant informa-
tion on where the formation should move, disregarding the locations of the other robots.
Meanwhile, the remaining robots are assigned follower status, with the single objective to
keep the formation intact.

In contrast to a leader-based system, a swarm-controlled one can vary more in its imple-
mentation, although in general all the robots share a set of behaviours in how they attract
and repel each other. These behaviours can be manipulated in order for them to reach
consensus on a planned formation through independent calculations. An advantage of
doing the calculations independently is that they can be done at the same time, enabling
swifter formation. While the swarm can easily mobilise into a formation, the lack of in-
dividual commands each robot receives makes it difficult to move the formation without

(a) Position (Global) (b) Distance (Inertial) (c) Displacement

Figure 2.1: The three different kinds of controllers according to [6], as well as their required
coordinate-system.

3

2. Theory

heavy calculations [7]. In a leader-based system these calculations are made immensely
simpler, allowing for more precise control of the system and making it the preferred system
for this project.

According to a survey by K.-K. Oh et al. [6], the amount of information available from the
system results in three types of controllers. The most stable, but also most taxing on the
system, is a position-based controller (figure 2.1a) where each robot is aware of its position
in a global coordinate system. This allows the robots to receive precise information about
their target position and enables them to plot a path with ease. This will, however, require
a stable stream of position data, which is often difficult to achieve. On the opposite side
of the spectrum is the distance-based controller (figure 2.1b), where the robots only know
the distances between themselves and the other robots. This gives them a wider range
of possible sensing capabilities, but increases the number of required interactions between
the robots for proper control, making system wide cooperation more complicated. The
middle-ground is a displacement-based controller, shown in figure (2.1c), where the robots
know not only the distances, but also the angles between itself and the other robots. This
can be done either by using a global coordinate system, or by aligning the robots inertial
systems, depending on the infrastructure of the system.

2.2 PID controller

A classic type of controller that is widely used for different types of systems is the PID
controller [8]. A single-input, single-output (SISO) PID controller has one reference signal,
denoted by r, and one system signal, denoted by s. Having fed the input data, the
proportional part P, the integral part I, and the derivative part D, give an output signal
to be used by the system to reach the reference. The P part takes care of the difference
between r and s at the moment, the I part handles differences over time and the D part
deals with the predicted future.

The contribution of each part is scaled by a constant, which we denote by KP , KI and

Figure 2.2: Flowchart for a single-input, single-output closed-loop PID controller. The inputs
to the controller are the current state of the system and the desired state as the reference. The
output of the PID controller is the control signal.

4

2. Theory

KD where the indices stand for the corresponding part. By adjusting these values, the
behaviour of the system can be modified.

In figure 2.2 a flowchart of a closed-loop control system is shown. The error, e, at time t
is defined as the difference between the reference and system signals:

e(t) = r(t)− s(t) (2.1)

Using this error, the output u(t) is described as:

u(t) = KP e(t) +KI

∫ t

0
e(τ)dτ +KD

de(t)
dt

. (2.2)

In terms of tuning the PID controller to behave in a specific manner, incrementing the
KP value gives in general a quicker response, but also increases overshooting. To reduce
this overshoot KD can be increased, while increasing KI gives a more stable output and
allows the follower to catch up with the leader if it is constantly trailing behind with a
larger distance than desired.

2.3 Path finding and shortest-path algorithm

Algorithms can be used to determine the shortest path from one node to another in a
graph, albeit varying in efficiency depending on the scenario[9]. Supposing there is a
graph representing a map, on which an optimal path from one point to another is desired.
Where there is nothing blocking a straight line between the starting point and the goal,
one algorithm may seem better than another. However, in the presence of obstacles it
is no longer a matter of simply drawing a straight line, and the same algorithm may no
longer be preferable.

Two kinds of algorithms, Djikstra’s algorithm and a greedy algorithm, fulfil different re-
quirements of those that are needed to determine the shortest possible path from a starting
point to a specified goal[9]. For more information regarding these algorithms, see appendix
C. A third algorithm, the A*-algorithm, combines the reliability of Djikstra’s algorithm
with the narrowness of a greedy algorithm.

2.3.1 A*-algorithm

The A*-algorithm, first described in [10], aims to expand1 the least possible number of
nodes, while finding the shortest possible path from one point to another. This means
that it needs to determine which node has the highest or least potential in leading to the
optimal path.

The algorithm uses a function that estimates what total cost travelling via a certain node
will lead to. The actual cost of travelling by an optimal path via a node n is denoted

1“Expanding” a node, in this context, means visiting its neighbours, but not necessarily adding
them to the path.

5

2. Theory

f(n), and is the sum of g(n); the actual cost of travelling by an optimal path to n from
the node of origin, and h(n); the actual cost of travelling by an optimal path from n to a
goal node.

Estimation of f(n) is done by an evaluation function, f̂(n), when expanding any node, n,
such that:

f̂(n) = ĥ(n) + ĝ(n), (2.3)

where ĝ(n) and ĥ(n) are the estimates of g(n) and h(n) for n.

The algorithm works in such a way that it favours nodes with the smallest f̂ value as
potential successors to a prior node. Generally described, the algorithm works as follows:

Beginning with the starting node as the “current” node n, it is expanded, and the algo-
rithm proceeds to go through each of the node’s neighbours – estimating their f̂ values.
Throughout the process, it is kept track of which of the neighbouring nodes offers the
least estimated cost, as well as which nodes have already been visited. The neighbour
with the smallest f̂ value amongst all neighbours of the current node is then marked as
the successor to the current node. Following this, the currently expanded node is closed,
and the node designated as its successor is marked as the current. This process is repeated
until the current node is the goal node.

The A*-algorithm applies the dynamic choice process where a greedy algorithm does not,
and resembles Djikstra’s algorithm in that they both dynamically choose which node to
expand next. While Djikstra’s algorithm finds the shortest paths to all other nodes in a
graph from a certain starting node, the A*-algorithm uses only the resources needed in
finding the path to one specific node.

2.3.2 Graph model and representation of the map

A graph is a potent way of representing a map. Since each node can store desirable
properties, they can hold information of what set of coordinates they represent. That
way, the node can also give some indication of whether it is an obstacle or not. Allowing
each node to know which of the adjacent nodes within the map are accessible fulfils the
same purpose as edges. The direction of the edges becomes inconsequential, since there
are no limits to the direction in which movement can take place without consideration of
obstacles and physical boundaries.

Using a binary matrix as a model simplifies passing information through the algorithm
about where the obstacles are and which nodes are neighbours. The matrix acts as both
a graph and a map of the room in two dimensions holding some number of nodes, where
the density of the nodes varies depending on the level of accuracy desired. The nodes are
temporarily assigned indices representing their coordinates, which is done by shifting and
scaling the coordinates into their corresponding places in the matrix. For instance, a room
of a certain size a× bm2 with a density of n nodes per metre would be represented by the

6

2. Theory

following matrix:

R =

 x0,0 .. x0,n(b−1)
. . .

xn(a−1),0 .. xn(a−1),n(b−1)

 (2.4)

The node xi,j ∈ {0, 1} is on the ith row and in the jth column of the matrix. A value of 1
represents an obstacle being on the corresponding coordinates in the room, while a value
of 0 represents an accessible position.

Thus, the neighbouring nodes to which there exist legitimate edges for any node are the
nodes directly adjacent to it in the matrix – both horizontally, vertically, and diagonally,
for all such nodes that are accessible and within range of the matrix.

Supposing A is a set of nodes that are accessible and within range of the matrix, and the
neighbouring nodes of the node xij is denoted by Bxij , such that:

Bxi,j = {xi−1,j , xi−1,j−1, xi,j−1, xi+1,j , xi+1,j+1, xi,j+1} (2.5)

It is possible, using a third set of nodes, C, to state that legitimate edges exist only
between xij and nodes in C = A ∩Bxij .

Since all nodes and edges can be defined, the model translates into a graph that is com-
patible with the algorithm described in 2.3.1.

2.4 Smooth movement

In order for a robot to move to a designated target in two dimensions, it has to align
itself in the correct orientation and move towards the target. There are two general
methods for moving to the target; one where the robot is first rotated into the correct
orientation and then moves forward, and the other where the robot rotates and moves
forward simultaneously.

The second method is what we will call a smooth movement, which results in a continuous,
smooth curve for the robot to follow and allows it to move forward immediately. According
to O. Beronius et al. [11], who did a study on the same robots used in this project, the
smooth movement they developed is favourable over the alternative, hence this is the
algorithm that will be used in this study. The maths for calculating the angular and
linear velocities for achieving the smooth movement to the target is described below.

First of all, a two dimensional Cartesian coordinate system has to be set up. The robot’s
position and the target position as well as the robot’s orientation in this space has to be
known. The distance between the robot and target is denoted by d. The angle φ is defined
as the angle to the target position from an axis parallel to the positive x-axis, originating
from the robot’s position. The angle θ is the orientation of the robot, calculated from the
same axis. The angles are shown in figure 2.3. The resulting goal angle for the robot to
align itself according to from its current orientation is given by:

α ≡ φ− θ. (2.6)

7

2. Theory

Figure 2.3: The angles used to calculate how the robot has to rotate in order to align itself
with the target. The angle φ is the angle to the target from the robot and θ is the orientation
of the robot, both given from an axis parallel to the positive x-axis, originating from the robot’s
position.

The angle α is shifted by 2π in order to take a value in [−π, π]. Since, for example, a
rotation by π gives the same final orientation as a rotation by 3π, the robot does minimal
rotation to align itself. Then α can be used to achieve the smooth movement. The forward
movement scale factor:

χ ≡ π − |α|
π

(2.7)

takes values between 0 and 1. The smaller the magnitude of α is, the robot is almost
in the correct orientation, the bigger χ gets. When the robot is almost in the opposite
direction, χ tends to zero.

The linear and angular speeds are then given as:

vlin = d · χ
vang = α,

which are used by the robot when moving to the target position. These values have to be
continuously recalculated in order to achieve the smoothest possible movement.

8

3
Hardware and Software

There are two primary hardware components. The first one consists of three mobile robots
from Omron Adept tech. being able to receive control actions from a laptop. The laptops
are running the Robot Operating System (ROS), which is used as the primary software
platform for control and communication between the robots. The second component is the
positioning system, which is using a web camera to read visual markers that are analysed
in a computer vision program called GulliView. The code produced during the project
has been written in Python, except for some minor changes to GulliView, which is written
in C++.

3.1 Hardware

Presented below is a list of the main hardware components required to set up the project.

• Omron Adept MobileRobots Pioneer P3-DX
Although the P3-DX robots [12] can support a wide range of optional accessories
such as laser sensors for navigation and robotic arm manipulators, they are only
used as mobile agents in this project. Any other similar robot with a ROS interface
could be interchangeable with the P3-DX, with only minor modifications to the code
base. Each robot has two differential-drive motors with 500-tick encoders and can
reach a top speed of 1.2m/s. The dimensions of the robots are 455×381×237 [mm].

• Logitech Webcam C930e
When using the GulliView vision-based localisation interface, at least one camera is
required for the video stream. The Logitech Webcam C930e is well suited for track-
ing due to its wide field of view (90°), sufficiently low distortion, and a resolution of
1920× 1080.

• Thomson TG784 Wi-Fi router
The router used to set up a local Wi-Fi network, that enables communication be-
tween the controller and the robot computers.

• Ubuntu laptops
In this project five different laptops running Ubuntu 16.04 LTS (Xenial Xerus)
were used. One for each robot, connecting it to the network and providing control
commands, one for running the GulliView tracking software and server, and one
running the master control algorithm.

9

3. Hardware and Software

3.2 ROS and ROSARIA

ROS [13] is a wide-spread software platform used in many research projects involving
robotic systems. It is used to implement low-level device control, hardware abstraction,
and as a way to handle communication between different processes running in the system.

ROSARIA [14] is a node running in ROS, utilising the Advanced Robot Interface for Ap-
plications (ARIA) from MobileRobots, to create a ROS interface with the P3-DX robots.
It supports various control actions such as setting the robot’s linear velocity, angular ve-
locity, and other motion parameters. It is also used to receive sensor information from the
robot platform.

3.2.1 ROS fundamentals

In this section, a breakdown of the different fundamental building blocks of a robot system
implemented with ROS is provided. The information here is a summary of the extensive
information found on the ROS wiki1.

• Core
A ROS core is the foundation on which the system runs. It provides naming services,
a parameter server and system-wide logging sent to the topic /rosout. A core is the
first thing that has to be run when starting a ROS-based system and only one core
can run at the same time.

• Nodes
Nodes are small isolated computational services, that are linked together similar to
a graph, where the edges in the graph are topics that carry messages between nodes.
They can be seen as individual programs with a ROS outer layer that exposes an
API2. This means that new nodes can be easily embedded into the system. It also
means that a ROS system is not limited to a specific programming language, so that
nodes can run Python or C++ scripts.

• Messages and topics
Messages sent over topics is the method used for communication between nodes.
Nodes subscribe to the topics which are unidirectional, i.e. nodes have the ability to
both subscribe and publish to a topic. Messages are type defined, either as a ROS
standard message or a user defined message. They are set up as data structures
containing primitive data types, or arrays of primitive types.

• ROSARIA
ROSARIA is the node that handles communication between ROS and the robots’
ARIA interface. Each robot has its own instance of a ROSARIA node, running with
unique parameters such as name and IP address in the network. The ROSARIA
node is able to subscribe to the cmd_vel topic, which contains a message called
Twist. The Twist message contains two different types of parameters for controlling

1wiki.ros.org
2Application Programming Interface.

10

http://wiki.ros.org

3. Hardware and Software

the robot; linear and angular. The linear parameter sets the forward speed in meters
per second, and the angular sets the rotational speed in radians per second.

3.3 GulliView

GulliView [15] is a system used for visual localisation developed at Chalmers University of
Technology as a cost efficient alternative for autonomous vehicle control and positioning on
small scales. The system consists of a camera mounted over the test area, and a computer
running the GulliView program. A ROS node on the same computer is publishing the
position data as a topic on the local Wi-Fi network with an update rate of 30± 2 Hz. The
markers GulliView are able to track are called AprilTags [16]. The accuracy was well with
in the requirements but never thoroughly measured in this project. An extensive test of
the GulliView system were carried out by another bachelor’s project [17] in 2016. Each
robot has two AprilTags on top of themselves – one used for the position of the robot, and
the other giving the heading of the robot relative to the first tag.

To set up the GulliView system, four AprilTags are placed on the driving surface in a
quadrilateral square used as a base for a transformation matrix. This transformation
matrix allows GulliView to see tags from an angle and still be able to correctly localise
them in the driving plane. The distance between the base tags represent the size of the
unit GulliView uses, where each axis is set to be 1000 units long. Strategical placement of
the tags one meter apart allows the software to publish the position data where one unit
equals one millimetre.

11

4
Method

The formation movement required several different sub-systems to work together. The
communication between the robots had to be set up, and their positions had to be found.
Using the position data, a controller could make decisions on the path for the leader and
the follower movement to keep the formation. The methods used to build these systems
are described in this section.

4.1 Communication

Several communication methods and protocols were applied in this project. RS-232 serial
communication was used between the physical robots and their respective computer run-
ning ROSARIA. The ROSARIA computers, master controller and GulliView computer
were connected to a Wi-Fi network. They communicated with each other using messages
sent over ROS topics, as described in section 3.2.

Figure 4.1: GulliView system set up with one camera, seeing three robots with AprilTags on
top. The tags are tracked by the GulliView program and their positions are then sent from the
GulliView server to the controller.

12

4. Method

Figure 4.2: Visualisation of how the ROS-nodes interact within a local network.

4.1.1 System setup

Figure 4.1 presents how the network and camera is set up. The figure also shows three
robots with AprilTags on top, used for collecting position data with GulliView. Figure
4.2 provides an overview of how the nodes communicate as publishers and subscribers.
The master controller subscribes to a topic published by the camera node, which gives the
AprilTags’ positions. This data can then be used to determine the robot’s positions and
orientations. The controller does the necessary movement calculations and publishes the
resulting control commands to three topics, each intended for one specific robot.

4.2 Formation control

Among the different variations of controllers described in section 2.1, a leader- and position-
based controller was selected. It is well suited due to the stability of the system network,
allowing access to a constant and precise stream of position data in a global coordinate
system.

The formation control algorithm is divided into several parts. First a leader is determined
based on the robots’ positions and the goal. Then the shortest path to the goal for the
leader, in regard to obstacles that the formation has to avoid, is calculated. The path is
represented by a list of interim target positions that the leader goes to using the smooth
movement algorithm. From the information about the positions of all robots in the system
and the orientation of the leader, the followers are using two PID controllers each to adjust
their relative distances to both the leader and the other follower. The process is described
in detail below.

4.2.1 Setting the leader

As mentioned above, the first thing that has to be done is setting the leader. This is not
necessary for the system to work, but when choosing the robot that is the closest to the
final target position, it will move ahead of the other robots in the system. In this way the
inverse pendulum problem, which easily can lead to unstable systems, is avoided. Since all
of the robots in this study are of the same type, there are no new problems arising when

13

4. Method

changing the leader. The algorithm to set the leader is simple in its design – the only
things considered are the distances of each robot to the goal, which are calculated using
position data from the camera positioning system. The robot that is the closest to the
target position is assigned to be the leader, while the others are assigned to be followers.

4.2.2 Path finding

When the role of the leader had been assigned, a representation of the room was given
through a binary matrix, as described in 2.3.2. This matrix was generated using input from
the camera. The observed system of coordinates was divided into a grid where each square
was represented by an element in the matrix. Obstacles were represented by designated
AprilTags.

A practical example using a 4× 5 m2 map and setting a node density of 1 node per metre
would generate the following matrix:

R4×5 =

x0,0 x0,1 x0,2 x0,3 x0,4
x1,0 x1,1 x1,2 x1,3 x1,4
x2,0 x2,1 x2,2 x2,3 x2,4
x3,0 x3,1 x3,2 x3,3 x3,4

 . (4.1)

While R4×5 is generally described as in matrix 4.1, it would in a specific case depict the
values of all nodes according to what the camera has perceived. For instance, if there are
AprilTags representing obstacles placed across nodes x11, x21, x31, x12, x22, and x32, Ra

would appear as in the matrix below:

R4×5 =

0 0 0 0 0
0 1 1 0 0
0 1 1 0 0
0 1 1 0 0

 . (4.2)

Following the matrix generation, and when given a goal, a path was plotted using an
implementation of the A*-algorithm. The A* implementation used was written in Python
2.7 by C. Careaga [18]. The principles of the algorithm are described in section 2.3.1.
This found and reconstructed the shortest path from the starting point to the goal while
avoiding all obstacles. The path was presented as a list containing coordinates, which were
along the path leading to the goal as calculated by the A*-algorithm.

In the case of R4×5, when stating for instance x3,0 as the node of origin and x0,4 as the
goal node, the optimal path in the form of indices returned by the algorithm would be:

pathR4×5 = {(3, 0), (2, 0), (1, 0), (0, 1), (0, 2), (0, 3), (0, 4)}. (4.3)

R4×5path
=

0 + + + G
+ 1 1 0 0
+ 1 1 0 0
S 1 1 0 0

 (4.4)

The matrix 4.4 illustrates the plotted path, with S marking the starting node, G marking
the goal, and the remaining nodes belonging to the path marked with +.

14

4. Method

4.2.3 Leader movement

The smooth movement algorithm (sec. 2.4), was applied to the movement of the leader as
it sequentially travelled to the coordinates provided by the path finding algorithm. The
leader received a linear speed to go with, which was scaled with the forward movement
scale factor χ (eq. 2.6) for all target points except the final one. Going to the final target
point, the distance left was also considered, allowing a smooth stop. The movement of the
leader was done in disregard of the followers positions, making it desirable to move the
followers into formation before moving the leader.

4.2.4 Follower movement

Making sure that the formation is kept without knowledge of the future gave rise to many
problems. If the actual path of the leader was known to the followers it would be trivial
to calculate a path for the followers to maintain the formation, but this was not the case.
Instead the information available was the data from the camera positioning system which
are positions and orientations of the robots.

By using two PID controllers; one for the distance to the leader and one for the distance to
the other follower, the follower’s position could be controlled. The inputs to the PID were
the desired distance to the other robot, and the actual distance between the robots. From
this, a control output was calculated as described in the PID controller theory section, see
2.2. In general the idea is that the output reflects how far away from the correct distance
to the other robot it is, has been and will be in the future. These control outputs are
denoted by ul and uf for a follower to a leader and another follower respectively.

The robots were only allowed to move forward, which means it is desired to have a system
with no overshoot. Overshooting can be minimised by tuning the constants of the PID
controller. Still, overshooting occurred in some cases, which were handled by slowing down
the follower until it fell out of formation again. Hence, turning around was not allowed
when the followers were getting too close to the leader.

The control outputs ul and uf were used to decide in which direction to go. To illustrate
the idea, some examples will be given before a more rigorous mathematical approach is
introduced. If uf has a large value compared to ul, it is desirable to move towards the
other follower. If instead both ul and uf are small, the follower is more or less at the
correct distance from both the other robots. Therefore, it is desirable to orientate itself
in the orientation of the leader and go in this direction, since we know that the leader is
moving forward.

The ideas above are realised by building a direction vector for the follower, denoted by
~vdir. To find ~vdir, three vectors have to be used; the vector from the follower to the leader,
~vl, the vector from the follower to the other follower, ~vf, and a vector representing the
orientation of the leader, ~vori_l. All of these vectors are normalised so that they are of
equal magnitude, before scaling them with ul and uf. The scaled vectors are then added
together, which gives:

~vdir = ~vl · ul · uf + ~vf · uf + ~vori_l · exp
(
−
√
u2

l + u2
f

)
. (4.5)

15

4. Method

Figure 4.3: Visualisation of the scaling factor for going in the leader’s orientation in regard to
the control commands ul and uf received from the PID controllers.

The exponential term scaling the orientation vector of the leader takes values between 0
and 1. It tends quickly to 0 as soon as this follower is getting far away from one of the
other robots. It is only when both ul and uf are small this scale factor is close to 1 – a
graphical visualisation of the exponential term is shown in figure 4.3.

When the direction is calculated, the robot gets the total control command

u ≡
√
u2

f + u2
f , (4.6)

which multiplied by the forward movement scale factor χ (eq. 2.6) gives the linear speed
in meters per second the robot should go with.

4.3 Testing

This section describes the methods used to test the developed algorithms and produce the
results latter presented in this report. The testing was done as an iterative process; firstly
the PID controllers were tuned, then the speed of the leader was examined, and finally
the formation movement around obstacles was studied. For all tests, the formation was
set as an equilateral triangle with a side length of 1m.

4.3.1 Tracking setup

During the development phase, a test setup to quickly run new code on a working system
was built. In this prototyping setup, a camera was mounted on the ceiling 305 cm from

16

4. Method

Figure 4.4: Overview of the camera tracking system. The camera is mounted on an aluminium
pipe suspended between two tripods standing upon two cases. The estimated height of the camera
is ≈ 5.3 m.

the floor which resulted in a tracking area of 2.8× 2 m2. While this was too small to run
any large scale test, it was enough to validate that the concept of the code worked on a
physical system.

Latter on, a larger test area was necessary. While one way of expanding the tracked area
was by adding more cameras to the system, another approach was chosen. This way only
one camera was used, but in return a room with a high ceiling was required. This resulted
in a usable test area of 4.8 × 4 m2 = 19.2 m2 seen in figure 4.4. The reason behind using
only one camera is discussed in section 6.1.2.

4.3.2 PID tuning

First of all, the optimal values for the PID controller had to be found. The definition for
being the optimal values in this study, are those that give a short time for the followers
to get into position and a minimal overshoot of the distances in between the robots.
For investigating these things, a program was written to collect data from the camera
positioning system.

17

4. Method

To decide the values of KP , KI and KD an experiment was set up where the robots always
started in the same position and direction. The leader drove with the same speed, 0.1m/s,
to the same point. Only the PID constants were changing in between two measurements.
Since the size of the robots is about 40×40 cm2 (sec. 3.1), transporting things on top of the
robots on a movable surface allows the object to stay in place – even if the robots fall out
of formation within a range. An acceptable range for still being considered in formation
was set to ±10 cm, since this margin is well within the dimensions of the robots.

By iterating through different values of the PID constants, and studying the resulting
behaviour, the values could be tuned. To determine how to change the values, the ideas
presented in section 2.2 were used.

4.3.3 Speed of the leader

Another thing that could change the conditions on the system is the leader’s speed. Since
the followers are using PID controllers that are constantly counteracted by the moving
leader, the magnitude of this movement might have an impact. By setting up an experi-
ment with all things kept the same, apart from the speed of the leader, the effects of this
can be examined.

4.3.4 Formation control

When the PID values were set and the speed of the leader had been examined, the for-
mation algorithm could be tested. From the position data, the distances in between the
robots could be calculated for every update from the camera. Using the acceptable range
for being in formation of ±10 cm defined above in 4.3.2, the time spent in formation could
be displayed as a percentage of the total time. Obviously these results will depend on
the initial conditions of the system, the path the leader takes and other parameters not
controlled by the followers.

18

5
Results

This section shows the tuning process of the PID controller and the results of the experi-
ments outlined in the previous chapter.

5.1 PID tuning

The full list of tests can be found in table 5.1 along with the measured settling time and
information about overshooting. Those that give a representative image of the tuning
procedure can also be found in figures in this section. The column “Max overshoot” in
the table gives the biggest overshoot registered for any distance between two robots. Note
that values on the PID constants that gave an unstable system, for example robots almost
colliding, uncontrollably oscillating, or similar are not included. As mentioned in the
testing chapter (sec. 4.3), the desired distances in between the robots were all set to 1m,
and the acceptable margin to ±10 cm for being considered in formation.

Table 5.1: The behaviour of the system in relation to different values for the PID constants.
For each set of values the time it takes to achieve a formation within the admissible margins, and
maximum overshoot in the distance between any of the robots are shown.

KP KI KD PID scale to leader Time to formation Max overshoot
0.5 0 0 1 - 14 cm
0.6 0 0 1 11 s 21 cm
0.7 0 0 1 9 s 24 cm
0.8 0 0 1 - 39 cm
0.4 0 0.0002 1 - 50 cm
0.6 0.8 0.0002 1 - 11 cm
0.6 0.8 0.0003 1 - 31 cm
0.4 1 0.0002 1 - 11 cm
0.6 1 0.0001 1 - 10 cm
0.6 1 0.0004 1 - 3 cm
0.6 1.4 0.0004 1 9 s 2 cm
0.6 1.2 0.0003 1 - 4 cm
0.6 1.4 0.0003 1 - 6 cm
0.7 1.3 0.0003 1 12 s -
0.7 1.3 0.0003 KP · 1.2, KD · 1.05 5 s 2 cm

19

5. Results

(a) KP = 0.5, KI = 0, KD = 0 (b) KP = 0.7, KI = 0, KD = 0

Figure 5.1: The distances in between the robots over time for the two different sets of PID
values. The dotted black lines show the acceptable margin for being in formation.

In figure 5.1a the relative distances between the robots over time are shown, using PID
constants with values of KP = 0.5, KI = 0, and KD = 0. The followers cannot get into
formation until the leader stops around 15 seconds in. There is also a small overshoot
in the distance between the followers, meaning that they get too close to each other. In
figure 5.1b the KP value is increased to 0.7, while the other constants are kept at 0. With
this alteration, the robots get into formation at the expense of the distance in between
them overshooting more than before.

If the other PID constants, i.e. KI and KD are set to non zero values the overshooting
can be controlled. In figure 5.2a the values are KP = 0.4, KI = 1 and KD = 0.0002 which
more or less removes the overshoot. In return, the robots no longer get into formation
during the time the leader is moving. This is partly corrected by increasing the values to
KP = 0.7, KI = 1.3, and KD = 0.0003 which can be seen in figure 5.2b. The robots are
still not quite able to get into formation while the leader is moving, and increasing the
values more only resulted in unstable systems.

Since the general problem was the followers never catching up with the leader, the values
of the PID constants for the PID controlling the distance between the leader and follower
were increased. However, the values for the PID controlling the distance in between the

(a) KP = 0.4, KI = 1, KD = 0.0002 (b) KP = 0.7, KI = 1.3, KD = 0.0003

Figure 5.2: The distances in between the robots over time for the two different sets of PID
values. The dotted black lines show the acceptable margin for being in formation.

20

5. Results

Figure 5.3: The distances in between the robots over time for the PID tuning process with
KP = 0.7, KI = 1.3, and KD = 0.0003. For the PID controlling the distance to the leader the
KP value was scaled by 1.2, and the KD value with 1.05. The leader is moving with a speed of
0.10m/s. The dotted black lines show the acceptable margin for being in formation.

followers were kept the same. Scaling KP up for the PID controlling the distance between
a leader and follower by 1.2 and KD by 1.05 gave results according to figure 5.3, which
shows a time for getting into formation of just under 5 s and an overshoot in the distance
between the followers of about 2 cm. Those are the PID values used from now on.

5.2 Speed of the leader

In figure 5.4a, the relative distances between the robots when the leader is going by a speed
of 0.20m/s can be seen. If that is compared to figure 5.3, in which the leader is moving
with 0.10m/s, the speed’s impact on the formation can be studied. When the leader is
going with a higher speed, the followers settle around 20 cm from the leader instead of
10 cm when going with the lower speed. If the speed is additionally increased, to 0.25m/s,
the distance in between them becomes larger than before, up to 35 cm, which can be seen
in figure 5.4b. The figures may imply that the correct formation is achieved. However,
this is due to the fact that the leader halts after reaching the goal, allowing the followers
to catch up. Increasing the speed of the leader to values higher than 0.25m/s resulted in
the followers not being able to find the final formation.

21

5. Results

(a) Leader speed = 0.20m/s. (b) Leader speed = 0.25m/s.

Figure 5.4: The distances in between the robots over time when the leader is going with two
different speeds. The dotted black lines show the acceptable margin for being in formation.

5.3 Formation movement

The main objective was to move three robots in a formation along the shortest path to
a target position while avoiding obstacles. Using the final PID values from the tuning
process in section 5.1 and a speed of the leader of 0.1m/s, the distances in between the
robots for the entire movement are plotted for two different tests in figures 5.5a and 5.5b.
In figures 5.6a and 5.6b the corresponding movements of the robots are shown. The leader
is represented by a star and is meant to follow the shortest path calculated by the A*-
algorithm to the target, allowing the entire formation to avoid obstacles. The distances
in between the robots are also shown. In general it is visible that the follower that travels
outside of the leader’s trajectory tends to have more trouble staying in formation than the
one travelling on the inside.

In the first test (fig. 5.5a) the percentage of the total time spent in formation within
the accepted margins of ±10 cm is 64%, which is calculated from when the robots first

(a) The corresponding positions of the robots
during the movement can be seen in figure
5.6a. The formation spends 64% of the time
within this margin.

(b) The corresponding positions of the robots
during the movement can be seen in figure
5.6b. The formation spends 77% of the time
within this margin.

Figure 5.5: The distances in between the robots over time when the formation is travelling
around an obstacle. The dotted black lines show the acceptable range for being in formation.

22

5. Results

(a) Positions corresponding to the test with the relative distances in between the robots shown in
figure 5.5a.

(b) Positions corresponding to the test with the relative distances in between the robots shown
in figure 5.5b.

Figure 5.6: The positions of the robots in the formation at four discrete times for two different
tests. The leader, represented by a star, moves along a path to a target point while avoiding obsta-
cles represented by red circles. The time that has elapsed since the beginning of the measurement
is shown next to the formation. The respective distances in between the followers, marked by a
black dot, and the leader, are printed next to the line connecting them.

23

5. Results

started moving until they were all in formation at the goal. It can be seen in the figure
that the time being out of formation, is spent by only one follower a few centimetres from
the acceptable margin. For the second test (fig. 5.5b) the percentage of the time spent in
formation is 77%, but while being out of formation the distance error in between one of
the followers and the leader is considerably larger than for the first test.

For both tests it can be seen that the formation is avoiding the obstacles as desired.
Hence the area the camera sees translates into the desired graph representation, allowing
the A*-algorithm to calculate the path for the leader.

5.4 Code

The final Python code for the control algorithms, and other programs used can be found
in the public GitHub repository found at github.com/Stridma/SSYX02-17-82.git.

24

https://github.com/Stridma/SSYX02-17-82.git

6
Discussion

In this section, we will discuss the results of our project in relation to the project aim
and problem definition from sections 1.1 and 1.2. Additional matters of discussion are
hardware and software tools used in this project, to which degree they had the required
performance, as well as thoughts on further development of the project.

6.1 Hardware and software

The size of the robots and limitations on the camera system will be highlighted in this
section.

6.1.1 Size of the robots

The robotic platform used in this project, explained briefly in section 3.1, had a character-
istic that somewhat affected the project’s outcome. This was the relationship between the
size of the robots and the coverage area of the GulliView camera system. Driving three
large robots on an area of about 2.8× 2 m2 meant that there were some limitations on the
tests possible to perform. The only tests that were able to be executed, without setting
up a larger test area, was either getting the robots to drive to a formation from scattered
positions, or beginning in formation and driving 2 meters in a straight line. Smaller and
more agile robots could have accelerated the development and supported more complex
test scenarios, like driving around several corners.

6.1.2 GulliView as tracking system

GulliView as a tracking system presented challenges, with one of them being the code base
that is lacking in its documentation. This meant that a lot of time and effort was spent
on getting the system up and running, rather than core aspects of the project. Some
modifications were made to the GulliView_server code1, which was necessary for it to
send out information on all three robots and obstacles.

1The code is found in the public GitHub repository at github.com/Stridma/SSYX02-17-82.git

25

https://github.com/Stridma/SSYX02-17-82.git

6. Discussion

Figure 6.1: Illustration of tracking problem when driving from one field of view of one camera
to another.

While GulliView has support for using multiple cameras in the system, the overlapping
view between multiple cameras – while seeing the same four AprilTags used for setting up
the room coordinate system – has some discrepancies. The main reason for this is that
those four tags are taped to the floor and GulliView is tracking all other tags as if they
were on the same plane. Errors then occur when two cameras track a robot tag (fig. 6.1)
since the robot has its tags on top of it, about 30 cm above the floor. This difference in
height causes GulliView to send out conflicting position data from the two cameras.

Due to the camera having a specified field of view of 90◦ the robot will have an angle of
45◦ from the camera when leaving the field of view. Knowing that the robot is 237mm
high, you can apply some basic trigonometry and calculate that the camera will position
the robot about as far off as the robot tag is above the floor, since:

tan 45◦ = 1 = height of robot
position error .

Experiencing this during testing, the first solution tested to counter this error was to
raise the four tags on the floor, to the same level as the robots’ tags. While this fixed
the majority of the issue, some positional error was still present when driving from one
camera to another.

Another approach on avoiding this issue without using a filter or other changes to the
software, is to instead use one camera but mount it higher over the floor plane allowing
for a larger field of view.

6.2 Movement algorithm

Building upon the results listed in section 5, this section describes and analyses the process
of testing the controller.

26

6. Discussion

6.2.1 PID controller

Finding the optimal set of PID constants for the system was crucial for the project. First,
the behaviour of the system was investigated in simulations, in order to give an idea of
what to do with the real robots. Initial testing revealed that the usage of a leader-based
system meant that the requirements on the two PID controllers used for each follower were
a bit different. Since the leader was moving without consideration of the followers and the
distance between them increased continuously, the desire for a follower to keep up with
the leader had to be increased. The idea was that the integral term would accumulate the
error of a follower trailing behind, but any further increments in the KI value resulted in
unstable systems. Instead, the PID controlling the distance between a follower and the
leader was given larger values than the PID controlling the distance between the followers.
This allowed for a somewhat better formation control algorithm, since the time to get into
formation was reduced.

6.2.2 Follower direction

A substantial part of the efforts regarding the follower movement algorithm was deciding
in which direction to go. The different ways of deciding the direction that were examined
during the study are not described in the report, but only the final solution that was used.
From the beginning, the follower used only one PID controller – first determining a goal
based on its own and the other robots’ positions, and the desired distance in between
them. Then, controlling its movement to this point. This resulted in an unstable system
since the determined goal was always changing.

The big breakthrough came when two PID controllers were implemented, allowing the
follower to individually control its distance to each robot. The success was not immediate.
In the first iteration with two PID controllers, the decision on which direction to go in
was only based on the vectors from the follower to the leader and the other follower
respectively, both scaled with their respective control output from the PID controllers. A
plot of the distances between the robots for such a system can be seen in figure B.1 in
the appendix. In the next iteration, the leader’s orientation was considered, allowing the
followers to align their movement with the leader when they were approaching being in
formation.

The final step was realised by scaling the movement towards the leader with the product
of the two control outputs from both PID controllers, allowing the follower to only move
in the direction of the leader’s orientation when the correct distance to the other follower
was kept. This might give rise to some errors; in case the followers come into the right
distance from each other but are far away from the leader they will not aim for the leader.
This was never found to be a real problem, since the control outputs are never perfectly
zero meaning the followers will always tend to go to the desired formation to some extent.

The improvements on the direction algorithm did not come without a cost – the system
now had trouble when a follower was getting too close to the leader. Since the system
behaved well in the majority of situations, no additional changes were made to the follower
direction. Instead, it was decided to slow down the follower as soon as the distance between
itself and the leader was smaller than desired. Since the robots used in this project are

27

6. Discussion

relatively heavy, their inertia meant that going to a full stop and then speeding up again
resulted in jerky movement – hence the decision to only slow down the follower. When
falling behind the leader again the normal control commands could be used to stay in
formation.

6.3 Future improvements

While the resulting controller fulfilled the initial goal, there is still room for improvements.
Some of these are discussed in this section.

6.3.1 Alternative positioning systems

An obvious issue in using GulliView as the positioning system is that the tags on top
of the robots cannot be covered, making it impossible to transport anything on top of
them. If the system were to utilise other positioning equipment, which is not occupying
the top of the robots, the transportation of objects would be possible. An example of these
positioning systems is LIDAR, which measures distances within the formation by pulsing
laser light. A global coordinate system would still be needed for the leader, in order to
plot a path to the target. Using LIDAR could also allow the system to avoid collisions, as
obstacles without tags would also be detected.

One major advantage of using GulliView is that it gives very accurate position data with
a fast update frequency as explained in section 3.3. If another positioning system is
evaluated as a replacement, you would have to compare its performance with GulliView.
Using a Kalman filter to handle unreliable data was first planned for, but later omitted
due to the reliability and accuracy of the GulliView system.

6.3.2 Dynamic leader reassignment

One issue with the current system is the inability to do sharp turns. Manoeuvres such as
u-turns, seen in figure B.2 in the appendix, risk putting the system in a state similar to
that of an inverse pendulum, compromising the stability of the system. One way to deal
with this is to implement the algorithm that reassigns the leader-status from one robot to
another (sec. 4.2.1) dynamically, in contrast to assigning the leader in the beginning of
the movement. This allows the system to adopt traits from a swarm-based system, such as
decreasing the importance of one single robot. For example, if the leader robot would be
incapacitated, or moved by external forces, another could quickly take its place, allowing
the system to keep active.

28

7
Conclusion

During the project, a controller was designed and implemented that was successful in
moving a formation of three robots from their point of origin to a goal point via an optimal
path. Throughout different iterations of the robots’ movement along the path, they were
able to admissibly maintain their formation – meaning that the formation control can be
assumed to have succeeded, and thus that the aim has been achieved.

While it was not shown that the developed system is a viable way of transporting large
objects, it holds great promise in the area. A controller able to manage and maintain a
moving formation of robots has many functions and possible expansions, especially given
the manageable nature of a central controller for a multi-robot system. The project paves
the way for further research, as it provides an efficient and reliable way of maintaining a
formation of robots throughout movement.

Should the principles of the method used in the project be applied to a system with an
even greater number of robots, large scale transport via dynamic autonomous couriers
may be implemented. Not only that, but potentially also leading to reliable platooning of
autonomous vehicles. Formation control is, by all means, a field of vast applications.

29

Bibliography

[1] M. Boden. (2006) Grey walter’s anticipatory tortoises. [Online]. Available:
http://www.rutherfordjournal.org/article020101.html

[2] (2017) The world’s first fully automated uav for cleaning solar panels. Aerial Power
Ltd. [Online]. Available: https://www.aerialpower.com/solarbrush/

[3] (2017) Forcasts. [Online]. Available: http://www.driverless-future.com/?page_id=
384

[4] T.Seba, “Clean distribution: Why conventional energy and transportation will be
obsolete by 2030,” in Presentation to: Swedbank Nordic Energy Summit. 2016 ©Tony
Seba, 2016.

[5] E. Kim. (2016) Kiva robots saves money for amazon. Bussines Insider. [Online]. Avail-
able: http://www.businessinsider.com/kiva-robots-save-money-for-amazon-2016-6?
r=US&IR=T&IR=T

[6] K.-K. Oh, M.-C. Park, and H.-S. Ahn, “A survey of multi-agent formation-control,”
Survey Paper, Korea Institute of Industrial Technology, 2014.

[7] V. Gazi and K. Passino, “Stability analysis of swarms,” IEEE Transactions on Au-
tomatic Control, vol. 48, 2003.

[8] T. Glad and L. Ljung, Reglerteknik: Grundläggande Teori. Studentlitteratur AB,
2006.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms.
The MIT Press, 2009.

[10] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic de-
termination of minimum cost paths,” IEEE Transactions on Systems Science and
Cybernetics, vol. 4, pp. 100–107, July 1968.

[11] O. Beronius, E. Lundén, M. Malmquist, and A. Rohlin, “Coordination of robots via
a wireless network,” Bachelor’s thesis, Chalmers University of Technology, 2016.

[12] Pioneer p3-dx. [Online]. Available: http://www.mobilerobots.com/ResearchRobots/
PioneerP3DX.aspx

[13] (2017) About ros. [Online]. Available: http://www.ros.org/about-ros/

[14] (2017-03-01) Rosaria. [Online]. Available: http://wiki.ros.org/ROSARIA

30

http://www.rutherfordjournal.org/article020101.html
https://www.aerialpower.com/solarbrush/
http://www.driverless-future.com/?page_id=384
http://www.driverless-future.com/?page_id=384
http://www.businessinsider.com/kiva-robots-save-money-for-amazon-2016-6?r=US&IR=T&IR=T
http://www.businessinsider.com/kiva-robots-save-money-for-amazon-2016-6?r=US&IR=T&IR=T
http://www.mobilerobots.com/ResearchRobots/PioneerP3DX.aspx
http://www.mobilerobots.com/ResearchRobots/PioneerP3DX.aspx
http://www.ros.org/about-ros/
http://wiki.ros.org/ROSARIA

Bibliography

[15] E. Olson. (2016) Gulliview. [Online]. Available: https://bitbucket.org/thpe/
visionlocalization

[16] (2016) Apriltag. April Lab, University of Michigan. [Online]. Available: https:
//april.eecs.umich.edu/software/apriltag/

[17] A. Arkheden, R. Zaragatzky, A. Lindhé, and R. Gustafsson, “Ett prisvärt alternativ
för global visuell lokalisering och styrning av autonoma fordon,” Bachelor’s thesis,
Chalmers University of Technology, 2016.

[18] C. Careaga. (2014) Python a* path finding (with binary heap)
(python recipe). [Online]. Available: http://code.activestate.com/recipes/
578919-python-a-pathfinding-with-binary-heap/

31

https://bitbucket.org/thpe/visionlocalization
https://bitbucket.org/thpe/visionlocalization
https://april.eecs.umich.edu/software/apriltag/
https://april.eecs.umich.edu/software/apriltag/
http://code.activestate.com/recipes/578919-python-a-pathfinding-with-binary-heap/
http://code.activestate.com/recipes/578919-python-a-pathfinding-with-binary-heap/

A
Assignment of nodes

Depending on the initial placement of an arbitrary number of robots on an n ×m sized
map, the assignment of a robot to a certain node in the desired formation on a decided
location on the map could be costly. Minimizing the distance travelled, as well as other
potential cost variables, for the overall system saves energy and resources.

Preserving the resources as an aim would lay the foundation for a decision reached through
consensus, since simply driving the robots to the point closest to themselves could lead to
more than one robot going to the same node, thus leaving other nodes in the formation
unmanned. The assignment of robots to nodes can be seen as a linear-programming
problem as follows:

Let us denote by the matrix M, each robot’s distance to each node in the formation. In
this example, there are three robots and three nodes:

M =

D00 D01 D02
D10 D11 D12
D20 D21 D22

 ,
where the element Dij is the ith robot’s distance to the jth node in the formation. For
each element D, there is a corresponding binary variable X that represents whether or
not that path is taken by the robot in question. Only one X for each row can be set to
1, meaning the robot can only go to one node. In a similar fashion, only one X for each
column can be set to 1, meaning that no two robots can go to the same node.

D is a constant in the minimising function, and X a variable. By defining a set of con-
straints as described above, we have the following linear-programming problem:

Minimize f(x) subject to:
Xij ∈ {0, 1}

X00 +X01 +X02 = 1
X10 +X11 +X12 = 1
X20 +X21 +X22 = 1

X00 +X10 +X20 = 1
X01 +X11 +X21 = 1
X02 +X12 +X22 = 1

I

A. Assignment of nodes

where
f(x) = X00D00 +X01D01 + ..+X22D22

The final result will be each X having either the value 0 or 1, such that there is only one
1 in each row and only one 1 in each column. This means that each robot-node pair is
exclusive, and if X for the ith row in the jth column is equal to 1, the ith robot goes to the
jth node.

This could be applied to n number of nodes and robots by setting the matrix M to an
n×m matrix.

M =

D00 .. D0m

. . .
Dn0 .. Dnm

II

B
Additional results

B.1 Discarding leader alignment

Figure B.1: When the followers are not aligned with the leader when they get into formation,
the system remains unstable.

III

B. Additional results

B.2 Sharp turns

Figure B.2: Sharp turns like this one pushes the system beyond what it can handle. The
distances in between the robots during the entire movement is seen in figure B.3.

Figure B.3: During the U-turn seen in figure B.2, the system is only in formation 47% of the
time until the robots are stopped manually. The formation is doing fine until around 35 seconds
in, when the leader is turned towards follower 2.

IV

C
Algorithms

Djikstra’s algorithm is a single-source shortest-path algorithm. Supposing that there is a
weighted, directed graph with exclusively positive weights, the algorithm finds the shortest
path from the starting node to every other node in the graph. It achieves this through
keeping a set of nodes for which the final shortest-path weight has already been determined,
and repeatedly selecting nodes in the graph that are not in said set based on the minimum
shortest-path estimate until there are no remaining [9, pp. 658-659]. While being efficient
when wanting to know the shortest path from one node to all other nodes in a graph,
when interest only lies in finding the shortest path to a certain node, the broadness of
Djikstra’s algorithm becomes redundant.

A greedy algorithm is an algorithm that, rather than dynamically determining which choice
is better, bases its decision on what seems best at that moment – meaning it will solve
the overall optimal task, and not dynamically solve subtasks [9, pp. 414-418]. While this
may be highly useful in some cases, in the case of wanting to find the shortest path, it will
seek to follow the route that is shortest independent of the obstacle. Largely depending on
the characteristics of the obstacle, whether or not a greedy algorithm returns the actual
shortest path may vary, making it unreliable in the case of wanting to find the shortest
path. That is to say, the algorithm may expand an unnecessarily high number of nodes,
since it will not begin avoiding the obstacle until it encounters it.

V

	List of Figures
	Introduction
	Aim and scope
	Problem description

	Theory
	Variations of formation control
	PID controller
	Path finding and shortest-path algorithm
	A*-algorithm
	Graph model and representation of the map

	Smooth movement

	Hardware and Software
	Hardware
	ROS and ROSARIA
	ROS fundamentals

	GulliView

	Method
	Communication
	System setup

	Formation control
	Setting the leader
	Path finding
	Leader movement
	Follower movement

	Testing
	Tracking setup
	PID tuning
	Speed of the leader
	Formation control

	Results
	PID tuning
	Speed of the leader
	Formation movement
	Code

	Discussion
	Hardware and software
	Size of the robots
	GulliView as tracking system

	Movement algorithm
	PID controller
	Follower direction

	Future improvements
	Alternative positioning systems
	Dynamic leader reassignment

	Conclusion
	Appendix Assignment of nodes
	Appendix Additional results
	Discarding leader alignment
	Sharp turns

	Appendix Algorithms

