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Serverless Function Triggers in Azure
An Analysis of Latency and Reliability
Henrik Lagergren
Henrik Tao
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Serverless computing has seen a very rapid growth in popularity the recent years,
where businesses are now able to completely outsource their IT infrastructure through
cloud providers. However, some practitioners that are sensitive to latency and
reliability might suffer from unwanted effects when deploying their IT infrastructure
to the cloud. This thesis intends to investigate the latency and reliability of various
Azure Function triggers offered by Microsoft Azure, one of the most popular cloud
providers. In order to conduct such an investigation, a solid benchmark was designed
and implemented to test the performance of seven different triggers on two runtimes.
The findings, based on the results, from this thesis show that various trigger types
have major differences in latency compared to each other. The choice of runtime
does also have an impact on latency. However, the impact of the runtime is not as
important compared to the choice of trigger type. For bursty workloads, increasing
the size of invocation bursts tends to cause longer tail latency for the triggers. The
HTTP and Event Hub triggers perform the best, where the shortest and most stable
latency was observed for Event Hub on all different burst sizes, while HTTP had
some latency increases at the heavier burst sizes. The undoubtedly worst performing
trigger was Blob storage. For out-of-order event deliveries, an inter-arrival time of
250ms will lower the risk of high occurrence of out-of-order. To fully ensure ordering,
higher invocation delays had to be tested to pinpoint the optimal delay. Missing
event deliveries were most apparent for two trigger types, and the other types had
too few missing deliveries to draw any conclusions. Duplicate event deliveries were
absent for three out of seven trigger types. Results suggest that there might be a
difference between runtimes for duplicate deliveries depending on trigger type.

Keywords: Serverless computing, function-as-a-service, function triggers, benchmark,
distributed tracing, latency, reliability.
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1
Introduction

Serverless Computing has during recent years seen rapid growth in popularity, which
has introduced a new paradigm shift. The traditional way for businesses was to
set up and maintain their IT infrastructure on site, but the modern way instead
leveraging responsibilities to cloud providers such as Microsoft Azure, Amazon Web
Services (AWS), and Google Cloud. By leveraging the responsibilities, businesses
benefit in terms of e.g. potential cost-savings, near-infinite scalability, and reduced
operational efforts [1], [2]. Developers no longer need to struggle with time-consuming
IT infrastructure tasks such as maintaining servers, allocating memory resources, and
availability, Serverless Computing are covered by cloud providers. Instead, developers
at IT businesses can focus more on the logic, where often their business value lies.
The cloud providers each offer a range of cloud services, which their customers can use
to develop and scale their applications. Further, a wide variety of popular language
runtimes are often also supported within the cloud provider to make the startup or
transition to serverless as effortless as possible [2].

Function as a Service (FaaS), which is a category within Serverless Computing, uses
an event-driven model where uploaded code, called functions, is invoked by various
trigger types, e.g. HTTP and queue trigger, on arriving events to their resources
[3]. Microsoft Azure offers 12 different trigger types in total, where most of them
also support input and output bindings [4]. The different trigger types do vary
in their popularity, where some are far more used than others. By analyzing 89
serverless applications, Eismann et al. [1] found a consensus that the most common
trigger types are HTTP and cloud events, which include queue, storage, and event
triggers. However, one problem is that the underlying implementations of these
popular triggers and the inherent latency drawback of cloud-based hosting appli-
cations, compared to servers on-premises, might make latency-critical applications
unreliable when deployed to the cloud [5]. Further, in applications where the order
of event delivery is an important factor, the choice of trigger types is crucial since
some triggers do not guarantee event delivery, e.g. Event Grid and Queue storage in
Azure [6], [7].

The focus on trigger types’ latency in this thesis targets specific types of systems that
have strict requirements in throughput, typically medium-sized to larger enterprise
companies that e.g. sending and receiving millions of messages unobstructedly and
quickly. Examples of such systems are social media platforms, and high-frequency
trading systems [8]. Further, the focus on the reliability of event deliveries between
triggers targets applications with emphasis on the reliability of the results from the
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1. Introduction

function execution. Examples of such systems are medical procedures or factories
where medical logs of patients or building instructions must be registered correctly.

This thesis aims to provide insights into how the choice of triggers affects latency and
the reliability of event deliveries for one of the major serverless provider, Microsoft
Azure, assisting practitioners in decision-making for transitioning to serverless.

1.1 Purpose
The purpose of this study is to primarily investigate whether Azure Trigger types,
in a certain runtime, have differing impacts on latency, to what extent the events
are delivered out-of-order (OoO), and whether the deliveries are missed or delivered
multiple times.

The results of this thesis should provide a foundation and deeper insights into the
difference between various Azure trigger types regarding latency, reliability, and
consistency of event deliveries, to help researchers and practitioners to decide whether
certain trigger types are applicable for their intended purposes. Practitioners who
mainly would benefit from this study are latency-critical enterprise companies that
require the processing of massive throughput of data quickly and reliability-sensitive
companies that are dependent on the outcome of event deliveries.

1.2 Research Questions
The following research questions are what this thesis intends to answer:

RQ1: How does the choice of trigger types affect the latency of invoking
functions?

This research question intends to answer how different Azure trigger types, in a
certain runtime, affect the latency of triggering. Latency data for all relevant
trigger types will be collected and analyzed to get insights. To further investigate
how different runtimes affect the latency, the following sub-questions will be answered:

• RQ1.1: How does the choice of runtime affect triggers’ latency?
• RQ1.2: How does a bursty workload affect triggers’ latency?
• RQ1.3: How does an inter-arrival time (IAT) controlled workload with a

constant flow of trigger invocations affect triggers’ latency?

Since various runtimes may vary in their language optimizations and implementations,
sub-question (RQ1.1) intends to generate insights into how the choice of language
runtime affects the latency using different trigger types. Further, the other two sub-
questions (RQ1.2 and RQ1.3) address how latency is affected by trigger invocation
patterns. A workload with short bursts of a various numbers of invocations, and
another with an IAT controlled flow of invocations. An IAT-controlled workload

2



1. Introduction

is where the delay between trigger invocations is manually configured to create a
desired invocation pattern, more details in Section 4.2.4.

RQ2: How reliable and consistent are results of a function delivered?

This research question intends to answer how reliable and consistent invocations of
various Azure Triggers are. The collected reliability data will be used to facilitate
in-depth analysis and discussion post-experiment. Based on the different aspects of
the question, it can be further divided into two sub-questions:

• RQ2.1: How frequent are function invocations OoO?
• RQ2.2: How frequent are function invocations missing or delivered multiple

times?

These two sub-questions further specify the targeted aspects of reliability, namely,
the order of event delivery, missed and duplicate event deliveries.

1.3 Scope
Due to the limited time frame of this thesis, it is not possible to address the available
Azure Function Triggers within all five runtimes provided by Azure. This limits
the scope of this thesis to at least execute the benchmark for all relevant available
triggers in two different runtimes: Node.js and .NET. It is important to note that
this thesis is based on an Azure student subscription and does not consider other
offerings from Azure. The differences between subscriptions are mainly related to
billing and management of Azure services. There is nowhere mentioned from Azure
that the performance of services vary between subscriptions. Since it is not possible
for the authors to fully guarantee, the findings and instructions from this thesis are
limited to the student subscription.

1.4 Limitations and Delimitations
Even though the reproducibility of the conducted experiment is fully automated
during the time this thesis is published, the benchmark can at any time be outdated
due to changes in Microsoft Azure’s infrastructure or their API. The findings from
this thesis could therefore become obsolete due to future performance optimizations
introduced by Microsoft Azure.

This master thesis will only investigate triggers within Microsoft Azure, which means
that the result might not apply to other FaaS providers such as Amazon Web Services
(AWS) or Google Cloud (GC). The reason for focusing on Azure is that it is the
second most popular cloud provider, that similar studies have been done for AWS,
and because of the limited time frame.

3



1. Introduction

1.5 Outline
The structure of the thesis is as following:

• Chapter 2 introduces background knowledge and fundamental concepts that
are essential to understanding the rest of this report. The chapter includes
an introduction to cloud computing, serverless computing, function as a ser-
vice, cloud services, infrastructure as code, distributed tracing, performance
benchmarking, and load testing.

• Chapter 3 presents the related work towards this research area. The presented
studies focus mostly on why latency and reliability are important factors within
Serverless and how this thesis can learn from their methodologies.

• Chapter 4 presents the research methodology developed during the thesis for
designing and executing the benchmark, data analysis, and unit tests.

• Chapter 5 presents the results from running the experiments, and observations
from the results are summarized.

• Chapter 6 discusses the observations made from the results in the previous
chapter, threats to validity of the findings, the implementation of the benchmark,
and reproducibility.

• Chapter 7 concludes the thesis by summarizing the findings and answering the
research questions. Furthermore, it suggests future work and improvements to
the benchmark.
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2
Background

This chapter introduces general knowledge and essential concepts to understand
this thesis. It includes cloud computing, serverless computing, Function as a service
triggers, infrastructure as code, distributed tracing, and load testing.

2.1 Cloud Computing
Cloud computing is the concept of hosting different services off-site on the cloud
through the internet, which offers scalability in resources and costs [9]. The official
definition of Cloud Computing by the National Institute of Standards and Technology
(NIST) concisely summarizes the essence of Cloud Computing [10]:

Cloud computing is a model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable computing re-
sources (e.g., networks, servers, storage, applications, and services) that
can be rapidly provisioned and released with minimal management effort
or service provider interaction. This cloud model is composed of five essen-
tial characteristics, three service models, and four deployment models [10].

The five characteristics mentioned in the NIST definition consist of:

1. On-demand self-service that captures the consumer demands of unilateral
provisioning of cloud computing resources.

2. Broad Network Access that enables the availability of cloud capabilities
over the network on standardized client platforms.

3. Resource Pooling that encapsulates the essence of the internal infrastructural
multi-tenant model of cloud providers’ pooling mechanism, which allows the
pooling of computing resources.

4. Rapid Elasticity that describes one of the main benefits of cloud computing,
which is the availability and scaling of provisioned cloud resources to consumers’
demands. The ability to rapidly (sometimes automatically) scale resources
commensurate with demand to prevent under- and over-provisioning of resources
is incredibly beneficial compared to traditional provisioning for which the
consumer has to pay for unused and idle resources.

5. Measured Service that addresses the cloud systems’ metering capabilities
to automatically control and optimize resource use, but also provides both
provider and consumer with transparency in resource usage of the utilized

5



2. Background

service.

Furthermore, NIST refers to three service models that Cloud Computing usually
is divided in: Software as a Service (SaaS), Platform as a Service (PaaS), and
Infrastructure as a Service (IaaS). These models are essentially abstraction layers for
what services and functionality cloud providers offer. The main difference between
them is the distribution of management and responsibility of cloud resources among
consumers and providers [10].

SaaS is the capability of cloud providers to provide out-of-the-box applications
running on a cloud infrastructure. In this model, the consumer does not manage nor
control any underlying resources, except for possible limited user-specific configura-
tion settings, which can be seen to the right in Figure 2.1.

PaaS provides a platform that enables consumers to develop, deploy, run, and manage
applications without the expertise and complexity of setting up and maintaining the
underlying infrastructure. It allows the deployment of consumer-created applications
using programming languages, tools, libraries, and services that are supported by the
provider. In comparison to SaaS, PaaS gives the consumer control over the deployed
application and data which can be seen in the middle of Figure 2.1.

6



2. Background

IaaS is the lowest level and allows consumers to control e.g. operating systems,
storage, and deployed applications, however, other parts of the underlying cloud
infrastructure are still the responsibility of the provider, which can be seen to the
left in Figure 2.1.
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Figure 2.1: The client’s and provider’s responsibilities within the three cloud
abstraction layers: SaaS, PaaS, and IaaS. The figure is reproduced with inspiration

from similar illustrations of abstraction levels in cloud computing.

Lastly, NIST mentions the four deployment models, which are private cloud, commu-
nity cloud, public cloud, and hybrid cloud, that addresses ownership and accessibility
to the cloud infrastructure.

2.2 Serverless Computing
The fast emerging and compelling serverless paradigm for deployment and manage-
ment of cloud applications are primarily due to the shift of enterprise application
architectures to containers, virtual machines, microservices, the pay-as-you-go billing
model, and elasticity of provisioning resources. Serverless Computing is according
to Castro et al. [2] the natural path of progression for cloud computing considering
recent advancements and adoption of virtual machines and containers.

Serverless computing is even closer to the original expectations of what cloud com-
puting was supposed to be, namely, pay only for resources used, unlimited scalability,
scaling down to zero, and abstracting from details of servers. However, serverless is
complex since deploying applications to a serverless setting requires careful design
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2. Background

decisions in terms of e.g. quality-of-service monitoring, scaling, fault-tolerance prop-
erties, etc, where settings and availability might differ between cloud providers.

The challenges and limitations that are mentioned by Castro et al. concern ”pro-
gramming models” because of the orders of magnitude that for example, a simple
video-streaming service might produce since it could run more than 150 serverless
functions. Further, traditional tools for debugging and identification of bottlenecks
are not applicable for serverless applications.

2.3 Function as a Service
Function as a Service (FaaS) is considered the most natural way to use serverless
computing, and it focuses on providing small pieces of code represented as functions
that are executed in the cloud. These functions are expected to only run for a short
amount of time (at most minutes) and the execution of the function is initiated by
some incoming FaaS trigger, such as HTTP request, storage upload, and database
insertion/deletion/update. In addition, the functions are not allowed to keep a
persistent state, which in combination with the execution time constraint facilitates
maintainability and scalability by service providers [2].

The two major primitives of FaaS programming model are Action and Trigger. Action
is a stateless function that executes the code deployed to the cloud. The action
could either be invoked synchronously or asynchronously, where the former’s invoker
function (request) expects a response as a result of the action executed, and the
invoker function of the latter does not. The actions can be invoked by REST API,
or executed based on a trigger, which is a class of events from various sources, e.g.
upload to storage, and insertion to a database. Further, a parallel invocation is when
an event triggers multiple functions at the same time, and a sequential invocation is
when a result of action triggers another function. The biggest cloud providers tend to
provide the ability to mix and match different and multiple services to create complex
serverless applications. Figure 2.2 shows an example of how an Azure application
could be constructed by combining different services and Azure Functions to create
a serverless application for a car toll booth.
The process of triggering begins with a trigger event being registered, which causes
the cloud provider to automatically allocate the required amount of computing
resources to perform the workload, and the process ends with executing the function.
The allocated computer resources are then ready for further executions, which is
referred to as the function is warm. However, if a function has not been used for a
while the latency could increase substantially during the first invocation due to the
time it takes to allocate capacity and for the function runtime to start up on the
allocated server. This phenomenon is called cold start [12]. Figure 2.3 illustrates the
difference when a function is executed with a warm or a cold start. As can be seen,
the cold start has multiple tasks before it can execute the code, while the warm start
executes the code directly. The duration of how long a function stays warm varies
between providers, for Microsoft Azure, this deallocation of resources happens after
roughly 20 minutes of inactivity [12].
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Azure Storage Blobs
Store all photos in folders named

after toll both id

Azure Storage Blobs
Store CSV export file

Azure Functions
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extract license plate data

Computer Vision API 
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routing service
Cosmos DB 

License plate data and
manual verification queue

Application Insights 
Monitor serverless architecture

Vehicle Photos 
Captured at toll booths

Figure 2.2: An example of how an Azure Application could be applicable to a toll
booth [11].

Allocates
unspecialized

server
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specialized

Functions
runtime resets

Functions
loaded into

memory
Code runs

Cold start

Warm start

Figure 2.3: A visualization of what happens during a start of a trigger invocation,
with focus on the differences between a cold and a warm start.

Cloud providers provide various triggers for different purposes and can sometimes
be used interchangeably with trade-offs, which depend on e.g. application context
and other constraints. The Azure triggers studied during this thesis are HTTP, Blob
Storage, Queue Storage, Cosmos DB, Service Bus Topic, Event Hub, and Event
Grid. This selection of triggers is based on popularity [1] and to cover a wide variety
of Azure triggers. Triggers that were excluded from investigation were third-party
triggers, which have other requirements, and timer trigger which is typically not used
for latency-sensitive applications.

2.4 Cloud Services
In Section 2.3, services were mentioned as building blocks for creating serverless
applications, and Figure 2.2 only shows a small fraction of the services that Azure
offers. The available services cover various areas such as AI, machine learning,
networking, management, storage, security, etc, and the offerings are similar between
cloud providers but the underlying implementations of the services might be different.
The following is a non-exhaustive list with basic descriptions of the services that are
used in this project:
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• Azure Functions: A serverless solution that provides ”compute on-demand”
and scales according to demand, which is the essence of serverless computing.
This allows developers to focus on the logic and coding without worrying about
the maintenance of underlying infrastructure.1

• Azure Storage: Microsoft’s cloud storage solution for modern data storage.
It offers scalable, highly available, durable, and secure storage in the cloud for
various data objects.2

– Blob Storage: Storage optimized for storing large amounts of unstruc-
tured data.3

– Queue Storage: A messaging store for storing tons of messages and for
reliable messaging between components.4

• Cosmos DB: Fully managed SQL database which enables response times in
milliseconds and automatic and instant scalability. No database management
nor the administration is required by the developer.5

• Event Grid: Allows for efficient development of event-based architecture ap-
plications, through subscriptions to Azure resources where events are retrieved
and then sent to event handlers, e.g. Azure Functions or Service Bus, for
further processing.6

• Event Hub: A big data streaming platform and event ingestion service that
is capable of retrieving and processing millions of events per second.7

• API Management: A service that provides an API gateway, which en-
ables communication between Azure’s services and the client applications by
forwarding requests from the clients to respective backend services.8

• Service Bus: Enterprise message broker with messaging queues and publish-
subscribe topics.9

• Azure Monitor (Application Insights): A service that enables collection,
analysis, diagnosis, and acting on telemetry from the cloud to give clients
insights and assist in assessing the availability and performance of clients
applications and services.10

2.5 Infrastructure as Code
Infrastructure as Code (IaC) is essential in the context of cloud resource provisioning
and deployment because it enables organizations to automate the provisioning of
infrastructure using code instead of e.g. the cloud providers’ portals and CLI, and

1https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
2https://docs.microsoft.com/en-us/azure/storage/common/storage-introduction
3https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction
4https://docs.microsoft.com/en-us/azure/storage/queues/storage-queues-introduction
5https://docs.microsoft.com/en-us/azure/cosmos-db/introduction
6https://docs.microsoft.com/en-us/azure/event-grid/overview
7https://docs.microsoft.com/en-us/azure/event-hubs/event-hubs-about
8https://docs.microsoft.com/en-us/azure/api-management/api-management-key-concepts
9https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-messaging-

overview
10https://docs.microsoft.com/en-us/azure/azure-monitor/overview
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allows for fast development, deployment, and scaling of cloud applications with
reduced risks and costs [13]. In an enterprise setting, it is not uncommon to de-
ploy applications to production many times each day, where the infrastructure is
constantly being deployed, destroyed, and scaled up and down. It is critical for an
automated provisioning and deployment solution to control cost, reduce risks, and
quickly respond to market opportunities and threats [13]. IaC utilizes a high-level
descriptive coding language to automate the provisioning of cloud resources, which
removes the tedious tasks of manually provisioning and managing cloud resources
such as storage, databases, and servers, for the developer during the development,
testing, and deployment of an application. There does not exist a standard syntax
for declarative IaC, and different providers support different file formats, e.g. XML,
JSON, and YAML [14].

To implement IaC in this thesis, Pulumi is used. Pulumi is an open-source tool
that mitigates the drawback of provider-specific configuration languages and enables
developers to create, deploy, and manage cloud resources using popular programming
languages such as Node.js, Python, Go, and .NET Core. This further allows develop-
ers to utilize engineering practices, integrate infrastructure with CI/CD workflows,
automate deployments with code at runtime, and complement Pulumi with other
preferred tools and libraries to facilitate development while also reducing boilerplate
code [15].

2.6 Distributed Tracing

Distributed tracing is a method of observing requests, dependencies, and traces,
which traverse across numerous distributed inter-dependent components in cloud
environments. It is a critical component of observability and allows for pinpointing
where failures occur and causes of poor performance [16]. In a traditional monolithic
setting within a single application, this would correspond to logging, and tracking
the application end-to-end would be fairly straightforward, which is not the case in
a decentralized microservice-based distributed system such as Azure. Performing
tracing in cloud environments is essential to instrument the code at specific points of
interest, where tracing data is produced and later aggregated to generate a complete
end-to-end trace. This is, however, a great challenge due to the complexity and
nature of distributed systems [17]. In a serverless setting, where the underlying
infrastructure is abstracted away from the user, tracing is even more complicated,
and consumers have to rely on tools provided by the cloud providers for monitoring
and collecting tracing data.

Microsoft Azure Application Insights is the service that is provided by Azure for
distributed system tracing. It is part of Azure Monitor, which is a collection of
multiple services that help consumers with collecting, analyzing, and acting on
telemetry from the cloud. The Azure Insights service can be managed through
Azure’s Web portal, which e.g. enables visualization of traces. Figure 2.4 shows an
end-to-end transaction of traces containing information, data, and statistics, among

11



2. Background

many other features of traces. It also provides a software development toolkit11

(SDK) to enable consumers to programmatically interact with the service for reasons
such as instrumentation and configuration. The service is created as a shared resource
between all of the other components and is used to group traces. However, the
results from most of the triggers are disconnected traces, for which there is no reliable
way provided by Azure to connect/correlate them, except for the HTTP trigger.
A Python script is implemented to manually correlate the traces, more details in
Chapter 4.

Figure 2.4: An example of end-to-end trace visualization in Azure’s Web Portal.

2.7 Performance Benchmarking
Benchmarking is a process of using benchmarks to collect measurements for assess-
ment and comparisons to conclude the best option for a given scenario concerning
certain objectives [18]. For example, the SPECCpu benchmark is used to compare
the performance of CPUs to find out which CPU is the best performing in terms of
the run time of several programs [19]. Following is a definition of benchmark for a
more precise description:

”Standard tool for the competitive evaluation and comparison of compet-
ing systems or components according to specific characteristics, such as
performance, dependability, or security” [20]

Some desirable characteristics when building a benchmark are discussed by Kisowski
et al. [20] and are critical to consider when designing and developing a benchmark:

• Relevance and usefulness of a benchmark in a specific setting to different
consumers. It is important for the consumer of benchmark results that the
assessment of a benchmark’s relevance is based on the context for which the
benchmark was originally planned. From the perspective of the benchmark

11https://www.nuget.org/packages/Microsoft.ApplicationInsights/2.21.0-beta1
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designer, relevance involves determining the intended use of a benchmark and
developing the benchmark with consideration to the identified intended use
cases. Generally, relevance is assessed by the breadth of applicability, and if the
workload is relevant for the specific scenario. Achieving scalability, which is an
important aspect of relevance, is a great challenge since developing benchmarks
that are expected to run on a wide variety of different systems is difficult.

• Reproducibility is the capability of a benchmark to consistently produce the
same results each time the benchmark is executed for a particular environment.
An ideal reproducible benchmark would enable users to produce the same
results when executing the benchmark independent of the environment the
benchmark is executed in. However, this is typically not the case due to
the inherent challenges of modern computer systems which further introduce
variability in performance measurements. Factors that affect the variability
include thread scheduling, dynamic compilation, physical disk layout, and
network connection.

• Fairness ensures that systems can be compared reasonably and compete on
their merits without artificial constraints. Fairness has to be considered in
different parts of a benchmark. An example is during benchmark development,
where benchmarks developed by a consensus of experts are generally perceived
fairer than by a single company. Another example is the requirements of hard-
ware and software to run a benchmark. It is often necessary to put constraints
on what components are allowed to be used since different configurations of
hardware and software might impact the results.

• Verifiability is essential because the results should be verifiable by practi-
tioners to deem the trustworthiness of the results produced by the benchmark.
Good benchmarks typically perform self-validation to ensure that the workload
is running as expected, and also functional tests to verify whether the output
of the benchmark is correct. One way of improving verifiability is to include
more details than necessary when outputting the results from the benchmark.
These details could potentially raise questions in case of inconsistencies.

In the case of FaaS Performance Benchmarking, two benchmark types are usually
considered, namely, micro-benchmarks and application benchmarks [21]. The differ-
entiation between the two types lies in the objective, where micro-benchmarks target
specific performance aspects with artificial workloads while application-benchmarks
target the overall performance of real-world application workloads.

2.8 Load Testing
The reliability part of this thesis requires simulation of workloads to determine the
behavior of the Azure Function Triggers under different levels of load, the amount,
and the pattern of requests. Load testing is a testing method to evaluate an applica-
tion under certain load conditions by sending requests and measuring the responses
[22]. These load conditions are typically specified by developers and reflect realistic
application scenarios. The main benefit of this testing method is the identification
of the maximum operating capacity and cause of performance degradation e.g. mem-
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ory leaks, and thread contentions, of an application, to improve performance and
facilitate mitigation processes.

K6 is an open-source load testing tool that will be used for load testing the benchmark
[23]. It allows developers to programmatically define the load tests using the CLI
tool with developer-friendly APIs, and scripting using JavaScript. There are various
configurations for defining a load test and K6 provides a wide variety of options, e.g.
number of virtual users (VU) to run concurrently, tags, scenarios, iterations, etc.
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Related Work

In this chapter, other studies that relate to the proposed work of this thesis are
presented to understand the contribution of the thesis given the state of existing
research and provide a further context of the domain.

3.1 Latency of Serverless Function Invocation
There is a common belief that serverless is not suitable for latency-critical systems,
however, Eismann et al. [24] found that this belief is not true where a large percent of
serverless applications experience high traffic intensity. With this in mind, one of the
purposes of this thesis is to empathize and evaluate the latency within serverless to,
for example, ease latency-sensitive applications within serverless. There are already
other studies that have researched latency in the domain of serverless, but not with
the same focus. However, it is important to evaluate those studies to learn and be
aware of previous research. Table 3.1 by Spoltis et al. [25] shows services within
various industries where low-latency is critical. Not all of the services mentioned in
the table can be adopted to serverless functions, however, those that are, the results
of this thesis will help in deciding what function trigger types to use to reduce the
latency when using Azure Functions.

In a recent study by Bertilsson and Grönqvist [26] the performance, specifically the
latency, of different triggers between Azure Functions and Lambda Functions was
being analyzed. The purpose of the study is to increase the understanding of different
FaaS service triggers and their benefits and drawbacks with respect to performance.
Even though their study was pursuing a performance comparison between providers,
the research methodology has a lot of similarities to this thesis, as also how the
Azure measurements proceed. Except for the latency result from Azure triggers,
there are some other valuable insights in their study that could be beneficial for this
thesis, for example, how to design the benchmark and ensure that it is comparable
between different triggers.
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Industry Applications and services

Education

• Video conferencing
• Live-streaming
• Rich learning content
• Dynamic e-learning platforms
• Presentation applications
• Dynamic administration tools
• Cloud-based applications

Healthcare

• Picture Archiving Communications Systems (PACS)
• Telemedicine, telehealth applications
• Diagnostic imaging
• Electronic Medical Records (EMR)
• Patient portals
• Mobile healthcare applications and equipment

Media
and
Entertainment

• Live-streaming breaking news
• Television shows
• Videoconferencing
• Movies over Internet
• Transfer large files, images, and videos
• Real-time gaming

Finance • High-Frequency Trading (HFT) and high speed information exchange
• Financial transactions
• Connections to brokers, dealers, exchanges and hedge funds

Table 3.1: Latency sensitive services [25].

Pelle et al. [27] is another study that evaluates performance in serverless towards
latency-sensitive applications. They also tried to adjust a drone control application
and investigate the performance. This thesis intends to do a similar analysis, but for
Microsoft Azure, however, their study focused more on pure latency within AWS
and not specific trigger types as this thesis intends to do. The key parts that can be
used from the study of Pelle et al. [27] are however research methods and discussion
about latency, which is highly interesting.

3.2 Benchmark in Serverless Computing
Serverless is rapidly evolving, and the popularity of adopting Serverless is rising
each year [28]. It is important that the development of experimental methodology
advances concurrently with the evolving cloud domain to address new methodological
challenges related to cloud computing and Serverless such as dynamic environments
and on-demand resources and services [29], [30]. However, the lack of standardized
performance benchmarking suites in the cloud complicates meta-analysis and com-
parison of research solutions [29]. Papadopoulos et al. [30] combine best practices
from similar fields to propose eight methodological principles that could be adopted
by the cloud community to improve and standardize the way performance evalua-
tion is conducted. Further, their survey study showed that most of the proposed
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principles were not or only partially addressed in the papers that were analyzed,
which signifies the importance of adopting standardized performance evaluation in
the field. The following are the eight reproducibility principles by Papadopuslos et al.:

P1: Repeated experiments (statistical). Decide how many repetitions with the same
configuration of the experiment should be run, and then quantify the confidence
in the final result.

P2: Workload and configuration coverage. Should cover a representative sample
space.

P3: Experimental setup description. Hardware and software setup should be de-
scribed and the objective should be stated for each experiment.

P4: Open access artifact. At least a representative subset of the results should be
made publicly available.

P5: Probabilistic result description of measured performance. Report a characteri-
zation of the empirical distribution of the measured performance.

P6: Statistical evaluation. Provide a statistical evaluation of the significance of the
obtained results.

P7: Measurement units. For all the reported quantities, report the corresponding
unit of measurement.

P8: Cost. The cost of running the experiment should be included.

Copik et al. [29], in line with Papadopoulos et al. [30], emphasize the importance
of standardized benchmarking suites in the cloud domain and propose the Server-
less Benchmark Suite (SeBS), the first systematic FaaS computing benchmark for
serverless computing. The benchmark suite measures metrics such as execution time,
CPU utilization, memory, and I/O across different cloud providers. However, this
thesis has a lower abstraction level and will focus on the performance of different
trigger types from a single cloud provider.

3.3 Reliability of Event Deliveries
To the authors’ knowledge and based on searches on IEEExplore and Google Scholar,
not much research and papers have been devoted to the reliability of event deliveries
in the domain of serverless. Documentation of Azure Triggers, e.g. Event grid [6],
states whether the trigger type guarantees the order of event delivery, and some
explanations and solutions of Azure Function event processing are addressed [31].
However, even if it is stated that there is no guarantee for order of event delivery
for some trigger types, the frequency is not mentioned, which is highly relevant for
applications that might tolerate unreliability to some degree. This unknown degree is
a part of what this thesis intends to observe. A similar phenomenon of OoO, missed
and multiple deliveries are addressed in the domain of Event Stream Processing,
and the terms used by Finta et al. [32] are OoO arrival, data loss, and duplicate
deliveries. Li et al. [33] state that if the order of events received by an event stream
processing system is the same as the recorded timestamp order, it satisfies the total
order assumption. Further, it is mentioned that it is common for event sequences to
arrive OoO in distributed computing environments due to network traffic and node
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failure. Even though the solution and context of the paper are different from this
study, it provides information, inspiration, and ideas about event deliveries which is
highly relevant.

3.4 Impact of Different Language Runtimes
Serverless providers often offer different types of runtimes for their triggers to satisfy
customers. However, due to different language optimizations, the choice of the
runtime can have an impact on the performance and cost. Jackson and Clynch [34]
is one of the multiple studies that evaluate the impact of runtime. They chose to
investigate the aspect of cold-starts for both Lambda Functions and Azure Functions.
In their conclusion, they found that there were differentials on both platforms, where
some runtimes performed significantly better compared to the rest. Jackson and
Clynch concluded that C# .NET was the best performer and most economical option
for Azure Functions and that NodeJS should be carefully used to avoid potential
slow and costly start-up times.
The experimental setup that Jackson and Clynch used is different from the one
of Bertilsson and Grönqvist [26], which this thesis will be building upon. The
main difference is that Jackson and Clynch investigate cold-starts which require a
systematic approach to produce. As mentioned in 2.3, cold starts occur due to either
inactivity or newly deployed Azure Functions. Therefore, the setup from Jackson
and Clynch uses timer services to invoke the functions at specific times to produce
cold-starts. Another difference is the cost aspect of Jackson and Clynch study which
required additional components to handle calculations. Both studies by Jackson and
Clynch, and Bertilsson and Grönqvist considered two cloud providers (AWS and
Azure). However, in this thesis the focus is only on one provider and therefore the
setup will diverge from the initial setup by Bertilsson and Grönqvist.
The difference between Jackson and Clynch and this thesis is the research areas
within serverless. While Jackson and Clynch investigate the impact of language
runtimes on cold-starts, this study aims to look at how language runtimes affect the
latency of invoking Azure Functions with different trigger types.
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Research Method

This chapter introduces the methodology adopted in this thesis to analyze and
evaluate the the performance of Azure Function Triggers based on latency and
reliability of event delivery.

4.1 Method Overview
The empirical research method of benchmarking is adopted in this thesis to create a
relevant benchmark for performance assessment of a software system. This empirical
research method has essential attributes that are addressed throughout the thesis
report, which are the following [35]:

• The quality to be benchmarked.
• The metrics to quantify the quality.
• The measurement method(s) for the metric.
• The workload and justification of the design.
• Describe the experimental setup for the benchmark in sufficient detail to

support independent replication.
• Specify the workload in sufficient detail to support independent replication.
• Allows different configurations of a system under test to compete on their

merits without artificial limitations.
• Assesses stability or reliability using sufficient experiment repetitions and

execution duration.
• Discusses the construct validity of the benchmark.

The overall research process, which is illustrated in Figure 4.1, includes the Benchmark
Design, Benchmark Execution, and Data Analysis. The first step was benchmark
design which included several aspects such as the design of the benchmark application
and realistic workloads. This is explained in more depth in Section 4.2. The next
step is Benchmark execution which is where the benchmark application developed in
the previous step is utilized to generate and collect tracing data. The data will in
the last step be used for analysis to answer the research questions.
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Benchmark design

Choose a runtime

Deploy resources

Execute benchmark

Collect traces

Next trigger

Process traces

Reliability results Latency results

Analyze data

Figure 4.1: An overview of the flow of the benchmark.

4.1.1 Latency and Reliability Experiment
Regarding the analysis of trigger latency, this thesis builds upon a completed master
thesis by Bertilsson and Grönqvist [26]. The differentiation is that this thesis intends
to compare triggers and not cloud providers. Thus, this thesis focuses only on one
cloud provider, Microsoft Azure, and provides performance analyses on additional
triggers. Further, this thesis also investigates the impact of different runtimes on
trigger types. The additional dimension of investigating the impact of runtimes on
latency required redesigning parts of the benchmark that involved the deployment of
resources. Figure 4.1 shows the flow of how this part of the research was conducted.
First, understand the underlying benchmark design and frameworks e.g. Azure and
Pulumi, and then implement additional triggers. This resulted in a set of trigger
benchmarks which were executed to get relevant data for processing and analysis.

Research on the reliability of event delivery for Azure triggers was based on the data
collected from the latency experiment. The extensions are analysis scripts to extract
and aggregate relevant data to perform reliability analysis (order of delivery, missed,
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and duplicate).

4.2 Benchmark Design
The initial structure of the benchmark was based on Bertilsson and Grönqvist’s [26]
benchmark design because of their experimental synergies with this research paper.
The main differences are that Bertilsson and Grönqvist solely researched the latency
of three different triggers on two cloud providers where one is Microsoft Azure, and
did not investigate the impact of runtimes on latency. Even though the scope of the
experiments is not the same, the benchmark design that Bertilsson and Grönqvist
developed was still transferable to this research use case, with some modifications
to accommodate the additional dimension of runtimes. The advantage of using the
benchmark was that the limited time could be used to improve the benchmark and
focus on other critical aspects.

A major benefit of using the initial benchmark was that both the problems of how
to trace the invocation together with the receiver and how to run the benchmark
unlimited times in a certain time frame already were solved. Resources could instead
be allocated to automate the benchmark, which was only semi-automated in the be-
ginning. The automatization was important in order to ensure better reproducibility
and quicker deployment of triggers. The benchmark was expanded to the extent that
it was completely automated, which is something that is not only positive for the
reproducibility, but also for running a complete experiment containing all triggers
without human interaction. The restructuring and expansion of the initial benchmark
made it more solid and stable in terms of errors during benchmark execution.

One of the outcomes of this research paper was to compare reliability among the
different triggers. In order to use the same benchmark for both latency and reliability,
some additional attributes to the initial benchmark were added - mainly affecting
how the distributed tracing was designed. There was also a need of writing new
scripts that could analyze the correct traces and calculate the different aspects of
the reliability namely OoO, missing, and duplicate executions.

4.2.1 Application Components
The high-level application design consists of three different main components. The
first component is the shared resources, which can be seen in Figure 4.2. Its purpose
is to create and hold all of the shared resources that the other two independent
components need to function correctly. The shared resources also assigns necessary
authorization roles to run the benchmark without interruptions.

Shared resources (1)Invocation component (3) Receiver component (2)

Figure 4.2: An overview of the high-level architecture, which consist of three
components: shared resources, invocation component and receiver component.

21



4. Research Method

The second component in the high-level architecture in Figure 4.2 is the receiver
component which is responsible for deploying all trigger-specific resources that are
needed. It is also responsible for publishing the crucial event trigger binding that is
going to be triggered by the invocation component.

Lastly, the third component in Figure 4.2 is the invocation component, which acts
as an entry point to create the correct circumstances for the trigger to execute.
Depending on which trigger is targeted, a unique endpoint is generated to begin the
invocation. This component is not dependent on the receiver component.

HTTP endpoint Invoker function

Receiver function

User

Event on Azure

(1)

(2)

(3)

Figure 4.3: An overview of the high-level architecture of the application design.

The complete application, as shown in Figure 4.3 is ready when the three different
components (1), (2) and (3) in Figure 4.2 is deployed. The receiver component (2) in
Figure 4.2 then has deployed the necessary resources to enable specific events to be
sent to the portal, by using the shared resources component (1). The trigger receiver
also has a receiver function that is triggered whenever specific events are created.
The receiver function is responsible to register whenever it is being triggered through
distributed tracing.

Component (3) represents the invocation component that has an HTTP endpoint,
which acts as the entry point for the application. The purpose of the endpoint is to
invoke the system by sending an event to the Azure Portal e.g. uploading a data file
or a message. The endpoint is traced whenever the event is being initialized through
distributed tracing.
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4.2.2 Deployment Design
The IaC framework Pulumi was used to automatically deploy resources to the cloud.
The framework does not only allow the resources to be directly deployed on the
Azure Portal for a specific trigger, but it also removes old resources that are no
longer needed. Pulumi also takes care of the different authorizations that are needed
in order to get control of resources in the Azure Portal. Therefore, Pulumi is crucial
for the experiment to work since whenever the execution of one trigger is finished
Pulumi will destroy its resources and deploy new trigger-specific resources for the
next trigger. A result of this approach is that only one trigger is built and tested at
a time.

Shared
resources

Receiver 
component

Invocation 
component

References  
to resources

References  
to resources

References  
to resources

HTTP endpoint with  
references to resources  

as query string 

Figure 4.4: An overview of the high-level component deployment.

In Figure 4.4 the overview of the deployment architecture is viewed. The shared
resources is the first component to deploy and is responsible of the following parts:

• Adds an Application in App Registrations.
• Creates the Application Insights that later will hold all traces.
• Managing roles and policies for the Application to access necessary permissions.
• Creates the shared Azure Function App where trigger-specific code and bindings

will be published to.
• Outputs references, through Pulumi, to resources.

The shared component deploys the Function App that will be shared between all of
the triggers for a specific runtime. The Function App will need to be re-deployed
with updated configurations to test triggers with another runtime. Further, the
runtime of a Function App has to match the runtime of the trigger published to the
Function App. Therefore, when testing the trigger with another runtime, the shared
resources have to be re-deployed. Publishing a trigger to a Function App is done
with a one-line command through Azure CLI:

func azure functionapp publish <FUNCTIONAPP_NAME> --<RUNTIME> --force

After the shared resources are successfully deployed, the next component to be
deployed is the receiver component which both uses data from the Pulumi output
references and the local environment file:

• Creates the resources for the specific trigger.
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• Publishes the trigger-specific code to the Azure Function App.
• Outputs references, through Pulumi, to trigger resources.

The last component to deploy is the invocation component which uses references
from shared resources and references from the receiver component. The component is
responsible to combine earlier deployments and deploying other resources responsible
for invoking the triggers. It includes the following:

• Creates a Function App containing an HTTP endpoint that acts as the entry-
point of the experiment.

• Depending on the selected trigger, the HTTP endpoint will execute different
functions.

• Outputs the complete URL with trigger-specific parameters as query string.

The deployment is successful after the invocation component is fully deployed. The
generated URL is the entry point to trigger the invoker function, see Figure 4.3.

4.2.3 Trace Design
Microsoft Azure Application Insights is the service that is provided by Azure for
system tracing. The service is created as a shared resource between all of the other
components and is used to group traces. The aim of measuring trigger latency and
reliability is enabled by distributed tracing which provides end-to-end visibility.

Invoker function

Trigger specific code

Receiver function

Time
T1 T2 T3 T4 T5 T6

Figure 4.5: An overview of timestamps during an invocation and receiver of an
asynchronous trigger.

The approach of collecting traces considers the developers’ perspective. Developers’
perspective means that it is more interesting to investigate the latency between
when a trigger is executed and when the developers regain control over what code
should be executed next, e.g. the first line of a file that a developer has written.
The timestamps that would represent the latency would then be from T2 to T5 in
Figure 4.2.3, which include other factors such as network connectivity and cold starts.
An alternative measurement approach would be the latency between T3 and T5.
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However, this approach requires timestamps whenever the trigger-specific code has
been executed, which is not provided by Azure and makes this approach unsuitable
because T3 could finish after T5 resulting in negative values.

Both T1 and T5 in Figure 4.5 are registered in the Application Insights automatically,
corresponding to when the invoker and receiver function is being invoked. However,
in order to get the correct timestamps, the timestamp T2 in Figure 4.5 needs to
get registered. Since T2 is not a timestamp that is automatically monitored in
Application Insights, it has to be manually added. In order to connect the custom
T2 trace with the T5, another support trace needs to be sent under the receiver
Function, T5, and T6. The purpose of the support trace is for the data analysis to
receive the T1 operation id, which is an id used for tracing, and connect it with the
T5 operation id.

In order to measure duplicate invokes when running an experiment, a custom id
is also sent as a part of the query string which corresponds to the iteration of the
invoke. This id is sent as a trace to Application Insights and used for analysis.

The following list describes how the outcome of an experiment is calculated:

• The latency is calculated by the difference in timestamps between T2 and T5.
• An OoO execution is calculated by in which order T2 arrived compared to T5

e.g. if other traces appear in between there is an OoO execution.
• A missing execution is found if a T2 trace has occurred, but not the corre-

sponding T5 trace.
• A duplicate execution is found if the invocation id has occurred more than once.

4.2.4 Workload Design
In order to receive traces for analysis, it is required to invoke the benchmark by
sending requests to start executing the serverless functions. A workload or usage
profile needs to be specified to let K6 generate and simulate the invocation pattern
that is of interest. This is important for reproducibility and is one of the essential
attributes of the empirical research method of benchmarking to specify. The worst
cases of latency are due to cold starts, and since cold and warm invocations are
not the focus of this thesis, the benchmark will detect the cold starts, filter them
out, and only focus on warm invocations. According to Ustiugov et al. [36], one of
the largest contributors to latency variability in modern serverless systems is short
bursts of function invocations, therefore a bursty workload will be designed and used
to study the latency, as well as missing and duplicate event deliveries. Figure 4.6a
illustrates the bursty workload design that involves the burst phase (BP), and the
non-burst phase (NBP). The BPs will reach a selected burst size of 1, 10, 50, 100, or
300 invocations, and the duration of the NBPs are 10 seconds in between the BPs.

A simultaneous burst of requests typically does not have an inherent order semantic.
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Therefore, an additional workload design with thoroughly controlled inter-arrival
times (IAT) was necessary to study the order of event deliveries. Controlled IAT
is basically that the delay in-between invocations are manually configured, which
allows the creation of the desired invocation pattern. The load generation tool K6
allowed us to create this workload with fine granularity of milliseconds for the start
time for each request. Figure 4.6b depicts the workload pattern needed to test for
order of delivery for each of the trigger types. As can be observed, only one request
is sent per spike and the requests are sent with an invoke delay, which allows for a
thoroughly controlled invocation pattern. In this design, the values of the invoke
delay studied are 1ms, 10ms, 25ms, 50ms, 100ms, 150ms, and 250ms. The short
invocation intervals will use multiple virtual users in order to keep the frequency,
while the long intervals only will handle the frequency with a single virtual user.
Since an order of invocations is implemented, it is possible to compare the order of
when the invoker and receiver functions are triggered. An OoO event delivery is
identified if the orders are not the same.

NBP NBP NBP

BP BP BP
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(a) Bursty Workload with parameterized
burst size.

0

1

R
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st
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(b) Constant IAT controlled workload
with parameterized invoke delay.

Figure 4.6: Two figures showing the workload designs, constant IAT and burst,
that produce the desired traces.

The design of the workloads is not based on data of real workload patterns. Therefore,
the findings from this thesis might not be directly applicable to specific workload
patterns in the industry. However, as mentioned before a characteristic of patterns
that occur is short bursts of invocations, which have been found to cause tail latency
and therefore valid for evaluating the latency. Further, the IAT controlled workload
is neither based on real workload patterns, and is primarily implemented to study
sequential invocations with short delays.

4.2.5 Trigger Types

In this section, details about the characteristics, configuration, and implementation
of each studied trigger type will be discussed.
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4.2.5.1 Blob Storage

Azure Blob storage is one of Microsoft’s storage solutions for modern data storage
and is optimized and designed for multiple purposes such as writing to log files,
storing files for distributed access, and serving images or documents directly to a
browser. With the integration between Blob storage and Azure Functions through
the Blob storage trigger, it allows the implementation of functions that is capable
to react to modifications of the Blob storage. The input binding of the trigger is to
read data within the blob that triggered the trigger. The Blob storage trigger can
then, as the output binding, write to the Blob storage data [37].

However, it is important to note that the Blob storage trigger is poll-based and
not event-based. Poll-based triggers are events that periodically make calls to ser-
vices to scan for new data, whereas event-based triggers will get triggered when
specific events occur. According to the documentation, the storage logs are created
on a ”best-effort” basis, which means that there is no guarantee that all events
are captured. Therefore, logs may be missed. Further, the polling mechanism for
Blob storage is a hybrid between inspecting created logs and periodically scanning
containers for changes. The scanning of blobs is done in groups of 10,000 at a time,
using a continuation token between intervals to know where to start the next scan [37].

In the benchmark, the Blob storage trigger is tested by deploying a storage account
together with a data container. A function app is then created with a function that
subscribes on events from the data container in the storage account e.g. if data is
created, deleted, or edited. To run the storage trigger the storage and container
name is sent as a query string to the invocation HTTP endpoint. The invocation
firstly initiates Application Insight to generate an operation id of the invocation, then
connects to the container and inserts a new file of dummy data with the operation id
as metadata. The listening trigger in the function app fires as soon as it recognizes
the insertion of a data file and sends a trace containing the invoker’s and its own
operation id from the metadata.

4.2.5.2 Cosmos DB

Cosmos DB is Azure’s fully managed NoSQL database service for modern app
development. Cosmos DB guarantees single-digit millisecond response times and
automatic and instant scalability. A Cosmos DB trigger listens for changes in a
cosmos database i.e. both inserts or updates but does not include deletions. Input
binding of the trigger is the changed or added document in the database, while the
output binding can save changes into the document [38]. Cosmos DB is poll-based
with the possibility to be configured through different settings i.e. feed poll delay
and max items per invocation. However, a lower polling interval increases of events
in Azure which in turn can lead to higher costs. The following settings have been
used in the benchmark (that differ from the default values):

"maxItemsPerInvocation": 1,
"checkpointDocumentCount": 1,
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"feedPollDelay": 10

In the benchmark, the Cosmos DB trigger is to deploy the required resources, namely
a cosmos DB account, a sqlDatabase, and a sqlContainer. The Cosmos DB account
is deployed with an attached Azure Function that triggers on the onChange callback
whenever there is a change, e.g. insertions, deletions, and updates, within the account
resource. To trigger the Cosmos DB trigger, an item is inserted into the container
(also called collection in Azure Portal).

4.2.5.3 Event Hub

An Event Hub is an event-based trigger that is triggered when an event is sent to an
Event Hub event stream. The trigger receives the data from the stream as an input
and can write events to the stream as the output binding. There are several settings
available to change batch sizes and delays within the trigger [39]. However, a lower
max batch size can lead to an increase in the execution of the trigger which in turn
can lead to higher costs. The following settings have been used in the benchmark
(that differ from the default values):

"maxEventBatchSize": 1,

In the benchmark, the Event Hub trigger is created by deploying an Event Hub
inside of an Event Hub Namespace. A function app is then created that subscribes
to batches that are created in the Event Hub. To run the Event Hub trigger both
the Event Hub and Event Hub Namespace names are sent as a query string to the
invocation HTTP endpoint. The endpoint firstly initiates Application Insights to
generate an operation id of the invocation. The endpoint then connects to the event
hub producer client and creates a new batch that only contains the operation id.
The trigger in the function app fires as soon as it recognizes the new batch in the
event hub, which extracts the operation id and sends a trace to Application Insights.

4.2.5.4 Event Grid

The Event Grid can be used for multiple purposes within the whole Azure resource
since there are different publishers to subscribe to. A publisher is a resource or
the service that is the source of an event. In this benchmark, the Event Grid has
an Azure blob storage account as the publisher, which means that the Event Grid
trigger listens to Azure blob storage events i.e. blob uploads or deletions. The Event
Grid trigger receives an event grid event as input binding, in this case, a Storage
Blob, and returns an Event Grid event as the output binding [40]. Even though the
event grid trigger has its implementation, the functionality is the same as a Storage
blob trigger - except that the Event Grid also reacts to deletions of blobs. The Event
Grid is stream-based and does not need any further settings except for the default
ones.

In the benchmark, the Event Grid trigger deploys a storage account and an Event
Grid system topic. A function app is then deployed and subscribed to the storage
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account (publisher) whenever an event is sent to the storage account. To run the
Event Grid trigger both the storage account and storage account container are sent
as a query string to the invocation HTTP endpoint. The endpoint firstly initiates
Application Insights to generate an operation id of the invocation. The endpoint then
connects to the storage account container and uploads a new blob only containing the
operation id. The trigger binding published to the Function app triggers as soon as it
recognizes the new blob being uploaded to the storage account. The trigger-specific
code extracts the operation id from the message and sends a trace to Application
Insights.

4.2.5.5 HTTP

Azure HTTP trigger is a trigger available at Microsoft Azure that enables one to
invoke an Azure Function via HTTP requests. The trigger has an HTTP response as
the output binding. The HTTP trigger is the only synchronous trigger in Microsoft
Azure, which has the benefit of a guarantee of not being OoO seen from a single
user’s perspective. Two examples of use cases of an HTTP trigger are to respond to
webhooks or build serverless APIs [41].

In the benchmark, the HTTP trigger is published to a Function app that triggers
whenever a specific HTTP endpoint is called. To run the trigger the URL of the
HTTP endpoint is sent as a query string to the invocation HTTP endpoint. The
invocation firstly initiates Application Insights to generate an operation id of the
invocation and then sends an HTTP GET request targeting the URL that was given
through the query string. The operation id is added as a query string for the function
to be able to trace and connect the invoke with the receiver of the trigger.

4.2.5.6 Service Bus

A Service Bus trigger is used to react to either queue or topic messages that are
sent to the event-driven Service Bus. In the benchmark design, a topic is used
for the Service Bus. The trigger receives a topic message as input binding and
can send a message as the output binding. The default settings have been used
since the service bus has no delay since it uses a stream to listen for new messages [42].

In the benchmark, to deploy a Service Bus trigger both a Service Bus Namespace and
a Service Bus Topic are deployed. A function app is then deployed and subscribed
to whenever an event is sent to the topic. To run the Service Bus trigger both the
Service Bus and Service Bus Topic name is sent as a query string to the invocation
HTTP endpoint. The endpoint firstly initiates Application Insights to generate an
operation id of the invocation. The endpoint then connects to the Service Bus Client
and creates a sender based on the topic name. A new message batch is created
from the sender with only one message containing the operation id. The trigger
published to the Function app fires as soon as it recognizes the new message batch
being uploaded in the Service Bus Topic, which extracts the operation id from the
message and sends a trace to the Application Insights.
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4.2.5.7 Queue Storage

The Queue storage trigger triggers an Azure Function whenever data is added to a
certain queue storage. The trigger receives the queue message as input and can send
new messages as the output bindings [43]. The Queue storage trigger is poll-based
and not event-based. In contrast to the Blob storage trigger, Azure does provides the
possibility to control the polling interval and batch sizes for the Queue storage trigger.
However, a lower polling interval means an increase of events in Azure which in turn
can lead to higher costs. The following settings have been used in the benchmark
(that differs from the default values):

"maxPollingInterval": "00:00:00.100",
"batchSize": 1

In the benchmark, the Queue storage trigger is tested by deploying a queue client
inside of a storage account. A Queue storage trigger is published to a Function app
and subscribed to events from the queue data storage inside of the storage account.
To run the Queue trigger both the storage account and queue client name are sent
as a query string to the invocation HTTP endpoint. The endpoint firstly initiates
insight to generate an operation id of the invocation, then connects to the queue
client and sends a message only containing the operation id. The listening function
in the function app fires as soon as it recognizes the new message in the queue, which
extracts the operation id and sends a trace to Application Insights.

4.3 Benchmark Execution
The experiment was run three times. For the bursty workload with five (1, 10, 50,
100, and 300) burst sizes, each trigger type (7) was invoked up to 900 times, per
burst size, per experiment run, for each runtime. One exception is that with a burst
size of 1, the target sample size was set to 50 for each run. The exception was due
to the workload design with 10 seconds of NBP in-between bursts, see 4.6a, which
would result in at least 14h to run all trigger types for a burst size of 1. The invo-
cations for the bursty workload adds up to (7∗900∗4∗3∗2)+(7∗50∗3∗2) = 153, 000.

For the constant workload where inter-arrival time is controlled (1, 10, 25, 50, 100,
150, 250), the target sample size is 500, per inter-arrival time, per trigger type, per
experiment run, for each runtime. This sums up to 500 ∗ 7 ∗ 7 ∗ 3 ∗ 2 = 147, 000
invocations. Total invocations for running the experiment three times for both
runtimes sum up to 300,000 invocations.

4.3.1 Environment
The benchmark experiment was conducted on a local computer running OS X.
Since the experiment was run locally, variability in performance caused by network
connectivity and transmission discrepancy is inherent due to the location of the
cloud provider’s servers where the cloud resources were hosted. The impact on the
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benchmark results is deemed limited because the only part that can get affected
is the first timestamp (t1) taken from triggering the invoker function through the
API. All of the other traces and timestamps are performed on the provider’s side
and therefore not impacted.

4.3.2 Region
To reduce the potential influences of a network, the location of where the cloud
resources were deployed was chosen in favor of the location where the experiment
was conducted. For this thesis, the chosen server location was northeurope located
in Ireland. Azure does have a server location in Sweden that is closer to where the
experiment was conducted, however, it does not support the classic resource mode
for Application Insights resources, and therefore not chosen.

Locally-redundant storage was used in order to make sure that the storage resources
only used one data-center, in the primary region-zone, during executions of the
experiment [44]. Microsoft does recommend to use Geo-zone-redundant storage
which spans over multiple regions, but that is not suitable for this experiment.

4.3.3 Time
The choice of which time of the day the experiment was executed could potentially
affect the results. This is due to the shared pool nature of cloud providers, with
resources shared between tenants, which means that during peak hours it might
affect resource availability and scalability. The execution of the benchmark was
conducted during day-time between 9AM and 7PM, but in order to minimize the risk
of time affecting the results, the three executions of the experiment were conducted
at different times and days.

4.4 Data Analysis
In this section, a basic overview of the process of post-processing and analysis is
presented. Subsection 4.4.2 presents the process of filtering out cold start traces.
Subsection 4.5 presents the unit tests implemented to validate the analyzed data for
correctness.

4.4.1 Analysis Scripts
The data analysis consists of two Python scripts, responsible to generate latency
and reliability data. The data analysis starts by fetching data from the Application
Insights database through an API query call. The received trace data is then pro-
cessed in two scripts, as described in Section 4.2.3 with the results being saved in
Comma-separated values (CSV) files.
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In order to visualize the latency and reliability data, another two Python are used
to generate plots. Cumulative distribution function (CDF) and violin plots will
mainly be used to visualize the latency. The CDF plot is used to bring a more
easily understanding overview of the data and compare each trigger with different
workloads. The violin plot on the other hand can compare data between runtimes
and triggers. Bar plots and tables will be used in order to visualize the reliability
since that data is represented by percentages.

4.4.2 Filtering of Cold Starts
As mentioned in Sections 2.3 and 4.2.4, cold starts have a significant impact on
latency and since cold starts are not a focus of this thesis it is necessary to ex-
clude them from the collected data. During an investigation of how to detect cold
starts from logs received from Application Insights, at the time of conducting this
thesis, there were no solutions found. An explanation to why there is no direct
way of identifying cold starts could be because Azure offers a premium plan for
their Azure Functions that handle cold starts [45] by e.g. keeping the functions warm.

A workaround was implemented based on the fact that cold starts only occur in the
first invocation of newly deployed or idle Azure Functions. Keeping track of the
first invocations enable filtering of these during the analysis of the collected data.
However, this workaround comes with a trade-off of filtering out samples that is
the first invocation of an Azure Function but might not be a cold start, because it
does not check whether the invocation is warm or cold. In addition, the detection
of first invocations is VM instance-based, which means that during an experiment
run, where N number of VM instances are used, N or N-1 warm invocation samples
will get filtered out. The drawback of losing samples is not significant because it is a
small number. In one of the experiment runs, 38 first invocations were excluded out
of approximately 53,000 invocations.

4.5 Unit tests
To guarantee that the data analysis part of the benchmark is correctly built and
behaves as intended, unit tests have been implemented into the benchmark. Unit
tests are crucial to protect the analysis part of the benchmark against present and
future bugs. The unit tests are automatically run before the analyzing scripts to
verify that the scripts are still valid.

In order for the analysis data scripts to be able to run tests, a –test flag was added.
Whenever the –test flag is sent, the analysis script uses the value from the flag to
find a separate CSV-file, with mock-up data, in a test folder. The script reads the
mock-up data, performs the unit tests, and saves the results within the test folder
which is shown in the dotted box in Figure 4.7.
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Unit Test script

Run analyze data  
script with --test flag

Save results from
mock-up data 

Compare results with
solution

Output validity of
analyze scripts

Figure 4.7: Overview of the unit test script.

To run all unit tests, the benchmark uses a separate python script that systematically
calls each unit test in the reliability and latency analyzing scripts and compares it
with their corresponding predefined solution within the test file. The tests cover
different scenarios such as duplicate event deliveries, missing event deliveries, OoO
occurrences, and latency. It also tests different invocation modes and input sizes.
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5
Results

The results from the conducted experiments are grouped by latency, OoO, missing
event, and duplicate event deliveries. Latency results are further divided based on
two workload designs (bursty and constant workload), and each workload design
shows results from two runtimes (Node.js and .NET). Note that all of the results
are visualized in a logarithmic scale. These results will be mapped to the research
questions, which are restated below:

RQ1: How does the choice of trigger types affect the latency of invoking
functions?

• RQ1.1: How does the choice of runtime affect triggers’ latency?
• RQ1.2: How does a bursty workload affect triggers’ latency?
• RQ1.3: How does an inter-arrival time (IAT) controlled workload with a

constant flow of trigger invocations affect triggers’ latency?

RQ2: How reliable and consistent are results of a function delivered?

• RQ2.1: How frequent are function invocations OoO?
• RQ2.2: How frequent are function invocations missing or delivered multiple

times?

5.1 Latency (RQ1)
This section presents the results for latency, covering different runtimes and workloads.
Firstly, it is essential to establish a baseline for comparison between the results
achieved from the experiments, which the violin plots in Figure 5.1 shows. The
baseline is divided into two plots. The plot to the left shows the baseline for
comparison between the number of invocations per burst. The reason for using one
invocation per burst is because it is the smallest positive integer a burst could consist
of. The second baseline, shown in the plot to the right, visualizes the baseline for
comparison between different invoke IATs. The value of 250ms was chosen as the
baseline due to the low number of OoO event deliveries at that workload, as seen in
Figure 5.6.
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Figure 5.1: Two violin plots showing the baseline comparison for burst workload
to the left and IAT controlled workload to the right for .NET and Node.js. The

y-axis is based on a logarithmic scale. The gray-line across the violin body on each
trigger in both plots is the confidence limit for the mean, without assuming a

normal distribution.

5.1.1 Runtime (RQ1.1)
The triggers in the baselines in Figure 5.1 have similar latency, both regarding the
runtimes and workloads. However, there seems to be marginally lower latency for
the majority of triggers with burst workload for Node.js compared to .NET.

In order to further investigate how runtimes affect latency, multiple workloads were
tested. In Figure 5.2, four larger burst workloads are shown, scaling from 10 to 300
invocations per burst for both .NET and Node.js. There seems to be no significant
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difference in latency between the different runtimes of each trigger for the first three
burst workloads (10 to 100 invocations). However, at the highest workload in Figure
5.2 one can notice that Node.js has a slightly higher latency compared to .NET for
the majority of the triggers, which is the opposite compared to the baseline.
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Figure 5.2: Violin plots showing latency for all triggers in both Node.js and .NET
for different burst workloads. The y-axes are based on a logarithmic scale. The

gray-line on each trigger is the confidence limits for the mean, without assuming any
normality.

Furthermore, multiple other IATs were tested. Below, in Figure 5.3, the six lower
IATs are shown. The plots scale from 1 to 150 milliseconds in delay between each
invocation for both .NET and Node.js. Just as the highest burst workloads in 5.2,
Node.js has a marginally higher latency at the most stressful workloads (IAT of 1ms
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and 10ms) in Figure 5.3. However, there are no substantial differences with using
the longer invocation delays.
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Figure 5.3: Violin plots showing latency for all triggers in both Node.js and .NET
for different constant workloads. The y-axes are based on a logarithmic scale. The
gray-line on each trigger is the confidence limits for the mean, without assuming any

normality.

5.1.2 Burst (RQ1.2)
There is a clear correlation between latency and the burst sizes since the trigger types
in Figure 5.2 do not have the same behavior at the higher burst workloads, compared
to the burst baseline in Figure 5.1. It seems to be that the tails of the violins are on
average higher in the lower burst workloads, but decrease as the burst sizes gets larger.
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Furthermore, inspecting the violin plot tails of the service bus topic in 5.2, it seems
to suffer from unusual long tails at the lower burst sizes. There are almost no tails,
except for the oval violin, at the higher invocations per burst. Another trigger type
where the tails behave differently is the Cosmos DB. Whenever Cosmos DB receiving
a high burst size, the trigger gets a long bottom tail and a high latency.

Figure 5.4 shows the CDFs for all triggers’ invoked with the bursty workload in .NET.
The CDF plots show that the trigger types have an increase in latency in correlation
with a higher burst. An exception is the Event Hub, which is the most stable trigger
type in terms of latency, only having a mean from 39ms (1 in burst size) to 55ms
(300 in burst size) corresponding to only +41% increase. The Event Grid, Service
Bus Topic, and Queue Storage on the other hand also being stable, until the highest
workload of 300 invocations per burst. Further, both the Cosmos DB and HTTP
triggers have gaps in the CDF showing higher latency from the lowest burst size and
upwards, where the Cosmos DB stands outgoing from a mean of 85ms to 4477ms in
latency (+5170%). The Blob storage has a more unique CDF curve with the highest
latency of all going from a mean of 5558ms to 12469ms in latency (+124%).
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Figure 5.4: CDF plots showing latency for all triggers in .NET for different burst
workloads. The x-axes are based on a logarithmic scale.

5.1.3 Inter-arrival time (RQ1.3)
There is a clear correlation between IAT and latency by comparing the IAT base-
line in Figure 5.1 and the lower IAT in Figure 5.3. However, the tails are not as
long for the longer invocation delays, as compared to 300 invocations per burst
in Figure 5.2, but instead stay consistent until the lowest delays at 1ms where
they almost disappear (with Cosmos DB as an exception). As shown in the bursty
workload in Figure 5.2, Cosmos DB tails change for certain workloads. The same
behavior is shown in the IAT-controlled workload where Cosmos DB trigger initially
has a tail upwards but at the lowest IATs (1ms and 10ms) change to a tail downwards.

Furthermore, in Figure 5.5 all triggers are visualized in another CDF plot, but for
the IAT controlled workload. In contrast to bursty workloads in Figure 5.4, the
IAT shows that all triggers, except for Blob Storage, are stable in terms of latency
with invocation delay from 250ms to 25ms, but for the lowest delays at 1ms, a clear
latency gap is present (except for Blog Storage and Event Hub). Cosmos DB on
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the other hand is the only trigger that also has a large increase in latency for IAT
at 10ms, while the rest seems to handle the workload well. However, there is one
trigger that is stable for all invocation delays, the Event Hub trigger. In contrast,
the Blob Storage, similar to the bursty workload in Figure 5.4, has a unique behavior
compared to the rest of the triggers. The most noteworthy for Blob Storage is that
the IATs do not seem to have a clear correlation to the latency where for example
the lowest IAT at 1ms is the third fastest.
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Figure 5.5: CDF plots showing latency for all triggers in .NET for different IATs.
The x-axes are based on a logarithmic scale.

5.2 Reliability (RQ2)

This section presents the results gathered for analysis of reliability in terms of OoO,
missing, and duplicate event deliveries. The results for OoO event deliveries are
presented in Section 5.2.1 and visualized using bar plots in Figure 5.6, and the results
for missing and duplicate event deliveries are presented in 5.2.2 and summarized in
Table 5.1, 5.2, 5.3, and 5.4. Some of the cells of the tables are colored blue based on
the percentage of observed missing and duplicate event deliveries. This is because
the frequency of some observations is too low to determine the relevancy. Therefore,
those observations are not colored and not further discussed.
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5.2.1 Out-Of-Order (RQ2.1)

Figure 5.6 contains the results for OoO event deliveries for both Node.js and .NET.
The plots show the probability of OoO event deliveries for each trigger type. The
common observation across both runtimes is that the longer of an invocation delay, the
fewer OoO deliveries there are. Further, almost all trigger types with an invocation
delay of 250ms result in almost zero OoO event deliveries. However, the observation
is less significant for the event grid where for each longer invocation delay, only a
small decrease can be observed, and for 250ms there is still more than 25% OoO
event deliveries. The results from the Blob storage trigger show low OoO for all
values of invocation delays.
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Figure 5.6: Bar plots showing out-of-order results for IAT for both Node.js and
.NET.
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5.2.2 Missing events (RQ2.2)
Table 5.1 shows that missing event deliveries common for bursty workloads for both
runtimes are observed for all trigger types except for HTTP and Event grid trigger.
Observed missing deliveries are present for Blob storage trigger already at burst size
10, while for Cosmos DB missing events are only observed for burst size 300 with a
difference of approximately 20% between the runtimes.

Burst size (invocations)
[Samples]

Trigger Runtime 1 10 50 100 300

Blob storage Node.js - 33.5% [753] 61.2% [1379] 65.6% [1575] 68.4% [1849]
.NET - 31.8% [591] 60.5% [1363] 63.6% [1528] 67.1% [1813]

Cosmos DB Node.js - 0.04% [1] 0.09% [2] 0.04% [1] 41.3% [1115]
.NET - - - - 62.8% [1695]

Event Hub Node.js - - - 0.04% [1] 0.07% [2]
.NET - - - - -

Service Bus Topic Node.js - 0.04% [1] - - 0.04% [1]
.NET - - - - -

Queue Storage Node.js - - 0.04% [1] 0.08% [2] 0.12% [3]
.NET - - - - -

Others1 Node.js - - - - -
.NET - - - - -

Table 5.1: Missing event delivery results with bursty workload. Zero occurrences
is denoted with ’-’ symbol.

Table 5.2 shows, similar to the bursty workload, that most missing deliveries come
from Cosmos DB trigger and Blob storage trigger for both runtimes. Both of them
perform poorly for invocation delays of 1ms and 10ms. With increasing invocation
delay, the missing deliveries are decreased for both triggers, except for Blob storage
with a delay of 250ms which resulted in 6.21% missing event deliveries. The only
trigger with no missing event deliveries observed for both workloads is the HTTP
trigger.

Invoke delay (ms)
[Samples]

Trigger Runtime 1 10 25 50 100 150 250

Blob storage Node.js 55.5% [833] 11.7% [176] 3.0% [45] 0.2% [3] 0.27% [4] 0.07% [1] 6.21% [93]
.NET 58.5% [878] 14.5% [218] 3.7% [56] 1.2% [19] 0.07% [1] 0.07% [1] -

Cosmos DB Node.js 35.3% [529] 52.1% [782] - - - - -
.NET 57.8% [867] 37.8% [568] - - - - -

Event Grid Node.js - 0.06% [1] 0.06% [1] 0.06% [1] - 0.06% [1] -
.NET - - - - - - -

Event Hub Node.js - - - - - 0.07% [1] -
.NET - - - - - - -

Service Bus Topic Node.js - - - - 0.07% [1] - -
.NET - - - - - - -

Queue Storage Node.js 0.07% [1] 0.07% [1] - 0.07% [1] - - -
.NET - - - - - - -

HTTP Node.js - - - - - - -
.NET - - - - - - -

Table 5.2: Missing event delivery results with IAT controlled workload. Zero
occurrences is denoted with ’-’ symbol.

1HTTP, Event Grid.
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5.2.3 Duplicate events (RQ2.2)
Table 5.3 shows duplicate event deliveries for the bursty workload. No duplicates
were observed for burst size 1. For Cosmos DB trigger, surprisingly there were no
duplicate deliveries for Node.js, while some occurred for .NET. The Event grid trigger
had duplicate deliveries for burst sizes of 100 and 300 for Node.js, and only a couple
with burst size 10 for .NET. Further, for burst sizes 10 and 50 Service bus topic also
have some duplicates.

Burst size (invocations)
[Samples]

Trigger Runtime 1 10 50 100 300

Cosmos DB Node.js - - - - -
.NET - 2.2% [50] 10.1% [238] 6.0% [153] -

Event Grid Node.js - - 0.04% [1] 6.1% [156] 5.2% [148]
.NET - 0.67% [15] - - -

HTTP Node.js - 1.0% [24] 0.04% [1] 0.33% [8] -
.NET - - - - -

Service Bus Topic Node.js - 1.5% [43] 6.4% [156] 0.21% [5] -
.NET - 0.04% [1] - 0.04% [1] -

Others2 Node.js - - - - -
.NET - - - - -

Table 5.3: Duplicate event delivery results with bursty workload. Zero
occurrences is denoted with ’-’ symbol.

Table 5.4 shows duplicate event deliveries for the constant IAT-controlled workload.
As can be seen, only Event Grid and HTTP have duplicate event deliveries, where
Event Grid has duplicates up to invoke delay of 150ms. The triggers that did not
produce any duplicate event deliveries are Blob storage, Queue storage, and Event
Hub.

Invoke delay (ms)
[Samples]

Trigger Runtime 1 10 25 50 100 150 250

Event Grid Node.js 5.5% [91] 6.1% [99] 7.5% [122] 6.0% [97] 6.7% [109] 3.5% [55] -
.NET - - - - - - -

HTTP Node.js 0.2% [4] 0.1% [2] 0.2% [4] - - - 0.33% [5]
.NET - - - - - - -

Others3 Node.js - - - - - - -
.NET - - - - - - -

Table 5.4: Duplicate event delivery results with IAT-controlled workload. Zero
occurrences is denoted with ’-’ symbol.

2Blob Storage, Queue Storage and Event Hub.
3Blob Storage, Cosmos DB, Service Bus Topic, Queue Storage and Event Hub.
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6
Discussion

This chapter reflects upon and discusses the results from Chapter 5. Findings from
the discussions are summarized into a table containing guidelines and suggestions
on usage, benefits, and drawbacks of each Azure trigger type regarding the metrics
used during experimentation. Thereafter, threats to validity are discussed, reflec-
tions of characteristics introduced in Section 2.7 are revisited, and lastly, the eight
reproducibility principles by Papadopoulos et al. [30], introduced in Chapter 3, are
discussed.

6.1 Latency
A trigger that changes behavior as the workload got more stressful was Cosmos DB,
which is best visualized in the CDF plot for IAT in Figure 5.4 where it is very stable
until workloads of 10ms and 1ms. At the two lowest delays, Cosmos DB seems to
struggle to process the invocations where the CDF curve changes completely. The
same can be seen in the Violin plot in Figure 5.2, where Cosmos DB trigger suddenly
have a higher latency with an extremely long latency tail below the body. In terms
of latency critically application, this behavior is not optimal and creates a lot of
uncertainty.

Blob Storage is by far the trigger with the highest latency across all workloads with
being the only trigger reaching latencies over 10 seconds. It is interesting that at
even the least stressful workloads, latency way over five seconds can be observed,
which no other trigger is even close to. In contrast to the burst workloads, in Figure
5.4 where growth in latency is presented in correlation with the workload, the latency
of the IAT workloads seems to finish in disorder. The results indicate that Blob
Storage should not be used on any latency-critical occasions. However, an advantage
of this thesis is that the Event Grid and Blob Storage can be compared head-to-head
since the Event Grid trigger is based on blob uploads as described in Section 4.2.5.4.
By comparing the results from these two triggers in Figure 5.4 and Figure 5.5 one
can see that the latency of Event Grid is more stable and better, making it very
difficult to motive why to use the Blob storage trigger.

Event hub was the only trigger that stood out in terms of stability and low latency
for all workloads, which is visible in the CDF plots in Figure 5.4 and Figure 5.5.
Even at the highest and most stressful workloads, the Event Hub performed well with
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a latency mean of under 100ms. The fact that Event Hub performed best at higher
workloads was not surprising due to the purpose of an Event hub being designed for
stream processing big data with very low latency [46].

6.2 Reliability
The results presented in Section 5.2.1 suggest that with an increased invocation delay,
fewer OoO deliveries will occur, which is the behavior one would expect. The longer
the time difference between consecutive invocations, the more time requests have
to get the requests processed and receive responses before the next request is sent.
Thus, resulting in less OoO. There are, however, two triggers that stand out from
the rest, the Event Grid and Blob storage trigger [37].

There is almost no OoO from the Blob storage trigger for both runtimes compared
to the other triggers. Looking at Figures A.1c and A.1d for missing executions,
even though there are missing event deliveries for Blob storage that impact OoO
deliveries, it can not explain the significant lower OoO observed compared to the
other triggers. The expectation is that the results should be similar to the other
asynchronous triggers. The exact reason for this outcome is not pinpointed but as
mentioned in Section 4.2.5.1, the fact that the Blob storage trigger is poll-based, uses
a hybrid between inspecting logs and scanning containers, and scans 10,000 blobs at
a time to detect changes in a blob container is a reasonable explanation of the low
probability of OoO observed since the order of the uploads in the blob containers
is already determined during scans. As mentioned in Section 5.2.1, the Event grid
trigger has many OoO across all the different invocation delays, which is in line
with Azure’s claim that the event grid trigger does not have an order guarantee for
event delivery [6]. With the results gained from this study, it is possible to get an
indication of the number of OoO event deliveries for the invocation delays used for
the specific workload.

Looking at the results for missing event delivery for bursty workloads, Cosmos DB
and Blob storage are the two triggers for which the most missing deliveries are
observed. Focusing on the Cosmos DB trigger, missing deliveries are only seen for
burst size of 300, and that is also when the trigger’s performance in terms of latency
is declining, see Figure 5.4, the orange line. The reason for the declining performance
is speculated to be because of the overload of requests. It is necessary to test for
more fine-grained burst sizes between 100 and 300 to more accurately pinpoint the
occurrence of the issue. For Blob storage, the issue is even more apparent, where
already at burst size of 10 over 30% of the invocations are missing for both runtimes.
This percentage increases with each increased burst size. The reason is the same as
previously mentioned, the nature of the polling used the for Blob storage trigger.
Therefore, there is no guarantee that all events are captured and logs could also be
missed, which is in line with what Azure claims [37].

The trigger types that have the most missing event deliveries for the IAT-controlled
workload are the same triggers with many missing event deliveries for the bursty
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workload, namely, Cosmos DB and Blob storage. From the results, the two triggers
perform poorly with invoke delays of 1ms and 10ms. This observation could be
caused by the implementation of both triggers, where both detects or scans for
changes, e.g. upload/deletion of a file in a container, and insertion/update of a
database. Further, the HTTP trigger appears to not produce any missing event
deliveries for the runtimes. A simple and valid explanation could be tht the HTTP
trigger is a synchronous trigger.

The reliability, in terms of duplicate deliveries for the bursty workload, Cosmos DB
trigger has the most apparent difference between Node.js and .NET. Duplicates are
also observed for Event grid, HTTP, and Service Bus Topic trigger. For the IAT-
controlled workload, the most duplicate event deliveries were observed for the Event
Grid trigger with Node.js and no duplicates with .NET. There are no guarantees
that event deliveries will only be delivered once, and from the results of this study,
one should expect that duplicates could occur. However, it is explicitly mentioned
for Event Grid that events can be delivered more than once and that it is the
responsibility of the event handler to be implemented defensively [47], which might
apply to the rest of the triggers. Further, Blob storage, Queue storage, and Event
Hub triggers have no duplicates observed. For the Blob storage trigger it could be
explained by blob receipts which help Azure Functions runtime to ensure that the
blob trigger will only get triggered once for the same, new, or updated blob [37].
For the Queue storage trigger it could be explained by the peek lock pattern that is
implemented for the queue trigger, which means that if the function is successful,
then the execution finishes and the message is deleted [43]. Since the message is
deleted, no duplicate event delivery can be triggered by the same message. For Event
Hub it might be because of the configuration maxEventBatchSize was set to one.

6.3 Threats to Validity
This section discusses the threats to validity of the experiment performed in this
thesis, namely construct, internal, and external validity.

6.3.1 Construct Validity
Construct validity is related to the correctness of the measurements. It addresses
whether the results collected are what is intended to be measured.

The threat, Mono-Method Bias, refers to the method that is used to collect correct
measurements, in this case, latency. This threat concerns the service provided by
Azure, Application Insights, to provide accurate and correct timestamps. Further-
more, processing of the traces, extraction of relevant timestamps, and calculation of
latency are also steps that might affect the correctness. As of writing, there is no
other drastically different method for timestamp extraction, known to the authors,
that would have an impact on the correctness of the measurements. Methods have
to rely on utilizing Application Insights to instrument the code and retrieve server-
sided timestamps. Section 4.2.3 addresses this threat by describing exactly at what
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timestamps the latency is calculated, and also the fact that three repetitions of the
experiment were conducted at different points in time further reduces the threat.

6.3.2 Internal Validity
Internal validity addresses the confidence of whether the cause-effect relationship
observed in the results of this study is not affected by a confounding factor. In
the context of this study, one of the most relevant threats to internal validity is
concerning the black-box nature of the experimentation environment provided by
Microsoft Azure. The internal infrastructure and implementation are not publicly
available and therefore can not be controlled for, which means that there might
be internal factors at the cloud providers that could affect the measures and data
collected in this study. Details about the shared infrastructure between cloud users
at cloud providers are not accessible, and therefore it is not possible to determine
potential noise that is introduced by other customers. For example, a heavy workload
from another customer in the same virtual machine that shares the same hardware
might affect the available resources such as CPU and bandwidth, which in turn
influence the outcome of this study.

Another threat concerns clock synchronization, specifically the precision and accuracy
of instruments used for measurements in distributed systems. Najafi et al. [48] argue
that understanding how to measure time accurately is critical to system research and
that all system evaluations should make sure that the clocks are calibrated before
running experiments. Failure of identifying inaccurate clocks or not calibrating
before conducting experimentation could potentially result in actual benchmark
errors. The threat lies in the nature of cloud distributed system that consists of
numerous interconnected virtual machines (VM), which each have a local clock that
can be affected by various operations. According to Microsoft [49], the potential
consequences are e.g. authentication failure, incorrect time of logs, and inaccurate
billing. If only one VM is used, the effects might not be significant unless there is
strict timekeeping. However, in practice, there are often many interconnected VMs
operating together, and since the clock accuracy error accumulates it could result
in erroneous synchronization. The issue is best addressed from the cloud provider’s
side since developers using FaaS do not have access to the VMs. Microsoft Azure
addresses the problem by having time synchronization services running on all of its
VMs. The service knows what time servers to use and periodically checks if a clock
needs to be calibrated. In addition, the synchronization between Azure hosts and
internal Microsoft time servers is provided by Microsoft-owned Stratum 1 devices,
with GPS antennas [49].

6.3.3 External Validity
External validity concerns the generalizability of the results and insights derived
from the study to other settings within the same domain.

The most relevant threats to external validity are to what extent the outcome
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and insights are generalizable to other trigger types, and other cloud providers’
trigger types. Methodology-wise it is feasible to execute the same procedures to
derive benchmarks for other trigger types and cloud providers, which will, in turn,
enable meta-analysis and comparisons between the results from different cloud
providers’ trigger types with similar functionality. However, due to the difference
in internal infrastructure, implementations, and representations of various trigger
types throughout cloud providers, it is not possible to generalise the insights from
this specific study to other cloud providers’ trigger types.

6.4 Building a Benchmark
By revisiting the characteristics discussed by Kisoski et al. [20], helps facilitating
discussion about the implementation of the benchmark.

The relevance and usefulness of the created benchmark are considered to be beneficial
for researchers that intend to get insights into the latency and reliability of Azure
triggers. For practitioners, the benchmark itself might not be relevant but the
findings from the data, gathered with the benchmark, can be highly valuable. The
benchmark’s breadth of applicability involves all Azure triggers, and adding new
trigger types to the benchmark is a fairly simple process. The workloads are designed
to be relevant for scenarios that produce high tail latency, and for creating an order
semantic to test for OoO deliveries, which was the focus of this study. Creating new
workloads with K6 to use with the implemented benchmark is a simple matter of
just writing new code for specifying the desired pattern invocation behavior. The in-
tended purpose of comparing trigger types from one provider poses limitations on the
benchmark regarding breath of applicability and scalability because transferability
of insights to other cloud providers is not possible. The main reasons for lacking of
transferability is no direct mapping between different cloud providers’ trigger types
and difference in underlying implementations of infrastructure and triggers between
providers.

In terms of reproducibility, much effort has been devoted to automating the execution
process of the benchmark to conduct experiments by running a single script. The
script handles everything from automating the deployment of cloud resources using
Pulumi, parameterizing essential experiment input values, to executing load tests
automatically. Automated execution of the benchmark reduces the effort needed to
run the benchmark and the risk of bugs introduced by manual setup.

The fairness of comparing Azure trigger types comes down to only trigger-specific
configurations and software because the hardware is handled by the cloud provider
and no hardware is calibrated or manipulated by the benchmark. For a fair compari-
son between the triggers, some compromises have been made, such as configuring the
polling intervals of poll-based triggers to behave similarly to an event-based trigger.
This will, however, increase the cost of poll-based triggers because of the increased
number of poll events. Another example of a compromise is configuring event batch
sizes of triggers that use batches when processing the events.
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Verifiability is addressed by implementing unit tests focusing on verifying the logic
of calculating out of order, duplicate, and missing event deliveries. The work in this
area is rather thin and the benchmark would benefit from more testing.

6.5 Reproducibility

In Section 6.4, reproducibility was briefly discussed, and in this section, more effort
will be devoted to further discussing reproducibility based on the eight principles by
Papadopoulos et al. [30] introduced in Chapter 3.

P1: Repeated experiments (statistical). Decide how many repetitions with the same
configuration of the experiment should be run, and then quantify the confidence
in the final result.
In Section 4.3, a paragraph has been devoted to present numbers regarding
sample sizes (invocations). Papadopoulos et al. observe that P1 is often only
partially fulfilled by performing a non-justified number of repetitions or by
choosing a longer duration for experiment runs, which is not sufficient. To
justify the sample sizes used in this study, it is necessary to provide a statisti-
cally sound assertion to ensure that the results are not by chance. In Section
4.3, the experiment setup, the number of repetitions executed and data points
gathered, are presented.

Hoefler and Belli [50] establish common rules to help experimenters to improve
the interpretability of results and introduce techniques to analyze collected
data to ensure that the conclusions, which are based on the data, are reliable.
For summarizing results, one has to choose which statistical method to use,
parametric or non-parametric. The choice depends on the distribution of the
data, and after checking the results from this study with Q-Q plots it was
possible to conclude that the distribution of the collected data is not normal.
Therefore, a non-parametric technique could be used for statistical inference
and reporting confidence intervals.

R provides a library called boot1 to generate non-parametric bootstrap confi-
dence intervals. Non-parametric bootstrap allows for estimations on parameters,
in this case, the mean, of a population or probability distribution from a set of
observations without having to assume the distribution. Tables 6.1 and 6.2 are
attempts to summarize the results using non-parametric bootstrap confidence
intervals with 6000 repetitions to find the confidence interval of the actual
population mean compared to the sample mean.

1https://cran.r-project.org/web/packages/boot/boot.pdf
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Burst Blob Cosmos DB Event Event HTTP Service Bus Queue
size storage Grid Hub Topic Storage

Bootstrapping
95% Confidence
Interval (BCa) -
Node.js

1 −8.81%
+8.67%

−22.04%
+42.27%

−2.13%
+2.18%

−13.22%
+27.25%

−6.88%
+7.91%

−13.47%
+20.44%

−6.32%
+7.42%

10 −2.64%
+2.59%

−15.05%
+22.06%

−1.65%
+2.90%

−3.07%
+3.64%

−5.88%
+9.31%

−36.86%
+63.02%

−1.32%
+1.35%

50 −2.56%
+2.58%

−2.47%
+2.30%

−1.23%
+1.37%

−2.23%
+2.32%

−2.93%
+6.90%

−4.43%
+5.40%

−1.77%
+1.83%

100 −2.49%
+2.43%

−2.40%
+2.62%

−2.80%
+3.12%

−2.02%
+2.27%

−2.84%
+5.33%

−4.18%
+3.80%

−1.58%
+1.62%

300 −1.92%
+1.93%

−2.71%
+2.73%

−1.57%
+1.62%

−3.84%
+4.02%

−2.49%
+3.10%

−4.05%
+4.39%

−2.07%
+2.28%

Bootstrapping
95% Confidence
Interval (BCa) -
.NET

1 −6.52%
+6.60%

−5.58%
+9.60%

−2.44%
+4.69%

−5.29%
+8.80%

−31.05%
+87.82%

−14.31%
+22.86%

−4.27%
+5.01%

10 −6.60%
+6.61%

−5.69%
+10.00%

−2.42%
+4.85%

−5.25%
+8.26%

−30.42%
+79.62%

−13.87%
+23.63%

−4.23%
+4.74%

50 −2.87%
+2.85%

−3.28%
+3.46%

−0.77%
+0.78%

−3.76%
+4.33%

−2.29%
+2.46%

−4.42%
+5.23%

−1.59%
+1.68%

100 −2.65%
+2.72%

−2.39%
+2.36%

−1.03%
+1.16%

−2.91%
+3.42%

−3.00%
+3.01%

−20.20%
+25.15%

−1.82%
+1.84%

300 −2.51%
+2.59%

−4.25%
+4.13%

−2.36%
+2.58%

−2.10%
+2.34%

−3.38%
+4.43%

−3.85%
+4.34%

−2.37%
+2.48%

Table 6.1: Confidence intervals of the true population mean expressed as a
percentage of its mean for latency data collected from the bursty workload
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Invoke Blob Cosmos DB Event Event HTTP Service Bus Queue
Delay storage Grid Hub Topic Storage

Bootstrapping
95% Confidence
Interval (BCa) -
Node.js

1 −2.18%
+1.99%

−2.83%
+2.90%

−2.42%
+2.39%

−4.46%
+4.37%

−2.07%
+2.46%

−4.92%
+5.08%

−3.15%
+3.26%

10 −1.45%
+1.53%

−4.90%
+4.70%

−1.46%
+1.59%

−2.21%
+2.42%

−7.58%
+34.95%

−9.27%
+12.18%

−2.09%
+2.24%

25 −1.19%
+1.16%

−7.80%
+8.33%

−1.40%
+1.46%

−2.37%
+2.53%

−13.46%
+32.33%

−5.19%
+6.38%

−1.75%
+1.78%

50 −0.83%
+0.85%

−7.25%
+9.33%

−1.59%
+1.63%

−3.10%
+3.56%

−12.03%
+30.27%

−4.83%
+6.07%

−1.60%
+1.77%

100 −1.20%
+1.13%

−8.93%
+12.25%

−1.67%
+1.64%

−3.72%
+6.05%

−2.23%
+2.41%

−5.71%
+7.14%

−1.69%
+1.75%

150 −2.15%
+2.15%

−7.16%
+9.99%

−1.59%
+1.58%

−2.85%
+4.21%

−2.29%
+2.59%

−7.36%
+11.12%

−1.69%
+1.83%

250 −4.93%
+5.87%

−8.19%
+13.27%

−3.30%
+4.18%

−3.55%
+4.92%

−4.61%
+6.78%

−7.02%
+9.66%

−2.23%
+2.32%

Bootstrapping
95% Confidence
Interval (BCa) -
.NET

1 −1.46%
+1.48%

−4.26%
+4.25%

−3.31%
+3.64%

−2.45%
+3.11%

−2.82%
+2.80%

−5.46%
+6.02%

−3.50%
+3.49%

10 −1.56%
+1.66%

−4.23%
+4.10%

−1.40%
+1.46%

−4.32%
+5.54%

−1.49%
+1.49%

−5.00%
+6.27%

−2.01%
+2.17%

25 −1.25%
+1.18%

−3.74%
+5.02%

−1.45%
+1.48%

−3.76%
+4.90%

−1.71%
+1.82%

−5.47%
+8.55%

−2.09%
+2.23%

50 −1.41%
+1.45%

−6.28%
+8.18%

−1.46%
+1.42%

−2.88%
+3.92%

−1.59%
+1.76%

−4.07%
+5.23%

−2.22%
+2.52%

100 −2.52%
+2.50%

−8.38%
+11.73%

−1.54%
+1.62%

−3.18%
+4.19%

−1.63%
+1.86%

−5.31%
+8.65%

−2.36%
+3.21%

150 −2.25%
+2.37%

−7.81%
+10.32%

−1.61%
+1.63%

−3.23%
+4.37%

−1.39%
+1.46%

−5.70%
+7.02%

−1.70%
+1.85%

250 −4.96%
+4.95%

−5.00%
+6.96%

−2.24%
+2.66%

−2.73%
+3.40%

−18.94%
+59.52%

−5.61%
+7.36%

−1.94%
+2.08%

Table 6.2: Confidence intervals of the true population mean expressed as a
percentage of its mean for latency data collected from the IAT controlled

workload

The results from bootstrapping are to give a rough estimate and an indica-
tion of whether the target sample size used for the experiments is considered
appropriate to draw trustworthy conclusions. The 95% confidence interval
shows that there is a 95% confidence that the interval contains the true mean
of the population. Looking at the confidence intervals, the majority of the
confidence intervals are quite narrow around the sample means which indicates
a high confidence that the sample means are close to the population means.
The positive values are often higher than the negative values which indicate
skewness of the distribution, and some intervals are extreme with over 20%
higher values than the sample means. The observations are likely due to
outliers, but the extreme ones require further statistical testing to validate the
results.

P2: Workload and configuration coverage. Should cover a representative sample
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space.

This principle is partially addressed in terms of covering workloads relevant
to the focus of this thesis. Workload types were not the focus of this thesis,
however, as explained in Section 4.2.4, there is no inherent order semantic for
bursty workloads. Therefore, it was necessary to create another workload design
with low granularity control of inter-arrival times of events. The principle
further suggests using randomization of configurations to increase coverage of
all possible combinations. However, this is not the focus of the study and is
therefore not implemented.

P3: Experimental setup description. Hardware and software setup should be de-
scribed and the objective should be stated for each experiment.

Chapter 4, thoroughly describes and motivates all the aspects of the research
method used for the experiments. Hardware is not mentioned as much since
this is the responsibility of Azure, but software from trigger configurations to
workload designs and analysis scripts are all introduced.

P4: Open access artifact. At least a representative subset of the results should be
made publicly available.

The source code of the benchmark and the data sets that Chapter 5 is based
on is available on Github [51], and also included in Appendix A.

P5: Probabilistic result description of measured performance. Report a characteri-
zation of the empirical distribution of the measured performance.

All results are presented in Chapter 5 as violin plots, bar plots, and cumulative
distribution functions. The plots and CDF show a visual representation of the
results for interpretation and comparison.

P6: Statistical evaluation. Provide a statistical evaluation of the significance of the
obtained results.

An attempt to provide an indication on statistical significance of the results
was to use confidence intervals shown in Tables 6.1 and 6.2. No additional
tests for significance were done.

P7: Measurement units. For all the reported quantities, report the corresponding
unit of measurement.

All of the measurements clearly state the unit of measurement in the figures
and tables.

P8: Cost. The cost of running the experiment should be included.
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Azure provides a service called Cost Management + Billing which records
expenditures from using Azure services. For an experiment run Azure billed
$0.75 at the time of writing.
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In this thesis, a benchmark has been implemented to gain insights into the latency
and reliability in terms of out-of-order, missing, and duplicate event deliveries for
Azure. The benchmark automatically deploys necessary resources to conduct experi-
ments for specific Azure Function triggers and utilizes k6 for load testing to simulate
scenarios relevant for studying latency and reliability. Further, Bash and Python
scripts have been implemented for automatizing the execution of the benchmark,
processing collected traces, and generating relevant plots to visualize the results.

RQ1: How does the choice of trigger types affect the latency of invoking
functions?

There is no doubt that choosing an arbitrary trigger could lead to unexpected high
latency since various trigger types have major differences in latency compared to
each other. It is, therefore, crucial to analyze trigger types’ latencies before choosing
a trigger type if low latency is important within an application.

RQ1.1: How does the choice of runtime affect triggers’ latency?

A runtime does affect a trigger’s latency but is highly dependent on the density of
incoming requests to the trigger. A runtime that has better latency performance
compared to another runtime for a certain workload, might not be performing better
with a different workload. However, the choice of runtime, in terms of latency, is
not as substantial compared to the choice of which trigger type to use. The best
performing runtime at light workloads is Node.js, while .NET performed better at
heavy workloads.

RQ1.2: How does a bursty workload affect triggers’ latency?

The latency is mainly affected by the heaviest workloads but is also affected to a
certain degree for all workloads. For the baseline, one invocation per burst, the
HTTP and Event Hub performed best, while the Blob Storage performed the worst.
At the heaviest burst workloads, the Event Hub had the best performance followed
by HTTP and Service Bus Topic that were considered second best due to their
similar performances. The worst performing trigger at the heaviest burst workload
was Blob Storage, with Cosmos DB not far behind.

RQ1.3: How does an inter-arrival time (IAT) controlled workload with a constant
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flow of trigger invocations affect triggers’ latency?

The time between each invocation has an effect on the majority of the trigger types,
especially at very low IATs. Event Grid, Cosmos DB, HTTP, Queue Storage and
Service Bus Topic did not change in their latency until the lowest IAT, where they
increased significantly in latency. The best performing triggers at the baseline of the
IAT of 250 ms, are the HTTP and Event Hub while the worst performing trigger
is the Blob Storage. For the highest IAT workload of 1ms, the Event Hub had the
lowest latency while the Blob Storage and Cosmos DB had the highest latencies.

RQ2: How reliable and consistent are the results of a function delivered?

The reliability of Azure trigger types can vary greatly depending on the configurations
and the underlying implementation of each trigger.

RQ2.1: How frequent are events delivered OoO?

Depending on the trigger type and the delay between consecutive invocations, various
levels of OoO event deliveries can be expected. Therefore, the ordering of event
deliveries is critical, and there is no guarantee for trigger ordering, an invocation
delay of more than 250ms is shown to ensure low frequencies of OoO for the trigger
types studied in this thesis. Perhaps testing for even longer delays would have allowed
a more precise conclusion of when no OoO will be encountered. The best performing
trigger in terms of OoO is the Blob storage trigger. However, choosing the Blob
storage trigger will sacrifice low latency triggering.

The reliability differences between runtimes are out of the scope of this thesis. How-
ever, the outcome of out-of-order reliability between Node.js and .NET for all the
triggers indicates very similar results for both runtimes. Quantifying the differences
and determining the significance could be future work.

RQ2.2: How frequent are events missed or delivered multiple times?

Missing event deliveries with regards to both the bursty and IAT controlled workloads
are most apparent for Blob storage and Cosmos DB trigger in both runtimes. The
HTTP trigger did not show any missing event deliveries for either workload since
it is a synchronous trigger. The other trigger types have a few missing deliveries
but nothing substantial to draw any conclusions. Duplicate event deliveries are
not observed for Blob Storage, Queue Storage, and Event Hub trigger for both
workloads and runtimes. Developers have the responsibility to implement defensive
and idempotent event handlers to avoid duplicate deliveries. The results suggest that
there might be a difference between runtimes for duplicate event deliveries depending
on trigger type.
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7.1 Visual summary of findings
In order for practitioners to get a better visualization of the findings, two color-coded
tables were created. The colors in the tables represent intervals, to more easily find
better or worse outcomes. The intervals have been chosen by common sense and do
not have any weights or labels, more than a color.

Table 7.1 shows all findings for each trigger for three burst workloads: The baseline,
a low bursty workload, and a high bursty workload. Table 7.2 shows the same, but
instead for three workloads for the IAT: The baseline, an IAT with a long invocation
delay, and an IAT with a short invocation delay.

There are four colors in the tables which have the following intervals:
• Green for latency: 0-100ms and Green for reliability: 0-1%.
• Yellow for latency: 100-1000ms and Yellow for reliability: 1-33%.
• Orange for latency: 1000-10000ms and Orange for reliability: 33-66%.
• Red for latency: Above 10000ms and Red for reliability: 66-100%.

Trigger type Latency1 OoO Missing executes Duplicate executes
BL LW HW BL LW HW BL LW HW BL LW HW

Blob Storage 5732ms 7267ms 12386ms 0% 3.4% 7.9% 0% 60.5% 67.1% 0% 0% 0%
Cosmos DB 82ms 428ms 4597ms 0% 64.5% 79.1% 0% 0% 62.8% 0% 10.1% 0%
Event Hub 35ms 48ms 49ms 0% 51.3% 62.3% 0% 0% 0% 0% 0% 0%
Event Grid 674ms 685ms 1255ms 0% 90.8% 93.7% 0% 0% 0% 0% 0% 0%
HTTP 36ms 94ms 250ms 0% 77.6% 83.9% 0% 0% 0% 0% 0% 0%
Service Bus Topic 56ms 66ms 97ms 0% 59.7% 77.8% 0% 0% 0% 0% 0% 0%
Queue Storage 220ms 590ms 1279ms 0% 82.5% 87.6% 0% 0% 0% 0% 0% 0%

Table 7.1: Overview of the findings for bursty workload. BL = Baseline, LW =
Low workload (50 invocations), HW = High workload (300 invocations).

Trigger type Latency2 OoO Missing executes Duplicate executes
BL LW HW BL LW HW BL LW HW BL LW HW

Blob Storage 9193ms 32633ms 14324ms 0% 0.5% 3.9% 0% 1.2% 58.5% 0% 0% 0%
Cosmos DB 54ms 51ms 9588ms 0% 9.4% 85.9% 0% 0% 57.8% 0% 0% 0%
Event Hub 29ms 32ms 48ms 0% 7.5% 52.3% 0% 0% 0% 0% 0% 0%
Event Grid 601ms 521ms 1586ms 0% 68.5% 92.2% 0% 0% 0% 0% 0% 0%
HTTP 29ms 32ms 459ms 0% 0.4% 89.7% 0% 0% 0% 0.33% 0% 0.2%
Service Bus Topic 50ms 49ms 111ms 0% 16.3% 69.3% 0% 0% 0% 0% 0% 0%
Queue Storage 208ms 189ms 1836ms 0% 26.1% 83.0% 0% 0% 0% 0% 0% 0%

Table 7.2: Overview of the findings for IAT workload. BL = Baseline, LW = Low
workload (50ms), HW = High workload (1ms).

7.2 Future Work
Based on the limitations of this benchmark, future work in studying latency and
reliability of function triggers could be to conduct a similar study for other cloud

1The latency median is used in the table.
2The latency median is used in the table.
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providers, such as AWS and Google Cloud. Even though the insights from this study
are not transferable to other providers, the methodology is. Other extensions could
be to investigate other runtimes such as Python and Java, and perhaps investigate
other trigger types, e.g. triggers for third-party services (though these might have
other requirements), Durable Functions, and using SDK to invoke functions. Further,
it would be interesting also to investigate other metrics e.g. transfer rates and
payload size, and the effect of these on latency and reliability.

In this thesis, almost all of the configurable settings for the triggers were kept at
default values. The only time when these settings were adjusted was to make some
of the triggers more comparable with the others, e.g. by adjusting batch sizes
and polling delays. An interesting extension would be to investigate different con-
figurations of the triggers and perhaps gain insights into how these could affect latency.

The current version of the benchmark only allows for two regions to deploy resources,
namely, North Europe and East US. However, since Azure provides numerous regions
all across the continents it could be relevant to examine the impact of the geographi-
cal location of the resources on latency to help practitioners choose suitable regions
for their purposes.

As mentioned in Section 4.3, the experiments were run locally which increases
the risks of the results being affected by network connectivity and transmission
discrepancy. A future work could be to deploy the benchmark and conduct the
experiments in a cloud VM.

7.2.1 Improvements to the Current Benchmark
With the experience gained from implementing this cloud benchmark and conducting
experiments with it, there are suggestions for improvements to the benchmark.

Two parts of the benchmark execution that are significantly more time-consuming
than other parts, mainly, conducting the load testing according to the workload
designs, and post-processing of the received traces. The duration of the former
mentioned is something that can not be optimized, unless the optimization is made
to K6, or if the workloads are redesigned. The latter is performed using Pandas data
frames e.g. manually correlating traces by switching operation Ids and replacing
certain values in the cells of the data frame. Optimizations of the post-processing
script would involve implementing more efficient ways of performing these operations
and perhaps introducing parallel processing since Pandas only utilizes one core.

As mentioned in Section 4.4, to exclude cold starts the benchmark filters out the
first invocation of each instance of an Azure VM. This will exclude any possibility of
cold start invocations. However, this is not ideal because it does not check whether
the first invocation is a cold start. An improvement would involve redesigning the
current version of the benchmark, where all the triggers share the same Function
App, to deploy a Function App for each trigger type. This approach will enable
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systematic triggering of cold starts and removal of only cold start invocations.
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Cosm
os 

DB

Ev
en

t G
rid

Ev
en

t H
ub

HTT
P

Que
ue

 St
ora

ge

Se
rvi

ce 
Bus 

To
pic

Blob
 St

ora
ge

Trigger type

0

0.25

0.50

0.75

1

Pr
ob

ab
ilit

y

Invocation delay
1 ms
10 ms

25 ms
50 ms

100 ms
150 ms

250 ms

(d) All constant workloads in .NET.

Figure A.1: Bar plots showing missing executes results for burst and constant
workloads in both Node.js and .NET.
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(d) All constant workloads in .NET.

Figure A.2: Bar plots showing duplicate executes results for burst and constant
workloads in both Node.js and .NET.
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Figure A.3: CDF plots showing latency for all triggers in Node.js for different
burst workloads.
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Figure A.4: CDF plots showing latency for all triggers in Node.js for different
inter-arrival times.
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