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Abstract
Fully Homomorphic Encryption (FHE) has been dubbed as cryptography’s holy
grail. It opens the door to many new capabilities with the goal to solve the IT
world’s problems of security and trust. After 2009, when Craig Gentry showed that
FHE can be realised, research in the area exploded and substantial progress has
been made in finding more practical and more efficient schemes.
FHE is a cryptographic primitive that allows one to compute arbitrary functions
over encrypted data. Such schemes have numerous applications since it allows users
to encrypt their private data locally but still outsource the computation of the
encrypted data without risking exposing the actual data.
In 2012, LTV12 published the first multi-key FHE scheme and proved that any
Somewhat Homomorphic Encryption (SHE) scheme could be made multi-key. As
in the single key setting, a lot of progress been made in the area but no work has
been done in implementing the multi-key schemes.
This thesis is survey on FHE and MKFHE, with special attention to the state of the
art implementations available as well as three implementations including the first
implementation in the multi-key settings to the best of our knowledge.

Keywords: public-key cryptography, fully homomorphic encryption, multi-key FHE,
LWE, GSW.
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1
Introduction

We live in an era where most people all over the world own more than one digital
device with limited local storage. Therefore, there is a growing need for services
that let users easily store and access personal files. Data that was previously stored
on paper is being converted to a digital file. However, some data needs to be kept
secret and is not meant for public consumption. Several cloud services allow one
to securely upload private data that is encrypted, but in many cases, once the
data is uploaded, the cloud service can decrypt the data. It does this because most
encryption schemes no longer produce the correct decrypted value once computations
have been performed on the data. This is not the case with homomorphic encryption
schemes.
Encryption is a method used for encoding information with the goal to ensure con-
fidentiality so that only authorised parties can access the information. There exists
different types of encryption schemes that can be either symmetric or asymmetric.
In the symmetric setting, the same key is used for encryption and decryption and it
is commonly used when a secure channel is already established. In the asymmetric
setting, there exists a public and private key for each party where the public key
is used for encryption and the private key for decryption. The public key is shared
between parties while the private key is kept secret so that only the holder of the
secret key can decrypt the message encrypted under the corresponding public key.
In 1978, shortly after the discovery of public key cryptography, Rivest et al. were
the first to observe the possibility of manipulating encrypted data in a meaningful
way, rather than just storing and retrieving it [8].
A special form of encryption is homomorphic encrytion that has a wide range of ap-
plications and supports operations on encrypted data. The outcome, is a ciphertext
that, when decrypted, matches the result of the desired computation performed on
the plaintext. They raised the question: Can we do arbitrary computations on data
while it remains encrypted, without ever decrypting it? which asks for the ability to
perform computations on encrypted data without being able to “see” the data. This
ability allows users to encrypt their private data locally; send it to the cloud service
along with the computations they would like to perform on the data; have the cloud
service perform these computations and send back the encrypted result; and then
decrypt the result with high certainty that the private data was not exposed. The
flow of this idea can be seen in Figure 1.1.
A metaphor often used for homomorphic cryptosystems is the one of a jewellery
shop [9]. Alice owns a jewellery shop and has raw precious material that she wants
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1. Introduction

Figure 1.1: Ideal flow when working with the cloud.

her workers to assemble into jewellery. The problem is that she distrusts her workers
- she is afraid they will steal the material if given the opportunity. She wants her
workers to be able to process the materials without actually having access to them.
In order to solve this problem, Alice designs a transparent, impenetrable glove box,
puts the raw material inside, locks the box with a key that only she has access to and
then gives the box to one of the workers. The worker can assemble the jewels inside
the box using the gloves without being able to access the materials inside since it is
impenetrable. Once the worker is finished, the worker gives the box back to Alice
who can unlock it with her key and extract the jewellery. In this metaphor, the data
is represented by the material that needs to be processed and the encryption of that
data is represented by the box. The special thing about this cryptosystem is that
it has gloves allowing the data to be processed without accessing it.
This concept of homomorphic cryptosystems was however long viewed as a fantasy.
After some progress over the years where several cryptosystems where found to
be partially homomorphic [10, 11, 12, 13], a breakthrough occurred in 2009 when
Gentry presented the first FHE scheme [9]. Although Gentry’s scheme was not
yet useful for practical implementations it presented a solution to achieve privacy
homomorphism.
Gentry’s FHE scheme is an asymmetric encryption scheme based on ideal lattices.
Essentially one generates a secret key and then a number of public keys, each con-
taining “noise”, in a way that it is infeasible for an adversary to generate the secret
key from the public keys. The problem with this first solution is that the “noise”
in the ciphertext grew with each additional computation. This means that at a
certain point the ciphertext will no longer decrypt to the original message because
the “noise” has grown to large. Encryption schemes with this property are called
Somewhat Homomorphic Encryption (SHE) schemes. The term somewhat stresses
that the number of homomorphic operations one can perform is limited. In the same
work [9] Gentry also provides a generic technique to transform SHE in FHE. Such
technique is called Bootstrapping. Bootstrapping solves the problem of not being
able to decrypt properly when the “noise” grows too large by homomorphically de-
crypting the ciphertext, performing a single computation on it, and then recrypting
under a different public key. Unfortunately, the bootstrapping procedure is too the-
oretical and therefore not very efficient. Additionally, bootstrapping requires the
non-standard assumption circular security which assumes that it is safe to encrypt
the secret key under its own public key [2, 9, 14].
Since Gentry’s first FHE scheme in 2009, several others have been developed [15,
16, 17, 18, 19]. The focus of subsequent works has been to simplify the construction
of FHE schemes as well as to base the security on more standard assumptions. In
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1. Introduction

2010, Smart and Vercauteren [16] made the first attempt of implementing FHE and
since then a lot of work has been done towards more practical implementations
[20, 21, 22].
FHE is only suitable in settings where the computations involve a single user since
it requires the input from the users to be encrypted under the same key. Imagine
instead a scenario where users, who have uploaded data to the cloud in encrypted
form, wish to compute some joint function of their data encrypted under different
keys. To handle these multi party situations, in 2012, Lopéz-Alt et al. [4] introduced
a multi-key FHE scheme based on the NTRU cryptosystem [5]. This scenario is
significantly more complex than the single user setting but even in this area a lot
of recent improvements have been done [2, 7, 23]. Contrary to the single user
setting, there exist no implementation of multi-key FHE to the best of the author’s
knowledge.

1.1 Aim

The goal of this thesis is to acquire a deep understanding of (1) the challenges
involved in implementing a FHE scheme and (2) the theoretical knowledge required
to build secure FHE schemes. This is achieved by performing an extensive study of
the design choices and challenges when implementing FHE. More precisely, this is
done in two steps;

1. performing a state of the art literature study,
2. studying and implementing three somewhat similar FHE schemes: one by

Gentry et al [3] and two multi-key schemes by Mukherjee and Wichs [7] and
Perlman and Brakerski [2] that have not previously been implemented.

A consequence of choosing non-trival schemes that have not already been imple-
mented is that the difficulties are in general unpredictable. The challenges include
studying and translating the scheme into code, choosing parameters, designing al-
gorithms, choosing the benchmarks and running experiments on them. In addition,
the schemes are based on some non-standard assumptions and Perlman and Brak-
erski state that their scheme is not practical which makes implementing it a big
challenge [2]:

“We stress that our scheme is not by itself practical. We use the
bootstrapping machinery in a way that introduces fair amounts of

overhead into the evaluation process. The goal of this work, rather, is
to indicate that the theoretical boundaries of multi-key FHE, and open

the door for further optimisations bringing solutions closer to the
implementable world.”

The ambition of the thesis is that the findings will serve as a stepping-stone for
designing more practical FHE schemes even beyond these particular ones. Therefore,
we address the following questions:

• What are the challenges of implementing FHE schemes?

3



1. Introduction

• What implementation techniques can be used to optimise FHE schemes?
• Is it possible to make FHE schemes rely on more standard assumptions?
• How does one choose parameters that guarantee a given level of security?
• How does multi-key FHE compare to single-key FHE in terms of performance?

This thesis work focuses on the theory study of FHE and the challenges of im-
plementing FHE and multi-key FHE. The outcome shall include proof of concept
implementations but the aim is not to achieve the most efficient implementations
due to the complexity of the task

1.2 Contribution

In this work, we present a state of the art survey on FHE in general as well as the
first implementation of multi-key FHE. In more details, we present the following:

• State of the art of FHE.
• Overview of currently existing schemes.
• Implementations of two multi-key FHE schemes [2, 7].
• Overview of existing tools and libraries that can be useful for implementing

and optimising FHE.
• Overview of currently public implementations of FHE.

1.3 Outline

This thesis is organised as follows. Chapter 2 describes the required cryptographic
and mathematical background needed for FHE. Chapter 3 describes the concept
of homomorphic encryption as well as some related work. Chapter 4 presents the
Methodology of this work. In Chapter 5 we present the results of the thesis: the
benchmarks of the implemented schemes. This is followed by a discussion in Chapter
6 and last but not least, Chapter 7 concludes this thesis and outlines some future
work directions.
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2
Background

This chapter presents the required mathematical background as well as some fun-
damental statements on computational theory, cryptography and logic gates. The
aim of this chapter is to state the most important definitions for the comprehension
of the schemes and definitions for FHE.

2.1 Notation

Common mathematical notations used throughout this report are listed in Table
2.1.

Table 2.1: Mathematical notations used.

Symbol Meaning
Z,R,C The sets of integers, the reals and the complex numbers
Zn×m,Rn×m,Cn×m The space of n times m matrices with integer, reals, complex

and integer entries
U , χ Uniform distribution U and error distribution χ.
Fq A finite field of q elements, where q is power of a prime
Fmq A vector space of dimension m over Fq, for a positive integer

m
‖·‖, ‖·‖∞ The Euclidean norm and the maximum norm
Λ,L A lattice
L(B) The lattice with the columns of the matrix B as basis
γ Approximation factor in lattice problems
λ The security parameter
n The degree of a polynomial
m Lattice dimension
v A vector v = (v1, ..., vn) ∈ Zn∑n
i=1 |vi| The l1 norm for vector v = (v1, ..., vn)

0 A zero vector (of appropriate size if nothing else is specified)
1 A vector of ones (of appropriate size if nothing else is speci-

fied)
q, dqc The rounding of q to the next integer
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2. Background

2.2 Cryptology

The word cryptology is originally derived from the Greek words kryptós and logos
meaning “hidden word”. Generally, cryptology is a science that studies how to hide
confidential information. Cryptology is divided into two complementary fields, cryp-
tography and cryptanalysis, where cryptography is the science of designing secure
ciphers and cryptanalysis the science of breaking ciphers. In this thesis, we will
focus on cryptography and more specifically on encryption schemes.
The goal of cryptography is to make any confidential information inaccessible for
unauthorised parties, by providing some among the following properties:

• Confidentiality: The information cannot be understood by anyone for whom
it was unintended.

• Integrity: The information cannot be altered in storage or transit between the
sender and the intended receivers without the alteration being detected.

• Non-repudiation: The creator/sender of the information cannot deny at a later
stage his or her intentions in the creation or transmission of the information.

• Authentication: The sender and the receiver can confirm each other’s identity
and the origin/destination of the information.

Modern cryptography is heavily based on mathematical theory and computer science
practice [24, 25, 26]. Cryptographic algorithms are designed around computational
hardness assumptions, making such algorithms hard to break in practice by any
adversary. Procedures and protocols that meet some or all of the above criteria are
known as cryptosystems.
In cryptography, encryption is the process of encoding a message or information
in such a way that only authorised parties can access it to ensure confidentiality.
Imagine Alice wants to send a private message to Bob, but she is afraid that Eve
will intercept the message and read the message that is only meant for Bob. In
order to solve this issue, Alice encrypts the message in such a way so that only Bob
is able to decrypt.
There are two types of encryption schemes: symmetric-key schemes and asymmetric-
key schemes, also referred to as private-key and public-key schemes. The main
difference between the two is that symmetric cryptosystems uses the same key for
encrypting and decrypting while asymmetric cryptosystems uses different keys for
encryption and decryption. One of the advantages of using symmetric encryption
over asymmetric is that encryption and decryption are faster, but one drawback is
that you have to exchange the key in a secure way. In this thesis, we will focus on
the public-key setting in order to be able to outsource computations.

2.3 Computational Problems

Before defining complexity classes, it is crucial to understand the fundamental ob-
jects of computational complexity theory: A computational problem is a mathemat-
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2. Background

ical object representing a collection of questions that computers might want to solve.
The input string for a computational problem is referred to as an instance. Respec-
tively the output string is called the solution. A computational problem consists
of an infinite amount of tuples which are composed of instances and the accord-
ing solution. There are two major fields which deal with computational problems.
First, there is the field of algorithm research which is the study of methods for solv-
ing the problems efficiently. Second, there is the field of complexity theory which
explains why a problem is believed to be unsolvable or intractable even if a great
deal or infinite computational resources are available. There are different types of
computational problems of which the two most common will be further explained:
Search problem: A search problem consists of an infinite set of instances and a
concise specification of valid solutions.
Example. Factoring a composite number is a search problem where the instance
is a number n and the valid solution is a set of prime numbers p1, . . . , pn which are
the prime factors to the number.
Decision problem: A decision problem consists of an infinite set of instances and
a concise specification of YES-instances.
Example. Primality testing is a decision problem where the instance is a positive
integer n and the problem is to determine if n is a prime number or not.

2.3.1 Complexity Classes

Computational complexity theory focuses on classifying computational problems
according to their computational hardness. Similar to the following theory of public
key systems, the field of computational complexity theory has developed rapidly in
the past three decades, due to the fact that all cryptographic systems rely on the
intractability of an infeasible underlying computational problem. The central task
of computational complexity theory is whether tasks can be performed efficiently or
not.
Intuitively, one can say that the time complexity of a problem is the number of
steps that it takes to solve a special instance of the problem using the most efficient
algorithm. In order to describe the time efficiency of the function the Big-O notation
for an asymptotic upper bound. There are different options available on which
resource should be focused on. The resource most often used is time. Another
possible computational resource is memory (space). We call a function f :

• constant if f = O(1)
• logarithmic if f = O(log(x))
• linear if f = O(x)
• polynomial if f = O(xc) for a c > 0
• exponential if f = O(cx) for a c > 0

One of the complexity classes is the complexity class P that is defined as follows:

7



2. Background

Definition 1 P is the class of decisional problems with solutions that run in time
O(nc), for some constant c.

In cryptography, we care about problems that are considered to not have efficient
solutions, which means we do not care about problems in P. This is because when
constructing an encryption scheme the goal is to prove that if a computational
adversary can break the encryption scheme, then that adversary can also provide an
efficient solution to the hardness assumption. Because of this reason these problems
are well-suited to base encryption schemes on. To describe inefficient problems, we
first define the complexity class NP:

Definition 2 NP is the class of decisional problems with deterministic verifiers that
run in time O(nc), for some constant c.

NP-Hard are problems that are at least as hard as the hardest problems in NP and
it is defined as follows:

Definition 3 A problem is NP-hard if an algorithm for solving it can be translated
into one for solving any NP-problem.

When a decision problem is both in NP and NP-Hard it is NP-Complete and defined
as follows:

Definition 4 A problem which is both NP and NP-hard.

What makes NP-Complete so interesting is that if any one of the NP-Complete
problems was to be solved quickly, then all NP problems can in fact be solved
quickly, i.e, in an efficient (polynomial) time.

The relationship of the complexity classes presented in this section can be seen in
Figure 2.1.

Figure 2.1: The relationships among the complexity classes NP, P, NP-Hard and
NP-complete under the assumption that P 6= NP.
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2. Background

2.4 Public-Key Encryption

Public-key encryption, also known as asymmetric encryption, is a cryptographic
primitive that allows users to privately exchange messages without a pre-established
shared secret [27, 6]. Public-key encryption requires two separate keys: one public
key, used for encryption and one private key for decryption. To ensure confiden-
tiality, the message shall be encrypted with the receiver’s public key. The resulting
ciphertext shall and can only then be decrypted with the receiver’s private key. An
important property of the key pair is that the public key generation function takes
the corresponding secret key as its input parameter. In other words, there is a math-
ematical relation between a party’s public key and its corresponding secret key. If
the scheme is secure it should be computationally unfeasible for an adversary to de-
termine the private key knowing the public key, or to recover the plaintext knowing
the public key and the corresponding ciphertext. Because of this, public keys can be
freely shared, allowing users an easy and convenient method for encrypting content,
and private keys can be kept secret, ensuring only the owners of the private keys
can decrypt content.

Definition 5 A public-key encryption scheme consists of the following 3 algorithms
[27]:

Key Generation. KeyGen(1λ) → (pk, sk): Outputs a pair of keys consisting of a
public key pk and a secret key sk on the input security parameter λ.

Encryption. Enc(pk, µ)→ c: Using the public key pk, encrypts a message µ ∈M
into a ciphertext c, where the message spaceM is defined by the key space.

Decryption. Dec(sk, c) → µ: Using the secret key sk, decrypts a ciphertext c to
recover the message µ ∈M.

As already stated, cryptographic algorithms are designed around computational
hardness assumptions, making such algorithms hard to break in practice by any
adversary with certain knowledge. The security provided by the use of a specific
encryption is dependent on its average-case hardness, rather than the effort it would
take to solve the worst-case. The hardness which is desired is either a proof, that
the minimum steps needed for finding the solution is a very high number and so
infeasible for an attacker to break, or a reduction to a NP-Hard problem under the
assumption that P 6= NP.

In the history of public-key encryption, the security assumptions of most of the
cryptosystems have been relying on the integer factorisation problem and the dis-
crete logarithm problem. The fact that it is easy to multiply together two large
primes but it is hard to factor a large integer is what we call the integer factori-
sation problem. An algorithm that efficiently factors an arbitrary integer would
break all cryptographic schemes that rely on this assumption. The discrete loga-
rithm problem refers to the difficulty of computing x given only g and gx, where
x is an integer and g any element of a group G. The hardness of finding discrete
logarithms depends on the groups. As with the integer factorisation problem, the
inverse problem of the discrete exponentiation is not difficult to compute.
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We call a cryptosystem computationally secure, if the practical side of attacking the
cryptographic system is infeasible, while all its algorithms (KeyGen, Enc, Dec) are
efficiently computable. Otherwise we could have a scheme that is super secure, nut
it is impossible to encrypt/decrypt as it would require to solve NP-hard problems.
In the setting of provable security, breaking a system’s security is proven to be as
difficult as solving a well-known problem which is thought to be hard.

2.5 Homomorphic Encryption

Traditional encryption requires a receiver to decrypt a message in order to perform
operations on it. In contrast, homomorphic encryption additionally allows one to
directly perform computations on the ciphertext. When decrypting this ciphertext
the resulting plaintext will match the result of performing the computation on the
corresponding plaintext.
The most common definition is the following: LetM denote the set of the plaintexts
and C denote the set of the ciphertexts. Let �M and �C denote the operations in
the plaintext and ciphertext spaces respectively. An encryption scheme is said to be
homomorphic if for any given encryption key k the encryption function E satisfies

∀m1,m2 ∈M, E(m1 �M m2)← E(m1)�C E(m2)
for some operators �M in M and �C in C, where ← means “can be directly com-
puted from”, that is, without any intermediate decryption [28].
Definition 6 A homomorphic public-key encryption scheme HE = (KeyGen,
Enc, Dec, Eval) with message space M consists of the following 4 Polynomial
Time Algorithm (PPT) algorithms:

• KeyGen(1λ) → (pk, sk): Outputs a public encryption key pk and a secret
decryption key sk.

• Enc(pk, µ) → c: Using the public key pk, encrypts a message µ ∈ M into
a ciphertext c.

• Dec(sk, c) → µ: Using the secret key sk, decrypts a ciphertext c to recover
the message µ ∈M.

• Eval(C,(c1, ..., cl),pk) → ĉ: Using the public key pk, applies a circuit C:
Cl → C to c1, ..., cl, and outputs a ciphertext ĉ.

Homomorphic cryptosystems are classified into two main categories:
• Partially homomorphic cryptosystem: An encryption scheme that is either

multiplicative or additive homomorphic.
• Somewhat homomorphic cryptosystem: An encryption scheme that support

only a limited number of homomorphic operations, e.g., only additive homo-
morphism, or multiplicative homomorphism up to a certain degree.

• Fully homomorphic cryptosystem: An encryption scheme that supports arbi-
trary computation.

10
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In the rest of the section we analyse different types of partially HE, we refer to
Chapter 3 for a deep explanation of FHE.
A cryptosystem is considered partially homomorphic if it supports either additive
or multiplicative homomorphism, but not both. Clearly, this is enough for some
systems and in addition the efficiency of some homomorphic encryption schemes is
even high enough for practical applications. However, some situations require more
operations than only one type of operation, for instance if one wishes to compute a
point on a parabola, f (x) = ax2 + bx+ c.
A cryptosystem that supports arbitrary computations on ciphertext is far more pow-
erful than one that supports only addition or multiplication. These more powerful
cryptosystems are known as FHE [9]. FHE would allow one to compute a point
on a parabola among many other constructions of programs without ever having to
decrypt at all in theory. In practice, we are not there yet [19].

2.5.1 Partially Homomorphic Encryption

There are two possible homomorphisms, namely the multiplicative and additive
homomorphism. This implies that there exists a group structure, that is preserved
by the encryption and decryption. If an encryption scheme allows either one of these
operations, but only one, it is called a partially homomorphic encryption scheme.
A selection of some partially homomorphic cryptosystems can be seen in Figure 2.2
and we will now show the homomorphic properties for Unpadded RSA and ElGamal.

Partially Homomorphic Cryptosystem:

• Unpadded RSA [6]
• ElGamal [29]
• Goldwasser-Micali [12]
• Benaloh [30]
• Paillier [11]

• Okamoto-Uchiyama [31]
• Naccache-Stern [32]
• Damgård-Jurik [33]
• Boneh-Goh-Nissim [10]
• Ishai-Paskin [34]

Figure 2.2: Some partially homomorphic cryposystems.

Definition 7 The RSA [6, 27] scheme consists of three algorithm (KeyGen, Enc,
Dec), defined as follows:

• KeyGen(λ) → (pk, sk):
1. Generate two distinct λ-bit primes p and q, compute N = pq and φ(N).

2. Choose an integer e R−→ Zφ(N) such that GCD(e, φ(N)) = 1 and compute
its (modular) inverse d = e−1 mod φ(N).

3. Set: pk = (N, e) and sk = (N, d)
• Enc(pk, m) → c : Compute c = me mod N.

• Dec(sk, m) → m : Compute m = cd mod N.

RSA has the multiplicative homomorphic property which means we we can multiply
two ciphertexts in order to receive multiplication of the underlying plaintexts.

11
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Let us encrypt two messages m1 and m2 with the same key:

Enc(m1) = me
1 mod N (2.1)

Enc(m2) = me
2 mod N (2.2)

The homomorphic property is then defined as follows:
Definition 8 (RSA homomorphic property)

Enc(m1) ·Enc(m2) = me
1m

e
2 mod N = (m1m2)e mod N = Enc(m1 ·m2) (2.3)

Definition 9 The ElGamal [13, 27] scheme consists of three algorithm (KeyGen,
Enc, Dec), defined as follows:

• KeyGen(λ) → (pk, sk):
1. Generate the description of a cyclic group G =< g > of order q (where q

is a λ-bit long integer).

2. Choose a random value x R←− {1, 2, · · · , q − 1} and compute h = gx ∈ G.
3. Set sk = x and pk = (G, g, q, h).

• Enc(pk, m) → c = (c1, c2): Generate a random value r R←− {1, 2, · · · , q − 1}
and compute c1 = gr ∈ G and c2 = mhr ∈ G.

• Dec(sk, m) → m : First compute k = cx1 ∈ G and then m = c2k
−1 ∈ G.

As RSA, ElGamal also has the multiplicative homomorphic property. Let us encrypt
two messages m1 and m2 with the same key:

Enc(m1) = (gr1 ,m1 · hr1) (2.4)

Enc(m2) = (gr2 ,m2 · hr2) (2.5)

The Homomorphic property is then defined as follows [27]:
Definition 10 (ElGamal homomorphic property)

Enc(m1) · Enc(m2) = (gr1 ,m1 · hr1)(gr2 ,m2 · hr2)
= (gr1+r2 , (m1 ·m2)hr1+r2) = Enc(m1 ·m2) (2.6)

2.5.2 Somewhat Homomorphic Encryption

A homomorphic encryption scheme can also be categorised into somewhat homo-
morphic or fully homomorphic based on the range of functions it can be applied
to.
A somewhat homomorphic encryption scheme, is a scheme that support only a
limited number of homomorphic operations, e.g., only additive homomorphism, or
multiplicative homomorphism up to a certain degree. Fully homomorphic encryption
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schemes do not have any constraint regarding the circuit depth and can evaluate
arbitrary functions [9].

When considering this property of fully homomorphic encryption it should make it
a powerful tool in constructing various privacy preserving systems but in reality it
comes with a heavy overhead which makes it unpractical [35]. With regard to the
efficiency aspect, somewhat homomorphic encryption is far ahead of fully homomor-
phic encryption but with the possible drawback of supporting only a limited number
of homomorphic operations [36].

2.5.3 Circuits

The construction of any cryptographic primitive including FHE relies on the fact
that you can represent any function with a circuit. A circuit consists of a set of
basic logic gates which operate on the inputs to give a certain output. In order to
evaluate a function Y , express Y as a circuit and topologically arrange its gates into
levels which will be executed sequentially.

The complexity of a circuit is expressed as its depth. A circuit can be viewed as a
directed acyclic graph in which each node represents a gate. The circuit depth is
then defined as the maximum length from any input to any output.

Definition 11 The size of a circuit C is the number of its non-input gates. The
depth of a circuit C is the length of its longest path, from an input gate to the output
gate, of its underlying directed graph.

Example. Assume the function Y outputs the expression A · B + B · C · (B + C)
on input (A,B,C). Then the following circuit represents the function Y , with the
logic gates AND and OR which can be seen in Figure 2.3.

Figure 2.3: The function Y represented as a circuit.

Furthermore, by being able to perform addition and multiplication, we can represent
basic logical operations as described in Table 2.2, where a and b represents one bit.
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Table 2.2: Implementation of logical operations.

operation symbol arithmetic implementation
and a ∧ b ab
or a ∨ b a+ b− ab
not ¬a 1− a
nand a ∧̄ b 1− ab
xor a⊕ b a+ b− 2ab

It is a well known fact that it is possible to construct any circuit by only using
NAND gates which means that if we can construct a NAND gate we can evaluate
any circuit and thus compute any function.

Table 2.3: Truth table for NAND gate.

a b a ∧̄ b
0 0 1
0 1 1
1 0 1
1 1 0

2.6 Quantum Era

Today, the security of many encryption schemes is endangered by the prospect of
quantum computing. In 1994, Shor developed one quantum algorithm that can be
used to factor integers and solve the discrete logarithm problem [37]. This means
that all cryptographic schemes based on these assumptions will not reach the same
level of security with the presence of quantum computers. Among the affected
schemes there are: RSA and ElGamal. Breaking these would have potentially se-
vere consequences for privacy and security as they are used to protect many types of
sensitive data. Therefore cryptographers need to design new protocols based on en-
tirely different ideas and assumptions. Possible research directions that are believed
to be quantum secure are:

• Hash-based signatures,

• Code-based cryptography,

• Multivariate cryptography,

• Lattice-based cryptography.

In Table 2.4 some classical cryptosystems are listed along with their current status
of security in relation to quantum computers. In this thesis, we study lattice-based
cryptography that is believed to be resistant against quantum computers which
means that nobody has figured out a way to attack it yet.
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Table 2.4: Status of security of some classical cryptosystems in relation to quantum
computers.

Cryptosystem Broken by Quantum Algorithms?
RSA [6] Broken

Diffie-Hellman [38] Broken
Elliptic curve [39, 40] Broken

McEliece [41] Not broken yet
NTRU [5] Not broken yet

Lattice-based [42] Not broken yet

2.7 Lattice-based Cryptography

Lattice-based cryptography appears to be one of the most promising candidates for
post-quantum cryptography. There are mainly two reasons for the confidence in
the long-lasting security of lattice-based cryptography. Firstly, many problems in
lattice-theory are proven to be NP-Hard [43]. Secondly, the security of many lattice
problems have a worst-case to average-case reduction [42]. This means that picking
any random instance of the problem will be as hard as solving the worst case.

2.7.1 Lattices

A lattice is a set of points in n-dimensional space with a periodic structure [44, 45].
Let B = {b1, . . . ,bn} be a set of n linearly independent vectors in Rm [45]. The
lattice generated by B will then be the set of all integer linear combinations of the
vectors in B : L(B) = {∑n

i=1 xibi|xi ∈ Z} [44, 46, 47, 45]. This gives the definition
[47]:

L(B) = {~x×B : ~x ∈ Zn} (2.7)

A full-rank lattice basis B is defined as a set of n linearly independent vectors in a
vector space of dimension n. A lattice is full-rank lattice if n = m [45]. This gives
the definition [47]:

B = {b1, . . . ,bn}, bi ∈ Rn (2.8)

An example of a lattice is shown in Figure 2.4, that represents a lattice in R2.
Ideal lattices, as Gentry’s scheme [9] was based on, are lattices with some additional
structure than traditional lattices, namely the structure of an ideal. While lattices
have a group structure, ideal lattices have an ideal structure as the term suggests.
In lattice-based cryptography, some problems are easy to solve using bases of a
particular structure. We refer to bad basis as those in which it is generally no easier
than a random basis to solve a particular lattice problem. Good bases are referred
as those in which a given problem is easy to solve. For Lattice based FHE schemes
the public key is a "bad" basis while the secret key is a "good" basis for the same
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b1

b2

Figure 2.4: A lattice in R2.

lattice [48]. Typically, a good basis consists of vectors that are short and close to
orthogonal [49, 48].

2.7.2 Lattice Problems

This section reviews some common hard problems that are used as the foundation
for a number of lattice-based cryptographic schemes. The problems deal with finding
short vectors and the closest vectors in a lattice.

2.7.2.1 SVP & CVP

The Shortest Vector Problem has been studied intensively, and appears to be in-
tractable in general, even including quantum algorithms.
The Shortest Vector Problem (SVP) asks for a nonzero vector whose Euclidean norm
is minimal among all other nonzero lattice vectors, i.e a short or the shortest vector.
This is considered easy in a 2-dimensional lattice but it becomes hard to solve for
several dimensions.
Definition 12 (SVP) Given an arbitrary basis B for an n-dimensional lattice L =
L(B), compute a non-zero vector v ∈ L, such that ‖v‖ = λ1. [50, 51, 46]
The closest vector problem is a generalisation of the shortest vector problem. It has
been shown that Closest Vector Problem (CVP) is at least as hard as SVP. [52]
CVP asks for a vector that is not too far from a specific target point, it does not
necessarily have to be the closest one.
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Definition 13 (Closest Vector Problem (CVP)) Given an arbitrary lattice basis B
for an n-dimensional lattice and some target point t ∈ Rn, compute v ∈ L such that
‖t− v‖ is minimal. [50, 26]
There are two main differences between SVP and CVP. One of the differences is
that SVP asks for a lattice point near zero, while CVP asks for a lattice point close
to an arbitrary point in the space. The other one is that in CVP the solution can
be the all zero vector while in SVP it must not. This means it is not possible to
use CVP to find the shortest vector close to the origin in order to solve SVP since
it would return the zero vector.
The hardness of solving SVP and CVP has led scientists to consider approximation
versions of these problems, which is particularly applicable to cryptography. Ap-
proximation algorithms return solutions that are only guaranteed to be within some
specified factor γ from the optimum.
In the γ-approximation SVP (SVPγ), this means finding a non-zero lattice vector
at distance of at most γλ1(L), for γ = γ(n) ≥ 1.
Definition 14 (Approximate Shortest Vector Problem (SVPγ)) Fix γ > 1. Given
an arbitrary basis B for an n-dimensional lattice L, compute a non-zero vector v ∈ L
such that ‖v‖ ≤ γ · λ1. [50, 46]
In the γ-approximation CVP (CVPγ), this means finding a lattice vector at distance
of at most γ, for γ = γ(n) ≥ 1.
Definition 15 (Approximate Closest Vector Problem (CVPγ)) Fix γ > 1. Given
an arbitrary basis B for an n-dimensional lattice L = L(B) and some target point
t ∈ Rn, compute v ∈ L such that ‖t− v‖ ≤ γ‖t− xB‖ for all x ∈ Zm. [50]
The following problem is the decision variant of approximating the shortest vector
in a given lattice within a factor γ.
Definition 16 (Gap Shortest Vector Problem (GapSVPγ)) Given B and r, decide
whether λ(B) ≤ r, or if λ(B) ≥ γ · r. (Instances where r < λ(B) < γ · r are not
considered.) [46]
The following problem is the decision variant of approximating the closest vector in
a given lattice within a factor γ.
Definition 17 (Gap Closest Vector Problem (GapCVPγ)) Given B, x ∈ Rn and
r, decide whether dist(x, L) ≤ r, or if dist(x, L) ≥ γ · r. (Again, instances in the
middle of r and γ · r are not considered.) [46]
Variants of this approximate problem are typically used to prove the security of
cryptosystems. Micciancio proved that SVP is NP-Hard to solve even approximately,
for any approximation factor up to

√
2 [53]. Furthermore, the decision problem

associated to CVP is NP-complete which means no algorithm can solve CVP in
deterministic polynomial time, provided that P 6= NP.

2.7.2.2 Other Lattice Problems

The Bounded Distance Decoding Problem is a problem similar to CVP.
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Definition 18 (Bounded Distance Decoding Problem (BDD)) Given an arbitrary
basis B for an n-dimensional lattice L = L(B) and a target point t ∈ Rn with the
guarantee that ∃v ∈ L such that ‖v− t‖ < d = λ1(L/2), find v. [46]
Ajtai showed that if it is possible to efficiently solve the Short Integer Solutions Prob-
lem (SIS) it is also possible to efficiently find short vectors in every n-dimensional
lattice [42]. Due to this fact, SIS became an important building block for lattice-
based cryptography.
Definition 19 (Short Integer Solutions Problem (SIS)) Given A ∈ Zn×mq , find e ∈
Zm satisfying Ae = 0 mod q and ‖e‖2 ≤ α.

2.7.2.3 Learning With Errors

In 2005, Regev defined the Learning With Errors (LWE) problem [24], a general-
isation of the Learning Parity with Noise (LPN) problem. The LPN problem is
equivalent to the problem of decoding random linear codes. It is an extensively
studied problem that is believed to be hard [24]. Regev showed that his public-key
cryptosystem based on the hardness of LWE was much more efficient than other
proposed public-key cryptosystems based on unique-SVP, a special case of SVP. He
also proves the hardness of LWE with a quantum reduction from worst-case lat-
tice problem SVP, where a quantum reduction is a reduction algorithm which uses
quantum computing. It has therefore become an important building block in mod-
ern cryptographic systems and a popular topic in present-day research. The problem
with LWE is that it is very inefficient due to an inherent quadratic overhead. Its
public key size is O(mn log q) = Õ(n2) and it additionally increases the size of the
message by a factor of O(n log q = Õ(n) by every encryption [24].
Definition 20 (Decisional Learning With Errors (DLWE)). Let n and q be positive
integers, and χ an error distribution over Z. Let s be a uniformly random vector
in Znq . The DLWE is to distinguish As,χ from the uniform distribution U from m
independent samples (ai, bi) ∈ Znq × Zq where every sample is distributed according
to either: As,χ or the uniform distribution [46, 24].
Definition 21 (Search Learning With Errors). Let n and q be positive integers,
and χ an error distribution over Z. Let s be a uniformly random vector in Znq . The
search LWE is to find s from m independent samples (ai, bi) ∈ Znq × Zq drawn from
As,χ [46, 24].

2.7.2.4 Ring Learning With Errors

To deal with the inefficiency of LWE, Lyubashevsky, Peikert and Regev introduced
the Ring Learning With Errors (RLWE) problem [54]. In most cases n noisy LWE
equations can be replace with only one noisy RLWE equation which obviously im-
proves in terms of efficiency.
RLWE is an algebraic variant of LWE, i.e. LWE over ideal lattices which are more
structured than random lattices. Mathematically speaking, it can be interpreted as
replacing the group Znq with the ring Zq[x]/〈xn + 1〉 [24, 54].
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Definition 22 (RLWE). Consider the ring R = Zq[x]/〈xn + 1〉 with n as power of
2 and an error distribution χ over R. Let s be uniformly random sampled from Rq.
The decision RLWE is to distinguish As,χ from the uniform distribution R from m
independent samples (ai, bi) ∈ Rq × Rq where every sample is distributed according
to either: As,χ or the uniform distribution [46, 54].
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3
Fully Homomorphic Encryption

This chapter presents the concepts of FHE in the single and multi key setting as
well as details of the implemented schemes.

3.1 Single-key Fully Homomorphic Encryption

If we are satisfied with an encryption scheme that supports homomorphic opera-
tions of some specific operation one might question that homomorphic encryption
seems easy to realise. However, some situations require more operations than only
one type. If we again consider the case of cloud computing one typical reason for
outsourcing computations is because it tend to be heavy and complex. This is obvi-
ously not achieved by only one specific operation which is why we need homomorphic
encryption schemes that support arbitrary operations.
As already stated, a cryptosystem that supports arbitrary computation on cipher-
texts in a meaningful way is known as FHE [9].
Definition 23 A FHE (public-key) encryption scheme HE = (KeyGen, Enc,
Dec, Eval) with message spaceM consists of the following 4 PPT algorithms [18]:

• KeyGen(1λ) → (pk, sk): Outputs a public encryption key pk and a secret
decryption key sk.

• Enc(pk, µ) → c: Using the public key pk, encrypts a message µ ∈ M into
a ciphertext c.

• Dec(sk, c) → µ: Using the secret key sk, decrypts a ciphertext c to recover
the message µ ∈M.

• Eval(C,(c1, ..., cl),pk) → ĉ: Using the public key pk, applies a circuit C:
Cl → C to c1, ..., cl, and outputs a ciphertext ĉ, where C can have any kind of
gates.

FHE is like encryption where we have an extra algorithm Eval, which enables any
third party holding the public key to run an unlimited number of operations on the
encrypted data.
Definition 24 (Correctness) The scheme HE = (KeyGen, Enc, Dec, Eval)
is correct for a given l-input circuit C if, for any key-pair (pk, sk) output by
KeyGen(1λ), any l plaintexts m1, · · · ,ml and any ciphertexts c = (c1, · · · , cl) with
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ci ← Enc(pk, mi), it holds that [15]:

Dec(sk, Eval(C,c,pk)) = C(m1, · · · ,ml) (3.1)

A selection of some fully homomorphic cryptosystems can be seen in Figure 3.1 and
the one relevant for this thesis [3] will be explained further in the following section.

Fully Homomorphic Cryptosystem:

• Gentry’s [9]
• FHE over the integers [15]
• Brakerski-Gentry-Vaikuntanathan

(BGV) [1]

• Brakerski’s scale-invariant [55]
• NTRU-based (LTV) [4]
• Gentry-Sahai-Waters (GSW) [3]

Figure 3.1: Some fully homomorphic cryptosystems.

3.1.1 GSW

Imagine that we have two matrices C1 and C2 that have the same eigenvector s.
Would it possible to create an encryption scheme where s represents the secret key,
C the ciphertext andm the message in form of an eigenvalue that corresponds to the
eigenvector? If the eigenvector is kept secret, the message should be hidden and when
we know the eigenvector it should possible to recover the message. Intuitively, the
answer would be no as finding an eigenvalue can be solved by Gaussian elimination
in polynomial time. However, Gentry, Sahai and Waters [3] took this idea further
and instead of using eigenvectors as secret keys they used approximate eigenvectors.
As long as the noise vector has a lower norm than the modulus we work with
the ciphertext will be decryptable. By relaxing the condition, it becomes a hard
problem to solve where the hardness derives from the LWE problem. Gentry, Sahai
and Waters were able to create an encryption scheme from a simple idea that has
been the base for several others [7, 2, 20, 21].
The scheme also uses a special gadget matrix G where G−1(·) is a function. A
gadget matrix is a matrix with powers of two in the diagonal [3].
The scheme consists of the following algorithms, that is directly taken from [3, 7]:

• params ← GSW.SetUp(1λ, 1d): Choose a lattice dimension parameters
n = n(λ, d) and Bχ-bounded error distribution χ = χ(λ, d) and a modulus q
of size q = Bχ2ω(dλ log λ) such that LWEn−1,q,χ,Bχ holds. Choose m = n log(q) +
ω(log λ). Finally choose a random matrix B ∈ Zn−1×m

q . Output params
:= (q, n,m, χ,Bχ,B).

• (sk, pk)← GSW.KeyGen(params):
- Sample s $←− Zn−1

q . Output sk = t = (−s, 1) ∈ Znq .
- Sample e← χm. Set b := sB + e ∈ Zmq . Output pk = A where, A ∈ Zn×mq

is defined as A :=
[
B
b

]
.
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• C← GSW.Encrypt(pk, µ) : Choose a short random matrix as the random-
ness R $←− {0, 1}m×m. Then output the encryption of message µ ∈ {0, 1} as
C ∈ Zn×mq where,

C := AR + µG

• µ′ ← GSW.Decrypt(sk,C) : Let t := sk. Define a vector w ∈ Znq as follows:

w = [0, . . . , 0, dq/2e]

Then compute v = tCG−1(wT ) ∈ Zmq . Finally output µ′ = |b v
q/2e| as the

decrypted message.
• On input two ciphertexts C1,C2 ∈ Zn×mq we can define homomorphic addition,

multiplication:
- GSW.Add(C1,C2) : Output C1 + C2 ∈ Zn×mq .
- GSW.Mul(C1,C2) : Output the matrix product C1G−1(C2) ∈ Zn×mq .
This also allows us to compute a homomorphic NAND gate by outputting
G−C1G−1(C2).

3.2 Multi-key Fully Homomorphic Encryption

A motivation for FHE is the ability to be able to encrypt data locally but still
outsource the computation of the encrypted data without risking exposing the actual
data. FHE can only handle this in a single user setting where the ciphertexts
are encrypted under the same key. In order to be able to compute a function on
ciphertexts encrypted under different public keys multi-key FHE was introduced by
Lopéz-Alt et al. [4]. All the secret keys of the parties involved are needed in order
to decrypt the ciphertext after the computation [4, 56, 23, 2, 7]. In other words, the
parties involved need to jointly decrypt the ciphertext to obtain the output.

3.2.1 Multi-key GSW

The GSW scheme does not support multi-key by nature but it is possible to convert
the GSW FHE into a multi-key FHE. In 2014, Clear and McGoldrick showed how
to extend the GSW scheme into multi-key FHE resulting in the first multi-key
FHE based on LWE [56]. In 2016, this work was simplified and improved further
by Mukherjee and Wichs [7] resulting in a Single-Hop Multi-Key (SHMK) FHE
scheme. The property of single-hop in this scheme means that all relevant keys must
be known at the start of the homomorphic computation and the output cannot be
combined with ciphertexts encrypted under other keys in a useful way without a
bootstrapping step being performed. This means that in both of these works all
input needed to be known in advance before the computation starts. In 2016, this
requirement was removed by Brakerski and Perlman [2] when they showed how to
extend the prior work to support an unbounded number of homomorphic operations

23



3. Fully Homomorphic Encryption

for an unbounded number of parties. In their work input from new parties can be
introduced into the computation dynamically. Additionally, they also improved the
length of the ciphertexts and the space complexity of an atomic operation. This
scheme is called Fully Dynamic Multi-Key (FDMK) FHE scheme. The fact that
input from new parties can be introduced into the computation dynamically is what
makes the scheme dynamic. This is achieved via bootstrapping that was introduced
by Gentry [9].

Single-Hop Multi-Key (SHMK) FHE:
The scheme consists of the following algorithms, directly taken from [7]:

• SHMK.Keygen(params) : Run the key-generation algorithm of GSW to
generate:

(sk, pk)← GSW.KeyGen(params)

• SHMK.Encrypt(pk, µ) : Execute the following steps:
- (U ,C)← UniEnc(µ, pk). On input a message µ ∈ {0, 1} and a GSW public
key pk it generates a pair (U ,C) where C ∈ Zn×mq and U ∈ {0, 1}∗
- Output the pair c := (U ,C) as the ciphertext for µ [7]

• SHMK.Expand((pk1, . . . , pkN), i, c) : On receiving a sequence of public-keys
(pk1, . . . , pkN) and a fresh ciphertext c = (U ,C) under the public key pki run
the Extend algorithm for all pkj where i 6= j.
- For j ∈ {pk1, . . . , pkN}\{i}, compute Xj ← Extend(U , pki, pkj).
- Then define a matrix Cb ∈ ZnN×mNq as a concatenation of N2 sub-matrices
where each sub-matrix Ca,b ∈ Zn×mq for a, b ∈ [N ] is defined as:

Ca,b :=


C when a = b
Xj when a = i 6= j and b = j

0n×m otherwise

Finally output ĉ := Ĉ as the new expanded ciphertext.
• SHMK.Eval(params, C, (ĉ1, . . . , ĉl)) : On input l expanded ciphertexts sim-

ply use the GSW homomorphic evaluation algorithms namely GSW.Add and
GSW.Mult, albeit with expanded dimensions n′ = nN and m′ = mN and
the expanded ĜN , Ĝ−1

N (in place of n,m and G,G−1).
• SHMK.Decrypt(params,(sk1, . . . , skN), c) : On input a ciphertext c = Ĉ

and the sequence of secret keys (sk1, . . . , skN) parse each ti := ski and then
construct the joint secret key by horizontally appending all the secret-keys in
sequence t̂ = [t̂1t̂2 · · · t̂N ] ∈ ZnNq . Then run the GSW decryption algorithm
albeit with expanded dimensions n′ = nN and m′ = mN and the expanded
ĜN , Ĝ−1

N (in place of n,m and G,G−1)
The new property of the SHMK scheme is the Expand algorithm that makes it
possible to convert single-key GSW into multi-key which means we can perform
meaningful operations on ciphertexts encrypted under different public keys. The two
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algorithms (UniEnc, Expand) act as a masking scheme for GSW. What UniEnc
essentially does is to create helper information by encrypting each entry of the
randomness matrix as a separate GSW ciphertext.

Fully Dynamic Multi-Key (FDMK) FHE:
In comparison with the prior presented multi-key FHE schemes this scheme supports
an unbounded number of homomorphic encryptions for an unbounded number of
parties. This is interesting since it means that inputs from new parties can be
introduced into the computation dynamically whereas in previous schemes the final
set of parties needed to be known in advance.
The scheme consists of the following algorithms, that is directly taken from [2]:

• FDMK.Keygen(params): Generate a secret key as in the SHMK scheme -
sample uniformly at random s $←− Zn−1

q , set and output:
sk := t = (−s, 1) ∈ Znq

Then, to generate the public key - sample a noise vector e $←− χm and compute:
b := sB + e ∈ Zmq A :=

(
B
b

)
∈ Zn×mq

Next, encrypt the secret key bit-by-bit according to the SHMK scheme. Let
Biti(sk) denote the ith bit of sk. For every i ∈ [n · lq] compute:

−→
S [i]← SHMK.Enc(A,Biti(sk))

Set the public key to:
pk :=(A,−→S ).

We note that the −→S part is only used for homomorphic evaluation and not for
encryption.

• FDMK.Enc(pk, µ): Sample uniformly at random r $←− {0, 1}m. Set and
output the encryption:

c := Ar + µ2lq−1un ∈ Znq
where ui is the ith standard basis vector.

• FDMK.Dec((ski, . . . , skN)), c): Parse each secret key as ti := ski for every
i ∈ [N ]. Concatenate the secret keys and set t̂ = [t1, . . . , tN ] ∈ ZnNq . Compute
and output

µ′ := Treshold(t̂, c),
where Treshold(., .) is defined as follows:
Treshold(t, c) = arg minµ∈{0,1}noiset,µ(c). Then if noiset,µ(c) < q/8 for some

µ, then Treshold(t, c) = µ.
Note that FDMK is leveled by default. In order to remove the dependency on the
multiplicative depth of the circuit the authors introduce bootstrapping and assume
circular security which is the assumption that it is safe to encrypt the secret key
under its own public key [2, 9, 14].
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4
Methodology

The project consists mainly of three different phases: literature study, implementa-
tion phase and evaluation phase. In addition, these phases consists of several sub
tasks that are described more in detail in this chapter.

4.1 Choosing the schemes to implement

The schemes to be implemented are chosen by reviewing the latest publications in
the area with a special focus on already implemented schemes. Due to the fact
that a lot of improvements have been done on the GSW scheme [3, 20, 21, 57] and
there exist no previous implementation of multi-key FHE I decided to implement
the SHMK scheme presented by Mukherjee et al. [7] and the FDMK scheme by
Perlman et al. [2], described in section 3.2. Additionally, I decided to implement
the single-key GSW scheme in order to be able to make the comparison that is
needed to answer the research question:

• How does multi-key FHE compare to single-key FHE in terms of performance?

4.2 Implementation

Following the literature study comes the implementation phase that is divided into
the following steps:

• System design: choosing tools, programming language and high performance
number theory libraries as well as familiarising with the libraries.

• Implementation: generating the parameters for the LWE problem and imple-
menting the algorithms of the schemes.

• Evaluation/Improvement: choosing the benchmarks and running experiments
on them and investigate if any optimisation techniques can be used.

4.2.1 Programming Language and Libraries

Due to the complexity of the project it is advantageous to be able to rely on fast
libraries. We decided to perform the implementation in C++ because there exist
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publicly available fast library that we could use avoiding implementing functions like
matrix multiplication from scratch. Furthermore, most of the schemes [3, 20, 21]
have been implemented in C++.
Regarding number theory libraries, there are mainly two options:

• NTL: Number Theory library that supports data structures and algorithms
for vectors, matrices, and polynomials (http://www.shoup.net/ntl/) [58].

• FLINT: Fast Library for Number Theory that provides functionality for num-
bers, polynomials, power series and matrices over many base rings. (http:
//flintlib.org/) [59].

NTL is more well established and used in for example the HElib [22] implementation
which is currently the most well developed implementation of FHE. HElib is based
on the BGV [1] scheme along with many different optimisation techniques [60].
Some other useful libraries when implementing FHE are the following:

• GMP: GNUMultiple Precision Arithmetic Library used for arbitrary precision
arithmetic on integers, rational numbers and floating-point numbers (https:
//gmplib.org/) [61].

• FFTW: C subroutine library for computing the discrete Fourier transform in
one or more dimensions (http://www.fftw.org/) [62]. One reason for using
FFT is that it increases the number of operations.

A disadvantage of choosing NTL is that it is not thread safe and not compatible
with FFTW. On the other hand, FLINT has a lot of dependencies which makes it
more complex to work with. The decision of which number theory library to use
was mainly based on the outcomes of the compiled benchmarks that compare the
relative performance of NTL and FLINT on some fundamental benchmarks where
the decision was to go with NTL [63].

4.3 Choice of Parameters

In order to choose parameters correctly, in such a way to ensure a good security, we
used the lwe-generator 1 and lwe-estimator 2 modules developed by Albrecht et al.
[25]. The modules were designed with the intent of giving developers an easy way to
choose parameters resisting known attacks attacks with respect to the current state
of the art. Furthermore, we also compare the parameters with parameters chosen
in other public implementations.
The parameters are:

• dimension n
• modulus q (e.g q ≈ n2)
• noise size α (e.g αq ≈

√
n)

1https://bitbucket.org/malb/lwe-generator
2https://bitbucket.org/malb/lwe-estimator
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• number of samples m
• Elements of A, s, e, c are in Zq
• e is sampled from a discrete Gaussian with width σ = αq√

2π

4.4 Evaluation

The objective of this section is to describe how the evaluation of performance and
correctness of the implemented schemes is done. This phase aims to answer the
following research questions:

• How does multi-key FHE compare to single-key FHE in terms of performance?
Optimisation techniques as those proposed in [20, 21] will be considered in the
improvement phase. For example, Ducas [20] presents: a new method to homo-
morphically compute the NAND of two LWE encryptions, and a new technique to
implement and speed up bootstrapping.
Chillotti et al. [21] take this optimisation even further to obtain a speed up from
less than 1 second to less than 0.1 seconds.
The implementation will be evaluated in terms of performance, implementation
complexity. More precisely, the runtime for the different algorithms will be measured
with respect to different choices of parameters. Finally, the benchmarks of the
different schemes will be compared.

4.4.1 Metrics

In order to evaluate FHE schemes, we used two measures of efficiency:
1. Space complexity: the size of the public key and the ciphertexts.
2. Time complexity: the running time of performing encryptions, decryptions,

and homomorphic evaluations.
In theory, these metrics are asymptotic measures of efficiency in terms of the security
parameter.
In implementation, these metrics are concrete statistics: space complexity is mea-
sured in bytes, and time complexity is measured in seconds per operation (relative
to some specified computer).
In order to test the correctness of the implementations, the following is verified:

• The encryption of a message decrypts to the initial plaintext message (which
corresponds to the correctness of the enc scheme).

• The decryption works after homomorphic operations are performed on the
ciphertext (which corresponds to the correctness of the evaluation procedure).
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5
Results and Comparasion

In this section we present the benchmarks of the different functions of the imple-
mented schemes. We ran the experiments on an ordinary laptop with a 1.3 GHz
Intel Core m7 processor, with 4MB L3-cache and 8GB memory.
In tables 5.1, 5.2 and 5.3 the average runtimes out of 100 runs are shown for the
respective choices parameters for the different schemes. In tables 5.4, 5.5 and 5.6
we present the best runtimes followed by the worst ones in tables 5.7, 5.8 and 5.9.

Table 5.1: Average runtimes of the GSW scheme.

λ q log q n m Generate sk Generate pk Encrypt Decrypt
10 1024 10 10 100 240ms 626ms 12078ms 473ms
16 65536 16 16 256 327ms 2824ms 98007ms 2711ms

Table 5.2: Average runtimes of the SHMK scheme.

λ q log q n m Setup KeyGen Encrypt Expand
6 64 6 6 36 3ms 204ms 783285ms 14256ms
10 1024 10 10 100 4ms 677ms 58196616ms 976628ms

Table 5.3: Average runtimes of the FDMK scheme.

λ q log q n m Setup KeyGen Encrypt Decrypt
10 1024 10 10 100 18ms 687ms 112ms 5ms
16 65536 16 16 256 14ms 2675ms 406ms 6ms

Table 5.4: Best runtimes of the GSW scheme.

λ q log q n m Generate sk Generate pk Encrypt Decrypt
10 1024 10 10 100 145ms 522ms 10165ms 340ms
16 65536 16 16 256 178ms 1696ms 69462ms 1565ms
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Table 5.5: Best runtimes of the SHMK scheme.

λ q log q n m Setup KeyGen Encrypt Expand
6 64 6 6 36 1ms 100ms 585652ms 8218ms
10 1024 10 10 100 1ms 399ms 44459692ms 335155ms

Table 5.6: Best runtimes of the FDMK scheme.

λ q log q n m Setup KeyGen Encrypt Decrypt
10 1024 10 10 100 8ms 367ms 68ms 2ms
16 65536 16 16 256 8ms 1587ms 246ms 4ms

Table 5.7: Worst runtimes of the GSW scheme.

λ q log q n m Generate sk Generate pk Encrypt Decrypt
10 1024 10 10 100 2738ms 1573ms 20870ms 1636ms
16 65536 16 16 256 2219ms 13843ms 363969ms 9756ms

Table 5.8: Worst runtimes of the SHMK scheme.

λ q log q n m Setup KeyGen Encrypt Expand
6 64 6 6 36 53ms 1962ms 2926817ms 141884ms
10 1024 10 10 100 16ms 1458ms 85805621ms 1803781ms

Table 5.9: Worst runtimes of the FDMK scheme.

λ q log q n m Setup KeyGen Encrypt Decrypt
10 1024 10 10 100 1252ms 3216ms 712ms 29ms
16 65536 16 16 256 37ms 5256ms 884ms 30ms
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6
Discussion

In this chapter the results from Chapter 5 and the research questions will be dis-
cussed and answered.

6.1 Literature Study

What implementation techniques can be used to optimise FHE schemes?
Most of the optimisation techniques that can be used for FHE schemes are theoretical
improvements. This makes theoretical boundaries the bottleneck for FHE at the
current state of the art.
Is it possible to make the schemes I implemented rely on more standard
assumptions?
As long as we need bootstrapping to achieve FHE we need non-standard assumptions
as circular security. Being able to get FHE without the circular security assumption
is an open question. One way to achieve this would be if we could develop schemes
that are not “noisy”. This is still an open research question since all of the FHE
schemes known so far are based on noise [64].
How does one choose parameters that guarantee a given level of security?
Choosing parameters for schemes based on the LWE problem is an intensively re-
searched topic that is very hard [25]. Lattice algorithms and attacks on latties are
not very well understood as runtimes are given asymptotically, algorithms are better
in practice than the theoretical bounds and there are many heuristic assumptions
[65]. Additionally, LWE is still a very new and complicated problem due to differ-
ent parameters, instantiations and use cases. At the moment, there are no clear
standards on how to choose secure parameters but tools as the lwe-generator and
lwe-estimator [25] exist to make this process easier.

6.2 Implementation

What are the challenges of implementing FHE?
The main challenge when implementing FHE is that many papers use theoretical
concepts that do not work in practice. For example, even though it is possible to
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represent any function as a circuit to perform it in practice is a rather non-trivial
task.
Another challenge is that there exist very few examples on how to implement the
bootstrapping procedure. The fact that IBM released their bootstrapping procedure
3 years after the rest of their implementation indicates it is not a trivial task [22].
The other implementations of bootstrapping are done by Ducas and Chillotti [20, 21]
who implemented bootstrapping only for a very specific case considering only one
gate.
Furthermore, the fact that it is very inefficient to perform the schemes functions with
secure parameters makes testing and running benchmarks harder. Additionally, a
magnitude of gigabytes is needed for the keys [20].

6.3 Evaluation

How does multi-key FHE compare to single-key FHE in terms of perfor-
mance?
As can be seen in tables 5.1, 5.2 and 5.3 the performance does not differ much for
the average runtimes of the Setup and KeyGen functions. This is due to the fact
that the functions of the multi-key schemes are the same as in the single-key scheme.
There is a difference in the performance because of the error sampling that varies
in size as can be seen in the best and worst runtimes in tables 5.7, 5.8, 5.9, 5.4, 5.5
and 5.6. Furthermore, we see that the main bottleneck for the multi-key schemes is
the expansion algorithm that allows the single-key scheme to be transformed into a
multi-key one. The fact that the decryption function performs better in the multi-
key setting is because the schemes were implemented exactly as they are described
when they were first presented [3, 2, 7]. This means that the decryption function of
the GSW implementation could be optimised as well.
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7
Conclusion

In this thesis, we present a state of the art survey of FHE with a focus on multi-
key schemes, and schemes that have public implementations. Such schemes enable
a potentially untrusted party to run computation on data encrypted (encrypted
by a single or by multiple users) in such a way that the outcome corresponds to
the encrypted value of quested function evaluated on the corresponding ciphertexts.
Moreover, we present three implementations of SWFHE: the single-key scheme GSW
by Gentry et al. [3] and the multi-key schemes SHMK by Mukherjee et al. [7] and
FDMK by Perlman et al. [2]. This was done in order to evaluate the difficulties of
implementing FHE schemes. In addition, an evaluation of the implemented schemes
is done with respect to efficiency and performance. As many of the functions of the
multi-key schemes are the same as in the single-key scheme the performance does
not differ much. The main problem for the multi-key schemes to become efficient
is the expansion function that increases the size of the ciphertext by every party in
the computation.
FHE is theoretically challenging and difficult. Therefore adding a multi key feature
renders the design of such scheme even more complex. Additionally, the fact that
FHE is heavily based on theoretical assumptions makes implementing it even more
challenging.
In order to get FHE closer to the practical world new concepts need to be developed
and tested. It is important to remember that the first secure FHE scheme is only
8 years old, and related concepts, assumptions and questions have been only after
2009 when Gentry first proposed his construction. There is still much work to be
done before we will have a practical implementation of FHE and we can expect to
see continuing focus on constructing new efficient schemes.
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