Multilingual Grammar-Based Language Training:
Computational Methods and Tools
Master of Science Thesis in Software Engineering and Technology

ELNAZ ABOLAHRAR

CHALMERS UNIVERSITY OF TECHNOLOGY
Department of Computer Science and Engineering
Division of Language Technology

Goteborg, Sweden, September 2011

The Author grants to Chalmers University of Technology and University
of Gothenburg the non-exclusive right to publish the Work electronically
and in a non-commercial purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants
that the Work does not contain text, pictures or other material that
violates copyright law.

The Author shall, when transferring the rights of the Work to a third
party (for example a publisher or a company), acknowledge the third
party about this agreement. If the Author has signed a copyright agree-
ment with a third party regarding the Work, the Author warrants hereby
that he/she has obtained any necessary permission from this third party
to let Chalmers University of Technology and University of Gothenburg
store the Work electronically and make it accessible on the Internet.

Multilingual Grammar-Based Language Training: Computa-
tional Methods and Tools

ELNAZ ABOLAHRAR

© ELNAZ ABOLAHRAR, September 2011
Examiner: AARNE RANTA (Prof.)

Department of Computer Science and Engineering
Chalmers University of Technology

SE-412 96 Goteborg

Sweden

Telephone + 46 (0) 31 - 772 1000

Cover: Multilingual Grammar-Based Language Training: Computational
Methods and Tools

Department of Computer Science and Engineering

Goteborg, Sweden September 2011

Acknowledgment

I would like to express my special thanks to Aarne Ranta my supervisor
for his invaluable help and support and also Thomas Hallgren for his
generous assistance with the JavaScript part as well as Krasimir Angelov
and Ramona Enache for all their help. T also appreciate Olga Caprotti’s
helpful comments and advice on the report which highly improved it.
Last but not least, I want to thank all friends and family who have
helped and supported me by all means to accomplish this work.

Abstract

Living in the communication era we face an ever-increasing demand for
communication. Considering the human languages role as the major
means of communication, has inspired the author to do this thesis work,
which we believe is an effort towards solving the challenge of human
communication. The main goal of this thesis is introducing a teach-
ing/learning aid - which we have called the GF Translation Quiz or in
short the Quiz - to be used in training human languages in general and
specifically targeting their grammatical aspects. The Quiz is designed as
a web application, that makes it also available on mobile phone platforms
- such as iPhone and Android. It may be applied either as an aid in a
language learning methodology or as a stand alone exercise tool for self
training. The Quiz is intended to help teachers and education supervi-
sors by reducing the burden of creating exercises and exam questions,

and at the same time help learners by providing them with instructive
feedback.

About the background many efforts have been done in this mutual area
between computer science and linguistics, among which we have focused
on GF (Grammatical Framework) and its unique conceptual approach to-
wards translation and multilinguality. Thus this thesis work relies heavily
on GF from many aspects, i.e. most characteristics of the Quiz applica-
tion, i.e. grammatical precision, support for multilinguality, and coverage
of natural languages in small fragments are provided by GF. From an-
other point of view the Quiz application works as an interface that makes
GF capabilities available to ordinary non-specialist users.

List of Abbreviations

— GF : Grammatical Framework

— PGF': Portable Grammar Format

— MT: Machine Translation

— BLEU: BiLingual Evaluation Understudy
— JS : JavaScript

— (CSS: Cascading Style Sheets

— HTML: Hyper Text Markup Language

— DOM: Document Object Model

— CEFR: Common European Framework of Reference

Contents

(1__Introductionl 1
(1.1 Objectives| 2
(1.1.1 Multilinguality] 2
(1.1.2 Grammatical Precision and Language Coverage| . 2
(L.1.3 Stand Alone Exercise Tooll 3

(L2 Stateoftheartl 3
2.1 Moodlelo 3
(1.2.2 EngOnline/ 4
.23 Rivstart], 5

(1.3 Background and Inspiration| 8
(1.3.1 Why learning a foreign language matters at all|. . 8
(1.3.2 How can computers help us in the language learn- |

ing process in general and GFE’s specific role | . . . 9

(1.3.3 Translation Quiz command in GF shell. 10

[2 Solution Description| 13
2.1 ~Methods and Technology| 13
RIT GEo 13
[2.1.2 GF Resource Grammar Library|. 20
2.1.3 GE Web Service APIl 28
214 HITMLand DOMI 30

210 CSSl .. 31
[2.1.6 JavaScript|o 32
2.1.7 BLEU an Automatic M1 Fvaluation Methodl 33

2.2 Solution Details o000 34
2.2.1 User Interfacel 34
[2.2.2 Configurations | 38
2.2.3 Functionalities 40

2.3 Extra Features| 46
[2.3.1 How to make your own quiz| 46
[2.3.2 How the Translation (Quiz handles morphology ques- |

3 Evaluation| 49

(3.1 Limitations and Drawbacksl 49
[3.2 Advantages 49
4_Future Workl 50
b Conclusion| 51
(6 Appendices| 52
[6.1 Appendix A: User manual 52
6.1.1 Customizationd 52

6.1.2 Functionalitiesd] 53

6.1.3 Technical Concerns 54

[6.2 Appendix B: Teachers/ Supervisor’s Guide{ 54
[6.2.1 Configuration Variables|. 54

[6.2.2 Modes Settings| 55

[6.2.3 Technical Concernsl 55

[6.3 Appendix C: Developer’s Guide| 56
[6.3.1 Code Organization and Modules| 56

1 Introduction

As we are in the communication era today, human beings have realized
the importance of communication more than ever. Nowadays being able
to communicate with other nations in far or near countries is not consid-
ered a luxury anymore as it might have been a few decades ago, instead
it is an essential demand which is growing at a rapid rate. In this regards
human languages - as the major means of communication - have gained
an unconventionally high significance over time. The actual problem
with human languages is the fact that there are so many of them which
are all unique regardless of probable similarities. There exist roughly
6500 spoken languages in the world today, of which 4500 have more than
1000 speakers [I]. In order to be able to communicate, we need to find
some way to understand each other’s languages. Many efforts have been
undertaken towards solving this problem, and although great achieve-
ments have been gained, the process is still ongoing and seems to be
an everlasting challenge. Among the works done in this area - that is
mutual between computer science and linguistics -, we have focused on
GF (Grammatical Framework) and its unique and conceptual approach
toward translation and multilinguality. Thus GF is the major source of
inspiration for this work and actually forms the basis that this thesis is
built upon.

In brief the aim of this project is introducing a teaching/learning aid to be
used in training the lexical, morphological and syntactic aspects of human
languages, by discussing computational methods as well as implementing
a tool for this purpose. The tool is designed as a web application, that
makes it also available on different mobile phone platforms - such as
iPhone and Android. From this point on we call this web application,
the GF Translation Quiz or in short the Quiz. You can find more details
about the application itself in Chapter [2, Solution Description.

This chapter explains the objectives of the project, state of the art, and
also the background and inspiration behind this thesis work, which the
author believes is somewhere in the path towards solving the challenge
of human communication. Later on in Chapter 2, we explain our solu-
tion - that is the resulted application -, by describing first the applied
methods and technologies, and then the application itself including im-
plementation and technical details. In the 3rd Chapter, the outcomes
of the project are evaluated and both advantages and drawbacks are
discussed. In the following Chapter, some future work possibilities are
suggested. Afterwards we have concluded the whole thesis work in the
final Chapter, which is followed by three Appendices: A, B and C. Ap-
pendix A explains Quiz’ features and functionalities and how they work

with an intention for end users, while Appendix B is mostly aimed at
teachers or education supervisors who would like to use this application
as a means of training and/or evaluating their students language skills.
Finally in Appendix C some information is provided for users at a higher
level; e.g. programmers/developers who might want to apply the Quiz’s
code within their own applications.

1.1 Objectives

This section focuses on the main objectives of this project; each objective
describes one advantageous aspect of the project.

1.1.1 Multilinguality

One important goal in this project has been introducing a multilingual
application, and by multilingual we mean that the system is available
in many languages that the user can choose from, and it does not nec-
essarily mean that all languages are applied at the same time [2]. The
generated exercises are in the preliminary form of sentences in a certain
language which need to be translated to another one. In other words the
application is intended to be general in terms of languages and give the
users many language choices. For this purpose GF’s Resource Grammar
Library have been applied as the constructive base of the project. Fur-
thermore the possibility to extend the system by adding new languages
is highly intended, which is a major achievement in GF'.

1.1.2 Grammatical Precision and Language Coverage

The question to be answered here is that how much grammatical pre-
cision we actually need in the Quiz application and how big chunk of
each language should it cover at the same time. “According to an old
wisdom in natural language processing coverage and precision cannot be
maximized at the same time, thus there is a trade off between coverage
and precision” [2]. Therefore if we put aside a hard coded application
which cannot go wrong but has not much to offer as well, there remains
a choice between the so called data-driven and grammar-driven transla-
tion systems that the Quiz application could rely on. Where data-driven
methods (e.g. Google translator [3]) mostly based on statistical methods
provide a much larger coverage of the language - compared to grammar-
driven ones-, but of course with no warranty for grammatical accuracy
[2]. However in our case making the decision is not difficult at all, for

the purpose of the application - which is teaching languages - enforces
grammatical precision as an inevitable priority. Evidently the error tol-
erance of the system should be absolute zero. Who could imagine a
reliable learning tool that generates wrong output, which is totally self-
contradicting!

Moreover it is more effective to expose learners to a new language in a
gradual manner rather than throwing them into the entire language all at
once. The same holds for the Quiz application, therefore we do not need
large language coverage. Conversely, we would rather have languages in
small fragments. That is what we can get from the Controlled Languages
concept available in GF. See more about this in Subsection [2.1.1]

1.1.3 Stand Alone Exercise Tool

Although the Quiz application can be applied as a very helpful aid inside
a language learning methodology, it is initially intended to be a stand
alone exercise tool for self training. Therefore providing learners with
helpful guidance and instructive feedback is a high priority. This pur-
pose is covered by a combination of features and functionalities in the
application, namely Check Answer, Hint and History. Specially the Hint,
which analyzes the input answers and gives accurate feedback on wrong
answers. This makes the application easy to use by the learners with-
out the aid of a teacher or other help resources. A simplified version of
BLEU [4], which is an automatic machine translation evaluation method,
combined with the Mastermind’s game strategy has been applied to im-
plement this feature. See more details about the Quiz functionalities in

Section 2.2.3

1.2 State of the art

In this section we discuss briefly some existing computerized language
training and exercise generating applications, as listed below:

1.2.1 Moodle

- What is Moodle

— Moodle (abbreviation for Modular Object-Oriented Dynamic Learn-
ing Environment) is a Course Management System (CMS), also
known as a Learning Management System (LMS) or a Virtual

Learning Environment (VLE). It is a free and open-source e-learning
web application that educators can use to create effective on-line
learning sites. Its distribution is via standard core packages, which
the users need to install on their own web servers which can be
nearly any platform (currently available on Mac, Windows and
Linux) where PHP and a database are already installed [5].

- Advantages

— Moodle is a general framework for education and is highly cus-
tomizable, so it can meet diverse demands of a vast range of users.
It is open source and therefore available to all.

— It is more than a mere application; it is a growing community of
users, developers and literally anyone who is interested which adds
great potential for support and further development.

- Drawbacks

— In order to create a quiz in Moodle the user should first create the
questions, however he/she can also save them in a question bank
for later use. Therefore in Moodle the burden of designing and
creating quiz questions remains unresolved.

— The question banks are reusable of course but still there stand two
major difficulties: Firstly, to get a well designed quiz the user still
needs to check the drawn question manually to make sure that they
meet his/her requirements. Secondly as this method is rather hard
coded, the diversity of the questions is limited to the number of
existing questions in the bank which is a static number.

— The interesting point is that Moodle’s major advantage which is
being general is at the same time a drawback, because it cannot
cover specific needs of all subjects at the same time.

1.2.2 EngOnline
- What is EngOnline [6]
— Provided by the Center of Language and Communication at depart-

ment of Applied IT, which is mutual between Chalmers University
of Technology and Gothenburg University, EngOnline is an on-line

4

service that provides the students with an on-line grammar book
and also lots of exercises and quizzes exclusively designed for the
English language learners.

- Advantages

— The teaching material and the assessing procedures are smoothly
combined.

— Quizzes and exercise sets are generated automatically by drawing
questions randomly from a question data base. Thus various com-
binations are readily available for different purposes like homework,
exams and so on.

- Drawbacks

— As stated above exercises are drawing from a question data base.
The same problems with Moodle about limited diversity and need
for manual supervision hold here as well.

— It is only targeting one language, namely English.

1.2.3 Rivstart

- What is Rivstart

— Rivstart is the name of a method for teaching Swedish language
published by Natur & Kultur. Its main materials consist of a text
book (Textbok) and a CD containing mp3 files, accompanied by
an exercise book (Ovningsbok). Rivstart comes in four levels: Al,
A2, B1, B2 according the CEFR standard levels [7]. The part
that we are most interested in about this method is its website
which provides lots of on-line exercises for each chapter in the book.
The exercises are of various types like multiple choice questions,
phrase matching, blank filling and etc. Again the exercises we
are most interested in are the blank filling ones which have a very
precise feedback system which catches the user’s errors up to letter’s
scale. Below are some sample screen-shots of these exercises and
the system’s feedback. For more information about Rivstart and
its on-line exercises see [§].

2 Natur och Kultur - Google Chrome

| @ www2.nok.se/laromedel/sprakverktyg/nokplayer/nokplayer.htmi?source=riva1verb01&name=Verb: %20presens&chapter=

Kapitel 1

Verb: presens

Q Skriv ratt verb.

Sofia arbeta pa Karolinska Institutet.

| arbeta

Tips: Enbokstav saknas.

One letter is missing!

Figure 1: Rivstart samples: missing letter

"% Natur och Kultur - Google Chrome

@ www?2.nok.se/laromedel/sprakverktyg/nokplayer/nokplayer.htmi?source=riva0 1verb01&name=Verb: %20presens&chapter=

sEsimsEmsnannn

RIVETART Al #A2.

Kapitel 1

Verb: presens

mmarmammaeannd

e Skriv ratt verb.

Sofia drbetar pa Karolinska Institutet.

|érbetar

Tips: Enbokstav ar fel.

One letter is wrong!

Figure 2: Rivstart samples: wrong letter

¢ Natur och Kultur - Google Chrome

| @ www2.nok.se/laromedel/sprakverktyg/nokplayer/nokplayer.html?source=rivad1verb01&name=Verb:%20presens&chapter=

RIVETART Al 12 -
fresiy

Kapitel 1

Verb: presens

e Skriv ratt verb.

Sofia tallar grekiska, engelska och svenska.

|ta|lar

Tips: Enbokstav for mycket.

One letter is extra!

Figure 3: Rivstart samples: extra letter

¥ Natur och Kultur - Google Chrome

| @ www2.nok.se/laromedel/sprakverktyg/nokplayer/nokplayer.html?source=rivad1verb01&name=Verb:%20presens&chapter=

RIVETART Al 12 -
fresiy

Kapitel 1

Verb: presens

e Skriv ratt verb.

Sofia komm fran Grekland.

|k0mm|

Tips: Flera bokstaver saknas.

Several letters are missing!

Figure 4: Rivstart samples: several missing letters

- Advantages

— The exercises are designed specifically to support a method and
are therefore very coherent with the rest of teaching material and
thus benefit a lot from their support at the same time, for example
learners can always refer to the book for examples and explanations.

— Feedback is very precise, namely up to the letter’s level, and there-
fore very useful for the learners. This also provides the possibility
to train independently.

- Drawbacks

— Having static exercises, the same problems with Moodle and En-
gOnline about limited diversity and need for more manual work
hold here as well.

— It is only targeting one language, namely Swedish.

1.3 Background and Inspiration

This subsection is about the reasons and motivations behind this work.
First we discuss the essence of language learning, then we continue with
describing the desired role of computers in the language learning process.
This leads us to introduce GF and its capabilities which is our major
source of inspiration and actually the Quiz is built upon its strength.

We will discuss the GF' system itself in detail in Section [2.1.1]

1.3.1 Why learning a foreign language matters at all

As we mentioned earlier people in different parts of the world speak dif-
ferent languages, thus in order to be able to communicate we need to
find some way to understand each other. The simplest yet most effective
way is to get to know the other languages. Of course it is not possible for
everyone to learn all those foreign languages out there but it is very com-
mon that some people will need to learn one or more foreign languages
in their life time.

On the other hand, languages as an advanced complex means of commu-
nication are known to be an exclusive ability which has made the intellec-
tual human being, distinctive from other creatures on earth. Therefore
the ability of applying languages for communication is known as one of

the mind’s most important properties used to describe humans intelli-
gence. Thus learning languages is not only looked upon as a requirement
but also as a brain exercise for intelligence training, and as most intelli-
gence related topics, its fun factor for many should not be neglected as
well.

1.3.2 How can computers help us in the language learning
process in general and GF’s specific role

Learning a language is not possible without training and exercising even
for the most talented people. On the other hand as professionals in
language education usually state creating exercises and exam questions
is one of the most difficult, dull and time consuming tasks in the whole
educating procedure. It is difficult because it has to be correct and
precise grammatically and new and creative at the same time, and the
main trouble is that this difficult process has to be repeated many times
over and over as time passes by. There are two specific reasons for this
need: being up to date and also creative rather than sticking to old clichés
which may end up in a mere memorizing activity.

As computers were created to take the burden of exactly the same type
of jobs - dull, full of repetitions and demanding high accuracy at the
same time- off human shoulders, it seems that it is worth the effort to
computerize the exercise generation process.

To achieve this goal, we have focused on GF and its unique conceptual
approach toward translation and multilinguality. Here we only mention
those GF'’s characteristics that the Quiz application has benefited from.
We will discuss the GF' system itself in detail in Section [2.1.1]

We can summarize a list of linguistic requirements of the GF' Translation
Quiz as follows:

— High grammatical precision as the first priority
— Support for multilinguality

— Coverage of natural languages in small fragments

GF addresses all these requirements: First of all it provides a high-level
grammar formalism which allows writing multilingual domain specific
application grammars (also called semantic grammars) at minimum ex-
pense. Moreover having a resource grammar library along with the Con-
trolled Languages concept defined in GF, makes it even easier to write

application grammars which cover similar fragments in several natural
languages at the same time. The so called Controlled Languages are
fragments of natural languages, designed to be clear and unambiguous,
so that they become mechanically processable. Thus they get the bene-
fits of formal languages, and since they are actually fragments of natural
languages, they perfectly fit the demands of natural language training
applications such as our Translation Quiz. Thus GF saves us a consider-
able amount of time and effort required to add new languages to and/or
extend the existing grammars [9].

A detailed example on how grammars actually work in GF is discussed

in Sections 2.1.1l and 2.1.2

1.3.3 Translation_Quiz command in GF shell

This thesis project was initiated by an attempt to improve the GF Mul-
tilingual Grammar Tour which is a multilingual web document designed
for teaching the grammar of supported languages in GF by A. Ranta.
There are a lot of examples and exercises in this document which rely on
the GF shell for execution. Among these exercises there is a shell com-
mand called translation_quiz, that was a starting point for the Quiz
application. We borrowed the idea and developed it into our current web-
based Quiz application with its many features which will be discussed in
detail in Section 2.2 Here I briefly describe how this command works in
the GF shell:

The command format is as shown in the following example, where the
from option determines the source language we want to translate from
and the to option sets the target language. Finally the cat option de-
termines the starting category for the random tree generation action, for
example A for adjective, V for verb and N for noun.

> translation_quiz -from=DemoEng -to=DemoSwe -cat=N

Here is an screen-shot of the translation_quiz command in the GF
shell.

10

&+ C:\WINDOWS\system32\cmd.exe - gf DemoSweEng.pgf

This is GF version 3.2.
License: see help -Ticense. . . .
Bug reports: http://code.google.com/p/grammatical-framework/issues/list

Languages: DemoEng DemoSwe

Demo> translation_quiz -from=DemoEng -to=DemoSwe -cat=N
wWelcome to GF Translation Quiz.

The quiz is over when you have done at least 10 examples
with at least 75 % success.

You can interrupt the quiz by entering a line consisting of a dot ('.").

religion

Figure 5: translation_quiz in GF shell

However before the users can use this command, they should perform
some initialization tasks:

First of all they should have GF installed on their system to be able to
run GF at the first place. For practical installation instructions, please
refer to the GF official website at :

http://www.grammaticalframework.org/

Then they have to get - e.g. download - the required GF' grammar files
(with .gf suffix) and make the appropriate PGF file which contains all
the from and to languages’ related GF grammar files. PGF (Portable
Grammar Format) files | are the portable format for grammars written
in GF. The following command is required for this purpose [2]:

> gf -make --name=<name of pgf file> <concrete grammars

In the above command 1 to n grammars may be applied at the same time.
The only condition is that all these concrete grammars should share the
same abstract syntax grammar. The resulted PGF file is a binary file

11

.gf>

http://www.grammaticalframework.org/

which contains a pre-compiled and optimized multilingual grammar as
defined in the applied concrete grammars [2]. Note that you should be in
the directory that contains the grammar files. For example here we have
the demo grammar for Swedish and English located in gf\1ib\src\demo,
and we have named the PGF file as DemoSweEng:

> gf -make --name=DemoSweEng DemoSwe.gf DemoEng.gf

And then they can start GF by calling the name of the PGF file to
import the grammars, like this in our example:

> gf DemoSweEng.pgf

As one can see, it is not a trivial task to work with GF directly from a
system’s shell, specially for those who are not much familiar with com-
puting, let alone GF. The greatest achievement by the web-based Quiz
application is bringing GF capabilities to users with no prior acquain-
tance with computers or linguistic background. Accordingly, one of our
goals has been to design the application in a way that even school chil-
dren and retired people find it easy to use. Now the only knowledge
required to use the Quiz application is how to open a browser and of
course a link to the Quiz’s web page.

Note: The GF shell command (translation_quiz), that we explained
in this section, has only been a source of inspiration to our current web-
based Quiz application - which is a part of this thesis work -, and has
not been used in the application development by any means.

12

2 Solution Description

The implemented tool is a teaching/learning aid aimed at training the
lexical, morphological and syntactic aspects of human languages. The
tool is designed as a web application- that we have named the GF Trans-
lation Quiz or in short the Quiz . This design decision makes the Quiz
also available on mobile phone platforms. Basically the Quiz application
- as it is evident from its name - generates quiz questions by randomly
constructing phrases from the input GF grammar. The generated ques-
tions are in the preliminary form of phrases in a certain language which
need to be translated to another one. The Quiz is intended to support
grammatical precision and multilinguality. In order to meet these re-
quirements, it relies on GF and its Resource Grammar Library, which
also makes it very easy and systematic to extend by adding new languages
to and/or extending the existing grammars.

The Quiz application may be applied either as an aid in a language learn-
ing methodology or as a stand alone exercise tool for self training. In
both cases and specially in the later one providing the user with helpful
feedback is an important functionality of the application. This is han-
dled by the Hint feature of the Quiz, which analyzes the user input and
gives instructive feedback on wrong answers. The application is generally
planned to be easy to use for a wide range of users without the help of a
teacher or other help resources required. In this chapter we will discuss
the methods and technology applied, the Quiz application details, as well
as known application’s limitations.

2.1 Methods and Technology
2.1.1 GF

GF (Grammatical Framework) has more than one description based on
different angles from which we look at it: It can be described as “a special-
purpose functional language for defining grammars” [10], and also as “a
grammar formalism which is based on constructive type theory to ex-
press the semantics of natural languages for multilingual grammars and
their applications” [I0]. In both senses, GF uses a Logical Framework
(LF) [11] for a description of an abstract syntax module accompanied by
any number of concrete syntax modules. The abstract syntax is a tree-
like representation that captures the semantically relevant structure of
the language fragment, while the concrete syntaxes map the tree struc-
ture with linear text representations of target languages. Although GF

13

grammars themselves are purely declarative, they can be used both for
linearizing abstract syntax trees and for parsing strings. Additionally
both formal and natural languages can be described in GF. The key no-
tion of this description is a grammatical object, which in fact is a record
that contains all information on inflection and inherent grammatical fea-
tures such as number and gender in natural languages, or precedence in
the case of formal languages [10, 2].

Here we demonstrate how these GF' concepts are applied by quoting an
example grammar from the book “Grammatical Framework: Program-
ming with Multilingual Grammars” by A. Ranta [2]. This is a rather
simple grammar named the Foods grammar which describes short com-
ments on food. Here are some examples:

- This cheese is very expensive.
- Those fish are fresh .
- That wine is very very delicious.

As stated before, GF grammars consist of two module types: abstract
syntax and concrete syntax. Abstract syntax module contains the
syntactic functions which are applied for building abstract syntax trees
in that grammar, while concrete syntax modules explain how the abstract
syntax trees are linearized to actual phrases (strings). First let’s take a
look at the abstract syntax module of the Foods grammar [2]:

abstract Foods = {
flags startcat = Comment ;

cat

Comment ; Item ; Kind ; Quality ;

fun

Pred : Item -> Quality -> Comment ;
This, That, These, Those : Kind -> Item ;
Mod : Quality -> Kind -> Kind ;
Wine, Cheese, Fish, Pizza : Kind ;
Very : Quality -> Quality ;
Fresh, Warm, Italian,
Expensive, Delicious, Boring : Quality ;

Figure 6: The abstract syntax module of Foods grammar [2]

14

The first line is the module header which contains the module type (ab-
stract) as well as the module name (Foods). The module body consists

3

of different judgment forms as we explain below [2]:

— flags: flag definitions, e.g. the one in our example states that
Comment is the start category by default.

— cat: category declarations, telling what categories (types of ab-
stract trees) exist in the grammar.

— fun: function declarations, telling what tree building functions
there are in the grammar.

Now we discuss the concrete syntax modules of Foods grammar for FEn-
glish and Italian languages. The English concrete syntax is given on
page 17. Again the header indicates the module type which is a concrete
syntax named FoodsEng for the abstract syntax of Foods grammar. The
judgments applied here are [2]:

— lincat: linearization type definitions, indicating what are the
type of produced objects resulted from linearizing trees of each
category . (Note: Linearization means the procedure of converting
trees to strings.)

— lin: linearization rules, telling how trees are linearized .

In order to understand the the concrete module we need to explain some
GF concepts first [2]:

— Parameters: By means of the param judgment in GF we can de-
fine new types, exactly the same as is done in functional languages
like Haskell. Here is an example which defines the type Number
which has two values, Singular and Plural:

param Number = Sg | P1

Another example is the Gender type which is either Femi-
nine or Masculine:

param Gender = Masc | Fem

— Tables: are applied in GF to formalize inflection tables, where
each value of a certain parameter type is assigned a string (the
corresponding inflection form). Below is an example of a table
type and its definition in GF":

15

Number => String
table { Sg => "mouse" ; Pl => "mice" }

Records and record types: The same as their general meaning
in computer science, records in GF' are data structures that gather
objects of different types together. Here are two examples in GF.
The first record contains a string with label s and a Number with
label n, and the second one contains a table from Numbers to strings
labeled s and also a Gender with label g:

{s= "mouse" ; n = Sg }
{s= table { Sg => "mouse" ; Pl => "mice" } ; g = Fem }

Selection Operator (!) : is applied for accessing a value in a
table, for example,

table { Sg => "mouse" ; Pl => "mice" } ! Sg
will give the string "mouse" as its result.

Projection Operator (.) : isused to get access to a value inside
a record under given label. For example, the following projection
will result in the number Sg :

{s= "mouse" ; n=Sg } . n

Operation definition: In order to avoid copy and paste pro-
gramming which is a significant rule in the functional programming
paradigm, functions are introduced under oper judgments. Note:
This functions are called operations to avoid confusion with fun
functions in abstract syntax modules. The following example is an
operation defining the regular inflection of nouns in English:

oper regNoun : Str -> {s: Number => Str } =

\word -> {s = table {Sg => word ; Pl => word + "s" }};
Which is very similar to function definition in any func-
tional programming language.

Appending operator (++) vs. Gluing operator (+) :
The (4++) operator combines two lists of tokens into one list, while
the (4) operator combines two tokens into one token, for example:

"foo" + "bar" = "foobar"
but
"foo" ++ '"bar" = "foo bar"

16

concrete FoodsEng of Foods = {
lincat

Comment, Quality = {s : Str} ;
Kind = {s : Number => Str} ;
Item = {s : Str ; n : Number} ;
lin

Pred item quality =

{s = item.s ++ copula ! item.n ++ quality.s} ;
This = det Sg "this" ;
That = det Sg "that" ;
These = det Pl "these" ;
Those det P1 "those" ;
Mod quality kind =

{s = \\n => quality.s ++ kind.s ! n} ;
Wine = regNoun "wine" ;
Cheese = regNoun '"cheese" ;
Fish = noun "fish" "fish" ;
Pizza = regNoun "pizza"
Very a = {s = "very" ++ a.s} ;
Fresh = adj "fresh" ;
Warm = adj "warm"
Italian = adj "Italian" ;
Expensive = adj "expensive" ;
Delicious = adj "delicious" ;
Boring = adj "boring" ;

param
Number = Sg | P1 ;
oper

det : Number -> Str ->
{s : Number => Str} -> {s : Str ; n : Number}
\n,det,noun -> {s = det ++ noun.s ! n ; n =
noun : Str -> Str -> {s : Number => Str} =
\man,men -> {s = table {Sg => man ; Pl => men}} ;
regNoun : Str -> {s : Number => Str} =
\car -> noun car (car + "s") ;
adj : Str -> {s : Str} =
\cold -> {s = cold} ;
copula : Number => Str =
table {Sg => "is" ; Pl => "are"} ;

}

17

Next to discuss is the Italian concrete module of the Foods grammar, that
is shown below. The Italian version is different from the English one in
a few aspects. First of all you might ask where did all param types
and oper definitions go! To explain this we should note that these parts
are completely independent of any abstract syntax and actually they may
be applied in many concrete syntaxes, for different abstract syntaxes and
some times even for different languages. Therefore to increase reusability,
GF provides a module type called resource, which can contain oper
and param judgments. Then it is enough that the the concrete module
opens the resource module to be able to use its definitions [2].

concrete FoodsIta of Foods = open ResIta in {
lincat

Comment = {s : Str} ;

Kind = {s : Number => Str ; g: Gender} ;
Item = {s : Str ; g: Gender ; n : Number } ;
Quality = {s: Gender => Number => Str } ;

lin
Pred item quality =
{s = item.s ++ copula ! item.n ++
quality.s ! item.g ! item.n} ;
This = det Sg "questo" "questa" ;

That = det Sg "quel" "quella" ;
These = det Pl "questi" "queste" ;
Those = det P1 "quei" "quelle" ;

Mod quality kind =
{s = table {n => kind.s ! n ++ quality.s ! kind.g ! n ;
g = kind.g } } ;
Wine = noun "vino" "vini" Masc ;
Cheese = noun "formaggio" "formaggi" Masc ;
Fish = noun "pesce" "pesci" Masc ;
Pizza = noun "pizza" "pizze" Fem ;
Very a = {s = table {g,n => "molto" ++ qual.s ! g ! n}} ;
Fresh = adjective "fresco" "fresca" "freschi" "fresche" ;
Warm = regAdj "caldo" ;
Italian = regAdj "italiano"" ;
Expensive = regAdj "caro" ;
Delicious = regAdj "delizioso" ;
Boring = regAdj "noioso" ;

}

18

Here is the resource module called ResIta that is used by the FoodsIta
concrete syntax [2].

resource ResIta = open Prelude in {

param
Number = Sg | P1 ;
Gender = Masc | Fem ;
oper

NounPhrase : Type =

{s : Str ; g : Gender ; n : Number} ;
Noun : Type = {s : Number => Str ; g : Gender} ;
Adjective : Type = {s : Gender => Number => Str} ;

det : Number -> Str -> Str -> Noun -> NounPhrase =

\n,masculine,feminine, commonNoun -> {

s = table {Masc => masculine ; Fem => feminine} ! commonNoun.g
++ commonNoun.s ! n ;

commonNoun.g ;
n

g
n

}

noun : Str -> Str -> Gender -> Noun =
\vino,vini,g -> {
s table {Sg => vino ; Pl => vini} ;
g=8
}
adjective : (nero,nera,neri,nere : Str) -> Adjective =
\nero,nera,neri,nere -> {
s = table {
Masc => table {Sg => nero ; Pl => neri} ;
Fem => table {Sg => nera ; Pl => nere}
}
}
regAdj : Str -> Adjective = \nero ->
let ner : Str = init nero
in
adjective nero (ner+"a") (ner+"i") (ner+"e") ;
copula : Number => Str =
table {Sg => "&" ; P1 => "sono"} ;

}

19

As you might have noticed another difference from the English version
is the introduction of a new form in the type of adjective operation,
which is called function types with variables. The type

(nero,nera,neri,nere : Str) -> Adjective
is the same as
Str -> Str -> Str -> Str -> Adjective

just that the use of variables make it possible to share the argument
type. In this case we could have used wild-cards (-) as well because the
the variables make no semantic difference. However using mnemonic vari-
ables help the user of the function to give the proper forms of arguments
[2]. See other examples of this form in Section [2.1.2] under inflection
paradigms needed for the Foods grammar on page 24.

The last difference is that in ResIta we have used type synonyms for
the linearization type of noun phrases, nouns and adjectives. This is all
for the purpose of cleaner and more structured code as well as enhanced
data abstraction [2].

In the following subsection we describe the GF Resource Grammar Li-
brary and how it can be used to write application grammars. Then we
rewrite the same Foods example shown in this section, this time by means
of the Resource Grammar Library.

2.1.2 GF Resource Grammar Library

Writing multilingual domain specific application grammars (also called
semantic grammars) in GF - as we saw an example of in the previous
section -, becomes even simpler by applying the GF Resource Grammar
Library. Such grammars cover similar semantic fragments in several nat-
ural languages, and therefore are extremely redundant. Thus applying
the Resource Grammar Library also saves us a considerable amount of
time and effort [9)].

The great benefit we get from GF Resource Grammar Library is that it
makes writing multilingual domain specific grammars - also called appli-
cation grammars in GF -

The GF Resource Grammar Library is a set of natural language gram-
mars implemented in GF. These grammars share a common abstract

20

syntax, that is in the format of a tree structure. Each language is then
obtained via compositional mappings from abstract syntax trees to a
concrete syntax specifically written for that language. The grammar de-
fines, for each language, a complete set of morphological paradigms and
a syntax fragment. The GF Resource Grammar Library plays the role
of the standard software library much similar to the Standard Template
Library of C++ or the Java API [12].

The library is available as open-source software under the GNU LGPL
License. Currently it covers 25 languages including but not limited to:
Bulgarian, Catalan, Danish, Dutch, English, Finnish, French, German,
Italian, Nepali, Norwegian (bokmal), Persian, Polish, Punjabi, Roma-
nian, Russian, Spanish, Swedish, and Urdu while more languages are
under construction [I2]. For an up-to-date list of available languages,
please refer to the GF official website at:

http://www.grammaticalframework.org/

The Resource Grammar Library has manifold language processing appli-
cations such as translation, multilingual generation, software localization,
natural language interfaces, and spoken dialogue systems. In this thesis
work, we have applied it as the resource for getting grammatically precise
translations between the From (source) and 7o (target) languages in the
Quiz application.

Here we will rewrite our example, the Foods grammar from the previous
section, by applying the GF Resource Grammar Library. Just as a re-
minder, the whole examples and explanations in Sections[2.1.1}and [2.1.2)
are quoted or summarized from the “Grammatical Framework: Program-
ming with Multilingual Grammars” by A. Ranta [2].

The abstract syntax module remains unchanged, and is the same as in
Figure [6] Before going to the Foods grammar example we need to give
some preparatory explanations here:

In the Resource Grammar Library the goal is to achieve grammatically
correct combinations of words, regardless of their meaning. This makes it
possible to cover a much larger subset of languages compared to semantic
grammars. Based on this approach, a Resource Grammar has two kinds
of categories and two corresponding type of rules [2]:

- lexical:

— lexical categories to classify words

— lexical rules to define words and their properties

21

http://www.grammaticalframework.org/

- phrasal (also known as combinational or syntactic):

— phrasal categories to classify phrases of arbitrary size

— phrasal rules to combine phrases into larger phrases

In an abstract syntax the lexical rules are fun functions that take no
arguments while phrasal rules are functions that do take arguments [2].

There is also another classification inside the lexical categories and that
is open vs. closed categories. In general closed categories contain struc-
tural words (also known as function words). Here are examples of the
closed category words [2]:

Det (stands for determiner, e.g. this, that)
AdA (stands for ad-adjective, e.g. very)

And below are some examples of the open category words [2]:

N (stands for noun, e.g. wine, pizza)
A (stands for adjective, e.g. delicious, warm)

The major benefit we get from defining such classification is reusability
for the words in closed categories can be listed once and for ever in a
library. For the Foods grammar case we can use the following structural
words from the SyntaxEng module existing in the library [2]:

this_Det, that_Det, these_Det, those_Det : Det ;
very_AdA : AdA ;

For the linearizations of the open words used in the Foods grammar we
can apply the morphological paradigm library called ParadigmsEng , for
example [2]:

lin Wine = mkN "wine" ;

This will make a noun out of the string “wine”.

The Resource Grammar APl is divided into language-specific and language-
independent parts [2]:

22

— The syntax API is language-independent, i.e. has the same types
and functions for all languages. It is called SyntaxL for each lan-
guage L.

— The morphology API is language-specific, i.e. has partly different
types and functions for different languages. It is called ParadigmsL
for each language L.

In Figure [7] we see a table of all phrasal, categories and rules and also
the structural words we require for the Foods grammar example, which
is a small fragment of the whole Resource API [2].

Category

Explanation Example
Cl clause (sentence), with all tenses she looks at this
AP adjectival phrase very warm
CN common noun (without determiner) | red house
NP noun phrase (subject or object) the red house
AdA adjective-modifying adverb, very
Det determiner this
A one-place adjective warm
N common noun house
Function | Type Example
mkC1l NP == Ji2 == QL John is very old
mkNP Det -> CN -> NP | this old man
mkCN N —>"GN house
mkCN AP == GNF =S CN very big blue house
mkAP A= AR old
mkAP " |'AdA -> AP -> AP very very old
Function | Type | In English
“this Det Det this
that Det | Det | that
“these_Det | Det this
those Det | Det that
very-AdA AdA very

Figure 7: Resource Grammar API presentations for phrasal, categories
and rules as well as the structural words required for the Foods grammar

2]

Moreover we need some inflection paradigms for each language.
paradigms needed for English and Italian are shown in Figure |8 [2].

The

23

English:

Function | Type J
mkN (dogivm Shr)s =l J
mkN (man,men : Str) -> N |
mkA (cold s #er) > A |

Italian:

Function | Type
mkN (vino = SEr) —> N
mkA (caro : Str) —>

A
A

Figure 8: Inflection paradigms needed for the Foods grammar [2]

As mentioned earlier mkN makes a noun out of an input string, and mkA
makes an adjective from its input string. In the above paradigms, we also
see application of function types with variables.For example in (dog

Str) -> N, the word “dog” is just a representative of the input type
- which should be a noun here - and could be any other noun. As another
example, in (man,men : Str) -> N, the words “man” and “men” are
used just to say that the function takes two input strings which are nouns
and the second one is the irregular plural form of the first one. This form
was explained in more formal terms, in Section[2.1.1} under the resource
module for Italian called ResIta on page 20.

Now we are ready to write the concrete syntax modules. We begin with
English. The concrete syntax opens SyntaxEng and ParadigmsEng in
order to get access to the required resource libraries [2]:

24

concrete FoodsEng of Foods =
open SyntaxEng,ParadigmsEng in {
lincat
Comment = Cl ;
Item = NP ;
Kind = CN ;
Quality = AP ;
lin
Pred item quality = mkCl item quality ;
This kind mkNP this_Det kind ;
That kind = mkNP that_Det kind ;
These kind = mkNP this_Det plNum kind ;
Those kind = mkNP that_Det plNum kind ;
Mod quality kind = mkCN quality kind ;
Wine = mkCN (mkN "wine")
Pizza = mkCN (mkN "pizza")
Cheese = mkCN (mkN "cheese")
Fish = mkCN (mkN "fish" "fish")
Very quality = mkAP very_AdA quality ;
Fresh = mkAP (mkA "fresh") ;
Warm = mkAP (mkA "warm") ;
Italian = mkAP (mkA "Italian") ;
Expensive = mkAP (mkA "expensive") ;
Delicious = mkAP (mkA "delicious") ;
Boring = mkAP (mkA "boring") ;

Different languages tend to use syntactic structures in similar ways to
express the same meanings. We also know that all languages in GF
Resource Grammar Library implement the same syntactic structures.
Therefore in most cases we only need to rewrite the lexical parts of a
concrete syntax for a new language. Thus we again encounter copy-
and-paste programing which is not wise to do specially in a functional
programming paradigm. In order to solve this problem we introduce
functors. A functor is a function that operates on modules. In GF
a functor is a module that opens one or more interfaces. An inter-
face is a module similar to a resource, but it only contains the types
of opers and not their definitions. The definitions are then given in
instances of this interfaces. Thus a functor is a module-level function
taking instances as arguments and producing modules as values. Here is
the functor implementation of the Foods grammar. The module header
uses the keyword incomplete to indicate that Foodsl is a functor [2]:

25

incomplete concrete FoodsI of Foods =

open Syntax, LexFoods in {
lincat
Comment = Cl ;
Item = NP ;
Kind = CN ;
Quality = AP ;
lin

Pred item quality = mkCl item quality ;
This kind mkNP this_Det kind ;
That kind = mkNP that_Det kind ;
These kind = mkNP these_Det kind ;
Those kind = mkNP those_Det kind ;
Mod quality kind = mkCN quality kind ;
Very quality = mkAP very_AdA quality ;
Wine = mkCN wine_N ;
Pizza = mkCN pizza_N ;
Cheese = mkCN cheese_N ;
Fish = mkCN fish_N ;
Fresh = mkAP fresh_A ;
Warm = mkAP warm_A ;
Italian = mkAP italian_A ;
Expensive = mkAP expensive_A ;
Delicious mkAP delicious_A ;
Boring = mkAP boring A ;

To obtain a complete concrete syntax this function (FoodsI functor) needs
to take two instances of the interfaces Syntax and LexFoods as its argu-

ments. This action is called a functor instantiation [2]. Accordingly
the English concrete syntax can be written as shown in Figure] :

concrete FoodsEng of Foods = FoodsI with
(Syntax = SyntaxEng),
(LexFoods = LexFoodsEng) ;

Figure 9: The English concrete syntax by a functor [2]

It remains to show how interfaces and their instances actually look like.
Figure [10] shows the LexFoods interface and, an English instantiation of
it is shown in Figure |11 [2].

26

interface LexFoods = open Syntax in {
oper

wine N : N ;
pizza_ N : N ;
cheese_N : N ;
fish N : N ;
fresh A : A ;
warm_A : A ;
italian_A : A ;
expensive_A : A ;
delicious_A : A
boring A : A ;

.
b

Figure 10: A lexicon interface for Foods grammar [2]

instance LexFoodsEng of LexFoods =

open SyntaxEng, ParadigmsEng, in {
oper

wine N = mkN "wine" ;
pizza_N = mkN "pizza" ;
cheese_N = mkN "cheese"
fish_N = mkN "fish" "fish"
fresh_ A = mkA "fresh" ;
warm_A = mkA "warm" ;
italian_A = mkA "Italian"
expensive_A = mkA "expensive" ;
delicious_A = mkA "delicious" ;
boring_A = mkA "boring" ;

Figure 11: An English instance of the lexicon interface for Foods grammar

2]

Finally we see an instance of the lexicon interface for Italian in Figure
and the concrete syntax for Italian in Figure [I3] which has now become

3

very straightforward to write [2].

27

instance LexFoodsIta of LexFoods =
open SyntaxIta, ParadigmsIta in {
oper

wine N = mkN "vino" ;
pizza_N = mkN "pizza"
cheese_N = mkN "formaggio" ;
fish_N = mkN "pesce"
fresh A = mkA "fresco" ;
warm_A = mkA "caldo" ;
italian_A = mkA "italiano" ;
expensive_A = mkA "caro"
delicious_A = mkA "delizioso" ;
boring_A = mkA "noioso" ;

Figure 12: An Italian instance of the lexicon interface for Foods grammar
2l

concrete FoodsIta of Foods = FoodsI with
(Syntax = SyntaxIta),
(LexFoods = LexFoodsIta) ;

Figure 13: The Italian concrete syntax by a functor [2]

See also Section for more information about how to write your own
grammar for the Quiz.

2.1.3 GF Web Service API

Some of the functionalities available in the GF shell are also available via
the GF Web Services APT [13], which is a small application that exposes
the PGF API in form of a web service. The application uses FastCGI
[14] as communication protocol to talk with the web server, and the data
protocol in use is JSON [I5][16].

We can list the most important tasks in the Quiz application as follows:
- Generating the question
- Evaluating the user answer

- Analyzing the user answer and providing instructive feedback

28

In all these phases we need to call the PGF server which is handled by the
GF Web Services APT [13]. Moreover as the Quiz application is written in
JavaScript, we have used an additional interface for JavaScript provided
by Thomas Hallgren which is available in pgf_online. js [I7, [18].

Here is a table containing calls to the PGF server that we used directly
in the Quiz, in the format they appear in the JavaScript API defined in
pgf_online. js [I7, I8]. We have only mentioned the input and output
elements that were used in the Quiz and not all existing ones. More
details about how the calls were applied in the Quiz can be found in
Section [2.2.3] Functionalities.

Call as in

JavaScript API Input Output

the generated

.get d -
SOIVer.get_tandom abstract syntax tree

the abstract syntax tree to
server.linearize linearize, language to use in the
linearization

the linearization
result text

the abstract syntax tree to
server.linearizeAll | linearize, language to use in the
linearization

a list of all possible
linearizations text

a list of abstract
server.parse the string to be parsed syntax trees as plain
strings

Table 1: Calls to the PGF server defined in the JavaScript API in
pgf_online. js

The following calls were used indirectly in the Quiz for they exist in the
minibar application [I7]. We have slightly modified minibar - to meet
our Quiz requirements - and integrated it into the Quiz application as a
component:

- options.grammars_ url
- server.get_ grammarlist
- server.switch__grammar
- server.get_ languages

For a list of all supported calls by the GF Web Service API please refer
to the GF' Wiki page available at [13]:

http://code.google.com /p/grammatical-framework /wiki/GFWebService API

29

http://code.google.com/p/grammatical-framework/wiki/GFWebServiceAPI

Also in another guide by Thomas Hallgren, you will find these calls il-
lustrated by examples, in addition to a detailed reference on how to
make these calls from JavaScript using the API defined in pgf _online. js
[17, 18]. This guide is available at [I§]:

http://www.grammaticalframework.org/demos/minibar/gf-web-api-examples.html

More information about how to run a web server and launch the Quiz
application with your own grammar is available in Appendix B:[6.2]

2.1.4 HTML and DOM

Hyper Text Markup Language abbreviated as HI'ML is the predominant
markup language for web pages, where a markup language is a set of
markup tags designed to describe web pages. The web page content con-
sists of HTML elements defined by “tags” surrounded by angle brackets
(like <html>). HTML tags normally come in pairs like and .
The first tag in a pair is the start tag, the second tag is the end tag (they
are also called opening tags and closing tags). The role of a web browser
is to use the tags to interpret the content of the page to be able to read
HTML documents and display them as web pages [19].

The base of the Quiz application is a web page written in HTML, where
HTML elements form its building blocks. It serves as a means to create
structured documents by denoting structural semantics for text such as
headings, paragraphs, lists, links, forms, quotes and other items. All the
Quiz functionalities are added in JavaScript to accompany this HTML
base [19].

The HTML base and the JavaScript component have evolved in paral-
lel and at the same time in an interactive way through the application
development history. One example of this interaction is transferring to
a DOM (Document Object Model) [20] in order to interact dynamically
with the HTML elements through JavaScript rather than static elements
in the HTML file. Here we explain DOM and how this change was done
in the Quiz:

The Document Object Model (DOM) is a cross-platform and language-
independent convention for representing and interacting with objects in
HTML, XHTML [2I] and XML documents [22]. Aspects of the DOM
(such as its "Elements") may be addressed and manipulated within the
syntax of the programming language in use, which is JavaScript in our
case. DOM is likely to be best suited for applications where the docu-
ment must be accessed repeatedly or out of sequence order, which is the
exact case with our Quiz application. DOM has been applied to make

30

http://www.grammaticalframework.org/demos/minibar/gf-web-api-examples.html

it possible to inspect or modify a web page dynamically by JavaScript
scripts. In other words, DOM exposes its containing HTML page and
browser state to JavaScript [20].

Getting to know the Minibar application - as we are using it in the Fasy
Study Mode of the Quiz to make word magnets available for the user
to be used in constructing answers - and already facing problems with
static elements in the Quiz, the design applied in the Minibar was an
inspiration to change the Quiz approach to use DOM as well. For this
purpose, functions available in support.js from the Minibar application
[17], have been applied to access and modify the HTML elements from
the JavaScript code dynamically. See Section [2.2.1]for a detailed example
on how applying DOM benefits the Quiz application.

2.1.5 CSS

Another change that took place in the Quiz development time was using
a CSS external sheet to include the entire application’s styling and layout
instead of the inefficient style attributes in HT'ML tags for the purpose
of controlling the layout and style of the web page.

CSS stands for Cascading Style Sheets is a style sheet language used
to describe the presentation semantics (the look and formatting) of a
document written in a markup language. Its most common application is
to style web pages written in HTML and XHTML [21], but the language
can also be applied to any kind of XML document [22] [23].

From the historical point HTML was never intended to contain tags for
formatting a document but only to define the content of a document.
Therefore when tags like , and color attributes were added to
the HTML 3.2 specification, it started a nightmare for web developers.
Development of large web sites, where fonts and color information were
added to every single page, became a long and expensive process. To solve
this problem, World Wide Web Consortium (W3C) created and added
CSS to HTML 4.0. [24]. Accordingly CSS is designed primarily to enable
the separation of document content (e.g. written in HTML or a similar
markup language) from document presentation, including elements such
as the layout, colors, and fonts. This separation can improve content
accessibility, provide more flexibility and control in the specification of
presentation characteristics, enable multiple pages to share formatting,
and reduce complexity and repetition in the structural content. Thus
External Style Sheets stored in .css files can save a lot of work both in
the development and maintenance phases [23].

31

2.1.6 JavaScript

Officially managed by Mozilla Foundation, JavaScript is a scripting (light
weight programming) language that was primarily designed to add in-
teractivity to HTML pages by providing enhanced user interfaces and
dynamically. JavaScript is usually embedded directly into HTML pages
as it is an interpreted language (means that scripts execute without pre-
liminary compilation) [25]. However as the amount of the JavaScript
code is considerably large in the Quiz application - about one kilo lines
of code without taking the minibar application code into account -, we
have organized it in modules which are in the from of separate external
Jjs files that accompany the .html page. These modules are available in
detail in Appendix C: Section of this document.

In the Quiz application we have used JavaScript in the form of client-side
JavaScript - as JavaScript’s primary use -, which is known to work in all
major browsers, such as Internet Explorer [26], Firefox [27], Chrome [2§],
Opera [29], and Safari [30] [25]. Some other characteristics of JavaScript
which are worth mentioning here are: It is a prototype-based, object-
oriented scripting language which also supports the structured program-
ming paradigm. It is dynamic, weakly typed as types are associated with
values and not with variables. It has first-class functions which are ob-
jects themselves. So they have properties and methods, and they can be
assigned to variables, passed as arguments, returned by other functions,
and manipulated like any other object. JavaScript is also considered a
functional programming language like Scheme [31I] and OCaml [32] be-
cause it has closure and supports higher-order functions. By closure,
JavaScript allows a combination of code that can be executed outside
the scope in which it is defined, with its own scope to be used during
that execution [33]. With all its diverse properties, JavaScript as all other
programming languages has many advantages and also some drawbacks.
Here we will briefly mention those we encountered. Let’s start with its
advantages:

- Advantages

— It is open source, and therefore accessible to all without the need
to purchase a license.

— JavaScript supports regular expressions, which provide a concise
and powerful syntax for text manipulation that is more sophisti-
cated than the built-in string functions [33]. We have used regular
expressions in preprocessing the raw user input, as we will explain

32

in detail in Section under Preprocessing and Evaluating the
user’s answer (Check Answer).

— Being very popular today, JavaScript has abundant freely available
supporting material and communities in the Internet.

- Drawbacks

— The characteristic of being weakly typed, makes the programming
very easy indeed but some times has unexpected consequences
which are difficult to avoid and costs more effort to be controlled
eventually.

— I encountered the same traditional problems that exist mostly in
structured programming paradigm, especially as the code was grow-
ing larger. It was very likely to end up in a redundant, spaghetti
code. However enforcing a modular design - manually by the pro-
grammer - can help a lot in this case. This solution in return,
requires a thoughtful design to make it also easy to keep track of
the flow control with all those modules.

2.1.7 BLEU an Automatic MT Evaluation Method

In order to be able to give instructive feedback, we need to analyze and
evaluate the answer given by the user. For this purpose a simplified ver-
sion of MT (Machine Translation) evaluation methods has been applied.
Although it might seem a totally different problem, our purpose has a
lot in common with MT evaluation process. In both cases, the input is a
given translation which needs to be evaluated by being compared against
one or more reliable reference translations. Therefore we found it very
useful to use the same techniques. The main technique applied here has
a lot in common with the famous method known as BLEU (BiLingual
Evaluation Understudy) [4]. Here we describe briefly how BLEU works,
then will continue with the method applied in the Quiz. More general,
end-user information can be found in Section under , Analyzing the
user’s answer and Providing Instructive Feedback (Hint).

First of all let’s see how Blue answers this fundamental question: How
can we judge a translation? “The closer a machine translation is to a
professional human translation, the better it is”. This is the central idea
behind the BLEU method. “To judge the quality of a machine trans-
lation, one measures its closeness by a numerical metric to one or more

33

reference human translations”. Therefore, BLEU requires two ingredi-
ents: first a numerical “translation closeness” metric, and second one or
more good quality reference translations [4].

In our application we already have the second part, i.e. at least one
grammatically accurate, one hundred percent correct translation, namely
linearizations of all possible abstract trees to the target language by the
PGF server which we will use as our reliable reference. For the first
part in the BLEU method “The main idea is to use a weighted average
of variable length phrase matches, against the reference translations ”
[4, 34]. We should note that, our requirements is different from judging
and deciding which translation is a better one; our goal is to give accurate
feedback. We also have free variations explicitly existing in our reference
translations, so we do not need to care about that either. Because of
these differences the metric applied in the Quiz is also different, i.e. it is
simplified so that it only considers words as phrase elements. Moreover
it keeps track of the position of words in the phrase. It works like this:
the user answer is compared with all possible correct answers, and the
one with the most common words in the same positions as in the user’s
answer, is selected as the reference.

For the final evaluation, I have applied a strategy very similar to the
Mastermind’s game [35]. Words in green stand for correct words in their
correct place in the sentence, and yellow words mean these words are
correct and are part of the right answer but they are misplaced, while
red words stand for words which do not exist in the right answer and are
either misspelled or totally wrong lexically or grammatically. The Quiz
also displays blanks for missing words.

2.2 Solution Details

In this section solution details including the design, implementation and
testing phases are discussed in a general sense, for more technical details
refer to Appendix C: Section [6.3] Developer’s Guide.

2.2.1 User Interface

The user interface which is in form of a web page has been designed
to be extremely compact and narrow in order to fit in a mobile phone
screen, Figure [14]shows its initial state. The layout and styling issues has
been mostly handled in a CSS external file as explained in Section [2.]]
Methods and Technology in Subsection [2.1.5] Also most HTML elements
like the Menubar and other buttons are added dynamically from within

34

the JavaScript code applying DOM instead of being statically defined in
the HTML code. This makes the application more flexible and gives the
programmer a better control of the application and also makes the main-
tenance process much easier. For this purpose functions in support.js
from the Minibar application [36] have been applied.

To demonstrate the strength and flexibility provided by this method,
we give a small example. The “Check Answer” button the user sees
in the Easy Study Mode of the Quiz (Figure looks the same as it
does in other Quiz Modes, however it is a totally different button, i.e.
it performs completely differently in this mode. At application start-
up, it is defined as a submit button so that the Enter key will be its
shortcut. Unfortunately this useful shortcut will become a programmer’s
nightmare in the Fasy Study Mode where the Enter key has another role,
i.e. to take the typed text by the user and add it to the answer being
constructed. This causes a serious conflict with the role of submitting
the user’s answer for checking. In order to avoid this disaster and keep
the benefit of checking the answer by the Enter key, the “Check Answer”
button is removed and replaced with a none-submit one while changing
to the Fasy Study Mode and vice versa. See more details about DOM in

Section 2.1.4]

35

|| GF Translation Quiz ~ *
(- -> C‘.‘ ﬁ |@Fle HIC fEInaszhaImersfM;ﬁJ X[

T F'I}DIIiE- pgf

_ E&syﬂtm:’ryl'-'lnde ﬂ Resta
.:' azy Study Mode
Iedium Study Mode
Hard Study Mode

isplavyed here.

Hext Qusstion = § Hint § Check Answer

Explanations are displaved here.

Figure 14: The initial state

36

[GF Transktion Quz
~ € # Ofile:///C:/Elnaz/Chalmers/

_ [Master%207T v¢ | &

mar: | Foods pof ~ From:
| Easy Study Mode + [{ Restart Quiz || End Quiz |

e ar-m Em ETromE Em mE e e W Em W e e ey e e

L TR B e SN s R TR R ey B e e R o R R e

ama]

. eddr pizzc

| < Previous Question J [Next Question > | [Hint | [Check Answer |

Figure 15: The Fasy Study Mode

37

W 0 F Transiton que F & o Transaton quz

C ft O file:///C:/Elnaz/Chalmers/Master%20TIvs | A C i | ©file:///C:/EInaz/Chalmers/Master%20Tl ¥z X
2 chalmers Studen... £7 signIn * Farsi * [other bookmarks 3 Chalmers Studen... &7 signin * Farsi » ' 3 other bookmarks
Show Information Show Information
Grammar: | | From: | i o Swe (v || Grammar: || | From: = | To: | |
Quiz Mode: /=0 i= || Restart Quiz | [End Quiz | Quiz Mode: | - d |[Restart Quiz | [End Quiz |
Quiz Question: Quiz Question:

1. those cheeses are Italian | 1. those cheeses are Italian ‘

FYD\U‘ Answer: |* Your Answer:

Hint: de dér osterna é&r italianska
[Previous Quastion | [Hext Question = | [Check Answer |

[< Previous Question | [Next Question = | [Check Answer

e et
Explanation: ;
INo, the correct answer(s) is(are):
| de dir ostarna &r italienska
‘ 2
4
Current Quiz Mode: Answered Questions Your Score
Current Quiz Mode: Answered Questions Your Score
=—= ~ Medium Study Mode | 1 | | 0 |
Medium Study Mode | 1 | { 0 |

Figure 16: Hint vs. Check Answer

2.2.2 Configurations

The application has three different ways to be fine-tuned. Through User
Customizations designed in the interface for end users, Configuration
Variables and Mode Settings found within the code - which are mostly
aimed at instructors and teaching supervisors -, and Server Configura-
tions which are related to the GF' web services and are mostly aimed at
developers and partly to instructors and teaching supervisors.

- User Customizations They are handled from the user interface
and are designed to be as easy as possible. From the Menubar, users
can customize the quiz to their needs, i.e. they can choose their desired

Grammar, From (source) and To (target) languages and also a Quiz
Mode:

— FEasy Study Mode: In this mode word magnets are available to
help users; they can type and/or click on them freely to construct
their answer. “Delete last” and “Clear” buttons can be used to
delete the last word or the whole answer in case required. These

38

word suggestions come from the selected grammar, and therefore
it keeps users from misspelling words and even making grammat-
ically wrong sentences. Also, users have unlimited Hint which is
automatically updated as the answer is being modified. It is also
possible to go to one previous question at a time; and of course,
users can check their answer’s correctness.

— Medium Study Mode: In this mode users can use the “Hint”
button for a maximum of 3 times for each question, and they can
go to one previous question at a time as well as checking their
answer’s correctness.

— Hard Study Mode: In this mode users can use the “Hint” button
only once for each question, and they may not use the “Previous
Question” button, but they can still check their answer’s correct-
ness.

— Exam Mode: In this mode users cannot use the “Hint”, “Previous
Question” or “Check Answer” buttons, and they will not see their
score until the end of the exam.

This piece of information is also available in the application through a
link just above the Quiz Menubar.

- Configuration Variables and Mode Settings There are some
global variables defined in the code that control the application’s general
settings. We have divided these variables in two groups: Configuration
Variables, which affect the whole quiz; and Mode Settings that define
the Quiz Modes differences, and thus makes it possible to change the
Modes behavior as desired. Generally these configurations and settings
are aimed at instructors and teaching supervisors, and they are only
modifiable from within the code. They are explained in more detail in
Appendix B: Sections [6.2.1] and [6.2.2

— Configuration Variables: which consist of minimum percentage of
right answers (score/counter) required to pass the Quiz, minimum
number of questions required to pass the Quiz, number of questions
in the Ezam Mode, which is a fixed number, and finally maximum
times the user may answer the question to increase his/her score.

— Mode Settings: which makes it possible to modify inner settings
for all mode properties, including: access to the Minibar magnet
words, “Previous Question”, “Hint” and “Check Answer” buttons,
etc.

39

- The Server Configurations They define the PGF' server the Quiz
needs to communicate with, and they are modifiable only from within the
code. It is possible to choose between a predefined server accessible over
the Internet, or a local server. Below is an example code; the variable in
charge of this setting is called online_options. More details about the
GF Web Service API can be found in Section [2.1.3] Also in Appendix B:
Section [6.2.3] you can find information on how to launch this web service
on your own server.

var online_options ={
grammars_url:"http://www.grammaticalframework.org/grammars/"
//grammars_url:"http://tournesol.cs.chalmers.se:41296/grammars",
//grammars_url: "http://localhost:41296/grammars",
//grammar_list: ["Foods.pgf"],

}

2.2.3 Functionalities

Here is a list of the Quiz’ main functionalities, that we will discuss its
items individually afterwards. We will also mention the methods and
technologies behind their implementation very briefly. More details about
the methods and technologies themselves can be found in Section [2.1]

— Generating a new question (“Next Question”)

— Preprocessing and Evaluating the user’s answer (“Check
Answer”)

— Analyzing the user’s answer and Providing Instructive Feed-
back (“Hint”)

— Possibility to see the whole Quiz (“Show Quiz History”)

- Generating a new question (“Nezt Question”):

Triggered by the “Next Question” button, the generate_question()
function from the JavaScript is called, which in turn sends a random tree
generation request to the PGF server by this command server.get_random(),
finally the server.linearize() will linearize the generated random ab-
stract tree to the selected source language, and display the result to the

user.

40

- Preprocessing and Evaluating the user’s answer (“Check An-
swer”):

Users can check whether their answer is right by either clicking on this
button or pressing the Enter/Return key of their keyboard. What hap-
pens from a user’s point of view is that he/she will receive a basic feed-
back in this phase which is either approval: “Yes, that was the correct
answer.” or denial “No, the correct answer(s) is(are): ...” which reveals
the correct answer(s). Users have to be careful because checking the an-
swer also submits their answer, and for each question they have only one
submission chance to increase their score; further submissions don’t have
any impact on their score. Therefore it is recommended to use the Hint
first, to make sure they have got the right answer; of course if Hint is
available (see below). Moreover, following the “learning from your mis-
takes” approach, it is more effective for the learners to first find where
they were wrong rather than seeing the right answer all at once. Here we
explain the underlying procedure in a simplified step by step approach:

1- The “Check Answer” button triggers the check_answer_quiz() func-
tion in the JavaScript code which in return calls the make all answers()
function if it is the first time this question is being checked and Hint
has not been called before. Otherwise it calls the continue_checking()
in Step 3.

2- Here we explain what happens in make all answers() function.
There are cases where a single word in the source (From) language
translates to two or more different words with distinct meanings
and applications in the target (7o) language. For example the word
“you” in English becomes “du” (singular you) or “ni” (plural you)
in Swedish. Therefore there are more than one correct answers in
these cases. Moreover GF grammars may include “free variations,
which are alternative concrete syntax objects that map to the same
abstract syntax tree” [2]. This means that a single word in a cer-
tain language may have more than one translation equivalents. For
example the verb “run” in English may have “springer” and “l6per”
as its equivalent translations in Swedish concrete syntax. Taking
care of these possibilities, the function make_all answers() pro-
duces an array containing all possible correct answers by following
these steps, also illustrated in Figure [17]:

— 2-1- The random abstract tree generated by generate_question()
function in the question generation phase, is linearized to the source
language.

41

— 2-2- The result text is then parsed to the source language. This
may result in additional trees to the one we started with, thus we
can cover the first case that we explained in the above example.

— 2-3- The resulted abstract tree(s) are then linearized to the target
language separately, for this step the linearizeAll command is used
instead of ordinary linearize in order to get all translation alterna-
tives including free variation.

— 2-4- Then it will continue with continue_checking() in Step 3.

3- continue_checking() will continue running the checking process in
three branches:

— 3-1- check_answer_exam2() is called if the quiz is in the Fzam
Mode, which behaves differently in terms of showing immediate
reaction to user’s actions. We will discuss it later.

— 3-2- show_hint2()is called in case the “Hint” button was clicked,
which we will discuss later in the following functionality called Hint.

— 3-3- check_answer2()is called if the two previous conditions fail.
The first action taken in check_answer2() is preprocessing the raw
user answer. For this purpose we have applied regular expressions:

3-3-1- First, all unwanted characters including digits, punc-
tuation marks and in brief all none-letter characters are
replaced by a space character; apostrophe is exceptionally
allowed for its semantic role in the many grammars. These
characters are defined by the following regular expression
in terms of ranges of Unicodes:

/ [\u0021-\u0026 \u0028-\u0040 \u005b-\u0060 \uO07b-\u007e]l+/g

3-3-2- Then all extra spaces defined in this regular expression:
/"\s+|\s+$/g , are removed and finally all white-space
characters stated by the regular expression: /\s+/g , are
replaced with a single space which is required in the an-
alyzing phase taking place in the next phase, namely the
Hint feature of the Quiz. This approach makes the appli-
cation more robust and flexible towards the user’s subtle
mistypings and even towards a careful high standard in-
put including punctuations that might not be supported
in the grammars.

42

3-3-3- check_answer2() then compares the processed user
answer to all possible correct answers computed in Step
2 by make all answers() function, and finally displays
the result of this phase in the explanation part of the Quiz
interface.

43

generate_question()

/N

You Pl Run

Generated random abstract
tree generate_question()

Linearize to

LinearizeAll
to answer
language

(Swe)

guestion
language
(Eng)

“you
run”

Parse in

question

language
(Eng)

/A

You_Sg Run

/ \

You Pl Run

LinearizeAll
to answer

language

(Swe)

“du l6per”

“du springer”

“ni I6per”

“ni springer”

Figure 17: How all possible correct answers are generated

44

- Analyzing the user’s answer and Providing Instructive Feed-
back (“Hint”):

Besides the basic feedback provided in the Check Answer (see previ-
ous functionality), there exists a more sophisticated feature in the Quiz,
called the Hint. This feature is created to fulfill one of the main goals
of this project, namely providing users with instructive and helpful feed-
back. The “Hint” button is available in all Quiz Modes but the Exam
Mode. With automatic update upon input change and no usage restric-
tion, it is designed to be extremely handy in the Fasy Study Mode. Ac-
tually with the help of this feature it is very hard for the users to go
wrong. The evaluation process combines a simplified version of the MT
evaluation method called BLEU, together with a strategy very similar to
the Mastermind’s game [35]. For technical details of the applied methods
in the Quiz Hint see Section [2.1.7] Although there is some interoperabil-
ity between Check Answer and Hint, the Hint mechanism is designed to
work completely independent of the Check Answer. As we did for the
Check Answer phase, here we explain the Hint procedure in a simplified
step by step approach:

1- The “Hint” button triggers the show_hint () function in the JavaScript
code which in return calls the make all answers() function if it is
the first time Hint is called and this question has not been checked
before. Otherwise it calls the continue_checking() in Step 3.

2- What happens here in the make all answers() function, we have
already explained in Step 2 of Check Answer which we avoid re-
peating.

3- continue_checking() will continue running the checking process in
three branches:

— 3-1- check_answer_exam2() is called if the quiz is in the Fzam
Mode, which follows similar steps as the Check Answer, but behaves
differently in terms of showing immediate reaction to user’s actions,
e.g. it reveals the final score only at the end of the exam.

— 3-2- check_answer2() is called which we have discussed, in the
previous phase. Please see Step 3-3- in Check Answer.

— 3-3- show_hint2() is called in case the “Hint” button was clicked.
The first action taken in show_hint2() is preprocessing the raw
user answer, which we have explained in the previous functionality,

Check Answer.

45

3-3-1- Please see Step 3-3-1- in Check Answer.
3-3-2- Please see Step 3-3-1- in Check Answer.

3-3-3- show_hint2() then compares the processed user an-
swer to all possible correct answers computed in Step 2
by make all answers() function, and displays the result
as explanation below:

Words in green stand for correct words in their correct place
in the sentence, and yellow words mean these words are
correct words and are part of the right answer but they are
misplaced, while red words stand for words which do not
exist in the right answer and are either misspelled or to-
tally wrong lexically or grammatically. Hint also displays
a blank for each missing word.

- Possibility to have the whole Quiz (“Show Quiz History”):

The application keeps a record of the quiz questions, user’s answers and
the explanations as a quiz is running. At the end of the quiz, which is
either invoked manually by the user clicking on the “End Quiz” button,
or by the application itself (e.g. when the pass condition occurs or an
exam ends), a “Show Quiz History” button will be displayed. Clicking
on this button will reveal all quiz questions together with user’s answers
and explanations from the application in a separate window, where the
user has the possibility to review, save a copy and also print the History.

2.3 Extra Features
2.3.1 How to make your own quiz

This part is mostly aimed at teachers and education supervisors who
wish to make their own desired quizzes. This simply requires writing
their own grammar and applying it in the current web interface of the
Quiz. Apart from the ordinary way of writing a GF grammar and by help
of GF Resource Grammar Library - that we saw in Sections and
- there are two additional possibilities for writing a GF grammars.
Although these methods do not cover the complete GF grammar notation
until this moment, but they are very much easier than the previously
mentioned ways, and still meet the needs of non-GF-grammarian users.
Here we discuss them briefly:

46

- GF online editor for simple multilingual grammars For the
means of GF' grammar writing a recent feature has been introduced which
makes writing grammars much easier specially for non-specialist users. It
is called GF online editor for simple multilingual grammars. This online
editor, written by Thomas Hallgren, is available at:

http://www.grammaticalframework.org/demos/gfse/

“Traditionally, GF grammars are created in a text editor and tested in
the GF shell. Text editors know very little (if anything) about the syntax
of GF grammars, and thus provide little guidance for novice GF' users.
Also, the grammar author has to download and install the GF' software
on his/her own computer. On the contrary in the online editor all that
is needed is a reasonably modern web browser” [37].

“The editor also guides the grammar author by showing a skeleton gram-
mar file and hinting how the parts should be filled in. When a new part is
added to the grammar, it is immediately checked for errors. Last but not
least in spite of its name, the editor runs entirely in the web browser, so
once you have opened the web page, you can continue editing grammars
even while you are offline” [37]. Thus users can write their grammar with
the online editor in an easy interactive way, and test them in the Minibar
[17] or Quiz frameworks afterwards.

- The gfm format Another approach to grammar writing which is
even easier is writing them in a very simple and straight forward format
called the gfm format. In this format a multilingual grammar is a simple
text file with a .gfm suffix which contains language elements, including
words, phrases and whole sentences in all destined languages in a multi-
column style so that they could be easily mapped to one another.

Here is an example which relates some English, Italian and Swedish nouns
and noun phrases.

langs Eng Ita Swe

man ; uomo ; man
woman ; donna ; kvinna

boy ; ragazzo ; pojke , kille

girl ; ragazza ; flicka, tjej

a good man ; un buon uomo ; en god man

a good woman; una buona donna; en god kvinna
these girls ; queste ragazze ; dessa flickor, de har flickorna
these boys ; questi ragazzi ; dessa pojkar , de har pojkarna

47

http://www.grammaticalframework.org/demos/gfse/

The text is then saved in a file named Foods.gfm. The compiler recog-
nizes the suffix . gfm and creates these four files: Foods.gf, FoodsEng. gf,
FoodsIta.gf and FoodsSwe.gf.

The first line gives the list of applied language names. Multi-word expres-
sions and free variations are allowed. Words of different languages are
separated by a ’;” while free variants within a language are separated by
a’,. As a grammar grows larger - as in the above example - the benefits
of the modular grammar writing are sensed better. However this method
works very well for small grammars, with simple and short phrases.

2.3.2 How the Translation Quiz handles morphology ques-
tions

Aarne Ranta has suggested a simple and splendid idea that makes it pos-
sible to apply the Quiz for training morphology inside a specific language
as well. This is possible by defining a grammar in a way that the abstract
syntax module contains the morphology forms while one concrete syntax
maps these forms to their descriptions and another concrete grammar
maps them to their actual forms. Thus a translation from descriptions
to real forms simply makes a morphology quiz. One example grammar
of this kind is available on the grammatical framework server: it is called
MorphoQuizVerbsEng.pgf and is written by A. Ranta for means of train-
ing English irregular verb forms. It gives the form(s) description(s) and
expects the real form(s) as an answer. The rest is quite the same as with
the ordinary grammars. This feature adds another dimension to the Quiz
and again more specific grammars can be written to enhance this usage
of the Quiz application.

48

3 Evaluation

This section is organized in two parts: First we discuss Limitations and
Drawbacks, and then Advantages. They contain the author’s observa-
tions and concerns and also some users’ points of view.

3.1 Limitations and Drawbacks

Here is a list of limitations and some undesirable aspects of the applica-
tion:

- It requires a high speed internet connection, otherwise the latency in
receiving responses to each server call will be quite annoying from a user’s
perspective specially in the case of remote users.

- The auto-fill feature which is set as default nearly in all browsers is not
so desirable in the Quiz because it keeps everything the user has typed
and suggests them while they want to write a new answer. This is both
distracting from a learner’s point of view and also might be considered
as cheating from a teacher’s point of view in case of a serious exam.

- It lacks a long term history mechanism, for example a user account
system, so that the learners can keep track of their training in the long
run.

3.2 Advantages

- Easy to use, which covers a large range of users including school chil-
dren.

- Being based on GF makes it possible to consider and take care of com-
plex language concepts like, free variations (where translation alterna-
tives are possible) and the reverse situation of ambiguity (where a single
word has more than one translations with distinct meanings in another
language).

- Extendable by adding grammars and languages.

49

4 Future Work

Here is a list of possible future work some of which come directly as
solutions to the problems stated in the Limitations and Drawbacks in

Section B.1F
- Designing specific grammars in order to fulfill the Quiz demands.

- Controlling and directing the random generation of phrases and sen-
tences.

- Adding an initial test for determining user’s knowledge level can be
added. This can help users to know where to start (i.e. which level).

- Defining and making the Quiz configurable for different levels of lan-
guage knowledge, by means of designing specific grammars and defin-
ing equivalent levels adapting to standards like the Common European
Framework of Reference for Languages’ Learning, Teaching and Assess-
ment; abbreviated as CEFR, [7].

- Introducing an offline version of the Quiz which does not require a
constant internet connection and is much faster in the case of low speed
connections or remote users.

- Introducing a user account system with capability of keeping the records
of learners’ training so that they can keep track of their overall progress
and find their weak and strong points. This information can be useful
for teachers or supervisors the same way. Thus the training can be more
organized and fruitful.

- The above history system can also provide some useful feedback for
the Quiz itself, for example the questions that the user got wrong could
appear again soon or the ones he got right may not appear again and so
on.

- Enhance the Hint so that it can catch user errors in letters scale in
addition to words scale. For example it can detect wrong or misplaced
letters in a word. Maybe something similar to what is done in Rivstart
web-page. For more details see Rivstart in Section [1.2.3]

20

5 Conclusion

In brief the aim of this thesis work is introducing an automated exercise
generator to be used in training grammars in general as well as the lexical
and syntactic aspects of different human languages. This tool is designed
and implemented as a web application - which we have called the GF
Translation Quiz or in short the Quiz - that makes it also available on
mobile phone platforms such as iPhone and Android. We have a very
good reason to call it thus: GF (Grammatical Framework) and its mostly
unique and conceptual approach toward translation and multilinguality
is the major source of inspiration to this work and forms the basis that
this thesis is built upon its strength. Therefore most characteristics of the
Quiz application, i.e. grammatical precision, support for multilinguality,
and coverage of natural languages in small fragments are provided by
GF. From another point of view, the Quiz application plays the role of
an interface, so that ordinary users with no prior computer knowledge can
also benefit from GF'’s capabilities for the purpose of language learning.

The GF Translation Quiz provides an extendable frame work from two
different dimensions:

— Creating new exercises by defining new abstract syntax grammars

— Adding new languages by writing the corresponding concrete syn-
tax grammar

However although the current frame work is quite accomplished and ro-
bust but there are a lot of possible future work which can enhance the
application further. Some are as follows:

— Creating a user account system for keeping a long term history for
each user which allows users to keep track of their training in the
long run

— Designing specific grammars in order to fulfill the Quiz demands

— Controlling and directing the random generation of phrases and
sentences

— and so on ...

For more future work suggestions please see Section [4]

51

6 Appendices

6.1 Appendix A: User manual

This chapter explains all the Translation Quiz’s features and functional-
ities and how they work with an intention for end users. See also Figures
and [15] for sample states of the user interface .

6.1.1 Customization:

From the Menubar, users can customize the quiz to their needs, i.e. they
can choose their desired Grammar, From (source) and To (target) lan-
guages and also a Quiz Mode:

— FEasy Study Mode: In this mode word magnets are available to
help users; they can type and/or click on them freely to construct
their answer. “Delete last” and “Clear” buttons can be used to
delete the last word or the whole answer in case required. These
word suggestions come from the selected grammar, and therefore
it keeps users from misspelling words and even making grammat-
ically wrong sentences. Also, users have unlimited Hint which is
automatically updated as the answer is being modified. It is also
possible to go to one previous question at a time; and of course,
users can check their answer’s correctness.

— Medium Study Mode: In this mode users can use the “Hint”
button for a maximum of 3 times for each question, and they can
go to one previous question at a time as well as checking their
answer’s correctness.

— Hard Study Mode: In this mode users can use the “Hint” button
only once for each question, and they may not use the “Previous
Question” button, but they can still check their answer’s correct-
ness.

— Exam Mode: In this mode users cannot use the “Hint”, “Previous
Question” or “Check Answer” buttons, and they will not see their
score until the end of the exam.

This piece of information is also available in the application through a
link just above the Quiz Menubar.

52

6.1.2 Functionalities:

As most of the Quiz’s functionalities are quit self-explanatory, in this
part only the none evident functionalities are explained to make them
clear and prevent probable misinterpretations:

— Next Question: As it is expected to, it will bring up the next
question, and it will prompt you before doing so if you have not
checked your answer to the current question so that you don’t miss
a question by mistake. The only matter you should know about
it is that if your answer to the previous question has been correct,
“Check Answer” moves you automatically to the next question so
that you won’t need an extra click on the “Next Question”.

— Check Answer: You can check whether your answer is right by
either clicking on this button or pressing the Enter/Return key of
your keyboard. (Exception: In the Fasy Study Mode you cannot
use the Enter/Return key for checking your answer, because it has
another functionality which is adding typed words to your answer.)
Please note that by checking your answer you also submit it, and for
each question you have only one submission chance to increase your
score - further submissions don’t have any impact on your score.
Use the Hint if you are not sure and of course if it is available.
Finally please note that “Check Answer” moves automatically to
the next question if your answer is right.

— Hint: You will find the “Hint” button very handy in all Quiz
Modes. In fact it works very much similar to the famous Master-
mind game [35]. Words in green stand for correct words in their
correct place in the sentence, and yellow words mean these words
are correct words and are part of the right answer but they are
misplaced, while red words stand for words which do not exist in
the right answer and are either misspelled or totally wrong lexically
or grammatically.

— Show Quiz History: The application keeps a record of the ques-
tions, user answers and the explanations as a quiz is running. At
the end of the quiz, which is either invoked manually by the user
clicking on the “End Quiz” button, or by the application itself (e.g.
when the pass condition occurs or an exam ends), a “Show Quiz
History” button will be displayed. Clicking on this button will
reveal all quiz questions together with user’s answers and expla-
nations from the application in a separate window, where the user
has the possibility to review, save a copy and print the History.

23

6.1.3 Technical Concerns

The Quiz application has been tested on different browsers like Google
Chrome [28], Mozilla Firefox [27] and IE (Windows Internet Explorer)
[26]. Due to technical problems with IE and previous graphical issues
with Chrome the author recommends Firefox over all tested browsers as
the most consistent browser for the Quiz application. However presently
no problem has been detected with Chrome anymore.

6.2 Appendix B: Teachers/ Supervisor’s Guide

This section is mostly aimed at teachers or education supervisors who
would like to use this application as a means of training and /or evaluating
their students language skills. At this level you might want to run the
Quiz with other GF grammars, and so will need to run a server locally
which will be discussed later on this chapter. Moreover the quiz can be
tailored to meet the specific requirements of different users with different
perspectives. For this purpose there exist some configurable parts in the
JavaScript code, which is explained as follows:

6.2.1 Configuration Variables

Here is the list of configuration variables available in the beginning of the
translation_quiz. js file, a JavaScript component of the Quiz:

— The minimum percentage of right answers (score/counter) required
to pass the Quiz with current default value of 0.75 which equals to
75 %.

var pass_percentage = 0.75;

— The minimum number of questions required to pass the Quiz with
current default value of 10.

var min_no_questions = 10;

— The number of questions in the Exam Mode, which is a fixed number
with current default value of 20.

var exam_quesNo = 20;

54

— The maximum times the user may answer the question to increase
his/her score, with current default value of 1. However with the
current Check Answer mechanism which reveals the right answer,
it does not make much sense to change this variable.

var max_answer_times = 1;

6.2.2 Modes Settings

Here are the modes settings with their default values available under the
same title (Modes Settings) in the set_mode () function in the
translation_quiz. js file, a JavaScript component of the Quiz:

— have__minibar : Determines whether the Quiz has the word mag-
nets available from the Minibar application [17]. Currently the de-
fault value is true only for the Fasy Study Mode and false for all
other modes.

— have__prevQuestion : Determines whether the user can use the
“Previous Question” button. Currently the default value is true
for Fasy Study Mode and Medium Study Mode and false for Hard
Study Mode as well as Fxam Mode.

— have__checkAns : Determines whether the user can use the “Check
Answer” button. Currently the default value is true for all modes
but the Fxam Mode.

— max__hint_ times : Determines how many times the user can use
the “Hint” button for each question. Currently the default value
is unlimited times for Fasy Study Mode, three times for Medium
Study Mode, only once for Hard Study Mode and evidently zero
times for Exam Mode.

6.2.3 Technical Concerns

— Which Browser to use: The (Quiz application has been tested
on different browsers like Google Chrome [28], Mozilla Firefox [27]
and IE (Windows Internet Explorer) [26]. Due to technical prob-
lems with IE and previous graphical issues with Chrome the author
recommends Firefox over all tested browsers as the most consistent
browser for the Quiz application. However presently no problem
has been detected with Chrome.

95

— How to make your own quiz: A detailed discussion about this
can be found in Section 2.3.1]

— How to install and run a PGF server locally: For a detailed
up to date tutorial please refer to the Grammatical Framework
Wiki page available at :
http://code.google.com/p/grammatical-framework/wiki/LaunchWebDemos

Before that, you need to install GF itself for this step refer to the
following page :
http://code.google.com/p/grammatical-framework /wiki/DevelopersPage

— How to apply a new grammar: For a detailed up to date tuto-
rial please refer to the Grammatical Framework Wiki page available
at:
http://code.google.com/p/grammatical-framework /wiki/GEFWebService API

6.3 Appendix C: Developer’s Guide

Finally in this section some information is provided for users at a higher
level than end users; e.g. programmers/developers who might want to
apply the Quiz’s code within their own applications.

6.3.1 Code Organization and Modules

The code is organized as follows:

— translation_quiz.html, which contains the main HTML ele-
ments of the Quiz in its general state.

— translation_quiz.js, the main JavaScript code which contains
the global variables and different functions of the Quiz can be found
here.

— quiz_pre_start. js, which prepares and sets the variables prior
to page load.

— quiz_support. js, it handles the lower level functions applied in
translation_quiz. js.

— minibar_quiz.js, the JavaScript code that is in charge of the
word magnets, in the Easy Study Mode of the Quiz. It is based on
the original minibar. js from the Minibar application [I7] which
is slightly modified in order to serve the Quiz’s requirements.

56

http://code.google.com/p/grammatical-framework/wiki/LaunchWebDemos
http://code.google.com/p/grammatical-framework/wiki/DevelopersPage
http://code.google.com/p/grammatical-framework/wiki/GFWebServiceAPI

— support. js, which is the original file from the Minibar application
[T7]. Tt handles the lower level functions used in minibar_quiz.js
and translation_quiz. js.

— minibar_quiz.css and brushed-metal.png, imported from the
Minibar application [I7] with slight changes in the CSS file, handle
the styling and graphics in the Quiz application.

— pgf_online. js, which is the original file from the Minibar appli-
cation [I7]. It creates the server object with desired parameters.

6.3.2 Technical Concerns

The Quiz application has been designed and implemented to be compat-
ible with Google Chrome (version 7.0.517.44) [28] as default browser. It
has also been tested and verified with Mozilla Firefox (version 3.6.12) [27].
However it does not work with IE (version 6.0.29) [26] due to JavaScript
restrictions.

Another important issue is that occasionally some disorder in displaying
the word magnets has been observed in Chrome browser, which seems
to be a rendering bug in Chrome. However this problem has been by-
passed from within the Minibar application [36] in its released version on
Oct 26th of 2010 and after that, and thus the same holds for the Quiz
application.

o7

References

1]

[10]

[11]

[12]

[13]

[14]

Spoken languages in the world,
http://www.infoplease.com/askeds/many-spoken-languages.html
[Accessed 2 November 2010]

Ranta A., “Grammatical Framework: Programming with Multilin-
gual Grammars”, CSLI Publications, Stanford, 2011

Google translator, http://translate.google.com/ [Accessed 1 Novem-
ber 2010]

Papineni K., Roukos S., Ward T. and Zhu W.J., “Bleu: a Method
for Automatic Evaluation of Machine Translation”, IBM Research
Report, RC22176 (W0109-022), September 17, 2001.

Moodle, http://moodle.org/ [Accessed 2 November 2010]

EngOnline, https://learning.portal.chalmers.se/ [Accessed 2
November 2010]

CEFR (Common European Framework of Reference for Lan-
guages), http://www.coe.int/t/dg4/linguistic/cadre en.asp [Ac-
cessed 14 December 2010]

Rivstart, http://www.nok.se/rivstart [Accessed 21 November 2010]

Ranta A. and Angelov K., “Implementing Controlled Languages in
GF”, CNL-2009, CEUR Workshop Proceedings, vol. 448, 2009

Ranta A. , “Grammatical Framework : A Type Theoretical Grammar
Formalism”, The Journal of Functional Programming, 14(2), 145-
189 , 2004

Bart Jacobs, “Categorical Logic and Type Theory”, Elsevier, 2001,
ISBN 9780444508539

Ranta A., “The GF Resource Grammar Library. Linguistic Issues in
Language Technology”, CSLI Publications, Volume 2, Issue 2, 2009

Grammatical Framework Wiki page: GF Web Service API.
http://code.google.com/p/grammatical-framework /wiki /GFWeb-
ServiceAPI [Accessed 2 November 2010]

FastCGI, http://www.fastcgi.com/devkit/doc/fcgi-spec.html [Ac-
cessed 19 February 2011]

o8

[15] JSON (JavaScript Object Notation), http://www.json.org/ [Ac-
cessed 14 February 2011]

[16] GF Wiki page: Launching the Web applications,
http://code.google.com /p/grammatical-framework /wiki /Launch-
WebDemos [Accessed 2 November 2010]

[17] Minibar Application, http://www.grammaticalframework.org/ de-
mos/minibar/minibar.html [Accessed 2 November 2010]

[18] GF web services API examples,
http://www.grammaticalframework.org/demos/minibar/gf-web-
api-examples.html [Accessed 5 November 2010]

[19] HTML (Hyper Text Markup Language),
http://www.w3.org/TR/html401/ [Accessed 10 November 2010]

[20] DOM (Document Object Model), http://www.w3.org/DOM/ [Ac-
cessed 11 November 2010]

[21] XHTML (Extensible Hyper Text Markup Language),
http://www.w3.org/TR/xhtmll/ [Accessed 3 March 2011]

[22] XML (Extensible Markup Language),
http://www.w3.org/TR/xml/ [Accessed 7 March 2011]

[23] CSS (Cascading Style Sheets), http://www.w3.org/TR/CSS2/ [Ac-
cessed 3 December 2010)]

[24] CSS (Cascading Style Sheets) web tutorial, Available from:
http://www.w3schools.com/css/css_intro.asp [Accessed 3 Decem-
ber 2010)]

[25] w3schools.com, http://www.w3schools.com/js/js_intro.asp
[Accessed 2 November 2010]

[26] Internet Explorer, http://www.microsoft.com/windows/internet-
explorer/ [Accessed 2 November 2010]

[27] Mozilla Firefox, http://www.mozilla.com /en-
US/firefox/personal.html [Accessed 2 November 2010]

[28] Google Chrome, http://www.google.com/chrome/intl/en/ land-
ing chrome.html?hl=en [Accessed 2 November 2010]

[29] Opera, http://www.opera.com/docs/specs/ [Accessed 15 November
2010]

29

[30] Safari, http://www.apple.com/safari/ [Accessed 15 November 2010]

cheme, http://www.schemers.org/Documents/Standards
31| Sch h h D Standards/R5RS
[Accessed 20 March 2011]

[32] OCaml, http://dries.ulyssis.org/apt/packages/ocaml/ocaml-
spec.html [Accessed 20 March 2011]

[33] JavaScript, https://developer.mozilla.org/en/
JavaScript_ Language_Resources [Accessed 1 November 2010)]

[34] Marquez L. and Gimenez J., “Automatic Evaluation in Machine
Translation Towards Similarity Measures Based on Multiple Lin-
guistic Layers”, Presented in MOLTO workshop: GF meets SMT,
Gothenburg, November 5, 2010. Available from: http://www.molto-
project.eu/sites/default /files/MT-evaluation-seminar.pdf [Accessed
2 December 2010]

[35] Mastermind, Available from: http://en.wikipedia.org/
wiki/Mastermind__(board__game) [Accessed 2 November 2010]

[36] Minibar Documentation. Available from:
http://www.grammaticalframework.org:41296 /minibar/about.html
[Accessed 2 November 2010]

[37] GF online editor for simple multilingual grammars,
http://www.grammaticalframework.org/demos/gfse /about.html
[Accessed 20 February 2011]

60

	my_Thesis_cover
	Master of Science Thesis in Software Engineering and Technology
	ELNAZ ABOLAHRAR

	Elnaz_Report_Final_04
	1 Introduction
	1.1 Objectives
	1.1.1 Multilinguality
	1.1.2 Grammatical Precision and Language Coverage
	1.1.3 Stand Alone Exercise Tool

	1.2 State of the art
	1.2.1 Moodle
	1.2.2 EngOnline
	1.2.3 Rivstart

	1.3 Background and Inspiration
	1.3.1 Why learning a foreign language matters at all
	1.3.2 How can computers help us in the language learning process in general and GF's specific role
	1.3.3 Translation_Quiz command in GF shell

	2 Solution Description
	2.1 Methods and Technology
	2.1.1 GF
	2.1.2 GF Resource Grammar Library
	2.1.3 GF Web Service API
	2.1.4 HTML and DOM
	2.1.5 CSS
	2.1.6 JavaScript
	2.1.7 BLEU an Automatic MT Evaluation Method

	2.2 Solution Details
	2.2.1 User Interface
	2.2.2 Configurations
	2.2.3 Functionalities

	2.3 Extra Features
	2.3.1 How to make your own quiz
	2.3.2 How the Translation Quiz handles morphology questions

	3 Evaluation
	3.1 Limitations and Drawbacks
	3.2 Advantages

	4 Future Work
	5 Conclusion
	6 Appendices
	6.1 Appendix A: User manual
	6.1.1 Customization:
	6.1.2 Functionalities:
	6.1.3 Technical Concerns

	6.2 Appendix B: Teachers/ Supervisor's Guide
	6.2.1 Configuration Variables
	6.2.2 Modes Settings
	6.2.3 Technical Concerns

	6.3 Appendix C: Developer's Guide
	6.3.1 Code Organization and Modules
	6.3.2 Technical Concerns

