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A top-down model for layered holographic strange metals
Analysis of electrical quantities dual to a D7 probe brane in a D3-D5 geometry
Olle Lexell
Department of physics
Chalmers University of Technology

Abstract
The AdS/CFT correspondence is a potentially powerful tool in describing condensed matter systems
for which our current theoretical understanding is lacking. This is because it can be used to map a
strongly coupled field theory to a weakly coupled gravitational theory. In this thesis I describe some
aspects of the AdS/CFT correspondence and look at a top-down model. This model is built upon a
large number of D3 and D5 branes with a D7 probe brane. The goal is to see whether this model
can be used to describe aspects of the strange metal phase that is found in layered high-temperature
superconductors. Starting from a weakly coupled string theory setting I derive the temperature-
dependence of a DC current in different regimes, as well as dispersion relations for electromagnetic
fluctuations. There is a possibility of obtaining resistivity that matches the linear in T dependence
for the resistivity in strange metals. This is done by adjusting the number of D5 branes depending on
the temperature and the charge density, which is obtained holographically. With a particular choice
of boundary conditions, plasmonic dispersion relations are found, as required. This is the first layered
top-down model with this behaviour for the current available in its parameter-space. While it has
not produced correct predictions without an adjustment of the parameter-space, the freedoms granted
from the said parameter-space makes it possible that this model could describe other layered systems
that lacks quasi-particles, and not just strange metals.

Keywords: AdS/CFT, Top-down, D3-D5 geometry, D7 probe brane, holographic strange metals, holo-
graphic plasmons, mixed boundary conditions, resistivity linear in temperature.
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1
Introduction

All theories in physics have their limits in which they apply. Newtonian mechanics apply for non-
quantum objects at low velocity and weak gravitational field. At high velocity one needs special
relativity. With a strong gravitational field, one needs general relativity. For the very small objects
we need quantum mechanics and quantum field theory. In these different theories, it is often easy to
describe the behaviour of a single particle, or a few particles interacting. Describing many interacting
objects is always a challenge that requires approximations. One many-body system where there is
currently a lack of theoretical understanding is in high temperature superconductors. This is part of
what has led researchers to attempt to describe them using the Anti de-Sitter/Conformal field theory
(AdS/CFT) correspondence [1].

1.1 String theory and AdS/CFT
String theory originated as a theory for hadrons, in an attempt to explain the strong interaction [1].
However, among the states that were found was a massless spin 2 particle - the graviton. This turned
string theory from a theory of hadrons into a potential theory of everything. However, many years
later, there is no observation that directly supports that string theory describes the fundamental nature
of our world [2]. However, it still has its uses. One of them is via the AdS/CFT correspondence.

The correspondence was first proposed by Juan Maldacena in 1997, who conjectured that the com-
pactification of a string theory on an Anti-deSitter (AdS) space-time is dual to a conformal field theory
(CFT) in the large N limit [3]. This conjecture is made by looking at a large stack of D3-branes from
two different perspectives. We will take a closer look at the reasoning of this canonical example in
chapter 4. What this conjecture essentially means is that this string theory and the conformal field
theory will describe the same physics. The real strength in the correspondence is that it, in certain
limits, is a weak-strong correspondence [2]. This means that we can have a strongly coupled field the-
ory in Minkowski spacetime and examine its properties by looking at a weakly coupled gravitational
theory. This is something very useful as many real-world systems are described by strongly coupled
field theories [1]. In this thesis, we will concern ourselves with this form of the AdS/CFT correspon-
dence. To note is that the opposite is also possible, that is, looking at a weakly coupled field theory
can give us insights into strongly coupled string theories [4].

One way to view the correspondence is that the field theory lives on the boundary of the AdS spacetime
in which the string-theory live. It is in-fact so that the conformal boundary of AdS spacetime is
Minkowski spacetime with one fewer spatial dimensions [4]. We can therefore refer to these as the
boundary and the bulk. While this viewpoint is useful, one must be careful, since we will add different
terms to the action of the string-theory side of the correspondence that only live on the boundary of the
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1. Introduction

AdS spacetime. This will be done to either renormalise the action or change the boundary conditions
of the fields in the bulk, both of which is explained in section 4.2.1. While adding the boundary-terms
does change the physics that is modelled by our bulk-theory, we should not see this as adding the
boundary-terms to the field theory that is said to live on the boundary. To avoid this confusion, we
will mostly denote the two sides by the field-theory side and gravity/string theory side.

Moving on, when trying to use AdS/CFT there are two general methods, bottom-up and top-down.
Bottom up is based on choosing the field-content of the gravity theory in order to tailor the behaviour
of the field theory. Top-down is based on starting with a string theoretical system and deriving the
behaviour of the field theory. The disadvantage of top-down is that this can become quite difficult.
Additionally, one must perform a truncation of the Kaluza-Klein tower of fields that arise from the
additional dimensions of string theory [1]. However, its advantage is that it guarantees that the
Lagrangian of the boundary theory exists and that the bulk AdS theory is a consistent theory of
quantum gravity. This is something bottom-up does not do. That said, bottom-up approaches have
been the most successful in describing condensed matter physics, and so should not be overlooked [1].
In this thesis however, we will be using a top-down approach.

A key part of doing calculations with AdS/CFT is the Gubser-Klebanov-Polyakov-Witten (GKPW)
rule. This rule is a statement that the partition functions of both sides are equal. This leads to a
”holographic dictionary” which can be used to translate quantities in one side to quantities on the other
side [1]. For top-down models, the large N -limit important is very important in the application of
this rule, since it will allow us to ignore the many different possible configurations present in quantum
theories, and instead take things to be on-shell [1]. The explanation for this is the concern for chapter 2.

1.2 Strange metals
Let us look at a very quick description of strange metals, some of their properties and some argument
as to why holography might be the right way to go. This is to give context and motivation to some of
the steps in our analysis, mainly in chapter 6.

A strange metal is a phase often found in the copper oxide (cuprates) high-temperature supercon-
ductors. For which temperatures this behaviour emerges (if at all) depends on the doping of the
superconductor. This phase is characterised by unconventional transport properties, which includes a
resistivity linear in T . This temperature-dependence can persist to very low and/or high temperatures
and is characterised by a lack of well-defined quasi-particles [5]. This lack of quasi-particles is one of
the reasons holography might be a good tool [1].

The cuprates are layered systems and they show plasmonic dispersion relations in both the in- and
off-plane directions [6]. However, the conductivity in the off-plane direction is not the same as for the
in-plane direction, where they show insulator behaviour [1]. The conductivity behaviour varies on the
doping, and also the in-plane direction can show insulator behaviour [1]. Usually, the focus is on the
physics along the layers, but there is relevant information in regards to the dynamics in the orthogonal
directions [6].

1.3 D3-D5-D7 model
As mentioned earlier, this thesis is concerned with a top-down model. These models make heavy
use of the physics of Dirichlet-branes (D-branes), which is an important concept within string theory.
They are p-dimensional hyper-surfaces on which open strings can end, giving them Dirichlet boundary
conditions. The physics of D-branes will be explained further in chapter 3. As mentioned earlier, the
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1. Introduction

canonical example of the correspondence is based on a large stack of D3 branes. If one wishes, one can
add other Dp-branes to this setup in order to model different physics.

In this thesis, I examine a top-down model in which there are many D3 and D5 branes as well as one
D7 brane. The D3 and D5 branes curve the spacetime that they are in and give rise to an anisotrophy,
where the physics along one of the non-compact directions behaves differently than in the other two.
In fact, this direction becomes very small in comparison to the other two. This difference carries
over to the field theory side, creating a system with different properties in the in-plane and off-plane
directions [7]. The physics we are interested in modelling is dual to the physics of the one D7-brane,
which uses the probe-approximation. This essentially means that the back-reaction of the brane on
the surrounding geometry is ignored.

The fact that we get a system with different physics in different directions is an advantage since we are
trying to model copper oxide high-temperature superconductors, which are layered systems. For this
reason, it is of interest to develop a holographic model that captures both the in-plane and off-plane
behaviour of these multi-layered systems. This is the motivation behind the model examined in this
thesis.

1.4 Aim
The aim of this thesis is to study the AdS/CFT correspondence and the D3-D5-D7 model. The goal
is to see whether it can reproduce experimental observations of the copper-oxide high temperature
superconductors in the strange metal phase. One property examined regard the resistivity where I will
see if resistivity linear in temperature can be obtained for a DC current. I will also look at how the
conductivity of the model compares to that of strange metals at non-zero frequency. I will also see if
it is possible to achieve plasmonic dispersion relations.

1.5 Outline
The outline for this thesis is as follows. In chapter 2 I will present key elements of field theory,
important for understanding the rest of the thesis. Similarly, chapter 3 will cover important concepts
of string theory, followed by an introduction to the AdS/CFT correspondence in chapter 4. This
chapter also includes the concepts of holographic renormalisation, as well as a look at electromagnetic
fields in the correspondence. The model I have examined will be presented in chapter 5. The main
results of this thesis are then presented in chapter 6. Finally, conclusions and potential outlooks are
located in chapter 7.

1.6 Notes on conventions
In this thesis, we will use several conventions, summarised here. For the signature of the metric, we
use plus signs for the spatial coordinates. We always work in units of c = ~ = 1 unless otherwise
stated. Something that will be mentioned frequently is the bulk and boundary space. The usual
convention that Greek indices include the time direction and lowercase Latin indices only includes
spatial directions is also applied here. The same indices will be used for both the boundary and the
bulk, and which coordinates these indices will range over will often be settled by the context. For
example, a Greek index in the bulk might range over t, x, y, z, r and on the boundary it would range
over t, x, y, z. However, if there is a large possibility for confusion, there will be clarification. We
will use d to signify the number of spatial dimensions of the boundary, and D = d + 1 to signify the
number of spacetime dimensions. This means that the bulk has D + 1 spacetime dimensions. This is
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1. Introduction

something that varies a bit in the literature. Also note that the labels t, x, y, z will be used as labels
for non-compact but curved directions. These should therefore not be confused with the Cartesian
coordinates. This will be the case in chapter 6.

4



2
Elements of field theory

As mentioned in the introduction, a central item of the weak-strong duality part of the AdS/CFT
correspondence, which is what we wish to utilise, is the large N -limit. Therefore, we will need some
understanding of field-theories in the large N -limit as well as to look at their connection to condensed
matter physics. Before that however, we must look at the generating functional of a QFT and how it
is used to calculate correlation functions. This will also be the key for applying the GKWP rule to
translate between bulk and boundary quantities. In the last part there will also be a brief introduction
to non-linear electrodynamics.

2.1 The generating functional of a QFT
As mentioned earlier, in order to relate quantities on the two different sides of the correspondence
we use the GKWP rule, which is to assume that the partition functions of the two sides are equal.
For this we need the partition function of a quantum field theory, which, in the cases we consider, is
the generating functional. The generating functional is attained via the Feynman path integrals and
can be used to calculate correlation functions. In a scalar field theory, the generating functional of
correlation functions is [8]

Z[J ] =
∫

Dφ exp
[
i

∫
dDx(L + Jφ)

]
, (2.1)

where L is the field theory Lagrangian, and J is a source. This clearly has a similar structure to
an integral over all possible configurations of an exponential statistical weight, which is the partition
function of statistical mechanics. For a more general field theory, we have

Z[J ] =
∫

Dφ exp
[
i

∫
dDx(L + JiOi)

]
(2.2)

where the Oi are the field theory operators [4].

We can use the generating functional Z to calculate our correlation functions by taking the functional
derivative of lnZ with respect to the sources J and taking the limit of vanishing sources,〈

Oi(x)
〉

= −i 1
Z[J = 0]

δZ[Ji]
δJi(x)

∣∣∣
Ji=0

. (2.3)

The one-point correlation function is also referred to as the expectation value. The above equation
can of course be generalised to an n-point correlation function

〈
Oi1(x1)Oi2(x2)...Oin(xn)

〉
= 1
Z[Ji = 0]

[
n∏

j=1

(
− i

δ

δJi(xj)

)
Z[Ji]

]
Ji=0

. (2.4)

5



2. Elements of field theory

These equations are general and apply for both free and interacting field theories. However, in the
case of an interacting field theory, Z[J = 0] cannot be calculated explicitly. This is because, in a free
field theory, the integral in eq. (2.2) is at most quadratic in the fields, making the integral Gaussian.
In an interacting field theory however, this is no longer the case [8].

2.2 Large N field theories
An important part of using the AdS/CFT correspondence is the large N -limit of matrix field theories,
and we therefore need to understand what these field theories are, and their properties. This section
will not cover detailed derivations, but rather the results needed to understand the calculations in later
sections. If one wishes to know more, one can, for example, look at [9].

A good example of a matrix field theory is regular QCD, where the fields, represented as 3×3 matrices,
transform in the adjoint of the symmetry group SU(3). A generalised QCD with N colours would
have the symmetry group SU(N). So a large N field theory is, simply put, a field theory with a large
N symmetry group, for example, U(N) or SU(N). In condensed matter physics, large N field theories
are used, however mostly in the form of vector field theories [1]. In vector field theories the fields
transform in the vector representation of some symmetry group rather than in the adjoint. There are
cases in which matrix field theories are used for condensed matter physics, for example within quantum
Hall physics [10].

Let us briefly look at some properties of vector field theories in the large N limit. The most notable
one is that the existence of a set of operators Oi that factorise up to 1/N corrections [11], which means
that 〈

Oi1Oi2...Oin

〉
=
〈
Oi1
〉〈

Oi2
〉
...
〈
Oin

〉
+ O(1/N). (2.5)

Note that this also applies for matrix large N theories. This operator factorisation follows from the
fact that at large N , we arrive at a saddle-point description for the action. Despite solving saddle-point
equations, the large N -limit still captures non-trivial quantum physics [1]. However, the vector field
theory will be essentially free in the limit of N → ∞ [11] and so is not what we are interested in, since
we are looking for a large N -theory with strong coupling, which can be dual to our weakly coupled
AdS supergravity.

Moving on to matrix theories, we wish to understand their behaviour at N → ∞. Just as in the vector
case, there exists a mean-field description, but in this case, it is possible to have strong coupling when
the saddle-point description is valid [11]. In the end, we will arrive at the result that the ultimate
mean field description of a U(N) matrix theory at large N is a string theory [1]. That this mean field
description had something to do with strings was discovered by ’t Hooft using planar diagrams [12],
however it would take until the discovery of the AdS/CFT correspondence to understand the exact
nature of the this string-formulation [1]. We will go through the steps for arriving at this idea of a
string description at a conceptual level. However, the step to the actual AdS/CFT correspondence
will be taken by starting in string theory, and will be explained in section 4.1.

Let us begin by looking at an action for a U(N) theory, in this example, a Yang-Mills action,

S = − 1
4g2

Y M

∫
dDxTr(FµνF

µν) (2.6)

where gY M is the Yang-Mills coupling and Fµν = ∂µAν −∂νAµ − i[Aµ, Aν ] is the field strength tensor.
It should of course be noted that the components Aµ are N ×N matrices. The key to understanding
the large N limit of this theory is to use that at large N , with λ = g2

Y MN (referred to as the ’t Hooft
coupling) kept fixed, planar diagrams dominate, as shown by ’t Hooft in [12]. I will explain what

6



2. Elements of field theory

planar diagrams are and why they dominate at large N shortly. In this approach, the field Aµ is kept
as a matrix. In contrast, the approach often taken is to expand the field in terms of the generators of
the gauge-group.

In keeping the field as a matrix, the Feynman diagrams are written with a double line notation. Recall
that the Feynman diagrams track the indices of the fields, and so now they track the matrix indices
i, j, k, l etc. as well as the vector indices µ, ν, σ, λ etc. The propagator take the following form [1]

i l
j k

µ ν

〈
A i

µ j(p)A k
ν l(k)

〉
= g2δi

lδ
k

j

ηµν

p2 δ
(D)(p+ k) (2.7)

The arrow on each line points from an upper to a lower matrix index. As can be observed, if there is
a closed loop, the Kronecker deltas would give a factor N for each loop. We can also see that using
the 1/g2

Y M -factor in the action can instead be written as N/λ. The prefactor clearly diverges with
N → ∞, as does the number of fields. To understand which diagrams are of leading order we must
look at the number of loops, vertices and propagators. We have that vertices scale as N/λ, propagators
scale as λ/N [4], and as already mentioned, loops gives a factor N . By setting V = the number of
vertices, P = the number of propagators and L = the number of loops we have that

Diagram(V, P, L) ∼ NV −P +LλP −V . (2.8)

We can then realise that the diagrams forms surfaces, with P = the number of edges and L = the
number of faces. This means that we can utilise the the Euler characteristic, χ ≡ V − P +L = 2 − 2g
(assuming the surface is orientable) where g is the genus [4]. This means that the leading order
diagrams have g = 0 and therefore scale as N2. The diagrams that fulfil are called planar diagrams,
since they can be mapped to a 2-sphere. Typical examples are the following two diagrams

Figure 2.1: Two diagrams in the double line notation. The left one is planar with a genus of 0 and the
right one is non-planar with a genus of 1. This can be verified by counting the number of propagators,
vertices and loops.

In the large N limit, these planar diagrams dominate, and this applies for scalar and fermionic fields
as well, assuming they are matrix-valued [1]. This diagram scaling also leads to correlation function
factorisation, when we consider the full correlations function that includes the disconnected diagrams
[4]. This is because all diagrams have the same scaling, N2, since we only consider planar diagrams.
This means that the combination of two disconnected diagrams will scale as N4 while a connected dia-
gram scales as N2, even though both cases contribute to the same (2-point in this example) correlation

7



2. Elements of field theory

function. This means that the leading contribution to the full correlation functions are disconnected
diagrams, and therefore we have that the correlation functions factorise.〈

O1O2...On

〉
=
〈
O1
〉〈

O2
〉
...
〈
On

〉
+ ... (2.9)

The difference compared to eq. (2.5) is that the next order contribution depends on N .

This factorisation mean that the variance (∆O)2 =
〈
OO

〉
−
〈
O
〉〈

O
〉

= 0 in the large N limit. What
this means is that it is no longer necessary to average over different configurations of the fields, as done
in the path integral. Rather, there must be a classical field that give us the values of the correlation
functions [13].

Let us now take a look again at the planar Feynman diagrams. When these have many loops we can
view them as a large tiled surface. When doing calculations with the planar diagrams, there is a need
for a perturbation expansion since one does not wish to count infinite diagrams (just as in any weakly
interacting QFT). At large N , this expansion is done in the effective coupling λ instead. However,
when λ becomes large, these diagrams start to look like the world-sheet swept out by a dynamical
string. The way to view this is that we need to look at diagrams with an essentially infinite amount
of loops. If the total size of the diagram is kept fixed, and because of the tiled structure, the surface
will start to look like that of string worldsheet. This was first observed by ’t Hooft in [12]. One can
also map the Feynman diagrams in the double line notation to string theory graphs of the same genus
via a smooth topological transition [4]. As a note, that will become more relevant in section 4.1, the
planar limit is the appropriate view when λ = g2N � 1 and the string view is appropriate when
λ = g2N � 1 [1]. In section 4.1, we will look at these two limits from the string theory perspective
and find a similar conclusion.

2.3 Non-linear electrodynamics
As will be seen later, non-linear electrodynamics will be important in the analysis of our model since it
enters as a part of the D-brane action, seen in section 3.3. One of the issues of the Maxwell equations is
that the self-energy of a point-charge is infinite, since there is no limit on the field strength. However,
the electric field on a D-brane has a maximum value which can be shown using T-duality [2]. The lack
of a maximal field strength is something that can be remedied by a non-linear description, that must
also reduce to linear electrodynamics (Maxwellls equations) in the limit of weak fields.

The Maxwell equations in the presence of a material takes the form

∇ ~E = −∂t
~B, ∇ · ~D = ρ

∇ · ~B = 0, ∇ × ~H = ~j + ∂t
~D

(2.10)

where we have used natural units (c = 1). Note that the ~D and ~H fields depend on the ~E and ~B fields
through a non-trivial relation. Now, using the 4-potential Aµ = (ρ, ~A) we get the usual field strength
tensor Fµν . The equations involving ~E and ~B are then reduced to the Bianchi identity ∂[γFµν] = 0.
We can now define a new antisymmetric tensor Gµν where

G0i = Di, Gij = εkijHk (2.11)

From the equations involving ~D and ~H in eq. (2.10) gives that

∂νG
µν = jµ. (2.12)
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2. Elements of field theory

Now we would like to examine the relation between Fµν and Gµν , and confirm that eq. (2.12) follows
from the variation of an action on the form

S =
∫
dDx

(
L(Fµν) +Aµj

µ
)
. (2.13)

If one were to put in the Maxwell Lagrangian density LMaxwell = − 1
4FµνF

µν one would get ∂νF
µν = jµ

as the equation of motion. For simplicity, we will assume that the Lagrangian only depends on Fµν

and not, for example, its derivatives. Now we want to plug this into the Euler-Lagrange equations of
motion and therefore we need to define the partial derivatives with respect to field strengths in order
to get a consistent result. Due to the antisymmetry of Fµν we define

δM

δFµν
= 1

2
∂M

∂Fµν
(2.14)

where M is an arbitrary function of Fµν . We would also like to know how the chain rule behaves when
Fµν depends on some variable U , so we look at

∂M

∂U
≡ δM

δU
= δM

δFµν

δFµν

δU
= 1

2
∂M

∂Fµν

∂Fµν

∂U
. (2.15)

With this we can easily use the Euler Lagrange equations of motion on the integrand in eq. (2.13) by
using its dependence on Aµ. We arrive to

1
2∂µ

( ∂L
∂(∂µAν) − ∂L

∂(∂νAµ)

)
− jν = 0. (2.16)

Note that we don’t actually need the anti-symmetazation in the above equation since we assumed L
only depends on Fµν , but it has been written out for clarity. We note that with the chain rule we have
that ∂L

∂(∂µAν ) = 1
2

∂L
∂Fαβ

∂Fαβ

∂(∂µAν ) = ∂L
∂Fµν

. We can see that eq. (2.16) matches eq. (2.12) if we make the
identification

Gµν = − ∂L
∂Fµν

. (2.17)

Thus we have a relation between Gµν and Fµν assuming the Lagrangian is known. In the case of
LMaxwell we find that Gµν = Fµν and we therefore attain the Maxwell equations from eq. (2.12).

2.3.1 Born-Infeld electrodynamics
The Lagrangian of a theory of non-linear electrodynamics must be gauge and Lorentz invariant, and
as in the previous section, for simplicity, we want it to depend only on Fµν and none of its derivatives.
We also require it to reduce to the Maxwell Lagrangian LMaxwell = − 1

4FµνF
µν for small values of the

field strengths. Since Fµν is gauge invariant, we only need to look for Lorentz invariant terms. This
means we need to look for terms with no free indices.The only two objects that we can form are [2]

s = FµνF
µν and

p = F̃µνFµν

(2.18)

where F̃µν ≡ 1
2ε

µνρσF̃ρσ. From these we can build the Born-Infeld (BI) Lagrangian [2]

LBI = −b2

√
1 − 2s

b2 − p2

b4 + b2 = −b2

√
− det

(
ηµν + 1

b
Fµν

)
+ b2 (2.19)

where b is the value of the critical electric field. The square root ensures that the electric field strength
does not exceed a maximal value. A maximal electric field strength is required to ensure a finite
self-energy for the point charge.
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3
Elements of string theory and

supergravity

This chapter will serve as a short introduction to some string-theory concepts used in this thesis. This
is to serve as a reminder for those already acquainted with string theory and a pointer for those that are
not. We will also look at supergravity and D-branes, as they are important concepts in the derivation
of the correspondence. We will look both at what supergravity contains, how D-branes behave from
the supergravity point of view as well as the low-energy effective action for these D-branes. This action
is central in the thesis, as it is what is used to examine what physics our model contains.

3.1 Quantised relativistic strings
The essential idea of string theory is to quantise relativistic strings. A way to write the action for the
relativistic string is by the Nambu-Goto action [2]

SNG = − 1
2πα′

∫
dτdσ

√
− det(∂µXλ∂νXγgλγ) (3.1)

which is an area functional. Here α′ = l2s where ls is the string length, σ are the coordinates of the
worldsheet traced by the string and Xµ is the embedding of the worldsheet into the target spacetime.
In analogy to the point particle, this action will minimise the area of the worldsheet, just as the action
of the point particle will minimise the length of the world-line. This action applies for both open and
closed strings, but for open strings the boundary conditions needs to be specified as well.

With the action at hand the (simplified) quantisation procedure is to define a set of operators and
impose reasonable commutation relations. Then the spectrum of the theory can be derived. Most
notably the spectrum includes several massless states. These are gauge bosons (photon states), which
come from open strings, excitations of an antisymmetric tensor field (the Kalb-Ramond field), a gravi-
ton and a dilaton (a scalar), which all come from the closed strings. We also obtain a restriction on
the number of spacetime dimensions to 26, in order to preserve Lorentz invariance. There are also
tachyons in the spectrum, which are states with a negative squared mass. These represent instabilities
in the theory [2].

3.2 Superstrings
With the strings we just described we attain bosonic states. But as we know, we also require fermions if
we wish to have something resembling the real world. To get fermions we add them to the worldsheet,
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3. Elements of string theory and supergravity

by making the string action supersymmetric [4]. A brief description of supersymmetry is that it is
a symmetry between fermions and bosons. It has a number of charges Qa that fulfils the following
algebra [14]

{Qa, Q̄b} = 2γµ
abPµ (3.2)

where Pµ is the generator of momentum. The Qa are also the generators of the supersymmetry
transformations, and how many there are can vary between different theories.

For adding fermions to the worldsheet via supersymmetry, we can use a different form of the string
action, namely the Polyakov action

SP = − 1
4πα′

∫
dτdσ

√
−hhαβ∂αXµ∂βX

µ (3.3)

where hαβ is the induced metric on the worldsheet. Then adding fermions give us the action as [4]

SP = − 1
4πα′

∫
dτdσ

√
−hhαβ(∂αXµ∂βX

µ + iψ̄µγα∂βψ
µ). (3.4)

When quantising the superstring(s) we now also obtain spacetime fermions and the dimensionality of
spacetime is fixed to 10 [2]. Due to a freedom in the boundary conditions on the worldsheet fermions
we get two different sectors, the Ramond (R) sector and Neveu-Schwarz (NS) sector. When quantised
these sectors contain different states. These can then be truncated and combined in different ways for
the closed strings. From these different combinations we arrive type at IIA and type IIB superstring
theories (there are also 3 other types, but they are not important here). The important part to note is
that these arise from closed strings and have slightly different massless fields. However in both cases
we obtain a dilaton, a Kalb-Ramond field and a graviton [2]. In chapter 4 we will find the AdS/CFT
correspondence by looking at D-branes from the open and closed string perspective and so let’s look
at bit more at open and closed superstrings.

The open superstrings are viewed in such a way that they end on D-branes, on which the string
endpoint is fixed on. We will expand further on D-branes later. The most important part is that we
get photon states, that is, a Maxwell field on the world-volume of the D-brane. We also get space-time
fermionic states [2]. This is done by truncating the NS and R sectors in such a way that the truncated
R-sector contributes the fermionic states and the truncated NS sector contribute the bosonic states.
We end up with an equal number of bosonic and fermionic states at each mass level and we have gotten
rid of the tachyonic state that the NS sector originally contained. The sectors that we have combined
here are called the R- and the NS+ sectors.

For the closed superstrings we combine right-moving and left-moving sectors. In the case of type IIB
superstrings, we combine the NS+ and R- sectors in the combinations [2]

(NS+,NS+), (NS+,R-), (R-,NS+), (R-,R-)

where in each parenthesis, there is a left- and right moving sector, ordered left to right. We at-
tain fermionic states from the two combinations of R- and NS+, and bosonic states come from the
(NS+,NS+) and (R-,R-). These states include a graviton, a dilaton and a Kalb-Ramond field, from
(NS+,NS+). There is then another scalar and Kalb-Ramond field, as well a totally antisymmetric
field with four indices, from (R-,R-) [2]. Note that we only care about massless fields, and skip a lot
of details regarding the different sectors.

3.2.1 Supergravity
In short, supergravity can be obtained as the low-energy approximation of superstring theory [4]. It
can also be obtained by imposing local supersymmetry [14], and then following a similar procedure as
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3. Elements of string theory and supergravity

when deriving the equations of general relativity. The field content of supergravity is not set in stone
but can vary. If derived from string theory, the supergravity action will contain the fields obtained
from the massless closed string states [4]. And so, just as we have type IIA and IIB superstring theory,
we also have typ IIA and IIB supergravity. Supergravity theories can also come in several other forms
and in any dimensionality with D ≤ 11. But here, type IIB (which lives in 10 dimensions) is the
interesting one, as it will be what we use for the AdS/CFT correspondence.

Let us look a bit at the type IIB supergravity action. We will restrict ourselves to the bosonic part,
ignoring the fermions. It takes the form [15]

SIIB = 1
4κ2

B

∫ (√
ge−2φ

(
2RG + 8∂µφ∂

µφ− |H3|2
)

− √
g

(
|F1|2 + |F̃3|2 + 1

2 |F̃5|2
)

+ C4 ∧H3 ∧ F3

)
in the string frame. RG is the Ricci scalar and φ is the dilaton. The other components will be explained
shortly. We should also mention that there is also a need for the self-dual constraint

∗F̃5 = F̃5

which is compatible with the action but does not fall out naturally from it. Therefore, we need to tag
it along to get the correct equations of motion for the fields. The action and constraint use differential
forms as well as the wedge product ∧ and Hodge dual ∗. Let us look at a quick explanation on these,
as well as the different fields that we have, in order to get a feel for the content of the action.

Differential forms are essentially another way to write certain tensors. For example, H3 can also be
written as an antisymmetric tensor Hµνρ, which is the field strength tensor for the Kalb-Ramond
field. The relation between the two is normally written as Hµνρ = ∂µBνρ + ∂νBρµ + ∂ρBµν , but in the
formalism of differential forms, the exterior derivative d is used instead, and written asH3 = dB2. Here,
we have written the Kalb-Ramond field as a differential 2-form, and the exterior derivative onB2 creates
the differential 3-form. We then have the wedge product, which is essentially an antisymmetrised tensor
product [4]. The Hodge dual is a bit more complicated, but the quick and dirty version for our F5 is
that [4]

(∗F̃ )µ1...µ5 = 1
5!ε

ν1...ν5
µ1...µ5 F̃ν1...ν5 . (3.5)

Note that in the general case this is dependent on the number of spacetime dimensions.

With this out of the way, lets specify the different components of the action [15]

F1 = dC
F3 = dC2

F5 = dC4

H3 = dB
F̃3 = F3 − CH3

F̃5 = F5
1
2C2 ∧H3 + 1

2B2F3.

The C, C2 and C4 fields correspond to the scalar, Kalb-Ramond field and totally antisymmetric
four-index field respectively that originates from the Ramond-Ramond sector of the closed type IIB
superstrings. The F1, F3 and F5 are their respective field strengths.

3.3 D-branes
D-branes are very important objects in string theory when dealing with open strings. When the
equations of motion for these open strings are derived, it becomes important to ask what boundary
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3. Elements of string theory and supergravity

conditions (b.c.) are imposed on the end points of the string. There are essentially two choices,
Neumann or Dirichlet boundary conditions. Neumann b.c. means that the velocities of the endpoints
are fixed while Dirichlet b.c. means the position of the endpoints are fixed. When solving the equations
of motion in many dimensions (10 for superstrings) we can have Dirichlet b.c. in some directions and
Neumann b.c. in the other directions, and these can also be different for the two endpoints. For
example, we can have one endpoint which can move around on a plane in the x, y directions (Neumann
b.c.) but have a fixed z-value (Dirichlet b.c.), while the other endpoint is fixed in the x-direction and
free to move in the other directions. In the case of the endpoint being free to move in the x, y directions,
one can view this as the string being attached to this x, y-plane. This plane is then called a D2-brane.
The endpoint can move freely in the tangential directions to the brane but is fixed in the directions
normal to the brane, which applies for D-branes of all dimensions. Note that the endpoint is always
free to move in time. By convention, a p-dimensional Dp means it extends in p spatial directions and
always have time as a tangential direction.

3.3.1 The D-brane action
As mentioned earlier, we get photon states when quantising the open strings. These states can be
shown to live only in the world-volume of the Dp-brane [2]. One of the most important things we need
is the low-energy effective action for D-branes since this is the basis for the AdS/CFT correspondence
and will be used heavily in the model examined in this thesis. The action can be found by utilising
T-duality [16] [2]. This is a duality in string theory which arises when there are compact dimensions
and appears in both bosonic and superstring theory [17].

When we approach low energies, which means that we only concern ourselves with the massless string
states, we can view the states on the D-brane as a field that lives on the brane. With this, a part of
the low-energy effective action of a single Dp-brane, denoted as the Dirac-Born-Infeld (DBI) action, is
given by [18]

SDBI = −τp

∫
dp+1ξe−φ

√
− det(P [g]MN + P [B]MN + 2πα′FMN ). (3.6)

Note the similarly to the string action, eq. (3.1). We here use M,N as indices to specify that these are
in the brane world-volume. τp is related to the tension of the brane Tp via τp = Tpgs. The Dp-brane
tension is in turn related to gs (the string coupling) and ls (the string length) via

Tp =
(

(2π)pα′(p+1)/2gs

)−1
. (3.7)

Remember that α′ = l2s in natural units. Furthermore, P [g] in eq. (3.6) denotes the pullback of the
metric on the brane world-volume, meaning

P [g]MN = ∂Xµ

∂ξM

∂Xν

∂ξN
gµν (3.8)

where ξM denotes the coordinates of the brane world-volume. Similarly, P [B]MN denotes the pullback
of the Kalb-Ramond field Bµν on the brane. FMN is the field strength tensor for the gauge field Aµ

living on the brane. If P [B]MN = 0 then this action looks similar to the Born-infeld action (eq. (2.19))
of non-linear electrodynamics in a general metric. It is in fact the case that an electromagnetic field on
a Dp-brane is governed by Born-Infeld electrodynamics [2]. We can of-course rescale FMN → FMN

2πα′ in
order to remove the 2πα′ prefactor for the gauge-field [19]. This will be done later on for convenience.

In a setup where the Kalb-Ramond field is 0, we can expand the action in eq. (3.6) to lowest non-trivial
order in FMN , which is done by using the relation

det(M) = eTr(ln(M)).
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3. Elements of string theory and supergravity

Using matrix representation of the tensors, and letting G denote the pullback of the metric, the square
root in the Lagrangian density ends up becoming

√
− det(G+ 2πα′F ) ≈

√
− det(G)

√
e

Tr
(

2πα′G−1F − 1
2 (2πα′)2(g−1F )2

)
≈√

− det(G)
√[

1 + 2πα′ Tr(G−1F ) + 1
2(2πα′)2 Tr(G−1F )2][1 − 1

2(2πα′)2 Tr((G−1F )2)
]

≈√
− det(G)

[
1 + 1

22πα′ Tr
(
G−1F

)
− 1

4(2πα′)2 Tr
(
(G−1F )2)+ 1

8(2πα′)2 Tr
(
G−1F

)2]
.

(3.9)

Translating back to the index formalism we have that

Tr
(
G−1F

)
= GMNFNM = 0

Tr
(
(G−1F )2) = GMNFNKG

KLFLM = FMLFLM = −FMNFMN

(3.10)

due to the antisymmetry in FMN . In the end, our action then becomes

SDBI ≈ − (2πα′)2τp

4

∫
dpξ

√
−Ge−φFMNFMN (3.11)

where we have now denoted G = det(GMN ). This we can recognise as the Yang-Mills action, with
coupling constant

g2
Y M = 1

(2πα′)2τpe−φ
= (2π)p−2α′(p−3)/2eφ. (3.12)

When there are N coincident D-branes, the symmetry of the gauge field gets upgraded to U(N) [20].
The DBI action then generalises to [16]

SDBI = −τp

∫
dp+1ξTr

(
e−φ

√
− det(P [g]MN + P [B]MN + 2πα′FMN )

)
.

As for the case of Yang-Mills theory, we can then obtain the ’t Hooft coupling of N Dp-branes as

λDp = Ng2
Y M = N(2π)p−2α′(p−3)/2eφ. (3.13)

If we then have that eφ ∼ gs, the we have that λDp = N(2π)p−2α′(p−3)/2gs. This is the case for a large
number of D3-branes, as will be explained in the next section. This will however turn out not to be
the case for our model [7]. The geometry created by a large number of D5-branes and D3 branes will
cause the dilaton to have a non-trivial dependence on r.

Moving on from the DBI action, we should also mention that in superstring theory there is a second
term to the bosonic part of the Dp-brane action. It appears because D-branes carries Ramond-Ramond
charges, and therefore couple to the Ramond-Ramond fields of closed strings. This extra term takes
the Chern-Simons like form [18]

SCS = (2πα′)2

2 τp

∫
dp+1ξeF +P [B] ∧

∑
q

P [Cq+1]. (3.14)

This term is sometimes written as a Wess-Zumino term in the literature [21], and can also be deduced
via T-duality [17].
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Einstein frame

The action for the D-brane in eq. (3.6) has been given in the string-frame. However, in the later
parts of this thesis we will instead work in the so-called Einstein frame. One of the reasons that the
Einstein frame is often used is that it is the choice of frame for the canonically normalised action
for string gravity [4]. The string frame and Einstein frame are related to each other by a conformal
transformation. There is some debate as to which one is physical, which in this case means that the
theory is consistent in that frame and that the physical observables can be, in principle, measured [22].
This is not something we will care about. We use it because the previous works on this model uses it
[7]. The Einstein frame is related to the string frame via the transformation [23]

gE
µν = eφ/2gS

µν (3.15)

where gE
µν and gS

µν denotes the metric in the Einstein and string frame respectively. This gives us that
the DBI part of the Dp-brane action becomes

SDBI = −Tp

∫
dp+1ξeφ

(p−3)
4

√
− det

(
P [g]MN + e−φ/2P [B]MN + e−φ/2FMN

)
(3.16)

Note that the Chern-Simons term is not affected by this transformation [23].

3.3.2 D-branes in supergravity
We can also view D-branes as solitonic solutions to the equations of motion for supergravity, that is,
we view them as massive objects that curve the surrounding spacetime. The following ansatz for the
metric solves the supergravity equations of motion in the case of a Dp-brane [4],

ds2 = hp(r)−1/2ηµνdx
µdxν + hp(r)1/2dyidyi. (3.17)

The function hp(r) is

hp(r) = 1 +
(
Lp

r

)7−p

(3.18)

and r is defined by r2 = yiyi where i ∈ [p + 1, 9]. µ and ν span 0, 1, ..., p. Specifying the metric is
not quite enough though, as we also need an ansatz for the dilaton, the Kalb-Ramond field and the
Ramond-Ramond fields from the closed strings. This ansatz looks like

eφ = gshp(r)(3−p)/4

BMN = 0
Cp+1 = (Hp(r)−1dx0 ∧ dx1 ∧ ... ∧ dxp

(3.19)

where the M,N indices are used to make it clear that it applies for all bulk coordinates. We should
remember that for type IIB string theory, only odd-numbered D-branes are stable. The constant Lp

can be obtained by integrating the Ramond-Ramond charge of the brane and can be found to be [4]

L7−p
p = (4π)(5−p)/2Γ

(
7 − p

2

)
gsNα

′(7−p)/2 (3.20)

where the factor N is the number of coincident Dp-branes. The ansatz for the dilaton give us some
more context for the discussion after eq. (3.13). For D3-branes, the dilaton will just be eφ = gs.
eq. (3.19) also gives us a hint as to why the dilaton in our model, that contains a large number of
D3 and D5 branes, will not simply go as eφ ∼ gs. However, it does not paint the whole picture. The
geometry of our model will be expanded on in chapter 5 but the full derivation of the geometry of our
model is beyond the scope of this thesis.
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4
The AdS/CFT correspondence

Now that we have some understanding of both field-theory and string-theory aspects, we will finally
introduce the AdS/CFT correspondence itself, starting from the string theory side. This will be
done via Maldacena’s canonical example of AdS5/CFT4, first proposed by Maldacena in [3]. The
motivation is based on using an open and closed string perspective on a stack of D3-branes and
comparing the results. This example will not contain all the detailed calculations but rather some
qualitative arguments. We will then move on to important concepts for utilising the correspondence.
These include the holographic dictionary which is used to translate between the different theories
and holographic renormalisation, used to remove infinities. We will also see how we can change the
boundary conditions of the gravitational theory, which is used to model different physics of the field
theory. We will finish of by looking at electromagnetism in the correspondence and derive some useful
quantities.

4.1 The canonical example
As already mentioned, in this setup we use N parallel D3-branes in flat spacetime. We will label the
directions by xi with i = 0, 1, ..., 9 since we have 10 spacetime dimensions. The D3-branes are set to
extend in the first 3 space directions, x1, x2, x3 (as well as the x0 since it is required for a D-brane). For
clarity, the following table shows which directions are tangential and which are normal to the branes

Table 4.1: Table showing the setup for the D3-branes. The × marks a direction tangential to the
brane, the - marks directions normal to the branes.

Direction: 0 1 2 3 4 5 6 7 8 9
D3-brane: × × × × - - - - - -

These D3-branes are separated by a small distance d3, which we will let go to 0. The content of our
system is open strings stretching between the branes, representing excitations of the branes, and closed
strings that represent excitations of the space-time. When we consider the system at low energies,
that is energies much smaller than the inverse of the string length

E � 1
ls
, (4.1)

only the massless modes can be accessed [24]. This means that we are able to write down an effective
action that involves the open strings (D3-brane DBI action), the closed strings and the interactions
between the two,

S = Sopen + Sclosed + Sint. (4.2)
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Sclosed is essentially the action of type IIB supergravity, with some additional corrective terms [24].
As for Sint, in this low energy approximation, it is given by the Chern-Simons part of the D-brane
action [4]. Before we can analyse this further, we must also look at gsN . Depending on whether this
quantity is � 1 or � 1, different perspectives will be appropriate to describe the physics [2]. We will
later be taking the so-called Maldacena limit, where we let α′ → 0 and as well as d3 → 0 while their
ratio u = d3

α′ is kept fixed [3].

4.1.1 Open string perspective
For the case of gs � 1, the appropriate way to describe the physics is from the perspective of open
strings. The reason for this is because when we expand the interaction term Sint in orders of α′, we
see that it vanishes in the Maldacena limit [4].

For Sopen, the DBI action, eq. (3.6), for a single D3 brane is

SDBI = − 1
(2π)3α′2

∫
d4ξe−φ

√
− det(P [g]MN + 2πα′FMN ), (4.3)

where we have inserted the expression for τp and set the Kalb-Ramond field to 0 for simplicity. We
have also seen this action expanded in orders of α′ in eq. (3.11). Note that it was described as an
expansion in orders of F , but the result is the same when seen as orders of α′. Seeing it as an expansion
in α′ is more appropriate here, as we will be taking α′ → 0. Note that if we also expand the induced
metric in α′, we find that [25]

P [g]MN ≈ ηMN + (2πα′)2∂Mφi∂Nφ
i (4.4)

where the six scalars φi are the coordinates the parameterise the embedding of the brane. This means
that the low-energy effective action, at lowest order in α′ takes the form

− 1
2πgs

∫
d4ξ
(1

4FMNF
MN + 1

2∂Mφi∂Mφi + O(α′)
)

(4.5)

where we have used that e−φ ∼ gs in this case. As in the previous chapter, setting g2
Y M = 2πgs, we

can identify this to a Yang-Mills theory when α′ → 0. In fact, this is Super Yang-Mills theory with
four supercharges (N = 4) [25]. Taking the Maldacena limit, the D3-branes become coincident, and
we the symmetry of the theory becomes U(N) [24], which we also saw in the last chapter.

Regarding Sclosed we have noted as before that this is the action of type IIB supergravity with some
higher order corrective terms. When we take the Maldacena limit, we arrive solely at type IIB su-
pergravity in 10 dimensional Minkowski space [4]. This means that the end-result of the open-string
perspective is that we have supergravity on R1,9 (10 dimensional Minkowski space) and an N = 4
U(N) SYM theory with coupling gY M = 2πgs on R1,3, which is a conformal field theory [24].

4.1.2 Closed string perspective
For the case of gsN � 1 gravitational effects become more important [2] and we must instead take
the closed string perspective [4], where we view the D3-branes as massive charged objects. These will
source the various fields of the string theory [24]. Despite the stronger string interaction we will see
still see a decoupling between different strings, this time between closed strings in two different regions
[2].

From the last chapter, we have the supergravity solution for a large amount of Dp-branes. Applying
this for our stack of D3-branes we have that our metric becomes

ds2 = h(r)−1/2ηµνdx
µdxν + h(r)1/2dyidyi. (4.6)
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with

h(r) = 1 +
(
L

r

)4
and L4 = 4πgsNα

′2. (4.7)

As before, the radial coordinate r = yiyi for i = 4, 5, ..., 9. Looking closer at h(r), we see that for
r � L, h(r) ≈ 1 and we get regular Minkowski spacetime. If we instead have r � L, called the
near-horizon limit, we have that h(r) ≈ L2

r2 and the metric takes the form of

ds2 = r2

L2 ηµνdx
µdxν + L2

r2 dy
idyi. (4.8)

We can rewrite this metric using our radial coordinate, that is, we introduce spherical coordinates for
our yi. The resulting metric becomes

ds2 = r2

L2 ηµνdx
µdxν + L2

r2 dr
2 + L2ds2

S5 (4.9)

where the ds2
S5 is the metric for the unit 5-sphere. We also recognise that the first part is the metric of

AdS space, with at radius of L. We therefore get a region that is AdS5×S5 [24]. A further remark on
the this region, which is referred to as the throat, is that the horizon at r = 0 (the end of the throat)
is infinitely far away from any point in the plane [2].

We then have closed strings that live on 10 dimensional Minkowski spacetime and closed strings that
live in AdS5×S5. The most important part here is that the strings in these two different regions
decouple in the low energy limit. To illustrate this, we imagine an observer that sits far away from the
near horizon region, that is, in the flat region. This observer will observe the low energy modes in the
flat region, which will have long wavelengths [24]. When these approach the near horizon region, the
cross-section for them to be absorbed by this region goes as [26]

σ ∼ E3L8 (4.10)

at low energies. The curvature L, does not diverge, and so the cross section will become very small
for low energies. One can view this as that the wavelength of the mode becomes larger than the size
of this region, which is of order L [24].

Meanwhile, the modes that live in AdS5×S5 will be experience extreme red-shift from the point of
view of the observer at infinity. The energy observed will be

Eobserved =
√

−g00Emode = r

L
Emode. (4.11)

When we let r
L become very small, the observed energy becomes small even if Emode is large. This

means that we should not disregard large Emode in the throat region, even when taking the low energy
limit [4]. Essentially, the modes close to the horizon at r = 0 will find it very hard to climb out to the
flat region [24]. Therefore, the closed strings of the two regions will decouple from each other. The
result for this case of gsN � 1 is that we have supergravity on R1,9 and supergravity on AdS5×S5.
Now we are ready to combine this with the open string perspective.

4.1.3 Combining the perspectives
With having looked at both the open and closed string perspectives in the Maldacena limit, for the
two different cases of gsN � 1 and gsN � 1, we can now combine them. In both cases we have
supergravity on R1,9. At gsN � 1 we have N = 4 U(N) SYM theory on R1,3 and at gsN � 1 we have
supergravity on AdS5×S5. Since we started from the same physics for both these descriptions, and
both contain supergravity on R1,9, this suggest that the two theories should describe the same physics.
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Since we have taken two different limits for these descriptions, the idea is that the supergravity theory
describes the physics of the SYM theory when gsN = g2

Y MN = λ � 1 and N → ∞. This is the
weakest form of the AdS/CFT correspondence. Maldacena’s conjecture was that the full type IIB
string theory on AdS5×S5 is dual to N = 4 SYM on R1,3 [3], and that this is the case for any value
of N and λ. This is the strongest form of the correspondence. There is also a strong form where the
’t Hooft limit of our CFT is taken to be dual to classical type IIB string theory (classical meaning we
only take tree-level diagrams into account). The strength essentially is settled by what range of the
parameters N , λ (on the field theory side) and gs, α′/L2 (on the string theory side) we say that the
correspondence applies for. The three cases are divided in table 4.2 below.

Table 4.2: Table describing the different conjectured dualities in the canonical example, ordered by
strength. On each row, the theories on each side is conjectured to be dual to each other. The term
classical here means that we only take tree level diagrams into account.

Field theory side AdS5×S5 side
with coupling gY M = 2πgs with curvature L4 = 4πgsNα

′2

Strongest from N = 4 U(N) Type IIB string theory on
super Yang-Mills (CFT) gs 6= 0, α′/L2 6= 0
Any λ and N

Strong form ’t Hooft limit of N = 4 U(N) Classical type IIB string theory
λ fixed and N → ∞ gs → 0, α′/L2 6= 0

Weak from Large ’t Hooft limit of N = 4 U(N) Classial supergravity
λ large and N → ∞ gs → 0, α′/L2 → 0

Despite the weak form being very limited for when it can be applied, it is still very useful, and it is
in fact the form that is the basis for the calculations done for our model, in chapter 5 and chapter 6.
This is the strong-weak duality that makes the AdS/CFT correspondence so attractive, since we can
describe a strongly coupled field theory with classical supergravity.

As a last note, we should mention that when the symmetries of the theories are examined, one finds
that they coincide completely, including in the strongest form of the correspondence [4]. This concludes
our look into the canonical example.

4.2 The holographic dictionary
Now that we have seen the string-theoretical origin of the correspondence, we must find a way to
actually use it. We need to be able to translate between quantities on the gravity and field theory side.
This, as mentioned in the introduction, can be done via the GKWP rule. This rule was discovered
by Gubser, Klebanov, Polyakov [27] and Witten [28]. It is a statement that there is a one to one
correspondence between the generating functional of the boundary theory and the partition function
in the bulk. More precisely it identifies the QFT generating functional with sources J with the partition
function of the bulk gravitational theory where the bulk is asymptotically AdS and the boundary value
of a fields φ in the bulk is equated with the sources J [27] [28].

ZQF T =
∫

DφeiSbulk(φ(x,r))|φ(x,r=∞)=J(x) (4.12)

Just as the AdS/CFT correspondence itself, this rule is still a conjecture [1]. The GKWP rule can
be used together with eq. (2.4) to calculate correlation functions, and will be demonstrated in the
example of a scalar field.
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Let us already now mention that the large N limit will be key to utilising this rule. Let’s recall the
form of the generating functional in eq. (2.2)

ZQF T [J ] =
∫

Dφ exp
[
i

∫
dDx(LQF T + JiOi)

]
.

If we recall the discussion after eq. (2.9), the path integral will collapse to a single (on-shell) config-
uration in the large N limit. On the right hand side of eq. (4.12) we can take the action Sbulk to be
on-shell [1].

With the GKWP rule we can derive the relation between field-theory quantities and gravitational fields
with relative ease. Generally these will follow a pattern where the leading term in the large r expansion
of the field is identified as the source (as essentially prescribed by the rule), and the sub-leading term
is identified with the expectation value of the operator [1]. We will see that this is the case for the
scalar field below. There is however a way to switch the roles of the leading and sub-leading term,
but we will go through this when exploring the scalar field example. For the D3D5D7 model that we
examine in this thesis, we are mostly interested in the electromagnetic current. We will wait with this
derivation until section 4.3, where we look at the electromagnetic field in AdS spacetime a bit more
thoroughly.

Two identifications between field- and bulk quantities that we do not look at in detail but should
mention for later reference is listed in the following table.

Table 4.3: Two identifications between field- and gravity-theory quantities from [1].

Field theory Gravity theory
Energy momentum tensor Metric tensor
Chemical potential Boundary value of the electrostatic potential At

4.2.1 Scalar field example and holographic renormalisation
Let us now turn to the scalar field example and at the same time describe the method of holographic
renormalisation. We will for this part throw away all knowledge of the string theoretical origin of the
correspondence and look at a free scalar field in AdSD+1 space. We will see that the on-shell action
becomes divergent. This divergence must be removed in order for our calculation of quantities on the
field theory side to make sense. This is done through the framework of holographic renormalisation.

It is in fact so that the on-shell action in the AdS bulk is often divergent and therefore in need of
renormalisation. Most often, these divergences appear due to the infinite volume of the AdS space
[29]. Let’s now describe the method used to remove these divergences, as prescribed in [30]. First, we
assume that we have solved the equations of motion for the field(s) asymptotically for large r. Then
we introduce a cut-off to the action, that is, we regularise the integral by introducing a cut-off, r = R
where R will later go to infinity. If we insert our asymptotic solution, we see the behaviour of the
now on-shell action for R → ∞. We then introduce boundary terms. These are terms that live on the
r = R boundary of the cut offed version of our AdS space. These are designed in such a way, with
appropriate coefficients, to cancel the divergences when we let R → ∞.

The need for this procedure might seem strange at first, but we conjecture that the theory in the AdS
bulk is dual to a quantum field theory, which are also plagued by divergences that need to be removed.
If fact, when renormalising a QFT, cancellation of UV divergences do not depend on the IR physics.
With the procedure of adding boundary terms, removing the large r divergences (which correspond to
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UV divergences for the field theory) is independent of the physics for smaller r (which correspond to
the IR physics of the field theory) [29]. Again, similar to the renormalisation of a QFT, we can add
finite boundary terms if we wish [30], which we will do later to change boundary conditions. Note that
there is a deep connection between the radial coordinate r and renormalisation group flow of the field
theory [1], however that is not covered in this thesis.

Let us now turn to the actual calculations for our scalar field in AdSD+1 space, and show the procedure
of holographic renormalisation. First, we need to solve the equations of motion, which in this case is
the Klein-Gordon equation. The Klein Gordon (K.G.) action is

SKG =
∫
dD+1x

√
−g
(

− 1
2∂µφ∂

µφ− 1
2m

2φ2
)
. (4.13)

The K.G. equation in a general metric is then(
− 1√

−g
∂µ

√
−ggµν∂ν +m2)φ = 0 (4.14)

where g = det gµν . To solve this we need the metric of our AdSD+1 spacetime, and for this we use the
Poincaré patch [31], where

ds2 = r2

L2 (−dt2 + dxidxi) + L2

r2 dr
2. (4.15)

Here we have one time-coordinate, D spatial coordinates where one of these is the radial coordinate,
r. L is the AdS scale parameter. We should note the likeness of the metric to the one obtained from
the supergravity solution of a stack of D3-branes in eq. (4.9). It is also prudent to mention that the
Poincaré patch only covers half of the AdS space. However, since we only want to find the general
behaviour for the field at large r, solving the K.G. equation for this part of our space is sufficient, since
a change of coordinates cannot change the behaviour. Our metric is therefore

gtt = − r2

L2 , grr = L2

r2 and gij = r2

L2 δij , with i, j ∈ [2, D] =⇒
√

−g =
( r
L

)D−1
.

This means that

1√
−g

∂r

√
−ggrr∂r =

(L
r

)D−1
∂r

[( r
L

)D−1 r2

L2 ∂r

]
= (D + 1)r

L2 ∂r + r2

L2 ∂
2
r .

Now our K.G. equation becomes(
r2

L2 ∂
2
t − (D + 1)r

L2 ∂r − r2

L2 ∂
2
r − r2

L2 ∂
2
i +m2

)
φ = 0.

We rewrite this to (
∂2

t − D + 1
r

∂r − ∂2
r − ∂2

i + m2L2

r2

)
φ = 0

and use separation of variables, φ = G(r)F (t, x). Inserting this into the equation above give us, where
we suppress the coordinate dependence of L and F ,

1
G

(
D + 1
r

G′ +G′′ − m2L2

r2 G

)
= ∂2

t F − ∂2
i F

F
(4.16)

and so, both the R.H. and L.H. sides must be constant. The form of the L.H. side suggests that we
make the ansatz G(r) = ra where a is a constant. This give us

a
D + 1
r2 + a(a− 1) 1

r2 − m2L2

r2 = constant. (4.17)
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Now we note that we must have the constant = 0, since the only r-dependence in eq. (4.17) is the 1
r2

factor. Then eq. (4.17) reduces to

(D + 1)a+ a2 − a−m2L2 = 0 =⇒ a = −D

2 ±
√
D2

4 +m2L2.

Defining ∆± := D
2 ±

√
D2

4 +m2L2 we get our two solutions as G(r) = 1
r∆± barring any constant of

proportionality or linear combination of the solutions. Now we note that the R.H. side of eq. (4.16),
with the L.H. side = 0, simply becomes the wave equation. Since eq. (4.14) is second order we must
have two independent solutions, and since it is linear, we can make a linear combination of the two
solutions. We can then write our solution as

φ = α(t, x)L∆−

r∆−
+ β(t, x)L∆+

r∆+
+ ... (4.18)

Now we look closer at our Klein-Gordon action. Following the prescription of holographic renormali-
sation, we regularise it, and use integration by parts to find that

SKG =
∫
dDxdr

√
−gφ

(
∂µ∂

µφ−m2φ

)
− 1

2

∫
r=R

dDx
√

−γφnµ∂µφ (4.19)

The second term in eq. (4.19) is a boundary term, where γµν is the surface metric and nµ is a unit
normal vector. We have that

√
−γ =

(
r
L

)D and nr = r
L as the only non-zero component, which means

that nµ∂µ = r
L∂r. Inserting our solution eq. (4.18) means that the bulk term vanishes. The on-shell

action (denoted by the *) then becomes

S∗
KG =1

2

∫
r=R

dDx

(
R

L

)D+1 (αL∆−

R∆−
+ βL∆+

R∆+

)(∆−αL
∆−

R∆−+1 + ∆+βL
∆+

R∆++1

)
=

1
2L

∫
r=R

dDx

(
R

L

)D (∆−α
2L2∆−

R2∆−
+ DαβLD

RD
+ ∆+β

2L2∆+

R2∆+

)
=

1
2L

∫
r=R

dDx
(

∆−R
D−2∆−α2L2∆−−D +Dαβ + ∆+β

2L2∆+−D

R2∆+−D

)
.

(4.20)

We note now that this is not finite when R → ∞. We must therefore renormalise our action with a
boundary term, which can be chosen as

Sbdy = −∆−

2L

∫
r=R

dDx
√

−γφ2 =

− ∆−

2L

∫
r=R

dDx
(
RD−2∆−α2L2∆−−D + 2αβ + β2L2∆+−D

R2∆+−D

)
,

where we have inserted our solution eq. (4.18) in the second line. Adding this boundary term to our
action it give us

S∗ = S∗
KG + S∗

bdy = (∆+ − ∆−)
2L

∫
r=R

dDxαβ

when we let R −→ ∞. The on-shell action has been made finite. We are now almost ready to calculate
the correlation function. However, the keen reader will remember that the prescription of the GKWP
rule, requires us to set the leading term of the field equal to the source in the generating functional of
the QFT. Let us look at what this means below.
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Boundary conditions and correlation functions

A familiar result from general relativity is that, in AdS space, a light-signal can travel an infinite
distance in finite time. This means that what happens at r → ∞ can affect the rest of the spacetime
[4]. So we need to impose boundary conditions at r = R even when we let R → ∞ in order to make
δS = 0. What this boundary condition is, is also closely related to the calculations of correlation
functions of the field theory using the GKWP rule. Let us now look at the example of a scalar field,
where we have just finished renormalising the action.

The first step we must take is to vary the action, starting from

S = SKG + Sbdy = −1
2

∫
dDxdr

√
−g
(
∂µφ∂

µφ+m2φ2
)

− ∆−

4L

∫
r=R

dDx
√

−γφ2. (4.21)

Let us now vary φ around the solution to the e.o.m. (eq. (4.18)), by φ → φ+ δφ with

δφ = δα(t, x)L∆−

r∆−
+ δβ(t, x)L∆+

r∆+
+ ... (4.22)

The following calculations are very similar to when we renormalised the action, so we will be brief.
The first term becomes

δS∗
KG =

∫
dDxdr

√
−g
(

− ∂µφ∂µδφ−m2φδφ

)
=∫

dDxdr
√

−gδφ
(
∂µ∂

µφ−m2φ

)
−
∫

r=R

dDx
√

−γδφnµ∂µφ =

1
L

∫
dDx

(
∆−R

D−2∆−δααL2∆− + ∆+δαβL
D + ∆−δβαL

D + ∆+δββL
2∆+

R2∆+−D

)
.

(4.23)

On the third line, we inserted eq. (4.18) and eq. (4.22), and used that r = R. The second term becomes

δS∗
bdy = −∆−

L

∫
r=R

dDx

(
R

L

)D

δφφ =

− ∆−

L

∫
dDx

(
RD−2∆−δααL2∆− + δαβLD + δβαLD + δββL2∆+

R2∆+−D

)
.

(4.24)

And so, we find that, ignoring all terms that go to 0 when R → ∞,

δS∗ = ∆+ − ∆−

L

∫
dDxδαβ. (4.25)

This means that we must have δα = 0 at the boundary. Note that we could not have chosen the
proportionality constant in Sbdy so that we would require δβ = 0, since we still needed to cancel a
divergent term.

Now let’s turn to the GKWP rule. If we set α = J(x, t) on the boundary then δα = 0 as required.
Setting α = J(x, t) also makes sense from the fact that, in the GKWP rule, we should set the boundary
value of φ equal to the source J , and αL∆−/r∆− is the leading term at r → ∞. Now we utilise the
fact that we are in the large N -limit, meaning that the path integral collapses to a single (on-shell)
configuration, as mention early in section 4.2. Letting S∗ denote the on-shell action, we then have
that, for a 1-point correlation function,

〈
O
〉

= −i 1
Z[J = 0]

δZ[J ]
δJ(x)

∣∣∣
J=0

= −ie−iS∗ δeiS∗

δα

∣∣∣
α=0

= δS∗

δα

∣∣∣
α=0

= ∆+ − ∆−

L
β(t, x). (4.26)
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This means that the response
〈
O
〉

to the source J is proportional to the sub-leading term of φ, when
the source is proportional to the leading term. This follows the pattern that was mentioned early in
section 4.2.

Now comes the question if this is the only choice of boundary condition and identifications for the
response and source. The answer turns out to be no. We can in fact change these by utilising our
freedom to add another boundary term. This is sometimes referred to as alternative quantisation [31].
The boundary term that needs to be added is

Sbdy,2 =
∫

r=R

dDx
√

−γφnµ∂µφ. (4.27)

Varying this around our solution eq. (4.18) give us

δSbdy,2 =
∫

r=R

dDx
√

−γ(δφnµ∂µφ+ φnµ∂µδφ). (4.28)

We immediately see that the first part is just −δSKG. The second part becomes

− 1
L

∫
dDx

(
∆−R

D−2∆−δααL2∆− + ∆−δαβL
D + ∆+δβαL

D + ∆+δββL
2∆+

R2∆+−D

)
. (4.29)

If we also change the sign in front of Sbdy, the result is that

δS∗
alt = δS∗

KG − δS∗
bdy + δS∗

bdy,2 = (∆− − ∆+)
L

∫
dDxδβα. (4.30)

Now we see that the roles of α and β are reversed, since β needs to be fixed at the boundary to make
δS = 0. We should note however that this is only possible to do in a certain range of the value of
m2L2. It needs to be in the range [31]

− D2

4 < m2L2 < −D2

4 + 1 (4.31)

Notice that this implies a negative mass squared. In flat spacetime this would signify a tachyonic state.
However in AdS spacetime, the curvature of the spacetime contributes to the effective potential of the
field in such a way that the field remains stable even for negative mass squared down to m2L2 > − D2

4 .
This is called the Breitenlohner-Freedman bound. We can notice that for values of m2L2 below this
bound that the ∆± would become complex. Since the scaling dimension of the operator is in this case
become ∆−, the second restriction, m2L2 < D2

4 + 1 comes from the fact that the operator needs to be
unitary. This means that we require ∆− < D

2 − 1 [1]. This is why the alternative quantisation scheme
is only possible in the range given in eq. (4.31).

This concludes our examination of the scalar field example. The most important concepts to remember
for further sections are the calculation of correlation functions as well as the method used to change
the boundary conditions.

4.2.2 AdS/CFT at finite temperature
A very important step is to look at the duality at a finite temperature. This can be achieved by
having a black hole with non-zero horizon radius rh in our AdS spacetime, transforming it to an AdS-
Schwarzschild spacetime. We can in fact have a supergravity solution to our stack of D3-branes that
incorporates a horizon. It takes the following form [4]

ds2 = h(r)−1/2(− f(r)dt2 + (dx1)2 + (dx2)2 + (dx3)2)+ (r)1/2

f(r) dr
2 + L2ds2

S5 (4.32)
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where f(r) = 1 −
(

rh

r

)4 is the so-called emblackening factor. In the near horizon limit, r � L, we can
see that this metric is asymptotically AdS5×S5 when r � rh.

This black hole will have a Hawking temperature that is proportional to rh, and this temperature will
also be the temperature of the field theory [1]. It can be calculated by Wick-rotating to a Euclidean
metric.

When using the real-time formalism, as we will be doing in the later chapters, it is also important
to look at the boundary condition near the black hole horizon. These however cannot be changed by
adding boundary terms. When solving the equations of motion near the horizon, one will find two
solutions. One that falls into the horizon and one that comes out from the horizon. It can be shown
that these correspond to retarded and advanced greens functions [11]. To maintain causality, we must
therefore choose the in-falling solution, which is called the in-falling boundary condition. This is also
consistent with the idea of a black hole. The in-falling boundary condition is simply that modes at
the horizon must fall into the black hole, and not emerge from it.

4.3 Electrodynamics
One important calculation will be that of electrodynamical relations on the boundary by using the
electrodynamics of the bulk theory. In this thesis we will mostly be concerned with dispersion relations
and the electric current. This means we need a method to find relations between the electrodynamics
of the bulk and boundary. We will do this in D + 1-dimensional AdS space with a D-dimensional
boundary. We will ignore the added complexity of the compact dimensions and resulting Kaluza-Klein
tower of fields inferred in top-down constructions.

We begin by assuming a Lagrangian L that depends on Fµν and none of its derivatives, just as in
section 2.3. Note that it also includes the weight factor

√
−g for the integral. We then vary the action

by letting Aµ −→ Aµ + εηµ =⇒ Fµν −→ Fµν + εζµν where ζµν = ∂µην − ∂νηµ. We have that

∂S

∂ε
=
∫

M

dD+1x
∂L
∂ε

=
∫

M

dD+1x
1
2
∂L
∂Fµν

ζµν =
∫

M

dD+1x
∂L
∂Fµν

∂µην =∫
M

dD+1x
(

− ∂µ
∂L
∂Fµν

ην + ∂µ

( ∂L
∂Fµν

ην

))
= −

∫
M

dD+1x∂µ
∂L
∂Fµν

ην +
∫

∂M

dDx

√
−γ√
−g

nµ
∂L
∂Fµν

ην

(4.33)

where M is the AdS space, γ is the determinant of the boundary metric and the factor
√

−γ√
−g

is there
to compensate for the fact that L already includes

√
−g. The boundary normal nµ only points in

the radial direction of the AdS space. This means that the last component in the last equality simply
becomes

∫
∂M

dDxnr
∂L

∂Frν
ην . From eq. (4.33) we can also obtain the equations of motion ∂µ

∂L
∂Fµν

ην = 0,
and boundary condition ηµ

∣∣
∂M

= 0, which is a Dirichlet boundary condition.

We now need to translate this to the electrodynamics at the field theory side. First we recognise that
the source for the field theory current J µ is the field theory Maxwell field Aµ due to the way we add
the current to the electromagnetic action [32]. When trying to translate between the Maxwell field on
the two sides of the correspondence, one consistent way to achieve this is to identify the field-strengths
with each other, in the case of regular Maxwell electromagnetism in the bulk. This is because Fµν is
gauge-invariant. However, if we choose to work in the radial gauge, in which Ar ≡ 0, we can identify
the vector potentials on the two sides with each other. That is, we set the boundary value of the vector
potential equal to the source field Aµ, meaning Aµ(r → ∞) = A

(0)
µ = Aµ up to a constant. This is
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useful when applying the GKWP rule, which then give us that

〈
J µ
〉

= δS∗

δAµ

∣∣∣∣
r→∞

(4.34)

where we keep in mind that the * denotes that the action is on-shell. In order to make the following
calculation clear we must utilise the definition of the functional derivative. For the unfamiliar reader,
[33] gives a good explanation. We Taylor-expand the Lagrangian and the bulk part becomes

δS

δAλ(y) = lim
ε→0

1
ε

[∫
M

dD+1xL(x,Aν(x) + δλ
ν εδ

(D)(x− y), Fµν(x) + ∂µδ
λ
ν εδ

(D)(x− y)−

∂νδ
λ
µεδ

(D)(x− y)) −
∫

M

dD+1xL(x,Aν(x), Fµν(x))
]

=

lim
ε→0

1
ε

[∫
M

dD+1x
∂L
∂Aν

δλ
ν εδ

(D)(x− y) + ∂L
∂Fµν

∂µ

(
δλ

ν εδ
(D)(x− y)

)]
=

∫
M

dr

(
∂L
∂Aλ

− ∂µ
∂L
∂Fµλ

)
+
∫

∂M

dDx

√
−γ√
−g

nµ
∂L
∂Fµλ

δ(D)(x− y) =
√

−γ√
−g

nµ
∂L
∂Fµλ

∣∣∣∣∣
∂M

(4.35)

where we have used our definition for the functional derivative with respect to Fµν . We therefore have
that 〈

J λ
〉

=
√

−γ√
−g

nr
∂L
∂Frλ

∣∣∣∣∣
∂M

. (4.36)

Note that we must insert a solution to the equations of motion for this apply, since we need it to be
on-shell. We have also assumed that the on-shell action does not require renormalisation by use of
boundary terms, which will turn out be the case when this analysis is used in chapter 6. This does
not apply in general.

As a consistency check, we make sure that the field-theory current is conserved, by observing that

∇λJ λ =
√

−γ√
−g

nr∂λ
∂L
∂Frλ

= 0 (4.37)

by the equations of motion ∂µ
∂L

∂Fµν
ην = 0. We have used that λ do not range over r, and the calculation

is assumed to take place on the boundary. This gives us some extra assurance that this identification
is the correct one.

4.3.1 Changing boundary conditions
We now want to change our boundary conditions in the case of electromagnetism. The motivation for
this is that we want to end up with Maxwell dynamics on the boundary [32]. As we want to model a
condensed matter system that follow Maxwell dynamics, this is an important step. Why the change
of boundary conditions leads to Maxwell dynamics will be made clear in the analysis below. As in
section 4.2.1, changing the boundary conditions is done by adding boundary terms to the action. This
analysis will be used later in section 6.2, where the effect of the different boundary conditions will be
discussed.

When varying the action by Aµ → Aµ + εηµ, as done in eq. (4.33), we find that in order to make
it stationary, we must have the variation ηµ = 0 at the boundary. To see what sort of boundary
conditions we can have, we must look at what type of boundary terms we can have. The requirement
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on the boundary terms is that they are Lorentz invariant, and built from the boundary-values of the
fields present in the bulk. There are then two types of boundary terms that we can add, a ”JA”-term
and an ”F 2”-term. The ”JA”-term is built from the boundary current and the gauge-field on the
boundary. We should also remember that the addition of these boundary terms does not change the
identification of the current. This will be explained at the end of this section.

Let us first look at the ”JA”-term, which has the form

SJA =
∫

∂M

dDx

√
−γ√
−g

nµ
∂L
∂Fµν

Aν (4.38)

where L is the bulk Lagrangian. We then vary our boundary term by Aµ → Aµ + εηµ and find that

∂SJA

∂ε
=
∫

∂M

dDx

√
−γ√
−g

nµ
∂

∂ε

( ∂L
∂Fµν

(Aν + εην)
)

=∫
∂M

dDx

√
−γ√
−g

nµ

[
∂L
∂Fµν

ην + ∂

∂ε

( ∂L
∂Fµν

)
Aν

]
.

(4.39)

We note that the first term in the second line matches the last term in eq. (4.33). We can then let this
terms cancel each other out in the variation by taking S − SJA. With this configuration, we would
have a boundary condition on the form

√
−γ√
−g

nµ
∂

∂ε

( ∂L
∂Fµν

)
= 0 (4.40)

since we would otherwise have to impose Aν = 0 at the boundary. This would not be wanted as it is
related to the gauge-field on the field-theory side. We can note that if L would be the regular Maxwell
Lagrangian (with the weight factor) L = −

√
−g
4 FµνFµν , then the boundary condition would look like

√
−γnµγ

µσγνλ∂[σηλ] = 0. (4.41)

We know that nr is the only non-zero component of nµ. If we momentarily use our gauge freedom to
set Ar = 0 (and therefore ηr = 0), which will be used in section 6.2, combined with the fact that γµν

is diagonal, the condition becomes
√

−γnrγ
rrγνλ∂rηλ = 0. (4.42)

As we can see, this is the form of a Neumann boundary condition.

Lets now turn to the ”F 2”-term, which simply looks like

SF 2 = λ−1

4

∫
∂M

dDx
√

−γFµνFµν (4.43)

where λ is a constant relating the electromagnetic coupling of the bulk and boundary. Varying this
we find

∂SF 2

∂ε
= λ−1

2

∫
∂M

dDx
√

−γFµν∂[µην] = λ−1
∫

∂M

dDx
√

−γγµσγνλ∂σAλ∂[µην] =

− λ−1
∫

∂M

dDx
√

−γγνλAλ∂
µ∂[µην]

(4.44)

where we performed a partial integration in the last step. Since ∂M itself do not have a boundary,
there is no extra term from the partial integration. Putting it all together we find that

∂

∂ε
(S − SJA + CF 2SF 2) = −

∫
∂M

dDx
√

−γAµ

[
nσ√
−g

∂

∂ε

( ∂L
∂Fσµ

)
+ λ−1CF 2γνµ∂σ∂[σην]

]
. (4.45)
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CF 2 is a constant that we can choose as we want. Since we do not wish to impose further restrictions
on the boundary value of Aµ the boundary condition must become

√
−γ

[
nσ√
−g

∂

∂ε

( ∂L
∂Fσµ

)
+ λ−1CF 2γνµ∂σ∂[σην]

]
= 0. (4.46)

This is what is called a mixed boundary condition since it is a ”mix” between Dirichlet and Neumann
boundary conditions. The reason why this leads to Maxwell dynamics on the boundary should now
be clear, as we have essentially imposed the Maxwell action on the boundary.

This mixed boundary condition is equivalent to a double trace deformation on the boundary field
theory [34]. A quick explanation of double trace deformations is that they are related to the random
phase approximation often used in condensed matter physics [1], where the response function takes
the form 〈

O(−k)O(k)
〉

= G(k)
1 + fG(k) (4.47)

where G is the non-RPA greens function.

In order to incorporate a double trace deformation, we must keep our current identification as in
eq. (4.36) [34]. It can also be shown that the incorporation of this double trace deformation leads to
plasmonic dispersion relations on the field theory side, as it is equivalent to eq. (4.46) [35] [32]. As
mentioned in the introduction, plasmonic dispersion relations is something that is found in strange
metals.
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D3-D5-D7 model

At last I will present the model that this thesis is about. When creating a top-down model, we use
D-branes to which the open strings are attached. One well studied system is based upon a large
number, Nc, of D3-branes, as presented in section 4.1. One can then add D7-branes in the so-called
probe-approximation. This means that one assumes that the D7 branes do not affect the geometry of
the system. On the field theory side this corresponds to ignoring quark loops, that is, we find ourselves
in the quenched approximation [18]. In order to realise this, the number of D7-branes have to be small
[4]. As by the name of our model, we will also add a D7-brane in the probe-approximation. However,
we will first add a large number, Nf , of D5-branes. This will alter the geometry of our spacetime and
subsequently change the physics of the boundary theory. An important aspect in this model is that
there are a lot of different strings that stretch between the different D-branes, so let us first look at
how we can deal with these strings in a known example, and what they mean in terms of the AdS/CFT
correspondence.

The additional open strings introduced by the new D-branes will be part of a duality between the
different open strings [4]. That is, we get a open-open string duality, compared to the open-closed
string duality in section 4.1. Let us look at this in the example of a probe D7-brane added to the N
D3-branes in the canonical example. On the gravity side, we have strings that begin and end on the
D7-brane which are dual to the strings that stretch between the D7-brane and the D3-branes on the
field theory side. This means that, on the gravity side, we only consider strings that both begin and
end on the D7-brane. The strings that stretch between the D7-brane and the D3-branes will be part
of the field theory side of the correspondence [4].

The original use for introducing probe branes was to insert flavour into the duality [36]. This is because
the degrees of freedom introduced by the addition of the D7-branes transform in the fundamental
representation of the gauge group [4]. Recall that the degrees of freedom from the Nc D3-branes
transform in the adjoint representation. For our model, before adding the D7 probe branes we will
add a large number Nf of D5-branes. This will alter the geometry of our bulk spacetime, creating an
ansisotrophy, as will be explained below. We will first look at the geometry of the spacetime, then
look at what this means for the D7 probe-branes and lastly look at the contents of the model.

Let us also mention Kaluza-Klein reductions. Later on, we will assume that the fields on the D7 probe
brane do not propagate in the compact directions. In the general case, there would be a infinite tower
of fields. Since the directions that gives rise to this behaviour are compact, the momentum in these
directions will be discretised. This in turn gives rise to an energy-gap. This means that, at least
for fluctuations, we can ignore the compact direction [1]. However, we also want this to hold for the
full (or linear response) equations of motion. For this we assume that the solutions to the truncated
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5. D3-D5-D7 model

equations of motion (those that ignore the compact directions) also solves the equations of motion
when the compact directions are included. If this holds, there is still a potential issue that the solution
might not be a stable solution to the full equations [1]. This is not something that we will examine in
detail, but rather we will simply hope that the solution to the truncated equations of motion solve the
full version of the same, and that this solution is stable.

5.1 D3-D5 geometry
Let us now look at the geometry, which was first derived in [37]. The setup of the D3 and D5 branes
are shown in table 5.1 below.

Table 5.1: The setup for the D3 and D5 branes. The × marks a directions tangential to the brane,
the - marks directions normal to the branes.

Direction: 0 1 2 3 4 5 6 7 8 9
D3: × × × × - - - - - -
D5: × × × - × × × - - -

The smearing approximation is used for the D5 branes. This approximation means that the branes
are not viewed as having 0 width in the direction(s) normal to the branes, but rather that they are
smeared across the x3 direction, and we consider a continuous distribution of branes. The smearing
approximation is used because trying to find the resulting metric becomes very difficult otherwise, due
to the fact that the mass-distribution will consist of delta-functions. This only works in the limit of
large Nf , with Nf/Nc ≡ λfc kept fixed, which is referred to as the Veneziano limit [37]. The resulting
metric in the Einstein frame can be written as [7] [38]

ds2
10 = 1√

h

[
−B(dx0)2 + (dx1)2 + (dx2)2 + e−2φ(dx3)2

]
+

√
h

B
dr2+

+ R̄2
[
dχ2 + cos2 χ

4 ((ω1)2 + (ω2)2) + cos2 χ sin2 χ

4 (ω3)2 + 1
b

(
dτ + 1

2 cos2 χω3
)2] (5.1)

where h = R4

r4 is the warp factor, B = 1 −
(

rh

r

)10/3 is the emblackening factor, R̄2 = R2/b and b = 8
9 .

R is now the curvature of the AdS space and is related to Nc by [38]

R4 = 4096
1215πNcα

′2gs. (5.2)

rh is the radius of the black hole horizon. φ is the string-theory dilaton and we have

eφ =
(

3r
4Qf

)2/3
gs where Qf = 4πNf

9
√

3
ls. (5.3)

Nf is the number of D5-branes per unit length in the x3-direction. I should mention that the gs factor
for the dilaton lacks solid mathematical foundation. The sources for our geometry, [37] [38] [7] do not
explicitly say this, as they work in gs = 1. This can be seen as a bit strange as we would want gs → 0,
as we are using the weak form of AdS/CFT. My argument for this gs-factor is that it is present in the
ansatz for the supergravity solution for a stack of Dp-branes, see section 3.3.2, eq. (3.19).

Moving on, for the angles, χ ∈ [0, π], τ ∈ [0, 2π] and the ωi are left-invariant SU(2) one-forms,

ω1 = cosψdθ + sinψ sin θdϕ
ω2 = sinψdθ − cosψ sin θdϕ
ω3 = dψ + cos θdϕ

(5.4)
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5. D3-D5-D7 model

where θ ∈ [0, π], φ ∈ [0, 2π) and ψ ∈ [0, 4π) [7]. As we can observe there is a horizon at r = rh and as
r becomes very large, which means that B → 1, the non-compact part of the metric in eq. (5.1) takes
the form of an AdS metric, barring the peculiar x3-direction.

Let us take a closer look at this x3-direction. As we approach the boundary of the AdS space, this seem
to vanish compared to the x0, x1 and x2 directions, as it no longer contributes to ds2

10. Essentially
this direction is not being pushed open as much as the other, since the D5-branes do not extend in
this direction. As can be viewed in fig. 5.1, the x3-direction eventually collapses in comparison to the
other non-compact directions. This collapse is what gives us our layered system.

Figure 5.1: Visualisation of the different scaling for the x3- and x1 directions. As r increases, we let
the x1-lines stay constant, but then the x3-lines must move closer together due to the different metric
components. As r → ∞, the x3-direction have no extension compared to the x1-direction (as well as
x0 and x2).

Let us also briefly compare eq. (5.1) to the metric obtained in case of only Nc D3-branes

ds2 = r2

R2 (f(r)dt2 + dx2
1 + dx2

2 + dx2
3) + R2

r2f(r)dr
2 +R2dΩ2

5

where f(r) = 1 −
(

rh

r

)4 as the emblackening factor in this case. From this we can directly see that we
can not just take the limit Nf → 0 to arrive back at this metric [38]. This is understandable since the
derivation of our metric eq. (5.1) required Nf to be large.

As a last note, find the Hawking temperature T of the black hole via the relation [7]

T = 1
2π

[
1

√
grr

d

dr
(
√

−gx0x0

]
r=rh

= 5rh

6πR2 . (5.5)

As mentioned in section 4.2.2, this will be the temperature of our field theory.
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5.2 D7 probe brane
Now we add a single D7-brane, in the probe approximation, to the geometry. The inclusion of a D7
probe brane was first explored in [7]. This brane is made to extend in the x0, x1, x2, x3- and r-directions
as well as in the three sphere that correspond to the one-forms ωi [7]. The setup looks like the following

Table 5.2: The setup for all the D-branes in our model. As before, the × marks a directions tangential
to the brane, the - marks directions normal to the branes.

Direction: x0 x1 x2 x3 r 5 6 7 χ τ
D3: × × × × - - - - - -
D5: × × × - × × × - - -
D7: × × × × × × × × - -

The D7-brane do not extend in the χ or τ -direction, and we will need to specify the brane’s position in
these directions, also referred to as the embedding of the D7-brane. We can, without loss of generality,
set τ = const and consider the embedding χ as a function of r [7]. This means that dχ2 = χ′2dr2. Now,
the induced metric for the D7-brane world-volume, with the expressions for the one-forms inserted, is

ds2
8 = 1√

h

[
−B(dx0)2 + (dx1)2 + (dx2)2 + e−2φ(dx3)2

]
+

√
h
[ 1
B

+ r2

b
χ′2
]
dr2+

+ r2
√
h

4b cos2 χ
[
dθ2 +

(
sin2 θ + (1 − 1 − b

b
cos2 χ) cos2 θ

)
dϕ2+(

1 + 1 − b

b
cos2 χ

)
(dψ2 + 2 cos θdψdϕ)

]
.

(5.6)

Note that this is given in the Einstein frame.

With the induced metric on the D7-brane at hand, let us next turn to the action of the brane. From
eq. (3.16), the DBI part takes the general form of

SDBI = −τ7

∫
d8ξeφ

√
− det

(
P [g]µν + e−φ/2P [B]µν + e−φ/2Fµν

)
in the Einstein frame. The Wess-Zumino term gives no contribution to the action of the D7-brane.
This is because of the pullback of the Ramond-Ramond seven form present in the background vanishes
for our embedding [7]. Let us also look at the Kalb-Ramond field. In section 3.3.2 the Kalb-Ramond
field was set to 0 in the ansatz for the supergravity-solution of a Dp-brane. Since this applied for any
(odd) p, we should be able to assume that it also holds for this system (note that this is not mentioned
in [37], [38] or [7]). Assuming this holds, this means that the P [B]µν term in the DBI action disappears
and we have that it ends up on the form

SD7 = −τ7

∫
d8xeφ

√
− det

(
gµν + e−φ/2Fµν

)
. (5.7)

As we can note, the Lagrangian density in this action contains the weight-factor
√

−g. For our later
calculations it is therefore useful to know that it is

√
−g = r3e−φ sin(θ)

8b2 cos3(χ)

√[
1 + 1 − b

b
cos2(χ(r))

]
(b+Br2χ′(r)) (5.8)
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and in the case of χ ≡ 0 (called the massless case) [7] we have
√

−g = r3e−φ sin(θ)
8b2 . (5.9)

Let us here take a brief look at what is meant by that χ ≡ 0 is called the massless case, as well as a
bit about what χ says about the embedding of the brane, and what it means on field-theory side. The
coordinate χ(r) is one of the 5 angular coordinates of our metric and essentially tell us where on the
deformed 5-sphere [38] the brane lies.

Depending on both the embedding χ and the horizon radius rh, the D7-brane can either close of before
the horizon, referred to as a Minkowski embedding, extend into the horizon, referred to as a black
hole embedding or ”touch” the horizon at a singe point, referred to as a critical embedding [39]. The
different embeddings are illustrated in fig. 5.2, as well as how the different embeddings are related to
the branes position on the deformed 5-sphere. When we look at the embedding close to the boundary,
we can generally attain an asymptotic solution. The leading order contribution of χ is identified with
the mass of the quarks on the field-theory side [7] (note that here a quark is a generalised concept
of those found in regular QCD). This of course means that setting χ ≡ 0 means that the D7-branes
position on the deformed 5-sphere is constant, and that the quarks are massless, which is why we refer
to this embedding as the massless embedding.

Figure 5.2: Illustration of the different types of embeddings for the D7-brane. In the upper part,
we show the where the brane lies in relation to the horizon. In the black hole embedding (left) the
brane extends into the horizon. For the critical embedding (middle) the brane touches the horizon in
a single point and for the Minkowski embedding (right) the brane closes of before the horizon. In the
lower part of the figure, the D7-branes position on the deformed 5-sphere for different r is illustrated.
The sphere represents the deformed 5-sphere and the line represents the D7-brane. In the black hole
embedding, the position is the same down to the horizon r = rh. In the critical embedding the brane
”falls of” the sphere at the horizon and in the Minkowski embedding the brane is no longer present on
the sphere as we approach the horizon.

Since we are going to make use of boundary-terms to change our boundary conditions in chapter 6,
we also wish to know the weight-factor

√
−γ in the massless case, which is

√
−γ =

√
Br4e−φ sin(θ)

8b2R
= r4e−φ sin(θ)

8b2R
(5.10)

since we are at r → ∞ at the boundary. Note that the boundary to our space-time has 9 dimensions, 4
non-compact and 5 compact ones, due to the compact dimensions in the bulk. However, the

√
−γ just
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presented is only for 7 of the boundary dimensions. That is because when we add boundary terms,
they will be to change the boundary condition of the fields present in the action for the D7-brane.
Adding boundary terms in this case means adding them to the brane action, and so these terms must
also live on the D7-brane.

5.3 Content
Lets us now describe the contents of this model, how we view the content and some loose motivations
for why parts of it can be ignored. As mentioned earlier, in the example of Nc � 1 D3 branes and one
D7 probe brane, we essentially have that the open strings between the D3 and D7 brane are dual to
strings that begin and end on the D7-brane. In our model we still have that the 3-3 strings are dual to
the closed strings and the 3-7 strings will again be dual to 7-7 strings. The 3-5 strings, that will give
rise to flavour degrees of freedom, should be dual to the 5-5 strings on the D5-branes. These flavour
degrees of freedom will follow a U(1)Nf symmetry, since the D5 branes are not coincident [37]. Lastly
the 5-7 strings are ignored. The different dualities between the strings are illustrated in fig. 5.3. Note
that it is not made clear in previous works on this model [7] exactly how the mathematics behind this
works.

There is however, an argument regarding the coupling strengths that motivates some of the what we
have just described. By looking at the ’t Hooft coupling eq. (3.13) for the different strings, we see for
example that

λD7

λD3
= 1
Nc

(2π)4α′2 (5.11)

vanishes, both due to the Maldacena limit α′ → 0 and because Nc → ∞. Therefore, the 7-7 strings
decouple from the 3-3 strings [4]. By similar arguments, the 7-7 strings decouple from the 3-7 strings
[18], as well as from the 5-5 and 5-7 strings. Because the 7-7 strings decouple from the 5-5 strings, on
the field theory side, the 3-7 and 3-5 strings also decouple from each-other. This means that the flavor
degrees of freedom described by the 3-7 strings do not interact with the flavor degrees of freedom from
the 3-5 strings. Similarly, the arguments regarding the coupling strength should make it so that we
can disregard the 5-7 strings completely.

With these arguments in mind, the reason for why we only look at the 7-7 strings is because they
model the physics that we are interested in. The physics of the 7-7 strings has been explored in [7],
and our investigation is partly built on this previous work. Some analysis of what physics the D5
brane action give on the field theory side have been done in [37] and [38]. So in the next chapter, we
will look at some of the physics the 7-7 strings give us, by use of the D7-brane action.
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Figure 5.3: An illustrative sketch of the dualities at play in our model. The circle represents our AdS
space on the supergravity side. Note that the S5 is not drawn, for simplicity. On the field theory side
we have the probe D7 brane represented by the cube, and the Nc D3 and Nf D5 branes represented
by the stacks of planes inside the cube. On each side of the duality we have the strings of interest.
Figure adapted from [1].
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6
Properties of the D3-D5-D7 model

In this chapter we will look at some properties of the D3-D5-D7 model, particularly the current
resulting from an electric field. This will first be done with the full non-linear equations of motion, in
a very simple DC case, that is the electric field is constant in only one direction. Then we will turn to
linear response in order to look at what happens from small electric fields but with non-zero k and ω.
We will look both at the current as well as dispersion relations. Throughout the first two sections of
this chapter we will set ls = gs = 1.

6.1 Non-linear DC current
Let us begin with the DC current in case of the full e.o.m. If we want to model a strange metal, we
would want the boundary current J x to go as 1/T for some range of parameters. The tricky part lies
in calculating the current in the holographic approach, in terms of a constant electric field, for which
we will follow the methodology of [40]. Their procedure is to set the gauge potential to something
very simple, which allows them to identify constants of motion. These constants of motion can be
identified as being proportional to the boundary current and charge density. By then looking at the
on-shell action they find a relation between the constants of motion, the temperature, and the electric
field, which means that this relation will apply for the boundary charge density and current as well.
Let us begin by demonstrating this method by calculating the in-plane current, that is, in the case of
the electric field pointing in a spatial direction that is shared between the D5 and the D7 brane.

6.1.1 In-plane current
For this approach the gauge-field on the world-volume of the D7-brane will have a potential Aµ where
At = At(r), Ax = −Et+a(r) and the rest are zero. Note that we use t as a label for x0 and x as a label
for x1 here, and that E is a constant. Note also that since this gauge-field lives on the word volume of
the D7-brane, it has 8 components. The resulting field strength has non-zero, independent components
are Frt = A′

t, Frx = a′ and Ftx = −E. Requiring that the components of the gauge-field makes the
action eq. (5.7) stationary , we get the usual Euler-Lagrange equations for the gauge components

∇µ

( ∂L
∂(∂µAν)

)
− ∂L
∂Aν

= 0. (6.1)

Note that ∇µ denotes the covariant derivative. We have that ∂L
∂Aν

= 0 and

∇t
∂L

∂(∂tAx) = ∇t
∂L
∂E

= 0 (6.2)
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6. Properties of the D3-D5-D7 model

since there is no time dependent component in L. Remember that L depends on Ftx = −E and not
directly on Ax. From eq. (6.1) we then get two equations that can be integrated once to give

∂L
∂(∂rAx) = ∂L

∂a′ = jx and ∂L
∂(∂rAt)

= ∂L
∂A′

t

= d (6.3)

where jx and d are constants of motion.

Recalling eq. (5.7), the Lagrangian for our system is given by

LD7 = −τ7e
φ

√
− det

(
g8

µν + e− φ
2 Fµν

)
=

− τ7e
−φ/2 sin θ

8b3/2 r
3 cos3 χ

[(
1 + 1 − b

b
cos2 χ

)(( 1
B

+ r2

b
χ′2)(eφB − E2h

)
+ a′2B −A′2

t

)]1/2
(6.4)

where g8
µν denotes the metric for the world-volume of our D7-brane. After taking performing the

derivatives in eq. (6.3) we arrive to

jx =
−e−φ/2r3 cos3 χ

√
b+ (1 − b) cos2 χa′B√( 1

B + r2

b χ
′2
)(
eφB − E2h

)
+ a′2B −A′2

t

d =
e−φ/2r3 cos3 χ

√
b+ (1 − b) cos2 χA′

t√( 1
B + r2

b χ
′2
)(
eφB − E2h

)
+ a′2B −A′2

t

.

(6.5)

From this we can immediately see that

A′
tj

x = −a′Bd. (6.6)

Before we proceed, we will define some functions to help us do the algebra. We define

f1 ≡ b+ (1 − b) cos2 χ , f2 ≡ −E2h
( 1
B

+ r2

b
χ′2),

f3 ≡ 1 + r2

b
χ′2B , f4 ≡ r3 cos3 χ.

(6.7)

Using these we find that

d2 = e−φf2
4 f1A

′2
t

f2 −A′2
t + eφf3 + a′2B

=⇒ A′2
t = d2(f2 + f3e

φ + a′2B)
e−φf2

4 f1 + d2 (6.8)

and then eq. (6.6) can be used to find that

a′2B2d2 = (jx)2 d
2(f2 + f3e

φ + a′2B)
e−φf2

4 f1 + d2 =⇒ a′2 = (f2 + eφf3)(jx)2

B2(e−φf2
4 f1 + d2) − (jx)2B

. (6.9)

Then using eq. (6.6) again we get that

A′2
t = (f2 + eφf3)Bd2

B(e−φf2
4 f1 + d2) − (jx)2 . (6.10)

We can then put a′2 and A′2
t into our Lagrangian from eq. (6.4)

LD7 ∝ −e−φ/2f4
[
f1(f2 + a′2B −A′2

t + eφf3)
]1/2 =

− e−φ/2f4

[
f1(f2 + eφf3)

(
1 + (jx)2 −Bd2

B(f1e−φf2
4 + d2) − (jx)2

)]1/2
≡ −e−φ/2f4

√
f1H||1H||2

(6.11)
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6. Properties of the D3-D5-D7 model

where we have introduced the functions H||1 and H||2 to again shorten our notation. Now we need
to analyse the functions f1, H||1 and H||2. We note that the expression within the square root in
eq. (6.11) needs to be positive or 0. We first note that f1 > 0∀χ ∈ R. Looking at H||1 we see that
it is negative when r −→ rh and positive when r −→ ∞. The same goes for H||2. Therefore there must
be a point rs at which both H||1 and H||2 switches sign, in order for LD7 to be real for all r ≥ rh. A
numerical investigation (at χ ≡ 0) reveals that H||1 goes to 0 for this r −→ rs and H||2 diverges when
r −→ rs, and switches sign at this point. We therefore get two equations from eq. (6.11),

(Bsr
2/3
s

α
− E2R

4

r4
s

)( 1
Bs

+ r2
sχ

′2
s

b

)
= 0 (6.12)

(jx)2 = Bs

((
b+ (1 − b) cos2 χs

) α

r
2/3
s

r6
s cos6 χs + d2

)
(6.13)

where Bs = B(r = rs), χs = χ(r = rs), χ′
s = χ′(r = rs) and

α ≡
(4Qf

3

)2/3
. (6.14)

Assuming that χ′2
s is non-singular, we can note that

( 1
Bs

+ r2
sχ′2

s

b

)
> 0 and finite, which means that the

equation for rs reduces to

Bsr
2/3
s

α
− E2R

4

r4
s

= 0 =⇒ r14/3
s − r

10/3
h r4/3

s − αE2R4 = 0. (6.15)

To make the calculation a bit simpler we will assume massless embedding of the brane, that is χ ≡ 0.
This means that

(jx)2 = Bs

(
r16/3

s α+ d2). (6.16)

Renormalisation and current identification

We now want to make sure that our action is finite, as well as find the identification of the boundary
current. In the massless case, the on-shell action is

Son−shell ∼ −
∫

M

d8xe−φ/2r3

√
−E2h

B
+ a′2B −A′2

t + eφ. (6.17)

where a′ and A′
t are as in eq. (6.9) and eq. (6.10) respectively. Since the integrand only depends on r,

we can write

Son−shell ∼ −
∫ ∞

rh

dre−φ/2r3

√
−E2h

B
+ a′2B −A′2

t + eφ. (6.18)

At large r, we can series expand the integrand to find that it goes as

− r3 + O
(

1
r5/3

)
. (6.19)

The first term will cause a divergence in the action, and so must be removed. However, we do not need
to do this via a boundary-term. Instead we can see that, at large r, this divergence originates from the
eφ-term in the square root in eq. (6.17) which in terms comes only from the weight-factor multiplied
with eφ, since it does not contain E, a′ or A′

t. Therefore we can remove this simply by subtracting
−

√
−geφ ∼ −r3, up to a constant (see eq. (5.9)). This is okay since it does not change the equations

of motion.
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6. Properties of the D3-D5-D7 model

To make sure that there is no divergence for r ∼ rh, we series expand in this region and find that the
integrand goes as O(1), and so does not give rise to a divergence in the integration. Of course, we
also require that r in the region between rh and ∞ does not give rise to a divergence in the integral
as well. The only potential problem is close to the point rs. When inserting the solutions eq. (6.15)
and eq. (6.16) into our Lagrangian and series-expanding around rs, we find that there is no pole. Our
regularised action is therefore

Sreg ∼
∫

M

d8xr3

[
1 − e−φ/2r3

√
−E2h

B
+ a′2B −A′2

t e
−2φ + eφ

]
. (6.20)

Now we can use eq. (4.36). By recognising that
√

−γ√
−g
nr is a constant, we find that we do in-fact have〈

J t
〉

∼ d &
〈
J x
〉

∼ jx. (6.21)

Result

Despite the simplification of working with massless embedding, we still need to employ numerical
methods to solve for jx. For this numerical calculation, both Nc and Nf were set to 1000. The
instantaneous exponent for the T -dependence was calculated, and the result is presented in fig. 6.1.
Looking at different orders of magnitude for Nc and Nf yielded similar results.
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Figure 6.1: Exponent of T -dependence for jx. The big red region for higher T gives an exponent for
the T -dependence of 1

3 .

The big region with red colour represents a T 1/3 dependence. This can also be found analytically.
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First we note that, by using eq. (6.15) Bs = αE2R4

r
14/3
s

. Inserted into eq. (6.16), we find that

(jx)2 = αE2R4(αr2/3
s + d2

r
14/3
s

)
. (6.22)

Then we note that rs ≥ rh and so when r10/3
h ∗r4/3

s � αE2R4 we have that rs ≈ rh. Then, if d2

r
16/3
s

� α

we find that Dx ∼ r
1/3
s ∼ T 1/3. For the other parts in fig. 6.1 it is clear that the exponent do not take

a fixed value for any larger region.

An interesting thing to note is that we have many different possible behaviours. If we examine the
result and allow ourselves to fix for example α in terms of other parameters, we can for find a resistivity
linear in rh ∝ T for small electric fields. We can of course find other behaviours, but this is the one of
most interest. We start by Taylor-expanding the solution to eq. (6.15) for small E to order E2. The
result is

rs ≈ rh + 3
10r11/3

h

αR4E2. (6.23)

Inserting this into eq. (6.22) and do another Taylor-expansion for small E we arrive at

(jx)2 ≈
αR4E2

(
d2 + αr

16/3
h

)
r

14/3
h

. (6.24)

If we now wish to find α so that jx

E = C
rh

where C is some constant, we find that

α = 1
2r16/3

h

(√
4C2r8

h

R4 + d4 − d2

)
. (6.25)

We can therefore find a resistivity linear in temperature (see eq. (5.5)) for small E using this expression
for α. This resistivity is the resistivity found in the field theory, since E will be the electric field also
on field theory side. This makes the relation very interesting, as we are looking for resistivity linear in
T . The question then becomes if α having this dependence is okay, but this will be done later on.

6.1.2 Off-plane DC current
We now turn to off-plane case. Here we set Az = −Et + a(r) and keep our At = At(r), where z is
used as a label for x3. As in the in-plane case we now we obtain constants of motion that we name d
and jz. Our Lagrangian becomes

LD7 = −τ7e
φ/2 sin θ

8b3/2 r
3 cos3 χ

[(
1 + 1 − b

b
cos2 χ

)(( 1
B

+ r2

b
χ′2)(e−φB − E2h

)
+ a′2B −A′2

t e
−2φ
)]1/2

.

(6.26)
Using this our constants of motion become

jz =
−eφ/2r3 cos2 χ

√
b+ (1 − b) cos2 χa′B√( 1

B + r2

b χ
′2
)(
e−φB − E2h

)
+ a′2B −A′2

t e
−2φ

d =
eφ/2r3 cos2 χ

√
b+ (1 − b) cos2 χA′

te
−2φ√( 1

B + r2

b χ
′2
)(
e−φB − E2h

)
+ a′2B −A′2

t e
−2φ

.

(6.27)

Just as in the in-plane case we solve for A′2
t and a′2. We have that

jzA′
te

−2φ = −Ba′d (6.28)
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and so, we arrive at

A′2
t = d2e2φ(f2 + e−φf3)B

B(d2 + e−φf2
4 f1) − e−2φ(jz)2 and a′2 = (jz)2e−2φ(f2 + e−φf3)B

B(d2 + e−φf2
4 f1) − e−2φ(jz)2 (6.29)

where have used the f1, f2, f3 and f4 from eq. (6.7). We then insert these into our Lagrangian. We
can write it as

LD7 ∝ −eφ/2f4
[
f1(f2 + a′2B −A′2

t e
−2φ + e−φf3)

]1/2 =

− eφ/2f4

[
f1(f2 + e−φf3)

(
1 + (jz)2e−2φ −Bd2

B(f1e−φf2
4 + d2) − e−2φ(jz)2

)]1/2
≡ −eφ/2f4

√
f1H⊥1H⊥2.

(6.30)

Examining the signs and behaviours of H⊥1 and H⊥1 we find that, just as before, there must be a
point rs which satisfies

αBs

r
2/3
s

− E2R
4

r4
s

= 0 (6.31)

(jz)2 = Bsr
4/3
s

α2

((
b+ (1 − b) cos2 χs

) α

r
2/3
s

r6
s cos6 χs + d2

)
. (6.32)

We note that unlike the in-plane case, it is possible to find a closed form expression for rs from eq. (6.31)

rs =
(E2R4

α
+ r

10/3
h

)3/10
. (6.33)

This solution fulfils the requirements that rs > rh and is real. Just as for the in-plane current we now
turn to the massless case to make the examination of the current easier. We use that we can write
Bs = E2R4

αr
10/3
s

and insert it into eq. (6.32)

(jz)2 = E2R4

α3r2
s

( 1
αb
r16/3

s + d2
)
. (6.34)

Renormalisation and current identification

Just as in the in-plane case, we now want to make sure that our action is finite, as well as find the
identification of the boundary current. In the massless case, the on-shell action is

Son−shell ∼ −
∫

M

d8xeφ/2r3

√
−E2h

B
+ a′2B −A′2

t e
−2φ + e−φ. (6.35)

where a′ and A′
t are as in eq. (6.29). Since the integrand only depends on r, we can write

Son−shell ∼ −
∫ ∞

rh

dreφ/2r3

√
−E2h

B
+ a′2B −A′2

t e
−2φ + e−φ. (6.36)

Following the same procedure as last time, we series-expand the integrand at large r to find that it
too goes as

−r3 + O
(

1
r5/3

)
.

By the exact same argument as for the in-plane case, we can remove this divergence by adding the
term

√
−geφ, up to a constant, to the action. To make sure that there is no divergence for r ∼ rh,

we series expand in this region as well and find that the integrand goes as O(1), and so does not give
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rise to a divergence in the integration. Just as for the in-plane case, we also series expand close to the
point rs and we find that there is once again no pole. Our regularised action is therefore

Sreg ∼
∫

M

dD+1xr3

[
1 − eφ/2r3

√
−E2h

B
+ a′2B −A′2

t e
−2φ + e−φ

]
. (6.37)

Now we can again use eq. (4.36) and find that we do in-fact have〈
J t
〉

∼ d &
〈
J z
〉

∼ jz. (6.38)

Results

We can clearly tell from eq. (6.34), that when rh � (E2R4/α)3/10 we get rs ≈ rh. And then, when
r

16/3
s /α � d2 we see that jz ∼ E2T 5/3 since rh is linear in T . As can be observed, eq. (6.34) does

seem to make it possible for jz ∼ 1/T . Looking at fig. 6.2, this is indeed possible but only in a thin
band. This figure was created in the same way as for T -dependence of jx. We can also observe the
region where the exponent becomes 5

3 as predicted analytically.
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Figure 6.2: Exponent of T -dependence for jz. The big red region for higher T gives an exponent for
the T -dependence of 5
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Let us briefly mention that the fact that we get a finite current is not without its questions, especially
later in the next section where we examine the linear response. There we will find that we cannot have
a finite boundary current in the off-plane direction. Looking at small E, we have that

(jz)2 ≈
R4E2

(
d2 + αr

16/3
h

)
α3r2

h

, (6.39)
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which is very similar to the in-plane result eq. (6.24). Let us keep this result in mind for when we look
at the off-plane current in linear response.

6.2 Linear response
In order to further analyse the behaviour of the model for weak electric fields, we can use linear
response theory. This is needed in order to investigate what happens at non-zero kµ. The following
derivation of the linear response equations of motion follows the steps in [7]. We will assume a small
perturbation aµ of a background solution A

(0)
µ . This background solution is chosen to be the solution

to the full e.o.m. when At = At(r) is the only non-zero component. We will also assume massless
embedding of the D7 branes, which means that the background solution can be found via eq. (6.5) by
setting χ ≡ 0, E = 0 and a(r) ≡ 0 (which should not be confused with our perturbation aµ). The
result is

d = e−φ/2r3A′
t√

b
√
eφ −A′2

t

=⇒ A′
t = deφ

√
d2eφ + r6

=⇒ At = d

∫
eφ

√
d2eφ + r6

dr. (6.40)

A side note is that At is proportional to the chemical potential of the field theory, according to the
holographic dictionary [1]. Now we let Aµ → A

(0)
µ + aµ =⇒ Fµν → F

(0)
µν + fµν . We can then rewrite

gµν + e−φ/2Fµν = (gµλ + e−φ/2F
(0)
µλ )(δλ

ν +Xλ
ν ).

In order to make the following calculation a bit simpler (and consistent) we will move to the matrix
representation of these tensors and drop the indices. Then we write X = (g+e−φ/2F (0))−1e−φ/2f and
can then use the relation

detM = eTr(ln(M)). (6.41)
By following the same procedure as in eq. (3.9), we get the Taylor expansion of the DBI determinant
as√

− det
(
g + e−φ/2F

)
≈
√

− det
(
g + e−φ/2F (0)

)[
1 + Tr(X)

2 −
Tr
(
X2)
4 + Tr(X)2

8 + O
(
X3)]. (6.42)

Then we use that fact that (g + e−φ/2F (0))−1 contains a symmetric and an anti-symmetric part to
write it as

(g + e−φ/2F (0))−1 = G+ J (6.43)
where G is symmetric and J is anti-symmetric. And since the only symetric part of (g+ e−φ/2F (0))−1

will be diagonal, we can then write, now using index notation,
Xµ

λ = (Gµν + Jµν)e−φ/2fνλ.

With this, and Tr(Xµ
λ ) = Xσ

σ, the Taylor-expanded part of the DBI determinant in eq. (6.42)
becomes[

1 +
Xµ

µ

2 −
Xµ

νX
ν
µ

4 +
Xµ

µX
ν
ν

8 + O
(
X3)] =[

1 + 1
2e

−φ/2J µνfνµ − 1
4
(

−GµλGσν + J µλJ σν
)
e−φfλνfµσ + 1

8e
−φJ µνfνµJ λσfσλ

]
=

e−φ

[
eφ + 1

2e
φ/2J µνfνµ + 1

4
(
GµλGσν − J µλJ σν + 1

2J λνJ µσ
)
fλνfµσ

]
.

(6.44)

Looking at
√

− det
(
g + e−φ/2F (0)

)
we see that it becomes√

− det
(
g + e−φ/2F (0)

)
= e−3φ/2r3 sin(θ)

8b2

√
eφ − (A′

t)2 = e−3φ/2r6 sin(θ)
8b2

√
d2 + e−φr6

=

P
He−φ/2

√
d2 +H

= PL∗

(6.45)
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where H ≡ r6e−φ = αr16/3, P ≡ sin(θ)
b2 and L∗ ≡ He−φ/2

√
d2+H

. Inserting all of this into the expression for
the Lagrangian (eq. (6.4)), we see that its expansion around A

(0)
µ becomes

L ≈ −τ7PL∗

[
eφ + 1

2e
φ/2J µνfνµ + 1

4
(
GµλGσν − J µλJ σν + 1

2J λνJ µσ
)
fλνfµσ

]
. (6.46)

Now we wish to derive the e.o.m. for aν . We note that the Lagrangian only depends on the derivatives
of aν and therefore, the e.o.m. will be ∂µ

∂L
∂fµν

= 0. The resulting equations are

∂µ

(
L∗

[
eφ/2J νµ +

(
GσνGλµ − J σνJ λµ + 1

2J µνJ σλ
)
fσλ

])
= 0. (6.47)

In order to get further we need to find the non-zero components of Gµν and J µν from eq. (6.43). We
can see that, in the matrix representation,

(g+e−φ/2F (0))−1 =



grr
grrgtt+e−φA′2

t

e−φ/2A′
t

grrgtt+e−φA′2
t

0 0 0 0 0 0

− e−φ/2A′
t

grrgtt+e−φA′2
t

gtt
grrgtt+e−φA′2

t
0 0 0 0 0 0

0 0 1
gxx

0 0 0 0 0
0 0 0 1

gxx
0 0 0 0

0 0 0 0 1
gzz

0 0 0
0 0 0 0 0 1

g55
0 0

0 0 0 0 0 0 g77
−g2

67+g66g77
− g67

−g2
67+g66g77

0 0 0 0 0 0 − g67
−g2

67+g66g77

g66
−g2

67+g66g77


where we can immediately see the symmetric and anti-symmetric part. We note here that we assume
that the aµ have no component in the θ, ψ or φ-directions and do not depend on these coordinates.
Therefore, we can safely ignore these components of G. We find that the non-zero components are

Gtt = −h1/2(d2 +H)
HB

Gxx = Gyy = h1/2

Grr = Bh−1/2(d2 +H)
H

Gzz = h1/2e2φ

J tr = −J rt = −d
√
d2 +H

H
.

We note here that ∂µL∗e
φ/2J νµ = 0 since eφ/2L∗J tr = −d, which doesn’t depend on either t or r.

We can now write the equations for aµ explicitly. But first we use our gauge-invariance to choose
ar = 0 (radial gauge). The e.o.m. for ar then results in the following constraint,

Gtt∂tftr +Gxx∂xfxr +Gxx∂yfyr +Gzz∂zfzr = 0. (6.48)

For the other components, the equations are

∂r

[
L∗G

ttGrrfrt

]
+ L∗G

tt
[
Gxx∂xfxt +Gxx∂yfyt +Gzz∂zfzt

]
= 0

∂r

[
L∗G

xxGrrfrx

]
+ L∗G

xx
[
Gtt∂tftx +Gxx∂yfyx +Gzz∂zfzx

]
= 0

∂r

[
L∗G

xxGrrfry

]
+ L∗G

xx
[
Gtt∂tfty +Gxx∂xfxy +Gzz∂zfzy

]
= 0

∂r

[
L∗G

zzGrrfrz

]
+ L∗G

zz
[
Gtt∂tftz +Gxx∂xfxz +Gxx∂yfyz

]
= 0.

(6.49)
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6.2.1 Linear response renormalisation and boundary conditions
Among the quantities that are of interest in this model is plasmon dispersion relations. However, in
order to obtain these, we need to change to a mixed boundary condition [35]. This can be done by
adding boundary terms to the action, similarly to how holographic renormalisation is done. In this
section we will both make sure that the action is properly renormalised and introduce boundary terms
to change our b.c.

Solving for aµ

First of all, we must solve our equations of motion (eq. (6.48) and eq. (6.49)) and plug it into our linear
response action to see whether it diverges. The solution will be done as a power expansion in r near
the boundary at r → ∞. First, we Fourier-transform our equations in regards to t, x, y, z. Since L∗
and Gµν only depend on r, we only need to worry about the derivatives, using that ∂µ → ikµ (where
µ 6= r) under the Fourier-transform and kµ = (−ω, kx, ky, kz). After this, the differential equations
now consist of (the Fourier-transformed) aµ and their first and second derivatives in r, which we will
denote simply by a′

µ and a′′
µ respectively. We also note that the there is no difference between the x

and y-direction, and so we can always align our coordinate system so that ky ≡ 0. We also make a
change of variable u = 1

r1/3 . This of course means that

a′
µ(r) = du

dr

d

du
aµ(u) = − 1

3r4/3 a
′
µ(u) = −x4

3 a
′
µ(u)

a′′
µ(r) = −x4

3

(
− 4x3

3 a′
µ(u) − x4

3 a
′′
µ(u)

)
= x7

9
(
4a′

µ(u) + xa′′
µ(u)

) (6.50)
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Inserting this change of variables into our equations, and writing them in matrix-form, we can use
row-reduction to simplify them a bit. The resulting equations are

0 =
9R4 (α2u4k2

x + k2
z

)
α (α+ d2u16)

(
u10r

10/3
h − 1

)at(u) + 9αR4u4ωkx

(α+ d2u16)
(
u10r

10/3
h − 1

)ax(u)+

9R4ωkz

α (α+ d2u16)
(
u10r

10/3
h − 1

)az(u) +
(
21d2u16 − 3α

)
d2u17 + αu

a′
t(u) + a′′

t (u)

0 =
9R4

(
k2

z

(
u10r

10/3
h

−1
)

α(α+d2u16) + u4ω2
)

(
u10r

10/3
h − 1

)2 ax(u) − 9R4kxkz

α (α+ d2u16)
(
u10r

10/3
h − 1

)az(u)+

(
5d2u16

(
3u10r

10/3
h − 1

)
+ α

(
7u10r

10/3
h + 3

))
u (α+ d2u16)

(
u10r

10/3
h − 1

) a′
x(u) + 9R4u4ωkx(

u10r
10/3
h − 1

)2 at(u) + a′′
x(u)

0 =
9R4

(
αu4

(
ω2 (α+ d2u16)+ αk2

x

(
u10r

10/3
h − 1

))
+ k2

z

(
u10r

10/3
h − 1

))
α (α+ d2u16)

(
u10r

10/3
h − 1

)2 ay(u)+

(
5d2u16

(
3u10r

10/3
h − 1

)
+ α

(
7u10r

10/3
h + 3

))
u (α+ d2u16)

(
u10r

10/3
h − 1

) a′
y(u) + a′′

y(u)

0 =
9R4u4

(
αk2

x

(
u10r

10/3
h

−1
)

α+d2u16 + ω2
)

(
u10r

10/3
h − 1

)2 az(u) − 9αR4u4kxkz

(α+ d2u16)
(
u10r

10/3
h − 1

)ax(u)+

9R4u4ωkz(
u10r

10/3
h − 1

)2 at(u) +

(
d2u16

(
11u10r

10/3
h − 1

)
+ α

(
3u10r

10/3
h + 7

))
u (α+ d2u16)

(
u10r

10/3
h − 1

) a′
z(u) + a′′

z (u)

As can be observed, the equation for ay has decoupled and can be solved separately. All these equations
must be solved using a series solution. That suits us well since that is the form we wish to put the
solution in.

The series solution that we assume follows (note that Einstein’s summation convention is not used
here) as

aµ(u) = Aµ

[
upµ +

∑
n=1

Aµnu
n+pµ

]
(6.51)

where we only look at µ = t, x, z for the moment. Plugging this into our equation and series expanding
it near u = 0, we first find equations for the pµ. The solutions are

pt = 0 or pt = 4
px = 0 or px = 4
pz = 0 or pz = 8

We then look at solutions on the form

aµ(u) = Aµ

[
1 +

∑
n=1

Aµnu
n
]

+ Bµu
4
[
1 +

∑
n=1

Bµnu
n+4
]

+ Cµ ln u
[
Cµ0 +

∑
n=1

Cµnu
n
]

(6.52)
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for µ = t, x, z. All A,B, C are independent of pµ but can of course depend on kµ and other parameters.
By inserting our series ansatz into the series-expanded equations for aµ (µ = t, x, z) we can get
equations for the constants. After changing our variable back to r, the solutions end up being

at(r) = At − 9R4kz (Atkz + ωAz)
4α2r2/3 + Bt

r4/3 + 27R8k3
z ln(r)(Atkz + ωAz)

16α4r4/3 + 3R4Btk
2
z

4α2r2 +

81R12k5
z ln(r)(kzAt + ωAz)

64α6r2 + 3R4kx (Atkx + ωAx)
4r2 + 81R12k5

z (Atkz + ωAz)
32α6r2

ax(r) = Ax + 9R4kz(Azkx − Axkz)
4α2r2/3 + Bx

r4/3 + 27R8k3
z ln(r)(Axkz − Azkx)

16α4r4/3 + 3R4Bxk
2
z

4α2r2 +

81R12k5
z ln(r)(Axkz − Azkx)

64α6r2 − 3R4ω(Atkx + ωAx)
4r2 + 81R12k5

z(Axkz − Azkx)
32α6r2

az(r) = Az +
3R4 (kz(Axkx + ωAt) + Az(ω2 − k2

x)
)

4r2 + Bz

r8/3 −

27R8k2
z ln(r)

(
ωAtkz + Axkxkz + (ω2 − k2

x)Az

)
32α2r8/3 .

(6.53)

These solutions directly satisfies the first-order constraint as well, as is required if the radial gauge is
a consistent gauge choice.

For the ay(u)-equation, we use a series solution as well, however, the fact that it is uncoupled from
the other equations makes it significantly easier to solve. The solution is

ay(r) = By

r4/3

(
1 + 3R4k2

z

4α2r2/3 + 27R8k4
z

128α4r4/3 + 3R4

20r2 (k2
x − ω2) + 81R12k6

z

2560α6r2

)
+

Ay

(
1 − 9R4k2

z

4α2r2/3 + R8k4
z(81 + 108 ln(r))

64α4r4/3 + 3R4(k2
x − ω2)

4r2 + 81R12k6
z(11 + 4 ln(r))
256α6r2

)
.

(6.54)

Checking for and removing divergences

With the e.o.m. solved asymptotically near the boundary we can plug these into the action to check
whether it is finite. The first step is to write the solution to aµ on a form that lets us check this more
easily. We write them as

aµ(r) = a(0)
µ + a

(1)
µ

r2/3 + a
(2)
µ

r4/3 + a
(3)
µ ln(r)
r4/3 + a

(4)
µ

r2 + a
(5)
µ ln(r)
r2 (6.55)

for µ = t, x, y and

az(r) = a(0)
z + a

(1)
z

r2 + a
(2)
z

r8/3 + a
(3)
z ln(r)
r8/3 (6.56)

On the boundary, we still have some gauge-freedom, and we use that to set a(0)
t = 0. Now we look

at our action, which we need to massage a bit before we insert our solutions. The Lagrangian comes
from eq. (6.46).

S = −τ7P

∫
M

drd7xL∗

[
eφ + 1

2e
φ/2J µνfνµ + 1

4
(
GµλGσν − J µλJ σν + 1

2J λνJ µσ
)
fλνfµσ

]
. (6.57)

We immediately notice that the eφ-term in the action will cause a divergence in the integral, since
L∗e

φ ∼ r3 at large r. However, this term can be safely removed without changing the equations of
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motion. The term is removed by adding a term
√

−geφ = Pr3 (up to a constant) to the action. This
is also what is done in eq. (6.20) and eq. (6.37). For the other parts of the action, we have∫

M

drd7xL∗

[
1
2e

φ/2J µνfνµ + 1
4
(
GµλGσν − J µλJ σν + 1

2J λνJ µσ
)
fλνfµσ

]
=∫

M

drd7x

[
1
2∂σ

(
L∗
(
GµλGσν − J µλJ σν + 1

2J λνJ µσ
)
fλν

)
aµ

]
+∫

∂M

d7x

√
−γ√
−g

nrL∗

[
eφ/2Jσr + 1

2
(
GrλGσν − J rλJ σν + 1

2J λνJ rσ
)
fλν

]
aσ

(6.58)

where we again have used that ∂µL∗e
φ/2J µν = ∂r(−d) = 0. After the partial integration, the first

integral in eq. (6.58) is zero when we insert our solution to the equation of motion, so we are only left
with the boundary integral, which we write in momentum space, for compatibility with our aµ, below.∫

r=Λ

d7k

(2π)7

√
−γ√
−g

nrL∗

[
eφ/2Jσr + 1

2
(
GrλGσν − J rλJ σν + 1

2J λνJ rσ
)
fλν

]
aσ (6.59)

where fµν = ikµaν − ikνaµ and Λ is the UV-regulator for r, which will be taken to infinity in the end.
Now we wish to look at the behaviour at large r. First of all

√
−γ√
−g

nr = 1 (6.60)

at large r. Note that both sides of the above equation is a scalar as we only take the r-component of
the normal vector nµ. We then have that

L∗e
φ/2Jσraσ = L∗e

φ/2J trat ∼ a
(1)
t

r2/3 + O
(

1
r4/3

)
(6.61)

L∗G
rλGσνfλνaσ = L∗G

rr
(
Gtta′

tat +Gxxa′
xax +Gxxa′

yay +Gzza′
zaz

)
∼

− a
(0)
t a

(1)
t r2/3 + a(0)

x a(1)
x r2/3 + a(0)

y a(1)
y r2/3 + a(0)

z a(1)
z r2/3 + O(1).

(6.62)

The last two terms in eq. (6.59) are 0 since we work in ar = 0 gauge and J tr = −J rt is the only
non-zero element of J µν . As we can see from the expression above, the on-shell action is divergent for
r → ∞.

Now we need to remove these divergences from the on-shell action. The way to do this is to re-scale
kz and the components of az by an essentially infinitesimal factor. This idea was conceived by Marcus
Tornsö. For kz we re-scale it by

kz → e−φUV kz = α

Λ2/3 kz. (6.63)

The argument behind this is due to how the z-direction is singled out in the metric. If one looks at the
metric in eq. (5.1) we see that the e−2φ-factor makes it so that the z-direction gives no contribution,
comparatively to the other directions, to ds2 at very large r. One can essentially see this as the
z-direction having collapsed, no longer having an extension. This is visualised in fig. 5.1. It is only
natural then that a wave travelling in this direction gives rise to problems, in this case divergences in
the action. Similarly, we argue that also all the components in az also should be rescaled by the same
factor. Later on, when dealing with boundary conditions, we will also rescale components with a free
z-index by the same factor. All in all, the rescaling of kz and az means that all the divergences in
eq. (6.62) disappear without any addition of boundary terms.
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Boundary conditions

We now wish to utilise the analysis done in section 4.2.1 to change our boundary conditions. The
boundary condition we wish to utilise is the one written in eq. (4.46). Before we can do that however,
there is a subtlety we must take into account, which is that we must add a dilaton-factor into the
F 2-term. This term now looks like

SF 2 = λ−1

4

∫
∂M

dDx
√

−γeφFµνFµν . (6.64)

This dilaton-factor simply carries over into the boundary condition, that now take the following form

√
−γ

[
nr√
−g

∂

∂ε

( ∂L
∂Frµ

)
+ eφλ−1CF 2γνµ∂σ∂[σην]

]
= 0. (6.65)

The reason we want to use this mixed b.c. is because this type of b.c. has given rise to plasmonic
dispersion relations in earlier work [35]. The idea is to see whether the same is true is this case.

We will make use of the re-scaling of kz,Az and Bz done to remove the divergences, but we need to be
careful using it. We will therefore start without this re-scaling and add it later. Let us now look at this
boundary condition, starting with the first term. For this we need the explicit form of the Lagrangian
which is a very large expression, and no-one will be made happy by writing it out. Let us instead
skip to the part where the expression is manageable. We take the derivative of the Lagrangian with
respect to A′

µ, let Aµ → Aµ + εηµ and take the derivative with respect to ε. Let us here note that we
put restrictions on Aµ beyond the radial gauge, namely that Ax,y,z ≡ 0 (according to our background
solution) and that the components in the direction of the 3-sphere are 0 as well. This is because in
later steps we wish to set aµ = ηµ. With these restrictions, letting ε → 0 yields

∂

∂ε

( ∂L
∂Frt

)∣∣∣∣∣
ε→0

= τ7
√
Beφ/2√

−g
(B (eφ −A′2

t ) + hA2
tk

2
x + he2φA2

tk
2
z)3/2

[
eφ
(

− hωeφAtkzηzA
′
t+

heφAtk
2
z (Atη

′
t − ηtA

′
t) +Bη′

t

)
+ hω (−At) kxηxA

′
t + hAtk

2
x (Atη

′
t − ηtA

′
t)
] (6.66)

for the t-component. The result for x, y, z follows similarly. Remembering eq. (6.60) and the back-
ground solution for At in eq. (6.40) we can look at the leading order in r, and find that

√
−γ nr√

−g
∂

∂ε

( ∂L
∂Frµ

)∣∣∣∣∣
ε→0

=


τ7Pαr

7/3η′
t µ = t

−τ7Pαr
7/3η′

x µ = x

−τ7Pαr
7/3η′

y µ = y

−τ7Pr
3eφη′

z µ = z

(6.67)

where we remember that P = sin(θ)
8b2 .

Let us now turn to the second term. Ignoring the constants λ and CF 2 for the moment, we get that,
at leading order in r, it becomes

√
−γγνµ∂σ∂[σην] =


R3P

(
k2

xηt + ωkxηx + e2φ(k2
zηt + ωkzηz)

)
µ = t

−R3P
(
ωkxηt + ω2ηx + e2φ(−k2

zηx + kxkzηz)
)

µ = x

−R3P
(
−k2

xηy + ω2ηy − e2φk2
zηy

)
µ = y

−R3Pe2φ
(
ωkzηt + kxkzηx − k2

xηz + ω2ηz

)
µ = z.

(6.68)
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To get further, we must realise that we can set ηµ = aµ. Since we are looking at boundary conditions,
we set r = Λ. Performing the re-scaling and setting CF 2 = 4

3Rτ7 we find the following set of boundary
conditions

− λαBt +R4((k2
x + k2

z)At + ω(kxAx + kzAz)
)

= 0
− λαBx −R4((ω2 − k2

z)Ax + kx(ωAt + kzAz)
)

= 0
− λαBy −R4Ay

(
ω2 − k2

x − k2
z) = 0

(6.69)

Note that for the z-component it is a bit trickier due to the re-scaling. Re-scaling kz, all components
in az as well as rescaling the z-component of the boundary condition (because it has a free z-index)
we find that the boundary condition becomes

kz(ωAt + kxAx) + Az(ω2 − k2
x) = 0 (6.70)

for the z-component.

As is apparent, in order to find a dispersion relations, we need a relation between the different Aµ and
Bµ. This essentially mean that we must solve the e.o.m. in the entire bulk (and use in-falling boundary
conditions at the horizon). However, this cannot be done analytically. Instead we must use numerical
methods. Then, we can read off the values of aµ and a′

µ at the boundary, and since we know that the
leading orders for those are proportional to Aµ and Bµ respectively, we can find Aµ

Bν
. The result will

of course be dependent on kµ, and so we must choose a kµ, solve the e.o.m. (eq. (6.49)) and then see
if it fulfils the b.c. (eq. (6.69) and eq. (6.70)).

The first step is to change our variables, by setting

u = rh

r
.

Because of the horizon at rh, we only solve the equations in the range r ∈ (rh,∞), we will have
that u ∈ (0, 1). We then solve the equations asymptotically near the horizon (at u = 1) and use the
in-falling boundary condition. We can then solve the equations of motion numerically from u → 1 to
u → 0, for a given kµ. We then check whether the boundary conditions are fulfilled. If not, we choose a
new kµ and redo the process. Eventually we will find a dispersion relation for ω and ki. We also define
new quantities, k̂µ ≡ R2kµ

rh
, α̂ ≡ αr

−2/3
h and d̂ ≡ d

r
8/3
h

√
α

to make the solution simpler. Implementing
the solution was done by Marcus Tornsö. One of the modes can be seen in fig. 6.3. As can be observed
from its gapped nature, the mode follows that of a plasmonic dispersion relation.

50



6. Properties of the D3-D5-D7 model

Figure 6.3: Dispersion relation k̂x(ω̂) for a plasmonic mode.

6.2.2 Linear response conductivity at k = 0
We will now calculate the behaviour for σ(ω, k = 0) from the linear response expansion of our La-
grangian. Let us first look at the field theory current with our Lagrangian, which we calculate by
eq. (4.36)

〈
J µ
〉

=
√

−γ√
−g

nr
∂L
∂Frµ

∣∣∣∣∣
∂M

=


τ7Pαr

7/3a′
t µ = t

−τ7Pαr
7/3a′

x µ = x

−τ7Pαr
7/3a′

y µ = y

−τ7Pr
3eφa′

z µ = z

(6.71)

This result follows from a calculation that is nearly identical to the one done to arrive at eq. (6.67).
The only real difference is that this one uses slightly different formalism. For eq. (6.67) we vary the
gauge-field by Aµ → Aµ + εηµ and for eq. (6.71) we vary the gauge field by Aµ → Aµ + aµ. We should
keep in mind that the linear response is done around a background solution. Then remembering that
the leading order of the vector potential of the field theory is proportional to the vector potential of
the gravity theory, which means that we have

Ei ∼ −i(ωa(0)
i + kia

(0)
t ). (6.72)

Even though we have used our gauge freedom in the bulk, we should still have gauge-freedom on the
field theory side. The field theory does not know anything about its gravitational dual, and so its
gauge-freedom should not be used up when we choose our radial gauge. Therefore, we choose to use
this gauge freedom to set a(0)

t = 0 at the boundary. This means that we have

Ei ∼ −iωa(0)
i . (6.73)

Next, the fact that k = 0 means that all the equations of motion decouple from each other. This
means that the equation of motion for ax and ay are now identical, and so we only need to consider
one of them. It also means that there will only be diagonal components in the conductivity matrix.
We can therefore calculate it by

σxx = J x

Ex
∼ − iαr7/3a′

x(r)
ωa

(0)
x

and σzz = J z

Ez
∼ − ir11/3a′

z(r)
αωa

(0)
z

. (6.74)
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Note that we will wait with any re-scaling of az to later on. From this rquation we find that we need
to know a

(1)
x /a

(0)
x and a

(1)
z /a

(0)
z at the boundary. But this cannot be found by simply expanding the

e.o.m. at the boundary and using the boundary conditions. Instead we must, again, solve the e.o.m.
near the horizon, use in-falling boundary conditions and then solve for ax and az out to the boundary.

Conductivity for ω = 0

Let us begin by looking at the case where ω = 0 as well. Or rather, we consider ω to be small and
let it go to 0 at the end. This case can actually be solved analytically. Let us start with the in-plane
case, that is, solving for ax(r). The equation of motion is

r8/3R4ω2(
r10/3 − r

10/3
h

)2 ax(r) +
αr16/3

(
3r10/3

h + 7r10/3
)

− d2
(
r10/3 − 11r10/3

h

)
3r
(
r10/3 − r

10/3
h

) (
d2 + αr16/3

) a′
x(r) + a′′

x(r) = 0. (6.75)

This equation can be written on the form

q(r)ax(r) + p(r)a′
x(r) + a′′

x(r) = 0 (6.76)

where we see that r = rh is a regular singular point for our equation. Due to the form of q and p,
we can use Frobenius method. We make a series ansatz ax =

∑
n=0 an(r − rh)n+b where an are the

coefficients. Series expanding q and p, we find that

q(r) ≈ 9R4ω2

100r2
h (r − rh)2 and p(r) ≈ 1

r − rh
(6.77)

to leading order in r − rh. We can now solve for b,

b(b− 1) + b+ 9R4ω2

100r2
h (r − rh)2 = 0 =⇒ b = ±i3R

2ω

10rh
. (6.78)

As we approach r = rh, the factor (r − rh)b will oscillate rapidly. Now we make use of the in-falling
boundary condition, which says that we must choose b = −i 3R2ω

10rh
. This can be seen by restoring the

time dependence. Remember that we Fourier-transformed our ax earlier. Near the horizon, we can
write our ax(k, r) as

ax(k, r) ≈ (r − rh)±i 3R2
10rh

ω = exp
(

±i ln(r − rh) 3R2

10rh
ω

)
(6.79)

changing variables to r̃ ≡ ln(r − rh) 3R2

10rh
we have that the inverse Fourier transform of this is δ(t± r̃).

For the plus-sign this is a wave moving out from the horizon, and for the minus sign it is moving
towards the horizon. As stated earlier in section 4.2.2, we must choose the wave moving towards the
horizon to keep our field theory causal.

With this, we rewrite our equation by factoring out this oscillating factor. We define

ãx(r) ≡ (1 − rh

r
)i 3ω̂

10 ax(r) (6.80)

where we have defined
ω̂ ≡ R2ω

rh
. (6.81)

We also define
d̂ ≡ d

r
8/3
h

√
α
. (6.82)
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We use these to make the following expressions a bit easier to handle. We then multiply our equation
eq. (6.75) by (1 − rh

r )i 3ω̂
10 . After some algebra we arrive at the following equation

(
−

10i
(
αd̂2r

16/3
h

(
4r10/3rh + 17rr10/3

h − 14r13/3
h − 7r13/3

)
+ αr16/3

(
−4r10/3rh + 9rr10/3

h − 6r13/3
h + r13/3

))
(r − rh)2

(
r10/3 − r

10/3
h

)(
αd̂2r

16/3
h + αr16/3

) +

100r14/3ω̂rh(
r10/3 − r

10/3
h

)2 − 9ω̂rh

(r − rh)2

)
ω̂rh

100r2 ãx(r)+

(
d̂2
(

11r26/3
h − r10/3r

16/3
h

)
+ 3r16/3r

10/3
h + 7r26/3

3r
(
r10/3 − r

10/3
h

)(
d̂2r

16/3
h + r16/3

) − 3iω̂rh

5r2 − 5rrh

)
ã′

x(r) + ã′′
x(r) = 0.

Now we assume that ω (and therefore ω̂) is small. So we make an ansatz for the solution ãx(r) =
1 + iω̂f(r) where f is a function of r. With this ansatz inserted into our equation, we can see that
to first order in ω̂, there will not be any f(r)-term. So we define g(r) ≡ f ′(r). Only keeping the
terms that are at most first order in ω̂, we can solve the equation analytically (where we of course use
Mathematica). The solution for g(r) is

g(r) = 3rh

10(r2 − rrh) + C1r
11/3(

r10/3 − r
10/3
h

)√
d̂2r

16/3
h + r16/3

where C1 is a constant. In order to make sure that the solution is regular at the horizon, we series
expand the solution at r − rh and find that it goes as

3
10

(
1 + C1√

1 + d̂2r
4/3
h

)
1

r − rh
+ O(1) (6.83)

We require that the solutions is regular at the horizon, and we must therefore choose

C1 = −r4/3
h

√
d̂2 + 1 (6.84)

to remove the (r − rh)−1 behaviour. Now let’s turn this back into our ax(r). Since we want to know
what ax(r) and a′

x(r) is on the boundary, we expand our solution at r → ∞, take the primitive function
to get f(r), and use that ãx(r) = 1 + iω̂f(r). Multiplying by (1 − rh

r )−i 3ω̂
10 we arrive at our ax(r). We

have, at r → ∞

ax(r) ≈ 1 +
3i
√
d̂2 + 1ω̂r4/3

h

4r4/3 . (6.85)

Inserting this solution into eq. (6.74) we find that, in the ω → 0 limit,

σxx ∼ R2

r
7/3
h

√
α
(
d2 + αr

16/3
h

)
(6.86)

Just like in the non-linear case in section 6.1.1, if we want to have σ ∼ C
rh

, we can solve for α and find

α = 1
2r16/3

h

(√
4C2r8

h

R4 + d4 − d2

)
. (6.87)
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Both eq. (6.86) and the expression for α matach exactly what we found when we required the same
behaviour in the small E expansion of the non-linear current in section 6.1.1, see eq. (6.24) and
eq. (6.25). Let us now take the analysis a step further. This expression for α gives us linear in T
resistivity for all temperatures. If we wish, we can restrict ourselves to large or small temperatures by
series-expanding α and σ. We have that

α = C

R2r
4/3
h

+ O(r−16/3
h ) =⇒ σxx = C

rh
+ O(r−5

h ) (6.88)

for rh � d4R4

4C2 and

α =
C2r

8/3
h

d2R4 + O(r32/3
h ) =⇒ σxx = C

rh
+ O(r7

h) (6.89)

for rh � d4R4

4C2 . We could of course expand around other values, but these are the most interesting
ones that have been examined.

Let us move on to the off-plane conductivity. The steps taken are essentially the same, and the
equations and solutions look very similar, mainly differing by eφ-factors. We will therefore omit to
writing down most of the expressions. We begin by using Frobenius method to find that the oscillating
factor, after using in-falling boundary conditions, is

(r − rh)−i 3R2
10rh

ω
. (6.90)

Factoring this factor out from our az(r), multiplying the equation by (1 − rh

r )i 3R2
10rh

ω, changing to the
hatted quantities and making the ansatz ãz(r) = 1 + iω̂f(r) we again find that the f(r)-term vanishes
from the equation when we expand in small ω. Then we set g(r) ≡ f ′(r) and find the solution to be

g(r) = r7/3

10
(
r10/3 − r

10/3
h

)[3r1/3
h

(
r3

h

r10/3 + r2
h

r7/3 + rh

r4/3 −
r

1/3
h + r1/3

(rrh)1/3 + r
2/3
h + r2/3

+ 1
r1/3

)
+

10C2√
d̂2r

16/3
h + r16/3

]
.

Demanding the solution to be regular at the horizon we find that

C2 = −
√
d̂2 + 1 − r

8/3
h . (6.91)

Then series-expanding the solution and taking us back to az(r), it becomes

az(r) = 1 +
3i
√
d̂2 + 1ω̂r8/3

h

8r8/3 + 9ω̂2r2
h

200r2 . (6.92)

Note that the third term here does not quite match the numerical factor when compared to the more
general solutions given in eq. (6.53), in the ki → 0 limit. This should be due to the fact that we have
only solved the equation of motion to first order in ω, while this is a second order term. Transforming
back from our hatted quantities, we find that the conductivity is, in the ω → 0 limit,

σzz ∼
R2
√
d2 + αr

16/3
h

α3/2rh
(6.93)

which is the same expression as the one found when we took the small E limit of the non-linear current
calculation, see eq. (6.39). One interesting thing to note here is that we have not flattened our az and
received a finite current. One might object with that our action should be divergent then, but as both
ki and ω are 0, all the divergent terms disappear, as can be found by looking at the solutions for aµ

(eq. (6.53) and eq. (6.54)) and the search for divergences in the on-shell action.
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Conductivity for ω 6= 0

Moving on to the case where ω 6= 0, we need to solve the equations of motion numerically. This will
only be done for the in-plane case and so the equation we wish to solve is eq. (6.75), however we
must first change variables to u ≡ rh

r . Also changing to the hatted quantities, the equation takes the
following (rather compact) form

ω̂2(
u10/3 − 1

)2 ax(u) +

(
d̂2 (17u10/3 − 7

)
u16/3 + 9u10/3 + 1

)
3u
(
u10/3 − 1

) (
d̂2u16/3 + 1

) a′
x(u) + a′′

x(u) = 0. (6.94)

This equation can be solved numerically, provided with proper boundary conditions. Just as for
eq. (6.75), we solve our new equation near u = 1 to leading order to find the leading behaviour as

ax(u) ≈ (u− 1)− 1
10 (3iω̂) (6.95)

where we have used our in-falling boundary condition. We use this in our numerical solution to fixate
ax(u = ε) and a′

x(u = 1− ε), where ε is a small number. Given numerical values for d̂ and ω̂. The plots
below show ax(u) for d̂ = ω̂ = 1 and for d̂ = ω̂ = 1. As can be observed, increased ω̂ increases the
oscillatory behaviour of ax(u). Changes in d̂ do not produce large changes in the general behaviour.

Figure 6.4: A solution of eq. (6.94) for ax(u) for d̂ = ω̂ = 1. We have u in the range 0.0001 ≤ u ≥
0.9999.
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Figure 6.5: A solution of eq. (6.94) for ax(u) for d̂ = 1 and ω̂ = 10. We have u in the range
0.0001 ≤ u ≥ 0.9999.

From these solutions we can read of the values of ax(u = ε) and a′
x(u = ε). It should be noted however

that a′
x(u) → 0 as u → 0, and so we should be careful with reading of this value.

The next step is to calculate the conductivity for different ω̂, d̂ and rh. This is done via equation
eq. (6.74). We will have to choose a value for α, and we use that expressions we found that give linear
in T resistivity for all temperatures. In fact, by using d̂, we have that the expression for α becomes

α = 1
2


√

4C2 + α2d̂4R4r
8/3
h

R2r
4/3
h

− αd̂2

 =⇒ α = 1
R2r

4/3
h

√
1 + d̂2

. (6.96)

As can be noticed, there is no need for Taylor-expansions for the different magnitudes of rh. Numeri-
cally, we set R = 1, as this is the length-scale we should compare everything to. This is okay, despite
the fact that we have earlier set α′ = 1, since we plot dimensionless quantities. When using our hatted
quantities, the conductivity becomes

σxx = − iCr7/3a′
x(r)

r
4/3
h

√
1 + d̂2rhω̂ax(r)

= iCu2a′
x(u)

u7/3rh

√
1 + d̂2ω̂ax(u)

= iCa′
x(u)

u1/3rh

√
1 + d̂2ω̂ax(u)

(6.97)

when using that r = rh/u. This means that our conductivity always has a r−1
h -dependence when using

these quantities. Of course, the actual temperature-dependence might look different, but it is hidden
within d̂ and ω̂. Since C and rh mealy changes the order of magnitude for |σ(ω̂)|, we set them both to
1 for the numerical calculation.

We now plot |σ(ω̂)|R and arg(σ(ω̂)), starting at ω̂ = 0.001 increasing by factors of 1.5 until reaching
ω̂ = 16586. We plot the results logarithmically since we want to capture many orders of magnitude.
In the case of |σ(ω̂)|, it is the exponent of the ω̂-dependence that is interesting (which is the same as
the exponent of the ω-dependence). The result is found in fig. 6.6.
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Figure 6.6: Plot of |σ(ω̂)|R (upper) and arg(σ(ω̂)) (lower) for different values of d̂. The dashed line
in the left figure shows a ω̂−1-dependence and the dash-dot line shows ω̂1/3-dependence.

Starting with |σ(ω̂)|, there is a range of ω̂ where |σ(ω̂)| ∼ ω̂−1 for d̂ ≥ 10. However, for smaller d̂ this
is not the case. Additionally, for all the d̂-values, the |σ(d̂)| ∼ ω̂1/3 for large enough ω̂. The reason
for stopping at d̂ = 0.1 is that every values of d̂ below this produce the same |σ(ω̂)|. This is easily
understood since

√
1 + d̂ ≈ 1 when d̂ becomes small. For the argument, all the different cases tend to

0 as ω̂ → 0, however this happens outside the plotted range for the larger d̂-cases. For the larger d̂, the
argument reaches π/2 and stays there for a while until it drops down. For all the different (examined)
values of rh and d̂, arg(σ) ≈ −0.52 = −30◦ for large enough ω̂.
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6.3 Possible expressions for α for linear in T resistivity
In several instances in this chapter we have given an expression for α in order to get resistivity linear
in temperature. However, we must ask ourselves whether we can really set α to depend on the
other quantities in this way. We must remember from section 5.1 that α is already defined via other
quantities. Looking at eq. (5.3)

eφ =
(

3r
4Qf

)2/3
gs where Qf = 4πNf

9
√

3
ls

and the definition of α eq. (6.14)

α ≡
(4Qf

3

)2/3 1
gs

=
(16πNf

27
√

3
ls

)2/3 1
gs

(where we have now included gs) we see that to determine the behaviour of α, we must ask ourselves
how exactly (Nf ls)2/3

gs
behaves. Remember that we require ls/R � 1 to avoid quantum gravitational

contributions and Nf � 1 for the smearing approximation [37]. We can also get some clues from the
length scale R. From eq. (5.2) we have that

R4 = 4096
1215πNcα

′2gs

which means that Nc � 1 in order for R � ls. gs should also be small to avoid stringy corrections.
Since Nf/Nc ≡ λfc must be kept fixed and finite, we can write

(Nf ls)2/3

gs
∼ (Ncls)2/3

gs
= (Ncl

4
sgs)2/3

l2sg
5/3
s

∼ R2

l2s

1
g

5/3
s

R2/3 =⇒ α � R2/3 (6.98)

So α must become very large in comparison to R, even with a finite gs. A quick note on units is that
in order to restore the length-units of the different quantities, we only need to re-insert factors of α′.
This will be used below.

So, does the requirement that α be very large mean that also C, the proportionality constant that
determines the slope of the linear in T resistivity also need to large? This would make the resistivity
essentially 0, as it goes as

ρ ∼ rh

C
(6.99)

At first glance, it would appear that the answer is yes. With the units restored, the expression for α,
eq. (6.87), becomes

α = α′2

2r16/3
h

(√
4C2r8

h

R4 + d4α′8 − d2α′4

)
. (6.100)

This mean that, assuming that rh/R ∼ 1 and dR3 ∼ 1,

α

R2/3 ∼ α′2

2R6

(√
4C2R4 + α′8

R−12 − α′4

R6

)
∼ α′2

R4

√
C (6.101)

which becomes very small if we want ls � R, unless C ∼ R8/α′4 � 1. Even if rh ∼ ls d ∼ l−3
s we

would have
α

R2/3 ∼ 1
2l4/3

s R2/3

(√
4C2l8s
R4 + l4s − l2s

)
= l

2/3
s

2R2/3

(√
4C2l4s
R4 + 1 − 1

)
(6.102)

which is at least < 1 with ls/R � 1, unless C ∼ R2/l2s � 1. It is clear that this behaviour for α is not
amenable with eq. (6.98). So from this analysis it would appear that C would need to be very large
indeed. However, there are arguments to why this need not be true, but that is more appropriate for
the next chapter.
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6.4 Summary
Let us in this section quickly sum up the most important results, so that they can be more easily
over-viewed. First, the conductivity at zero wave-vector and zero frequency in the in-plane direction
is

σxx ∼ R2

r
7/3
h

√
α
(
d2 + αr

16/3
h

)
.

We want it to go as σ ∼ C/rh, as that give us resistivity linear in temperature, remembering that the
temperature of the field theory is proportional to rh. This behaviour can be achieved if we set

α = 1
2r16/3

h

(√
4C2r8

h

R4 + d4 − d2

)
.

Some potential issues with this choice of α is described in the previous section (section 6.3). With this
relation for α we can find σ(ω). Using the hatted quantities ω̂ and d̂ from eq. (6.81) and eq. (6.82)
respectively, we can numerically find |σ(ω̂)| and arg(σ(ω̂) for different d̂ as in fig. 6.6. We find a region
where |σ(ω̂)| ∼ ω̂−1 and one where |σ(ω̂)| ∼ ω̂1/3. For the argument we find a constant angle of 90◦

for large d̂ in a range of ω̂ and a constant angle of ≈ −30◦ for larger ω̂ in all the d̂-cases. For the
off-plane current, we find a finite current in the case of zero wave-vector and zero frequency. We have
not looked at any frequency dependence for the off-plane conductivity because the current will be zero
due to the required re-scaling done to az. This re-scaling is required to keep the on-shell action finite.

For our dispersion relations, by adding boundary terms to the action we get mixed boundary conditions.
Due to these, we find that we arrive at plasmonic dispersion relations as in fig. 6.3.
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7
Discussion and conclusions

In this thesis I have examined a top-down model and looked at some possible behaviour for the
conductivity of the field theory that it is dual to the 7-7 strings. As can be expected from the model,
as it is derived from string theory, it has a large phase space of possible behaviour. We have used
this and chosen a particular configuration that give us resistivity that is linear in temperature, as this
is something found in the strange metal phase of the cuprates. When examining the validity of this
choice, we have however found an issue with regards to the order of magnitude of Nc and Nf . When
the geometry was derived these were assumed to be large [37], but this means that α � R2/3 from
eq. (6.98). This has not taken into account the strength of the correspondence we work in, which might
set additional limits on for example α′ and gs. However, our expression for α implies that α � R2/3

unless C is very large. But, as mentioned in section 6.3 there are arguments that we do not need Nc

and Nf large, nor α′/R → 0 or gs → 0 (as required in the weak form of the correspondence), and
still might be able to work in the supergravity approximation, at least for IR physics (which we are
interested in).

So, what we essentially want is to be able to use our supergravity solution (including the probe-limit) as
an approximation for the IR (near horizon) physics in the strongest form of the correspondence. Let us
first look at the case of AdS/QCD. This has been a rather successful application of the correspondence
and it used Nc = 3, as expected for QCD [4]. So Nc might not need to be as large as one might first
expect. This we can argue should extend to Nf . Additionally, for the IR physics the supergravity
approximation to string theory works better as the quantum corrections from a finite α′ and gs are
still negligible for this region [41]. Since it is the IR-physics we wish to model, this means that we
might be able to use our supergravity solution even in the strongest form of the correspondence. We
would of course not have a UV complete theory however, but this is not something we require.

We should also ask whether it is okay for α to have these dependencies from a physical perspective,
disregarding the issue of limits. What we are essentially doing is saying that the number of D5-branes
must depend on the radius of the black hole and d, which is the charge density of the field theory.
What is happening then is we slightly alter the geometry of the model when we change the temperature
and charge density. The geometry would change even if α was independent of rh as a higher rh means
a larger black hole. An rh and d dependent α would introduce another change in the geometry. We
know that the metric tensor of the gravity theory is dual to the energy momentum tensor of the field
theory [1]. Changing T and d should change the energy-momentum tensor and we should therefore
also see a change in the metric tensor (which we do, since we alter eφ). We can therefore assume that
the change of the metric tensor created by a change in d and rh would correspond to the same change
in the energy-momentum tensor by the same change in d and T . This would be an interesting check
of our model.
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If we allow α to have the expression eq. (6.87), there is some interesting experiments to compare our
results to, which can be found in [42]. The most interesting is that they find a power-law behaviour
for |σ(ω)| ∼ ω−2/3 for a range of ω and that arg((σ(ω)) ≈ 60◦ for a different range of ω. Although our
power-law behaviours and angles do not match those in the experiment, it is somewhat encouraging that
we can find power-law behaviours and constant angles. Also regarding matching against experiments,
we find plasmonic dispersion relations with our boundary conditions, as one could expect from previous
work on holographic electrodynamics [32] [35] [43], and as wanted for a model of strange metals.

Next, let us mention the fact that we can find a finite current in the off-plane direction when kµ = 0,
but not for kµ 6= 0 without causing the on-shell action to diverge is quite interesting. But as mentioned
in chapter 6, a wave propagating in this direction is problematic as the direction collapses as r → ∞.
But when there is no propagation, this issue goes away, and we can obtain a finite current as well as
a finite on-shell action.

In the end, while there is not overwhelming support for this model to be able to describe strange
metals, it certainly shows some prospects. Assuming the arguments regarding the values of Nc, Nf

etc. hold, then further analysis could tell whether there is a possibility for a description of strange
metals in the parameter space. This would require some work in finding the (if any) freedoms that
we have left. This might include a different embedding of the D7-brane. We have restricted ourselves
to the massless case, and so it would be interesting to see what happens with a different embedding.
This is most likely a very difficult problem. It is worth mentioning that this is the first layered model
that have the linear in T resistivity in its parameter space. There is also no demand that this model
need only be able to describe strange metals. There could be other choices to make in the parameter
space that allows for descriptions other layered systems that lack quasi-particles.

To summarise my suggestions for future studies of this model, I would suggest making sure that it
is possible to trust our solutions even in the strongest form of the correspondence. In that case, it
would be interesting to see whether further adjustments of the parameter-space could result in better
agreement with experimental data from strange metals. It would of course also be interesting to see
if it truly is possible to model other systems by a different choice of parameters. All in all, there is
much in this model to discover and examine further, with a potential to give new insights into using
top-down models to model condensed matter systems.
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