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Abstract

In this thesis we derive a general framework for calibrating quadratic local volatility
models in financial asset modelling. The method is first considered for constructed
fictional data sets. Strengths and weaknesses of the method are studied thoroughly in
this setting. We then apply our calibration method on stock market data, and use it to
price European call options. The results of this are compared to actual option chains on
the stocks in question as well as the cruder Black-Scholes prices for these stocks. We end
the thesis with a discussion on further development of the quadratic volatility model.
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1 Introduction

For the past four decades, the mathematical modelling of stock markets have undergone rapid
development. Individual stocks are modelled according to stochastic differential equations
on the form

dX(t) = µ(X(t), t)dt+ σ(X(t), t)dB(t),

where µ is a function describing the deterministic time evolution of the stock, and σ is a
function describing how the stock reacts to a driving noise. The most common and basic
noise utilized is Brownian motion. The simplest model of a stock, as well as the back-bone
of quantitative finance, is the Black-Scholes model

dX(t) = µBSxdt+ σBSxdB(t), (1.1)

where µBS is a constant and σBS > 0 is a constant. The solution to this stochastic differential
equation is the Geometric Brownian motion, given as

X(t) = e(µ−σ
2

2
)t+σB(t).

There are multiple problems with modelling stocks as Geometric Brownian motions, the
chief issue being that it does not capture the volatile nature of stocks to full extent. To
combat this, modifications to the Black-Scholes recipie have been proposed over the years.
This paper is concerned with local volatility modelling, where the function σ only depends on
X(t) but takes on a more complex form than in (1.1). With this, researchers within the field
of finance hope to more accurately model the random ups and downs of stock values. The
particular model of our study is the quadratic volatility model, introduced by Lipton et al in
2001 [5], but most extensively studied by Andersen in 2008 [3]. His paper is of a theoretical
character, were formulas for pricing European options given a quadratic volatility model are
derived and thoroughly studied. However, calibration of this model to real world data is left
out. Some papers on the subject has been written, for example Chibane et al in 2012 [6], but
the performance of these calibration on the options market has as of 2017 not been studied
thoroughly. In this thesis we will study the volatility function as proposed by Andersen,

σ(x) = σ0((1− q)x0 + qx+
s

2
(x− x0)2).

We will calibrate it to real world data using stochastic optimization and price European
options using these parameters. Furthermore, we will explore shortcomings of the model
and discuss modifications to better adapt it to market prices.
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2 Theoretical prerequisities

The Black-Scholes framework of financial mathematics stands on a foundation of stochastic
calculus. Before dealing with the actual problem of parameter estimation for the quadratic
volatility model, we shall refresh a few key definitions and theorems from stochastic calculus.
All of the results in this chapter can be found with proofs in [1].

2.1 Stochastic calculus

Stochastic calculus is the branch of mathematics pertaining the differentiation and inte-
gration of stochastic processes. Continuous-time stochastic processes possesses properties
making standard analysis insufficient. This chapter will briefly cover the most important
parts of stochastic calculus with applications to finance. Throughout this report, we assume
that we have a filtered probability space (Ω,F ,Ft,P) readily available, where the filtration
Ft is generated by a Brownian motion B(t).

Definition 2.1. (Brownian motion) Brownian motion, also known as a Wiener process, is
a stochastic process satisfying the following properties:

• Independence of increments. B(t) − B(s), for t − s, is independent of the past. This
means that the σ-field Fs generated by the Brownian motion up until the time s is
independent of the σ-field generated by the random variable B(t)−B(s).

• Normal increments. The increment B(t)−B(s) is a random variable with distribution
N (0, t− s).

• Continuity of paths. B(t), t ≥ 0 are continuous functions of t.

Definition 2.2. (Martingale) A stochastic process X(t) is called a martingale if

E[X(t)|Fs] = X(s), t > s.

Definition 2.3. (Quadratic variation) Let f(t) be a right-continuous function of one real
variable. The quadratic variation [f, f ](t) of f(t) is defined as

[f, f ](t) = lim
δn→0

n∑
i=1

|f(tni )− f(tni−1)|2,

where the limit is taken over partitions 0 = tn0 < tn1 < · · · < tnn = t, with δn = max1≤i≤n(tni −
tni−1).

Definition 2.4. (Stochastic differential equation) Let B(t), t ≥ 0 be a Brownian motion
process. An equation on the form

dX(t) = µ(X(t), t)dt+ σ(X(t), t)dB(t),

where functions µ(x, t) and σ(x, t) are given and X(t) is the unkown process is called a
stochastic differential equation driven by Brownian motion. The functions µ(x, t) and σ(x, t)
are known as the drift and diffusion coefficients, respectively.
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2.2 Financial derivatives pricing

We now let X(t) note the value of a stock at time t and assume that X(t) follows some
model

dX(t) = µ(X(t))dt+ σ(X(t))dB(t), (2.1)

In applications, we are interested in the price of a stock up to a time T > 0, meaning
that in (2.1), the stochastic processes X(t), µ and σ should be adapted to the filtrations
Ft = σ(B(s), s ≤ t) of the Borel σ-algebra. Intuitively, we say that any outfall of the stock
price at the future time T can be anticipated by all possible trajectories of the Brownian
motion B(t) at the current time t < T up until the time T , with better predictions being
possible for t close to T . The initial value of the stochastic differential equation is a random
variable X0, which is also measurable with respect to Ft = σ(B(s), s ≤ t).

Note that (2.1) is an abuse of notation; the correct way to interpret this equation is by
integrating both sides. Thus, we have the formal definition

X(t) = X0 +

∫ t

0
µ(X(s))ds +

∫ t

0
σ(X(s))dB(s).

The integral with respect to the Brownian motion process shall be percieved as an Itô-
integral. In complement to this stochastic process representing the stock price, we also have
the risk-free asset β(t) governed by

β(t) = β(0)exp(

∫ t

0
r(s)ds), t ∈ [0, T ].

Here, r(t) is a positive stochastic process adapted to Ft = σ(B(s), s ≤ t) that represents
the instantaneous interest rate of the risk-free asset. For most applications, it is enough to
assume that r(t) = r, a deterministic constant, as the maturity time of financial derivatives
is usually not too large. Thus the interest rate can be assumed to not change by very much.

In our analysis, we are not interested in the stock-specific time-dependent dynamics gov-
erned by µ(X(t)), but rather the behaviour of the stock in risk-neutral probability measure.
The existence of such a measure is dependent on the Novikov condition, which we will now
remind us of.

Lemma 2.1. (The Novikov condition) Let {θ(t)}t≥0 be an Itô process satisfying

E
[
e

1
2

∫ T
0 θ2(t)dt

]
.

Then the stochastic process

Z(t) = e−
∫ t
0 θ(s)dB(s)− 1

2

∫ t
0 θ(t)

2ds

is a martingale relative to the filtration Ft = σ(B(s), s ≤ t)

Lemma 2.2. (Equivalent martingale measure) The measure P̃(A) defined by

P̃(A) = E[Z(T )IA]

is equivalent to the original probability measure P(A).
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Theorem 2.3. (Girsanov) Let B(t) be a P-Brownian motion and θ(t) be as in lemma 2.1.
Under the probability measure P̃(A), the stochastic process

B̃(t) = B(t) +

∫ t

0
θ(s)ds

is a standard Wiener process.

Formally, we observe the stock in the risk-neutral measure by setting θ(t) = (r(t)X(t) −
µ(X(t)))/σ(X(t)) and assume, for now, that this process satisfies the Novikov condition.
With B̃(t) being our driving Brownian motion, we are interested in a simplified stock model

dX(t) = rX(t)dt+ σ(X(t))dB̃(t)

where r(t) = r, a constant. We will use this representation of X(t) in the risk-neutral mea-
sure to derive equations that will give us fair pricing formulas for European call and put
options.

Assume first that such functions indeed exists and depends on X(t) and t. Let us define this
function as

f(x, t) = Ẽ(g(X(T )|X(t) = x),

the expected value of the pricing function g(x) of the stock in the risk-neutral measure. We
then perceive the price of our option as a stochastic process Π(t) = f(X(t), t). A straight-
forward application of the towering property of expectations give us that the discounted price
process

Π∗(t) = exp(−
∫ t

0
rds)Π(t)

is a martingale in the risk-neutral measure. We call D(t) = β−1(t) = exp(−
∫ t

0 rds) the
discount process. We now use Itô’s formula in two variables on Π∗(t) and see that

d(Π∗(t)) = D(t)dΠ(t) + Π(t)dD(t) + dD(t)dΠ(t)

= D(t)
[
∂tf(x, t) + rx∂xf(x, t) +

1

2
σ2(x)∂2

xf(x, t)− rf(x, t)
]
{X(t)=x}dt

+D(t)σ(X(t))∂xf(X(t), t)dB̃(t).

Since this process is a known martingale, it must have drift zero. This means that the fair
price function must satisfy the partial differential equation

∂tf(x, t) + rx∂xf(x, t) +
σ2(x)

2
∂2
xf(x, t)− rf(x, t) = 0

with terminal condition f(x, T ) = e−rT g(x). A quick change of variable τ = T − t along
with setting u(x, τ) = erτf(x, t) gives us a homogeneous PDE with an initial condition,

−∂τu(x, τ) + rx∂xu(x, τ) +
σ2(x)

2
∂2
xu(x, τ) = 0, x > 0, τ ∈ [0, T ], (2.2)

u(0, τ) = g(0), (2.3)

u(x, 0) = g(x). (2.4)

Numerical solution methods for partial differential equations are abound. We thus price our
asset by solving this equation.
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3 The quadratic volatility function

A stock X(t) is in the risk neutral measure described by the stochastic differential equation

dX(t) = r(t)X(t)dt+ σ(X(t))dB(t).

We will work with a general interest-rate model r(t) in this treatise. The volatility function
σ(X(t)) will be defined as

σ(x) = σ0((1− q)x0 + qx+
s

2x0
(x− x0)2) (3.1)

Here σ0 is analouge to the fixed volatility in the Black-Scholes model, q is a ”skew” parameter
and s is a measure of the convexity of σ(x). x0 is the value of the stock at time t = 0. In
order to model a tangible random phenomena, we are to impose some restrictions on the
root configuration on (3.1). First we note that the roots of (3.1) are located at

x1,2 =
x0

s

(
(s− q)±

√
q2 − 2s

)
.

We can thus conclude that the polynomial have two distinct real roots if q2 > 2s, one single
real root if q2 = 2s and no real root if q2 < 2s. For the sake of simplicity, we will from here
on out define the lower and upper roots as:

u :=
x0

s

(
(s− q) +

√
q2 − 2s

)
l :=

x0

s

(
(s− q)−

√
q2 − 2s

)
3.1 Transformation of the SDE

In order to fit the parameters σ0, s and q to real data we need to first introduce the function
Σ(x), given as

Σ(x) =

∫
dx

σ0((1− q)x0 + qx+ s
2x0

(x− x0)2)

=
2

σ0

√
2s− q2

arctan
(qx0 + s(x− x0)

x0

√
2s− q2

)
We now consider a transformed stochastic process Y (t) = Σ(X(t)). From Itô’s formula we
get that Y (t) is satisfied by the SDE

dY (t) = Σ′(X(t))dX(t) +
1

2
Σ′′(X(t))d[X,X](t) (3.2)

=
1

σ(X(t))

(
r(t)X(t)dt+ σ(X(t))dB(t)

)
+

1

2

( 1

σ(X(t))

)′
σ2(X(t))dt (3.3)

=
(r(t)X(t)

σ(X(t))
− σ′(X(t))

2

)
dt+ dB(t) (3.4)

= RΣ(Y (t))dt+ dB(t) (3.5)

5



This means that the diffusive part of Y (t) is simply a Brownian motion, and that if the drift
process RΣ(Y (t)) satisfies the Novikov condition, we can regard Y (t) as a Brownian motion
under the new measure as specified in Girsanov’s theorem. We can then use the fact that
under equivalent measure changes, the quadratic variation of a process does not change. If
such a change of measure is possible, it is certain that [Y, Y ](t) = t.

3.2 Girsanov’s theorem

We will now study the process RΣ(Y (t)) with greater care. First, we express X(t) as the
inverse process of Y (t), i.e X(t) = Σ−1(Y (t)). Tedious but standard calculations leads to
that

Σ−1(x) =
x0

s

(√
2s− q2 tan

(σ0

√
2s− q2

2
x
)

+ (s− q)
)
.

This in turns leads us to

X(t) =
x0

s

(√
2s− q2 tan

(σ0

√
2s− q2

2
Y (t)

)
+ (s− q)

)
.

tan(x) is a horrible function which is garantueed to explode in finite time. However, in
real-life applications we note that since σ0

√
2s− q2Y (t) < π, this will never happen. The

analysis can thus be fully carried out with the expression

RΣ(Y (t)) =
r(t)X(t)

σ(X(t))
+ σ′(X(t)) := θ(t).

We note that the only possible pitfall here is in the case of real roots, and that is if the stock
X(t) would hit any of the roots of σ(x). For all other cases, as long as r(t)X(t) behaves even
remotely nicely, the Novikov condition is satisfied. There exist a measure as in Lemma 2.2 in
which Y (t) is a Brownian motion. We stress again that this is because σ0

√
2s− q2Y (t) < π

in our application.

3.3 Two real roots

As seen in the analysis above, the case of real roots presents a problem that is absent in the
case of complex roots. Not only can crossing the roots lead to a violation of the Novikov
condition. Essentially, the quadratic volatility model allows us to reach negative volatility
unless the parameters σ0, s and q are such that for a stock time series x we have:

1. u ≤ min(x),

2. l ≤ min(x) < max(x) ≤ u.

These are the exact same restrictions as we arrived at when studying θ(t). We also note that
this is not a problem if the polynomial (3.1) would have complex roots.

The two cases 1. and 2. correspond to the two possible profiles of σ(x). 1. will correspond
to a ”smiling” volatility curve, where the feasible set of stock values will be X(t) ∈ [u,∞].
2. will correspond to a ”frowning” volatility curve, and admit stock values in the range
X(t) ∈ [l, u]. These two possible profiles for two real roots are exemplified in Figure 3.1.

6
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Figure 3.1: The possible profiles for σ(x) with two distinct real roots. The admissable stock
values are marked with blue. Here l = 1, u = 3 in both cases.

However, in a realistic model we should allow the stock value to reach zero. This is also im-
portant for future applications regarding pricing the stock. Thus we should impose further
restrictions on the parameters s and q in the case of real roots.

In case one, we only accept stock values higher than u. In order for this to work for low
stock values, we must have u < 0. We can write this in terms of s and q: if q2 − 2s > 0 and
s > 0, then (s−q)+

√
q2 − 2s < 0 must hold. This only allows a tiny part of the (s, q)-plane

to be admissable solutions, visualized in Figure (ref goes here).

In case two, we note that l < 0 must hold. We must also have that u > 0, since other-
wise no stock values would be admissable. Put in terms of s and q: if q2− 2s > 0 and s < 0,
then (s− q)−

√
q2 − 2s < 0 and (s− q) +

√
q2 − 2s > 0 must hold.

We finish this treatise by adressing what happens to Σ(x) when q2 − 2s > 0. We note
that whenever this is the case, we have

Σ(x) =
−2i

σ0

√
q2 − 2s

arctan
(−i(qx0 + s(x− x0))

x0

√
q2 − 2s

)
Now we use the identity arctanh(z) = −i arctan (iz) and thus we have that

Σ(x) =
2

σ0

√
q2 − 2s

arctanh
(−(qx0 + s(x− x0))

x0

√
q2 − 2s

)
.

Let us rewrite this as a function of something more familiar. By definition we have that

arctanh(x) =
1

2

(
log(1 + x)− log(1− x)

)
, x ∈ (−1, 1).

7



We note that an imaginary argument get added for x /∈ (−1, 1), which is undesirable. Keeping
x ∈ (−1, 1) let us stay on the principal branch of this multivalued function. We have, with√
q2 − 2s = η,

Σ(x) =
1

σ0η

(
log
(

1− qx0 + s(x− x0)

x0η

)
− log

(
1 +

qx0 + s(x− x0)

x0η

))
=

1

σ0η

(
log
(x0(η − q + s)− sx

x0η

)
− log

(x0(η + q − s) + sx

x0η

))
=

1

σ0η

(
log
(x0(η − q + s)

s
− x
)
− log

(x0(η + q − s)
s

+ x
))

=
1

σ0η

(
log(u− x)− log(x− l)

)
=

1

σ0η

(
log
(u− x
l − x

)
− πi

)
.

We note that in order to keep this expression real, we need to be on the non-principal
branch of the logarithmic function. This will happen whenever x ∈ (l, u). To show this, let
0 < y < u− l and set x = l + y. We get

Σ(l + y) =
1

σ0η

(
log
(u− l − y
−y

)
− πi

)
=

1

σ0η

(
log
((l − u) + y

y

)
− πi

)
=

1

σ0η
log
((u− l)− y

y

)
which is real for all allowed y. We see that this corresponds exactly to case 2. For case 1 we
will need a more careful approach. Consider the function

Σ̃(x) =
1

σ0

√
q2 − 2s

log
(x− x0

s ((s− q) +
√
q2 − 2s)

x− x0
s ((s− q)−

√
q2 − 2s)

)
.

We note that Σ̃(X(t)) = Y (t). This follows from the easily verified fact that Σ̃′(x) = σ(x)
and we carry out the same calculations as in equation (3.2)-(3.5). The chief difference
between Σ̃(x) and Σ(x) is a complex modulus of 2πi. Σ̃(x) stays on the principal branch
of the logarithm for x ∈)l, u(. Disregarding this, we have that <(Σ(x)) = <(Σ̃(x)) for all
x ∈ R. We thus redefine Σ(x) as

Σ(x) = <

(
2

σ0

√
2s− q2

arctan
(qx0 + s(x− x0)

x0

√
2s− q2

))
and note that this is the same as rotating to the principal branch of the complex logarithm
in the case of real roots. We have thus achieved what we set out to find - a real-valued
function that transforms X(t) into a Brownian motion with drift.

3.4 Two complex roots

Here instead we impose that σ(x) must be positive for all x, something that is only true if
s > 0. A smiling second-degree polynomial with complex roots will be positive everywhere.
Any combination of σ0, q and s fullfilling q2 − 2s < 0, s > 0 will thus do.
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3.5 One real root

This case stands out from the two other. First we note that one real root corresponds to
q2 = 2s, and thus Σ(x) is singular for this parameter choice. This means that another
transformation must be chosen for this case if we are to use a similar method as in the other
cases. Setting s = q2/2 the polynomial becomes

σ(x) =
σ0q

2

4x0

(
x− x0

(q − 2

q

))2

and the corresponding transformation function is

Σ(x) =

∫
4x0

σ0q2
(
x− x0

( q−2
q

))2dx = − 4x0

σ0q2
(
x− x0

( q−2
q

)) (3.6)

Let us by c = x0(q− 2)/q denote the single root of the polynomial. Redoing the calculations
of (3.2)− (3.5), we arrive at

dY (t) =
(r(t)X(t)

σ(X(t))
− σ′(X(t))

2

)
dt+ dB(t)

and can once again conclude that as long as X(t) > c a change of measure is possible by
Girsanov’s theorem. We also must have that q ≤ 2 in order to keep the stock price positive.
There are no other restrictions on the parameters, as we must have that both x0 and σ are
greater than zero by default. The risks of having to handle complex arguments associated
with the two real roots is not present either.
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4 Parameter fitting for QV-models

We now present the optimization problem that is the centerpiece of this report. We have
shown that the process Y (t) can be made a Brownian motion by a change of probability
measure. We will invoke this measure, and infer that the quadratic variation of of Y (t) must
be that of a Brownian motion, [B,B](t) = t. If we are to fit a quadratic volatility to some
data set x, we are tasked with the following problem:

Let xt be a time series, and assume that xt are discrete samples from a stochastic process

X(t) = X0 +

∫ t

0
σ(X(s))dB(s)

where σ(x) = σ0((1− q)x0 + qx+ s
2x0

(x− x0)2). Let us further define a function

Σ(x) = <

(
2

σ0

√
2s− q2

arctan
(qx0 + s(x− x0)

x0

√
2s− q2

))

and set Y (t) = Σ(X(t)). Find σ0, s and q such that we minimize the quantity

|[Y, Y ](t)− t|2.

This problem comes with a plethora of case-sensitive restrictions. In one line, we can write
the restrictions for case 1, two real roots and a smiling polynomial, as

h1(σ0, s, q) = I(q2−2s>0)I(s>0)

(
(s− q) +

√
q2 − 2s

)
≤ 0.

We can formulate the second case, two real roots and a frowning polynomial, as the conditions

h2(σ0, s, q) = I(q2−2s>0)I(s<0)

(
(s− q)−

√
q2 − 2s

)
≤ 0,

h3(σ0, s, q) = I(q2−2s>0)I(s<0)

(
(q − s)−

√
q2 − 2s

)
≤ 0.

In order to keep the volatility function positive for the case of two imaginary roots, we add
the restriction

h4(σ0, s, q) = −I(q2−2s<0)s ≤ 0.

In all cases, we have the restriction that

h5(σ0, s, q) = −σ0 ≤ 0.

This leads us to the final formulation

minimize
σ0,s,q

|[Y, Y ](t)− t|2

subject to

h1(σ0, s, q) ≤ 0,

h2(σ0, s, q) ≤ 0,

h3(σ0, s, q) ≤ 0,

h4(σ0, s, q) ≤ 0,

h5(σ0, s, q) ≤ 0.

(4.1)
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4.1 Particle swarm optimization

It turned out that classical gradient-descent based optimization methods were an ill fit for
the optimization problem (4.1). The geometry of the objective function is alternately jagged
and singular, alternately very flat. If one would start a gradient descent in the domain of
complex roots solutions (2s > q2) but the actual optimum would be in the domain of real
roots solution (2s < q2), there would be no way of passing over the one real root parabola
s = q2/2, as the objective function is singular here. To solve this problem we will utilize a
stochastic optimization method known as particle swarm optimization.

In particle swarm optimization, one randomly generates a swarm of N points in the (σ0, s, q)-
space, and gives them all a randomly velocity in a random direction. They will evaluate the
objective function value at their current location, inform one another of which particle that
did the best, and then set off in a direction influenced by three inputs:

1. Their current velocity,

2. a weighted shift towards their personal best ever,

3. a weighted shift towards the best point ever achieved by any particle.

When 500 generations passes by and no new best ever solution has been found, we consider
the current best an optimum. Alternatively, we terminate after 10,000 evaluations. The
strength of using this method here is that each individual particle is unaware of the geometry
of the problem, and is only aware of triplets (σ0, s, q) that have performed well. All N
particles will thus after a few generations swarm around well-performing points, effectively
functioning as a search party. However we must implement the constraints hi(σ0, s, q),
i ∈ (1, . . . , 5) in some new manner. The answer to this is to utilize a penalty method. In a
penalty method, we instead solve the unconstrained problem

minimize
σ0,s,q

|[Y, Y ](t)− t|2 + µk

5∑
i=1

gi(σ0, s, q). (4.2)

Here gi(σ0, s, q) = max{0, hi(σ0, q, s)}2, and µk is the penalty term. The goal is to first set
µ1 = 1, fairly low, and then increase it by a factor of ten for a few generations. In the
next generation, we still remember the last optimum and set it as the current best in the
particle swarm implementation. As µk → ∞, we will find the optimum with regard to the
restrictions.

4.2 Single root configuration

The chief difference from the two roots case is that Y (t) = Σ(X(t)) is given by (3.6) and
we have fewer, different constraints. With h1(σ0, q) = q − 2 and h2(σ0, q) = −σ0, particle
swarm optimization will be used to solve the problem

minimize
σ0,q

|[Y, Y ](t)− t|2 + µk

2∑
i=1

gi(σ0, s, q).

For a detailed description of particle swarm optimization, see [2].
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5 Testing of the method on sample cases

To ensure ourselves that good results can and will be achieved by solving (4.1) for some
dataset X, we will test the optimization algorithm on four sample cases. In all of these
cases, we fix x0 = 55, σ0 = 0.25 and vary s and q so that different root configurations will
be featured and tested. The test cases will be generated according to the forward Euler-
Mayurama scheme of the stock model. Here, we will omit the drift part as it does not
have any effect on the quadratic variation. With σ(x) as in (3.1) we generate our test cases
according to the following scheme

X0 = x0, (5.1)

Xn = Xn−1 +
√

∆tσ(Xn−1)Zn−1. (5.2)

Here ∆t is a time step corresponding to one trading day as a fraction of year, and Zn are
N (0, 1)-distributed random variables. We will generate the equivalence of two years of fi-
nancial data, with ten time steps per day. We will then look at the imagined closing values
of each day. The reason behind raising the resolution of the simulation is to combat numer-
ical instability. In order for the Euler-Maruyama scheme to be unconditionally stable, the
function σ(x) must be Lipschitz continuous, which is not the case with quadratic volatility.
The risk of exploding numerical values of the simulated stock Xn decreases drastically with
small time steps, however.

5.1 Geometrical properties of objective function depending on data

Before we conclude this chapter on implementation we shall study the archetypical geometry
of |[Y, Y ](t) − t|2, and how it depends on the resolution of the data. Here we assume that
the stochastic process X(t) follows a quadratic volatility model with

σ0 = 0.25, s = 2.5, q = −0.5, x0 = 55. (5.3)

This corresponds to a two complex roots scenario.

First we use the Euler-Mayurama scheme (5.2) to generate the equivalence of ten observations
per day for 506 trading days, roughly two trading years. For the sake of simplicity we assume
the observations to be equally spaced, and thus ∆t = 1/2530.
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(a)

(b)

Figure 5.1: |[Y, Y ](t)− t|2 +µ1
∑5

i=1 gi(σ0, s, q) and
(
|[Y, Y ](t)− t|2 +µ1

∑5
i=1 gi(σ0, s, q)

)−1
.

We see in Figure 5.1(a) clearly which areas that violate the constraints - the yellow areas
outside the parabola s = q2/2 is the penalty function being activated. To improve read-
ability of this figure, we simple set |[Y, Y ](t) − t|2 + µ1

∑5
i=1 gi(σ0, s, q) = 10 whenever a

constraint is violated. However, we also see that the objective function is seemingly very flat
and featureless in the feasible set. To get a grip on where a global minima can be found,
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we instead study (|[Y, Y ](t)− t|2 + µk
∑5

i=1 gi(σ0, s, q))
−1, visualized in 5.1(b). Here, a thin

strip of combinations of s and q that result in a small error becomes clearly visible.

When studying the same geometry as in 5.1(b) from a different angle, we note that ridge is
jagged with many local minima. The proposed global minima s = 2.5, q = −0.5 is close to
the peak of the ridge. The value of the objective function at this point is around 0.00223,
indicating that the simulation faithfully follows a possible trajectory of X(t). When the
optimization program was run for this particular X(t) generated by the parameters (5.3),
it settled for the parameters σ0 = 0.2495, s = 2.5062, q = −0.5109, with an ojbective value
0.00209. We thus see that we can faithfully reconstruct the underlying process when the
data is of a decent resolution.

It is time to study what the method can make out of lower-resolution data. For this pur-
pose we will study the same trajectory as earlier, but only utilize every tenth data point,
representing the end of day values of our fictional stock. We can se the resulting geometry
in Figure 5.3. The ridge is now almost flat and not at all jagged. The objective at s = 2.5,
q = −0.5 is 0.0223. When the optimization program was run on this data set, it settled for
parameters σ0 = 0.3067, s = 5.7544, q = 0.9951, resulting in an objective of 0.0193. This
indicates that for low resolution data, it is difficult to reconstruct a constructed data set, as
there are many candidate solutions of equal or better quality. We finish with studying the
profile of

(
|[Y, Y ](t)− t|2 + µ1

∑5
i=1 gi(σ0, s, q)

)−1
under the assumption that σ0 = 0.3067 in

Figure 5.4. Now the ridge has a clear top. This indicates that if one can accurately deter-
mine σ0, s and q are easy to determine as well. However, this set was to small to capture
the intended σ0.

Figure 5.2:
(
|[Y, Y ](t)− t|2 + µ1

∑5
i=1 gi(σ0, s, q)

)−1
, high resolution. Note the fluctuations.
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Figure 5.3:
(
|[Y, Y ](t) − t|2 + µ1

∑5
i=1 gi(σ0, s, q)

)−1
, low resolution. Markedly different

geometry compared to Figure 5.2.

Figure 5.4:
(
|[Y, Y ](t)− t|2 +µ1

∑5
i=1 gi(σ0, s, q)

)−1
, low resolution. Under the false assump-

tion that σ0 = 0.3067. Clear top visible.
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5.2 Test for two real roots, case 1

Here we set

σ0 = 0.25, s = 1, q =
3

2
, x0 = 55. (5.4)

giving us roots l = −55 and u = 0. We note that the true parameters are captured fairly
well for the high resolution data. For low resolution data a good fit is achieved, but with
completely wrong parameters. This indicates that tighter samples are necessary in order to
unambiguously determine what the underlying process is.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1

1.5

2

Fit of test case 1, high resolution data.
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Figure 5.5
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Fit of test case 1, low resolution data.
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Figure 5.6
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5.3 Test for two real roots, case 2

Here we set
σ0 = 0.25, s = −2, q = 0, x0 = 55. (5.5)

giving us roots l = 0 and u = 110. As for the first test case, the high resolution data estimates
the parameters fairly. This time, we also managed to capture the parameters somewhat with
the low resolution data.
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Fit of test case 2, high resolution data.

Estimates:  = 0.251, s = -1.827, q = 0.049

Figure 5.7
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Fit of test case 2, low resolution data.

Estimates:  = 0.245, s = -2.361, q = -0.183

Figure 5.8
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5.4 Test for two complex roots

Here we set
σ0 = 0.25, s = 2, q = 0, x0 = 55. (5.6)

giving us roots for x = 55(1± i). The results are similar to those of real roots, case 1. The
higher resolution data does not capture the parameters perfectly, but it does a much better
job than the lower resolution data.
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Fit of test case 3, high resolution data.
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Figure 5.9
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Figure 5.10
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5.5 Test for a single real root

Here we set
σ0 = 0.25, s = 2, q = 2, x0 = 55. (5.7)

giving us a double root at x = 0. Here we manage to determine the underlying parameters
almost perfectly for both the high and the low resolution data sets. In practice, this problem
has one dimension less than the other two, meaning that there is less risk for finding a local
minima.
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Fit of test case 4, high resolution data.

Estimates:  = 0.251, s = 1.9922, q = 1.9922

Figure 5.11
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Figure 5.12
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5.6 Test conclusion

For higher resolution data, the method can with some accuracy describe the underlying
parameters of the random process For lower resolution data, there appear to be many con-
testing solutions that are good enough, and provide a decent fit. As a final test case, the
parameter set σ0 = 0.20, s = 2, q = 1 was used to generate a 223 data points sample (roughly
100 samples every second for two years), starting from x0 = 20. We then look at increas-
ingly large samples from this set, and estimate the parameters. The results are visualized in
Figure 5.13.
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Figure 5.13
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To complement Figure 5.13, we also include plots of the actual proposed polynomials as given
by the parameters. Here the target polynomial is in black, and the polynomial as proposed
by the model is marked by blue stars. We see that after the sample consisting out of 210

samples we get somewhat accurate results around x0, and the polynomial is reconstructed
to very little error after 211 samples. Smaller samples tend to overestimate the steepness of
the polynomial.
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Figure 5.14: Gradual increases in sample resolution with the resulting estimated polynomials
marked by blue stars. The true polynomial is given by the black curve.
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6 Option pricing using QV-models

The value of a European call option at expiry is (X(T )−K)+, and the value of a put option
is (K −X(T ))+, where K is the strike price and X(T ) is the underlying stock value at the
expiry time T . Remembering (2.2), for European call options we are tasked with solving the
initial-value problem

−∂τ c(x, τ) + rx∂xc(x, τ) +
σ2(x)

2
∂2
xc(x, τ) = 0, x > 0, τ ∈ [0, T ], (6.1)

c(0, t) = 0, (6.2)

c(x, 0) = (x−K)+. (6.3)

For put options the corresponding PDE is

−∂τp(x, τ) + rx∂xp(x, τ) +
σ2(x)

2
∂2
xp(x, τ) = 0, x > 0, τ ∈ [0, T ],

p(0, τ) = Kerτ ,

p(x, 0) = (K − x)+.

One of the main strengths of the Black-Scholes model σ(x) = σBSx is that this PDE has
a closed-form solution as the log-normal cumulative probability distribution. There is no
close form solution in the case of quadratic volatility, and we will have to resort to numerical
methods. However, in order to use the more popular numerical methods for PDE:s, we’re
going to have to truncate to some compact subinterval of R in order to solve this equation for
x. We choose the interval I = [0,max{6x0, u}], where x0 is the initial value of the stock we
aim to price options for. We thus deal with parabolic initial-boundary condition problems,
with an added boundary condition

c(max{6x0, u}, τ) = max{6x0, u} −Kerτ ,
p(max{6x0, u}, τ) = 0.

This is assuming that we do not choose strike prices as large as 6x0. These imposed boundary
conditions make sure that the solution stays continuous along the boundary of the space-time
domain [0,max{6x0, u}]× [0, T ], and serves as an estimate of limx→∞ c(x, τ), limx→∞ p(x, τ).
Remembering the put-call parity

c(x, τ)− p(x, τ) = x−Ke−rτ

we realize that solving the PDE for only one case is sufficient for determining both prices.
We thus focus on solving the PDE corresponding to call options. In order to do so, we
use the Matlab function pdepe.m, which uses a continuous second-order Galerkin finite
element approximation for the space variable and uses the stiff ODE-solver ode15.m for
time-discretization.
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7 Application real data

In this section we present the results of solving the penalty method problem (4.2) when the
time series xt is an actual stock history. We will consider four different stocks, collected
from the Nasdaq stock exchange. We will observe the last two years of end-of-day values,
corresponding to 506 data points. From Section 4.3 we have indications that such a low res-
olution on the time series risk giving us inaccurate estimates, especially of s and q. Figure
5.13 indicate that a sample larger than 1000 is required to reach acceptable accuracy.

The stocks that are up for consideration are Apple, Microsoft, Netflix and Tesla. The two
first companies generally enjoys low stock volatility, while the two last have underwent rapid
growth in the last few years, with some downfalls as well. These thus represent higher-
volatility cases, in which we expect quadratic volatility to perform significantly better than
pure Black Scholes. The stock profiles alongside the fit of a quadratic variation model can
be seen in figure 7.1-7.4. For reference, the fit according to a Black-Scholes model is included
for reference, i.e the case σ(x) = σBSx.
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Figure 7.1: Apple stock data from 2015-12-01 to 2017-12-01 [7]. Quadratic volatility fit:
σ0 = 0.1771, s = 16.0776, q = −1.1303. Black Scholes volatility: σBS = 0.2173.
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Figure 7.2: Microsoft stock data from 2015-12-01 to 2017-12-01 [8]. Quadratic volatility fit:
σ0 = 0.2321, s = 15.9339, q = −2.7437. Black Scholes volatility: σBS = 0.2089.
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Figure 7.3: Tesla stock data from 2015-12-01 to 2017-12-01 [9]. Quadratic volatility fit:
σ0 = 0.3179, s = 8.1029, q = −0.1312. Black Scholes volatility: σBS = 0.3715.
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Figure 7.4: Netflix stock data from 2015-12-01 to 2017-12-01 [10]. Quadratic volatility fit:
σ0 = 0.2829, s = 10.9509, q = −0.6675. Black Scholes volatility: σBS = 0.3753.
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Figure 7.5: Prices on call options derived from solving (6.1) with parameters calibrated from
the stock data. Black line is actual prices for options expiring 2018-02-16, taken from [7]-[10]
on 2017-12-08.
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8 Conclusion

8.1 Performance of parameter estimation program

It turned out the transformation-optimization method of parameter calibration produce very
good results for high resolution data. We also note from the test cases that the even when
the estimated polynomial might seem to be off target, it remains acceptably close to the
target function σ(x) for x in the neighbourhood of x0. For smaller samples the main issue
seem to be overestimation of the steepness of the polynomial. We see this in Figure 5.14, and
it is indicated by that s is estimated to be quite large in all real-life samples. In conclusion,
one would need tighter samples than end-of-day values in order to achieve the best possible
results when applying this method to real data. However, for strike prices close to x0, we
get fair estimates.

8.2 Quality of real life applications

It is greatly evident from Figure 7.1-7.4 that even with a low resolution sample, quadratic
volatility describes real life data to greater accuracy than just modelling the stock as a
Geometric Brownian motion. Since we have concluded that low-resolution estimates of σ(x)
behaves well locally, we also get decent and very realistic prices on European call options
when using quadratic volatility. For the more volatile stocks, Tesla and Netflix, quadratic
volatility prices were much closer than the prices given by Black Scholes. Thus looking into
our local volatility model might be a good idea if historic stock data indicate that σBS > 0.3.
For the less volatile stocks, quadratic volatility and Black Scholes were an even match and
they both estimated market values well.

8.3 Possible expansions of the model and future work

In real-life applications of stochastic calculus for pricing options, more advanced models than
the still very much simplified one we use here are considered. Common methods include using
stochastic interest rate models for pricing of long-term contracts (we assume constant interest
rates) and stochastic volatility models for more fine-tuned volatility calibration. Our current
quadratic volatility model fall under the category of local volatility models. Putting

L(x) = (1− q)x0 + qx+
s

2x0
(x− x0)2

we propose an extended model

dX(t) = r(t)X(t)dt +
√
ν(t)L(X(t))dB1(t)

dr(t) = αR(r(t), t)dt + βR(r(t), t)dB2(t)
dν(t) = αν(ν(t), t)dt + βν(ν(t), t)dB3(t)

where {Bi}i=1,2,3 are three Brownian motions that may or may not be correlated. This is a
quadratic volatility version of a standard stochastic interest rate-volatility model. αR,ν , βR,ν
are adapted processes describing the dynamics of r(t) and ν(t) = σ2

0(t). We see in Figure
7.5 that in applications to option pricing, the added parameters of quadratic volatility does
indeed provide additional accuracy, at least in the sense of using market prices as a bench
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mark. Thus it is reasonable to assume that using a quadratic local volatility function in
conjunction with sophisticated stochastic models of interest rates and volatility would provide
even further accuracy. A problem that arises here is the excessive amount of parameters;
let us briefly consider the popular Vasciek model of interest rates and the GARCH model of
volatility. This would result in the system of equations

dX(t) = r(t)X(t)dt +
√
ν(t)L(X(t))dB1(t)

dr(t) = a(b− r(t))dt + cdB2(t)
dν(t) = α(β − ν(t))dt + γν(t)dB3(t)

This gives us an addition of the parameters a, b, c describing the interest rate dynamics, and
α, β, γ describing the volatility. Using a similar approach as in this report, one would have
a far more complicated quadratic volatility structure, and the calibration have up to eight
degrees freedom. This is without considering the possible correlation structure of the driving
Brownian motions. My hypothesis is that very high-resolution data would be necessary to
accurately calibrate these parameters. A different approach to a similar model can be found
in [4], where parameter averaging methods are used to derive analytical pricing methods.
This article inferes that there is indeed much power in local-stochastic volatility models, but
that calibration routines is a delicate problem for future research.
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A Matlab code for parameter calibration

A.1 Main.m

1 clear all

2 close all

3 clc

4

5 % stock takes on the values {Apple , Netflix , Microsoft , Tesla}

6 % Data gathered from Nasdaq.com on 2017 -12 -08

7 stock = ’Tesla ’;

8 X = flip(Data(stock));

9 subplot (2,1,1)

10 plot(linspace (0,2,length(X)),X)

11 stock = strcat(’\fontsize {14}’,stock);

12 xlabel(’\fontsize {12} Years’)

13 ylabel(’\fontsize {12} Stock value’)

14 title(strcat(stock ,’\fontsize {14}, 2 years history of stock ’))

15

16 %% Optimize according to two different roots

17 tic

18 [sigma ,q,s,L2error] = Optimization(X);

19 discriminant = (q^2-2*s);

20 polynomial = FunctionString(sigma ,q,s,X(1))

21 subplot (2,1,2)

22 PlotQuadraticVariation(sigma ,q,s,X)

23 toc

24

25 %% Optimize according to a double root

26 [sigma ,q,L2error] = OptimizationSingleRoot(X);

27 s = abs(q)^2/2;

28 polynomial = FunctionString(sigma ,q,s,X(1))

29 PlotQuadraticVariationSingleRoot(sigma ,q,X)

30

31 %% Fit a standard Black Scholes for reference

32 subplot (2,1,2)

33 [sigmaBS ,L2error] = OptimizationBlackScholes(X);

34 PlotQuadraticVariationBS(sigmaBS ,X)

35 xlabel(’\fontsize {12} Time in years’)

36 ylabel(’\fontsize {12} Accumulated quadratic variation ’)

37 legend(’Quadratic volatility ’,’Target ’,’Black Scholes ’)

38 title(strcat(stock ,’\fontsize {14}, QV vs. Black Scholes ’))
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A.2 Optimization.m

1 function [sigma ,q,s,fitnessValue] = Optimization(X)

2 n = length(X);

3 populationSize = 100;

4 alpha = 0.1;

5 beta = 0.9999;

6 dt = 0.1;

7 c1 = 2;

8 c2 = 2;

9 bestEver = 1000000000000000;

10 fitness = zeros(populationSize ,1);

11 bestPerformance = 1000000000000000* ones(populationSize ,1);

12 bestPlaceEver = [100* rand 100* rand 100* rand];

13 maxSpeed = 0.5;

14 inertiaMin = 0.3;

15

16 for k = 1:5

17 bestPlace = zeros(populationSize ,3);

18 [swarm ,swarmVelocity] = generateSwarm(populationSize ,alpha ,dt,X

(1));

19 sinceNice = 0;

20 iteration = 0;

21 inertia = 15;

22 while sinceNice < 500 && iteration < 10000

23

24 for iFitness =1: populationSize

25 fitness(iFitness) = EvaluateIndividual(swarm(iFitness ,:),

X,n,k);

26

27 end

28

29 for iBest =1: populationSize

30 if fitness(iBest) < bestPerformance(iBest)

31 bestPerformance(iBest) = fitness(iBest);

32 bestPlace(iBest ,:) = swarm(iBest ,:);

33 end

34 end

35

36 [bestThisGeneration ,bestTemp] = min(bestPerformance);

37

38

39 if bestThisGeneration < bestEver

40 temple = bestEver;

41 TempTemp = bestThisGeneration;

42 bestEver = bestThisGeneration;

43 bestPlaceEver = swarm(bestTemp ,:);

44 sinceNice = 0;

45 %if abs(temple -TempTemp) <10^(-4)

46 % [swarm ,swarmVelocity] = generateSwarm(populationSize

,alpha ,dt,X(1));
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47 %end

48

49 end

50

51 for iUp=1: populationSize

52 swarmVelocity(iUp ,:) = inertia*swarmVelocity(iUp ,:)...

53 + c1/dt*rand*( bestPlace(iUp ,:)-swarm(iUp ,:))...

54 + c2/dt*rand*( bestPlaceEver -swarm(iUp ,:));

55 speed = sqrt(swarmVelocity(iUp ,1)^2+ swarmVelocity(iUp ,2)

^2);

56

57 if speed > maxSpeed

58 swarmVelocity(iUp ,:) = maxSpeed*swarmVelocity(iUp ,:)/

speed;

59 end

60

61 swarm(iUp ,:) = swarm(iUp ,:) + swarmVelocity(iUp ,:)*dt;

62

63

64 end

65

66 inertia = inertia*beta^( iteration)+inertiaMin;

67 iteration = iteration + 1;

68 sinceNice = sinceNice + 1;

69

70 end

71 end

72 localOptimum = bestPlaceEver;

73 fitnessValue = bestEver;

74 sigma = localOptimum (1);

75 q = localOptimum (2);

76 s = localOptimum (3);

77

78 end
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A.3 GenerateSwarm.m

1 function [swarm ,swarmVelocities] = generateSwarm(populationSize ,alpha

,deltaT ,x0)

2

3 swarm = zeros(populationSize ,3);

4 swarmVelocities = zeros(populationSize ,3);

5

6 for i=1: populationSize

7 swarm(i,1) = rand *1;

8 swarm(i,2) = (rand*x0/32-x0/16) *0.5;

9 swarm(i,3) = (rand*x0/32-x0/16) *0.5;

10

11 swarmVelocities(i,1) = alpha/deltaT *( -1/2+ rand);

12 swarmVelocities(i,2) = alpha/deltaT *( -1/2+ rand);

13 swarmVelocities(i,3) = alpha/deltaT *( -1/2+ rand);

14 end

15

16 end

33



A.4 EvaluateIndividual.m

1 function [f] = EvaluateIndividual(swarm ,X,n,k)

2 X0 = X(1);

3 sigma = swarm (1);

4 q = swarm (2);

5 s = swarm (3);

6 xdata = zeros(n-1,2);

7 ydata = cumsum(ones(n-1,1))/253;

8

9 for i=1:n-1

10 xdata(i,1)=X(i+1);

11 xdata(i,2)=X(i);

12 end

13

14 quadraticVariation = zeros(1,n-1);

15 for iTime =1:n-1

16 part1 = sigma*sqrt (2*s-q^2);

17 part2 = q*X0+s*(xdata(iTime ,1)-X0);

18 part3 = X0*sqrt (2*s-q^2);

19 part4 = q*X0+s*(xdata(iTime ,2)-X0);

20 quadraticVariation(iTime +1) = quadraticVariation(iTime)

...

21 + real (2/( part1)*(( atan(part2

/part3))) -...

22 2/( part1)*(( atan(part4/

part3))))^2;

23 end

24

25 e = 0;

26 for i=1:n-1

27 errorI = (quadraticVariation(i)-ydata(i)).^2;

28 e = e + errorI;

29 end

30

31 constraints = Constraints(sigma ,s,q);

32 f = sqrt(e/n)*253/n;

33 f = f + (10^k)*constraints;

34 end
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A.5 Constraints.m

1 function constraints = Constraints(sigma ,s,q)

2 case1 = 0;

3 case2 = 0;

4 case3 = 0;

5

6 if (q^2 > 2*s) && (s > 0)

7 case1 = 1;

8 end

9

10 if (q^2 > 2*s) && (s < 0)

11 case2 = 1;

12 end

13

14 if (q^2 < 2*s)

15 case3 = 1;

16 end

17

18 h1 = case1 *((s-q)+sqrt(q^2-2*s));

19 h2 = case2 *((s-q)-sqrt(q^2-2*s));

20 h3 = case2 *((q-s)-sqrt(q^2-2*s));

21 h4 = -case3*s;

22 h5 = -sigma;

23

24 g1 = max(h1 ,0) ^2;

25 g2 = max(h2 ,0) ^2;

26 g3 = max(h3 ,0) ^2;

27 g4 = max(h4 ,0) ^2;

28 g5 = max(h5 ,0) ^2;

29

30

31 constraints = g1+g2+g3+g4+g5;

32

33 end
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A.6 PlotQuadraticVariation.m

1 function PlotQuadraticVariation(sigma ,q,s,X)

2 X0 = X(1);

3 n = length(X);

4 Y = real (2/( sigma*sqrt (2*s-q^2))*atan((q*X0+s*(X-X0))/(X0*sqrt (2*

s-q^2))));

5

6

7 QY = zeros(length(X) ,1);

8 for i=2:n

9 QY(i) = QY(i-1) + (Y(i) - Y(i-1))^2;

10 end

11 time = linspace (0,1,length(QY))*n/253;

12 plot(time (1:10: end),QY (1:10: end), ’+’)

13 hold on

14 plot(time ,time ,’black’)

15 axis ([0 time(end) 0 time(end)+0.25])

16 end

A.7 FunctionString.m

1 function polynomial = FunctionString(sigma ,q,s,x0)

2 a = num2str(sigma*x0*((1-q)+s/2));

3 b = num2str(sigma *(q-s));

4 c = num2str(sigma*s/(2*x0));

5 polynomial = strcat(a,"+(" ,b,"x)+(",c,")x^2");

6 end
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A.8 OptimizationSingleRoot.m

1 function [sigma ,q,fitnessValue] = OptimizationSingleRoot(X)

2 n = length(X);

3 populationSize = 100;

4 alpha = 0.1;

5 beta = 0.9999;

6 dt = 0.1;

7 c1 = 2;

8 c2 = 2;

9 bestEver = 1000;

10 fitness = zeros(populationSize ,1);

11 bestPerformance = 1000* ones(populationSize ,1);

12 bestPlaceEver = [1 1];

13 maxSpeed = 1;

14 inertiaMin = 0.3;

15

16 for k = 1:5

17 bestPlace = zeros(populationSize ,2);

18 [swarm ,swarmVelocity] = generateSwarmSingleRoot(populationSize ,

alpha ,dt);

19 sinceNice = 0;

20 iteration = 0;

21 inertia = 15;

22 while sinceNice < 500 && iteration < 100000

23

24 for iFitness =1: populationSize

25

26 fitness(iFitness) = EvaluateIndividualSingleRoot(swarm(

iFitness ,:),X,n,k);

27 end

28

29 for iBest =1: populationSize

30 if fitness(iBest) < bestPerformance(iBest)

31 bestPerformance(iBest) = fitness(iBest);

32 bestPlace(iBest ,:) = swarm(iBest ,:);

33 end

34 end

35

36 [bestThisGeneration ,bestTemp] = min(bestPerformance);

37

38 if bestThisGeneration < bestEver

39 bestEver = bestThisGeneration;

40 bestPlaceEver = swarm(bestTemp ,:);

41 sinceNice = 0;

42 end

43

44 for iUp=1: populationSize

45 swarmVelocity(iUp ,:) = inertia*swarmVelocity(iUp ,:)...

46 + c1/dt*rand*( bestPlace(iUp ,:)-swarm(iUp ,:))...

47 + c2/dt*rand*( bestPlaceEver -swarm(iUp ,:));
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48 speed = sqrt(swarmVelocity(iUp ,1)^2+ swarmVelocity(iUp ,2)

^2);

49

50 if speed > maxSpeed

51 swarmVelocity(iUp ,:) = maxSpeed*swarmVelocity(iUp ,:)/

speed;

52 end

53

54 swarm(iUp ,:) = swarm(iUp ,:) + swarmVelocity(iUp ,:)*dt;

55

56

57 end

58

59 inertia = inertia*beta^( iteration)+inertiaMin;

60 iteration = iteration + 1;

61 sinceNice = sinceNice + 1;

62 end

63 end

64 localOptimum = bestPlaceEver;

65 fitnessValue = min(fitness);

66 sigma = localOptimum (1);

67 q = localOptimum (2);

68 fitnessValue

69 end
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A.9 GenerateSwarmSingleRoot.m

1 function [swarm ,swarmVelocities] = generateSwarm(populationSize ,alpha

,deltaT)

2

3 swarm = zeros(populationSize ,2);

4 swarmVelocities = zeros(populationSize ,2);

5

6 for i=1: populationSize

7 swarm(i,1) = rand *1;

8 swarm(i,2) = rand *20 -10;

9

10 swarmVelocities(i,1) = alpha/deltaT *( -1+2* rand);

11 swarmVelocities(i,2) = alpha/deltaT *( -1/2+ rand);

12 end

13

14 end

A.10 EvaluateIndividualSingleRoot.m

1 function f = EvaluateIndividualSingleRoot(swarm ,X,n,k)

2 X0 = X(1);

3 sigma = swarm (1);

4 q = swarm (2);

5 xdata = zeros(n-1,2);

6 ydata = cumsum(ones(n-1,1))/253;

7

8 for i=1:n-1

9 xdata(i,1)=X(i+1);

10 xdata(i,2)=X(i);

11 end

12

13 quadraticVariation = zeros(1,n-1);

14 for iTime =1:n-1

15 part1 = -4*X0/(sigma*q^2);

16 part2 = 1/( xdata(iTime ,1)-X0*((q-2)/q));

17 part3 = 1/( xdata(iTime ,2)-X0*((q-2)/q));

18 quadraticVariation(iTime +1) = quadraticVariation(iTime)

...

19 + (part1 *(part2 -part3))^2;

20 end

21

22 e = 0;

23 for i=1:n-1

24 errorI = (quadraticVariation(i)-ydata(i)).^2;

25 e = e + errorI;

26 end

27

28 constraints = ConstraintsSingeRoot(sigma ,q);

29 f = sqrt(e/n)*253/n;

30 f = f + (10^k)*constraints;

31 end
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A.11 ConstraintsSingleRoot.m

1 function constraints = ConstraintsSingeRoot(sigma ,q)

2 h1 = -sigma;

3 h2 = q-2;

4

5 g1 = max(h1 ,0) ^2;

6 g2 = max(h2 ,0) ^2;

7

8 constraints = g1+g2;

9

10

11

12

13 end

A.12 PlotQuadraticVariationSingleRoot.m

1 function PlotQuadraticVariationSingleRoot(sigma ,q,X)

2 X0 = X(1);

3 n = length(X);

4 Y = -4*X0/(sigma*q^2)./(X-X0*((q-2)/(q)));

5

6

7 QY = zeros(length(X) ,1);

8 for i=2:n

9 QY(i) = QY(i-1) + (Y(i) - Y(i-1))^2;

10 end

11 time = linspace (0,1,length(QY))*n/253;

12 plot(time (1:10: end),QY (1:10: end), ’+’)

13 hold on

14 plot(time ,time ,’black’)

15 axis ([0 time(end) 0 time(end)+0.25])

16 end
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A.13 OptimizationBlackScholes.m

1 function [sigma ,L2error] = OptimizationBlackScholes(X)

2 n = length(X);

3 xdata = zeros(n-1,2);

4 for i=1:n-1

5 xdata(i,1)=X(i+1);

6 xdata(i,2)=X(i);

7 end

8

9 quadraticVariation = zeros(1,n-1);

10 for iTime =1:n-1

11 quadraticVariation(iTime +1) = quadraticVariation(

iTime)...

12 + (log(xdata(iTime ,1)/xdata(iTime

,2)))^2;

13 end

14

15 fun = @(x)(1/x(1) .^2* quadraticVariation(end)-n/251) .^2;

16 lb = [0];

17 ub = [1000];

18 A = [];

19 b = [];

20 Aeq = [];

21 beq = [];

22 x0 = [0.5];

23 [x,fval] = fmincon(fun ,x0,A,b,Aeq ,beq ,lb,ub);

24

25 sigma = x;

26 L2error = sqrt(fval);

27

28

29 end

A.14 PlotQuadraticVariationBS.m

1 function PlotQuadraticVariationBS(sigma ,X)

2 hold on

3 n = length(X);

4 Y = log(X)/sigma;

5

6 QY = zeros(length(X) ,1);

7 for i=2:n

8 QY(i) = QY(i-1) + (Y(i) - Y(i-1))^2;

9 end

10 time = linspace (0,1,length(QY))*n/251;

11 plot(time (1:10: end),QY (1:10: end), ’o’)

12 axis ([0 time(end) 0 time(end)+0.25])

13 end

41



B Code for pricing call option using PDE

Note that the parameters σ, s, q, x0, r and σBS must be manually inserted in the code below, due
to limitations in the Matlab function pdepe.m.

1 function PriceCallOption

2

3 close all

4 x0 = 65;

5 tradingDays = 48;

6 strikePrice = 55;

7 sPString = num2str(strikePrice);

8 dt = 1/251;

9 h = 1/16;

10

11 m = 0;

12 x = linspace (0,6*x0 ,6*x0/h);

13 t = linspace(0, tradingDays*dt,tradingDays);

14

15 sol = pdepe(m,@pdex1pde ,@pdex1ic ,@pdex1bc ,x,t);

16 solBS = pdepe(m,@pdex2pde ,@pdex1ic ,@pdex1bc ,x,t);

17 % Extract the first solution component as u.

18 u = sol(:,:,1);

19 uBS = solBS (:,:,1);

20

21

22

23 for time =1: tradingDays

24 clf

25 plot(x,u(time ,:))

26 hold on

27 plot(x,uBS(time ,:))

28 axis ([0.8* strikePrice 1.2* strikePrice 0 45])

29 title(strcat(’Strike price is $’,sPString))

30 xlabel(’Stock Value’)

31 ylabel(’Call option price’)

32 drawnow

33 pause (0.01)

34 sol = sol(end ,:);

35 end

36 QVPrice = num2str(sol(end ,round(x0/h)));

37 BSPrice = num2str(uBS(end ,round(x0/h)));

38 PricingInfo = strcat(’Strike: $’,sPString ,’. QV price is $’,QVPrice ,’

. BS price is $’,BSPrice)

39 % --------------------------------------------------------------

40 function [c,f,s] = pdex1pde(x,t,u,DuDx)

41 sigma = 0.25;

42 s = 2.0;

43 q = 00;

44 r = 0.05;

45 x0 = 65;

46 volatility = sigma *((1-q)*x0+q*x0+(s/(2*x0))*(x-x0).^2);
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47 interest = r*x;

48

49 c = 1;

50 f = volatility .^2/2* DuDx+interest*u;

51 s = 0;

52 % --------------------------------------------------------------

53 function [c,f,s] = pdex2pde(x,t,u,DuDx)

54 sigma = 0.23;

55 s = 0.37;

56 q = 0.725;

57 r = 0.05;

58 x0 = 65;

59 volatility = sigma *((1-q)*x0+q*x0+(s/(2*x0))*(x-x0).^2);

60 interest = r*x;

61

62 c = 1;

63 f = volatility .^2/2* DuDx+interest*u;

64 s = 0;

65 % --------------------------------------------------------------

66 function u0 = pdex1ic(x)

67 strikePrice = 55;

68 u0 = max((x-strikePrice) ,0);

69 % --------------------------------------------------------------

70 function [pl,ql,pr,qr] = pdex1bc(xl,ul,xr,ur,t)

71 x0 = 65;

72 r = 0.05;

73 strikePrice = 55;

74 dt = 1/251;

75

76 pl = ul;

77 ql = 0;

78 pr = ur-max ((6*x0-strikePrice) ,0)-strikePrice*exp(r*(t));

79 qr = 0;
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