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Abstract

The development of bacterial resistance to antibiotic drugs have reached alarming
proportions and is a serious threat to human health. As a consequence of improper
antibiotic treatments, selection causes emergence of resistant bacteria. In order to
avoid major medical issues, a better understanding of antibacterial dosage strate-
gies is needed.

In this thesis, the growth dynamics of bacterial populations under antibiotic treat-
ment is modeled using coupled ordinary differential equations. Mutation dynamics
is incorporated in the model as the bacteria have a certain probability to alter their
genome in every new generation. The mutations affect the susceptibility of the bac-
teria to the antibacterial drug. This leads to a selection pressure as new mutations
develop.

The aim was to find a good dosage strategy in terms of killing the bacteria with the
least amount of drugs in the shortest time period possible. Here, three different
antibacterial dosage strategies with constant concentration, a linearly decreasing
concentration and exponentially decaying pulses were compared.

Results suggest that the Minimum Inhibitory Concentration (MIC) of the slightly
resistant bacteria acts as a threshold for what is a good dosage strategy. As long
as the antibacterial concentration was kept over this level, no further resistant
bacteria was allowed to develop and the system was destined to die. The strategy
that most efficiently achieved this was the linearly decreasing regime.

The model may be extended to usage within pharmacology in the future by incor-
porating pharmacokinetics and pharmacodynamics.
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Glossary and List of
Abbreviations

Cinae 18 the highest antibacterial drug concentration [14]. ii, 5

F' is the relative bacterial fitness in comparison to the wild type fitness which is
1.1

Npaz 18 the carrying capacity of the system. I.e. the maximal number of bacteria
that the system can contain. ii

ke is the growth coefficient of the bacteria. ii
kmaz 1s the maximum killing potential of the antibacterial drug. ii, 24, 25

p is the mutation rate of the bacteria per site and generation. ii, 24
AUC Area Under Concentration-time curve [9]. ii

Bernoulli distribution is a one-parameter distribution Bern(p) that takes only
two values, 0 and 1, with probability of 1 — p and p respectively [10]. ii, 7

Binomially distribution is a two-parameter distribution Bin(n,p) which con-
sists of n independent Bernoulli trials with probability parameter p[10]. ii,
7

CFU Colony-Forming Units. Measurement of bacterial number [17]. ii

Ciprofloxacin is a type of fluoroquinolone [12]. ii

DNA gyrase is a bacterial enzyme that prevents supercoiling in DNA replication
[15]. ii, 2



Glossary and List of Abbreviations

E. coli (FEscherichia coli) is a Gram-negative bacteria found in the intestinal tract
of humans and other warm-blooded animals. Some strains of FE. coli can
cause sicknesses like urinary infections or food poisoning [15]. ii, 2

EC;, is the 50% effective concentration. I.e. the concentration in which 50% of
the drugs maximal potential is attained [9]. ii

Fluoroquinolones are antibacterial drugs that binds to and inhibits DNA gyrase
and Toposiomerase IV under DNA synthesis [12]. ii

Levofloxacin is a type of fluoroquinolone [17]. ii, 19

MIC (Minimum Inhibitory Concentration) is the lowest concentration that com-
pletely inhibits visible growth of the organism as detected by the unaided
eye after a 18- to 24-h incubation period with a standard inoculum of ap-
proximately 10° cfu/ml [14]. ii, 1, 5, 10, 22-27

Normal distribution is a two-parameter distribution N (p,0%) and the most cen-
tral in probability theory. According to the Central limit theorem it is the
distribution of the sum of a large number of independent random variables.
Examples of normally distributed variables can be the height of people, dis-
tribution of IQ) scores and so forth [10]. ii

Pathogenic organisms are usually microorganisms that causes diseases [15]. ii, 2

PDI Pharmacokinetics/Pharmacodynamics Indices. ii, 5, Glossary: Pharmacoki-
netics/Pharmacodynamics

Pharmacokinetics/Pharmacodynamics Pharmacokinetics is in simplified terms
what the body does to the drug while pharmacodynamics is what the drug
does to the body [11]. ii

Plasma is the liquid portion of the blood with cells removed and clotting proteins
deactivated [15]. ii, 8

Topoisomerase IV is a bacterial enzyme that unlinks the two double-helical
DNA strands from each other at DNA replication. It also prevents super-
coiling, like DNA gyrase [15]. ii, 2
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Introduction

HE development of bacterial resistance to antimicrobial agents is a serious

threat to modern society and have recently reached alarming proportions

[17]. Alterations in the genome of the bacteria is a cause of resistance, and

the bacteria can e.g. acquire a genetic difference that affect its metabolic
pathway. This may alter the cell wall and binding site of the antibacterial agent
6].
The problem of arising resistance can be correlated to suboptimal dosage strategies
of antibiotics. This includes patients that not complete full treatments, usage of
inappropriate dosages or wrong type of antibiotics [12]. All these issues lead to
selection of resistant strains of bacteria.
To overcome these problems and prevent unnecessary development of bacterial
resistance, we need to improve our understanding of how to design good dosage
regimens of antibiotics. An important tool is the usage of mathematical models.
By modeling the growth dynamics of bacterial populations under antibacterial
drug treatments, the effect of the drug can be analyzed at different time periods.
This can give vital insight in design of dosage strategies. As a consequence, fewer
experimental test and clinical trials are needed [17].

1.1 Antibacterial drugs and resistant bacteria

There are various different types of antibacterial agents. These can be categorized
depending on their target area in the bacterial cell. The targets include inhibition
of cell wall, protein and nucleic acid synthesis, interference with the bacterial
membrane structure and disruption in the metabolic pathway of the cell [6]. On
the other hand, random mutations in the bacteria can make it less susceptible



1.1. ANTIBACTERIAL DRUGS AND RESISTANT BACTERIA

to the antibacterial agents. The mutated bacteria may e.g. acquire encoding
enzymes that disrupts the antibacterial agents, alter the binding sites of the agents
or generate efflux pumps that removes the agents from the cell.

In this thesis, the main focus will be on a specific group of synthetic broad-spectrum
antibiotics called fluoroquinolones and the drug ciprofloxacin in particular. The
fluoroquinolones are used to treat a variety of different bacterial infections, like
urinary tract infections, and they target the DNA synthesis of the bacteria [15].
When DNA is replicated, the bacterial enzyme DNA gyrase is used to remove
supercoiling in the DNA along with the enzyme Topoisomerase IV, which also
releases the the two replicated strands from each other. The fluoroquinolones
dismantle these enzymes, which inhibits the replication.

Escherichia coli (E. coli) is a gram-negative bacteria found in the intestinal tracts
of humans and other warm-blooded animals [15] (see figure 1.1). Because of the
bacterias substantial use in biochemical genetics, it was one of the main candidates
to be the first organism with a fully sequenced genome [7]. Sequencing E. coli was
a six years project which was finished in 1997. By then, the 4 649 221 base pairs of
the DNA was sequenced and 4288 protein-coding genes were found. Pathogenic F.
coli can cause infections in the urinary, pulmonary, enteric and nervous system, and
was e.g. behind the outbreak of enterohemorrhagic E. coli (EHEC) in Germany
between May and July 2011 [5]. Some infections caused by E. coli are treated with
fluoroquinolones [7]. However, enzyme mutations located at the DNA gyrase and
Topoisomerase IV in the FE. coli decreases its susceptibility to the fluororquinolones.

Figure 1.1: E. coli (Courtesy of Bioquell Inc).

In this Master’s thesis, susceptibility data of ciprofloxacin will be used for wild
type and mutated strains of E. coli.



1.2. MATHEMATICAL MODELING IN SYSTEMS BIOLOGY

1.2 Mathematical modeling in systems biology

In systems biology, the strive is to analyze and understand cellular and organismal
systems and structures [8]. A way to do this is to use mathematical models and
methods that describe the given system or its properties. Mathematical models
play a central role in systems biology. They can be categorized as deterministic
and stochastic models. A deterministic system contains no form of randomness.
Given a certain initial condition, the system will act the same and produce the
same output every time. On the other hand, a stochastic system involve an amount
of randomness and can give different output even though the input is the same.
Biological systems are usually dynamical in their nature and are often modeled
using ordinary differential equations.

The principles of a modeling procedure using mathematics is illustrated in figure
1.2. Once the problem in question has been addressed, the modeling regime starts
with a literature review to see what has been done in the field so far. With a
schematic view of the system, key components can be highlighted and the first
step of making a model of the system is done. Then, mathematical models are
introduced to describe the dynamics of the system, often in the form of ordinary
differential equations. Some of the parameters of the model may be unknown and
for those estimates are needed. By using experimental data and e.g. goodness-
of-fit, the parameters can be fitted and the model calibrated. With sensitivity
analysis, robustness of the parameters can be determined to see in what magnitude
different parameters influence the system. If a parameter is found to have little or
no affect on the system, it may be set to a fixed number or less concern may be
put on the accuracy of estimates of the given parameter [13].

To apply a mathematical model, an appropriate (depending on the specific model
and taste) software is needed like e.g. MATLAB [19], Mathematica [21], Comsol [2]
and so forth. Once the model can reproduce results from data, simulations with
other setups can be done. In this way the model may be used to confirm, or reject,
hypotheses or to predict features of the biological system.

Of course, when working with models the pathway is not always this straight and
one might need to go back and reevaluate some aspects of the model, use more
input data for parameter fit and so forth.

When it comes to mathematical modeling of antibacterial treatments, Bhagunde
and colleagues [17] have developed a growth model for bacteria under antibacterial
stress using ordinary differential equations. This model include an adaption func-
tion describing the antibacterial resistance in a bacterial population. Even though
the model is informative in the dynamics of the bacteria, it lacks dynamical infor-
mation about individual subpopulations which consist of different mutated strains
of the bacteria. It also lacks the stochastic nature of mutation development.
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Figure 1.2: Schematic view of the constructing of a model [13].

1.3 Objective of thesis

The objective of this Master’s Thesis is to formulate a mathematical model that
efficiently describes the growth dynamics of bacterial populations under antibiotic
pressure. This will be done by applying modifications to the model by Bhagunde
P. et al.[17] that describes effect of antimicrobials on heterogeneous bacterial pop-
ulations. This model will in contrast to the model by Bhagunde P. et al. capture
dynamics of several homogeneous subpopulations. Once the model is developed,
a thoroughly exploration of its dynamics will be done in order to investigate the
models properties and look at its sensitivity. With an antibacterial concentration
function incorporated in the model, one can analyze different dosage strategies in
order to find an efficient treatment to a bacterial infection.



Model

HERE are currently two main approaches for antibacterial pharmacody-
namic/pharmacokinetic(PK/PD) modeling, those based on MIC analy-
sis and those based on kill curves [14]. Depending on the given antibiotic
agent used and its effect profile, different MIC models are used in order

to determine a well-performing dosage strategy. Some antibacterial drugs show a
time dependent killing and while they depend on the level of the dosage, they peak
in effectiveness at a certain concentration and their effect is heavily depending on
time they are present in the bacteria. Thus, the aim for such drugs is to have as
long dosage time as possible. Other antibacterial drugs increase in effectiveness
relative to the drug dosage and do not peak in effectiveness. In this case, the aim
is to achieve the highest concentration possible instantly.

The different MIC models used include Pharmacokinetics/Pharmacodynamics In-
dices (PDI) [14][9] calculations like:

e {t:C(t) > MIC}, the time where the concentration of the antibacterial drug
is higher than the MIC.

e Chuar/MIC, the fraction between the highest concentration and the MIC.

e AUC/MIC, the fraction between the area under the dosage curve and the
MIC.

The other approach is to use time-kill curves. These models include the antibacte-
rial concentration as a function of time and are aiming to capture the full dynamics
of the bacterial populations. This approach is often more descriptive than the MIC-
based one since it gives details about the effect of the antibiotics over time.

In this project, a time-kill curve modeling approach is used together with MIC data
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for parameter fitting. The model describes the growth dynamics of eight bacterial
populations. The main population consists of wild type FE.coli while the other
seven populations are mutations of the wild type. The mutations are located in
the DNA gyrase (gyrA mutation), at two different sites, and in the Topoisomerase
IV (parC mutation), at one site, giving a total of eight possible strains. The mu-
tations affect the bacteria’s fitness, i.e. the bacteria’s potential to grow, as well as
reduces its susceptibility to antibacterial drugs. In every new generation, a wild
type E. coli can develop any of the three mutations, a bacteria with one mutation
can develop any of the two remaining ones and so forth.

A selective pressure will arise as a consequence of the fitnesses of the bacterial pop-
ulations and their susceptibility to the antibacterial drugs. The more antibiotics
that are added to the system, the greater the advantage will become to develop
resistance. Given that the dosage of antibiotics will not wipe out the entire popu-
lation, in the long run the wild type will be out-competed by mutations with lower
susceptibility to the drug.

2.1 Dynamical growth model

The growth dynamics of the bacterial populations are modeled by coupled ordinary
differential equations. The i:th bacterial population, N¢, follows a logistic growth
given by

dN(t)
dt

y NI(t
= kgF'N'(t) (1 — %) , fori=1,..8, (2.1)

with kg being the growth rate of the bacteria, F* the fitness of the i:th population
and N,,q. the carrying capacity of the system, i.e. the maximum number of bacteria
that the system can hold. Without treating the populations with antibacterial
drugs, the populations will be allowed to grow until they reach the maximum
carrying capacity. Once reached, the populations with highest fitness will out-
compete the other populations due to its higher growing ability.
When applying an antibacterial drug treatment to the system, the bacteria start
to die according to a three parameter Hill equation[18] given by
dN'(t) kmazC (t)

= 4 Ni(t), fori=1....8 2.2
dt ECZ50+C(t) ()7 Orl ) ) ( )

with C(t) being the concentration of the antibacterial drug at time ¢. k4, is the
maximal killing capacity of the drug and is attained when the drug concentration
tend to infinity. ECY, is the antibacterial concentration in which 50% of the max-
imal killing capacity is achieved.
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The k4, is considered to be drug specific and a measure of the drugs potency
while ECY, is bacterial specific and a measure of the resistance of the 4:th bacterial
population.

The full dynamics of the bacterial populations under a treatment of antibacterial
drugs is then given by adding the growth of equation 2.1 and the the killing of
equation 2.2

dN(t)

yr Nit), fori=1,..,8.

>N (t)> kmaaC'(t)

=koFPN'() [1-=L—~2 | - 22/
¢ <>< N ECL, + C(t)

(2.3)
Thus, all of the bacterial populations are modeled individually but their pro-
gresses are dependent on each other due to the carrying capacity of the system.

2.1.1 Mutations

In addition to the dynamics given by equation 2.3, the distribution of the bac-
terial populations can be altered in every new generation due to development of
mutations. If a mother cell lacks a certain mutation at a given site, the probabil-
ity that its daughter attains that mutation follows a Bernoulli distribution with
probability p. The mutation probability is considered to be fixed for all mutation
sites. By summing over all daughters with mothers that lack a certain mutation,
the amount which have attained that mutation in the next generation follows a
Binomially distribution . With a generation time of approximately 20 minutes for
E. coli [3], the mutation dynamics can be modeled by drawing a Binomial variable
every 20th minute, corresponding how many daughters can gain a specific muta-
tion.

If e.g. there are N wild type E. coli at generation g, the number of daughter cells
X that have developed a parC mutation in generation g + 1 is given by

X ~ Bin(N,p). (2.4)

Similarly, the number of daughter cells X is computed for gyrA1 and gyrA2 mu-
tations.
Given that N is large enough, we can approximate X as a normal random variable
with

X ~ N(Np,Np(1 - p)). (2.5)

The expected number of wild type bacteria that have developed e.g. a parC mu-
tation in the n first generation, Y, is then given by

Y = (N + ...+ Np (2.6)
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which is a sum over Normally distributed random variables and thus also Normally
distributed. One can construct a 95% confidence interval for the expected number
of bacteria that have developed a parC' mutation in the n first generations

Za/2 -

where z, /2 is the a-quantile of the standard normal distribution. Here @ = 0.05.

2.2 Data

Traditionally in pharmacodynamics, the MIC has been used as a guideline when
determining antibacterial drug dosages with the aim of having a Plasma drug con-
centration that exceeds the MIC for as long as possible[4]. Recently, more detailed
analyzes have been performed in order to get a better understanding of the dy-
namics of the drugs. The MIC is, however, often used since it is easily measurable
and as a consequence, there exist a lot of MIC data for different antibacterial drugs
and bacteria.

The MIC is by definition the antibacterial drug concentration in which the bac-
terial population grows and dies at the same rate. In terms of equation 2.3, for
population i and concentration C'(t) = MIC this will imply:

>, NI (t)> Ky MIC

— . N(t). 2.8
Nraz ECL, + MIC ®) (28)

kqF'N'(t) (1 —

If we assume that the MIC is measured in conditions far from a saturated system,
we would have that ,
=N

Nmax
and we can simplify the expression in equation 2.8 to

Formaz MIC
ECY, + MIC’

~

koF' = (2.9)

From equation 2.9 we can estimate resistances ECsq for different bacteria given a
certain drug and the MIC and fitness of the bacteria.

2.2.1 Ciprofloxacin - MIC and fitness

In this study MIC and fitness values of the eight bacterial types for the antibacte-
rial drug Ciprofloxcain, which is a type of fluoroquinolone, were used (table 2.1).

8
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Bacterial strains include wild type (MG1655) and 7 different mutated strains. For
example, strain LM378 have mutation S83L, meaning that the amino acid Serine
(S) at the 83rd protein position is mutated into a Leucine (L).

Table 2.1: Fitness and MIC of isogenic strains

Strain  gyrA1 gyrA2 parC MIC Fitness

MG1655 - - - 0.016 1.00
LM378 S83L - - 0.38 1.00
LMb534 - D87N - 0.25 0.99
LM792 - - S80I  0.016 0.99
LM625 S83L  D87TN - 0.38 0.97
LMS862 S83L - S80I 1 0.98
LM1124 - D87N S80I  0.38 1.00
LM693 S83L  D87N S80I 32 1.00

In the proposed model, the eight strains are divided into four populations
depending on their susceptibility to the ciproflaxin. As can be seen in table 2.1,
the LM792 strain shows the same susceptibility to the drug as MG1655, which
is the wild type FE. coli. These two strains make up the susceptible population.
LMb534 with a MIC of 0.25 and LM378, LM625 and LM1124, all with MIC of 0.38,
will be considered as the slightly resistant population. The LMS862 strain has a
lower susceptibility and is the resistant population. Finally, LM693 has acquired
mutations at all sites and makes up the heavily resistant population.

2.3 Simulations

All simulations were carried out in MATLAB [19]. The system of coupled ordinary
differential equations were solved using the ode4) solver.



Results

HE following chapter contains the main results of this Master’s thesis.

The result part will focus on the response in the dynamical model under

different dosage strategies and levels of the antibacterial drug. Three

dosage regimens will be presented and used under three different dosage

levels. Finally, a sensitivity analysis will be performed on key parameters of the
model.

3.1 Parameter space

The data in table 2.1 was used to fit the parameters of the dynamical model.
However, from equation 2.9, there are three unknowns for each data point (a data
point consists of a MIC and fitness value). To reduce the parameter space to
one unknown parameter per data point, assumptions were made on the parameter
values of the growth rate kg and the maximal killing capacity of the drug k,,q..
The growth rate kg of the bacterial populations is considered to be constant over
time and independent of the antibacterial drug concentration. Bhagunde et. al
have fitted the growth rate for E. coli in a similar growth model to kg = 0.89 [17]
and this is the value that will be used. The range of values for k,,,, was calibrated
in the model such that the dynamics resemble real bacterial populations. The data
was from the antibacterial drug ciprofloxacin and the k,,., for this drug was set
to 1.5.

With these assumptions, one can fit bacterial resistances in terms of ECsq for all
bacteria by using their MIC as following:

10
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ke MIC
koF' = —me—— (3.1)
ECL, + MIC
e MIC — kg FIMI
BCE, = € = hFTMIC (3.2)
kG Fi

for the 7:th bacterial population.
All parameter of the dynamical model given by equation 2.3 are presented in table

3.1 with the range of values that they attain.

Parameter | Description Values Units Assumption
ke Growth rate of | 0.89 cfu/h Same for all bacteria
bacteria and all antibacterial
dosages.
Emaz Maximal kil | [1,2] h™t Drug specific.
rate
ECso 50% of maximal | [0.0110,21.9326]| mg/L Bacterial specific.
kill rate concen- Measurement of the
tration bacteria’s  resistance
of an antibacterial
drug.  Values fitted
from MIC data.

F Bacterial fitness | [0.97, 1] Dimensionless | Bacterial specific.
The wild type has the
highest fitness and
a mutation can not
increase fitness.

MIC Minimum  in- | [0.016,32] mg/L

hibitory concen-
tration
Nz Carrying capac- | 10 cfu
ity of system
p Mutation rate [2:107192:1079] | site / genera-

tion

Table 3.1: Parameter values of the dynamical model.

11
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3.2 Dosage strategy

When setting up a treatment strategy for an antibacterial agent, the desired result
is the killing of all bacteria and the prevention of any regrowth. In this sense a
good strategy would be to simply treat with a very high dosage of antibiotics in
a short time period killing the bacteria as fast as possible. However, severe side-
effects can occur as a response to high dosage. Also, from an economical point of
view, it is undesired to use an abundant amount of antibiotics. Thus, the key is
to find a balance between these two criteria, i.e. killing all of bacteria should be
achieved by lowest possible drug concentration at the shortest possible time.

The dynamic of the system is modeled for different dosage regimens with the aim to
find an optimal dosage strategy. The strategies are then compared in their ability
to whip out the bacterial populations under the constraint that the AUC, i.e.
the area under the concentration curve, is the same for the different drug dosage
regimens. Optimally, one want to avoid any development of resistant bacteria.
Once a colony of resistant bacteria has emerged, the antibacterial dosage needed
to kill the populations is substantially increased. The response to the antibiotics, in
terms of kill rate, for the different populations are given in figure 3.1 as a function
of the antibacterial drug concentration. As a reference, the growth rate of the wild
type is added. Once the kill rate is above this level, for a certain population, the
population will die out over time.

15

Kill rate

Suceptible

Slightly resistant
Resistant

Heavily resistant
Growth rate of wild type

0.5

_ )
0 05 1 15 2
Drug concentration (mg/L)

Figure 3.1: Response to the antibiotics. Kill rate for the different bacterial popu-
lations (y-axis) as a function of the antibacterial drug concentration (x-axis).

The kill rates for the different populations will cross the growth rate line at the
given population’s MIC. For the slightly resistant bacteria, MIC values are 0.25
and 0.38 mg/L respectively, for the subpopulations. This implies that as long as
the antibacterial concentration is above 0.38 mg/L the slightly resistant bacteria
will not grow and are kept at a controllable level.

12
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The developed model was simulated for three different dosage strategies: (a) Con-
stant antibacterial drug concentration (figure 3.2a), (b) linear decrease of con-
centration from a high initial concentration (figure 3.2b) and (c) pulses with an
exponential decay (figure 3.2c).

(mg/L)
(mglt)

oncentration (mg/L)

05 075
o 10 20 30 20 50 60 70 0 10 20 30 40 50 60 70 [ 10 20 30 40 50 60 70
Time (h) Time (h) Time (h)

(a) Constant concentration (b) Linear decrease (c) Exponential decay

Figure 3.2: Drug dosage strategies. Time(h) on x-axes and antibacterial drug
concentration (mg/L) on y-axes for (a) constant (b) linear and (c) exponentially
decreasing drug intake.

The constant and linear strategies can be viewed as a drug treatment via intra-
venous drip, where this could be the concentration profile in the blood stream. The
exponential profile tries to mimic the absorption profile when taking antibiotics in
the form of pills.

13
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3.3 Simulations

The setup for the modeling of the dosage strategies consists of an initial population
of 10'° wild type E. coli and no mutated strains. Mutations occur at a rate of
2-1078 per site and generation. The simulations cover a time period of 300 hours.

-
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Time (h) Time (h)
(a) Population dynamics (b) Population proportions
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g7 S 5000
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= £ 4000
Z s 2
] 8
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E
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A /
1000 j
1h :
o ‘ ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘ ‘
) 50 100 150 200 250 300 0 50 100 150 200 250 300
Time (h) Time ()
(c) Total population (d) Mutation dynamics

Figure 3.3: Dynamics under constant antibiotic treatment. An example of how
the simulations are illustrated. The subpopulations are represented with black, blue,
green and red lines in (a), (b) and (d) for susceptible, slightly resistant, resistant
and heavily resistant bacteria respectively. Time (h) on x-axes and on y-axis in (a)
and (c) is the log;q of the population numbers, on y-axis in (b) is the proportions
of the different subpopulations and in (d) is the number of mutated bacteria.

To illustrate the dynamics of the system under antibacterial treatment, four
different types of simulations are performed (example in figure 3.3). (a) popula-
tion dynamics (figure 3.3a), illustrates the emergence of different populations over

14
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time, (b) population proportions (figure 3.3b), depicts the proportions of the to-
tal population that different population constitutes, (c) total population, (figure
3.3c) illustrates the total population number over time and (d) mutation dynam-
ics, (figure 3.3d) shows the development of mutations over time along with a 95%
confidence interval of the mutation numbers.

3.3.1 Constant concentration

The constant concentration profile (figure 3.2a) is used at three different drug
dosage levels: AUC = 75, corresponding to a constant drug concentration of 0.25
mg/l, AUC = 100, corresponding to 0.33 mg/1 and AUC = 125, corresponding to
0.42 mg/l. The effect on the system of bacteria can be seen in figures 3.4 and 3.5.
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Time () Time () Time (h)
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6000 6000 6000
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f
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(d) Mutation dynamics (e) Mutation dynamics (f) Mutation dynamics

Figure 3.4: System response to treatment with constant antibacterial concentra-
tion. In (a) and (d) the AUC = 75, in (b) and (e) the AUC = 100 and in (c) and
(f) the AUC = 125. Susceptible, slightly resistant, resistant and heavily resistant
bacteria are given by black, blue, green and red lines respectively.

As can be seen in figure 3.4, an AUC = 75 or AUC = 100 is not high enough
to kill the bacteria while an AUC = 125 successfully kills all of the bacteria in
approximately 175 hours. Heavily resistant bacteria are developed after approxi-
mately 80 hours for AUC = 75 and after approximately 210 hours for AUC = 100.
The curves of the susceptible, resistant and heavily resistant bacteria is very sim-
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3.3. SIMULATIONS

ilar when comparing figures 3.4a and 3.4b. The development of the resistant and
heavily resistant bacteria is only occurring in a later stage of the treatment for
AUC = 100. For AUC = 75 and AUC = 100, the slightly resistant and resis-
tant bacteria are growing faster than they are being killed by the drug. However,
they are out-competed when the heavily resistant bacteria are developed and are
thereby eradicated from the system. In general, all dosages have quite similar ef-
fect on all but the slightly resistant bacteria.

When it comes to the mutation dynamics, the number of susceptible bacteria that
develop slight resistance is approximately the same for all dosage levels. The
slightly resistant and resistant bacteria develop more resistance for AUC = 75
than for AUC = 100 and for the AUC = 125 no slightly resistant bacteria develop
resistance.

150 200 250 300 0 50 100 150 200 250 300 0 50 100 150
Time (h) Time (h) Time (h)

(a) Population propor- (b) Population propor- (c) Population propor-
tions tions tions

10g,, NQ) (cturml)
1,0 N (ctuimi)
10N (ctuimi)

150 200 250 300 0 50 100 150 200 250 300 0 50 100 150
Time (h) Time (h) Time (h)

(d) Total population (e) Total population (f) Total population

Figure 3.5: System response to treatment with constant antibacterial concentra-
tion. In (a) and (d) the AUC = 75, in (b) and (e) the AUC = 100 and in (c) and
(f) the AUC = 125. Susceptible, slightly resistant, resistant and heavily resistant
bacteria are given by black, blue, green and red lines respectively.

In figure 3.5, the proportions of the populations as well as the total population
are depicted. For a dosage level of AUC = 75 the system is saturated after approx-
imately 100 hours (figure 3.5d) while for the AUC = 100 the system is saturated
after approximately 200 hours. The AUC = 100 never led to a saturated system
but is always declining until all bacteria are dead as can be seen in figure 3.5f.
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3.3. SIMULATIONS

From the proportion figures 3.5a, 3.5b and 3.5¢ can be seen that the subpopula-
tions have different time periods when they dominate the system. For a dosage
level of AUC = 75 and AUC = 100 the slightly resistant bacteria constitute the
majority of the system until the resistant bacteria are developed and the system
gets saturated (figures 3.5a, 3.5b, 3.5d and 3.5e).

3.3.2 Linear concentration

As for the treatment with constant concentration, the linearly decreasing concen-
tration (figure 3.2b) simulations are performed with AUC = 75, corresponding to
an initial concentration of 0.5 mg/l that is dropping to 0 after 300 hours, AUC =
100, corresponding to an initial concentration of 0.66 mg/l and AUC = 125, corre-
sponding to an initial concentration of 0.83. The dynamics can be seen in figures
3.6 and 3.7.

log,, NQ)(ctulm)
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Figure 3.6: System response to treatment with linearly decreasing antibacterial
concentration. In (a) and (d) the AUC = 75, in (b) and (e) the AUC = 100 and
in (c) and (f) the AUC = 125. Susceptible, slightly resistant, resistant and heavily
resistant bacteria are given by black, blue, green and red lines respectively.

The linearly decreasing treatment kills all bacteria after approximately 40 hours
for AUC = 100 and AUC = 125 as can be seen in figure 3.6b and 3.6c. An AUC =
75 is not enough to kill the bacteria (figure 3.6a). Figure 3.6a shows that resistant
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3.3. SIMULATIONS

bacteria is developed after approximately 180 hours and after approximately 210
hours the heavily resistant bacteria emerges.

When it comes to mutation dynamics, the number of susceptible bacteria that
develop slight resistant is almost the same for the different drug dosage levels
(figures 3.6d, 3.6e and 3.6f). However, for an AUC = 75 there is also immense
development of resistant and heavily resistant bacteria, figure 3.6d.
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Time (n) Time (n) Time (h)
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tions tions tions
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log, N(O (cfurmi)
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Time () Time () Time (h)
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Figure 3.7: System response to treatment with linearly decreasing antibacterial

concentration. In (a) and (d) the AUC = 75, in (b) and (e) the AUC = 100 and
in (c) and (f) the AUC = 125. Susceptible, slightly resistant, resistant and heavily
resistant bacteria are given by black, blue, green and red lines respectively.

Even though the AUC = 75 dosage level does not kill the entire bacterial
population, the total population is very low (in the order of 10) within the time
period of 50 and 100 hours, as can be seen in figure 3.7d. After approximately 200
hours the system with AUC = 75 is saturated. It is around that time period that
system stops being dominated by the slightly resistant bacteria and bacteria with
more resistance takes over (figure 3.7a).
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3.3. SIMULATIONS

3.3.3 Exponential decay

This treatment consists of injections every 8 hour (figure 3.2c). The concentration
follows an exponentially decaying profile given by

C(t) = Crawe™ (3.3)
T =tmod 8 (3.4)

where C),4, i the maximum concentration that is attained just after an injection,
A is the decay constant and 7 is the elapsed time since the last injection. The
decay constant is related to the half-time ¢,/ of the exponential decay as

In2

Nikolaou and colleges fitted an exponential decaying profile to data of Levofloxacin
pharmacokinetics [17]. The best-fit value of the half-time was then 5.8 hours and
this values is used in the simulations of exponentially decaying antibacterial con-
centrations. Cl,,, is chosen to give one treatment with AUC = 75 (corresponding
t0 Chuaz = 0.39 mg/1), one with AUC = 100 (corresponding to C),ar = 0.52 mg/1)
and one with AUC = 125 (corresponding to Cyue. = 0.65 mg/1). The effect on the
bacterial systems can be seen in figures 3.8 and B.6.
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3.3. SIMULATIONS
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Figure 3.8: System response to treatment with exponentially decaying antibacterial
concentration. In (a) and (d) the AUC = 75, in (b) and (e) the AUC = 100 and
in (c) and (f) the AUC = 125. Susceptible, slightly resistant, resistant and heavily
resistant bacteria are given by black, blue, green and red lines respectively.

The dosage levels of AUC = 75 and AUC = 100 are not killing the total
bacterial population and heavily resistant bacteria are developed in both cases
after approximately 80 and 160 hours respectively (figure 3.8a and 3.8b). For a
dosage level of AUC = 125 the system is dying as can be seen in figure 3.8c.
However, not on a 300 hours period, some slightly resistant bacteria are still alive
at the end of the treatment. The population dynamics are similar when comparing
the two lowest dosages with a shifting of the AUC = 100 in time in comparison
to the AUC = 75. All but the susceptible bacteria grow faster than they die for
these two dosage levels. However, with the arising of more resistant bacteria, a
selection pressure is caused and eventually all but the heavily resistant bacteria

are out-competed.
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3.4. SENSITIVITY ANALYSIS

As with the constant and linear dosage strategies, the mutation dynamics of the
susceptible bacteria does not change significantly between different dosage levels.
The slightly resistant and resistant bacteria develop more resistance for AUC = 75
than for AUC = 100 and does not develop for AUC = 125.
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Figure 3.9: System response to treatment with exponentially decaying antibacterial
concentration. In (a) and (d) the AUC = 75, in (b) and (e) the AUC = 100 and
in (c) and (f) the AUC = 125. Susceptible, slightly resistant, resistant and heavily
resistant bacteria are given by black, blue, green and red lines respectively.

As for the constant treatment (figure 3.5) the system gets saturated when the
resistant bacteria takes over and dominates the system, depicted by figure 3.9a,
3.9d and 3.9b, 3.9e.

3.4 Sensitivity analysis

When dealing with any mathematical model, sensitivity analysis is a vital tool in
determining the robustness and structural weaknesses of the model. Sensitivity
analysis can be divided into two classes, analysis concerning qualitative factors of
the model and those concerning quantitative factors [20]. The focus here will be
put on the quantitative factors which include e.g. perturbations in input variables
and uncertainty in the model parameters. Uncertainty for the maximum killing
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3.4. SENSITIVITY ANALYSIS

capacity k.. and the mutation rate p was investigated using local methods, i.e.
by keeping one of the parameter fixed while varying the other, in contrast to global
methods in which all parameters are allowed to vary at the same time.

K (1) 7 o
(a) System dependency of (b) System dependency of p

kmaaﬁ

Figure 3.10: Sensitivity analysis. The threshold drug concentration (y-axes)
needed to avoid heavily resistant bacteria in the long run for (a) different maxi-
mal kill rates (x-axis) (b) different mutation rates (x-axis).

In figure 3.10a the threshold constant concentration needed to avoid resistant
bacteria in the long run, i.e. under a time period of 1000 hours for different values
of kpaz. Here the mutation rate is kept at a fixed level of p = 2- 1078, In figure
3.10b the k.4, is kept at a fixed level of 1.5 while the mutation rate is varying.
Determination of MIC often involves a 2-fold-dilution concentration series [4]. This
means that starting with an initial sample with a certain amount of antibiotic
drugs, the next sample will have a reduced concentration by a factor of two and
the next after that a further reduction by an order of two and so on. The lowest
concentration in the series that inhibits growth is then defined as the MIC. This
method has an inherent level of uncertainty but its is practical and simple method
of getting close to the real value [15]. If we let the Cy be the initial concentration
and C}, be the k:th concentration then

Co =20, =4Cy = ... = 2"C}, = ... (3.6)

Thus, the potential error in the estimations of the MIC grows with the sample size
by an order of 2. Assuming that the actual MIC is random number, the expected
inherent error Fj, for a drug with MIC = Cj}, is given by

_ G =G

Ey 5

= Cp(2F1 — 2k, (3.7)
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Discussion

N this Master’s thesis, a dynamical model of bacterial growth by Bhagunde P.
et al. has been modified in order to catch population behavior under selection
pressure of antibiotic resistance. Parameters of the model has been fitted by
MIC and fitness data of the antibacterial drug ciprofloxacin. In order to

investigate the dynamics of the system and to find an optimal antibacterial dosage
strategy, the effects of three different dosage regimens have been analyzed. Finally,
the sensitivity of the model was analyzed in order to identify the robustness of the
parameters.

4.1 Features of the dynamical model

The model developed within this thesis incorporate both population dynamics of
bacteria as well as genomics, in terms of mutation dynamics. This is a special
model feature which there has been a lack of in the current field.

The population dynamics are described by ordinary differential equations (equa-
tion 2.3) where the bacteria follow a logistic growth and are killed according to
a Hill equation once an antibacterial drug is added to the system. Mutations
dynamics are incorporated as a stochastic factor that modifies the population dis-
tributions at every new generation (described in section 2.1.1).

The data used was obtained from a Etest (AB BIODISK, Solna, Sweden) [12] and
the model relies heavily on the conditions at which this data was generated. Gen-
erally, small changes in conditions may alter the results of biological experiments
substantially.

The saturation term in equation 2.3 enables selection in the system. Once the
system reach a saturated state, the bacterial strain that most efficiently handles
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4.2. LACK OF PRECISION IN MIC

the antibacterial treatment will out-compete the other bacterial strains. This is
shown in the proportion figures of all treatments where the antibiotic level is not
enough to kill the system. Once the resistant bacteria start to develop, the slightly
resistant bacteria will be out-competed and the system will be dominated by the
resistant bacteria. This state is kept until heavily resistant bacteria develops.

4.2 Lack of precision in MIC

The MIC is defined as “the lowest concentration that completely inhibits wvisible
growth of the organism as detected by the unaided eye after a 18- to 24-h incubation
period with a standard inoculum of approzimately 10° cfu/mi” [14]. The definition
contains imprecise elements like detectability by “the unaided eye” and a time
period of ”18-h to 24-h”. As a consequence, different MICs from different labs or
experiments can show essential variations. In the model used, the MIC plays an
important role in parameter estimation (equation 3.1).

As mentioned in section 3.4, when measuring the MIC one often use a 2-fold
dilution series. The error level of this method can potentially be very big and
thereby influencing the treatment strategy substantially. In this model, the MIC
of the slightly resistant bacteria acts as threshold for what is a successful dosage
level. Since the initial population of wild type E. coli is large in comparison to
the mutation rate, slightly resistant bacteria will most likely develop at an early
stage of the treatment. If the level of antibiotic drug is higher than the MIC
of the slightly resistant bacteria, these bacteria will be destined to die and thus
preventing further development into resistant bacteria. Thus, it is crucial to have
an antibacterial drug concentration above the MIC of the slightly resistant bacteria
to get a good treatment. Therefor the MIC of the slightly resistant bacteria need
to be well-measured.

4.3 Robustness of parameters

When simulating the population dynamics, assumptions where made on the two
unspecified parameters k,,,, and the mutation rate p. In the sensitivity analysis
in section 3.4, local methods was used to simulate the long-time behavior of the
system in order to identify critical antibacterial dosage levels to avoid development
of heavily resistant bacteria. When keeping the k,,,, fixed and varying the mu-
tation rate p, the necessary antibacterial drug concentration needed exhibit small
fluctuations for the different mutation rates (figure 3.10b). Thus, with respect to
the long-time behavior, the system is very robust to fluctuations in the mutation
rate. As long as the concentration is above the MIC of the slightly resistant bacte-
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4.4. SIMILARITIES BETWEEN STRATEGIES

ria, they will die and a very high mutation rate will be needed in order to develop
resistance with significant probability. As a consequence of this, the model is not
dependent on well-measured mutation rates to capture the dynamics of bacterial
population.

On the other hand, the k,,,, has naturally big influence of the system behavior
(figure 3.10a). This is due to the central role the k., plays in the killing of bacte-
ria given by equation 2.2. The k,,,, decides what response a certain antibacterial
drug concentration has on the system.

4.4 Similarities between strategies

The exponential and constant strategy shows very similar behavior when it comes
to the dynamics, as can be seen in figure 3.4 and 3.8. The constant strategy is more
efficient as resistance is developed at a later stage of the treatment for AUC = 100
(figure 3.4b) and all bacteria are killed during the treatment for AUC = 125 (figure
3.4c) in contrary to the exponential treatments (figure 3.8b and 3.8¢).

This shows that the simulated drug has a time dependent killing profile, i.e. as long
as we have a dosage level that is sufficient to kill the bacteria, an increase does not
yield a substantially higher kill rate. However, as the exponential decaying profile
fluctuates and gets under the MIC of the slightly resistant bacteria, this effect the
killing.

Even though the two dosage strategies show similar behavior, the exponential
strategy suffers more in efficiency when it comes to its valleys in the drug profile
than it gains from its peaks.

Due to the similarities in dynamics between the two strategies, either one may be
used depending on e.g. economical advantages. If a patient can take dosages by
him or herself in the form of pills (corresponding to exponential dosage profile),
this may be cheaper than having the patient hospitalized and on intravenous drip
(corresponding to the constant dosage profile).

4.5 What is a good strategy?

In the simulation section 3.3 the constant, linearly decreasing and exponentially
decaying dosage profiles are tested for three dosage levels, AUC = 75, AUC =
100 and AUC = 125. The population dynamic results suggest that the linear
decreasing dosage strategy is the most efficient one. As stated in the beginning
of this thesis, the goal is to kill all of the bacteria with the lowest possible drug
concentration at the shortest possible time. A key here is to kill the slightly
resistant bacteria at an early stage of the treatment, before more resistant bacteria
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are develops. To achieve this, a dosage level higher than the MIC of the slightly
resistant bacteria is needed. And indeed, this is the case for all linearly decreasing
profiles. However, with AUC = 75 the level drops under the MIC before the
bacteria are killed. But with AUC = 100 and more, all bacteria are killed with the
linear strategy while an AUC = 125 is needed for the constant and exponential
strategies.

According to the mathematical model, the best strategy is to have as high dosage as
possible instantaneously to kill the slightly resistant bacteria before more resistance
is developed. However, when dealing with real patients, other aspects need to be
considered like the toxicity of the drug. A to high dosage may e.g. harm the liver
of the patient and kill out other essential bacteria.

4.6 Shortcomings of the model

”As with all models, they are wrong but can still be helpful!” [16] A model can
hardly ever capture the full dynamics of a real-life problem due to the immense
complexity level of dynamical systems. However, a certain amount of features of
the real life problem need to be included to make a model with predictive capa-
bility. This is all a matter of balance between the complexity and the explanatory
capability of the model.

In this thesis, several simplifications of the real life problem has been made in order
to start with a reasonably simple model:

e The growth conditions are assumed to be constant over time meaning a
system with ab libitum access to nutritions. A more realistic case may be to
have a growth that is varying over time according to some stochastic process.

e The mutation dynamics were modeled as discrete steps that occurred with
a certain probability in every new generation. These mutations could then
yield a lower susceptibility to the antibacterial drug. In reality, arise of
mutations in the populations are more complex and there can be other factors
leading to resistance beside mutations [6].

The parameter setting of the model is heavily dependent on reliable data. In order
to understand the predictability of the model, experimental data is needed where
growth dynamics could be compared to that of the model.

A future aspect could be to incorporate pharmacodynamics and pharmacokinetics
in the model. E.g, information of individual patients can in some way be included
to construct a more patient based modeling profile.
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4.7 Conclusions

In this Master’s thesis, a mathematical model incorporating population dynam-
ics and mutation genomics have been developed in order to investigate bacterial
behavior under antibiotic treatment. This represents a first step in accurately de-
scribing the dynamics of the populations, thus predicting development of heavily
resistant bacteria, and suggesting a good antibacterial dosage strategy.

The MIC describes the susceptibility of each strain to the antibacterial drug and is
fundamental to the model. Slightly resistant bacteria will develop instantaneously
and the key is to keep an antibacterial concentration higher than the MIC of these
bacteria. In this sense, the linearly decreasing dosage strategy is the most efficient
one used since it starts with a high dosage level and thus enables killing of the
slightly resistant bacteria before less susceptible bacteria is developed. Because of
the strong dependency of the measured MIC, the model is highly influenced by
the experimental conditions in which the MIC was measured.

To further evaluate the model, more experimental data is needed where population
dynamics can be compared to that of the model.
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Code

Here follows the MATLAB code that was used in this Master’s thesis:

Ymain file
close all

%load data

load datalb.mat
data = datalb;
data(:,3) = 1.5;

%time span

T = 300;

t = 0;

%initial condition

initial = zeros(size(data,l),1);

initial(1l) = 10710;
Y%matrices for output data
tout = [];

pout = [];

%set the generationtime
genTime = 1/3;

%choose dosage strategy. dosage has three parameters for exponential strategy two for
%linear and one for constant

%exp — [half time, dosage time, maximum dose (c_max)]
%lin — [k, m]

Y%const — C

strategy = ’constant ’;

dosage = 1/3;

%flow of muations

numberMut = zeros (8,1);
expectedMut = zeros(8,1);
varianceMut = zeros(8,1);

%only call on mutation function if population size is greater than the
%threshold
mutationThres = 1074;
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%index to store muation data

index = 1;
while t < T
timeSpan = [t t+genTime];
[time population] = ode45(@(t,N) odesys(t,N,strategy,dosage,data),timeSpan,initial);

timePoints = length(time);

Y%temporary population and temporary statistics from mutations
tempPop = zeros (8,2);

tempTheta = zeros (8,2);

Y%mutations

for i = 1l:size(population,2)
if population(timePoints,i) > mutationThres
[num theta] = mutation(population(timePoints,i),i);

tempPop = tempPop + num;
tempTheta = tempTheta + theta;
end
end

Y%store mutation data

if index "= 1
numberMut (:,index) = numberMut (:,index—1) + tempPop (:,2);
expectedMut (:,index) = expectedMut (:,index—1) + tempTheta(:,1);
varianceMut (:,index) = varianceMut (:,index—1) + tempTheta (:,2)

else
numberMut (:,index) = tempPop (:,2);
expectedMut (:,index) = tempTheta(:,1);
varianceMut (:,index) = tempTheta (:,2);
end

Jmodify population according to mutatiomns
population(timePoints ,:) = population(timePoints,:) + tempPop(:,1)’;

Y%store the data
tout = [tout; time(2:timePoints)];
pout = [pout; population(2:timePoints ,:)];

Jset new initial conditions for next generation
initial = population(timePoints ,:);
%if two low, population is considered dead
for k = 1l:size(population,2)

if initial(k) < 1

initial(k) = 0;

end

end

%go to the next generation span
t =t + genTime;

index = index + 1;
end

pout = abs(pout);
%area under curve
AUC(strategy, dosage,T)

Y%population numbers in different time points
pop96 = pout(find(tout>=96,1),:);

popl68 = pout(find(tout>=168,1),:);

pop300 = pout(end,:);

%plot the data
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plotData2(tout,pout,strategy,dosage,data,numberMut,expectedMut,varianceMut,T);

function dNdt = odesys(t,N,strategy,bdosage,hdata)
%initialising
dNdt = zeros(length(N),1);

fitness = data(:,2);
K_max = data(:,3);
EC50 = data (:,4);

Y%coupled system of ODEs
for i = 1:size(N,1)
dNdt (i) = growthrate(t,N,fitness(i),i) — killrate(t,N,K_max(i),...
strategy ,EC50(i),dosage,i);
end

%growth rate of population, biofitness is considered to be constant between
%wild types and mutations
function growth = growthrate(t,N,fitness, target)

Y%growth rate constant, maximum population size
Kg = 0.89;
Nmax = 1%x10710;

%this is wrong, it should be sum(N)
growth = Kg % fitness % (1 — sum(N)/Nmax)*N(target);

%kill rate of bacterial population
function kill = killrate(t,N,K_k,strategy,EC50,dosage,target)

%dosage strategy
switch strategy
case ’constant’
C = dosage;
case ’pulse’
C = pulseConcentration(t,dosage);
case ’linear’
C = linConcentration(t,dosage);
case ’exponential’
C = expConcentration(t,dosage);
end

%sigmoidicity constant
H=1;
Ymaximal kill rate, concentration to achieve 50% of maximal kill rate

kill = C"H * K_k/(C"HH+EC50 "H)xN(target);

function [out theta] = mutation(N,target)

Y%output — first column represent population balance. second column
%represent the cumulative mutation of the subpopulation

out = zeros(8,2);

%theta is the statistics, theta(l) = mu and theta(2) = sigma’2 of the

%normally distributed increments of the mutations
theta = zeros(8,2);

Ymutation rate, 10°—8 but scaled to make code faster
Ymutation factor

M= 1;

Y%mutation rate

rate = Mx2x10"(—4);

N=N/ 10"4;
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Ymutations. (
%(5 —> 8) (6
if target —
out (2,1)
out (3,1)
out (4,1)
out (1,1)
out (1,2)
theta (1,1
theta (1,2
elseif target
out (5,1)
out (6,1)
out (2,1)
out (2,2)
theta (2,1
theta (2,2
elseif target
out (5,1)
out (7,1)
out (3,1)
out (3,2)
theta (3,1
theta (3,2
elseif target
out (6,1)
out (7,1)
out (4,1)
out (4,2)
theta (4,1
theta (4,2
elseif target
out (8,1)
out (5,1)
out (5,2)
theta (5,1
theta (5,2
elseif target
out (8,1)
out (6,1)
out (6,2)
theta (6,1
theta (6,2
elseif target
out (8,1)
out (7,1)
out (7,2)
theta (7,1
theta (7,2
end

function out

1 —> 2,3,4) (2 —> 5,6)

— 8) (7 — 8)

1

= mutReturn(N,rate);

= mutReturn(N,rate);

= mutReturn(N,rate);

= out(1,1) — out(2,1) —
out (2,1) + out(3,1) +

,1) = 3xNxrate;
)

= 3xN*ratex(l—rate);
= 2
= mutReturn(N,rate);
= mutReturn(N,rate);
= out(2,1) — out(5,1) —
out (5,1) + out(6,1);

,1) = 2xNxrate;
)

= 2x«N*ratex(l—rate);
== 3
= mutReturn(N,rate);
= mutReturn(N,rate);
= out(3,1) — out(5,1) —
out (5,1) + out(7,1);

,1) = 2xNxrate;
)

= 2xN*ratex(l—rate);
— 4
= mutReturn(N,rate);
= mutReturn(N,rate);
= out(4,1) — out(6,1) —
out (6,1) + out(7,1);

,1) = 2xNxrate;
)

= 2xN*ratex(l—rate);
== 5
= mutReturn(N,rate);
= out(5,1) — out(8,1);
out (8,1);

,1) = Nxrate;
)

= Nxratex(l—rate);
= 6
= mutReturn(N,rate);
out (6,1) — out(8,1);
out (8,1);

,1) = Nxrate;
)

= Nxratex(l—rate);
=T
= mutReturn(N,rate);
= out(7,1) — out(8,1);
= out (8,1);
) = Nxrate;
) = Nkratex(l—rate);

= mutReturn(N,rate)

out = ceil(binornd(round(N),rate));

if isnan(out)
out = 0;
end

(3 = 5,7) (4 —> 6,7)

out (3,1) — out(4,1);

out (4,1);

out (6,1);

out (7,1);

out (7,1);

%concentration shows a linear behavior
function con = linConcentration(t,dosage)
%first input is the corresponding constant concentration
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%second input is —1 for decreasing and 1 for increasing concentration

k = 2xdosage(l)*xdosage(2)/300;
if dosage(2) — 1
m = 0;
else
m = dosage (1)x*2;
end

%concentration
con = k*xt 4+ m;
if con <= 0

con = 0;
end

%concentration shows an exponential decrease
function con = expConcentration(t,dosage)
%half time, maximum concentration at injection, time between doses
tHalf = dosage (1);

doseTime = dosage (2);

cMax = dosage (3);

%frequency, time since last dose

lambda = log(2)/tHalf;

elapsedDose = mod(t,doseTime);
Y%concentration

con = cMax*exp(—lambdaxelapsedDose);

function out = plotData2(tout,pout,strategy,bdosage,data,numberMut,6 expectedMut ,varianceMut ,T)
figure ()

wt = pout(:,1) + pout(:,4);

resl = pout(:,2) + pout(:,3) +
pout (:,5) + pout(:,7);

res2 = pout 6);

res3 = pout 8);

plot (tout,loglO(wt),’k—’',tout,loglO(resl)...
,’b—",tout ,logl0(res2),’g—’',tout,logl0(res3),’ ' r—")

legend (’Susceptible’,’Slightly resistant’, Resistant’, ’Heavily resistant’,...

’Location’,’Best’)
%legend (’Susceptible’
ylim([0,11])
x1lim ([0 ,max(tout)]);
ylabel(’log_{10} N(t)(cfu/ml)’); xlabel(’Time (h)’)

)
)
)

(
(

,’Slightly resistant’,’Location’,’Best’)

%total population

figure ()

plot (tout,loglO(wt+resltres2tres3d))

ylabel(’log_{10} N(t) (cfu/ml)’); xlabel(’Time (h)’)
yiin([0,11])

x1lim ([0 ,max(tout)]);

Y%information of simulation
YmutSum = sum(mut,1l);
%removed data of mutations, data instead showed in plot

YmutText = [’Mutations: ’,num2str (mutSum(l)4mutSum(4)),’ ’,num2str(mutSum(2:7))),’ ’,num2str(mut(8)
%k_max = [’K_{max} = ’,num2str(data(1,3))];
%AUC = [’AUC = ’,num2str (AUC)];

%str = {k_max,AUC};
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%ann = annotation(’textbox’, [0.63 0.6 0.1 0.1], ’String’,
%set (ann, ’BackgroundColor ’,[1 1 1])
%fraction plot
figure ()
tot = wt 4+ resl 4 res2 + res3;
plot (tout ,wt./tot, ’k—’,tout ,resl./tot...
,’b—",tout ,res2./tot, g—’, tout, res3./tot,’r—")

)

%legend (’Susceptible
%  ’Location’, ’NorthOutside’)
ylim ([0 ,1.1])

x1lim ([0 ,max (tout)]);

ylabel (’Population proportions’); xlabel(’Time (h)’)

Y%mutation plot

figure ()

wtmut = numberMut (1,:) + numberMut (4 ,:);
wtexp expectedMut (1,:) + expectedMut (4 ,:);
wtvar = varianceMut (1,:) + varianceMut (4,:);

resmutl = numberMut (2,:) + numberMut (3,:) +
numberMut (5,:) + numberMut (7 ,:);

resexpl = expectedMut (2,:) + expectedMut (3,:) +
expectedMut (5,:) + expectedMut (7 ,:);

resvarl = varianceMut (2,:) + varianceMut (3,:) +
varianceMut (5,:) + varianceMut (7 ,:);

resmut2 = numberMut (6 ,:);
resexp2 = expectedMut (6 ,:);
resvar2 = varianceMut (6 ,:);

%resmut3 = mut (8 ,:);
gen = linspace(l,round(T),round(T*3));

hold on

plot (gen,wtmut, ’k—’,gen,resmutl ,...
’b—’,gen ,resmut2,’g—",...
gen ,wtexp, 'k:’ ,gen,resexpl ,...
’b:’,gen,resexp2,’g:’)

ciplot(—2*sqrt(wtvar)4wtexp,2*sqrt(wtvar)+wtexp,gen,’k’)

alpha(0.1)

str);

,’8lightly resistant’,’Heavily resistant’,...

ciplot(—2+sqrt(resvar2)tresexp2,2+sqrt(resvar2)tresexp2,gen,’'g’)

alpha(0.1)

ciplot(—2+sqrt(resvarl)tresexpl,2*sqrt(resvarl)tresexpl, gen)

alpha (0.1)
hold off

x1im ([0 max(gen)])
ylim ([0 8000])

xlabel (’Time (h)’); ylabel(’Number of mutations’)

Y%concentration plot
figure ()
switch strategy
case ’constant’
C = @(t) dosage;
fplot(C, [0 T])
case ’exponential’
C = @(t) expConcentration(t,dosage);
fplot(C, [0 T])
case ’linear’
C = @(t) linConcentration(t,dosage);
fplot(C, [0 T])
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case ’pulse’

C = @(t) pulseConcentration(t,dosage);
fplot(C, [0 T])

end

x1lim ([0 max(tout)])

xlabel (’Time (h)’), ylabel(’Concentration (mg/L)’);

function out = AUC(strategy, dosage,T)

%calculate AUC
switch strategy
case ’constant’
out = dosage(l) * T;
case ’linear’
out = dosage(l) * T;
case ’exponential’
lambda = log(2)/dosage(1);
cmax = dosage (3);
doseTime = dosage (2);
out = (T/doseTime)*cmax/lambda*(l—exp(—lambdaxdoseTime));
case ’pulses’
Y%something here
end

function ciplot(lower ,upper,x,colour);

% ciplot (lower ,upper)

% ciplot (lower ,upper,x)

% ciplot (lower ,upper ,x,colour)

%

% Plots a shaded region on a graph between specified lower and upper confidence intervals (L and U).
% 1 and u must be vectors of the same length.

% Uses the ’fill’ function, not ’area’. Therefore multiple shaded plots

% can be overlayed without a problem. Make them transparent for total visibility.

% x data can be specified, otherwise plots against index values.

% colour can be specified (eg ’k’). Defaults to blue.

% Raymond Reynolds 24/11/06

if length(lower) =length (upper)
error ('lower and upper vectors must be same length’)
end

if nargin<4
colour="b";
end

if nargin<3
x=1:length(lower );
end

% convert to row vectors so fliplr can work
if find(size(x)==(max(size(x))))<2

x=x’; end

if find(size(lower)==(max(size(lower))))<2
lower=lower ’; end

if find(size(upper)==(max(size(upper))))<2
upper=upper ’; end

£i1l ([x fliplr(x)],[upper fliplr(lower)],colour)

S
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B

Strategies

When investigating the effects of using the exponentially decaying dosage strategy
in the Results chapter 3, antibiotics were injected every 8th hour. Here follows the
results of using the same AUC with level 75, 100 and 125 but for injections every
6th, 12th and 24th hour.
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Figure B.1: System response to treatment with exponentially decaying antibacte-
rial concentration. Injections every 6th hour. In (a) and (d) the AUC = 75, in (b)
and (e) the AUC = 100 and in (c) and (f) the AUC = 125. Susceptible, slightly
resistant, resistant and heavily resistant bacteria are given by black, blue, green and

red lines respectively.

(e) Mutation dynamics
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Figure B.2: System response to treatment with exponentially decaying antibacte-
rial concentration. Injections every 6th hour. In (a) and (d) the AUC = 75, in (b)
and (e) the AUC = 100 and in (c) and (f) the AUC = 125. Susceptible, slightly
resistant, resistant and heavily resistant bacteria are given by black, blue, green and
red lines respectively.

40



u u
Suscepibe
10 10 ahty ressiant 1
Resistant
9 ° Heavily resistant| °
8 Susceptible 8 8 isceptible
=7 Sighty esitant =7 - gty ressiant
g Resistant g g sistant
E) Healy resisan ) 3 vy resisan
e E E
£, £, £,
s s a
2 2 2
B B 1
o s w0 w0 om0 wo N o s w0 0 @m0 @m0
Time (h) Time (h) Time (h)

(a) Population dynam- (b) Population dynam- (c) Population dynam-

8000 8000 8000
7000 7000 7000
6000 6000 6000
5 5000 5 £ 5000
£ 4000 £ e £ 000
H H { H
£ 3000 £ 3000 £ 3000
2 — 2 2
0 . . . . . o . o . . . ,
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time () Time () Time ihy

(d) Mutation dynamics (e) Mutation dynamics (f) Mutation dynamics

Figure B.3: System response to treatment with exponentially decaying antibacte-
rial concentration. Injections every 12th hour. In (a) and (d) the AUC = 75, in (b)
and (e) the AUC = 100 and in (c) and (f) the AUC = 125. Susceptible, slightly
resistant, resistant and heavily resistant bacteria are given by black, blue, green and
red lines respectively.
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Figure B.4: System response to treatment with exponentially decaying antibacte-
rial concentration. Injections every 12th hour. In (a) and (d) the AUC = 75, in (b)
and (e) the AUC = 100 and in (c) and (f) the AUC = 125. Susceptible, slightly
resistant, resistant and heavily resistant bacteria are given by black, blue, green and
red lines respectively.
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Figure B.5: System response to treatment with exponentially decaying antibacte-
rial concentration. Injections every 24th hour. In (a) and (d) the AUC = 75, in (b)
and (e) the AUC = 100 and in (c) and (f) the AUC = 125. Susceptible, slightly
resistant, resistant and heavily resistant bacteria are given by black, blue, green and
red lines respectively.
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Figure B.6: System response to treatment with exponentially decaying antibacte-
rial concentration. Injections every 24th hour. In (a) and (d) the AUC = 75, in (b)
and (e) the AUC = 100 and in (c) and (f) the AUC = 125. Susceptible, slightly
resistant, resistant and heavily resistant bacteria are given by black, blue, green and
red lines respectively.
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