
2*3+1=7

2*3+ 6+
2*3+9=?

6+1=7

6+9=?

6+9=15

? 15

Rule-Based Sequence Learning Exten-
sion for Animats
Master’s thesis in Computer Science – algorithms, languages and logic

Gustav Grund Pihlgren, Nicklas Lallo

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2018

Master’s thesis 2018

Rule-Based Sequence Learning Extension for
Animats

Gustav Grund Pihlgren Nicklas Lallo

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2018

Rule-Based Sequence Learning Extension for Animats
Gustav Grund Pihlgren, Nicklas Lallo

© Gustav Grund Pihlgren and Nicklas Lallo, 2018.

Supervisor: Claes Strannegård, Department of Computer Science and Engineering
Examiner: Christos Dimitrakakis, Department of Computer Science and Engineer-
ing

Master’s Thesis 2018
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Solving an artihmetic problem by using knowledge, derived from examples,
of which subsequences are equivalent.

Typeset in LATEX
Gothenburg, Sweden 2018

iv

Rule-Based Sequence-Learning Extension for Animats
Gustav Grund Pihlgren, Nicklas Lallo
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
This thesis introduces a rule-based, sequence learning model. It proposes that parts
of this model could be used as a independent extension to other machine learning
models, animats specifically. The model uses Q-learning and state space search to
generalize which are equivalent. This allows reducing the input state space to train
faster and better draw conclusions about the features in the dataset at large. This
knowledge can then be used to calculate the best action for the given sequence. The
model is implemented in order to evaluate its capabilities. The model is evaluated
primarily on the domains of simple arithmetic, Boolean logic, and simple English
grammar and then compared to the performance of a Recurrent Neural Network
using Long-Short Term Memory-units.

Keywords: Computer Science, Engineering, Machine Learning, Q-Learning, State
Space Search, Neural Networks, Animat, Rule-Based, Sequence Learning

v

Acknowledgements
We would like to thank our supervisor Claes Strannegård for all the help and guid-
ance throughout the project, and also thank our examiner Christos Dimitrakakis for
the additional help and constructive criticism with the writing of the thesis.

Gustav Grund Pihlgren and Nicklas Lallo, Gothenburg, June 2018

vi

viii

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Problem formulation . 2
1.2 Research question . 3

2 Theory 5
2.1 Machine learning concepts . 5

2.1.1 Supervised learning . 5
2.1.2 Reinforcement learning . 5
2.1.3 Rule-based learning . 5
2.1.4 Sequence learning . 6

2.2 Q-learning . 7
2.2.1 How to optimize Q-tables . 7

2.3 Animats . 8
2.3.1 Blockworld . 8
2.3.2 Animat decision-making . 9
2.3.3 Animat learning . 10

2.4 State space search . 10
2.5 Alice in Wonderland . 11
2.6 Neural networks . 12

2.6.1 Recurrent neural networks . 12
2.6.2 LSTM . 13
2.6.3 Deep neural networks . 14
2.6.4 Stochastic gradient descent . 14
2.6.5 Backpropagation . 15
2.6.6 Adam optmizer . 15

2.7 TensorFlow . 16
2.8 Radix tree . 16

3 Datasets and Evaluation 17
3.1 Evaluation domains . 17

3.1.1 Simple arithmetic . 18
3.1.2 Boolean Algebra . 19
3.1.3 English grammar . 19

ix

Contents

3.2 Training and evaluation . 20

4 The Model 23
4.1 Interface . 23
4.2 Overview . 24
4.3 Transformation rules and abstract goals 26

4.3.1 Abstract sequences and symbol-variables 26
4.3.2 Abstract sequence matching 27
4.3.3 Transformation rules . 29
4.3.4 Abstract goals . 29

4.4 Abstracter . 29
4.5 Solver . 32

4.5.1 Data structures in the Solver 32
4.5.2 How the Solver maintains its data structures 33
4.5.3 Decision-making by the Solver 34

4.6 Rule-Former . 38
4.6.1 Testing transformation rules and abstract goals 38
4.6.2 The equivalence learning-rule 41

4.7 Training the model . 44

5 LSTM Network Baseline 45
5.1 Hyperparameters . 45
5.2 Implementation . 46
5.3 Training the LSTM network . 46

6 Results 49
6.1 Results from the domain of simple arithmetic 49

6.1.1 Results from Arithmetic1 . 49
6.1.2 Results from Arithmetic2 . 50

6.2 Results From the domain of logic . 51
6.3 Results From the Domain of Simple English Grammar 51
6.4 Result summary . 52

7 Discussion 53
7.1 Answering the research question . 53
7.2 When and why is the model better than the network? 54
7.3 Is the LSTM network a good baseline? 55

7.3.1 Hyperparameter optimization 55
7.3.2 Interpreting the network’s performance 55
7.3.3 Scalability of neural networks 56

7.4 Approximate answers . 56
7.5 Breaking the model . 57

7.5.1 Requiring equivalent sequences 57
7.5.2 Requiring lack of counter examples 57

7.6 Limited resources . 57
7.7 Are the datasets suitable for evaluating the model? 58
7.8 Potential errors . 59

x

Contents

7.9 Extending animats and other machine learning systems 60
7.10 Difference between sequence prediction and decision-Making 60
7.11 Further improvements . 61

7.11.1 Additional learning-rules . 62
7.11.2 Finding general symbol-variable templates 62
7.11.3 Heuristic for unknown states 63
7.11.4 Adopting learning-rules from Alice in Wonderland 63

8 Conclusion 65

Bibliography 67

A Grammar1 I
A.1 Grammatically correct sentences . I
A.2 Grammatically incorrect sentences . VIII

B Result Graphs XVII
B.1 Results from the model . XVII

B.1.1 Results from the domain of simple arithmetic XVII
B.1.2 Graphs from the domain of Boolean logic XX
B.1.3 Graphs from the domain of simple English grammar XXII

B.2 Results from the LSTM network . XXIII
B.2.1 Results From the domain of simple arithmetic XXIII
B.2.2 Graphs from the domain of Boolean logic XXVI
B.2.3 Graphs from the domain of simple English grammar XXVIII

xi

Contents

xii

List of Figures

2.1 An RNN model unrolled over 4 timesteps. 13

4.1 The inputs and outputs of the model over 3 timesteps. 24
4.2 Overview of how the three parts of the model interact. 25
4.3 Flowchart of the abstract sequence matching algorithm. 28
4.4 Flowchart of the Abstracter’s equivalent sequence state space search

algorithm. 31
4.5 The nodes visited by the Abstracter’s state space search when trying

to reduce "2*5*4*(1+2)" with a maximum depth of 4. The lines
represents the successful application of transformation rules. 32

4.6 Flowchart of the Solver’s state space search for already determined
goal states. 35

4.7 Flowchart of the Solver’s state space search using Q-learning to solve
problems without explicit goal states. 37

4.8 Flowchart of the Rule-Former’s transformation rule testing algorithm. 40
4.9 Flowchart of the Rule-Former’s algorithm for locating rewarded se-

quences which share an ending with the given sequence. 42
4.10 Flowchart of the Rule-Former’s algorithm for creating new transfor-

mation rules based on sequence equivalence. 43

B.1 The average (blue), best (orange), and worst (orange) accuracies for
the model on Arithmetic1 with a fraction as validation of 0.1 XVIII

B.2 The average (blue), best (orange), and worst (orange) accuracies for
the model on Arithmetic1 with a fraction as validation of 0.5 XVIII

B.3 The average (blue), best (orange), and worst (orange) accuracies for
the model on Arithmetic1 with a fraction as validation of 0.9 XIX

B.4 The average (blue), best (orange), and worst (orange) accuracies for
the model on Arithmetic2 with a fraction as validation of 0.1 XIX

B.5 The average (blue), best (orange), and worst (orange) accuracies for
the model on Arithmetic2 with a fraction as validation of 0.5 XX

B.6 The average (blue), best (orange), and worst (orange) accuracies for
the model on Arithmetic2 with a fraction as validation of 0.9 XX

B.7 The average (blue), best (orange), and worst (orange) accuracies for
the model on Logic1 with a fraction as validation of 0.1 XXI

B.8 The average (blue), best (orange), and worst (orange) accuracies for
the model on Logic1 with a fraction as validation of 0.5 XXI

xiii

List of Figures

B.9 The average (blue), best (orange), and worst (orange) accuracies for
the model on Logic1 with a fraction as validation of 0.9 XXII

B.10 The average (blue), best (orange), and worst (orange) accuracies for
the model on Grammar1 with a fraction as validation of 0.1 XXII

B.11 The average (blue), best (orange), and worst (orange) accuracies for
the model on Grammar1 with a fraction as validation of 0.5 XXIII

B.12 The average (blue), best (orange), and worst (orange) accuracies for
the model on Grammar1 with a fraction as validation of 0.9 XXIII

B.13 The average (blue), best (orange), and worst (orange) accuracies for
the LSTM network on Arithmetic1 with a fraction as validation of 0.1 XXIV

B.14 The average (blue), best (orange), and worst (orange) accuracies for
the LSTM network on Arithmetic1 with a fraction as validation of 0.5 XXIV

B.15 The average (blue), best (orange), and worst (orange) accuracies for
the LSTM network on Arithmetic1 with a fraction as validation of 0.9 XXV

B.16 The average (blue), best (orange), and worst (orange) accuracies for
the LSTM network on Arithmetic2 with a fraction as validation of 0.1 XXV

B.17 The average (blue), best (orange), and worst (orange) accuracies for
the LSTM network on Arithmetic2 with a fraction as validation of 0.5 XXVI

B.18 The average (blue), best (orange), and worst (orange) accuracies for
the LSTM network on Arithmetic2 with a fraction as validation of 0.9 XXVI

B.19 The average (blue), best (orange), and worst (orange) accuracies for
the LSTM network on Logic1 with a fraction as validation of 0.1 . . . XXVII

B.20 The average (blue), best (orange), and worst (orange) accuracies for
the LSTM network on Logic1 with a fraction as validation of 0.5 . . . XXVII

B.21 The average (blue), best (orange), and worst (orange) accuracies for
the LSTM network on Logic1 with a fraction as validation of 0.9 . . . XXVIII

B.22 The average (blue), best (orange), and worst (orange) accuracies for
the LSTM network on Grammar1 with a fraction as validation of 0.1 XXVIII

B.23 The average (blue), best (orange), and worst (orange) accuracies for
the LSTM network on Grammar1 with a fraction as validation of 0.5 XXIX

B.24 The average (blue), best (orange), and worst (orange) accuracies for
the LSTM network on Grammar1 with a fraction as validation of 0.9 XXIX

xiv

List of Tables

6.1 The highest average accuracy for both systems on the validation set
for Arithmetic1. 49

6.2 The number of runs over which the results have been averaged for
Arithmetic1. 50

6.3 The final average accuracy for both systems on the validation set for
Arithmetic1. 50

6.4 The highest average accuracy for both systems on the validation set
for Arithmetic1. 50

6.5 The number of runs over which the results have been averaged for
Arithmetic2. 50

6.6 Size of training and validation sets for Arithmetic2. 50
6.7 The highest average accuracy for both systems on the validation set

for Logic1. 51
6.8 The number of runs over which the results have been averaged for

Logic1. 51
6.9 Size of training and validation sets for Logic1. 51
6.10 The highest average accuracy for both systems on the validation set

for Grammar1. 51
6.11 The number of runs over which the results have been averaged for

Grammar1. 51
6.12 Size of training and validation sets for Logic1. 52
6.13 Summary of the highest average accuracy for for both systems for

each dataset and fraction as validation. 52

7.1 Summary of whether the model (M) or the network (N) had better
performance, or if their accuracy where within 10 percentage points
of one another (-). 54

xv

List of Tables

xvi

1
Introduction

In 1991, S. W. Wilson [48] proposed the animat path to Artificial Intelligence (AI).
An animat is described as an artificial animal put in an artificial environment where
it should survive or solve some given problem. The suggested path towards AI us-
ing animats is to first develop animats that mimic the behavior or intelligence of
simple animals such as flies or worms. When the animats can successfully mimic
these animals we develop them further and attempt to mimic more complex animals.
Through repetition of this procedure we develop complex Artificial Intelligence. C.
Strannegård et al. takes it one step further and suggests that this procedure could
be repeated until artificial general intelligence develops [37].

It is a common approach in the fields of animats and computer science to take inspi-
ration from and even mimic animals and other lifeforms [7]. For example ant-colony
optimization was inspired by research on how ants navigate [9]. A lot of the ani-
mat research is done in connection with robotics because of the similarities between
autonomous robotic behavior and animal behavior. This can be clearly seen in the
proceedings of "Animals to Animats", the leading conference on animats, from 2016
in which 10 out of 31 papers is directly related to robotics [40]. The field of machine
learning is important to animats as well as robotics.

A very common model in the field of machine learning is the neural network. How-
ever, to train a neural network one often requires thousands of data-points and long
training sessions. While neural networks often show great performance with a long
training session they often perform very poorly with short training [19]. This means
that neural networks are a poor choice when one has an learning environment where
either; the number of data-points is limited or the system trains during execution
(i.e. a system that needs high performance before it has finished training). Exam-
ples of such environments can be found in robotics where robots get data in real time
and in animats where artificial animals must quickly adapt to their environment in
order to survive [37].

In animats but also other machine learning models one of the most basic concepts is
that of generalization. The ability for a animat to formulate general concepts about
the properties of the environment. By finding patterns they can infer knowledge
about previously unobserved data points by treating them similar to other known
data points based on their common properties, that is, their similarities. This often
includes grouping similar entities or datapoints together based on their properties
and then treating everything in that general group similarly. This allows for higher

1

1. Introduction

level thoughts and problem solving. Importantly in the context of machine learning,
this allows for the models to work on data that was not included in the training
dataset. In this thesis generalization specifically refers to being able to group a
new problem with some other problems. If one can find a similar problem then one
can use a the same decision-making process to solve the new problem. Take as an
example the problem "Find the solution to 3 + 3". This problem can be grouped
with other mathematical problems since they have similar form. From this it can be
determined that the same process of arithmetic can be used to solve this problem
as the other problems in the group of mathematical problems.

This thesis introduces a generalization system for sequence learning called the model.
This system is intended to be used as an extension to already existing machine learn-
ing systems that lack or have poor ability to generalize sequences-learning problems.
Specifically the model is intended to extend the animats presented by C. Strannegård
et al. [37]. However, to evaluate the model’s capabilities this thesis will evaluate it
as a standalone system.

This thesis also presents a neural network using Long-Short Term Memory-units.
The purpose of the neural network is to be a baseline for the evaluation of the mdeol.
The two systems’ performance is compared on the domain of simple arithmetic on
which the model holds up to and sometimes outperforms the network. The systems
are also evaluated simple Boolean algebra, and simple English grammar to show
their performance on other common sequence learning tasks. However on these
domains the model is mostly outperformed by the network. All these domains are
presented in the Datasets and Evaluation chapter and the findings in the Results
chapter.

1.1 Problem formulation

Generalization is a broad concept that could be adapted to a large variety of machine
learning problems. The system produced by this project is limited to the common
machine learning problem of sequence learning. A thorough description of sequence
learning can be found in subsection 2.1.4 of the Theory chapter.

While the aim is to introduce a general sequence learning system, the system was
evaluated on the domain of simple arithmetic, simple Boolean logic, and a smaller
dataset of natural English language. Simple arithmetic, as defined in the Dataset
and Evaluation chapter, is a common baseline used by many other machine learning
systems [26], [20]. Additionally simple arithmetic has complex connections between
the start of the sequence and the end of the sequence making it a good baseline for
advanced sequence learning specifically.

2

1. Introduction

1.2 Research question
The central question for this thesis is:

Can a rule-based learning system outperform an LSTM network on sequence learn-
ing problems?

While this is a large question to answer this thesis will not touch on rule-base
learning systems outside the one introduced in this thesis. This thesis will also go
into more detail as to under which circumstances the model performs comparatively
well and whether or not using the model as an extension to other systems is viable.

3

1. Introduction

4

2
Theory

This project relies heavily on different areas in machine learning. Specifically the
project relies on the subjects of; LSTM networks, state space search, and Q-learning.
This chapter will introduce those fields.

2.1 Machine learning concepts
Machine learning is a big field that borrows much from other fields of computer sci-
ence and mathematics. What follows are shorter summaries of some of the concepts
used in this thesis.

2.1.1 Supervised learning
In machine learning, supervised learning is when you provide a system with both an
input, as well as an expected output. The purpose of this is for the system to adapt
such that when given that input it should return the expected output. The main
difficulty with supervised learning is that you require labeled data, that is, for each
entry in the training set you need to provide the corresponding correct output value.
Therefore this is mainly useful on domains where there are a lot of prior knowledge.

2.1.2 Reinforcement learning
Reinforcement learning is when a system is given reward for certain achievements
and supposed to learn a good decision-making process for gaining as much reward
as possible. Often this means that there are some predefined states that are desired
and whenever the system achieves such a state is is given the corresponding reward
in the form of a real number. The goal of the reinforcement learning system is to
maximize the amount of reward it can gain. There may be a trade-off between
immediate reward and later reward or not depending on the specific problem at
hand [28].

2.1.3 Rule-based learning
Rule-based learning includes all machine learning methods that develop rules which
it then applies to the inputs. The goal of the rule-based system is to construct
rules such that new data points can easily be sorted into categories which helps the

5

2. Theory

decision-making process. An example of this is classification problems where rules
can divide the data points into categories based on their properties. Then the sys-
tem can simply give classification depending on which category the data point ends
up in [45], [23]. Rule-based systems are meant to be an alternative to specialized
systems and should not need to apply any prior knowledge of the specific. However,
the algorithms that find these rules often have specific patterns or relations that
they look for in the data, which are often tied to some general domain. Rule-based
systems typically form rules of the form if ... then ... else [41].

2.1.4 Sequence learning
Sequence learning is a machine learning field that aims to create systems able to
make decisions based on sequences. While no agreed upon definitions exists we will,
in this thesis, be using those given by R. Sun and C. L. Giles in their article "Se-
quence learning: from recognition and prediction to sequential decision making" [38]
and complement these with one definition of our own. In the article they define four
different sequence learning problems: Sequence prediction, sequence generation, se-
quence recognition, and sequence decision-making.

Sequence prediction is the problem of given a sequence of elements, predicting the
following elements. In the one-step case only the immediately following element
needs to be predicted. That is given elements [x1, ..., xt] predict the next element
[xt+1]. Learning one-step sequence prediction is then in its most general form to
find a function f such that f([x1, ..., xt]) = xt+1].
The more general case of sequence prediction is to produce the following sequence
of elements. That is given a sequence [x1, ..., xt] predict the following sequence of
elements [xt+1, ..., xt+n]. The sequence stops when it reaches xn where n is either
a fix number or xn some defined end-of-sequence element. A common approach to
solve sequence prediction problems is to create a one-step sequence prediction sys-
tem and run it repeatedly with the predicted elements appended to the sequence.
That is xt+k = f([x1, ..., xt, xt+1, ..., xt+k−1]) for k ∈ [0, ..., n]

Sequence generation is similar to sequence prediction where given a sequence [x1, ..., xt]
one should return a sequence [xt+1, ..., xt+n]. Mathematically prediction and gener-
ation are the same problems. Because of this and because sequence generation is
not used in this thesis, sequence generation will not be explained further.
Sequence recognition is the problem of predicting whether a given sequence is cor-
rect or not. This can be seen as a special case of one-step sequence prediction where
xt + 1 ∈ {”True”, ”False”}

Sequence decision-making is the problem of choosing a good action or sequence
of actions given a sequence of inputs. What is a good action depends on what
type of decision-making problem is considered: Trajectory-oriented, goal-oriented,
or reinforcement-maximizing. In trajectory-oriented decision-making the goal is to
find the action at that leads to a desired next state st+1 given a sequence of pre-

6

2. Theory

vious states [s1, ..., st]. Goal-oriented is a generalization of trajectory-oriented; the
goal is to find the action at given the state sequence [s1, ..., st] that leads to some
goal state sG at some point in the future. The goal of reinforcement-maximizing
decision-making is to find the action aj given the state sequence [s1, ...st] that max-
imizes future reward. How the future reward is calculated may vary from problem
to problem.

In addition to the above definitions by R. Sun and C. L. Giles this thesis will also be
using the following definition of equivalent sequences: Two sequencesX = [x1, ..., xn]
and Y = [y1, ..., ym] are considered equivalent if all sequences of actions that give
the best future reward from X also gives the best future reward from Y .

2.2 Q-learning
Q-learning is a reinforcement learning algorithm for finding the procedure that op-
timizes the reinforcement reward for some Markov process [43]. It was introduced
in the late 1980s as a simple machine learning concept that allows agents to learn
how to act efficiently in simple and controlled Markovian domains [42]. It uses so
called Q-tables to store the evaluation of all different actions for each known state
in the domain, and then dynamically update the values after seeing the result of
further actions following the current state, by using long-term discounted rewards.
Discount is a factor γ that determines how much a system values future reward.
The value rv of the future reward r is given by rv = r · γt, where t is the number of
timesteps until the reward is given. This way Q-learning can evaluate the quality
of each action not only on the next timestep, but on the approximate long term
benefits.

With sufficient sampling of the actions from each state in the domain it has been
shown that Q-Learning will converge towards optimal action-values consistently [42].
Q-Learning is on its own a fairly simple and primitive system for learning, but it
can be implemented in or extended by more complicated systems, which has been
done many times in the past [42], [2].

Q-Learning also has some connections to animat based machine learning. The orig-
inal paper [43] uses animals as a comparison and attempt to build upon ordinary
stochastic Markov chain models with Q-Learning to better mimic animals. Here’s
a quote from the author, Chris Watkins: "Next, it is argued that Markov decision
processes are a general formal model of an animal’s behavioural choices in its envi-
ronment" [43].

2.2.1 How to optimize Q-tables
The result of Q-learning is a Q-table that maps state (s) and action (a) to the
expected discounted future reward (Q(s, a)). When a Q-table have converged the
system can optimize its reward by finding the action that gives the highest future

7

2. Theory

reward from the given state.

When Q-learning starts all Q-values start at 0. Each timestep the algorithm must
now decide whether to exploit or explore. Exploit means taking the action that
gives optimized reward and explore means taking a random action. This decision is
determined by the parameter ξ which is the probability to explore. After each action
the system gets a reinforcement reward r and a new state snew. Using the previous
state sold, the action a, and the learning rate α the system updates its Q-table as
follows:

Q(sold, a) = (1− α) ·Q(sold, a) + α · (r · γ ·max
a

Q(snew, a))

2.3 Animats
Animat based machine learning is the concept that machine learning should try to
mimic the behaviour of animals in order to produce better results. It is also useful
for learning about real animals through animat simulations [44]. It is logical to
compare the behaviour of a machine learning model to the behavioural policies or
tendencies of ordinary animals in order to evaluate their performance and devel-
opment. It is also possible to mimic how real animals learn from the environment
surrounding them and teach machine learning models in a similar fashion. This is
especially common when dealing with simple animals, robotics and movement [40],
[47] but equally applicable to software only models [37], [43].

As previously mentioned the model presented by this thesis is intended as a poten-
tial extension to the animats presented by Strannegård et al. [37]. That project
showed a system used for training animats to survive, breed, and evolve, in arti-
ficial environments called blockworlds. The animats are agents that can view the
world through sensors and acts on the world using a set of actions. Each animat
also have a set of needs, like hunger thirst, represented as real numbers. If any of
the animat’s needs reaches 0 the animat dies. The project introduces a graph-like
decision structure that connects the sensors of the animat to different nodes using
logic gates. The decision structure is trained using predefined reinforcement learning
rules where certain events trigger a change in the decision structure. On top of this
the animats uses a version of Q-learning to calculate an action from the active nodes
in the network. The following subsections will go into details as to how exactly the
animats work.

2.3.1 Blockworld
In the model the animats inhabit an environment called the blockworld. The block-
world is, unsurprisingly, a world divided into blocks. Each block has neighbors and
attributes. An animat in the blockworld will at any given point in time inhabit ex-
actly one block. An animat’s sensors will be active or inactive depending on which
attributes the block has. Note the different blocks may have the same attributes
which makes it necessary for the animats to learn to differentiate those blocks by
the context they appear in. For example both lake and sea blocks could have the

8

2. Theory

attributes "blue" and "wet". However if the sea blocks are always surrounded by
sand blocks then the animat could learn to not drink from a block if the last block
it visited was a sand block.

2.3.2 Animat decision-making
In the model each animats have two primary structures they use to make decisions;
the gate network and the tables.
The gate network is a directed acyclic graph from the sensors to some top-level nodes.
Aside from the sensors there are two more types of nodes in the gate network; AND-
nodes and SEQ-nodes. In their paper C. Strannegård et al. presents further possible
nodes, however the animat presented can only learn to form AND-nodes and SEQ-
nodes. Therefore an animat that starts learning from an empty network will only
have sensors, AND-nodes, and SEQ-nodes.

AND-nodes functions the same way as an AND-gate would. If its two incoming edges
are active (an edge is active if the node they come from is active) the AND-node be-
comes active. The SEQ-node is a bit more complicated. The SEQ-node detects when
its two incoming edges are activated one timestep after each other. The incoming
edges of the SEQ-node are ordered such that if the first one was active in the previous
timestep and the second one is active in the current timestep the node will activate
as well.

Using these activation mechanics the activity in the gate network is calculated from
the sensors up. This is done such that the activity of each node is determined after
the activity of its incoming edges. The gate network is finally used to define the set
of top-active nodes as the set of all active nodes that do not have an outgoing edge
to another active node.

The tables are two tables of Q- and R-values that are used in a variant of Q-
learning [42] here called local-Q-learning. The Q-table contains so-called local Q-
values Qi(b, a) that gives the average change of need i when action a is performed
when node b is top-active. Note that this change is not the average instantaneous
reward but uses future rewards in the same way as standard Q-learning. The R-
table contains Ri(b, a) which is the reliability of the Q-value for the same inputs.
The reliability is a directly correlated to the standard deviation of the change. The
animat can now calculate the so-called global Q-value Qi(t, a) where t is the set of
top-active nodes.

Qg
i (t, a) =

∑
b∈t Qi(b, a) ·Ri(b, a)∑

b∈t Ri(b, a)

Now the animat has all it needs to make a decision for this timestep. The animat
will for all needs and all actions calculate the corresponding global Q-values. The
animat will then select the action after performing which the expected lowest value
of any of its needs is a high as possible. However to allow the animat to learn from
its environment it might, with probability ξ select a random action instead.

9

2. Theory

2.3.3 Animat learning
As mentioned earlier the animat has two structures that it uses for decision-making:
The gate network and the tables. The animat learns by updating these two struc-
tures based on what it experiences in the world.

The tables uses a method almost identical to that of Q-learning to update its local
Q-values. If action a was taken and node b was top-active then Qi(b, a) and Ri(b, a)
will be updated, otherwise they will remain the same. Qi(b, a) updates based on
the reward in need i, the learning rate α, the discount rate γ, and the expected
optimal reward given the new global Q-value. The last parameter ensures that the
animats can learn long-term thinking due to bad states being perceived as better if
they in turn can lead to good states. For example an animat that walks in a desert
will receive a negative reward, but since walking in the desert has at some point
lead to an oasis with positive reward the act of walking while in the desert gets a
higher Q-value since it can lead to something with a high Q-value. The R-values
are updated to reflect the variance in their respective Q-values.

The structural learning complement the Q-learning and helps the animat form a
more nuanced view of the world. If Qi(b, a) changes a lot during updating and
Ri(b, a) is high the animat become surprised. Surprise means that there is probably
some detail to the world that the animat cannot yet grasp. Surprise therefore trig-
gers structural learning. Structural learning will first attempt to form a AND-node
between some nodes β and β′ if they were both active during the timestep. An
AND-node connecting β and β′ will be formed if it would have changed very little
during the last update.

If no AND-node is formed then the structural learning will instead try to form a SEQ-
node. Forming a SEQ-node works similar to forming an AND-node with the difference
that the node β would have to have been active in the timestep before the last one
and β′ active in the last timestep.

2.4 State space search
A common problem-solving approach in classical AI that has remained useful to this
day is the idea of searching for the solution of the problem within the action space
[50]. The approach attempts to build a graph with the state of the agent as nodes
and the possible actions in each states as edges. Each edge connects the states to
some other states. Given that an agent can form a sufficiently accurate graph of
states and actions it can use search algorithms from graph theory in order to find
the sequence of actions needed to get to some goal state. As one usually searches
from the current state and branches from each state with possible actions and be-
cause it is often unnecessary to visit the same state more than once these graphs
often takes the shape of tree-graphs. This makes way for usage of more efficient
search-algorithms specialized on searching tree shaped graphs.

10

2. Theory

State space search is a powerful algorithm in problem-solving as given a sufficiently
good graph and enough time state space search always find a solution (if there is
one) and on some problems even the optimal solution. However the two major
downsides of state space search in problem-solving is that it requires good graph
representations of the problem and has a high time complexity [50]. In general state
space search has a the worst case time complexity of O(ad), where a is the maxi-
mum number of actions for a state and d is the worst-case depth of the goal state [34].

In order to lower the time of state space search it is common to use heuristics, to
lower the branching factor [31]; value functions, to allow shorter searches [34]; or a
combination of the two. Recently machine learning have been used to learn better
heuristics and value functions to make state space search more useful on problems
with large depth and branching factor. A successful use of this can be found in
Google DeepMind’s AlphaGo which became the first AI to beat a world champion
of the game of Go [35].

Machine learning have also been used to tackle the problem of being able to form
good graphs of the problem. In the case when the effects of actions are unknown
different variants of action model learning can be used to learn the state-action tran-
sitions and enable the agent to form more accurate graphs the more it interacts with
the world [5]. The downside of this approach is that the agent must make actions
before it can determine a path to the goal state, which might result in the agent
ending up in bad states.

One way to keep track of the world is to maintain a Markov chain or, as we will
refer to it, a transition table. A transition table is a table with the probabilities
for a given action in a given state ending up in each other state. By keeping track
of what states the agent have been in and what actions it has performed one can
create a transition table which can either be the graph or help to form it. However
in the case with probabilities the state space search will have to take into account
the reward of a branch as well as its probability. The expected reward of an action
in a given state is determined by ar = p1 · r1 + p2 · r2 + ...+ pn · rn, where pk is the
probability of the action going from the given state to state k and rk is the reward
of state k.

2.5 Alice in Wonderland
A work that introduces a rule-based sequence learning system is "Bounded Cognitive
Resources and Arbitrary Domains" [29]. The work introduces a system called “Alice
in Wonderland” which given a subset of sequences from some set attempts to learn
the underlying rules for whether or not a given sequence is in that set. For example
it can be given the sequences “1+0=1” and “2+0=2” and create the abstract hy-
pothesis that “X+0=X” where X is a character from some subset of characters.

"Alice in Wonderland" determines the value of a given sequence by attempting to
simplify the sequence using a finite set of rules it has learned over the cause of train-

11

2. Theory

ing in combination with state space search. Alice will simply attempt every possible
order simplification rules on the sequence up to a maximum length of a rule chain,
then it will pick the one of the resulting sequences that has the simplest form. Due
to a bound on both the number of rules and the length of simplification chains a
upper time-bound can be guaranteed.

Alice learns the rules by trying to find pattern-matching hypotheses such that each
hypothesis does not contradict any expression it has been given and that as many
expressions as possible can be simplified to that hypothesis. For example given the
expressions "1+0=1", "2+0=2", "1 6= 0" Alice will probably form the hypothesis that
"X+0=X" since it is consistent with all expressions and this hypothesis can be used
to correctly evaluate two-thirds of expressions.

2.6 Neural networks
Neural networks is a catch-all term for a large group of machine learning systems
that take inspiration from biological neural networks found in animals (i.e. their
brains). Neural networks in general work by connecting a number of usually simple
computational units called neurons into a network of inputs and outputs. While the
inner-workings of neurons can vary between systems they usually work by taking
the weighted sum of all their input connections, running it through a so-called ac-
tivation function, and outputting the result to all its output connections. Since the
inputs, outputs, and weights all can be represented as vectors neural networks can
often be represented by matrix calculations.

In recent years neural networks have seen a rise in popularity as they have been
successfully used to achieve state-of-the-art results on a large number of problems.
Image-recognition [36], [14], speech-recognition [12], [15], playing Go [35], and play-
ing Atari[27], to name a few.

Artificial Neural Networks are useful for many different types of problems. Two
of the more common are the classification problems, and the regression problems.
Linear Regression is a very useful tool from statistical processes for estimating how
different variables relate to each other, and how to minimize a function, and there-
fore also have much use in machine learning. Neural Networks when applied to a
regression problem usually try to minimize a loss function in a similar fashion, and
have shown good results at doing this [30].

2.6.1 Recurrent neural networks
Recurrent Neural Networks (RNN) are a type of neural network that allow for per-
sistent knowledge [17], [46], they use a form of memory in order to allow the neurons
in the gate network to loop information back between iterations, thus allowing the
network to weight previous iterations into making future decisions. This is very
useful when dealing with sequential inputs, such as for example text sentences.

12

2. Theory

RNNs work similar to ordinary neural networks except these special Neurons [16].
There are several different versions of these neuron units that all implement the
memory in different ways, such as simple RNN cells or more advanced LSTM cells
[16].
RNNs are very useful for sequence prediction and generating [11], since such sequen-
tial data structures require the network to keep some information about previous
states (commonly words) as it continues forward. It has been shown that LSTM
networks, a specialized form of RNNs, perform well on sequence prediction problems
with complex sequences [10], [11], [16].

A

h0

x0

A

h1

x1

A

h2

x2

A

h3

x3

m0 m1 m2

Figure 2.1: An RNN model unrolled over 4 timesteps.

Figure 2.1 shows the flow of data through an RNN. In the figure A is the RNN
architecture, xt the input, ht the output, and mt the memory vector at timestep
t. It shows how during each timestep, for each input the network produces both a
regular output as well as a memory vector that is used as additional input for the
next timestep.

2.6.2 LSTM
LSTM networks, or Long Short Term Memory networks, are a special kind of recur-
rent neural networks. Many recent breakthroughs in sequence learning have been
using LSTM networks [8], [39], [49]. They were first invented by Hochreiter &
Schmidhuber [16] in 1997 but much work has been made to expand upon the initial
concept in the time since.

One of the main problems of traditional RNNs is the way it struggles with long-term
dependencies. That is, if a certain input xt would be useful for predicting the output
hT , then the difference in time between t and T can’t be that big, otherwise the
RNNs would become unable to learn to connect the information over such a long
time. This has been studied in depth [3].

LSTMs solve this problem by having the ability for both short term memory, as
well as long term memory. To do this the neurons use so called gates to regulate
what information to add and to remove. The gates are composed of sigmoid neural
network layer, this layer outputs values between zero and one which are then multi-
plied with the information to determine how much is let through. There are three of

13

2. Theory

these gates that together control the cell’s memory capabilities. These are trained
together with the rest of the cells using backpropagation.

Between each iteration of running the network the LSTM cells both deliver a output,
but they also update their internal cell state. The gates are useful for controlling
how the cell state interacts with any new inputs to create the next output as well as
the next cell state. The exact implementation of these LSTM cells and gates tend
to vary a bit from paper to paper, but for the purpose of this these we use that of
the original paper [16].

2.6.3 Deep neural networks
Deep Neural Networks (DNNs) are neural networks that implement so called Deep
Learning. DNNs use multiple hidden layers of neurons connected to each other in
between the input and the output. This allows the network to model significantly
more complex problems and non-linear relationships, in addition to this it also helps
the network to model the same problems as a shallow network can but now with
significantly fewer neurons. DNNs fall under the machine learning category deep
learning

LeCun et al. describe that "Deep learning allows computational models that are
composed of multiple processing layers to learn representations of data with multiple
levels of abstraction." [24]. Deep learning has also brought about many of the
recent machine learning breakthroughs, especially in sequential datasets such as
text prediction [25]. Furthermore it has also commonly known that the performance
off deep learning increases with the size of the training set better than most other
machine learning models [13].

2.6.4 Stochastic gradient descent
Stochastic Gradient Descent is an iterable optimization algorithm for differentiable
functions [4]. It is used to search for minimums of a function by calculating the
gradient of the function at some point, and then finding a new point by stepping
along the negative gradient. The step length is proportional to the absolute value
of the gradient which means that the steps will be longer if the absolute value is
large. For continuous functions this means that gradient descent will slow down as
it approaches a minimum.

The goal of any machine learning model is to solve an underlying optimization
problem, which in turn translates to the accuracy of the model or a loss function.
Stochastic Gradient Descent is one of the optimization algorithms that help the the
model converge towards a local or global minimum faster [21]. The basic gradient
descent algorithm uses only the first order derivative of the function but more ad-
vanced versions also exists, although potentially slower in real time applications.

The stochastic element is useful to help the algorithm escape from local minimum

14

2. Theory

[32], something that is not guaranteed with ordinary gradient descent. This is
usually commonly implemented as a stochastic objective function upon which the
first-order gradient descent algorithm is applied.

2.6.5 Backpropagation
Backpropagation is an optimization algorithm for neural networks and is used to
train the weights and other potential parameters of the network. Backpropagation
is fundamentally gradient descent used to minimize the loss function of the neu-
ral network. Given the loss function (E(yo, ye), where yo is the output and ye the
expected output) of the neural network gradient descent is used to optimize the
network. By having the neural network consist entirely of differentiable functions
the derivative of the loss can be calculated with respect to the parameters of the net-
work. From these derivatives one can calculate for each weight and variable whether
it needs to be larger or smaller to minimize the loss. By updating all parameters
accordingly with some learning rate the outputs gets closer to the expected outputs
as the loss function gets minimized [6], [33].

A problem arises when one tries to use backpropagation on RNNs. In simple feed-
forward networks the derivative of each parameter with respect to the loss depends
only on the later parameters in the network. Thus network can be easily backprop-
agated by going from output to input. However in the case of RNNs the derivative
of a parameter depends on the parameter’s next value as well. So if one wants to
train a RNN to take previous states into account one have to backpropagate not
only from output to the input of this timestep but also from output to the input
of previous timesteps as well. This means that a lot of information of what each
neurons output were each timestep has to be stored. When this is done the network
becomes unrolled. Rather than seen as a single network with memory it is seen as
several networks with the same parameters that feeds their values forward. Another
problem with this is that one cannot make the network infinitely large and thus can
only unroll it a finite number of times. This parameter must be chosen carefully as
the length of association in an RNN becomes more limited with shorter unrolling
but the training takes longer the longer the unrolling is. Figure 2.1 contains an RNN
unrolled over 4 timesteps.

2.6.6 Adam optmizer
In order to improve upon the basic stochastic gradient descent algorithm there exist
several optimizers. One of these is the Adam Optimizer [22]. Adam improves upon
and combines two other main optimizations, namely: Adaptive Gradient algorithm
(AdaGrad) and Root Mean Square Propagation (RMSProp).

AdaGrad improves training by using individual learning rates for each parameter as
well as updating these learning rates dynamically. Parameters that get small or in-
frequent updates have higher learning rates while parameters with large or frequent
updates have smaller learning rates.

15

2. Theory

RMSProp also uses individual learning rates. These learning rates are calculated by
the sum of squares of previous gradients. To prevent the sum from simply growing
indefinitely the algorithm decays the values of previous timesteps. Simply put the
new learning rate for some point p is given by:
γnew

p = d · γold
p + (1 − d) · ∇2

p, where d is the decay factor, γ the learning rate, and
∇ is the gradient.

2.7 TensorFlow
TensorFlow is a free and open source library developed and produced at Google [1].
TensorFlow is written for the programming language Python to act as a framework
for machine learning and more specifically neural networks. Tensorflow provides
many highly optimized and functional implementations of various Neural Network
concepts that will be used to produce some of the results in this thesis, such as Long
Short Term Memory Neurons.

2.8 Radix tree
A Radix Tree, sometimes called a compact prefix tree, is a simple data structure,
usually used to store sequences. The purpose of a radix tree, or even a ordinary
prefix tree, is to have a tree structure representing a set of sequential data such that
each subsequence of data that occurs multiple times (in the same locations) in the
set only has to be included once. In a ordinary prefix tree each edge represents one
or more bits of sequential data, and each child to each node represents the differ-
ent combinations of data that can follow the previous sequence. So for words for
example each edge could represent a single character, and going from the root node
down to one of the end nodes, each word in the dataset can be read. This allows
for searching the tree by the prefixes of the included data, thus they make excellent
search trees.

The radix tree introduce a simple optimization to the ordinary prefix tree by making
it so that each node that is the only child node gets combined with the parent node.
This allows for each edge to store not only one prefix element, but a sequence, at
the same time. This can make the radix tree more space efficient than a prefix tree
for longer sequences in smaller datasets.

16

3
Datasets and Evaluation

The model and LSTM network implemented in this thesis were trained and eval-
uated on multiple datasets. In this chapter each of these datasets and how the
systems were evaluated on them will be explained in order. The implementation of
the model and the LSTM network can be found in their respective chapters. The
results of the evaluations on these datasets are presented in the Results chapter.

The following method is used to represent the sequences in this thesis:

• Any symbol is marked with a box around them (Symbol) to keep them sep-
arate from any other meaning of these characters.

• Any character not in a box is a variable used to represent some subsequence
of symbols.

• To allow the systems to finish sequences ε is used as a special end-of-sequence
symbol (ε).

3.1 Evaluation domains

The system was mainly evaluated on the domain of simple arithmetic which was
supplemented by additional problems to show its capabilities and limitations. What
these domains are and how the system was evaluated in each is described in this
section.
The model and network was evaluated on four datasets from the domains of sim-
ple arithmetic, Boolean logic, and simple English grammar to show its capabilities.
These domains are introduced in the following sections. All datasets were created
for this thesis rather than being taken from somewhere else.

Note that each sequence in each dataset have two parts. The first part which
is the input sequence to the systems and the second part which is the expected
output. In all domains, except simple English grammar, the first part is all symbols
up to and including the equality sign (=) and the second part is all remaining
symbols. For the domain of simple English grammar the entire sentence is the input
and the expected output is a simple Boolean for whether or not the sentence was
grammatically correct.

17

3. Datasets and Evaluation

3.1.1 Simple arithmetic
The arithmetic dataset includes sequences of numbers, operands, and the equality
sign. All symbols are only identifiable by their index in a symbol lexicon. This
dataset was interesting because it required a lot of different functions from the ma-
chine learning model.

Simple arithmetic has no rigid definition, the definitions in this section are based on
commonly used baselines with increasing complexity to be able to compare the per-
formance of the system as the problems get more complex. In general an expression
in the domain of arithmetic follows the form "expression=digits" In this domain the
system is trained by feeding it correct arithmetic expressions as well as incomplete
arithmetic expressions and allowing the system to decide on an action. Each action
corresponds to printing one of the digits 0 to 9 or to end the sequence (ε). The model
receives reward only when it takes the action corresponding to end-of-sequence and
will then receive a positive reward for outputting a correct expression and a negative
reward for an incorrect one.

Within the domain of simple arithmetic several different datasets were used to eval-
uate the model. These were of varying size and complexity and are each presented
in the following subsections

3.1.1.1 Equalities, single-, and double multiplications of single digit
numbers

This dataset, called Arithmetic1, represents all single digit multiplications with two
and three operands. Arithmetic1 contains 1400 sequences consisting of the following
symbols:
0 , 1 , 2 , 3 , 4 , 5 , 5 , 6 , 7 , 8 , 9 , ∗ , = , ε

The sequences are defined as follows:
• x = x ε , ∀x ∈ { 0 , ..., 3 0 0 }
• x ∗ y = x · y ε , ∀x, y ∈ { 0 , ..., 9 }
• x ∗ y ∗ z = (x · y · z) ε , ∀x, y, z ∈ { 0 , ..., 9 }

So, for example, when given the following sequence as input:
4 ∗ 5 =
The corresponding correct output would be:
2 0 ε

3.1.1.2 Equalities, single- and double multiplications and additions of
single digit numbers

This dataset, called Arithmetic2, is an extension of Arithmetic1 where the addi-
tional operator of addition. Arithmetic2 contains 4500 sequences consisting of the
following symbols:
0 , 1 , 2 , 3 , 4 , 5 , 5 , 6 , 7 , 8 , 9 , ∗ , + , = , ε

18

3. Datasets and Evaluation

The sequences are defined as follows:
• x = x ε , ∀x ∈ { 0 , ..., 3 0 0 }
• xay = Result ε , ∀x, y ∈ { 0 , ..., 9 }, ∀o ∈ { ∗ , + }
• x1o1x2o2x3 = Result ε , ∀x ∈ { 0 , ..., 9 },∀o ∈ { ∗ , + }

3.1.2 Boolean Algebra
The domain of Boolean Algebra is very similar to that of simple arithmetic, but
has fewer possible symbols to write; True , False , ε . Training in this domain is
exactly like that of simple arithmetic with the exception that only a single output
character is required (in addition to the ε).

This dataset, called Logic1, contains 170 sequences defined as follows:
• x1 = x1 ε , ∀x ∈ { True , False }
• x1o1x2 = Result ε , ∀x ∈ { True , False }, ∀o ∈ { and , or }
• x1o1x2o2x3 = Result ε , ∀x ∈ { True , False }, ∀o ∈ { and , or }
• x1o1x2o2x3o3x4 = Result ε , ∀x ∈ { True , False },∀o ∈ { and , or }

Example input:
False or True and True and True =
Corresponding correct output:
True ε

3.1.3 English grammar
The domain of English grammar is a set of grammatically correct and incorrect short
sentences in English. In this domain the model has only two actions {True, False}
for whether or not the sentence is grammatically correct. The model will receive
positive reward if it correctly classifies a given sentence. This dataset is called Gram-
mar1, contains 707 sentences, and can be found in Appendix A.

Some examples of grammatically correct sentences from the dataset:
• it is delightful
• we are young
• they’re free

Some examples of grammatically incorrect sentences from the dataset:
• you active
• wrong we’re
• I’m walked

For both the model and the network each sentence have been replaced by a repre-
sentative sequence in which each unique (blank space separated) word is mapped
to a single symbol and all blank spaces have been removed. For example: With the
mappings of "we"→ 1 , "are"→ 3 , and "young"→ 2 the sentence "we are young"

19

3. Datasets and Evaluation

becomes the sequence 1 3 2 .

Example input:
2 1 3
Corresponding correct output:
False ε

3.2 Training and evaluation
At the beginning of each training session each dataset was randomly split into two
parts: The training set and the validation set. The validation set is created by tak-
ing a fraction, henceforth called the fraction as validation, of the dataset randomly.
The remaining entries of the dataset forms the training set.

In the simple case of the dataset Arithmetic1 with a fraction of validation of 0.1
this would correspond to having a machine learning system being fed most of the
multiplication table from 0 to 9 and most equalities between 0 to 300 and asking it
to figure solve the remaining table entries.

Training and evaluation of the model and network were done in similar fashions.
The two systems were each fed entries, both input and expected output, from the
training set to learn what inputs had what expected output. After being fed a cer-
tain number of training set data the systems’ current state were saved, prevented
from learning, and then asked to calculate their output for every entry in the val-
idation set. The fraction of the systems’ output the match the expected output is
recorded, the systems are restored to their saved states, and learning is reactivated.
The systems are then, once more fed a number of training set entries. This process
is repeated such that, in total, the model is fed the training set five times and the
network is fed 300000 entries from the training set. How each of the two system
uses the given training data is further specified in their respective chapters.

This process was repeated a few times for each dataset for three different fractions
as validation (0.1, 0.5, and 0.9). For each repetition the training and validation sets
were randomly created anew to prevent bias that can exist in a single validation set.

With regular intervals both models were paused during the training for evaluation.
During this they receive no feedback so the weights or tables in the models were not
updated. They are shown each entry in the validation set one by one with a reset
in between, and their accuracy at predicting the correct results were measured. The
accuracy were recorded and plotted on graphs to show the progression over many
training iterations. This is shown in the next chapter, Results.

For both systems evaluation is straight forward. The systems are given a input se-
quence and told to output the best action in regards to that input. Since this in all
presented domains is sequence prediction each action corresponds directly to which
symbol should come next. If the system outputs the wrong symbol the evaluation

20

3. Datasets and Evaluation

of that input is counted as incorrect and the evaluation proceeds to the next input.
If the correct symbol is outputted the system is fed the input sequence once more
with the new symbol appended at the end. This process is repeated until a wrong
symbol is outputted, which is counted as incorrect, or all of the expected output has
been outputted, which is counted as correct.

Note that the length of the output has a max size (x) in all domains and both
systems will automatically output the end-of-sequence symbol as the xth symbol.

21

3. Datasets and Evaluation

22

4
The Model

This chapter describes the model created in the project. The chapter begins with a
high-level description of the model and proceeds to further detail the exact imple-
mentation.

4.1 Interface
This section describes how the model interacts with its environment. While the
model have been evaluated on sequence prediction tasks it is better described as
a sequence decision-making system. Like a sequence decision-making system, the
model is given a sequence and outputs an action.

This means that the model will only take one action per input sequence. If one
wants to use it to predict a sequence of actions one can simply feed it the original
sequence again but with a new symbol appended to the end. Which symbol this is
depends on the action and the environment. Since the action does not necessarily
correlate directly to a symbol the function f e(y) is used to compute the symbol to
be appended for some action y in the current environment e.

f and e may vary from problem to problem. Take an example where the model
controls an agent on a grid where each action is a direction to walk. In this exam-
ple e could be the the agent’s position and f e(y) could be the new position of the
agent. Thus f e(north), where e = (3, 4) would be (3, 3). When using the model for
sequence prediction, however, f is the identity function which does not depend on e.

In addition to a sequence the model is also given a reward for the previous action. In
general this would make the model a reinforcement learning system. In this thesis,
however, this reward is given solely to inform the model whether it has finished a
task or not and if it has whether it finished successfully or not. When the model
is fed a new starting sequence the the reward is set to null. This is so the model
understands that it have not done anything to be rewarded yet and that the current
sequence is a starting sequence.

In Figure 4.1 the models interaction with input and output is described over three
timesteps (t to t+ 2).

23

4. The Model

The Model The Model The Model

[v0, ..., vt], null [v0, ..., vt, f
e(yt)], rt [v0, ..., vt, f

e(yt), f e(yt+1)], rt+1

yt yt+1 yt+2

Figure 4.1: The inputs and outputs of the model over 3 timesteps.

The model has two modes of operation: Training and validation. During validation
the model is always given null as reward and after a task is completed the model is
restored to the state it was before. This mode is used to be able to the test the the
model on the same validation data after several training iterations. During training
the model adapts to rewards in order to optimize the reward given for each task.
How the model achieves this is explained in the remainder of this chapter.

4.2 Overview
This section gives an overview of the inner workings of the model and introduces
the three different parts of it: The Solver, the Abstracter, and the Rule-Former.

The Solver is a sequence-decision making system on its own. Given a sequence the
Solver will output an action. However, the Solver is based on Q-learning and can
therefore only make decisions for sequences it has encountered previously. The pur-
pose of the Abstracter is to transform a given sequence to something the Solver have
encountered before. Sometimes this cannot be done which is why the Abstracter
can also create goals that the Solver can use as though they were previously encoun-
tered sequences. In order for the Abstracter to do this it needs information on how
sequences can be transformed and how to create abstract goals. This is the pur-
pose of the Rule-Former. The Rule-Former crawls through the data collected by the
model at regular intervals. When doing so it looks for patterns. Patterns indicating
which type of sequences are rewarded, patterns indicating which sequences have the
same rewarded outputs, or any other patterns that might be useful. After crawling
through the data the Rule-Former can form transformation rules and abstract goals
which the Abstracter can use to transform a sequence or generate goals. The inter-
actions between these three subsystems is further explained in the following sections
and can be seen in Figure 4.2.

The Solver uses Q-learning, state space search, and transition tables to learn and
predict the consequences of different actions. While the Solver is a working sequence
decision-making system on its own it has some notable flaws. Due to the combi-
natorial explosion the number of possible sequences become incredibly large even
with limited sequence length and number of symbols. This leads to the problem
of encountering sequences for which no possible good action has been found. To

24

4. The Model

Solver

Abstracter

Rule-Former

Output (action)

Input (sequence)

Sequences,
actions, and
expected re-
wards

Transformation
rules and abstract
goals

Transformed sequence,
original sequence, and
potential goals

Figure 4.2: Overview of how the three parts of the model interact.

combat this the model needs a system that preprocesses the sequences and gives
new sequences and potential goals so that the Solver can compute good actions.
This system is, as previously mentioned, the Abstracter.

The Abstracter is a fairly simple system. Given a sequence it will use the trans-
formation rules and abstract goals from the Rule-Former to attempt to transform
the sequence into a known sequence or a sequence for which it can create a goal.
It does this by using state space search over the transformation rules to transform
the sequence in as many different ways as possible. Once it finds a sequence the
Solver have managed to solve previously it outputs that sequence to the Solver. If
it cannot find such a sequence it may find a sequence that matches some pattern
the Rule-Former believes to be rewarded and it will output that sequence and its
potential goal. The Abstracter will always give the Solver the original sequence as
well so that the Solver knows for which sequence it is really making decisions.

The Rule-Former’s purpose generate transformation rules and abstract goals. It does
this by going through the knowledge gathered by the Solver trying to find common
patterns in sequences. For example the Rule-former might find that the sequences
"1+1=", and "2=" has the same best action (i.e "2"). The thing that is different in
the two sequences are "1+1" and "2". It will then form the candidate transformation
rule that "1+1" is replaceable with "2" and vice-versa. It will test the rule by seeing
if, for all other known sequences, the rule is useful at least once and never bad. If
that is the case it will keep the rule. Similarly it can find common patterns among
rewarded sequences to find abstract goals. For example the following sequences are
rewarded "1=1", "23=23", and "13=13", then the system might find the pattern that
"X = X" where X is a sequence of symbols from the set { 1 , 2 , 3 }.

25

4. The Model

4.3 Transformation rules and abstract goals
This section describes the implementation of the two kinds of rules and how they
are used.

There are two kinds of rules that the Abstracter can use: Transformation rules and
abstract goals. They fill different function but their implementation is very similar.
Both rules have an abstract sequence that can match, partially match, or not match
a given sequence. An abstracted sequence is a sequence of symbols and symbol-
variables. A symbol-variable is a pattern that some parts of a sequence may match.

4.3.1 Abstract sequences and symbol-variables
An abstract sequence is a template for a certain type of sequences. The abstract
sequence is said to match a sequence if that sequence follows the template. If a
abstract sequence matches some sequence it is also said to partially match all se-
quences that can be created by removing any number of symbols from the end. This
means that if an abstract sequence matches 1 2 3 it will at least partially match
1 2 .

To create this template there needs to be some freedom for which symbols can ap-
pear. This is the job of symbol variables. A symbol-variable is a part of the abstract
sequence that can match several different subsequences. Subsequences may match
to a symbol-variable if they consist only of the symbols that symbol-variable allows
and are not longer or shorter than that symbol variable allows. When a symbol-
variable have matched to one subsequence that same symbol-variable must refer to
that exact subsequence for the duration of that context. With this the abstract
sequences can represent, for example, mathematical expressions. The following ab-
stract sequence would represent the fact that x+ x = 2x:

• Exactly one symbol from { 1 , ..., 9 }. We call this subsequence A
• Zero or more symbols from { 0 , ..., 9 }. We call this subsequence B
• Exactly one symbol from { + , ∗ , − , / }. We call this subsequence C
• AB = 2 ∗ AB

Symbol-variables are implemented as 3-tuples of: A set of symbols which the subse-
quence may contain, a integer which the subsequence must be longer than or equal to,
and another integer that the subsequence must be shorter than or equal to. Take, for
example, the symbol-variableX = (Allowed symbols = { 0 , ..., 9 },Minimum length =
1,Maximum length =∞). X can match any subsequence of at least one digit.

Furthermore a specific symbol-variable must represent the same subsequence through-
out an entire sequence if the sequence should be considered a matching the given
abstract sequence. This means that, with X from the previous example, the ab-
stract sequence [X =X] matches any sequence of mathematically correct equalities

26

4. The Model

(and some incorrect ones where X begins with 0). The same abstract sequence will
also partially match any sequence of digits followed by an equals sign.

A symbol-variable can be specified to match any possible subsequence. Such symbol-
variables will be subscripted with all for readability. For example: Y = (Allowed symbols =
all,Minimum length = 0,Maximum length =∞) = Yall

4.3.2 Abstract sequence matching
To determine if an abstract sequence matches a given sequence a simple algorithm
was developed. It works by, for each symbol or symbol-variable in the abstract se-
quence, trying to match the symbols of the given sequence. In the end the algorithm
returns the list of all possible ways that the abstract sequence can match the given
sequence. In the special case where the result is only a partial match it will be
flagged as such.

The algorithm is recursive and is given the current positions in the abstract sequence
and the sequence to match, and a list of which symbol-variables has been matched
to what subsequences. A flowchart of the complete implementation can be found in
Figure 4.3. The recursive function is called with abs as the abstract sequence, seq
as the sequence to match, absPos and seqPos as 0, and vars as a map from each
unique symbol-variable in the abstract sequence to uninitialized values. Note that
additional calls uses copies of the input such that no function call will overwrite the
values of another.

The output of the algorithm is a list of mappings from variable-symbols to what they
matched against. Each entry in the list is a mapping to subsequences such that if
the symbol-variables are replaced with those subsequences the original sequence
is formed from the abstract sequence. For partial matches the abstract sequence
becomes a the start of the original sequence instead. If there are no entries in the
list that means there are matches or partial matches. If each entry in the list is
flagged as partial than it is only a partial match. In all other cases there is at least
one match.

27

4. The Model

Call function with:
abs = Abstract Sequence

seq = Sequence
absPos = Abstract Sequence Position

seqPos = Sequence Position
vars = List of symbol-variable mappings

Is abs[absPos] a symbol?

Is abs[absPos] = seq[seqPos?]Return []

Call the function
again with:
absPos + 1
seqPos + 1

Yes

Yes

No

Has vars[abs[absPos]]
been initiated?

No
(it is a symbol-variable)

varPos = 0
var = vars[abs[absPos]]

Yes

Is varPos =
length(var)?

Call the function
again with:
absPos+1

seqPos

Yes

Is var[varPos] =
seq[seqPos]?

No

Return []
No

varPos + 1
seqPos + 1

Yes

vars[abs[absPos]] = []
var = vars[abs[absPos]]

Is seqPos = length(seq) or
absPos = length(abs)?

Is seqPos = length(seq) and
absPos = length(abs)?

Yes

Return [vars]

Is seqPos = length[seq]?

Return ([vars], "partial")

Return []

Yes

No

Yes

No

No

 Must var have
at least 1 symbol?

Is seq[seqPos]
allowed in var

Append seq[seqPos]
to var

seqPos +1
ret = []

Yes

Yes

Return []
No

No

Is var allowed
to have more than

one symbol?

Call the function
again with:
absPos + 1

seqPos

No

Is seq[seqPos]
allowed in var

Append
seq[seqPos] to var

seqPos +1

Yes

Yes

Call function again with:
absPos + 1

seqPos
vars

And append the result to ret

Return ret
No

ret = []

No

No

Figure 4.3: Flowchart of the abstract sequence matching algorithm.

28

4. The Model

4.3.3 Transformation rules
A transformation rule is a rule that tells the Abstracter a way to alter a sequence
such that the resulting sequence is equivalent to the the original. Transformation
rules are implemented as a 2-tuple of abstract sequences. If a sequence matches the
first abstract sequence in the tuple it means that the rule applies to that sequence.
The matching algorithm returns a mapping of the symbol-variables to subsequences.
By exchanging the symbol-variables in the second abstract sequence for their respec-
tive mappings a new sequence is formed. For efficiency the rule transformation forces
the algorithm to return once one match have been found and then uses the mapping
of that match.

An example of a transformation rule could be ([Xall 1 + 1 Yall], [Xall 2 Yall]). This
rule is applicable to all sequences containing the subsequence "1+1" and states that
such a subsequence can be replaced with "2". According to the rule the sequence
"1 + 1 = 2" is equivalent to "2 = 2", which seems correct. However, the rule also
states that "11 + 11 = 22" is equivalent to "121 = 22". This specific rule would
therefore only be useful in domains in which "11 + 11 =" is not a valid sequence or
where "11 + 11 = 22" is indeed equivalent to "121 = 22".

4.3.4 Abstract goals
An abstract goal is an abstraction of what sequences are rewarded. The Abstracter
can use abstract goals to check whether or not a found sequence that the model has
never encountered is rewarded. Abstract goals are implemented as a 3-tuple of an
abstract sequence, an expected reward, and a best action. If a given sequence is a
partial-match to the abstract sequence and all symbols of some subsequence needed
to make a complete match can be achieved with the model’s actions the sequence
can lead to the given rule.

An example of an abstract goal could be (X = X, 1.0, print(ε)), where X can be
any sequence of at least one digit. This goal states that if one prints the end-of-
sequence symbol (ε) after a sequence of digits followed by an equals sign followed
by the same sequence of digits one can expect a reward of 1.0. Using this abstract
goal the Abstracter would consider the sequence "34 =" to be a sequence that can
lead to a reward for the system (given that the model can produce the symbols "3"
and "4" in the given domain).

4.4 Abstracter
The purpose of the Abstracter is to enable the model to calculate what action to
perform when given a sequence the model never have encountered before. When
given a such a problem the Abstracter will return a sequence which it believes to be
equivalent with the given sequence. Sometimes this equivalent sequence have not
been encountered previously either, in that case the Abstracter also provides goals
for the Solver to search for. To do this it uses the transformation rules and abstract

29

4. The Model

goals produced by the Rule-Former as well as the rewarded sequences recorded by
the Solver.

The usefulness of such an approach can be seen in the following example. In a text
prediction scenario the training dataset could, among others, contain two sequences
of the form: Today it is sunny and Today it’s sunny.

In this case the Abstracter could help by using the rule that it’s can be replaced
by it is in order to reduce the new sequence Today it’s raining to the already
encountered equivalent sequence Today it is raining for which the model already
knows what to do. Without the Abstracter the decision making process would not
have any data that matches the above sequence.

The Abstracter takes, as input, a sequence and outputs an estimated goal and an
estimated equivalent sequence from which the goal can be reached. To do this it
uses the transformation rules and abstract goals produced by the Rule-Former as
well as a tree of rewarded sequences from the Solver. If no good estimated goal and
sequence can be found it simply returns the sequence given and a null value as the
estimated goal.

In another scenario the Abstracter may be given the sequence 4 = . It cannot
find any equivalent sequnces but can find the abstract goal X =X which partially
matches the sequence. The Abstracter will then output 4 = to the Solver together
with the goal 4 = 4 created from matching the sequence to the abstract goal.
While the Solver have no previous experience for the sequence it can use the goal
to figure out that outputting 4 is probably a good decision.

The Abstracter does this by using a fairly straight-forward state space search algo-
rithm with limited depth, no value function, and no heuristics. The nodes of the
search graph are the different sequences found and the edges are the transformation
rules applicable to that sequence. If a previously encountered node is found it is
discarded. If a sequence found either can lead to a sequence in the list of rewarded
sequences or is a partial match to an abstract goal, then that sequence and its esti-
mated reward is recorded. When the maximum depth of the algorithm is reached it
returns the sequence and corresponding goal with the highest recorded reward. The
Abstracter can also run on a mode where it will terminate upon finding the first
sequence with an estimated reward above a certain number to speed up performance
on certain domains. A flowchart of the Abstracter’s state space search can be found
in Figure 4.4.

The Abstracter uses this search algorithm to reduce sequences to known sequences.
In Figure 4.5 one can see an example of the nodes visited by the search as it reduces
the sequence "2*5*4*(1+2)" to the, in the arithmetic domain, equivalent sequence
"120".

30

4. The Model

Call function with:
seq = Sequence to start from

returnReward = Number that if a reward higher
than is found the function will return

transforms = List of transformation rules
absGoals = List of abstract goals

rewardedSeqs = Tree of rewarded seqs
depth = maximum depth of serach

queue = []
bestReward = -∞

bestSeq = null
bestGoal = null

Append (seq, depth) to queue

(thisSeq,depth) = First value
in queue

Remove first value in queue

Can thisSeq
lead to a

sequence in
rewardedSeqs?

Is the reward
of goal

greater than
bestReward?

Does thisSeq
partially match

a goal in
absGoals?

Yes

Yes

No

No

bestReward = reward
bestSeq = thisSeq

bestGoal = goal

Yes

Is bestReward
greater than

returnReward?

Return (bestSeq, bestGoal)

goal = sequence
thisSeq can lead to

num = 0

Is queue empty? Return (bestSeq,
bestGoal)

Is
num = length(transforms)

or depth = 0?

No

Yes

No

No

Yes

If transforms[num]
matches with seq

append (the result,
depth-1) to queue

Yes

No

Figure 4.4: Flowchart of the Abstracter’s equivalent sequence state space search
algorithm.

31

4. The Model

2*5*4*(1+2)

10*4*(1+2)

40*(1+2)

40*3

120

10*4*3

10*12

120

2*5*4*3

2*20*3 2*5*3*4

2*15*4

30*4 2*60

Figure 4.5: The nodes visited by the Abstracter’s state space search when trying
to reduce "2*5*4*(1+2)" with a maximum depth of 4. The lines represents the
successful application of transformation rules.

4.5 Solver
The Solver does two things for the model: First it takes a sequence and potential
goals and tries to find the best action to take in order to most reliably get the highest
amount of reinforcement reward for the long term. Secondly it stores information
gained through interaction with the world for the other systems to use in some con-
venient data structures. This section will begin by covering how the Solver stores
information and then proceeds to explain how it uses this information together with
the Abstracter to make decisions.

The Solver has a multitude of data structures that serve different purposes. It is
worth noting that while the model is a sequence decision-making system the tasks
that we are evaluating it on are sequence prediction tasks. For these tasks much of
the Solver is unnecessarily complex, but they are necessary for allowing the model
to work in domains outside sequence prediction.

4.5.1 Data structures in the Solver
The Solver maintains six data structures: A transition table, a Q-table, a reward
table, two radix-trees of rewarded sequences, and a set of all fed starting sequences.

The transition table is a map of symbols and actions to the probability distribution
of what symbol will come next. An key in the map may be an action, a symbol,
or both and the value is a distribution of which symbol will come next given that
the key symbol was the last in the sequence and the action is performed. The table
stores the singleton symbol or action keys in case information is needed about a pair
of symbol and action that has not been encountered by the model. This is imple-
mented by having the values be a 2-tuple of the number of stored occurrences of the
key and another map from each possible next symbol to the number of times it has
occurred. Given a optimal map implementation with a O(1) hashing operation the

32

4. The Model

look-up speed of a the probability of a symbol occurring given a key should have
an average time complexity of O(1). Note that in sequence prediction each action
leads to the corresponding symbol with probability 1.

The Q-table is a straightforward implementation of the table as part of the Q-
learning algorithm described in subsection 2.2 of the theory chapter.

The reward table is a straightforward map from a key of a 2-tuple of sequence and
action to the expected reward.

The two radix-trees of rewarded sequences contains all sequences that gave a re-
inforcement above some predefined number (0 if not otherwise stated). The trees
also contain, for each sequence, which actions prompted this reward and what that
reward was. The difference between the two radix-trees is that one contains the
sequences stored by their prefixes and the other by their suffixes (i.e. stored forward
and backwards). The implementation of these uses the next symbols as edges and
each node contains a set of the rewarded actions for that sequence. If the set is
empty it means that that node is just part of a not in itself rewarded sequence

The set of all starting sequences is a simple set containing all sequences that the
model have received but not written itself.

4.5.2 How the Solver maintains its data structures
The transition table is maintained by remembering the previous last symbol and
action. When the next sequence is given the number of encounters of that symbol is
incremented by one for the entries with keys corresponding to the previous action,
the previous last symbol, and the two of them together. The number of accesses to
those entries are also incremented.

The Q-table is maintained according to the description in subsection 2.2.

New entries are added to the radix-trees whenever the model gets a reward higher
than the predefined threshold. The previous sequence (the current sequence with
the last symbol removed) is then inserted to the radix-trees. For the forward facing
tree (where sequences are stored from the first symbol to the last) a new sequence
is inserted as follows. Starting at the root the insert algorithm follows the edges
corresponding to each symbol. Whenever an edge does not exist a new empty node
is created, and connected to the current node via an edge corresponding to that
symbol. When the algorithm arrives at the node after the edge corresponding to
the last symbol in the previous sequence it inserts the action and reward into that
node’s set. That is the given reward and previous action is stored in that node. The
same is done for the reverse radix-tree, only the previous sequence is reversed first.

Whenever a sequence is given and the model have performed no previous action that

33

4. The Model

sequence is stored in the set of input sequences.

4.5.3 Decision-making by the Solver
The Solver is the subsystem that is ultimately to take what the other subsystems
have produced in order to return the best action for the given situation. It takes a
sequence and list of potential goals from the Abstracter and performs state space
search over the possible actions for the potential goals. The flowchart for the Solver’s
state space search can be found in Figure 4.6

34

4. The Model

Call function with:
seq = The given sequence

goals = A map of goals to their respective best action and reward
actions = List of actions

transitions = Transition table
depth = Maximum depth of search

symbols = List of all symbols

Is seq in goals?

bestAction = null
bestReward = -∞

Yes (bestAction, bestReward)
= goals[seq]

No

Is depth = 0? Return (bestAction, bestReward)
Yes

num = 0

No

Is num =
length(symbols)?

Is seq +
symbols[num]

a prefix to
a goal?

No

num += 1

No

(_, thisReward) = Call function again with:
seq = seq + symbols[num]

goals = all goals with seq + symbols as prefix
depth = depth - 1

action, transitions, symbols remain the same

Yes

thisAction = action with highest probability
to generate symbols[num]

given the last symbol in seq
thisProb = the probability of thisAction

generating symbols[num]
thisReward = thisReward * thisProb

Is thisReward
greater than
bestReward?

No

bestReward = thisReward
bestAction = thisAction

Yes

Return (bestAction, bestReward)

Yes

Figure 4.6: Flowchart of the Solver’s state space search for already determined
goal states.

35

4. The Model

For application on sequence prediction the model has only real use of the radix-
trees and the set. However when it comes to sequence decision-making the extra
data structures are necessary. In sequence prediction each action is guaranteed to
produce a specific symbol and the sequence of actions is directly correlated to the
reward. In sequence decision-making the reward and outcome of an action is based
on the state of the world, which the agent may not have access to in its entirety.
By storing the different states of the world in a sequence an agent can remember its
structure. In that case, sequence decision-making reward is on a scale and may be
received continuously throughout one run. Actions are not guaranteed to cause a
next specific state which make it difficult to predict what to do next. In this case,
the model is dependent on its extra data structures as well as on another version
of the the state space search found in Figure 4.6. By having state space search
for the highest discounted reward instead of some defined goal states the model
can make use of the generality of Q-learning to tackle sequence decision-making.
This extended search can be found in Figure 4.7. Note that this algorithm can still
utilize the abstract goals created by the Rule-Former. In this more general setting
an abstract goal represents a highly rewarded but not necessarily optimal sequence
as it did in the previous case.

36

4. The Model

Call function with:
seq = The given sequence

actions = List of actions
transitions = Transition table

qTable = Table of Q-values for sequences and actions
rTable = Table of expected rewards for sequences and actions

absGoal = list of abstract goals that partially match seq
depth = Maximum depth of search

symbols = List of all symbols
discount = Factor to determine how much less a reward is worth per

time-step it takes to get the reward

bestAction = null
bestReward = -∞

Is depth = 0?
Return (bestAction, bestReward)

Yes

num = 0
nextSeqs = Empty map

No

Is num =
length(symbols)?

No

num += 1

(_, thisReward) = Call function again with:
seq = seq + symbols[num]

depth = depth - 1
action, transitions, qTable, rTable, and

symbols remain the same

nextSeqs[num] = thisReward

Yes

bestAction =
The action for which

qTable[seq, action] has the
highest reward.

bestReward = qTable[seq,
action]

num = 0

Is num =
length(actions)?

thisAction = actions[num]
thisReward = rTable[seq, acton]
endSymbol = Last symbol in seq

sym = 0
nextSymbolProbs =

transitons[endsymbol, thisAction]

No Is sym =
length(symbols)?

Yes

num += 1

Is seq in qTable?
Yes

No

Does any
in absGoal
match seq?

(bestAction, bestReward) =
absGoals[seq]

No

symbolProb =
nextSymbolProbs[sym]

symbolReward =
discount*nextSeq[sym]

thisReward +=
symbolProb*symbolReward

sym += 1

Is thisReward
greater than
bestReward?

YesbestReward = thisReward
bestAction = thisAction

No

Return (bestAction, bestReward)

Yes

No

Figure 4.7: Flowchart of the Solver’s state space search using Q-learning to solve
problems without explicit goal states.

37

4. The Model

4.6 Rule-Former
The Rule-Former is the subsystem which task it is to create and remove the trans-
formation rules and abstract goals that the Abstracter uses. Since the Rule-Former
is a rule-based learning system we will, for clarity, refer to the algorithms the Rule-
Former uses to create or remove transformation rules and abstract goals as learning-
rules. As is often the case in rule-based learning the learning-rules can be widely
different. The Rule-Former’s purpose is to contain these learning-rules, to run the
learning-rules at appropriate times, and to accept or reject the transformation rules
and abstract goals created by the learning-rules.

A learning-rule is any algorithm that creates or removes transformation rules or
abstract sequences from the model. Learning-rules may only use the data collected
by the model to do this and should be as general as possible (i.e. avoid being domain
specific). The iOur system is called “the Model”
Contents:
Sequence Learning
Evaluation
How the Model works
Results and Conclusionntended use of the Rule-Former is for it to have a multitude
of learning-rules to cover many areas. The implementation of the model made for
this thesis, however, only has one. This one learning-rule only produces transforma-
tion rules which means that the current implementation of the model cannot create
abstract goals.

The Rule-Former should decide when to run learning-rules. When different learning-
rules should run varies and a general implementation of this behavior is therefore not
included in this thesis. Rather the task of deciding when to run a given learning-rule
is delegated to the learning-rule itself.

4.6.1 Testing transformation rules and abstract goals
All transformation rules and abstract sequences created by the Rule-Former should
be tested. The tests for transformation rules and abstract sequences are similar. If
a rule fails the test it is removed, if it passes it is up to the learning-rule that created
them to decide if they should be added to the list of rules or discarded.

The way the transformation rules are tested is that they are used to transform all
known starting sequences (as stored in the Solver’s set of starting sequences). If
any resulting transformed sequence does not have the same expected output as the
original the transformation rule failed the test. If the transformation rule passed
the test the number of times it successfully managed to match a sequence whose
transformed counterpart had the same expected output is given to the learning-rule
that created it. The learning-rule may now decide whether to add this transfor-
mation rule to the list of transformation rules or discard it. The flowchart for the

38

4. The Model

transformation rule testing algorithm can be found in Figure 4.8.

A similar test is used for abstract goals. The abstract goal is tested by matching
against all starting sequences.
For each starting sequence, if the abstract sequence partially matches that sequence
the abstract sequence is tested against that sequence. A sequence that matches the
abstract sequence and has the test sequence as start is calculated. If no or more
than one such sequence can be calculated this test sequence is discarded and the test
continues. Otherwise the calculated sequence is compared to the expected reward
of that starting sequence. If they are not equal the rule fails the test. If it passes
all such test sequences the test is passed as well and the number of test sequences
that it passed is given to the learning-rule that created it. The learning-rule may
now decide whether to add this abstract goal to the list of abstract goals or discard
it. Since the current implementation does not use abstract goals this test was not
implemented.

39

4. The Model

Is num =
length(inSeqs)?

Does
newRule match
inSeqs[num]?

newSeq = match
newRule to

inSeqs[num]

Function called with:
inSeqs = The set of all recorded starting sequences

newRule = The transformation rule to test
forwardRadix = Forward radix tree of rewarded sequences

num = 0
goodMatches = 0

Bad = False

No

Yes

Is newSeq
in inSeqs?

branch = First node in forwardRadix
twig = branch

seq = inSeqs[num]

Yes

Is newSeq empty? branch = branch[newSeq[0]]
Remove first in newSeq

No

Is seq empty? twig = twig[seq[0]]
Remove first in seq

No

Yes

Is twig = branch?
(if they would be

roots, are the trees
identical?)

Yes

bad = True goodMatches += 1
Yes

No

num += 1

No

No

Return (bad, goodMatches)
Yes

Figure 4.8: Flowchart of the Rule-Former’s transformation rule testing algorithm.
40

4. The Model

4.6.2 The equivalence learning-rule
The equivalence learning-rule is the only learning-rule implemented in the system.
Its purpose is to use the definition of equivalent sequences from subsection 2.1.4 to
find subsequences that can be considered equivalent.

For example given the sequences "1 + 1 + 1 = 3" and "2 + 1 = 3" it may find that
the reward for both sequences is positive and that both sequences share the ending
"+1 = 3". Because of this it would seem that the sequences "1 + 1" and "2" can
be considered equivalent. The equivalence learning-rule will upon the discovery of
such an equivalence create the transformation rule that states that "1 + 1" can be
replaced by "2". The new rule will then be tested using the algorithm in Figure
4.8. For example the input sequence "1+11 =" has the rewarded following sequence
"12" while "21 =" (the result of transformation by the new rule) does not. If the
new transformation rule is considered bad, the new rule is extended by adding one
character to the end of the two starting sequences. In this example "1 + 1" becomes
"1 + 1+" and "2" becomes "2+". The procedure of testing the rule against starting
sequences is then repeated. The transformation rule is kept if it is not bad and have
more than n matches among starting sequences. For this thesis n = 3.

This algorithm consists of two parts. First, given a rewarded sequence, find the
rewarded sequences that share the largest part of their ending with the given se-
quence. This function also returns the index of the first sequence at which that
ending begins. Second, forming the transformation rules and testing them. The sec-
ond function returns a list of new transformation rules that the Rule-Former then
appends to its list of transformation rules. Flowcharts describing the two parts can
be found in Figure 4.9 and Figure 4.10 respectively.

This learning-rule is called whenever the system encounters a rewarded sequence.
That is, when the system gets a positive reward it checks whether the sequence
it encountered have been previously stored as rewarded. If it has not the two al-
gorithms described above (and in Figure 4.9 and Figure 4.10) are called in order
with seq being the newly encountered sequence, closestSequences being the list
returned by the first algorithm, and suffix is the shared ending as calculated by
using the value lastNum returned by the first algorithm. All other arguments are
data structures from the Solver or parameters of the model.

41

4. The Model

Function called with:
seq = new rewarded sequence

reverseRadix = reverse radix tree of rewarded sequences

closeSequences = []
num = length(seq)

branch = first node in reverseRadix
lastBranch = branch

lastNum = num

num = num - 1

Is num = -1?
Does branch

have more than one
outgoing edge?

lastBranch = branch
lastNum = num

branch = branch[seq[num]]

No

No

Yes

queue = []
acts = all rewarded actions stored in branch

For all edges from lastBranch
that is not seq[lastNum]

append (seq+edge, lastBranch[edge]) to queue

Yes

Is queue
empty? Return (lastNum, closeSequences)

Yes

(seq, twig) = First in queue
Remove first in queue

No

Does twig
have exactly acts

as rewarded
actions?

Append seq to
closesSequences

Yes

For all edges from twig append
(seq+edge, twig[edge]) to queue

No

Figure 4.9: Flowchart of the Rule-Former’s algorithm for locating rewarded se-
quences which share an ending with the given sequence.

42

4. The Model

Call function with:
seq = The given sequence

closestSequences = A list of the sequences that share the greatest amount of suffix
with seq

suffix = The shared suffix of seq and all in closestSequences
inSeqs = The set of recorded starting sequences

n = Number of matches that a rule needs more than to be considered useful

newRules = []
equality = seq - suffix

equalities = List of (txt - suffix, txt, equality) for all txt in
closestSequences

Is equalities
empty?

(equal, otherSeq, equality) = First in equalities
Remove first in equalities

newRule = ([Xall, equal, Yall],[Xall, equality, Yall])

No

(bad, goodMatches) = Call the transform rule testing algorithm
with:

 newRule = newRule
inSeqs = inSeqs

forwardRadix = Forward radix tree of rewarded sequences

Is bad = True? Is goodMatches
greater than n?

Append
(equal + otherSeq[length(equal)],

otherSeq
equality + seq[length(equality)])

to equalities

Yes Yes

No

Is goodMatches
greater than n?

Return newRules

No

No

Append newRule to newRules

Yes

Is newRule
already in the
Rule-Former?

Yes

No

Figure 4.10: Flowchart of the Rule-Former’s algorithm for creating new transfor-
mation rules based on sequence equivalence.

43

4. The Model

4.7 Training the model
The model was trained for five iteration. Each iteration ended with an evaluation to
visualize how the model improves as the iterations progress. Each iteration consists
of the model being fed the entirety of the training set, however what the model does
with the training set varies between iterations.

The first iteration is used to teach the model which actions produce what sym-
bols. The model is not given the input and told to do random actions. While the
model might randomly produce a correct output sometimes during this iteration
these are not used to learn anything other than that those results are good. This
is because the Rule-Former is turned off for the first two iterations. Since model
doesn’t learn anything useful for the validation set the model simply does random
actions throughout validation.

The second iteration the model is given the input along with the expected output
and learns all the rewarded sequences and actions from the training set. The Rule-
Former remains shut-off as it is best used when the model has gathered a lot of
information already. Again the model doesn’t have any information to use on the
validation set and will perform random actions.

During the third to fifth iterations the Rule-Former is turned on and the model
is still fed the input together with the expected output. Because the Rule-Former
is turned on and the equivalence learning-rule runs when a rewarded sequence is
encountered it will try to form new transform rules after every sequence.

44

5
LSTM Network Baseline

This section describes the LSTM network that was constructed in order to compare
the results between the previously described model and this more established LSTM
network. The LSTM network was constructed as a baseline for comparison and then
trained on the same data.

The neural network was set up as a word prediction model where the initial sequence
is first feed into the network while any outputs are ignored. And then it will start
to feed its own output as the input until it considers the sequence finished.

5.1 Hyperparameters
When dealing with machine learning models there are many parameters that need
to be pre-determined by the developers. Such as but not limited to the amount
of layers in a neural network, the number of hidden units in each layer, and the
learning rate of the learning algorithm. These Parameters differ from those that
the model decides on by itself through training, and are therefore for clarity called
Hyperparameters.

A number of different configurations were tested when determining the hyperparam-
eter configuration for this model, but only one configuration was used in the end
for the baseline comparisons. Due to both time contraints (the LSTM network was
not the primary focus of the project since it brings nothing new to the field) and
also due to hardware constraints, it is most likely the case that the LSTM network’s
hyperparameters can be further optimized in order to produce even better results
in the future.

The procedure by which the architecture and hyperparamters was designed was by
simple trial and error. For simplicity a fully connected multilayer neural network
with LSTM-units with an output layer of simple perceptrons was chosen. The
number of layers, units per layer, learning rate, and optimizing scheme was altered
until the best settings for which the network could train on 300000 sequences in a
relatively short time (less than 4 hours). The following different parameters were
tested:

• 2 or 3 layers.
• Learning rates of 0.01 or 0.001.
• 128, 256, 512, or 1024 neurons per layer.

45

5. LSTM Network Baseline

• Optimization with standard stochastic gradient descent or Adam.

Because of the length of the sequences (both input and expected output) the net-
work was unrolled for training over 10 iterations. The input to the network is given
as a vector of integers where each integer is mapped to a specific symbol. The vector
represents the sequence and the networks first layer is fed each integer one after the
other each timestep. After the last integer have been given the output vector can be
read. The output vector has length equal to the number of symbols and each value
represent how much the network believes that this symbol should be the next one.
The next symbol is extracted by returning the symbol corresponding to the output
neuron with the highest value. When a sequence was shorter than 10 symbols the
start of the sequence was padded with a dummy integer until the sequence was 10
symbols long.

The following were used for training and evaluation:
• 3 Layers of Hidden Units.
• 512 Hidden Units on each layer.
• LSTM Neurons.
• The tanh (hyperbolic tangent) activation function in each LSTM unit.
• An output layer of perceptrons for one-hot encoding.
• A initial learning Rate of 0.001.
• Optimization using stochastic gradient descent with an Adam optimizer.
• 10 iterations of unrolling.

5.2 Implementation
The LSTM network was implemented in python using the TensorFlow machine
learning framework [1]. The network used TensorFlow’s "BasicLSTMCell", "Multi-
RNNCell", and "AdamOptimizer" implementations of LSTM-units, multilayer RNN
structure and the Adam optimizer respectively. The network was designed to be
trained The network was trained on a Nvidia gtx 1070 GPU using the NVIDIA
CUDA toolkit as well as NVIDIA CUDA Deep Neural Network library (cuDNN).
The basic training sessions were limited to take less than 12 hours each.

5.3 Training the LSTM network
The LSTM network was trained for 300000 iterations. Each iteration a random
entry in the training set is given to the network. It is asked to figure out its one-
hot prediction for which symbol should come next. The one-hot prediction is then
compared to a vector with zeroes on each entry except the correct symbol which is
represented by a one. The two vectors are used to calculate the loss of the network
that is then backpropagated through the network using the Adam optimizer in or-
der to train it. If the correct symbol had the highest one-hot value the training on
that entry continues and the network is given the same sequence with the outputted

46

5. LSTM Network Baseline

symbol appended to end and the process is repeated. This process is repeated until
a wrong symbol is outputted, which is counted as incorrect, or all of the expected
output has been outputted, which is counted as correct. The reason why the net-
work is only continually trained if it correctly outputs the next symbol is to prevent
it from forming an early bias toward the end-of-sequence symbol (ε).

During training the LSTM network is evaluated on the validation set every 10000
iterations.

47

5. LSTM Network Baseline

48

6
Results

This chapter presents the model’s performance in the different domains and com-
pares it to that of the LSTM-network. For each domain several results using different
settings will be presented; first that of the model followed by that of the LSTM-
network. At the end of the chapter a summary table of the final performance of the
two in each domain and setting can be seen for comprehension.

The results from the model and the LSTM network are presented in similar ways:
As tables over the highest average fraction of the validation set each system correctly
solved for some iteration. Recall from section 3.2 that iteration for the two systems
means different things. A table of the size of training sets and validation sets as well
as a table of the number of runs over which these results have been averaged have
also been provided. These tables also contain the average correctness rate of a ran-
dom sequence generator that will always end with the first end-of-sequence symbol
and will, like the two systems, automatically output the end-of-sequence symbol as
the xth output (x is the maximum length of any expected output for a given domain).

Note that all written numbers in this chapter have been rounded to three decimal
points for readability. Graphs of the averages accuracy over training iterations for
the model and the network can be found in Appendix B.

6.1 Results from the domain of simple arithmetic

This section presents the results from the datasets Arithmetic1 and Arthmetic2.

6.1.1 Results from Arithmetic1

Fraction as validation 0.1 0.5 0.9
Accuracy of the model 0.761 0.685 0.060
Accuracy of the network 0.578 0.293 0.125

Accuracy of random output 0.003 0.003 0.003

Table 6.1: The highest average accuracy for both systems on the validation set for
Arithmetic1.

49

6. Results

Fraction as validation 0.1 0.5 0.9
Runs of the model 20 20 20
Runs of the network 12 8 11

Runs of random output 200 200 200

Table 6.2: The number of runs over which the results have been averaged for
Arithmetic1.

Fraction as validation 0.1 0.5 0.9
Size of training set 1260 700 140
Size of validation set 140 700 1260

Table 6.3: The final average accuracy for both systems on the validation set for
Arithmetic1.

6.1.2 Results from Arithmetic2

Fraction as validation 0.1 0.5 0.9
Accuracy of the model 0.593 0.507 0.141
Accuracy of the network 0.618 0.366 0.087

Accuracy of random output 0.002 0.003 0.003

Table 6.4: The highest average accuracy for both systems on the validation set for
Arithmetic1.

Fraction as validation 0.1 0.5 0.9
Runs of the model 20 20 20
Runs of the network 4 9 3

Runs of random output 200 200 200

Table 6.5: The number of runs over which the results have been averaged for
Arithmetic2.

Fraction as validation 0.1 0.5 0.9
Size of training set 4050 2250 450
Size of validation set 450 2250 4050

Table 6.6: Size of training and validation sets for Arithmetic2.

50

6. Results

6.2 Results From the domain of logic

Fraction as validation 0.1 0.5 0.9
Accuracy of the model 0.688 0.758 0.535
Accuracy of the network 1.000 0.905 0.710

Accuracy of random output 0.338 0.328 0.334

Table 6.7: The highest average accuracy for both systems on the validation set for
Logic1.

Fraction as validation 0.1 0.5 0.9
Runs of the model 20 20 20
Runs of the network 4 2 4

Runs of random output 200 200 200

Table 6.8: The number of runs over which the results have been averaged for
Logic1.

Fraction as validation 0.1 0.5 0.9
Size of training set 153 85 17
Size of validation set 17 85 153

Table 6.9: Size of training and validation sets for Logic1.

6.3 Results From the Domain of Simple English
Grammar

Fraction as validation 0.1 0.5 0.9
Accuracy of the model 0.992 0.953 0.401
Accuracy of the network 1.000 1.000 1.000

Accuracy of random output 0.335 0.335 0.333

Table 6.10: The highest average accuracy for both systems on the validation set
for Grammar1.

Fraction as validation 0.1 0.5 0.9
Runs of the model 20 20 20
Runs of the network 3 5 2

Runs of random output 200 200 200

Table 6.11: The number of runs over which the results have been averaged for
Grammar1.

51

6. Results

Fraction as validation 0.1 0.5 0.9
Size of training set 636 453 70
Size of validation set 71 454 637

Table 6.12: Size of training and validation sets for Logic1.

6.4 Result summary

Dataset Fraction as validation The model The network Random output
Arithmetic1 0.1 0.761 0.578 0.003
Arithmetic1 0.5 0.685 0.293 0.003
Arithmetic1 0.9 0.060 0.125 0.003
Arithmetic2 0.1 0.593 0.618 0.002
Arithmetic2 0.5 0.507 0.366 0.003
Arithmetic2 0.9 0.141 0.087 0.003
Logic1 0.1 0.688 1.000 0.338
Logic1 0.5 0.758 0.905 0.328
Logic1 0.9 0.535 0.710 0.334
Grammar1 0.1 0.992 1.000 0.335
Grammar1 0.5 0.953 1.000 0.335
Grammar1 0.9 0.401 1.000 0.333

Table 6.13: Summary of the highest average accuracy for for both systems for each
dataset and fraction as validation.

As can be clearly seen in Appendix B there is often a large difference in accuracy
between the best and the worst performing runs of both the network and the model.
This is mainly due to how the dataset gets divided into the training and validation
fractions. Both machine learning systems can produce highly reproducible results
when given the exact same subsets repeatedly. The big randomness factor that
change the results is what data points that get included in each of the two subsets
before training even begins. This is why all runs were performed multiple times and
the average results were used here.

52

7
Discussion

This chapter will begin with answering the research question, commenting on the
performance on the systems, and argue why they have the performance they do
on the different datasets. Following from there the limits of the domains and the
systems will be discussed together with the validity of the evaluation. Then comes
a section that touches on the potential errors in the theory or implementations that
might affect the results, as well as the steps taken in order to try to prevent these.
Finally the chapter will discuss potential uses for the model, improvements that
might be made to it, and how to make use of it in more general domains.

7.1 Answering the research question
The research question presented was:

Can a rule-based learning system outperform an LSTM network on sequence learn-
ing problems?

From the results presented in the previous chapter it would seem that the answer is
"Yes, there exists circumstances where a rule-base system can perform better than
a LSTM network". Though this is not such an informative answer as it is easy to
think up scenarios in which a rule-base system can outperform a neural network. If
the network has poor architecture or hyperparameters it can be easily beaten. If
the rule-based system has been specifically designed for the domain it is tested on.

A better answer would probably be: "Yes, the model outperformed the network
presented in the LSTM network baseline chapter by more than 10 percentage points
in three of the evaluations presented in the Datasets and Evaluation chapter."

Now the question that remains is whether or not this answer is informative. The
following six sections dissect the results and tries to answer why the model out-
performed the network, if the model is useful outside the presented domains, if the
network is representative of LSTM networks in general, and if the results from these
domains are representative of other common sequence learning domains.

To help answer these question Table 7.1 contains a summary of which domains the
model performed significantly better (>0.1 better), the network performed better
(>0.1 better), or they had similar performance.

53

7. Discussion

Dataset\Fraction as validation 0.1 0.5 0.9
Arithmetic1 M M -
Arithmetic2 - M -
Logic1 N N N
Grammar1 - - N

Table 7.1: Summary of whether the model (M) or the network (N) had better
performance, or if their accuracy where within 10 percentage points of one another
(-).

7.2 When and why is the model better than the
network?

For Arithmetic1 the model was clearly better than the network with fractions as val-
idation of 0.1 and 0.5. For fraction as validation 0.9 the network performed better,
though both systems performed poorly. This domain is set apart from the others in
a few different ways. Before getting into that we need to analyze the other domains.

First of all both Logic1 and Grammar1 are one-step sequence-prediction problems.
This means that while the systems only have to guess one symbol per sequence. This
is good for the network because the network will have to learn which symbol should
come next for each symbol in the expected output. This means that the shorter
the expected output the less the network will have to learn. For the model on the
other hand the length of expected output does not matter. If the model is given a
sequence it has not encountered before it will attempt to reduce that sequence to a
known equivalent sequence. If it can do this then it can simply output the expected
output of that equivalent sequence. This means that for datasets with shorter ex-
pected output the model will probably perform worse relative to the network than
on datasets with long expected output.

While both Arithmetic1 and Arithmetic2 have longer expected output Arithmetic2
also have mixed operators. In both datasets the model can use the associative and
transitive properties of multiplication to form transformation rules. To know that
"3*5" can be exchanged for "5*3" can help the model find solutions for any problems
containing "3*5" that it has not encountered but which transformed counterpart it
has. However, in Arithmetic2 the additional operator addition is difficult for the
model to handle. While "5*3" may be replaced by "3*5" the same is not true for
"5+3" and "3+5" due to the order of operations. This makes it much more difficult
for the model to form useful transformation rules to handle addition. The model
still forms some useful rules like "5+3+" can be exchanged for "3+5+" but these are
only applicable when both operators are addition and "5" and "3" must be the first
two operands. This means that for the entries with two operands (which is almost
89% of the dataset) the model have a good chance of solving the half of the entries
with the two operands being the same and a poor chance of solving the problems
when the two operands are different.

54

7. Discussion

Simply put we believe that the model was indifferent to some of the problems that
the network had to deal with when it comes to having longer expected output
sequences. Additionally the model have difficulty handling datasets with many
counter-examples to simple transformation rules which is why it only significantly
outperforms the network on one of the 3 Arithmetic2 evaluations.

7.3 Is the LSTM network a good baseline?
It has already been mentioned why a LSTM network is a good baseline for sequence
learning systems, given its great performance in the area. This section discusses
whether or not the performance of the LSTM presented in this thesis is representa-
tive of the performance of general LSTM Networks.

The network created in this thesis was neither structured after a network from
another thesis, nor does this thesis provide much backing as to why the networks
architecture and hyperparameters are what they are.

7.3.1 Hyperparameter optimization
Many of the results presented in this thesis are based on limited testing and op-
timization. Both the model, but also the LSTM baseline model have a very large
number of potential configurations, and not all of them could be compared to each
other in a feasible timeframe. The aim was to show the potential on the new model
and the extensions it can provide to an animat model and not to compare the results
to the baseline in to much detail.

Before further work gets done more optimization could be useful in order to improve
the results further. Another option could be to introduce some form of automatic
optimization algorithm to the model, similar to the optimizers that already exist for
some of the hyperparameters relating to Neural Networks [22].

7.3.2 Interpreting the network’s performance
It is obvious that the performance of the network is not comparable to the best
general implementations and that it is not the best LSTM network implementation
for these domains. This begs the question: What is the point of comparing the
performance of the model with that of the network?

While the network is not representative of the best LSTM networks it is still a
LSTM network with decent performance on these problems. By comparing on which
datasets the network performs worse, as good as, and better than the model we can
get an understanding of which datasets a better LSTM network is also likely to
perform good or bad on. This also means that for any datasets where the model
does not outperform the network by a large margin the model likely has performance
equal to or worse than a better LSTM network would. Furthermore it is obvious

55

7. Discussion

that when the network outperforms the model it is obvious that the model could
not compete with an even better LSTM network.

7.3.3 Scalability of neural networks

Another important aspects of neural networks in comparison to the model or indeed
most rule-based systems is the scalability of neural networks. If one wants better
performance from a neural network it is often as simple as increasing its size, training
it for longer, or both. We postulate that on any domain where the network was
outperformed by the model, an increase in layers, neurons, training time, or all
three would lead to the network outperforming the model. This is not the case with
the model. As one can see in Appendix B the model’s performance spikes after
iteration three when it starts applying its one learning-rule. After this any increase
in performance comes from randomness. The model cannot perform better unless
more learning-rules are implemented, which would require more work.

7.4 Approximate answers

In some domains it is desirable for the incorrect answers to at least be close to the
correct answers, for example in natural language a small grammar mistake might be
fine if the sentence is still understandable. This is not included in the result section
above. The different machine learning models presented in this thesis have different
approaches to this problem.

The model has no ability to approximate a solution based on incomplete data. In the
event that it encounters an unknown new state that the abstraction system couldn’t
simplify into a familiar sequence the model will proceed to output randomly. As
one can see from the performance of the random output this has poor performance.

Comparatively the LSTM network will never take a truly random action, when
training it received feedback after each symbol it output, and could therefor learn
incomplete sequences. For example, the sequence 7 ∗ 7 = was included in the
simple arithmetic dataset, and during one of the runs when that was not part of the
training set the validation of that sequence was measured. The LSTM network was
unable to consistently output the entire correct sequence (4 9 ε) but it regularly
produced various other sequences that all approximated the answer: 4 x ε where
x was one of the other one digit natural number symbols, most often 2 was observed.

In order to solve this for the animats regular Q-Learning is not the most suitable
form of learning. And that part of the model would need to be either replaced or
extended to avoid random exploration. More about this is discussed in section 7.11
below.

56

7. Discussion

7.5 Breaking the model
The implementation of the model evaluated in this thesis has only one learning-
rule. That rule uses equivalence of sequences to find interchangeable prefixes to
form transformation rules around. These transformation rules are formed only if
there are no counter example to them. This highlights two flaws in the current
implementation of the model.

First the model requires the domain to contain equivalent sequences. Secondly the
model requires the domain not to contain counter examples of the useful transfor-
mation rules.

7.5.1 Requiring equivalent sequences
The current implementation of the model requires the domain to contain some equiv-
alent sequences to form any new transformation rules. Recall that equivalent se-
quences are sequences whose best following actions are the same. The model locates
equivalent subsequences by finding sequences with the same suffix and reward, this
means that any domain without sequences ending with the same suffix are impossi-
ble for the model to learn anything about.

Take, for example, the domain of single digit equlities:
E = {x = x ε , ∀x ∈ { 0 , ..., 9 }}
Given all sequences in E except 3 = 3 ε and then asked what symbols should
follow after 3 = the model would produce a random output.

7.5.2 Requiring lack of counter examples
The model will only form a transformation rule if there are no counter examples.
That is, if for any starting sequence the rule matches the transformed sequence does
not have the same expected output then the transformation rule will not be formed.
While this practice prevents the model from learning potentially harmful transfor-
mation rules, it also prevents it from learning transformation rules that would, on
average, increase performance.

7.6 Limited resources
For this thesis all systems have been run on standard home computers. Because of
this the training time of the two systems have been slow and the different evalua-
tions have not been able to run in parallel. Due to this the training time for each
evalutation had to be limited so to be completed over a one-night run.

The chosen LSTM-networks’s hyperparameters were limited based on available train-
ing time, but also to not be needing more time than the model. In addition to this
the use of TensorFlow allowed the network to train quickly on a GPU in addition

57

7. Discussion

to the CPU while the model was limited to training only on a CPU. This is made
it difficult to train on large datasets since these require more training for both the
model and the network. Additionally the differences in training hardware makes
any comparison in training time between the two systems pointless. This is why
this thesis have rather focused on the performance in comparison to how large parts
of the datasets the systems have been given for training.

7.7 Are the datasets suitable for evaluating the
model?

In there are some obvious similarities with the datasets on which the model was
tested on. All of them are deterministic, free of outliers, and free of measuring er-
rors. All of them contain an abundance of sequences with the same expected output.
All of them have entries in the region of 102 to 104, which is small in the realm of
machine learning. Though all three domains are commonly occurring in machine
learning, none of the datasets have been taken from previous works. Following is an
analysis of how these facts affect the credibility of evaluation on these datasets.

It is common for machine learning datasets to contain some outliers and measur-
ing errors. The model’s performance on datasets containing these is a question left
unanswered by this thesis. As has been dicussed the model cannot handle domains
without equivalent sequences which could make it difficult for the model to handle
outliers and errors. Because its performance is probably negatively affected by the
occurrence of counter-examples this is another obstacle posed by errors in the train-
ing data. With this in mind it is probable that the model would have pretty poor
performance on datasets containing outliers and errors. However, as this was not
evaluated in this thesis this guess remains untested.

All of the datasets contain several occurances of sequences with the same expected
output. As having the same expected output is almost the same as being equivalent
this means that all domains were suitable for the model to work in. Now the ques-
tion is if this is because datasets with entries having the same expected output is the
norm, and the four datasets reflects this, or the datasets shows a bias towards the
model. When it comes to classification tasks the point of the task is to find which
entries have the same classification. In such cases it is expected of a dataset to
contain multiple entries with the same expected output. However common sequence
learning tasks such as generating long messages are very unlikely to have the same
output due to the number of ways a message can be constructed. While there exists
some bias among the datasets towards the model having good performance it is not
an completely unfair test viewed from this angle. Again it would be interesting to
have the model tested on some common domain where it is not necessarily the case
that many entries have the same expected output.

The datasets are small in comparison to other datasets such as the Hutter Prize
Wikipedia dataset, the IAM Online Handwriting Database [11], or Twitter100k [18].

58

7. Discussion

The reason for this is that limited resources for this thesis made larger datasets un-
feasible, as training on them would have taken too long. As neural networks performs
much better when the amount of training data gets large the model would probably
be outperformed by the network in such domains, given that they both get to train
on all the training data.

Why none of the datasets were taken from previous works mostly comes down to
two reasons. First, since most machine learning datasets are quite large the limited
resources of this thesis prevented the use of such datasets. Second, we could not
find and make use of suitable datasets in time to train on them and therefore used
the ones we created ourselves. While using known datasets could have given the
model previous work to compare to, the LSTM-network gets to fill that role for the
datasets used in this thesis.

Finally the three domains which the datasets represent were chosen because of their
common use. They are not domains for which LSTM-networks are known to perform
better or worse than other sequence learning domains. They were chosen before the
before the design of the model was completed and before the mentioned flaws were
discovered. Any bias of datasets toward the model is therefore coincidental.

7.8 Potential errors

As with any measurements there might be errors in the results. It is not believed to
be any but the possibility is impossible to rule out. There might be bugs in the code
that have not been found that impact the results or the sample sizes over multiple
training runs might not be sufficiently big. If any attempts to recreate the work are
performed these should be kept in consideration when comparing the results.

The network was never directly compared to any other LSTM neural network imple-
mentations in frameworks other than TensorFlow either, but TensorFlow is widely
regarded as reliable and with production quality code. It is highly likely that with
further updates to the TensorFlow codebase better results can be achieved in the
future even on the same hardware as well.

All neural network performance runs were repeated multiple times and the reported
results are the averages of the different runs at discrete intervals (validation was
performed every 10 000 iterations). This was an attempt to avoid stray runs with
rare results (such as getting potentially stuck in any local minimums) and other non
reproduceable results.

While minor errors may exist in either system it is highly unlikely that any major
error made its way into the final implementation. If it had the performance of either
would likely be abysmal. The fact that the systems can get close to perfect average
on Grammar1 is indication that both systems are in good shape.

59

7. Discussion

7.9 Extending animats and other machine learn-
ing systems

In order to use the model together with an existing animat system, such as the one
presented by C. Strannegård et al. [37] some minor changes to the model may have
to be done. First of all the model is a framework for learning-rules. The one that
is implemented for this thesis has flaws that have already been described. More
learning-rules may have to be added to allow the model to cover more domains.
The evaluation of new transformation rules is also a problem that could be solved
by using better statistics instead of simply debunking the transformation rules that
have a single counter-example. Other problems can come from domains where the
model have to collect data while running. Such changes to the model are described
in section 7.10 and 7.11. The remainder of this section will discuss what potential
advantages could come from extending a system with use of the model.

The primary advantage of the model is being able to reduce sequence to other se-
quences that are similar or have similar best actions. This ability helps counteract
the huge number of possible sequences that even a simple domain can contain. This
means that even with only a small number of observed sequences the model can
help solve new sequences by fining the similar ones. By integrating the Solver to
or replacing it by a new system the model can extend the new system by giving
it insight as to which sequences have similar use. This can be compared to how
AlphaGo uses neural networks to give a min-max system insight as to which moves
are probably good and what their expected value is.

The animats presented by C. Strannegård et al. already have a subsystem in place
to abstract the world in the form of its gate network. However if the animats were
to be used in a specifically sequence learning environment it may be advantageous
to replace the gate network with the model. Since the remaining part of the animats
use a form of Q-learning from some abstracted information of the domain this part
of the animat system is highly suitable for replacing the Solver.

7.10 Difference between sequence prediction and
decision-Making

The domains that are the goal for this project all fall under the category of sequence
prediction. Despite this the goal of the model is to be a more general sequence
decision-making system. When solving problems of sequence prediction there are
some short-cuts one can take that one cannot necessarily use on the more general
problem.

The first example of this is that in a sequence decision-making problem actions does
not necessarily correspond to going to the next state. To put it another way, each
action does not always cause the exact same symbol to appear. The model is already

60

7. Discussion

designed to handle this problem, by having its transition tables be probability based
and by using Q-learning to learn what action gives the highest long term reward
given a sequence.

Following the first example the effects of an action in sequence decision-making is
not entirely determined of what states have been previously visited or what actions
have been used. One cannot equate the sequences used for decision-making with
only the sequence of previous states or only the sequence of previous actions. This
problem can be side-stepped by having the input sequences be more than just that.
Each symbol of the sequences might represent the state of the environment sur-
rounding the agent, the internal state of the agent, and the action taken at the same
time. This gives the model a much more detailed picture of the world. Since this
could cause the world to have a large number of symbols which could significantly
slow down learning. This is one place where the model could benefit from being
integrated with the animat system presented by C. Strannegård et al. [37]. As the
local-Q-learning handles states based on their attributes which allows it to handle
states it have not encountered based on attributes it has.

Another problem that might occur is that the domain might not contain separable
sequences with a defined start and end point. The sequences might be simply the
states of the world that keeps updating forever. In this case the model can learn
little to nothing of each sequence as the only information it gets is a single sequence
that keeps growing indefinitely. Additionally this would require the model to store
arbitrarily long sequences. A way to solve this is to set a max length of a sequence
and remove the first symbol whenever a new one is introduced. The model should
in this case treat each new sequence as a starting sequence in order to store each
sequence in its set of input sequences for the Rule-Former to use.

When the world does not not have clearly defined boundaries of its sequences the
reinforcement rewards might not come at exactly one given moment. Additionally
in a more general domain the rewards might not be only: Neutral, positive, or neg-
ative. Rather it would be a scale from some lowest value to some highest and the
goal of the model would be to optimize the sum of all rewards it can get, perhaps
taking some discount factor into account. The fix for this is to extend the state
space search in the Solver to take into account the rewards of intermediate actions
and use Q-values to determine the value of a state rather than specifically stored
goals. The Solver already have the data structures in place to deal with this in its
reward table and Q-table.

7.11 Further improvements
In order to further improve the results a number of improvements and additions
are suggested here. Most of these are improvements for the Abstracter and Rules-
Former, that would help it be more efficient and improve the generalization capa-
bilities.

61

7. Discussion

7.11.1 Additional learning-rules
The most intuitive way to improve the model is through additional learning-rules.
The model can be seen as a framework for these learning-rules and with a work-
ing model a few well thought out learning-rules can help cover up the flaws that is
present in the current implementation. Following is a few suggestions for such rules.

The model cannot handle domains with entries whose expected output are not the
same as any other entry’s. This is one of the reasons why the concept of abstract
goals was introduced. However, for this thesis, no learning-rule was created that
could actually form these. A suggested starting point for such a learning-rule would
be to look after patterns in the list of all rewarded sequences to see if there is any
patterns that are rewarded. Abstract goals formed from this learning-rule could be
tested to see that they do not match to any unrewarded sequences similar to the
test used for transformation rules.

Association, transitivity, and commutativity are three common properties found in
mathematical domains. These attributes could be worth looking for and creating
transformation rules to match. For example in Arthmetic2 the following transfor-
mation rule corresponding to the commutative property of multiplication could have
been useful:

([XallOD1 ∗D2 = Yall], [XallO1D2 ∗D1 = Yall])

Where Dk can be a subsequence of digits of any length and O can be either + or
∗ .

7.11.2 Finding general symbol-variable templates
A problem that can come up when creating more advanced learning-rules is the
creation of the symbol-variables. To figure out groupings of symbols and the rules
of how one may use these groupings is central to many sequence learning domains.
In arithmetic and logic knowing the differences between equality, operators, and
digits makes expressions much easier to break down into parts. The same goes for
finding nouns, verbs, pronouns, etc. in the domain of English grammar or indeed
any natural language domain.

To help with this the rules-former could look for symbols that have the same use
and for templates for symbol-variables to use such that each new transformation
rule or abstract goal does not need to find these distinctions anew. Furthermore
these templates could be predefined to know if a type of symbol may be repeated
or skipped.

A suggested way to achieve this could be to form a Markov chain of which symbols
leads to which other symbols. By knowing this symbols could be grouped together
with symbols that have connections with similar probabilities of as anther symbol.

62

7. Discussion

7.11.3 Heuristic for unknown states
When Q-Learning encounters a completely new state it has no information about
what actions to do, if that happens it explores by producing a random output in
order to gain more information for the next time this state is encountered. This
may produce undesirable results. One way to to improve upon this is to extend
Q-Learning with some form of heuristic for new states. For example it could use the
average of all other states, to determine the order in which to explore the actions to
find their real Q-values. Or it could use local-Q-learning [37] which would allow it
to recognize similar states and base the actions upon their Q-tables.

7.11.4 Adopting learning-rules from Alice in Wonderland
As previously stated Alice in Wonderland is a rule-based learning system that does
similar things. Downside of Alice in Wonderland is that the system can only reduce
sequences and needs to be given known equalities as input. The upside is that
Alice in Wonderland have a great system for creating rules needing only a handful
of examples. This is great considering that the model needs more ways to create
good transformation rules and abstract goals and can form equalities in its current
form. This should make it fairly straightforward to implement learning-rules based
on Alice in Wonderland into the model.

63

7. Discussion

64

8
Conclusion

While the model could outperform the LSTM network on some of the evaluations
we postulate that this could be solved by increasing the size or training time of
the network. We have also suggested some further improvements of the model and
although these would probably be able to fix some of its flaws and increase the
performance this would require more work. The network could probably achieve
a similar increase in performance by simply increasing its size and training time.
With this in mind we conclude that the type of rule-based system that the model
represents is probably of little to no interest for the field of machine learning.

That being said we are impressed by the performance that the simple equivalence
learning-rule provides. The equivalence learning-rule together with the transforma-
tion rule testing algorithm, removed from the rest of the model, is something that
could definitely be of interest for further development. Not in the least because the
learning-rule could easily be adapted to work together with Alice in Wonderland to
make that system work on reinforcement learning problems.

This thesis does not have enough breadth to draw any conclusions with regards
to the general usefulness of rule-based systems in comparison to neural networks.
However, like how state space search was used in conjunction with neural networks
to form AlphaGo [35], rule-based systems could perhaps also be used in conjunction
with neural networks or other modern machine learning techniques.

65

8. Conclusion

66

Bibliography

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and
Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015. Software available from tensorflow.org.

[2] Andrew G Barto and Satinder Pal Singh. On the computational economics of
reinforcement learning. In Connectionist Models, pages 35–44. Elsevier, 1991.

[3] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term depen-
dencies with gradient descent is difficult. IEEE transactions on neural networks,
5(2):157–166, 1994.

[4] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In
Proceedings of COMPSTAT’2010, pages 177–186. Springer, 2010.

[5] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlf-
shagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton. A survey of monte
carlo tree search methods. IEEE Transactions on Computational Intelligence
and AI in Games, 4(1):1–43, March 2012.

[6] Yves Chauvin and David E Rumelhart. Backpropagation: theory, architectures,
and applications. Psychology Press, 2013.

[7] Raymond Chiong. Nature-inspired algorithms for optimisation. Springer Verlag,
2009.

[8] Jan Chorowski and Navdeep Jaitly. Towards better decoding and lan-
guage model integration in sequence to sequence models. arXiv preprint
arXiv:1612.02695, 2016.

[9] Marco Dorigo and Mauro Birattari. Ant Colony Optimization, pages 36–39.
Springer US, Boston, MA, 2010.

[10] F.A. Gers, J. Schmidhuber, and F. Cummins. Learning to forget: continual
prediction with lstm. IET Conference Proceedings, pages 850–855(5), January
1999.

[11] Alex Graves. Generating sequences with recurrent neural networks. arXiv
preprint arXiv:1308.0850, 2013.

[12] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recog-
nition with deep recurrent neural networks. In Acoustics, speech and signal

67

Bibliography

processing (icassp), 2013 ieee international conference on, pages 6645–6649.
IEEE, 2013.

[13] Sumit Gupta. Deep learning performance breakthrough - ibm it infrastructure
blog, Jan 2018.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.

[15] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed,
Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N
Sainath, et al. Deep neural networks for acoustic modeling in speech recognition:
The shared views of four research groups. IEEE Signal Processing Magazine,
29(6):82–97, 2012.

[16] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[17] John J Hopfield. Neural networks and physical systems with emergent collec-
tive computational abilities. Proceedings of the national academy of sciences,
79(8):2554–2558, 1982.

[18] Yuting Hu, Liang Zheng, Yi Yang, and Yongfeng Huang. Twitter100k: A real-
world dataset for weakly supervised cross-media retrieval. IEEE Transactions
on Multimedia, 2017.

[19] Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. Real-time learning ca-
pability of neural networks. IEEE Transactions on Neural Networks, 17(4):863–
878, July 2006.

[20] Łukasz Kaiser and Ilya Sutskever. Neural gpus learn algorithms. arXiv preprint
arXiv:1511.08228, 2015.

[21] Nikhil Ketkar. Stochastic gradient descent. In Deep Learning with Python,
pages 113–132. Springer, 2017.

[22] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. CoRR, abs/1412.6980, 2014.

[23] Sotiris B Kotsiantis, I Zaharakis, and P Pintelas. Supervised machine learning:
A review of classification techniques. Emerging artificial intelligence applica-
tions in computer engineering, 160:3–24, 2007.

[24] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436, 2015.

[25] Yann Lecun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436–444, 2015.

[26] Kevin W Mickey and James L McClelland. A neural network model of learn-
ing mathematical equivalence. In Proceedings of the Annual Meeting of the
Cognitive Science Society, volume 36, 2014.

[27] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[28] Abhishek Nandy and Manisha Biswas. Reinforcement learning basics. In Re-
inforcement Learning. Apress, Berkeley, CA, USA, 2018.

68

Bibliography

[29] Abdul Rahim Nizamani, Jonas Juel, Ulf Persson, and Claes Strannegård.
Bounded Cognitive Resources and Arbitrary Domains, pages 166–176. Springer
International Publishing, Cham, 2015.

[30] Thomas D Parsons, Albert A Rizzo, and J Galen Buckwalter. Backpropagation
and regression: comparative utility for neuropsychologists. Journal of Clinical
and Experimental Neuropsychology, 26(1):95–104, 2004.

[31] J. Pearl. Heuristics: Intelligent search strategies for computer problem solving.
January 1984.

[32] VP Plagianakos and GD Magoulas. Stochastic gradient descent. Advances
in Convex Analysis and Global Optimization: Honoring the Memory of C.
Caratheodory (1873–1950), 54:433, 2013.

[33] Geoffrey Sampson. Parallel distributed processing: Explorations in the mi-
crostructures of cognition, 1987.

[34] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda
Panneershelvam, Marc Lanctot, and et al. Mastering the game of go with
deep neural networks and tree search. Nature, 529(7587):484–489, Jan 2016.

[35] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian
Bolton, and et al. Mastering the game of go without human knowledge. Nature,
550(7676):354–359, Oct 2017.

[36] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[37] Claes Strannegård, Nils Svangård, David Lindström, Joscha Bach, and Bas
Steunebrink. The animat path to artificial general intelligence. In Workshop
on Architectures for Generality and Autonomy (AGA 2017), 2017. Available at
http://cadia.ru.is/workshops/aga2017/.

[38] R. Sun and C. L. Giles. Sequence learning: from recognition and prediction to
sequential decision making. IEEE Intelligent Systems, 16(4):67–70, July 2001.

[39] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning
with neural networks. In Advances in neural information processing systems,
pages 3104–3112, 2014.

[40] Elio Tuci, Alexandros Giagkos, Myra Wilson, and John Hallam. From Animals
to Animats 14: 14th International Conference on Simulation of Adaptive Be-
havior, SAB 2016, Aberystwyth, UK, August 23-26, 2016, Proceedings, volume
9825. Springer International Publishing, 01 2016.

[41] Ryan Urbanowicz andWill Browne. Introducing rule-based machine learning: A
practical guide. In Proceedings of the Companion Publication of the 2015 Annual
Conference on Genetic and Evolutionary Computation, GECCO Companion
’15, pages 263–292, New York, NY, USA, 2015. ACM.

[42] Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning,
8(3):279–292, May 1992.

[43] Christopher John Cornish Hellaby Watkins. Learning from delayed rewards.
PhD thesis, King’s College, Cambridge, 1989.

[44] Barbara Webb. Animals versus animats: Or why not model the real iguana?
Adaptive Behavior, 17(4):269–286, 2009.

69

Bibliography

[45] Sholom M Weiss and Nitin Indurkhya. Rule-based machine learning methods
for functional prediction. Journal of Artificial Intelligence Research, 3:383–403,
1995.

[46] Ronald J Williams and David Zipser. A learning algorithm for continually
running fully recurrent neural networks. Neural computation, 1(2):270–280,
1989.

[47] Stewart W Wilson. Classifier systems and the animat problem. Machine learn-
ing, 2(3):199–228, 1987.

[48] S.W. Wilson. The animat path to ai. 1991.
[49] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,

Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
Google’s neural machine translation system: Bridging the gap between human
and machine translation. arXiv preprint arXiv:1609.08144, 2016.

[50] Weixiong Zhang. State-space search: algorithms, complexity, extensions, and
applications. Springer, 1999.

70

A
Grammar1

This appendix contains the dataset Grammar1 which has been split into two sec-
tions: The first for grammatically correct sentences that has expected output True
and the second for grammatically incorrect sentences that has expected output
False.

A.1 Grammatically correct sentences
he talked
he walked
he remembered
he dreamed
he payed
he called
he played
she talked
she walked
she remembered
she dreamed
she payed
she called
she played
it talked
it walked
it remembered
it dreamed
it payed
it called
it played
they talked
they walked
they remembered
they dreamed
they payed
they called
they played
we talked

I

A. Grammar1

we walked
we remembered
we dreamed
we payed
we called
we played
I talked
I walked
I remembered
I dreamed
I payed
I called
I played
you talked
you walked
you remembered
you dreamed
you payed
you called
you played
he talks
he walks
he remembers
he dreams
he pays
he calls
he plays
she talks
she walks
she remembers
she dreams
she pays
she calls
she plays
it talks
it walks
it remembers
it dreams
it pays
it calls
it plays
they talk
they walk
they remember
they dream
they pay

II

A. Grammar1

they call
they play
we talk
we walk
we remember
we dream
we pay
we call
we play
I talk
I walk
I remember
I dream
I pay
I call
I play
you talk
you walk
you remember
you dream
you pay
you call
you play
he is fun
he is unpleasant
he is delightful
he is free
he is old
he is young
he is active
he is correct
he is wrong
she is fun
she is unpleasant
she is delightful
she is free
she is old
she is young
she is active
she is correct
she is wrong
it is fun
it is unpleasant
it is delightful
it is free
it is old

III

A. Grammar1

it is young
it is active
it is correct
it is wrong
they are fun
they are unpleasant
they are delightful
they are free
they are old
they are young
they are active
they are correct
they are wrong
we are fun
we are unpleasant
we are delightful
we are free
we are old
we are young
we are active
we are correct
we are wrong
I am fun
I am unpleasant
I am delightful
I am free
I am old
I am young
I am active
I am correct
I am wrong
you are fun
you are unpleasant
you are delightful
you are free
you are old
you are young
you are active
you are correct
you are wrong
he’s fun
he’s unpleasant
he’s delightful
he’s free
he’s old
he’s young

IV

A. Grammar1

he’s active
he’s correct
he’s wrong
she’s fun
she’s unpleasant
she’s delightful
she’s free
she’s old
she’s young
she’s active
she’s correct
she’s wrong
it’s fun
it’s unpleasant
it’s delightful
it’s free
it’s old
it’s young
it’s active
it’s correct
it’s wrong
they’re fun
they’re unpleasant
they’re delightful
they’re free
they’re old
they’re young
they’re active
they’re correct
they’re wrong
we’re fun
we’re unpleasant
we’re delightful
we’re free
we’re old
we’re young
we’re active
we’re correct
we’re wrong
I’m fun
I’m unpleasant
I’m delightful
I’m free
I’m old
I’m young
I’m active

V

A. Grammar1

I’m correct
I’m wrong
you’re fun
you’re unpleasant
you’re delightful
you’re free
you’re old
you’re young
you’re active
you’re correct
you’re wrong
he is talking
he is walking
he is remembering
he is dreaming
he is paying
he is calling
he is playing
she is talking
she is walking
she is remembering
she is dreaming
she is paying
she is calling
she is playing
it is talking
it is walking
it is remembering
it is dreaming
it is paying
it is calling
it is playing
they are talking
they are walking
they are remembering
they are dreaming
they are paying
they are calling
they are playing
we are talking
we are walking
we are remembering
we are dreaming
we are paying
we are calling
we are playing

VI

A. Grammar1

I am talking
I am walking
I am remembering
I am dreaming
I am paying
I am calling
I am playing
you are talking
you are walking
you are remembering
you are dreaming
you are paying
you are calling
you are playing
he’s talking
he’s walking
he’s remembering
he’s dreaming
he’s paying
he’s calling
he’s playing
she’s talking
she’s walking
she’s remembering
she’s dreaming
she’s paying
she’s calling
she’s playing
it’s talking
it’s walking
it’s remembering
it’s dreaming
it’s paying
it’s calling
it’s playing
they’re talking
they’re walking
they’re remembering
they’re dreaming
they’re paying
they’re calling
they’re playing
we’re talking
we’re walking
we’re remembering
we’re dreaming

VII

A. Grammar1

we’re paying
we’re calling
we’re playing
I’m talking
I’m walking
I’m remembering
I’m dreaming
I’m paying
I’m calling
I’m playing
you’re talking
you’re walking
you’re remembering
you’re dreaming
you’re paying
you’re calling
you’re playing

A.2 Grammatically incorrect sentences
he fun
he unpleasant
he delightful
he free
he old
he young
he active
he correct
he wrong
she fun
she unpleasant
she delightful
she free
she old
she young
she active
she correct
she wrong
it fun
it unpleasant
it delightful
it free
it old
it young
it active

VIII

A. Grammar1

it correct
it wrong
they fun
they unpleasant
they delightful
they free
they old
they young
they active
they correct
they wrong
we fun
we unpleasant
we delightful
we free
we old
we young
we active
we correct
we wrong
I fun
I unpleasant
I delightful
I free
I old
I young
I active
I correct
I wrong
you fun
you unpleasant
you delightful
you free
you old
you young
you active
you correct
you wrong
he is talk
he is walk
he is remember
he is dream
he is pay
he is call
he is play
she is talk

IX

A. Grammar1

she is walk
she is remember
she is dream
she is pay
she is call
she is play
it is talk
it is walk
it is remember
it is dream
it is pay
it is call
it is play
they are talk
they are walk
they are remember
they are dream
they are pay
they are call
they are play
we are talk
we are walk
we are remember
we are dream
we are pay
we are call
we are play
I am talk
I am walk
I am remember
I am dream
I am pay
I am call
I am play
you are talk
you are walk
you are remember
you are dream
you are pay
you are call
you are play
he’s talk
he’s walk
he’s remember
he’s dream
he’s pay

X

A. Grammar1

he’s call
he’s play
she’s talk
she’s walk
she’s remember
she’s dream
she’s pay
she’s call
she’s play
it’s talk
it’s walk
it’s remember
it’s dream
it’s pay
it’s call
it’s play
they’re talk
they’re walk
they’re remember
they’re dream
they’re pay
they’re call
they’re play
we’re talk
we’re walk
we’re remember
we’re dream
we’re pay
we’re call
we’re play
I’m talk
I’m walk
I’m remember
I’m dream
I’m pay
I’m call
I’m play
you’re talk
you’re walk
you’re remember
you’re dream
you’re pay
you’re call
you’re play
he is talked
he is walked

XI

A. Grammar1

he is remembered
he is dreamed
he is payed
he is called
he is played
she is talked
she is walked
she is remembered
she is dreamed
she is payed
she is called
she is played
it is talked
it is walked
it is remembered
it is dreamed
it is payed
it is called
it is played
they are talked
they are walked
they are remembered
they are dreamed
they are payed
they are called
they are played
we are talked
we are walked
we are remembered
we are dreamed
we are payed
we are called
we are played
I am talked
I am walked
I am remembered
I am dreamed
I am payed
I am called
I am played
you are talked
you are walked
you are remembered
you are dreamed
you are payed
you are called

XII

A. Grammar1

you are played
he’s talked
he’s walked
he’s remembered
he’s dreamed
he’s payed
he’s called
he’s played
she’s talked
she’s walked
she’s remembered
she’s dreamed
she’s payed
she’s called
she’s played
it’s talked
it’s walked
it’s remembered
it’s dreamed
it’s payed
it’s called
it’s played
they’re talked
they’re walked
they’re remembered
they’re dreamed
they’re payed
they’re called
they’re played
we’re talked
we’re walked
we’re remembered
we’re dreamed
we’re payed
we’re called
we’re played
I’m talked
I’m walked
I’m remembered
I’m dreamed
I’m payed
I’m called
I’m played
you’re talked
you’re walked
you’re remembered

XIII

A. Grammar1

you’re dreamed
you’re payed
you’re called
you’re played
fun he is
fun she is
fun it is
fun they are
fun we are
fun I am
fun you are
fun he’s
fun she’s
fun it’s
fun they’re
fun we’re
fun I’m
fun you’re
unpleasant he is
unpleasant she is
unpleasant it is
unpleasant they are
unpleasant we are
unpleasant I am
unpleasant you are
unpleasant he’s
unpleasant she’s
unpleasant it’s
unpleasant they’re
unpleasant we’re
unpleasant I’m
unpleasant you’re
delightful he is
delightful she is
delightful it is
delightful they are
delightful we are
delightful I am
delightful you are
delightful he’s
delightful she’s
delightful it’s
delightful they’re
delightful we’re
delightful I’m
delightful you’re

XIV

A. Grammar1

free he is
free she is
free it is
free they are
free we are
free I am
free you are
free he’s
free she’s
free it’s
free they’re
free we’re
free I’m
free you’re
old he is
old she is
old it is
old they are
old we are
old I am
old you are
old he’s
old she’s
old it’s
old they’re
old we’re
old I’m
old you’re
young he is
young she is
young it is
young they are
young we are
young I am
young you are
young he’s
young she’s
young it’s
young they’re
young we’re
young I’m
young you’re
active he is
active she is
active it is
active they are

XV

A. Grammar1

active we are
active I am
active you are
active he’s
active she’s
active it’s
active they’re
active we’re
active I’m
active you’re
correct he is
correct she is
correct it is
correct they are
correct we are
correct I am
correct you are
correct he’s
correct she’s
correct it’s
correct they’re
correct we’re
correct I’m
correct you’re
wrong he is
wrong she is
wrong it is
wrong they are
wrong we are
wrong I am
wrong you are
wrong he’s
wrong she’s
wrong it’s
wrong they’re
wrong we’re
wrong I’m
wrong you’re

XVI

B
Result Graphs

This appendix contains graphs of the performance of the model and the LSTM net-
work for all datasets and fractions as validation. The graphs contain the average,
best, and worst accuracy on the validation set for each iteration the system has been
trained. The average accuracy is in blue while the best and worst accuracies are in
orange.

Note that the accuracy for the model is given in fractions, while it is given in
percentage for the network.

B.1 Results from the model

B.1.1 Results from the domain of simple arithmetic

This section presents the evaluation accuracy graphs from the datasets Arithmetic1
and Arthmetic2.

XVII

B. Result Graphs

B.1.1.1 Graphs from Arithmetic1

Figure B.1: The average (blue), best (orange), and worst (orange) accuracies for
the model on Arithmetic1 with a fraction as validation of 0.1

Figure B.2: The average (blue), best (orange), and worst (orange) accuracies for
the model on Arithmetic1 with a fraction as validation of 0.5

XVIII

B. Result Graphs

Figure B.3: The average (blue), best (orange), and worst (orange) accuracies for
the model on Arithmetic1 with a fraction as validation of 0.9

B.1.1.2 Graphs from Arithmetic2

Figure B.4: The average (blue), best (orange), and worst (orange) accuracies for
the model on Arithmetic2 with a fraction as validation of 0.1

XIX

B. Result Graphs

Figure B.5: The average (blue), best (orange), and worst (orange) accuracies for
the model on Arithmetic2 with a fraction as validation of 0.5

Figure B.6: The average (blue), best (orange), and worst (orange) accuracies for
the model on Arithmetic2 with a fraction as validation of 0.9

B.1.2 Graphs from the domain of Boolean logic

This section presents the evaluation accuracy graphs from the dataset Logic1.

XX

B. Result Graphs

Figure B.7: The average (blue), best (orange), and worst (orange) accuracies for
the model on Logic1 with a fraction as validation of 0.1

Figure B.8: The average (blue), best (orange), and worst (orange) accuracies for
the model on Logic1 with a fraction as validation of 0.5

XXI

B. Result Graphs

Figure B.9: The average (blue), best (orange), and worst (orange) accuracies for
the model on Logic1 with a fraction as validation of 0.9

B.1.3 Graphs from the domain of simple English grammar

This section presents the evaluation accuracy graphs from the dataset Grammar1.

Figure B.10: The average (blue), best (orange), and worst (orange) accuracies for
the model on Grammar1 with a fraction as validation of 0.1

XXII

B. Result Graphs

Figure B.11: The average (blue), best (orange), and worst (orange) accuracies for
the model on Grammar1 with a fraction as validation of 0.5

Figure B.12: The average (blue), best (orange), and worst (orange) accuracies for
the model on Grammar1 with a fraction as validation of 0.9

B.2 Results from the LSTM network

B.2.1 Results From the domain of simple arithmetic
This section presents the evaluation accuracy graphs from the datasets Arithmetic1
and Arthmetic2.

XXIII

B. Result Graphs

B.2.1.1 Graphs from Arithmetic1

Figure B.13: The average (blue), best (orange), and worst (orange) accuracies for
the LSTM network on Arithmetic1 with a fraction as validation of 0.1

Figure B.14: The average (blue), best (orange), and worst (orange) accuracies for
the LSTM network on Arithmetic1 with a fraction as validation of 0.5

XXIV

B. Result Graphs

Figure B.15: The average (blue), best (orange), and worst (orange) accuracies for
the LSTM network on Arithmetic1 with a fraction as validation of 0.9

B.2.1.2 Graphs from Arithmetic2

Figure B.16: The average (blue), best (orange), and worst (orange) accuracies for
the LSTM network on Arithmetic2 with a fraction as validation of 0.1

XXV

B. Result Graphs

Figure B.17: The average (blue), best (orange), and worst (orange) accuracies for
the LSTM network on Arithmetic2 with a fraction as validation of 0.5

Figure B.18: The average (blue), best (orange), and worst (orange) accuracies for
the LSTM network on Arithmetic2 with a fraction as validation of 0.9

B.2.2 Graphs from the domain of Boolean logic

This section presents the evaluation accuracy graphs from the dataset Logic1.

XXVI

B. Result Graphs

Figure B.19: The average (blue), best (orange), and worst (orange) accuracies for
the LSTM network on Logic1 with a fraction as validation of 0.1

Figure B.20: The average (blue), best (orange), and worst (orange) accuracies for
the LSTM network on Logic1 with a fraction as validation of 0.5

XXVII

B. Result Graphs

Figure B.21: The average (blue), best (orange), and worst (orange) accuracies for
the LSTM network on Logic1 with a fraction as validation of 0.9

B.2.3 Graphs from the domain of simple English grammar

This section presents the evaluation accuracy graphs from the dataset Grammar1.

Figure B.22: The average (blue), best (orange), and worst (orange) accuracies for
the LSTM network on Grammar1 with a fraction as validation of 0.1

XXVIII

B. Result Graphs

Figure B.23: The average (blue), best (orange), and worst (orange) accuracies for
the LSTM network on Grammar1 with a fraction as validation of 0.5

Figure B.24: The average (blue), best (orange), and worst (orange) accuracies for
the LSTM network on Grammar1 with a fraction as validation of 0.9

XXIX

	List of Figures
	List of Tables
	Introduction
	Problem formulation
	Research question

	Theory
	Machine learning concepts
	Supervised learning
	Reinforcement learning
	Rule-based learning
	Sequence learning

	Q-learning
	How to optimize Q-tables

	Animats
	Blockworld
	Animat decision-making
	Animat learning

	State space search
	Alice in Wonderland
	Neural networks
	Recurrent neural networks
	LSTM
	Deep neural networks
	Stochastic gradient descent
	Backpropagation
	Adam optmizer

	TensorFlow
	Radix tree

	Datasets and Evaluation
	Evaluation domains
	Simple arithmetic
	Boolean Algebra
	English grammar

	Training and evaluation

	The Model
	Interface
	Overview
	Transformation rules and abstract goals
	Abstract sequences and symbol-variables
	Abstract sequence matching
	Transformation rules
	Abstract goals

	Abstracter
	Solver
	Data structures in the Solver
	How the Solver maintains its data structures
	Decision-making by the Solver

	Rule-Former
	Testing transformation rules and abstract goals
	The equivalence learning-rule

	Training the model

	LSTM Network Baseline
	Hyperparameters
	Implementation
	Training the LSTM network

	Results
	Results from the domain of simple arithmetic
	Results from Arithmetic1
	Results from Arithmetic2

	Results From the domain of logic
	Results From the Domain of Simple English Grammar
	Result summary

	Discussion
	Answering the research question
	When and why is the model better than the network?
	Is the LSTM network a good baseline?
	Hyperparameter optimization
	Interpreting the network's performance
	Scalability of neural networks

	Approximate answers
	Breaking the model
	Requiring equivalent sequences
	Requiring lack of counter examples

	Limited resources
	Are the datasets suitable for evaluating the model?
	Potential errors
	Extending animats and other machine learning systems
	Difference between sequence prediction and decision-Making
	Further improvements
	Additional learning-rules
	Finding general symbol-variable templates
	Heuristic for unknown states
	Adopting learning-rules from Alice in Wonderland

	Conclusion
	Bibliography
	Grammar1
	Grammatically correct sentences
	Grammatically incorrect sentences

	Result Graphs
	Results from the model
	Results from the domain of simple arithmetic
	Graphs from the domain of Boolean logic
	Graphs from the domain of simple English grammar

	Results from the LSTM network
	Results From the domain of simple arithmetic
	Graphs from the domain of Boolean logic
	Graphs from the domain of simple English grammar

