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Abstract
In the quest to achieve high data rates, several 100 Gbps Ethernet standards for
backplane, copper cables and fiber optic that include forward error correction based
on Reed–Solomon (RS) codes have been recently approved. This thesis work presents
the design and implementation of a high-throughput Reed-Solomon RS(255, 239)
decoder architecture suitable for those standards. Various error correction de-
coders have been formulated through algorithmic transformations of the inversion-
less Berlekamp Massey algorithm (IBMA). In this work, a Key Equation Solver
(KES) based on the modified enhanced Parallel Inversionless Berlekamp Massey
algorithm (ePIBMA) is used. Hardware implementation results are presented for
the RS(255, 239) codes over GF (28) that reach 106.03 Gbps when implemented in a
65 nm CMOS process. Finally, post synthesis the timing, area and power estimates
generated are also presented.

Keywords: ASIC, chien search, communications, decoder, error correction, ethernet,
fiber optic, forward error correction, galois field, Gbps, hardware, high data rate,
high speed, high throughput, IEEE, implementation, key equation solver, Reed-
Solomon codes, syndrome calculator, thesis.
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1
Introduction

The use of the forward error correction (FEC) codes is a classic solution to im-
prove the reliability of unicast, multicast, and broadcast Content Delivery Protocols
(CDP) and applications. FEC codes have been used with applications in public and
private IP networks to provide protection against packet loss. They have been used
with media delivery applications and for instance with real-time streaming media
applications based on the Real-time Transport Protocol (RTP). More specifically,
FEC schemes introduce error codes based on sparse parity-check matrices for object
delivery protocols like Asynchronous Layered Coding (ALC) and NACK-Oriented
Reliable Multicast (NORM) transport protocols. These codes are efficient in terms
of processing but not optimal in terms of error recovery capabilities when dealing
with "small" objects [1].

The Reed-Solomon FEC codes belong to the class of Maximum Distance Sep-
arable (MDS) cyclic error correction codes that are optimal in terms of error recovery
capability. It means that a receiver can recover the K source symbols from any set
of exactly K encoding symbols. These codes are also systematic codes, which means
that the K source symbols are part of the encoding symbols. However, here the price
to pay is a limit on the maximum source block size, on the maximum number of
encoding symbols and a computational complexity higher than Low Density Parity
Check codes [2] or Raptor codes [3] for instance. Since the real-time constraints of
media delivery applications usually limit the maximum source block size, this is not
considered to be a major issue in the context of FEC framework for many (but not
necessarily all) use cases.

Reed-Solomon codes play an important role in modern multimedia communi-
cations and data storage systems. Demands for 100 Gigabit Ethernet (GbE) devices
are increasing dramatically where data traffic converges, such as high-performance
computing, servers, data centers and enterprise networks. In the future, bandwidth
will be much more in demand than 100 GbE. For this reason, the IEEE 802.3ba
task force approved IEEE std 802.3ba-2010 for the use of 40 Gb/s and 100 Gb/s
Ethernet. Because the theory of Reed Solomon Code has been developed over forty
years, related coding theory has been mature. Hence, it would be good time for us
to make practical applications of high-speed low-complexity RS-based forward error
correction (FEC) architecture implementations to meet the continuing demands for
ever higher data rates (100 Gb/s and beyond) [4]. The Fig. 1.1 below shows the
basic block diagram of a Reed-Solomon encoding and decoding flow over a noisy
communication channel.
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1. Introduction

Original
Message

Reed-
Solomon
Encoder

Noisy
Channel

Transmitted
Codeword

Received
Codeword

Reed-
Solomon
Decoder

Corrected
Message

Figure 1.1: Reed-Solomon encoding/decoding over a noisy channel.

During this thesis project, a Reed-Solomon decoder architecture is designed
and implemented using VHDL, i.e, VHSIC (Very High Speed Integrated Circuit)
Hardware Description Language. The developed system will be capable of reaching
100 Gbps throughput for a single data stream for the well known RS(255, 239)
code and synthesized using ASIC standard-cell libraries for evaluating the power
consumed and area.

There are three different decoding algorithms to correct the errors introduced
during transmission, namely, Berlekamp–Massey algorithm [8], extended Euclidean
algorithm [9], and Welch–Berlekamp algorithm [10]. The Welch-Berlekamp algo-
rithm is largely neglected by VLSI researcher community due to its algorithmic ir-
regularity and high cost of on-the-fly polynomial evaluation. Initially, the extended
Euclidean algorithm received popularity in VLSI community and industry practice,
due to its natural regularity and short critical path delay. However, during this
thesis project, the Enhanced Parallel Inversionless Berlekamp Massey algorithm is
used as it is considered to be the one with the least hardware complexity [16].

1.1 Outline
The report is structured as follows: In Section II, an overview of the theoretical
concepts used while designing are discussed. In Section III, the RS Decoder Archi-
tecture is discussed. In Section IV, the hardware implementation and verification
of the three primary blocks of the RS decoder is explained in detail and in Sec-
tion V the observations and outcome of simulations performed and synthesis results
obtained are presented. Finally, in Section VI the work performed is concluded.
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2
Context

In this chapter an overview of some of the theoretical concepts used while designing
the Reed-Solomon decoder are presented.

2.1 The Advent of Fiber-Optic Communications
The development of telephone networks worldwide during the twentieth century led
to many accomplishments in the field of electrical communication systems. Replac-
ing wire pairs with coaxial cables increased the system capacity multifold. The first
co-axial cable system deployed was a 3 MHz system capable of transmitting 300
voice channels or a single television channel. However, the bandwidth of such sys-
tems is limited by the frequency-dependent cable losses. This drawback led to the
use of microwave communications systems where an electromagnetic carrier wave
with frequencies in the range of 1–10 GHz was used to transmit the signal by using
suitable modulation techniques.

Both coaxial and microwave systems have evolved considerably and are able
to operate at bit rates of 100 Mbps. The most advanced coaxial system operated at
a bit rate of 274 Mbps. A major drawback of such systems is their small repeater
spacing (around 1 km), which makes the system relatively expensive to operate. A
commonly used figure of merit for communication systems is the bitrate− distance
product, BL, where B is the bit rate and L is the repeater spacing.

It was soon realized that an increase of several orders of magnitude in the BL
product could be made possible if an optical wave was used as the carrier. It was
suggested in 1966 that optical fibers might be the best choice, as they are capable of
guiding the light in a manner similar to the guiding of electrons in copper wires. The
simultaneous availability of compact optical sources and a low-loss optical fibers in
1970s led to a worldwide effort for developing fiber-optic communication systems [5].

2.2 Ethernet IEEE 802.3 Standards
The IEEE 802.3 group is concerned with the maintenance and extension of the
Ethernet data communication standards. The standards are in the series IEEE
802.3, table 2.1 [6], where each standard is identified using a different suffix letter,
thus the different IEEE 802.3 standards can be uniquely identified. The different
IEEE 802.3 standards define different aspects of Ethernet. Some standards may
introduce new versions of Ethernet to keep pace with the growing requirements for
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2. Context

speed and performance, whereas other standards may define aspects like the data
frames used.

Table 2.1: Ethernet IEEE 802.3 Standards, Supplements and Releases.

STANDARD
SUPPLEMENT

YEAR DESCRIPTION

802.3a 1985 10Base-2 (thin Ethernet)
802.3c 1986 10 Mb/s repeater specifications
802.3d 1987 FOIRL (fiber link)
802.3i 1990 10Base-T (twisted pair)
. . .
. . .
. . .
802.3bs 2017 200GbE (200 Gbit/s) over single-mode fiber and

400GbE (400 Gbit/s) over optical physical media
802.3bt 2018 Third generation Power over Ethernet with up to

100 W using all 4 pairs balanced twisted-pair cabling
(4PPoE).

802.3bu 2016 Power over Data Lines (PoDL) for single twisted-pair
Ethernet (100BASE-T1)

802.3bv 2017 Gigabit Ethernet over plastic optical fiber (POF)
802.3by 2016 Optical fiber, twinax and backplane 25 Gigabit Eth-

ernet
802.3bz 2016 2.5GBASE-T and 5GBASE-T – 2.5 Gigabit and 5 Gi-

gabit Ethernet over Cat-5/Cat-6 twisted pair
802.3cb 2018 2.5 Gbit/s and 5 Gbit/s Operation over Backplane
802.3cc 2017 25 Gbit/s over Single Mode Fiber
802.3cd 2018 Media Access Control Parameters for 50 Gbit/s and

Physical Layers and Management Parameters for 50,
100, and 200 Gbit/s Operation

802.3ce 2017 Multilane Timestamping
802.3cf 2019 YANG Data Model Definitions

Ethernet, IEEE 802.3 defines the frame formats or frame structures that
are developed within the media access control (MAC) layer of the protocol stack.
Essentially the same frame structure is used for the different variants of Ethernet,
although there are some changes to the frame structure to extend the performance of
the system should this be needed. With the high speeds and variety of media used,
this basic format sometimes needs to be adapted to meet the individual requirements
of the transmission system, but this is still specified within the amendment/update
for that given Ethernet variant.

The MAC layer mentioned above and the logical link control (LLC) sublayer
together make up the data link layer, which corresponds to the second layer of the
OSI model. While the LLC is responsible for providing flow control and multi-
plexing for the logical link, the MAC provides flow control and multiplexing of the
transmission medium.

On June 17, 2010, the IEEE 802.3ba standard was approved. In March 2011
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2. Context

the IEEE 802.3bg standard was approved. On September 10, 2011, the P802.3bj
100 Gbit/s Backplane and Copper Cable task force was approved. The scope of this
project is to specify additions to and appropriate modifications of IEEE Std 802.3
to add 100 Gbit/s 4-lane Physical Layer (PHY) specifications and management
parameters for operation on backplanes and twinaxial copper cables, and specify
optional Energy Efficient Ethernet (EEE) for 40 Gbit/s and 100 Gbit/s operation
over backplanes and copper cables [7].

On May 10, 2013, the P802.3bm 40 Gbit/s and 100 Gbit/s Fiber Optic Task
Force was approved. This project is to specify additions to and appropriate modi-
fications of IEEE Std 802.3 to add 100 Gbit/s Physical Layer (PHY) specifications
and management parameters, using a four-lane electrical interface for operation on
multimode and single-mode fiber optic cables, and to specify optional Energy Effi-
cient Ethernet (EEE) for 40 Gbit/s and 100 Gbit/s operation over fiber optic cables.
In addition, this project is to also specify 40 Gbit/s Physical Layer (PHY) speci-
fications and management parameters for operation on extended reach (>10 km)
single-mode fiber optic cables [7].

2.3 Multimedia Communication System
The basic building blocks of Internet Protocol based Data/Image/Video communica-
tion system or Multimedia communication system (M2M) can be seen in Fig. 2.1. In
the following sections, the function of the "Channel Decoder" block will be described
in more detail.

Compression
+

Quantization
+

Source
Encoder

Packetizer Channel
Encoder

Interleaver Modulation

De-modulationDe-interleaver
Channel
Decoder

Depacketizer
+

Source
Decoder

 +
Decomposition

Error
Concealment

Original
Data

Reconstructed 
Data

Noisy
Channel

Multimedia Communications

Figure 2.1: Block diagram of a end-to-end data communications over a noisy
channel.

2.4 Error Control Code
Error control codes (ECC) are commonly used in telecommunication, computing and
coding theory for controlling errors in data that are sent over unreliable or noisy
communication channels [12]. The sender encodes the message with redundant or
parity data in the form of an ECC. The redundancy allows the receiver to detect
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2. Context

a limited number of errors that may occur anywhere in the message and to correct
these errors without retransmission. ECC gives the receiver the ability to correct
errors without needing a reverse channel to request retransmission of data, but at
the cost of a fixed, higher forward-channel bandwidth. The two main categories of
ECC codes are block codes and convolutional codes.

In block codes [13], the decoder looks for errors and once detected, corrects
them (according to the capability of the code). The technique has become an im-
portant signal-processing tool used in modern communication systems and in a wide
variety of other digital applications such as high-density memory and recording me-
dia. Such coding provides system performance improvements at significantly lower
cost than through the use of other methods that increase signal-to-noise ratio (SNR)
such as increased power or antenna gain.

In convolutional coding [14], a continuous source of bits is used to generate
continuous output stream. Then from each codeword, a column of the most signifi-
cant bits is transmitted in blocks and then the next most significant bits and so on
until the least significant bits are transmitted in a column. The reverse operation
is performed by the controlling device at the receiver part with error checking and
correction if required. The main effect of this approach is that if an error burst
occurs, it is going to affect a single bit of each code word rather than affecting a
string of bits in one or two code words.

Block codes depend only on the current message bit k while convolution
coding is dependent on the current message bit as well as the previous sequence
of source bits. Hence, it could be said that block codes were used in memory
less systems but convolutional coding is dependent on memory. The convolutional
coding is best suited for applications having low implementation cost with good
performance.

There are many types of block codes, but among the classical ones the most
notable is Reed-Solomon coding because of its widespread use in compact discs,
DVDs, and hard disk drives. Other examples of classical block codes include Go-
lay, Multidimensional parity, BCH (Bose–Chaudhuri–Hocquenghem) and Hamming
codes [13].

2.5 Reed-Solomon Codes

A Reed-Solomon code is a block code and specified as RS(N,K) as shown in Fig. 2.2.
The variable N is the size of the codeword. K is the number of the data symbols

DATA PARITY

K 2t

N

Figure 2.2: Structure of RS Code.
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2. Context

and 2t is the number of parity symbols, where each symbol contains s number of
bits. The relationship between the symbol size s and the size of codeword N is
given by (2.1). This means that if there are s bits in one symbol, then the number
of distinct symbols in one codeword, excluding the one with all zeros, is given by:

N = 2s−1 (2.1)

This code allows correcting up to t symbol errors where t is given by,

t = N −K
2 (2.2)

2.5.1 Galois Field (GF)
Reed-Solomon codes are based on a specialist area of mathematics known as Galois
fields or finite fields [15]. A finite field has the property that arithmetic operations
(+,-,x,/ etc.) on field elements always have a result in the field. A Reed-Solomon
encoder or decoder needs to carry out these arithmetic operations.

2.5.2 RS decoder
The Reed-Solomon decoder tries to correct errors by calculating the syndromes for
each codeword. Based upon the syndromes, the decoder is able to determine the
number of errors in the received block. If there are errors present, the decoder tries
to find the locations of the errors by creating an error locator polynomial. The roots
of this polynomial are found using the Chien search algorithm and using Forney’s
algorithm, the symbol error values are found and corrected [11]. General process of
decoding is,

1. Syndrome Calculation (SC unit)
2. Determine error-location polynomial (KES unit)
3. Solving the error locator polynomial - Chien search (CSEE unit)
4. Calculating the error magnitude
5. Error correction

Consider an RS(N,K) code defined in Galois Field, i.e, GF(2m), where N =
2m − 1. In such a case, 2t redundant symbols are added to the original K-symbol
codeword C(x). This codeword is created as C(x) = M(x) · G(x), where M(x) is
the message polynomial and G(x) is the generator polynomial of the code. After the
codeword is transmitted through a noisy channel, the RS decoder receives R(x) =
C(x) + E(X), where E(x) is the polynomial that represents the noise.

Syndrome Computation

The RS decoding process begins with the syndrome calculator unit. This unit
computes the 2t syndromes Si that are the coefficients of the syndrome polynomial
S(x). This is achieved by evaluating the received polynomial in the 2t roots of G(x),
specifically Si = R(αi+1) for i = 0, .., 2t − 1, where α is the primitive element of
GF(2m).

8



2. Context

Error Locator Polynomial

The KES unit obtains the error locator polynomial ∧(x) and the error magnitude
Ω(x) polynomials by solving the key equation ∧(x) · S(x) = Ω(x) mod xN−K . The
KES block is the most complex one and it is usually implemented with either the
Modified Euclidean (ME) algorithm or the Berlekamp-Massey (BM) algorithm [16].

Error Evaluator Polynomial

Next, the Chien search is performed to find the error locations, which is accomplished
by evaluating ∧(x) in all the possible positions (i.e. ∧ (α−n), for n = 1, .., N − 1).

Error Magnitude Polynomial

Finally, an error evaluation method (e.g. Forney’s formula) is used to calculate the
error magnitude (e.g.En = Ω(α−n)/ ∧′ (α−n)) when the Chien search finds an error
location, which is whenever ∧(α−n) = 0.

Error Correction

If the total number of errors in R(x) does not exceed the error correcting capability
t, all the errors in R(x) are corrected by subtracting the error magnitudes from the
received symbols. If all 2t syndromes Si are zero, then no error has occured [4], [11].

9



3
RS Decoder Architecture

The hard-decision RS decoder architecture consists commonly of three main com-
putational blocks, which need to be implemented. The first block is the syndrome
computer (more details are given in section 4.1). This component obtains a set
of syndromes that is a function of the error pattern in the received frame. Upon
computation of the 2t (t denotes the error correcting capability of the decoder) syn-
dromes by the syndrome computer (SC) unit, the values are used in the second block
of the decoder called the key equation solver (more details are given in section 4.2),
to compute the error-locator polynomial.

The error-locator polynomial will be generated in the key equation solver
(KES) unit using the enhanced parallel inversionless Berlekamp-Massey algorithm
(ePIBMA) that effectively takes advantage of the generalized Horiguchi-Koetter for-
mula. Here the ePIBMA algorithm was choosen as it requires only 2t + 1 systolic
cells, in contrast to the 3t or more systolic cells required for regular architectures
based on inversionless Berlekamp-Massey algorithm (IBMA) or the Euclidean algo-
rithm [16].

The last block, chien search and error evaluation (CSEE) (more details are
given in section 4.3) determines the roots of the error-locator polynomial. Finally,
the error magnitudes are found, typically using Forney’s algorithm (see Lemma 4
from [16]). The output of the CSEE block is subtracted from the received sequence
to obtain the corrected frame [11].

The four decoding stages are commonly pipelined as shown in Fig. 3.1 and
in these units the full polynomial-base GF(2m ) is required and the corresponding
GF multipliers and adders need to be implemented.

Received 
Frame (R)

FIFO

SC KES CSEE ----
Corrected 

Frame
(R-E)

Error (E)

Figure 3.1: Basic units of a conventional RS(N,K) decoder.
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3. RS Decoder Architecture

3.1 Conventional RS Decoders
Conventionally an architecture consisting of ch parallel SC and CSEE blocks that
compute each one P symbols at a time and one KES stage that is shared among
ch channels is seen in literature [17]. If this architecture is replicated q times, q · ch
channels are decoded at the same throughput per channel, see Fig. 3.2 [11]. Thus
the throughput of the complete decoder is given as,

Throughput− of − decoder = q · ch ·N ·m · fclk

[N/P ] bps (3.1)

And the throughput per channel of the decoder is given as,

Throughput− per− channel = N ·m · fclk

[N/P ] bps (3.2)

SC

SC

SC

SC

KES

CSEE

CSEE

CSEE

CSEE

CH 1

CH 2

CH 3

CH 4

CH 1

CH 2

CH 3

CH 4

x q

2t cycles

P-parallel
[N/P] cycles 

P-parallel
[N/P] cycles 

Figure 3.2: Conventional parallel RS architecture.

3.2 High-Speed RS Decoders
Considering a single channel high-speed low-latency RS decoder, the SC and CSEE
blocks both take N cycles whereas the systolic KES block takes only 2t cycles, which
is typically much smaller than N . A common practice is to fold the KES circuit (by
[N/2t] times, if systolic) to reduce the circuit complexity while the latencies of the
three pipeline stages are equalized in order to achieve faster data rates, Fig. 3.3. In
general, h systolic KES processors given as h = [2t/[N/P ]] are needed in parallel to
keep up with the throughput of the SC and CSEE blocks. Moreover, it should be
noted that the closer N/P is to 2t/h the higher the hardware utilization efficiency
is [11].

In case of aRS(255, 239), the maximum achievable efficiency for h = 1, 2, 3, 4...
is reached when P value is set to P = 16, 32, 64, .... Assuming that the decoder can
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3. RS Decoder Architecture

KES 1

SC CSEEP P

KES 2

Figure 3.3: High-speed RS architecture.

work when the fclk rate is set to 500 MHz in the target CMOS technology, a through-
put rate greater than 100 Gbps can be achieved when two systolic KES blocks are
disposed in parallel. The throughput of the decoder is given as,

Throughput− of − decoder = N ·m · fclk

[N/P ] bps (3.3)

The computational timing chart for the high-speed decoder that processes a
single channel with two KES blocks disposed in parallel is given in Fig. 3.4 below.
In case of RS(255, 239), each computational block processes 32 input symbols per
clock cycle and thus the N = 255 symbol codeword is evaluated in Nc = [N/P ] = 8
clock cycles and 2t equates to 16 clocks.

SC

SC

SC

CSEEKES1

KES2 CSEE

KES1 CSEE

[N/P] clk 2t clk [N/P] clk

Figure 3.4: High-speed RS Decoder timing chart with h=2 KES blocks.
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4
Implementation

In this chapter the hardware implementation and the verification of the three main
basic blocks of the RS(255, 239) decoder will be discussed in detail.

The Reed-Solomon RS(255, 239) code was chosen for implementation as it is
a well-known code for high-speed optical communications [17] and it is recommended
by the ITU-T for optical fiber submarine cable systems [19].

4.1 Syndrome Computation

The syndrome computer (SC) unit processes the 2t = 16 syndromes using 2t com-
putational blocks disposed in parallel. The architecture of the syndrome calculator
is derived from the Horner’s rule and is similar to the syndrome computational unit
implemented in [11].

Before the start of the computation, the received polynomial codeword (R)
is padded with zeros such that its length is Nc · P symbols. Next, the computation
is performed iteratively during the Nc = 8 clock cycles using equations

synflag+1
i = synflag

i · αP ·i +
P∑

p=1
R(P ·(Nc−1)−P ·(flag)+p) · α(p−1)·i (4.1)

SyndromeOuti = synNc
i (4.2)

where R is the coefficient of the received polynomial, flag ∈ (0, 1, 2, .., Nc − 1) and
i ∈ (1, 2, .., 2t).

4.1.1 Function of RS(255, 239) syndrome computer

1. The received polynomial, N = 255 codeword is padded with zeros when the
reset signal is set to standard logic ’1’, such that the codeword size is extended
to 256 coefficients, which are 8 bits each.

2. Next, at every clock cycle beginning from flag = 0 to flag = 7, P = 32
coefficients are stored in the array R which are then sent to the 2t = 16
computational blocks disposed in parallel, see Fig. 4.1.
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4. Implementation

Count = 7 Count = 2 Count = 1

Received_polynomial
(255 element array)

0000...0000..

0000...0000.. 1

0

0

1

0

1

1

1

0

0

Clock & Reset

Start or
Count = 0

R 
(32 element

array)

Received_polynomial
(225 to 256)

Received_polynomial
(193 to 224)

Received_polynomial
(161 to 192)

Received_polynomial
(1 to 32 elements)

Pad with
zeros

Figure 4.1: Design structure for processing the P=32 symbols per clock cycle.

3. At each computational block the incoming P coefficients are multiplied with
their respective α values as given in (4.8). The 2t products are then summed
together using the GFadd summation unit.

4. The result from the summation unit is then multiplied with αP∗i and added
back to the summation unit result during the next clock cycle. Note that i is
the ith computational block unit, see Fig. 4.2.

R(1)

R(2)

R(32)

alpha(0)

alpha(1*i)

alpha(31*i)

Computational_Block_1

Computational_Block_2

Computational_Block_16

Summation
unit

(G_add)
syn _1

syn_16

syn _2

SyndromeOut
(1 downto 16)

R 
(32 element array)

R 
(32

element
array)

R 
(32

element
array)

D

alpha(32*i)

Count = 8

1

0

0000...0000..

syn
(16 element array)

00

1

Count ≥ 1

Note:
   i = 1 to 16, computational block number.

         represents GF_add.

         represents GF_multiply.

Figure 4.2: Design structure of 2t parallel computational blocks.
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4. Implementation

5. The above steps are repeated at each clock cycle and at the last iteration
flag = 7 the final 2t syndromes are obtained as per (4.2) and the syndromes
are obtained at the end of the 9th clock cycle.

4.1.2 Verification of the syndrome computer
In order to verify the result of the SC unit developed using VHDL in ModelSim, it
was essential to first develop a reference system in Matlab.

Considering the RS(255, 239) code over GF (28), the codeword C(x) is first
created. Here the coefficients of C(x) are inserted as elements into a matrix of size
[1, 239]. C(x) is then passed through a reference Matlab encoder code. Next, errors
of varying magnitudes are introduced into the encoded message at this stage while
testing the SC unit.

The received message of size [1, 255], is then passed through the reference SC
unit developed in Matlab, which is based on Horner’s rule given by the following
equation.

R(α) = r0 + α(r1 + α(r2 + α(r3 + ....+ α(rn−1 + α · rn)....))) (4.3)

where R is the received polynomial codeword; r0, r1, r2, ..., rn−1 are the coefficients
of the received polynomial codeword and α is the primitive polynomial. Finally, the
2t syndromes are calculated using equation:

Si = R(αi+1) (4.4)

where i ∈ (1, 2, ...., 2t). A block diagram of the above described process can be seen
in Fig. 4.3. Note, the evaluated 2t = 16 syndromes will then have to be converted
into binary vector format i.e as t = 8 bit symbols before they are compared with
the result obtained while simulating the SC design described using VHDL. Refer to
section 5.1.1 to read more on the logic simulations.

C(x) 
(Codeword) 

E(x) 
(Errors) 

Matlab
Encoder

Matlab  
Syndrome
Computer 

2t syndromes
Output

Figure 4.3: Work flow of syndrome computation in Matlab.
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4. Implementation

4.2 Key Equation Solver
The KES unit is based on the modified Enhanced Parallel Inversionless Berlekamp-
Massey algorithm (ePIBMA) [18]. This algorithm is being used as it has the short-
est critical path and utilizes the lowest number of resources. The 2t syndromes
computed earlier are passed as inputs to this algorithm and its outputs are the
error-locator ∧(x) polynomial, the error-evaluator B(x) polynomial, γ value, zcnt

value, which is used to compute the magnitude of the error and L∧, the length of
the error-locator polynomial that is used to check the validity of the correction.

In order to limit the degree of the B(x) polynomial to t − 1, the author of
[16] introduced an auxiliary criterion and utilizes a separate loop logic zcnt [11] [18],
to accumulate the unknown α−(t+e−2) (e being the number of errors), which will be
used in the error evaluation. The enhanced algorithm used to design the KES unit
can be found in [11] [16] [18]. Fig. 4.4 shows the systolic ePIBMA block diagram.

PE0 PE2t-1PE1 PE2t

Control

S0

S0

S1

S1

0

S2t-1 1

B0 B1 Bt-1

λ0 λtλ1

0

01

MC3
MC2

MC1λ0

γ(r)

Figure 4.4: The systolic ePIBMA block diagram [16].

The ePIBMA architecture contains an array of 2t +1 homogeneous systolic
processor elements (PE), that stores the Ω̂(x) and Θ̂(x) array values. The control
signal MC1 represents the boolean operation Ω(r) 6= 0 and Lr

∧ ≤ Lr
B. In each

iteration, the element Ω̂i is set to zero if its index i corresponds to the value denoted
by the control signal MC2. Finally, MC3 represents the boolean operation LB <
t− 1 evaluated in the algorithm.

4.2.1 Function of RS(255, 239) KES unit
1. Initialization of the following array and variable elements during the 1st iter-

ation:
(a) Ω̂(x) = S0 + S1(x) + ...+ S14(x) + S15(x) + x16

(b) Θ̂(x) = S0 + S1(x) + ...+ S14(x) + 0 + x16

(c) γ = 1
(d) L∧ = L = 0
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4. Implementation

(e) zcnt = 0
2. From the 2nd to 17th iteration the Ω̂(x) array values need to be updated as

described in the ePIBMA algorithm. Also, the Θ̂(x) array values, L∧, L, γ and
zcnt values need to be updated when the conditions described by the control
signals MC1, MC2 and MC3 are met.

3. Finally, during the 18th iteration the values obtained at the end of the previous
iteration are displayed and passed to the CSEE unit. The list of values passed
to the CSEE unit are as follows:
(a) ∧ = [Ω0,Ω1, ...,Ω8]
(b) B = [Θ0,Θ1, ...,Θ7]
(c) γ, L∧, zcnt.

4.2.2 Verification of the Key Equation Solver
In order to verify the result of the KES unit developed using VHDL in ModelSim,
similar to the SC unit, it was essential to first develop a reference system in Matlab.

The ePIBMA algorithm presented in [16] was first programmed in Matlab
following the same design steps as described above. The result obtained was then
compared to the result obtained while simulating the KES unit described using
VHDL in ModelSim.

4.3 Chien Search and Error Evaluation
In order to maintain the throughput reached by the previous stages, the CSEE unit
has to process P = 32 symbols at a time. Therefore, the total number of clock cycles
to process the N = 255 codeword is Nc = [N/P ] = 8. The CSEE unit designed
in VHDL using ModelSim evaluates the error-locator ∧(x) polynomial for all its
possible roots and calculates the error-magnitude Y (x) polynomial in a total of 9
clock cycles. The CSEE architecture designed is given in Fig. 4.5 [11].

B(αPk+p)

λo(αPk+p)

λe(αPk+p) = = 0

INV

α(-zcnt)^p(i)

α(-zcnt)^P ZC

λe

λo

B

λo

zcnt

γ

YPk+p(i)

Figure 4.5: The architecture of the CSEE unit [11].
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4. Implementation

The evaluation of the ∧(x) polynomial is performed as ∧(x) = ∧o(x)+∧e(x),
where ∧o(x) and ∧e(x) are the polynomials containing the odd and even coefficients
of ∧(x). Next the Bx, ∧o(x) and ∧e(x) polynomials are evaluated for P = 32
different values p ∈ (0, 1, ..., P − 1) of x at a time, using the below equations.

B(αP k+p) =
7∑

j=0
Bj · αP k+p (4.5)

∧o(αP k+p) =
3∑

j=0
∧o(2j+1) · αP k+p (4.6)

∧e(αP k+p) =
4∑

j=0
∧e2j · αP k+p (4.7)

Here, k ∈ (0, 1, ..., Nc − 1) thus all the possible roots are evaluated in Nc = 8 clock
cycles. Since, we use the ePIBMA, the error magnitude is calculated with the below
equation.

Yi = γ · λ0 · α(−zcnt)p(i)

B(X−1
i ) · ∧′(X−1

i )
(4.8)

Here, i ∈ (1, 2, ..., 255), λ0 is the coefficient 0 of ∧(x). The term ∧′(x) is evaluated
as ∧′(x) = x−1 · ∧o(x).

4.3.1 Computation of P Consecutive Powers of zcnt using
ROM

The computations can be performed with lower latency using ROMs addressed by
zcnt, as depicted in Fig. 4.6. Since there are only 2t = 16 possible values for zcnt,
the size of the P − 1 LUTs required to initialize the α(−zcnt)p(i) computations is 2t
words each.

Thus, the contents of the ith LUT will be α(−zcnt)p(i) where zcnt ∈ (1, 2, ..., 16)
and p(i) ∈ (0, 1, ...31). Each clock cycle the evaluated error locations are shifted P
positions and the values of α(−zcnt)p(i) are updated according to the ith iteration.

KES
(ePIBMA) ROM

ROM

α(-zcnt)^p(0)  to α(-zcnt)^p(31)

α(-zcnt)^p(32) 

ZC

Figure 4.6: Generation of the required powers of z using ROMs.
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5
Results

This chapter will explain more in detail the outcome of simulations performed in
ModelSim and synthesis results obtained from Cadence RTL Compiler.

5.1 Verifying the system logic function

To test the RS(255, 239) decoder system designed, the necessary N = 255 coeffi-
cient received polynomial test sequence was first developed using Matlab. Next, a
testbench was developed in ModelSim which provides the received polynomial test
sequence as input to the entire system. Before placing the entire system comprising
of the SC, KES and CSEE units together, each of the units were individually verified
and tested. This section will explain the outcome of these logic simulations.

5.1.1 Syndrome Computation Unit

The primary inputs to this unit were the clock, the reset, an enable signal named
start and the N = 255 coefficient received polynomial test sequence supplied by the
testbench. The α values required for the evaluation of the computational blocks
were generated using Matlab. Note, the hardware structure of the computational
blocks is explained in section 4.1.

To test the correctness of the entire system, various 8 bit errors at different
positions were introduced into the received polynomial test sequence at this stage of
testing. It was made sure that the total number of errors introduced did not exceed
the error correcting capability t of the RS(255, 239) decoder.

The evaluated syndromes obtained as output while simulating were then
verified with the result obtained from the reference SC model developed in Matlab.

5.1.2 Key Equation Solver

The primary inputs to this unit were the clock, the reset and the verified syndromes
passed from the SC unit. The 9 coefficient error-locator polynomials, the 8 coefficient
error-evaluator polynomials, along with the γ value and the zcnt value obtained as
simulation outputs from the KES unit was verified with the reference KES model
results developed in Matlab. The verified outputs were then passed down to the
CSEE unit.
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5. Results

5.1.3 Chien Search and Error Evaluation

The primary inputs to this unit were the clock, the reset, the error-locator polyno-
mial, the error-evaluator polynomial, the γ value and the zcnt value. While testing
the system for its correctness, the output observed during simulations was verified
with the reference CSEE model results developed in Matlab. The CSEE unit was
observed to evaluate the error magnitude at the respective error locations accurately.
The obtained error magnitude values were then added (addition over Galois Field)
to the received polynomial to obtain the corrected RS codeword.

5.1.4 Full System

The developed individual units were then connected together to form the entire
system and was observed to function correctly, provided the total number of errors
introduced into the test sequence did not exceed the error correcting capability.
When errors greater than the error capacity were introduced, the sequence of coef-
ficients received from the communication network were uncorrected by the decoder,
i.e, the exact sequence (received polynomial) was observed at the output of the
RS(255, 239) decoder.

5.2 Synthesis and Timing Analysis

In order to be certain that the system designed was synthesizable using the 65 nm
CMOS process technology, the code was first elaborated and observed that zero error
messages were displayed. During the elaboration phase, the RTL Compiler makes
use of a virtual gate library to which no specific process technology is associated.
The VHDL descriptions were then synthesized by mapping them to a 65 nm process
technology library of standard cells supplied by ST Microelectronics.

5.2.1 Timing and Area Report of Full System

Generally, the optimization goal during synthesis is to create the smallest possible
implementation of the design that satisfies a certain timing constraint. But in order
to get an indication of the intrinsic implementation timing, the synthesis process
was started with no timing constraints set and using low computational effort.

After the initial exploratory synthesis, new timing goals were set and using
medium computational effort the synthesis process was carried out. The obtained
numbers on area and timing slack for the various timing goals set are given in
Table 5.1.
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Table 5.1: Timing and Area Report of Full System developed.

Timing goal Effort Total Area[µm2] Timing Slack[ps]
Unconstrained Low effort 1 098 452 7888, Final arrival time
1000 ps Medium effort 1 081 431 −1265, Negative slack
2240 ps Medium effort 963 661 −14, Negative slack
2251 ps Medium effort 944 355 −3
2253 ps Medium effort 951 209 −13
2254 ps Medium effort 957 957 0
2270 ps Medium effort 927 842 0
2390 ps Medium effort 863 476 0
3000 ps Medium effort 754 516 0

The area estimate obtained for unconstrained timing goal was observed to be
higher as no area optimizations is being done by the synthesis tool and significantly
less number of buffers (0.7% of total area), higher number of sequential, inverter and
logic instances were mapped during synthesis, compared to the other timing goals
set.

Here, various timing goals were chosen to observe the highest throughput
that can be achieved by the developed system i.e. the lowest timing constraint met
before observing negative slack, as negative slack indicates failure to achieve the
desired timing constraint. From the above Table 5.1 it is clear that 2254ps is the
lowest timing constraint met or the worst-case path delay value.

5.2.2 Throughput Calculation
For a RS(N,K) code, where K is the number of information symbols encoded
and sent through the noisy communication channel, the throughput of a decoder is
calculated to be:

Throughput = Ksymbols
TimeConstraint (5.1)

Thus, for each of the timing constraints met by the designed and implemented
RS(255, 239) decoder, considering only the K = 239 original information symbols
and discarding the 2t = 16 redundant symbols, the throughput is calculated to be:

TimingGoal : 2254 ps => Throughput = 239
2254 · 10−12 = 106.03 Gbps (5.2)

TimingGoal : 2270 ps => Throughput = 239
2270 · 10−12 = 105.28 Gbps (5.3)

TimingGoal : 2390 ps => Throughput = 239
2390 · 10−12 = 100 Gbps (5.4)

Here, 106.03 Gbps is observed to be the highest data throughput achieved by the
designed and verified decoder, as negative slack which indicates the failure to met
the targeted speed is observed for timing constraints below 2254 ps, Table 5.1.
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5.2.3 Area Report of individual units
The estimates of area utilized by the individual SC, KES and CSEE units when
timing goals corresponding to 100 Gbps or higher were set during synthesis are
shown in Table 5.2.

Table 5.2: Estimated area utilized by individual units for timing goals correspond-
ing to 100 Gbps and above.

2254[ps] 2270[ps] 2390[ps]
Type Area[µm2] Area[µm2] Area[µm2]
SC unit 110 641 110 667 110 632
KES unit 24 560.6 24 560.6 24 577.8
CSEE unit 749 986 740 366 678 619.2

Here, it should be noted that 2 KES units were disposed in parallel as part
of the architecture, in order to achieve the higher throughput. Along with the 3
primary blocks, additional area is utilized by the subtractor block, which is needed
to subtract the output of the CSEE block from the received sequence to obtain the
corrected result.

From Tables 5.1 and 5.2, it is evident that the sum of the area estimates of the
individual units of the decoder equals the total area estimate obtained for a specific
timing goal. In addition, the CSEE unit stands out, as it comprises of multiple or
to be exact P − 1 LUTs of size 2t words each that stores precomputed information,
needed for the evaluation of the error locations and the error magnitudes.

5.2.4 Critical path of decoder
The critical path for different timing goals remained through the Chien Search and
Error Evaluation block. Hence, area optimizations on the CSEE unit was difficult.

Comparing the gates report of the CSEE unit generated for 2390ps and
2254ps timing goals, it was observed that a higher number of inverters, buffers
and logic gates were utilized to fulfill the latter’s timing goal. Moreover, logic gates
with extra input terminals and similar/higher drive strengths, which occupy higher
area per gate were employed along the critical path, resulting in an increase in the
area occupied by the gates. Here, the addition of higher of inverters/buffers helps
to decrease the total propagation delay in order to meet the timing goal, but tends
to increase the area.

Comparing the gates reports obtained for the SC and KES units for the
different timing goals, the area values remained constant as they were not timing
critical in comparison to the CSEE unit.

5.3 Power Analysis
As power is a very important design metric, in addition to static timing analysis,
probabilistic power analysis was also performed. The 65 nm process technology
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library of standard cells implemented using Low-Power Standard-VT transistors,
which are characterized at nominal process corners, at 1.2V supply voltage and a
temperature of 25C, was used.

5.3.1 Probabilistic Power Analysis

The total switching power, the major power dissipation mechanism, is the sum of
the switching power in all the nodes, given by the below equation:

SwitchingPower,PSW =
∑

i

f · V dd2 · Ai · Ci, (5.5)

where Ai represents the switching activity and Ci represents the capacitance of wire
segment. Now in order to get an estimate on the power dissipation of the system,
some default signal switching probabilities (e.g., Ai=0.01 and 0.25) were considered
and their respective toggle rates (togg) were calculated and set on the primary data
inputs of the system developed. The relation between Ai and togg is shown in below
equations.

togg = f

1 GHz · Ai · 2 (5.6)

f = 1
TimeConstraint (5.7)

The total power estimates (Dynamic + Leakage power) obtained when vari-
ous timing goals were set and the toggle rate being varied is shown in Table 5.3.

Table 5.3: Total Power Report of Full System.

Ai=0.01 Ai=0.25
Timing goal Effort Power[mW] Power[mW]
2254 ps medium effort 382.72 399.57
2270 ps medium effort 379.05 395.86
2390 ps medium effort 347.34 363.46

From the total power estimates obtained for the full system, it is evident
that the total power dissipated increased for a higher Ai or togg value, which is in
accordance with the power equation (Ai being proportional to PSW ). Furthermore,
the total power (including the leakage power) dissipated was observed to be higher
when stricter timing constraints were employed, irrespective of the togg value, which
can be accounted to the fact that larger circuitry is required to meet the desired
timing goal.

The leakage power estimates obtained when various timing goals were set is
shown in Table 5.4.
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Table 5.4: Leakage Power Report of Full System.

Ai=0.25
Timing goal Effort Power[µW]
2254 ps medium effort 89.622
2270 ps medium effort 84.745
2390 ps medium effort 74.424

A comparison of the total power dissipated by the individual units of the
decoder for different timing goals can be seen in Table 5.5.

Table 5.5: Power Report of individual units for timing goals corresponding to
100 Gbps and above.

2254[ps] 2270[ps] 2390[ps]
Ai Unit Power[mW] Power[mW] Power[mW]
0.01 SC 121.27 121.23 116.90
0.01 KES 26.75 26.72 18.28
0.01 CSEE 163.34 162.85 277.45

Comparing the relative unit power dissipated by the SC and CSEE units,
the total power value of the SC unit (whose area estimate value is much smaller
relatively) remains quite comparable to the CSEE unit as it has a highly parallelized
dynamic structure, whereas the CSEE unit comprises mostly of multiple static LUTs.
Also, similar to the area estimates obtained, the sum of the total power dissipated by
the individual units of the decoder equate more or less to the total power obtained
for a specific timing goal.
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6
Conclusion

In this thesis work, the design and implementation of a very high throughput, single
channel Reed-Solomon RS(255, 239) decoder that can reach 100 Gbps is presented.
The implemented high speed functional decoder architecture consists of a highly
parallelized Syndrome Computation and Chien Search and Error Evaluation blocks.
It also uses two systolic Key Equation Solver units connected in parallel, imple-
mented using the ePIBMA algorithm, which is devised through the algorithmic
transformations of the Inversionless Berlekamp Massey algorithm (IBMA).

The function of the RS(255, 239) decoder and its verification has been ex-
plained in detail. With respect to hardware implementation, the synthesis was per-
formed by mapping the hardware descriptions to standard cells in the 65 nm process
technology supplied by ST Microelectronics. Here, the library of standard cells are
implemented using Low Power standard-Vt transistors, at 1.2 V supply voltage and
a temperature of 25 ◦C. Post synthesis, the timing and power analysis have been
carried out and the estimated values generated by the tool have also been presented.

In conclusion, with regards to the system designed using VHDL, the design
has been hard coded for the RS(255, 239) decoder, the outcome of simulations per-
formed in ModelSim, the synthesis results obtained from Cadence RTL Compiler and
the maximum throughput achieved by the implemented decoder and its limitations
have been discussed. Finally, the proposed architectures have proved to be more
time efficient than previously published high-throughput RS(255, 239) decoders.
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