
__

Objective TinyTimber : OTTO
Creating an object-oriented alternative to real-time C.

Bachelor’s thesis in Computer Science and Engineering

LARS ANDERSSON

OSKAR LENSCHOW

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2019

DEGREE PROJECT REPORT

Objective TinyTimber : OTTO

Creating an object-oriented alternative to real-time C.

Lars Andersson

Oskar Lenschow

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2019

Objective TinyTimber : OTTO
Creating an object-oriented alternative to real-time C.
Lars Andersson, Oskar Lenschow

© Lars Andersson, Oskar Lenschow, 2019.

Supervisor: Jan Jonsson, Department of Computer Science and Engineering
Examiner: Peter Lundin, Department of Computer Science and Engineering

Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

The Author grants to Chalmers University of Technology and University of Gothen-
burg the non-exclusive right to publish theWork electronically and in a non-commercial
purpose make it accessible on the Internet. The Author warrants that he/she is the
author to the Work, and warrants that the Work does not contain text, pictures or
other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for
example a publisher or a company), acknowledge the third party about this agree-
ment. If the Author has signed a copyright agreement with a third party regarding
the Work, the Author warrants hereby that he/she has obtained any necessary
permission from this third party to let Chalmers University of Technology and Uni-
versity of Gothenburg store the Work electronically and make it accessible on the
Internet.

Cover: Image of the programming language OTTO.

Department of Computer Science and Engineering
Gothenburg, Sweden 2019

iv

Sammanfattning
När vi arbetat som assistenter i kurser inom realtidsystem på Chalmers, märktes det
att en signifikant mängd studenter har svårt för maskinorienterad programmering.
På grund av detta, så har huvudsakliga målet med detta projekt varit att skapa ett
alternativ för studenterna, så att de enklare kan förstå processen bakom realtidssys-
tem. Detta gjordes då genom att skapa ett nytt, objektorienterat språk. Språket är
strukturerat med klasser och objekt, som exempelvis Java och C++. Det går att
se det som en förenklad och objektorienterad version av programspråket C. Under
arbetets gång så följdes kompilatorkedjan, med verktyg som Flex och Bison. Det re-
sulterande programmet, en så kallad transpiler, översätter från det nya språket till
språket C. Transpilern integrerades i CodeLite, den integrerade utvecklingsmiljön
som används i labbarna för kurserna. Detta gjordes för att göra det så enkelt som
möjligt för studenterna att använda sig av den. Den slutgiltiga produkten är för-
månlig för de studenter som är mer vana vid objektorientering, då de inte behöver
tänka på de maskinorienterade aspekterna, utan kan fokusera på realtidsaspekterna
istället.

Keywords: C, Java, Objektorientering, Programmering, Realtidssystem, Transpiler,
Flex, Bison.

v

Abstract
When working as teaching assistants in the Real-time Systems courses on Chalmers,
it was noticed that a significant amount of students find machine-oriented program-
ming difficult to grasp. Therefore, the main purpose of this project has been to
create an alternative way for students to understand the process of Real-time sys-
tems, by developing a new object-oriented language. This language is structured
with classes and objects, much like Java and C++. It can be seen as a simplified,
object-oriented version of the programming language C. In the development of the
product, the language processing chain was followed, by utilizing tools like Flex
and Bison. The resulting program, a transpiler, translates from the new language
into the language C. This transpiler was integrated into CodeLite, which is the In-
tegrated Development Environment (IDE) used in the labs. This integration was
made to ensure easy usage. The finished product is beneficial for students who are
more familiar with object-oriented programming, as they would not have to consider
the machine-oriented aspects of the labs. Hence, this would increase the number
of students understanding real-time systems, since they would face less obstacles
during the course.

Keywords: C, Java, Object-Orientation, Programming, Real-time Systems, Tran-
spiler, Flex, Bison.

vii

Acknowledgements
Thank you, Jan Jonsson, for letting us work as teaching assistants in your courses
throughout these years, and for being our mentor and supervisor in this project. It
has been a pleasure working with you. We would also like to thank Linus Aronsson
for his support and ideas during the birth of this project. Thank you, Hanna Bergh,
for all your help regarding English grammar correctness and proofreading.

Lars Andersson and Oskar Lenschow, Gothenburg, June 2019

ix

Glossary

Bison GNU Bison, free and open source tool used to generate a parser. 1

C An imperative, general-purpose programming language. 1
Cross-Compiler A compiler whose purpose is to compile an executable for another

platform or system. 1

Flex Fast Lexical Analyser Generator, free and open source tool used to generate
a scanner. 1

GCC GNU Compiler Collection, tool used to compile from source to target code.
1

IDE Integrated Development Environment, software with extensive support for
programming. 1

Java An object-oriented programming language. 1

LLDB Low Level Debugger, tool used for debugging. 1

Machine-oriented Programming Programming close to hardware, commonly
accessing raw memory addresses. 1

MinGW A cross compiler, enabling compilation for a platform while using a dif-
ferent one. 1

Parser A tool used to group tokens into a syntax tree. 1
Pointer A programming object that stores an address to another value inside of a

computer’s memory. 1

Scanner A tool used to tokenize a stream of characters into tokens. 1

TinyTimber A real-time kernel for C, used during real-time labs on Chalmers
University of Technology. 1

Transpiler A Source-to-source compiler, translates from one programming lan-
guage directly to another. 1

Yacc Yet Another Compiler-Compiler, tool used to generate a parser. 1

xi

Glossary

xii

Contents

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Aim . 3
1.3 Objectives . 4
1.4 Report Structure . 4

2 Theory 5
2.1 Object-orientation . 5

2.1.1 Encapsulation . 5
2.1.2 Abstraction . 6
2.1.3 Inheritance . 6
2.1.4 Polymorphism . 6

2.2 Preprocessing . 7
2.3 Language Processing Chain . 8

2.3.1 Lexical Analysis . 8
2.3.2 Syntax Analysis . 9
2.3.3 Semantic Analysis and Code Generation 10

3 Method 11
3.1 Software and Procedure . 11

3.1.1 Flex . 11
3.1.2 Bison . 12
3.1.3 C11-Standard . 13
3.1.4 GCC, LLDB and MinGW . 13

3.2 Inspiration . 13
3.3 Testing . 14

4 Results 15
4.1 Software . 15

4.1.1 Lab Environment . 15
4.2 The Language . 16

4.2.1 Syntax . 16
4.3 Validation . 18
4.4 Remaining Issues . 19
4.5 The Manual . 20

xiii

Contents

5 Discussion 21
5.1 Alternative Solutions . 21

5.1.1 TinyTimber for C++ . 21
5.1.2 Java . 21
5.1.3 Timber . 22

5.2 Software . 22
5.3 Object-oriented Concepts . 22
5.4 Conclusion . 23
5.5 Further Development . 23

Bibliography 25

A Appendix I

xiv

1
Introduction

1.1 Background and Motivation

Object-orientation solves a great number of issues with regular programming lan-
guages. It ensures that the code is where it is supposed to be, and that it is only
accessible in the ways that are intended [1]. This, together with the fact that we
worked as teaching assistants in a course that does not use object-orientation, is the
primary reason this project came to be. When working as teaching assistants, you
get valuable insight into how the courses are run behind the scenes, but you also get
to experience first-hand, the issues that students face.

The primary course we worked in is called real-time programming. In that course,
you are to create a melody player that can play the tune "Brother Jacob" together
with other groups, on multiple micro-controllers, specifically one called MD407. It
is written in the programming language C, using the real-time kernel TinyTimber,
that handles concepts like deadlines for tasks. The students part of the masters
course were sometimes having problems understanding the way the programming
language C worked, especially when coded together with hardware. Although this
way of thinking does work for many students, some come from different coding back-
grounds, and offering them an alternative could benefit both them and the course.

We started discussing ways of developing an alternative to the system currently
in place, and found it relevant to incorporate object-oriented programming, as we
felt that this way of working is more open to people not used to programming as
much, because of how well structured this type of coding is [1]. Not only did we
want to change regular C, but it had to include some simplifications to the ways
the TinyTimber system calls were written as well. The syntax for this today is not
necessarily difficult, but if things were to be made more object-oriented and trivial,
those should follow suite. After consulting the professor in the course, whom is also
our supervisor in this project, it was decided that this was beneficial for the future
of the course.

Below, there are three examples showcasing areas of difficulty in the current system,
written with the programming language C together with TinyTimber, highlighting
what could be improved with an object-oriented language:

1

1. Introduction

1 typede f s t r u c t {
2 Object super ;
3 i n t count ;
4 } Example ;
5

6 Example obj = { i n i t O b j e c t () , 0 } ;
7

8 void incCounter (Example *self , i n t unused) {
9 self−>count++;

10 AFTER(SEC(1) , self , incCounter , 0) ;
11 }

Figure 1.1: Example of code written in C, together with TinyTimber

The pointers are the first thing to note (Figure 1.1, code in red). These need to
be kept in check, because mistakes can easily be made with them. For example,
students often put the sign & before the pointer, which indicates that you are to
use the variable’s address. This confuses some students, since they have difficulties
differing pointers from addresses. This issue should be eliminated completely.

1 typede f s t r u c t {
2 Object super ;
3 i n t number ;
4 } Right ;
5

6 typede f s t r u c t {
7 Object super ;
8 char notNumber ;
9 i n t number ;

10 } Wrong ;
11

12 Right obj1 = { i n i t O b j e c t () , 0 } ;
13 Wrong obj2 = { i n i t O b j e c t () , ' x ' , 0 } ;
14

15 void incNumber (Right ∗ s e l f , i n t unused) {
16 s e l f −>number++;
17 AFTER(SEC(1) , &obj2 , incNumber , 0) ;
18 }

Figure 1.2: Example showing method called with object of wrong type

Another issue with the current system is that you are able to invoke a method with a
different object type than intended. This can cause major errors when said method
tries to use that object. This can easily happen because the compiler does not throw
any errors when a regular pointer is sent to it. As can be seen in the example above
(Figure 1.2), the method incNumber is expecting the object type "Right", and in-
creases that objects variable "number" by one. But inside of the method, the same
method is called again, but with the object type "Wrong" (obj2). Both objects still
have the variable "number" though, which might confuse the programmer, leading

2

1. Introduction

him or her to believe that the correct variable is increased. However, because the
method expects the object type "Right", it will still read the object’s pointer as that
type. This means that when the code "self->number++" executes, it will do so on
the variable "notNumber" in the "Wrong" struct, as it shares the same address offset
inside the struct with the variable "number", as in the "Right" structure.

All of this might be a little difficult to follow, and is a perfect example of why
an object-oriented alternative would help, because this error does not happen in
object-oriented languages. They keep track of what methods belong to what ob-
jects, so a method can not be invoked from the wrong object by mistake.

Lastly, there are some issues with how the TinyTimber system calls are structured
overall. For one, there is a problem with invoking methods with multiple arguments,
so the example below (Figure 1.3) does not actually work. Methods invoked by Tiny-
Timber can only accept a single, int-sized argument. This can be solved by creating
a pointer to a list of arguments instead, and passing the pointer as an argument.
Although the students are taught this solution, it is almost never utilized.

1 void multipleArguments (Example ∗ s e l f , int arg1, int arg2) {
2 /* ... */
3 }
4

5 ASYNC(&obj , multipleArguments , 5, 7) ;

Figure 1.3: Example showing a method incorrectly called with multiple arguments

1.2 Aim
The scope is limited to only creating a "source-to-source compiler", also known as
a "transpiler" [2], to translate the code from the new language directly to the C
language used today, and not create a complete new language from the ground up.
This is because creating a language that way is too large of a project, and would
have to include changes in how the system communicates and works with the hard-
ware. Hence, it would not be compatible with the lab system in place.

The focus is also mainly put on eliminating the mistakes that the student make
when working with the labs, and not necessarily to add everything object-orientation
has to offer. All important concepts have still been considered and worked on, but
only a handful of them were completed. This is discussed further in the following
chapters.

3

1. Introduction

1.3 Objectives
The first objective is to create an object-oriented styled alternative to the current
programming language used, while keeping every aspect of the real-time system
mindset intact. The second objective is to create documentation and a manual for
the newly developed language. This is because the students should be able to easily
learn how to use it, and look for help if issues arise.

The main objectives that need to be completed are the following:
• A syntax that makes sure the language looks properly object-oriented.
• Encapsulation and abstraction present in the language.
• Removal of the need for pointers or addresses.
• A working preprocessor, so that the transpiler can be used in the labs.
• A manual/tutorial describing how the language is used.

Side objectives/wishlist:
• Inheritance and polymorphism so that the language is more object-oriented.
• Error handling and error codes.
• Proper type-checking, with multiple passes.
• Native support of invoking methods with multiple arguments.

1.4 Report Structure
This project is divided into three main parts: research about the topics that are
necessary to understand, find the tools needed to develop, and lastly, actually de-
velop the product. Therefore the structure of the report is the same.

First, the theory is discussed, where the concepts of object-orientation and the
language processing chain is covered. Afterwards, the methods used to develop the
product are presented, together with some information regarding the inspiration for
the language, and how it was tested. This is followed by the result, which showcases
the finished product, what it has solved, and what problems remain. Lastly, the
project as a whole, with information about alternative solutions and further devel-
opment, is discussed.

Throughout the chapters, examples are given, that are mostly based on the examples
given in chapter one. They are there to help better understand the improvements
needed, and how those improvements look.

4

2
Theory

2.1 Object-orientation
Object-orientation is a way of coding, that enables the program to be divided into
parts, called objects. These objects have their own code, and can be used and
owned by other objects. It is a way of keeping the code readable and organized, and
is mainly built up by the four concepts Encapsulation, Abstraction, Inheritance and
Polymorphism [1].

In the examples given in section 1.1, the most common mistakes that were made
by students were highlighted. To solve these issues, encapsulation and abstraction
are the most important concepts to understand. Inheritance and polymorphism are
just as important for a real object-oriented language [1], but do not necessarily solve
those kinds of issues. If the language is to be truly object-oriented, these should
still be added, and can still improve how students write code. Therefore, all of these
concept are explained below.

2.1.1 Encapsulation
Encapsulation is the practise of sorting and placing code together with the class it
is used by [4]. In a regular language like C, it needs to be manually ensured that the
right code is used by the right method [3]. In an object-oriented language, code is
placed within classes, and is only part of that class [4]. So if that code is to be used,
an object created from that class needs to be accessed. This gives the programmer
a helping hand in keeping track of what belongs to what, and ensures that the code
is more protected. In the example below (Figure 2.1), one can see how a variable
and a method is part of, and inside, a class.

1 class c {
2 var v ;
3 method m() {
4 /* ... */
5 }
6 }

Figure 2.1: Simple encapsulation

5

2. Theory

Encapsulation solves one major issue with regular C and pointers, as the code that
is relevant to the object used is only accessible through that object. Therefore, a
student would no longer be able to accidentally send in the wrong object type to a
method, and the idea of pointers would not be seen by the user.

2.1.2 Abstraction

Abstraction is a natural consequence of having good encapsulation. It is all about
making sure only the relevant code is accessible to other objects [5]. The mechanism
that is used should be as high level as possible [10, p. 5], and should hide any code
that is not necessary to understand or use, but is still utilized by the program.

2.1.3 Inheritance

Inheritance is what the name implies. Classes can inherit from other classes. What
this means in practice is that you can create an object that gets all the functionality
of the parent class, but can keep building on top of that code [6]. This can help the
programmer to a great extent, because you might want to create different classes
that differ a little, but still have the same basic functionality. An example would
be a super class for shapes in a program, although, that is not enough to explain
the specifics of a circle. Instead, the circle is it’s own class, which inherits from
the shape class. This makes it easier to keep track of the program, and minimizes
repeating code.

Shape

CircleSquare

Figure 2.2: Inheritance

2.1.4 Polymorphism

Using the example of shapes above, a programmer might want to be able to put all
created shapes into a list of some sort. This would be a problem, because a circle
and a square are not the same type of object, and therefore can not share a list.
Polymorphism solves this, by letting all child objects, in this case a circle and a
square, be categorized as their parent object [7]. This means that the programmer
can put both a circle and a square in a list made for shapes. The circle can have
a method for calculating the surface which works in one way, while the square can
have it’s own. And then the objects inside of the shape-list can be iterated through,
and the method can be called for all objects easily, with a small amount of code.

6

2. Theory

List[Shape]

Circle Square Circle

Figure 2.3: Polymorphism

It is important to keep track of your child objects if their methods are named
differently. For example, if the circle has a method getRadius(), which the square
does not have, calling that method for all shapes in the list would result in errors
every time the program tried calling getRadius() for a square.

2.2 Preprocessing
A preprocessor is something that takes input data, modifies it somehow, then gen-
erates output data, which is then later used as input data for something else [8]. An
example of this could be a coffee grinder. Making coffee with whole beans might be
difficult and unsuccessful, so first the beans need to be ground in the grinder, which
is our preprocessor. Then that ground coffee can be used in your regular coffee-
machine. Regular C has it’s own preprocessor, which looks for lines beginning with
the symbol #, and directly replaces those lines with the code that it represents [9].
Because this project is supposed to have it’s own programming language, which is
then translated in to the language C, a preprocessor is needed.

7

2. Theory

2.3 Language Processing Chain
The language processing chain, also known as the compilation phases, describes
all the different steps used from converting an input file consisting of a character
stream, in this case, a higher level programming language, into an output file [10,
pp. 8-10]. The output file should consist of another character stream, usually raw
machine code or some other lower level language [10, p. 5]. The output file, in this
case, will consist of raw code of the language C.

Input File Scanner (lexical analysis)

Token stream Parser (syntax analysis)

Parse tree
Semantic analysis

and code generation

Output File

Figure 2.4: The Language Processing Chain

It is important to mention that the the language processing chain described above
is greatly simplified, and modern compilers often contain many more phases. A few
examples of additional phases are Normalization, Source Code Optimization and
Target Code Optimization [10, pp. 12-13].

Normalization as in removal of simplified language constructs, such as
int a, b; turning into int a; int b;

Source Code Optimization such simplifying a = 10 * 3 + 5; into a = 35;

Target Code Optimization, as the name implies, means optimization similar to
source code optimization, but is carried out as a final polish on the target code.

2.3.1 Lexical Analysis
The first step of the language processing chain is the lexical analysis of an incoming
input stream of characters. The main purpose of this step is to analyze and split the
character stream into a token stream [10, p. 8]. The way the stream is tokenized is
based on syntax rules described as regular expressions of characters. If the incoming
stream diverges from the syntax rules, a syntax error has occurred. This behaviour
can be described as a finite state-machine. Traversing the states can only be done
by following the rules of a regular expression [10, pp. 38-44].

The example below (Figure 2.5) shows the finite state-machine as a deterministic

8

2. Theory

automaton graph of the regular expression a(b+aa)∗a. In other words, this expres-
sion could be explained as a language with an alphabet only consisting of the letters
’a’ and ’b’. In this language, words can only be produced if the word begins and
ends with the letter ’a’. Anything between those ’a’s can be any sequence of ’aa’s
and/or ’b’s. For example, the word abaaba is a valid word within this language,
which can be separated into →a→b→a→a→b→a. This would result in the states
0→1→1→2→1→1→2, exiting on the state 2. However, the word aaba would not
classify as a valid word as the states would result in 0→1→2→E→E, not exiting on
the state 2.

0 1 2

E

start

b

a

b

b

a

a, b

Figure 2.5: Deterministic automaton of the regular expression a(b+aa)∗a. Start-
ing at state 0 and exiting on state 2, while the state E indicates an error, and every
step represents a letter.

2.3.2 Syntax Analysis

The second step of the language processing chain is the syntax analysis of the gen-
erated token stream, often called parsing. This analysis makes sure the stream of
tokens follows the grammar of the language [10, pp. 8-9]. This parser traverses the
given token stream, and generates a syntax tree containing the tokens following this
grammar.

The two figures below (2.6 and 2.7) show a simple expression, 3+8∗6, parsed into
an abstract syntax tree. The grammar applied to this example is expressed in
Backus-Naur form [11], and every digit and operator is a token. In this example,
the precedence levels of multiplication being carried out before addition is applied,
just as the regular algebra operator precedence.

9

2. Theory

<Expression> ::= <Addition>

<Addition> ::= <Addition> + <Multiplication>
<Addition> ::= <Multiplication>

<Multiplication> ::= <Multiplication> ∗ <Atomic>
<Multiplication> ::= <Atomic>

<Atomic> ::= number
<Atomic> ::= (<Expression>)

Figure 2.6: Example of a syntax grammar, expressed in Backus–Naur form.

Expression

Addition

Atomic

3

Multiplication

Atomic

8

Atomic

6

Figure 2.7: Abstract syntax tree of the expression 3+8∗6.

2.3.3 Semantic Analysis and Code Generation
When the parse tree is generated, the next step is to make sure this tree of tokens
actually is semantically correct [10, p. 8-9]. Simply put, this is often carried out
by traversing each branch of the tree, making sure the whole branch consists of the
correct type, called type-checking. When the parse tree is proven to be semantically
correct, the output code can be generated.

10

3
Method

3.1 Software and Procedure

In this chapter, the tools used to create the transpiler are covered. For the lan-
guage processing chain, Flex and Bison were used. GCC and MinGW were used for
compiling the binary executables and LLDB was used for debugging purpose.

3.1.1 Flex

The tool Flex (Fast lexical analyzer generator) [12] was used to generate the lexical
analyzer part of our language processing chain. Flex was chosen due to it being free
and open-source, in comparison to Lex [13], an other widely known lexical analyzer
generator.

In order to generate a useful lexical scanner for the new language, syntax rules
were created. Those syntax rules represented keywords in the language, marking
places in the input file where to start and end the tokenization. These self-made
rules were combined with the regular C-language ANSI-standard rules [16], as a
complement for the scanner. The generated scanner was able to find points in the
input file where to start tokenizing. After this, the scanner began tokenizing the
character stream following the C-standard rules until finally reaching the end point
keyword. When this keyword was found, the scanner halted the tokenizing until
either the end of file or a new start keyword was reached.

The example below, figure 3.1, shows 5 lines of code tokenized by the syntax rules
in figure 3.2, resulting in the token stream in figure 3.3. The ANSI standard C11
was utilized for the C-language syntax rules, which will be explained later.

1 char x = 5 ;
2 START
3 i n t x = 3 ;
4 END
5 x = 'X ' ;

Figure 3.1: Input character stream (Example)

11

3. Method

1 "START" { s ta r tLex ing () ; } // Start point
2 "END" { endLexing () ; } // End point
3

4 " i n t " { i f (l e x i n g) re turn TYPE_INT; }
5 [a−z]+ { i f (l e x i n g) re turn IDENTIFIER ; }
6 "=" { i f (l e x i n g) re turn EQUALS; }
7 [0−9]+ { i f (l e x i n g) re turn NUMBER; }
8 " ; " { i f (l e x i n g) re turn SEMICOLON; }
9

10 . { ; } // Skip anything else

Figure 3.2: Syntax rules (Example)

1 // int x = 3 ;
2 [TYPE_INT, IDENTIFIER , EQUALS, NUMBER, SEMICOLON]

Figure 3.3: Output token stream (Example)

Figure 3.4: Some of the syntax rules constructed for the language

3.1.2 Bison
As Flex being the free alternative to Lex, Bison [15] was used as a free and open-
source alternative to Yacc [14] for generating the parser part of the language pro-
cessing chain.

A grammar was developed throughout the course of the project, which the parser
used to generate the parse tree. This grammar was a combination of the C-language
ANSI-standard grammar together with grammar rules defined by ourselves. This
way of method allowed for regular C syntax to be used inside the scope of our
own language, liberating us from defining a whole grammar ourselves, which is re-

12

3. Method

quired for a functioning programming language. As in the lexical analysis utilized
ANSI standard C11 for the syntax rules, the parser utilized C11 as the language’s
grammar.

Figure 3.5: A small segment of the grammar constructed for the language

3.1.3 C11-Standard
To ease the development of the language processing chain, a complete predefined
set of lexical syntax rules [16] and grammar [17] was utilized. C11 [18] was the
ANSI standard for the C language developed in 2011, replacing the older standard
C99 [19] and has been replaced by the standard C18 [20]. Due to availability of the
open-source C11 Lex and Yacc files, C11 was chosen.

3.1.4 GCC, LLDB and MinGW
The working environment for the project was on a UNIX system, which enabled the
use of GCC [21] for compiling into a UNIX binary, and LLDB [22] for debugging.
In order to compile for the target operating system Windows, which was mainly
used within the real-time labs, MinGW was utilized to cross-compile from UNIX to
Windows [23].

3.2 Inspiration

To build the syntax of the language, inspiration was taken directly from Java and
the way that language handles objects. In the following example (Figure 3.6), one
can see how Java declares a class with local states, a constructor and methods [24].
It is based on the previously given example written in language C (Figure 1.1), but
without the TinyTimber system calls.

13

3. Method

1 pub l i c c l a s s Example {
2

3 pr i va t e i n t count ;
4

5 pub l i c Example () {
6 count = 0 ;
7 }
8

9 pub l i c void incCounter () {
10 count++;
11 }
12 }

Figure 3.6: Class declaration in Java

The keywords public and private were omitted due to everything being public in
the language being created.

3.3 Testing
As this project is made to support the Real-time Systems labs, the developed soft-
ware was tested with those labs. When investigating whether the language could
build proper C, the labs were written in the new language and compared to how
they were written in C, and then uploaded to the hardware used and tested.

The main way of testing that the transpiler worked overall, and that it produced
the output correlating with the equivalent input, was to write code that should not
work, and see if it worked. Many times the code would pass through, and the output
would be full of code that is not allowed and does not work. Coding with intentional
errors proved to be a good way of securing the language structure. Error codes were
also added (see figure 3.7), which was on the wishlist for this project, and while
developing, the importance of them were made clear. Discovering anomalies within
the program was facilitated when regular errors were displayed in a clear way. This
is also beneficial for students in the future, so that they can find out what type of
error they have made.

Figure 3.7: Example of an error thrown when invoking a misspelled constructor

14

4
Results

4.1 Software
The main focus of this project has been the creation of the transpiler together with
an object-oriented language syntax. It was also important to ensure that the fin-
ished product could be run in a way that fit the lab environment, and had to be
integrated into the program that is used today.

The transpiler works as intended. It is able to read code with the new syntax
and convert it to regular C. The transpiler can run both on Windows and on unix-
based systems. It is executed through a command prompt, where a source file is
sent in and an output file is given (See example below).

$./ottoPreCompiler < input.otto > output.c

4.1.1 Lab Environment
Because this product is to be used within the Real-Time Systems labs, it should
also be fully integrated into the IDE which the students are utilizing. Currently, the
students use the open-source freeware CodeLite [25]. The goal was to integrate the
transpiler and somehow add it to CodeLite’s compiler pipeline, so that it was always
available as an option on the workstations. After a bit of searching and reading, no
clear way of doing this was found, so another solution had to be used. It turned
out that there was a fairly easy way of adding it to a project folder. The transpiler
would not be usable in all projects, but it would be in all project folders it was
manually added to.

This was not the only problem though, as some issues were encountered because
the program runs on windows machines, and the transpiler was compiled to unix
systems. After figuring this out, the transpiler was cross-compiled, which is when a
program is compiled using one system to work on another system [26]. This proved
to be successful. After correcting a few more minor errors, the transpiler was added
as a pre-build command, so that it would work as a preprocessor, and is automati-
cally called when the project is built.

Below, there is a figure (4.1) showing the same type of error message as shown
in figure 3.7, but this time within CodeLite. Errors thrown during the pre-build
stage unfortunately resulted in the loss of the color coding.

15

4. Results

Figure 4.1: Example of an error thrown within Codelite

4.2 The Language
The language created is a very basic version of an object-oriented language. It has
basic encapsulation, abstraction and inheritance, but no polymorphism. The reason
behind this is that polymorphism was the most challenging to tackle, but also not
worth the effort, as the scope of the labs does not require this. It has support for
real-time programming, specifically that of TinyTimber, as it is the system used in
the labs today. The name for the language is OTTO, which is a recursive acronym
of "Objective TinyTimber: OTTO".

Below, a short description of the syntax can be seen, but a more thorough guide can
be found in the appendix.

4.2.1 Syntax
Given that the language is based on object-orientation, the syntax is as well. As
mentioned in chapter 3, Java was used for inspiration. This is why the language
produced has the same structure. Classes have code wrapped inside of them, includ-
ing a constructor that is called to instantiate an object of that class. Local states
and methods are also encapsulated within the class. The TinyTimber system calls
still needed to be there, so they were included as well, but reworked. Previously,
the calls were only macros in C [27], and had this structure:

ASYNC(&object, method, variable)

This was reworked to look like this:

ASYNC: object.method(variable)

This structure was used since, in the former way of writing, it looked more like
a function call to the function ASYNC, with the object, method and an argument
being parameters. Here, the students also have to keep track of when to include the

16

4. Results

& which refers to the address of the given object. The latter looks more like proper
object orientation, were the method belongs to, and is accessed through, the object,
with its parameter being only the argument (SOURCES). ASYNC in this case looks
more like a modifier or attribute, which is what it is supposed to be. The & for the
address is also ignored, and dealt with under the hood.

The example shown in the previous chapter, that highlighted the issues of the cur-
rent system, can be seen again below (Figure 4.2), together with Figure 4.3 as a
comparison, showing the improvements made with the new language. The methods
are now encapsulated by the class, instead of just expecting the address of the right
type of object to be sent in.

1 typede f s t r u c t {
2 Object super ;
3 i n t count ;
4 } Example ;
5

6 Example obj = { i n i t O b j e c t () , 0 } ;
7

8 void incCounter (Example *self , i n t unused) {
9 self−>count++;

10 AFTER(SEC(1) , self , incCounter , 0) ;
11 }

Figure 4.2: Example of code written in C, together with TinyTimber

1 CLASS Example {
2

3 i n t count ;
4

5 Example () { }
6

7 void incCounter () {
8 t h i s . count++;
9 AFTER(SEC(1)) : t h i s . incCounter () ;

10 }
11

12 }

Figure 4.3: The same example written in OTT:O

17

4. Results

4.3 Validation
If the new language is to be used in a course on Chalmers, it needs to work at least
as well, and preferably better, than the current system in place. To make sure that
the product meets the standards intended, or even works at all, multiple tests were
established to make sure the language could do everything it should be able to do.

To test the custom feature of sending multiple arguments, which was not possi-
ble with the old system, without adding extra code, a program was written with a
method that expected multiple arguments. These were used inside of the method
to modify the local states of the object that owned the method. Afterwards, the
local states were accessed and printed. This method was then invoked with all Tiny-
Timber modifiers, so that these could be tested to work simultaneously. Below, an
example is given (Figure 4.4) with the modifier ASYNC.

1 CLASS App {
2 char a , b , c ;
3

4 App() {}
5

6 void method () {
7 ASYNC: t h i s . multiArg (' a ' , 'b ' , ' c ') ;
8 SYNC: s . s c i_wr i t e char (t h i s . a) ;
9 SYNC: s . s c i_wr i t e char (t h i s . b) ;

10 SYNC: s . s c i_wr i t e char (t h i s . c) ;
11 }
12

13 void multiArg (char a , char b , char c) {
14 t h i s . a = a ;
15 t h i s . b = b ;
16 t h i s . c = c ;
17 }
18 }

Figure 4.4: A program to test the feature of multiple arguments

To ensure that all of the real-time aspects worked as intended, all of the labs written
in the current language were written in our language and tested on the hardware.
This was also done continuously throughout the project, but is of course critical
to do as a last test. The testing was successful, and the code worked very well.
Because the precompiler generates a file with C-code, this file can be compared to
how the labs would be written originally. This proved to be a useful way to see if
the transpiler worked, because comparing them demonstrated how well it was able
to translate correctly.

To test inheritance, programs were written with two or more classes. Below (Figure
4.5), an example of inheritance is shown. The child class inherits the local state i
and the method incValue from the parent class. When the method Print is invoked

18

4. Results

the local states j and i are added together and printed out in the terminal. When
the method incValue is invoked on the child, the local state i is incremented one
integer.

1 CLASS Parent {
2

3 i n t i = 5 ;
4

5 void incValue () {
6 t h i s . i ++;
7 }
8 }
9

10 CLASS Child EXTENDS Parent {
11

12 i n t j ;
13

14 Child (i n t arg) {
15 t h i s . j = arg ;
16 }
17

18 void Pr int () {
19 i n t r e s u l t = t h i s . i + t h i s . j ;
20 char bu f f [2 0] ;
21 s n p r i n t f (buf f , 20 , " Value : %d\n" , r e s u l t) ;
22 SYNC: s . s c i_wr i t e (bu f f) ;
23 }
24 }

Figure 4.5: A program to test inheritance

All of these tests proved that most objectives, set up before the project started,
are finished. The syntax is object-oriented. Pointers and addresses are not allowed,
which makes them impossible to use by mistake. The preprocessor works and trans-
lates the new language into C, and the output file is then compiled automatically
in Codelite. The side objectives error handling, inheritance and invoking methods
with multiple arguments were also added and are working properly.

4.4 Remaining Issues
One major objective that is not fully completed is true encapsulation and abstrac-
tion. The code is partly encapsulated. Methods and variables need to belong to
classes, but only variables are truly protected in the end. This is because when the
code is translated into C, the variables are part of a specific struct, but the methods
are only expecting to receive that type of struct, not parts of it.

In practice, this means that you can still invoke the wrong method from the wrong
object. But one notable factor to take into consideration is the high degree of which
the structure of the new syntax should help with keeping track of what is correct.

19

4. Results

In C, methods are just written in a file, but are not part of any object. In the new
language, methods need to be wrapped by the class they belong to. This already
creates a clear indication of what objects can invoke that method.

The syntax for invoking said method is also greatly simplified, as seen in the ex-
amples above. The removal of addresses, together with the fact that objects and
methods are not arguments of another method anymore, should remove the majority
of confusion about how methods are called.

All of this being said, ensuring that methods can only be called using the cor-
rect object is important, and should definitely be considered if the language is to be
developed further, which is discussed more in chapter 5.

4.5 The Manual
A manual for how the new language is used was absolutely necessary in order for the
students to be able to code with it. It consists of short examples showcasing how
the different parts of the language are constructed, and what they can be used for.
It does not contain thorough information on how to program with the TinyTimber
kernel, as a guide for that already exists [27]. The only remaining issue regarding
this is that the guide currently only supports the language C, which would have to
be modified in the future. The manual as a whole can be found in the Appendix.

20

5
Discussion

5.1 Alternative Solutions
At the start of this project, we had four different ideas of ways we wanted to do it.
One of the ideas was used and is what this report is about. The other three were
quite interesting as well, but would have been too difficult to conduct, especially
within the time-frame we had. We did however start researching these alternatives
and spent some time on them, so they are worth discussing.

5.1.1 TinyTimber for C++
Given that the labs are written in C, with the real-time kernel TinyTimber, an
interesting idea would have been to rewrite TinyTimber to work with C++. This
would have enabled the labs to be written in an object-oriented language, that had
everything it needed from the start [3]. The reason to why this idea was scrapped
was because it felt too complex. There is not that much documentation on how to
actually structure the code for TinyTimber, and it is tailored to specifically C. We
also discussed this option with our supervisor and he agreed that it was interesting,
but not the best alternative.

5.1.2 Java
This whole project came to be partly because we wanted to be able to write the
labs in Java. The problem with this is that Java does not work like most languages.
It runs on something called a Virtual Machine, which is a program that runs on
the operating system used, and that program in turn runs the Java program [28].
Because the MD407 micro-controller does not really have a proper operating system,
the regular Java would not work.

We looked into other options. There is embedded Java, that is used more like
its own operating system that can run directly on hardware [29]. The problem there
was that there are no embedded Java alternatives for the processor used. Another
issue is that Java is not made for real-time handling, and has no proper way of
handling concepts like deadlines. There is real-time Java [30], but then that would
have to be combined with some type of home-made embedded Java. This idea was
obviously way too grand for us to complete, but it was still very interesting to read
up on and would have been a fitting project.

21

5. Discussion

5.1.3 Timber
Before TinyTimber was used as a runtime kernel for the labs, it was a part of the
programming environment of a programming language called Timber. Timber is a
programming language structured mostly like a functional programming language,
but also includes concepts from object-orientation [31]. The TinyTimber part of it
was later separated from the language, and instead used with C.

One idea was to revitalize Timber into something that would work on the current
system. The main reason for this was many of the students in the master course
having a background in functional programming. We started reading up on the lan-
guage to see what could be done, but the idea was sadly killed quite quickly. This
because our supervisor contacted the creator of Timber, found out what needed to
be done, and explained that the project would be quite massive and difficult. This
idea could definitely be expanded on in the future, and would certainly be useful.

5.2 Software
In the beginning of the project, a number of issues arose. We had just finished a
course on programming languages and how they are structured, so we presumed
that the libraries and software from that course would be beneficial to use. This
turned out to be partly false, because of the restrictions of the tools used. In that
course, a "tool" called BNFC was used [32], which combined the lexical analysis and
syntax analysis in an easy way. We started building our transpiler using this, but
got stuck after a while because it was too restricting. It was not ideal for being
able to allow regular C code outside of the language being built, and was also not
very popular or well known, so finding information online was harder. This set us
back a couple of weeks, and we had to start learning Flex and Bison instead. But
the general knowledge of how compilers are built and how the language processing
chain works still helped along the way, as much of it was applied in the project in
the end.

5.3 Object-oriented Concepts
The goal was always to implement all major concepts from object-oriented program-
ming, because having a language restricted with half of them felt incomplete. For
the real-time systems labs, it would have been enough with only encapsulation and
abstraction, since the main goal of the project was to minimize the errors made
by the students today, caused by C code being a bit too open and error friendly.
However, as we wanted more object-orientation, we decided to add inheritance as
well. Still, the inheritance in our language is not necessarily true to how it works in
regular languages, given that the only thing happening behind the scenes is that the
local states of the parents class are copied into the child. Polymorphism is some-
thing that we wished we could have added, but was proved to be too difficult. This
would also have brought the least improvements for the students.

22

5. Discussion

5.4 Conclusion
One major purpose of this project was, as mentioned earlier, to ensure that less
issues for the students would arise. The new language can be seen as an ergonomic
improvement for the courses, as it would allow students to focus on learning the
important real-time concepts covered, instead of them getting frustrated over losing
precious lab time, in turn increasing their risk of failing. Many of the master students
come with little to no background in C programming, and they should not have to
learn a whole new language in order to understand real-time systems, which this
new language aims to solve this by offering an alternative. Other environmental
and ethical aspects were considered and discussed, but no clear connection to this
project could be made.

5.5 Further Development
Since this language is not completely finished, but still works for the labs, it is open
to a lot of further work. As of now, the whole transpiler only does one pass through
the input code, and then produces the output. In the future, more passes could be
made, to make it possible to do a lot more typechecking and error handling. The
encapsulation and abstraction could be made significantly stronger, with different
access modifiers (i.e making local states and methods private, protected or the like,
to control how they can be accessed). Inheritance could be improved to support
polymorphism, and methods could be allowed to have the same names in different
classes, which is currently prohibited because of the restrictions of C, unless complex
code is added [33].

23

5. Discussion

24

Bibliography

[1] Stackify (2017) ’Advantages of OOP’. Available: https://stackify.com/oop-
concept-for-beginners-what-is-encapsulation/ [Online; accessed 11-March-
2019].

[2] Gurumoorthy, P. and Padmanabhan, A. (2019) ’Transpiler’. Available:
https://devopedia.org/transpiler [Online; accessed 13-March-2019]

[3] Safyan, M. (2016) ’Object-Oriented Programming (OOP) in C’. Available:
https://www.codementor.io/michaelsafyan/object-oriented-programming-in-c-
du1081gw2 [Online; accessed 29-March-2019]

[4] Janssen, T. (2017) ’OOP Concept for Beginners: What is Encapsulation’. Avail-
able: https://stackify.com/oop-concept-for-beginners-what-is-encapsulation/
[Online; accessed 29-March-2019]

[5] Janssen, T. (2017) ’OOP Concept for Beginners: What is Abstraction?’.
Available: https://stackify.com/oop-concept-abstraction/ [Online; accessed 29-
March-2019]

[6] Janssen, T. (2017) ’OOP Concept for Beginners: What is Inheritance?’.
Available: https://stackify.com/oop-concept-inheritance/ [Online; accessed 29-
March-2019]

[7] Janssen, T. (2017) ’OOP Concepts for Beginners: What is Polymorphism’.
Available: https://stackify.com/oop-concept-polymorphism/ [Online; accessed
29-March-2019]

[8] Tutorials Point (Unknown) ’Compiler Design - Overview’. Available:
https://www.tutorialspoint.com/compiler_design/compiler_design_overview.htm
[Online; accessed 07-April-2019]

[9] cppreference.com (2018) ’C - Preprocessor’. Available:
https://en.cppreference.com/w/c/preprocessor [Online; accessed 07-April-
2019]

[10] Ranta, A. and Forsberg, M. ’Implementing Programming Languages - An In-
troduction to Compilers and Interpreters’ (Texts in Computing, volume 16).
London: College Publications, 2012.

[11] Estier, Th. (Unknown) ’What is BNF notation?’. Available:
http://cui.unige.ch/isi/bnf/AboutBNF.html [Online; accessed 03-May-2019]

[12] Estes, W. (2019) ’Flex GitHub Repository’. Available:
https://github.com/westes/flex [Online; accessed 06-May-2019].

[13] Lesk, M. E. and Schmidt, E. (unknown) ’Lex - A Lexical Analyzer Generator’.
Available: http://dinosaur.compilertools.net/lex/index.html [Online; accessed
06-May-2019].

25

Bibliography

[14] Computerworld. (2008) ’The A-Z of Programming Languages:
YACC’. Available: https://www.techworld.com.au/article/252319/a-
z_programming_languages_yacc/ [Online; accessed 06-May-2019].

[15] Free Software Foundation. (2014) ’GNU Bison’. Available:
https://www.gnu.org/software/bison/ [Online; accessed 06-May-2019].

[16] Degener, J. (2012) ’ANSI C grammar, Lex specification’. Available:
http://www.quut.com/c/ANSI-C-grammar-l-2011.html [Online; accessed 27-
March-2019].

[17] Degener, J. (2012) ’ANSI C Yacc grammar’. Available:
http://www.quut.com/c/ANSI-C-grammar-y-2011.html [Online; accessed
27-March-2019].

[18] International Organization for Standardization. (2011) ’ISO/IEC 9899:2011’.
Available: https://www.iso.org/standard/57853.html [Online; accessed 06-
May-2019].

[19] International Organization for Standardization. (1999) ’ISO/IEC 9899:1999’.
Available: https://www.iso.org/standard/29237.html [Online; accessed 06-
May-2019].

[20] International Organization for Standardization. (2018) ’ISO/IEC 9899:2018’.
Available: https://www.iso.org/standard/74528.html [Online; accessed 06-
May-2019].

[21] The GCC Team. (2019) ’GCC, the GNU Compiler Collection’. Available:
https://gcc.gnu.org/ [Online; accessed 06-May-2019].

[22] The LLDB Team. (2019) ’LLDB 8 Documentation’. Available:
https://lldb.llvm.org/ [Online; accessed 06-May-2019].

[23] The MinGW Team. (2019) ’MinGW, Minimalist GNU for Windows ’. Available:
http://www.mingw.org/Welcome_to_MinGW_org [Online; accessed 06-May-
2019].

[24] Oracle. (2017) ’Java documentation Classes’. Available:
https://docs.oracle.com/javase/tutorial/java/javaOO/classes.html [Online;
accessed 06-May-2019].

[25] Ifrah, E. (2019) ’CodeLite IDE’. Available: https://codelite.org/ [Online; ac-
cessed 07-May-2019].

[26] The GCC Team. (Unknown) ’Cross-Compilation’. Available:
https://www.gnu.org/software/automake/manual/html_node/Cross_002dCompilation.html
[Online; accessed 07-May-2019].

[27] Programming with the TinyTimber kernel, Johan Norlander, Sweden, 2012.
[28] Tyson, M. (2018) ’What is the JVM? Introducing the Java Virtual

Machine’. Available: https://www.javaworld.com/article/3272244/what-is-the-
jvm-introducing-the-java-virtual-machine.html [Online; accessed 22-May-2019].

[29] Oracle. (2014) ’Introducing Oracle Java SE Embedded’. Avail-
able: https://docs.oracle.com/javase/8/embedded/develop-apps-
platforms/overview.htm [Online; accessed 22-May-2019].

[30] Oracle. (2014) ’An Introduction to Real-Time Java Technology:
Part 1, The Real-Time Specification for Java (JSR 1)’. Available:
https://www.oracle.com/technetwork/articles/javase/index-137216.html
[Online; accessed 22-May-2019].

26

Bibliography

[31] timber-lang. (2008) ’Timber Home’. Available: http://www.timber-lang.org
[Online; accessed 23-May-2019].

[32] Forsberg, M. and Ranta, A. (2014) ’User Guide’. Available:
https://bnfc.readthedocs.io/en/latest/user_guide.html [Online; accessed
22-May-2019].

[33] Lockless Inc. (Unknown) ’Overloading Functions in C’. Available:
https://locklessinc.com/articles/overloading/ [Online; accessed 23-May-2019].

27

Bibliography

28

A
Appendix

I

Programming with OTTO

Lars Andersson
Oskar Lenschow

June 2019

1

A. Appendix

II

1 Classes

Objects are created using classes, which are blueprints for how objects are cre-
ated and used. To instantiate a class, the class constructor needs to be invoked.
The class can contain local states and methods relevant to it.

CLASS classname {

type l o c a l s t a t e 0 ;
type l o c a l s t a t e 1 ;
type l o c a l s t a t e 2 ;
. . .

CONSTRUCTOR classname (arguments) {
. . .

}

type method (arguments) {
. . .

}
. . .

}

Tip: The prefix CONSTRUCTOR can be ommited.

1.1 Inheritance

A class can inherit local states and methods from another class, using the prefix
EXTENDS. A class can only inherit from one single class.

CLASS name EXTENDS sup e r c l a s s {
. . .

}

1.2 Instantiating classes

Creating a new instance of an object is done by calling the class constructor
and can only be carried out inside of the main function.

CLASS Example {
i n t va lue ;
Example (i n t arg) { t h i s . va lue = arg ; }

}

i n t main () {
OBJECT example = new Example (13) ;
r e turn 0 ;

}

2

A. Appendix

III

2 Invoking methods (TinyTimber attributes)

Synchronously invoke a method with a return value. Returns -1 if deadlock.

SYNC: ob j e c t . method (arguments) ;

Asynchronously invoke a method.

ASYNC: ob j e c t . method (arguments) ;

Asynchronously invoke a method with a given deadline.

BEFORE(dead l ine) : ob j e c t . method (arguments) ;

Asynchronously invoke a method after a given baseline offset.

AFTER(o f f s e t) : ob j e c t . method (arguments) ;

Asynchronously invoke a method after a given baseline offset, with a given
deadline.

SEND(o f f s e t , dead l ine) : ob j e c t . method (arguments) ;

Example: Usage of the AFTER attribute.

CLASS Obj {

i n t va lue ;

Obj () { }

setOne () {
t h i s . va lue = 1 ;
AFTER(SEC(1)) : t h i s . s e tZero () ;

}

s e tZero () {
t h i s . va lue = 0 ;
AFTER(SEC(1)) : t h i s . setOne () ;

}

}

3

A. Appendix

IV

3 Builtin TinyTimber functions

Installing interrupt vectors
Interrupts can only be installed inside of the main function.

INSTALL(in t e r ruptVec to r) : ob j e c t . method () ;

Starting the TinyTimber kernel
TinyTimber can only be started inside of the main function.

TINYTIMBER: ob j e c t . method () ;

Installing callbacks
Callbacks can only be created inside of the main function.

CALLBACK c = new Example (initMethod , port , ob j e c t . method) ;

Timers
Timers are a custom data type created for TinyTimber and can be used in
objects.

Timer t ;

sampleTimer returns the difference between current baseline and timer.
resetTimer resets the timer to current baseline.

ob j e c t . t . sampleTimer () ;
ob j e c t . t . resetTimer () ;

4

A. Appendix

V

4 Examples of usage

#inc lude ” o t t oS t ru c t s . h”
#inc lude ” ottoPrototypes . h”
#inc lude ” ot toObjec t s . h”

CLASS ClassOne {

i n t va lue ;

ClassOne (i n t va l) {
t h i s . va lue = va l ;

}

i n t getValue () {
i n t returnValue = th i s . va lue ;
t h i s . va lue++;
re turn returnValue ;

}

}

CLASS ClassTwo {

i n t va lue ;

ClassTwo () { }

void setValue () {
t h i s . va lue = SYNC: objOne . getValue () ;
AFTER(SEC(1)) : t h i s . setValue () ;

}

}

i n t main () {
OBJECT objOne = new ClassOne (0) ;
OBJECT objTwo = new ClassTwo () ;
r e turn TINYTIMBER: objTwo . setValue () ;

}

Simple example showing two objects interacting with each other. Each second,
objTwo collects the value from objOne, which in turn increments the value.

5

A. Appendix

VI

#inc lude ” sciTinyTimber . h”
#inc lude ” o t t oS t ru c t s . h”
#inc lude ” ottoPrototypes . h”
#inc lude ” ot toObjec t s . h”

CLASS App {

App() { }

void startApp () {
// Setup i n t e r r up t channe l s
SYNC: s c i . s c i i n i t () ;
// He l lo world !
SYNC: s c i . s c i w r i t e (”OTTO says h e l l o . . . \ n”) ;

}

void reader (char c) {
// Pr int out what ’ s r e c e i v ed
SYNC: s c i . s c i w r i t e (”\nReceived : \ ’ ”) ;
SYNC: s c i . s c i w r i t e c h a r (c) ;
SYNC: s c i . s c i w r i t e (” \ ’\n”) ;

}

}

i n t main () {
OBJECT app = new App() ;
// Setup c a l l b a ck s on in t e r rupt−vec t o r s
CALLBACK s c i = new S e r i a l (i n i t S e r i a l , SCI PORT0 , app . reader) ;
// I n s t a l l i n t e r rupt−vec t o r s
INSTALL(SCI IRQ0) : s c i . s c i i n t e r r u p t ;
r e turn TINYTIMBER: app . startApp () ;

}

This example showcases how callbacks can be used. In this particular case, each
time an interrupt arrives on the SCI PORT0, the reader method is invoked.

6

A. Appendix

VII

#inc lude ” o t t oS t ru c t s . h”
#inc lude ” ottoPrototypes . h”
#inc lude ” ot toObjec t s . h”
#de f i n e GENERATORPORT = (∗ (char ∗) 0x1234)

CLASS Sonar {

Timer t imer ;

Sonar () { }

i n t stop () {
GENERATORPORT = SONAR OFF;

}

i n t echo () {
Time d i f f = t h i s . t imer . sampleTimer () ;
i f (d i f f < MSEC(LIMIT)) /∗ code ∗/ ;

}

i n t t i c k () {
GENERATORPORT = SONARON;
t h i s . t imer . resetTimer () ;
AFTER(MSEC(10)) : t h i s . stop () ;
AFTER(MSEC(500)) : t h i s . t i c k () ;

}

}

i n t main () {
OBJECT sonar = new Sonar () ;
INSTALL(IRQ ECHO DETECT) : sonar . echo ;
r e turn TINYTIMBER: sonar . t i c k () ;

}

This example can be seen in ’Programming with the TinyTimber kernel’, but
in the language C instead.

7

A. Appendix

VIII

	Introduction
	Background and Motivation
	Aim
	Objectives
	Report Structure

	Theory
	Object-orientation
	Encapsulation
	Abstraction
	Inheritance
	Polymorphism

	Preprocessing
	Language Processing Chain
	Lexical Analysis
	Syntax Analysis
	Semantic Analysis and Code Generation

	Method
	Software and Procedure
	Flex
	Bison
	C11-Standard
	GCC, LLDB and MinGW

	Inspiration
	Testing

	Results
	Software
	Lab Environment

	The Language
	Syntax

	Validation
	Remaining Issues
	The Manual

	Discussion
	Alternative Solutions
	TinyTimber for C++
	Java
	Timber

	Software
	Object-oriented Concepts
	Conclusion
	Further Development

	Bibliography
	Appendix

