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Abstract
The usage of drones has in recent years increased for both civilian and military
purposes. With their small size and tractability, weaponized drones pose a major
threat and are difficult to detect and classify with modern equipment such as radar.
Since drones share many similar features with other common objects such as birds
in its operation space, radar struggle with accurate classification of drones. An-
other approach to detect drones, as proposed in this thesis, is to utilize a camera
based deep-learning object detection algorithm to detect and classify drones. To
utilize a deep-learning algorithm, extensive computer resources and a vast amount
of annotated data are required. However the availability of resources and annotated
data is often limited. This thesis optimizes and adapts a RetinaNet and imple-
ments temporal information using three different methods. The implementations
of temporal information utilize a pre-trained backbone to minimize the demand of
annotated data. Furthermore a semi-supervised learning framework is developed to
enable the use of unannotaded data and background data. The framework generates
annotations for unannotated data and thus expanding the amount of available data.
The methods for integrating temporal information and the semi-supervised learn-
ing framework was evaluated against the same test data as other state-of-the-art
algorithms. The results show that the proposed methods for integrating temporal
information were not advantageous with regards to the AP-score. However, by in-
corporating the generated annotated data and background data, the performance of
the algorithm vastly improved with regards to the F1-score. It could not outperform
state-of-the-art methods, however the resulting framework has shown great promise
of being able to be used as an annotation tool for unannotated data.

Keywords: Deep Learning, Object detection, RetinaNet, Temporal information, De-
tectron2, Semi-supervised learning.
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1
Introduction

This chapter will present the problems investigated in this master thesis, related
work, and the contributions made. Lastly, an outline for the report is presented.

1.1 Background
In recent years, the availability of drones has increased. With their low price and
easy access, accessibility has expanded beyond military powers to civilian users as
well. Drones are difficult to detect even with fairly modern equipment due to their
small size. Traditional methods such as radar struggle to separate drones from birds.
One viable approach to overcome the problem of identification and detection is to
use camera vision to detect and classify the drones.
In 2019 the 16-th IEEE International Conference on Advanced Video and Signal-
based Surveillance (AVSS) held their annual Drone vs Bird Detection Challenge [1].
The goal of this challenge was the creation of a deep learning algorithm able to
detect and classify drones in a video sequence where birds and motion in the fore
and background may be present.
Often when training neural networks a vast amount of data is required. Since
collecting and annotating said data can be onerous, the amount of data is often
limited. This thesis proposes a method of identifying drones using a deep learning
algorithm that maximizes the use of limited usable data by integrating temporal
information. Additionally, a semi-supervised learning framework for incorporation
of unannotated data will be investigated.

1.2 Related Work
In the Drone vs Bird Detection Challenge, different teams have created varying
solutions to the challenge of drone detection. M. Nalamati et al. present a solution
to the challenge using a Faster-RCNN with a base of ResNet-101 [2]. Another
solution was to incorporate Super-Resolution techniques in order to increase the
recall and thus increase the number of detected drones. This solution was presented
by V. Magoulianitis et al. [3]. C. Craye et al won the competition 2019 and used a
U-Net with ResNet110v2 and divided the detection and recognition paths into two
networks [4]. D. Iglesia et al. presented a solution using a version of a RetinaNet in
order to detect drones [5].
Outside of the Drone vs Bird Detection Challenge, further work has been made with
the RetinaNet. C. Fu et al presented a modified version of a RetinaNet that ob-

1



1. Introduction

tained a higher accuracy without increasing the computational cost. The presented
approach adds mask predictions and a different loss function [6].
This master thesis utilizes a version of a RetinaNet. The original RetinaNet was
proposed by T. Lin et al. The network consists of a backbone for feature extraction
and two sub-networks for classification and regression. A loss function for the classi-
fication known as the focal loss was also proposed. This loss function aims to tackle
the problem of heavy class imbalance between the foreground and the background.
This resulted in the detector having the same accuracy as a two-stage detector but
with the speed of a one-stage detector [7].
In order to incorporate temporal information into a neural network, G Sistu et al.
proposed multi-stream fully convolutional networks. In their work a two stream
FCN, a three stream FCN, and a network with two streams combined with an
additional LSTM architecture were presented [8].
D. Chahyati et al. implemented a Siamese network based on a RetinaNet and
incorporated the Hungarian algorithm for tracking humans in moving images [9].
X. Wang investigated the impact of different time steps for temporal information
in a RetinaNet, and which combination is preferred in order to utilize temporal
information [10].
Labeling a large amount of data can be very expensive when training a neural
network, several methods exist that aim to reduce the amount of work needed. E.
Sangineto et al. suggested a self-paced training protocol for object detection using
only image level annotations. The region proposals of a Fast-RCNN were utilized to
acquire proposal boxes and the box with the highest confidence score was marked as
a pseudo-label. "Easy" examples were used in the early network in order to prevent
the training from diverging and to reliably expand their training set [11].

1.3 Purpose
The purpose of this thesis is to detect and classify drones while simultaneously not
classifying birds as drones. To accomplish this, this master thesis focuses on the
study, development, and implementation of an object detection algorithm. The
thesis also endeavors to improve an object detection algorithm without using large
amounts of annotated data. Additionally, this thesis investigates a semi-supervised
learning framework for the incorporation of unannotated data. It also aims to
investigate whether the framework can be utilized to iteratively and reliably expand
the amount of available annotated training data while utilizing unannotated data.

1.4 Proposed Approach
The project will start by modifying a standard RetinaNet to better fit the available
data. Once complete, different strategies for incorporating temporal information and
simultaneously utilize a pre-trained backbone will be developed and implemented.
Finally, a semi-supervised learning framework for the incorporation of unannotated
data will be created and evaluated. At the end of the thesis, the developed algo-
rithm should be able to detect and classify drones in a setting occupied by birds.

2



1. Introduction

The framework will be used to investigate whether the algorithm can be used to it-
eratively and reliably expand the amount of available annotated training data while
only utilizing unannotated data. This framework is expected to be able to generate
annotations for easy scenarios and be able to create a few annotations for more
difficult scenarios.

1.4.1 Integration of Temporal Information
In object detection, the integration of temporal information has been proven to
increase accuracy significantly. Temporal information refers to information from
both space and time simultaneously. For example, in between consecutive frames
of a video sequence, an object has moved in both space and time. The information
in both of these frames is highly correlated and several methods exist that aim
to utilize this information. A pre-trained backbone often improves the accuracy
of a detection algorithm when only a small amount of training data is available.
Since pre-trained backbones are not typically trained with the inclusion of temporal
information, the parameters are only trained as feature extractors. Therefore, to
utilize the pre-trained backbone, temporal information needs to be integrated in
such a way that the pre-trained parameters are still used as feature extractors. For
example in the work of [5], a frame difference channel was added to the three RGB-
channels of the input image. Since the backbone is only trained with a three-channel
input, this implementation could not utilize pre-trained parameters. This master
thesis will study and evaluate different ways temporal information can be integrated,
while also being able to utilize a pre-trained backbone. This will be accomplished
by incorporating the difference between feature maps for consecutive timesteps into
the neural network, both after and within the backbone.

1.4.2 Use of Unannotated Data
Annotated data is usually hard to find as well as expensive since it requires extensive
manual labor. Therefore different ways to incorporate unannotated data will be in-
vestigated. This will be accomplished through the development of a semi-supervised
learning framework. This framework will utilize the algorithm to generate annota-
tions on unannotated examples.

1.5 Scope and Limitations
Due to time constraints, this master thesis will implement and evaluate three dif-
ferent methods of integrating temporal information. A RetinaNet will be used as
a starting point and optimized to the best of our ability. The results of the op-
timized RetinaNet will be specifically tailored to the problem at hand and should
not be seen as a general purpose solution. Due to the limited amount of data avail-
able, the methods used to improve the algorithm will utilize a pre-trained backbone.
Limited access to GPU resources will also restrict how computationally expensive
the suggested algorithm can be. The object detection algorithm will only be tuned
for the classification of drones with other objects such as birds being regarded as
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background. Only one version of the semi-supervised learning framework will be
considered. The aim of this framework is to investigate whether the algorithm can
be utilized as a simple annotation tool for drones. This investigation will be limited
to a limited amount of unannotated collected data since the goal is to investigate
the rough performance of the framework. The framework will further be limited to
drones of roughly the same size as in the available annotated dataset from the Drone
vs Bird Detection Challenge [1]. Furthermore, the evaluation of the framework will
be preformed through visual inspection of a sample of generated annotations to de-
termine if the annotations are comparable to hand annotated data. Further manual
evaluation with regards to the confidence score will be made. Additionally, these
annotations will be evaluated against the Drone vs Bird Detection Challenge test
dataset. No additional hand-annotated data will be utilized to investigate the per-
formance of the framework.

1.6 Tools and Equipment
This section presents the tools and equipment used in this Master thesis. The
section begins with an introduction of Google Colab and PyTorch and lastly the
object detection library Detectron2 is presented.

1.6.1 Google Colab
Google Colab is a service from Google that allows users to execute written Python
code in a browser and provides free access to GPU resources. However, the amount
of resources available varies day to day and is dependent on the current service
usage and how much the user has recently used. The maximum continuous runtime
is 12 hours and commonly available GPUs are Nvidia K80s, T4s, P4s, and P100s,
however, there is not possible to choose which GPU one is assigned. The memory of
the virtual machine also varies between runtimes, however, it does not vary during
runtime [12].

1.6.2 PyTorch
PyTorch is a Python based open-source framework developed by Facebook’s artificial-
intelligence research group (FAIR). It can be utilized in conjunction with GPUs and
is commonly used when developing deep learning projects. It has a simple and easy
to use API making it user friendly.

1.6.3 Detectron2
The code was written in Python and used the platform Detectron2. Detectron2 is an
open source PyTorch based modular object detection library created by Facebook’s
artificial-intelligence research group. State of the art object detection algorithms
such as versions of Faster R-CNN and RetinaNet are implementable and easy to fur-
ther modify thanks to Detectron2’s modular design. Pre-trained model weights are
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easily obtainable and usable. Furthermore, the datasets COCO, LVIS, CityScapes,
and PascalVOC are integrated in Detectron2.

1.7 Contribution
The contribution of this thesis is an investigation of different methods for integrat-
ing temporal information with limited GPU resources and data for drone detection.
The suggested semi-supervised learning framework has to the best of our knowl-
edge, not been utilized for object detection before. Therefore the development and
investigation of this framework will also be seen as a contribution.

1.8 Report Outline
Chapter 2 will cover the relevant theory in this thesis. The theory will cover the
basics behind the neural network, object detection, the basic RetinaNet model as
well as the evaluation metrics and Semi-supervised learning.

Chapter 3 will cover the methodology used in this thesis. It will present the
available data, describe how the standard RetinaNet was implemented and modi-
fied, how the three different methods of temporal information were integrated, as
well as a description of the semi-supervised learning framework.

Chapter 4 will cover the results of the Sections presented in the methodology
as well as a more detailed description of the methods.

Chapter 5 will discuss the results in more detail and present suggested future work.

Chapter 6 will contain conclusions drawn from the results and discussion.
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Theory

This chapter presents the relevant theory for this Master Thesis and aims to ease the
understanding of the project. Section 2.1 covers the theoretical basics of artificial
convolutional neural networks. Section 2.2 introduces object detection and IoU.
ResNet will be presented in Section 2.3 and FPN in Section 2.4. RetinaNet is
introduced in Section 2.5. Finally, different evaluations methods are presented in
Section 2.6 and semi-supervised learning is introduced in Section 2.7.

2.1 Neural Networks

Neural networks are algorithms modeled to recognize patterns from an input with a
design inspired by the neural network structure inside the human brain. A neuron
consists of a cell body, an axiom, and dendrites. Most neurons receive an input
signal via its dendrites and then produces an output signal through its axon. The
information between two neurons is transferred via synapses, which enables the
passing of an electrical or chemical signal to the other cell. An artificial neuron
operates in much the same way as a biological neuron, see Figure 2.1. The input
signal of an artificial neuron can be represented as xi and the synapse is represented
by the weight Wi. A neuron may have inputs from multiple sources, thus the i
in these expressions represent each input. The information transferred into the
dendrites of the target neuron can then be represented by Wixi + b where b is the
bias. In an artificial neural network, information is encoded by the frequency of
which the neuron is sending information. The inputs to the neuron are summed and
put through an activation function, that defines if the neuron should be considered
to have sent information or not.
The artificial neural networks are able to learn from information because the pa-
rameter W0 and b are trainable. Thus when receiving an input, W0 and b should be
selected so the information received is properly decoded. This process of selecting
the proper value forW0 and b is referred to as training. In a neural network, multiple
neurons are used simultaneously. A group of neurons forms a layer and there are
several layers in a complete network. The layers can be divided into the input layer,
the hidden layers as well as the output layer. The input layer receives the initial
input to the network and sends it through the hidden layers. The output of the
network is produced after the hidden layers by the output layer. A standard neural
network has all the neurons in the previous layers connected to all the neurons in
the upcoming layer. This structure is known as fully connected layers [13].
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Figure 2.1: Visualization of an artificial neuron and a biological neuron [13]. CC-
BY

2.1.1 Activation Functions
The activation function is responsible for deciding whether a neuron has sent in-
formation or not. The activation function is required to be non-linear to enable
stacking of multiple layers and the usage of gradient based optimization methods.
With a linear activation function, the stacked layers would simply be a linear com-
bination of each other and can thus be replaced by a single layer. Furthermore, with
gradient based optimization of the gradient with respect to the input would always
be constant if a linear activation function was utilized. This leads to an optimization
that is not dependent on the input [14]. The ReLU and the Sigmoid function are
two of the most commonly used activation functions, see Figure 2.1.1. The ReLU
function can be written as:

ReLU(x) = max(0, x). (2.1)

The Sigmoid function can be written as:

Sigmoid(x) = 1
1 + e−x . (2.2)

Figure 2.2: Visualization of different commonly used non-linear activation func-
tions [15]. CC-BY
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2.1.2 Loss Functions
Once an input has been given to a neural network and an output is received, one
needs to calculate whether this output was correct or not. This accomplished by the
inclusion of a loss function. The goal of the loss function is to minimize the error
between the predicted output and the expected output. The expected output can be
referred to as the ground truth. There are different kinds of loss functions adapted
for solving specific problems, for example regression and classification problems.

2.1.2.1 Cross-Entropy Loss

The cross-entropy loss can be defined by either binary or multi-class cross entropy.
Multi-class cross entropy can be split into multiple binary cross entropy functions
were each function corresponds to one class of interest. In this thesis, binary cross
entropy have been considered since only the drone class is of interest. The binary
cross entropy loss can be written as:

CE(p, y) =

−log(p), if y = 1
−log(1− p), otherwise.

In this equation, y is the ground truth and p is the estimated probability that the
class has the label y = 1. The equation for binary cross entropy can be rewritten
as:

CE(pt) = −log(pt). (2.3)
Where pt is defined as:

pt =

p, if y = 1
1− p, otherwise.

The binary cross entropy loss receives its inputs from the last layer of the underlying
neural network. The prediction is the estimated probability that the input was either
foreground or background. Here, the foreground refers to the particular class that
the binary problem corresponds to and the background refers to the other classes
and no class [16].

2.1.2.2 Focal Loss

The focal loss is based on the commonly used cross entropy loss although it is
designed to combat class imbalance, see Figure 2.3. Class imbalance, the imbalance
between objects labeled as foreground and background, is a common issue. In a
dataset there might be far more instances that are labeled as background instead of
foreground. Should this be the case, the neural network might become overconfident
in cases of background since the contribution of background is far larger than the
contribution of foreground. This would result in poor performance when classifying
a foreground example.
The focal loss aims to improve upon this problem by introducing a modulating factor
to the cross entropy loss. The definition of focal loss can written as:

FL (pt) = − (1− pt)γ log (pt) . (2.4)

9



2. Theory

The modulation factor − (1− pt)γ is responsible for suppressing losses that have a
large probability, because if a prediction is very accurate, the impact it will have
on the loss should be considerably smaller compared to a prediction with a lot of
uncertainty [7].

Figure 2.3: Comparison of focal and cross entropy loss. Here, γ is a parameter that
is tuned by the user. The standard cross entropy loss is represented when γ = 0.
From [7]. CC-BY

2.1.2.3 Smooth L1-Loss

Smooth L1-loss is a variant of the standard L1-loss that combines the properties of
L1-loss when the loss is large and then switches to L2-loss as the loss gets smaller.
The L1-loss can be written as:

S =
n∑
i=1
|yi − f (xi)| . (2.5)

The L2-loss can be written as:

S =
n∑
i=1

(yi − f (xi))2 . (2.6)

In these equations, yi is the ground truth and f(xi) is the approximated value. The
L1-loss takes the absolute value of the difference between the target and the predic-
tion while the L2-loss takes the square of the difference. The L1-loss is advantageous
when the loss is large since it is robust to outliers and produces sparser solutions,
however it is not differentiable when the loss is zero, see Figure 2.4. Thus the
gradient-based optimization will be sub-optimal. Due to its quadratic nature, the
L2-loss is differentiable when the loss is zero. The L2-loss produces more accurate
results compared to the L1-loss because it penalizes larger errors to a higher extent,
however, the L2-loss is more sensitive to outliers compared to the L1-loss [17].
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Figure 2.4: Illustration of L1-loss, L2-loss and smooth L1-loss. Note how derivative
is undefined for L1-loss when the loss is 0. From [18]. CC-BY

The smooth L1-loss combines the L1 and L2-loss and uses the parameter β to
distinguish between them. The smooth L1-loss can be written as:

smoothL1(x) =
{

0.5x2 if |x| < β
|x| − 0.5 otherwise. (2.7)

When the loss is above a certain threshold decided by β, the regression loss will
be L1-loss. When the loss falls below this threshold, the loss changes and instead
becomes L2-loss, see Figure 2.5.

Figure 2.5: Illustration of smooth L1-loss. When the loss falls below a certain
threshold, it switches to L2-loss. From [19]. CC-BY

2.1.3 Optimizers
Once the neural network has processed an input and the losses for the predictions
are calculated, the trainable parameters need to be tuned in order to minimize the
loss. This is done through an optimizer and the back-propagation algorithm.
It is common to use gradient based optimization methods, the most common of
these methods is known as gradient descent, see Figure 2.6. In a neural network the
amount of parameters depends on the number of layers, for notational simplicity, the
weights and biases of all the layers are included in the parameter θ. The equation
for gradient descent can be written as:
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θt+1 = θt − α∂E (X, θt)
∂θ

. (2.8)

In this equation, α is the learning rate, which is a hyperparameter that indicates
how much the weights are allowed to be updated during training. A too small α
will result in an optimization that is very slow since the weights are updated by a
small amount each pass. A too large α might result in the parameters changing too
much and jumping over the optimum. E(X, θt) is the expected value for the loss
function with network parameters θ at time t and input-output pairs: (xi, yi) ∈ X.
This equation illustrates how the parameters in θ are updated by using the previous
weights and the gradient of the loss function for those parameters given an input-
output pair [20].

Figure 2.6: Illustration of gradient descent with one parameter, w. From [21].
CC-BY

In gradient descent, the weight update only occurs when the entire dataset has
been processed. Due to the sheer amount of parameters in a neural network, the
convergence of the optimizer to the global minimum may be very slow. Therefore
an alternative form of gradient descent is utilized in neural networks. This form is
known as stochastic gradient descent (SGD). The difference between gradient de-
scent and stochastic gradient descent is that instead of processing the entire dataset
before updating the weights, SGD takes a sample and updates the weights based on
this sample.

Neural networks usually contain many layers which all contain a set of parameters.
When using stochastic gradient descent to perform optimization, it is necessary to
know how each of these parameters affects the final loss function. To calculate this,
the back-propagation algorithm is used. Back-propagation consists of four parts:
the forward pass, the loss function, the backward pass, and the weight update. The
forward pass passes an input through the network to get a prediction. The loss
function calculates the error of the prediction with respect to the expected output.
The backward pass is then performed in order to relate how all the parameters in
all layers contribute to the loss function. Once the relation between the parameters
for the layers is known for the specific input, the weights are updated in such a way
that the loss is reduced [22].
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2.1.4 Convolutional Neural Networks

A convolutional neural network (CNN) includes neurons, activation functions, a loss
function, and an optimizer but the layers differ from a basic neural network. A con-
volutional neural network utilizes convolutional layers instead of fully connected.
The number of layers varies but the network consists of an input layer, multiple
hidden layers, and an output layer. Convolutional layers are beneficial when deal-
ing with images compared to standard fully connected layers since they utilize the
concept of filters. An image can be thought of as a matrix with a specific width
and height. In this matrix, each pixel is given a value based on its color gradient.
Similarly, each filter is a matrix that also contains values, however, these values are
trainable. If an image were to be processed in a fully connected fashion, the image
matrix would need to be flattened into an array and each element would be assigned
to a separate neuron as input. This would not only greatly increase the required
parameters for the network, but the highly correlated information between adjacent
pixels would not be utilized. Therefore, a convolution layer is more suitable for pro-
cessing images compared to a fully connected one. A fully convolutional network is a
convolutional network without any fully connected layers. These types of networks
are very common in image segmentation.

Given an input image, the filters move as a sliding window across the pixels in the
image. The amount of pixels that the filter is moved each iteration is specified by
the stride. When the filter moves, the numerical values of the image are multiplied
by the parameters inside the filter with element wise multiplication. These values
are then summed up and the resulting value represents the information that was
extracted by the filter at a specific location in the image. By applying filters to
the inputs for the different layers, the network can differentiate and recognize the
different object and features in images, see Figure 2.7.

The filters range from being able to detect basic features such as brightness in an
image to more detailed features and characteristics of an object. Each layer usually
contains more than one filter since each filter will only be trained to recognize a
specific feature. The number of filters in a convolutional layer corresponds to the
number of channels. Once the filter has slid or convolved over the entire image, the
output is an array of numbers. This array is referred to as a feature map.

In a convolutional network maxpooling layers are added to reduce the spatial size
to reduce the computational expense. This by dividing the output of the layers into
regions and only keep the regions with the highest value, thus reducing the size.
The intuition behind this is that the pixel of a feature map that has the highest
value contains the most useful information, therefore the other adjacent pixels can
be discarded [23].
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Figure 2.7: Visualization of how an image is proccessed and classified in a convo-
lutional nerural network [23]. CC-BY

2.1.5 Transfer Learning
Transfer learning is when a model, trained and adapted for a specific task, is reused
as base for another assignment. To train a convolutional network from scratch
requires a large amount of data, thus it is advantageous to utilize pre-trained models.
The pre-trained models are often good at extracting common features because they
are trained on large data set, with images of different kinds of objects. Even though
the specific image class is missing from the pre-training, the basic features, such as
basic shapes can be used and then fine-tune the network for the specific task. This
can be done by retraining only the deepest layers on the specific data [24].

2.2 Object Detection
Object detection can be divided into two parts, object localization, and object clas-
sification. Localization is used to point out where objects are located in the image
and classification is used to decide what type of objects are present in an image.
There are two different types of object detection techniques, two-stage object detec-
tion, and one-stage object detection. The output of an object detection algorithm is
usually a box that covers the object as well as the predicted class label of that box.
These boxes are referred to as bounding boxes. This section will cover two-stage
detectors, one-stage detectors, and explain IoU and non-maximum suppression and
how they are used in training and evaluation.

2.2.1 Two-Stage Detection
Two-Stage Object detectors perform localization and classification of an object in
two stages, R-CNN, Fast R-CNN and Faster R-CNN are examples of two-stage
detectors. The first stage is to decide regions on the image in which objects of
interest may be present, so called regions of interest. These regions can be generated
in different ways such as utilizing the simple search algorithm or use a neural network
known as a region proposal network. Once these regions are decided the second
stage is performed by passing these regions into a neural network, performing object
classification. In addition, regression is performed to fit the proposed regions closer
to the actual object. Since the model needs to perform two passes over the image,
this method is not very fast [25].
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2.2.2 One-Stage Detection
YOLO, SSD, and RetinaNet are one-stage object detectors that combine localization
and classification into one step. Therefore, one-stage detectors only require a single
stage. The regions of interest in one-stage detectors are acquired through the use of
anchor boxes. One can think of the anchor box as an initial guess of where an object
might be present. These anchors are evenly distributed on the input image, and for
each of the anchors, a prediction is made whether they contain an object of interest
or not. If an anchor is deemed to contain an object with the help of a classifier, the
placement of the anchor is fine-tuned by a regressor to fit the object more accurately.
The placement and sizes of these anchors are decided beforehand by the user, and
thus no region proposal pass is required since the regions to investigate are decided
beforehand. This often makes the object detection faster but less accurate compared
to the two-stage object detection [26].

2.2.3 IoU
The intersection over union (IoU) is a measurement of how much one box overlaps
with another box, see Figure 2.8. This can be written as:

IoU(box1, box2) = |box1 ∩ box2|
|box1 ∪ box2| . (2.9)

.

Figure 2.8: Visual representation of IoU From [27]. CC-BY

The IoU measurement is used to decide whether a proposed anchor box during train-
ing or predicted bounding box during evaluation is deemed to be correct. During
training the model has access to all the ground truth bounding boxes and when the
anchors are placed, the IoU is calculated for all the anchors and ground truths. If
an anchor box has an IoU larger than the defined threshold over a ground truth,
the model learns that this anchor contained an object with a specific class and how
far away this anchor was from the ground truth. If the anchor box did not have
an IoU over the threshold, the model learns that this anchor box just contained the
background [28].
In the prediction step, anchor boxes are generated and a class is predicted for all
anchor boxes. If an anchor box is deemed to contain an object, its position is
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adjusted with regards to the predicted offset by the regressor in order to acquire the
final bounding boxes used in prediction. The predicted bounding boxes are filtered
with non-maximum suppression (NMS) in order to reduce multiple predictions of
the same object [29].
When evaluating a model, the IoU is used to determine whether a predicted bound-
ing box is correct or not. If a predicted bounding box is placed with an IoU larger
than the threshold over a ground truth of the correct class, this prediction is con-
sidered to be correct. If a predicted bounding box does not have an IoU larger than
the threshold over a ground truth, or the predicted class is incorrect, this prediction
is considered to be incorrect. IoU on its own is not used to calculate any evaluation
score, however, it is utilized in some common evaluation metrics.

2.2.4 Non-Maximum Suppression
To filter out multiple predictions of the same object, non-maximum suppression is
conventionally used by object detectors. The algorithm compares all of the pre-
dictions confidence scores and the one with the highest score is selected. If any
prediction has an IoU over some threshold with this prediction, it is discarded. This
process is done for all the remaining predictions until no prediction has an IoU score
over the threshold with another prediction [30].

2.3 ResNet
To improve the performance of neural networks, a common strategy is to add more
layers and thus making it deeper. However, stacking more layers on top of another
is problematic. When more layers are added, one encounters problems that are
known as Vanishing and exploding gradients [31]. The problem with vanishing and
exploding gradients has been addressed before ResNet. The problem was addressed
in such a way that vanishing and exploding gradients did not hinder the network
to converge from the beginning. A common way to combat this problem is to use
the ReLU activation function since it has shown to be able to effectively handle
this problem [32]. However, when deeper networks were evaluated, another problem
manifested in the form of performance degradation. Even though it was possible to
make the network converge from the start, an increase of layers surprisingly showed
that both training and testing errors were increased with the addition of more layers.
The purpose of ResNet was, therefore, to solve the vanishing and exploding gradient
problem, while also taking care of the performance degradation problem by using
skip connections to add the output from one layer to the other layers, skipping over
some layers [33].

2.3.1 Vanishing and Exploding Gradient Problem
The problem with vanishing and exploding gradients occur during the backpropa-
gation of the error function. During backpropagation, the gradient of the error is
calculated backward through the network to tune the parameters of the network
such that the loss function is minimized. Backpropagation is calculated by utilizing
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the chain rule to represent how each layer affects the final loss function [34]. Some-
times, however, the gradients become very large or very small. Since the chain rule
multiplies the gradients of all the layers, this might cause the final product to be
close to zero or very large. With a too large or too small gradient, the network is
unable to gather useful information of how each layer affect the loss function, and
thus it is unable to learn [32].

2.3.2 Performance Degradation

The performance degradation problem was exposed when the previously utilized
methods for combating the vanishing and exploding gradients revealed that the
training and testing errors increased with deeper networks. The reason for this
was that the currently available solvers simply could not find the desired mapping
between the layers. The problem can be solved by utilizing so called residual blocks,
see Figure 2.9. These blocks use a skip-connection between the non-linear layers
and reformulate the problem slightly. Previously the goal was to find the desired
underlaying mapping between the stacked layers. This mapping can be described as
H(x). Since this mapping proved to be hard for solvers to find, the stacked layers
were recast to fit another mapping, namley the residual mapping. This mapping
can be described as F(x) := H(x) − x. This equation is then rewritten as H(x) =
F(x)+x. It is easier for the solvers to find F(x) rather than finding the unreferenced
H(x), because F(x) generally has a small response and thus the identity mapping,
x provides a strong precondition [33].

Figure 2.9: A residual block. From [35]. CC-BY

2.3.3 ResNet Architectures

The architectures of ResNet are based on stacking residual blocks on top of each
other. ResNet-50, ResNet-101 and ResNet-152 are different kinds of ResNet archi-
tectures, where different numbers of layers are utilized. For example, ResNet-50
consists of 50 convolutional layers and ResNet-101 has 101, excluding the final fully
connected layers.
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Figure 2.10: Table of the layers in different ResNet architectures. From [36].
CC-BY

In a common ResNet each residual block consists of either two 3x3 layers or two
1x1 layers with a 3x3 layer in between, see Figure 2.10. The former of these two
structures is called a Bottleneck block, however, the two structures work in the same
way as a residual block. Each layer in Figure 2.10 is referenced as conv2_x up to
conv5_x, however, for the remainder of this report, these layers will be referenced
to as Res2 up to Res5.

2.4 Feature Pyramid Network
The concept of feature pyramids is used in many object detection algorithms, such
as SSD, that utilizes a deep convolutional network in order to compute a feature
hierarchy, see Figure 2.11. The deep convolutional network sub-samples layers which
in turn create feature maps of varying spatial resolution. This inherent pyramidal
feature hierarchy is used by the SSD in the form of auxiliary layers that are added
on top of its backbone. These auxiliary layers then perform predictions on their
own in conjunction with the output from the backbone. This enables the SSD to
utilize multiple scales of spatial resolution when performing detections. However, a
major downside comes with this approach, by adding these auxiliary layers to the
output of the network the architecture does not utilize the higher resolution feature
maps. The higher resolution feature maps do not have rich enough semantics since
they have not been processed entirely by the network. Therefore it would not be
beneficial to add them to the detection output [37]. By omitting these feature maps,
the SSD struggles with the detection of small objects.

Figure 2.11: The SSD-architecture. The auxilary layers are added at the output
of the backbone. From[38]. CC-BY
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The feature pyramid network (FPN) is an improvement of the shortcomings of the
SSD-architecture. The FPN architecture enables the use of high resolution feature
maps that is simultaneous semantically strong. To achieve this, the architecture
consists of a bottom-up pathway for feature extraction and a top-way pathway for
up-sampling low resolution feature maps, see Figure 2.12. These feature maps are
then combined through the use of lateral connections.

Figure 2.12: Example of FPN structure. From[39]. CC-BY

2.4.1 Bottom-up Pathway
The bottom-up pathway consists of a backbone that is used as a feature extractor.
This backbone can, for example, consist of the feed forward computations of a
ResNet, see Figure 2.13. At each level the feature map is sub-sampled with a factor
of two and thus its dimensions are halved. This is represented by the different
strides of the feature levels. The strides at different feature levels are {4, 8, 16, 32}
at {Res2, Res3, Res4, Res5} respectively. The receptive field specifies the region of
an image that is visible at each feature level, once the stride increases the receptive
field increases. Since the receptive field increases with higher levels, these levels
are more suitable for detecting larger objects. At these levels, the feature map is
semantically strong due to its many convolutions, however, this comes with the cost
that the spatial resolution is low. On the lower levels, the feature map has a higher
spatial resolution and a smaller receptive field and is therefore more suitable for
detecting smaller objects.

2.4.2 Top-down Pathway with Lateral Connections
In the top-down pathway, feature maps are merged in order to create feature maps
that are both semantically strong and have high resolution. This is done by up-
sampling the feature maps by a factor of 2 for each of the levels in the FPN. Nearest
neighbor up-sampling is utilized and the up-sampled feature maps are then enhanced
with the feature map of the corresponding size from the bottom-up pathway. The
feature map from the bottom-up pathway lacks the strong semantics compared to the
up-sampled ones from the top-down pathway, however they have higher resolution.
Through the use of lateral connections between the two pathways, the semantically
strong and high resolution feature maps are merged. The lateral connections is
a convolutional layer with a kernel size of 1 × 1 and are used to set the channel
depth to 256 for all feature maps across all layers from the bottom-up pathway.
The feature maps are merged using element-wise addition and to reduce aliasing
from the upsampling, each merged feature map is put through a final convolutional
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layer with a kernel size of 3 × 3. After this process, each feature map have the
strongest semantics possible since they all originates from the deepest layer and
their resolution has been enhanced with the corresponding feature map from the
bottom-up pathway [40].

Figure 2.13: Example of FPN structure with ResNet. From[39]. CC-BY

2.5 RetinaNet

RetinaNet is an algorithm heavily based on the FPN architecture, it uses the FPN as
its backbone but makes slight modifications to it, see Figure 2.14. The original FPN-
backbone has feature levels {p2, p3, p4, p5} that are related to the corresponding feed
forward computations from the ResNet backbone {Res2, Res3, Res4, Res5}. The
RetinaNet however elects not to use p2 as it is rather computationally expensive.
Furthermore it includes two additional feature levels and thus making the RetinaNet
consist of {p3, p4, p5, p6, p7}. The last two feature levels are based on the output
from Res5, p6 is obtained by performing a convolution on Res5 with a kernel size of
3×3 and with a stride of 2. The last level, p7 is obtained by applying a convolution
on p6 with a kernel size of 3× 3 and a stride of 2. By including these two additional
levels the detection of large object is improved [7]. Similarly to the FPN architecture,
RetinaNet attached sub-networks to each feature level in order to make predictions.
These sub-networks are designed for classification as well as regression and one of
each is attached in parallel to each feature level.
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Figure 2.14: An example of RetianNet. From [41]. CC-BY

2.5.1 Classification Subnet
Identical classification sub-networks are placed on each feature level and all of them
share parameters and consist of five fully convolutional layers with a kernel size of
3×3. The channel depth for the first four layers is 256, corresponding to the channel
depth of the FPN output. The fifth layer has a channel depth of A ×K where K
is the number of classes to predict and A is the number of anchors for each spatial
location. Between the first four layers there is a ReLU activation function and the
output of the final layer is passed through a sigmoid activation function to obtain the
binary predictions. The size of the last layer can be written as (N,A×K,Hi,Wi),
N represent the batch size, Hi and Wi represent the height and width of the input
feature map where i indicates the FPN level. The number of channels on the last
layer corresponds to A ×K, thus for each spatial location A amount of anchors is
defined. Each of these anchors is responsible for detecting any of the K available
classes. Thus each output channel represents the probability of an anchor containing
any of the classes. In the classification part of the RetinaNet, the focal loss function
is utilized.

2.5.2 Regression Subnet
The classification sub-network is responsible for evaluating each anchor in order to
decide if they contain an object or not, whereas the regression sub-network is respon-
sible for deciding how much the anchor box should be shifted to more accurately fit
the object. The regression sub-network is almost identical to the classification sub-
network with five fully convolutional layers, however, the final layer differs slightly.
The regression sub-network has a channel depth of A× 4, four values that need to
be predicted to fit the edges of the anchor box closer to the object, and the size of
the output layer is (N,A× 4, Hi,Wi) [7].
The L1-loss function is used for the bounding box regression in the original imple-
mentation of the RetinaNet, however, in this work a smooth L1-loss is used instead.
The smooth L1-loss combines the positive properties of both L1 and L2 loss and
thus contributes to a better approximation of the bounding box regression.

2.6 Evaluation
This section covers two different ways of how to evaluate the performance of an
object detector. This thesis will use F1-score and AP to evaluate the results.

21



2. Theory

2.6.1 Precision
Precision is a measurement of how well the model is able to only detect objects of
interest. For example, if a model for detecting diseases have low precision, it will
yield a high amount of positive detections even if only a few have the disease. The
precision of an object detector can be calculated as:

Precision = TP

TP + FP
. (2.10)

TP is the true positives, the detections that were deemed correct and FP stands
for false positive. IoU is utilized to determine the nature of the detection. If the
predicted bounding box has an IoU larger than the threshold over a ground truth,
the detection is deemed to be related to this ground truth. If the predicted class
of the bounding box is the same as the class of the ground truth, the prediction
is deemed to be correct. Otherwise, the detection is labeled as a false positive.
Multiple predictions of the same object are also deemed to be false positives [42].

2.6.2 Recall
Recall is a measurement of how well the model is able to detect all objects of interest.
A model for detecting disease in humans with a low recall will result in a lot of missed
diagnoses where people are told they are healthy even though they are sick. The
recall can be written as:

Recall = TP

TP + FN
. (2.11)

FN stands for false negative, the number of ground truths undetected by the predic-
tor. If a predictor outputs a set of bounding boxes and none of the bounding boxes
have an IoU over the ground truth that is larger than the threshold, this indicates
that the model was not able to detect this object. Thus it is referred to as a false
negative [42].

2.6.3 F1-Score
The F1-score combines both of these metrics to evaluate how well the model is able
to prevent false detections and not miss actual detections [43]. The F1 score is the
harmonic mean of precision and recall, thus both values are taken into consideration.
The F1-score is defined as:

F1 = 2× Precision×Recall
Precision+Recall

. (2.12)

2.6.4 Average Precision
In object detection problems, calculating the mean average precision is a common
way to evaluate the performance of an algorithm. Average precision is the area
under the curve of a precision-recall curve,

AP =
∫ 1

0
p(r)dr. (2.13)
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This curve plots values of its recall and precision on its x and y-axis correspondingly,
see Figure 2.15. The precision and recall pairs are calculated for a confidence score
threshold that is slowly decreasing. This threshold is taken from the confidence of
the predictions, where highly confident predictions are investigated first and then
as the threshold decreases, more of the not so confident predictions are considered.

Figure 2.15: An example of PR-curve. From [44]. CC-BY

As the confidence score is decreased, lower quality predictions are allowed. This
results in an increase in recall since more predictions are made and thus the number
of false negatives is decreased. However, the precision is reduced when lower quality
matches are allowed since more false positives occur with a lower confidence score.
Since precision is reduced with increased recall, the maximum AP-score is achieved
with a compromise between these two metrics. Mean average precision is simply
the average of the average precision for all the available classes. In this work, only
one class of drones has been considered and therefore average precision and mean
average precision is the same [42].

2.7 Semi-Supervised Learning
Supervised learning methods refer to methods that utilize fully labeled datasets
and aim to approximate a mapping function that given input, produces the desired
output. This process is utilizing the labeled data as a reference during training to
assert to the model whether a prediction was correct or not. Unsupervised learning
does not have access to a labeled dataset and thus cannot utilize a reference during
training. The aim of an unsupervised learning method is to find a relationship
describing the structure in the data. An example of this is k-means clustering that
aims to assign data points into one of K groups, to partition similar data points
into the same category [45].
Semi-Supervised learning is a combination of supervised learning and unsupervised
learning. It is a methodology for utilizing a small amount of annotated data and a
large amount of unannotated data. One way to implement Semi-Supervised learning
is by utilizing pseudo-labeling. First the network is trained in a supervised fashion,
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using annotated data. Thereafter the model is used on unannotated data and gen-
erates predictions on this data. The prediction with the highest confidence score is
considered to represent the true label and is thereafter utilized as annotated data
[46].
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This chapter will present the methods utilized to fit the existing RetinaNet archi-
tecture to suit the problem of small drone detection. Furthermore, the work done
with temporal information and the semi-supervised learning framework will be pre-
sented. Section 3.1 will describe the analysis of the datasets from the Drone vs Bird
Detection Challenge and provide a visualization of the training data with empha-
sis on the challenges to overcome. Section 3.2 presents the implementation of the
RetinaNet. Section 3.3 will describe the modification of the RetinaNet. Section 3.4
describes how temporal information was incorporated and Section 3.5 presents the
Semi-Supervised learning framework.

3.1 Visualization and Analysis of Dataset
The data set used for both training and evaluation of the algorithm comes from the
competition Drone vs Bird Detection Challenge [1]. It contains eleven short video
sequences for training and three short videos for testing. The images were taken
with a static camera and contain both drones, birds, and background. However,
only annotations for drones are available. The training data consists of 7245 images
and the test data consists of 2079 images. The resolution of the images extracted
was 1080 × 1920.

3.1.1 Visualization of Data
The data provided from the Drone vs Bird Detection Challenge depicts drones flying
in a wide variety of different environments and contains challenging scenarios such as
occlusion, moving objects in the background, flying within close proximity of birds,
and a combination of these. As well as these challenges, the small size of the drones
present an additional difficulty. The figures presented below illustrate a couple of
samples of the data that were used for training the algorithm.
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Drones are featured in different environments, see Figure 3.1 and Figure 3.2. In these
figures the environment change with regards to the lightning of the background. One
drone has clear LED-lights on and another has no lights on thus the appearance of
the drone itself is changed. The environment can include land and urban features,
see Figure 3.3 and Figure 3.4. The size of the drones was small and thus the
algorithm needs to take into account both the change in the environment as well as
the reduced size.

Figure 3.1: Drone flying during the night with LED-lights and a dark background

Figure 3.2: Drone flying during the day with no lights on and a light background.

26



3. Methods

Figure 3.3: A drone flying in a park far away.

Figure 3.4: A drone flying in a field far away.
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Another challenge was the inclusion of birds flying next to the drones, see Figure
3.5 and Figure 3.6. The drone is far away and a bird is flying next to it. In this
example, the algorithm needs to handle the small distant drone and simultaneously
not misclassify the bird.

Figure 3.5: Original image containing one drone far away flying close to a bird.

Figure 3.6: Zooming in on the drone, one can see the contours of the bird flying
close.
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3.1.2 Analysis of Data
The majority of the annotations for the training data from the Drone vs Bird Detec-
tion Challenge have an area of 3-32 pixels, see Figure 3.7. The aspect ratios of the
annotations were defined as the height of the annotation over the width, see Figure
3.8. It was most common for the width and height of the annotations to be equal,
otherwise, the width is generally larger than the height.

Figure 3.7: Histogram illustrating the distribution of ground truth sizes.

Figure 3.8: Histogram illustrating the distribution of aspect ratios in the ground
truth.
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3.2 Implementation of RetinaNet

The implementation of the RetinaNet as defined in [7] was found in the Detectron2
library. The following section aims to explain the standard implementation in detail.

3.2.1 Overview of Implementation
The standard RetinaNet, a part of Detectron2, is designed to be able to detect
objects in a wide range of shapes and sizes. The RetinaNet is able to detect objects
from eighty different classes and with sizes varying between 32-813 pixels [7]. The
RetinaNet used in this thesis, before any modifications, consist of an FPN-backbone
which has a bottom-up architecture of ResNet-101. The outputs of the bottom-
up ResNet-101 consisted of [Res3, Res4, Res5] and the corresponding output of the
FPN was [p3, p4, p5, p6, p7]. The number of channels from the FPN was 256, and
the features were merged with element-wise addition in the FPN. The pre-trained
weights for ResNet-101 come from ImageNet MRSA R101.

3.2.2 Anchor Placement in Implementation
Anchors were placed on each feature level independently. In Detectron2 the anchors
defined for each feature level were centered around each pixel on their corresponding
feature map. The sizes of the feature maps were decided by the strides for each level.
The strides for the outputs of the FPN were [8, 16, 32, 64, 128], corresponding to
level [p3, p4, p5, p6, p7]. These values indicate how much the input image was down-
sampled at each level. The pixels on the feature map will henceforth be referred
to as Feature pixels in order to avoid confusion from the pixels in the input image,
also known as Input pixels. The anchors were centered around the feature pixels,
on each feature map. Since ResNet is fully convolutional, the spatial positions on
the feature maps can be related to the spatial position on the input, see Figure 3.9.
Depending on the stride of the feature level, each feature pixel corresponds to an
area that was defined as Stride×Stride on the input pixels. Once the feature pixels
were related to the corresponding area on the input images, the anchor coordinates
were defined with respect to their corresponding coordinates on the input image.

Figure 3.9: Illustration of how feature pixels relate to the input pixels. The low
level feature map has a stride of 2 and the high level feature map has a stride of 4
[47]. CC-BY
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3.2.3 Sub-networks in the Implementation

When the anchors were defined, the feature maps from the FPN-backbone was
fed into the classification and regression sub-networks. In Detectron2, the output
layer of the classification sub-network has channels corresponding to the number
of anchors around each feature pixel times the number of classes that are to be
predicted. This is represented as a tensor of size (N,A×K,Hi,Wi) were the index
i denotes the feature level. The output of the regression sub-network is almost
identical to the classifier output but the number of channels was defined as the
number of anchors around each feature pixel times four. The four represent the
edges of the anchor box and the values in these channels represent how much the
edges should regress in order to fit the ground truth. This is represented by a tensor
of size (N,A×4, Hi,Wi). Given that an anchor was predicted to contain an object of
interest, the goal of the regression sub-network was to decide how much this anchor
box was to be regressed in order to fit the detected object properly.

3.2.4 Anchor Matching with Ground Truth

In order for the network to utilize a ground truth annotation, at least one of the
anchors placed needs to overlap with the ground truth. Whether an anchor was
considered a match with a ground truth was based on an IoU threshold. For a Reti-
naNet in Detectron2, anchor matching was performed individually for each anchor
from all feature levels, for each of the ground truths in the image. If an anchor
was labeled as foreground, it was assigned the correct label in the range [0, K-1]
where K was the number of classes to predict. If it was labeled as the background
it was assigned the label K. If the anchor was decided to be discarded, it was given
the label -1. If an anchor was labeled to be the foreground, the distance for the
four edges of this anchor to the ground truth was used as the ground truth for the
regression sub-network.

3.2.5 Training with Predictions and Ground Truths

By matching the predictions from the sub-networks with the corresponding ground
truth elements, the algorithm was trained. The predictions from the sub-networks
were performed on each feature level of the image separately, thus needed to be
interpolated and concatenated. Anchors with labels -1 were discarded. The clas-
sification loss was calculated with the focal loss, with regards to the predictions
containing background and foreground. The focal loss parameter γ, was set to 2.0,
and α to 0.25 to focus learning on hard negative examples. These values were taken
from the work by T. Lin et. al, where the best combination was investigated [7].
The regression loss was calculated with the smooth L1 loss for anchors labeled as
foreground. The β parameter in the smooth L1 loss was set to 0.1. Once the loss
was between (-0.1,0.1) the L2 loss function was utilized. When the loss was outside
the (-0.1, 0.1) range, L1 loss was utilized. Other values of the loss parameters were
not investigated in this project.
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3.2.6 Inference
During inference, the model utilized the predictions from the sub-networks and the
pre-defined anchors. In Detectron2 inference was performed on each feature level
independently and predictions on each feature level were concatenated and then put
through non-maximum suppression. A Sigmoid function was used to receive the
probability that the anchors contained an object of interest.
A filter was applied to the probabilities to only keep a certain amount of the top-
scoring predictions. Another filter was applied to the remaining predictions that
discarded predictions below a certain threshold. The anchor boxes remaining at
this stage were fine tuned by their corresponding predictions from the regression
sub-network. The predictions were concatenated and put through non-maximum
suppression. The anchors left after non-maximum suppression was the final out-
put from the model which contained both the bounding box coordinates for the
prediction, the predicted class, and the confidence score of the bounding box.

3.3 Modification of RetinaNet
This Section will cover the different modifications of the RetinaNet to fit the model
to the task of small object detection. At the end of this Section the final RetinaNet
is introduced.

3.3.1 Defining a Baseline for the RetinaNet
The anchor sizes for the standard RetinaNet implemented by FAIR in Detectron2
needed to be resized to enable detection of smaller objects since the vast majority
of training data from the Drone vs Bird Detection Challenge was below 32 pixels.
The original implementation, by FAIR, placed anchors of different sizes on different
feature levels however, in this work, the base RetinaNet has anchors of the same size
placed on each feature map. The size of the input images were resized from 1080p
down to 800x1333 to enable faster training.

3.3.2 Defining a Baseline for Training
The training for the experiments was conducted with 30.000 iterations due to limited
GPU resources and based on the work by M. Nalamati et al [2]. The team utilized
the dataset from the Drone vs Bird Detection Challenge and the same backbone of
ResNet-101, as utilized by the RetinaNet in this thesis. It was discovered that the
optimal training range was between 30.000 to 70.000 iterations. A linear warm up
method with 1000 iteration was utilized. By linearly increasing the learning rate
the influence of early training images was reduced, thus reducing the over-fitting in
the early stages of training. However, in this project different warm-up parameters
were not tested and evaluated. The warm up factor was 0.001 however, further
experiments with the warm up factor for this project were not investigated.
A random horizontal flip of the training images was utilized as data augmentation.
The probability of this flip occurring was 0.5.
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Due to heavy class imbalance, a prior probability of 0.01 was utilized by the fore-
ground class i.e the drone class in the classifier. The reason for this was that the
background class tends to dominate the loss function and result in unstable training
early on for datasets with heavy class imbalance [7]. Only one GPU was available
thus the batch size was set to 2.

3.3.3 Utilizing Transfer Learning
Due to the small amount of available data from the Drone vs Bird Detection chal-
lenge, transfer learning was utilized. A study, investigating the impact of freezing
the backbone at different layers, was performed. Four versions of the baseline Reti-
naNet were trained, for each of these networks, the backbone was frozen until Res1,
Res2, Res3, and Res4.

3.3.4 Inclusion of P2
An additional feature level, p2 was added to the network thus enabling additional
predictions on a feature map with higher resolution. Higher resolution feature maps
are more suitable for detecting smaller objects, therefore an experiment was con-
ducted to investigate whether the inclusion of an additional high resolution feature
level would improve the accuracy.

3.3.5 Defining a New Baseline for the RetinaNet
A new baseline was defined where the input sizes were not resized. Furthermore,
the standard aspect ratios were changed to better fit the available data.

3.3.6 Anchor Placements
Anchors of different sizes are often placed on different feature levels for feature pyra-
mids such as FPN. However, this strategy advises a thorough study of the receptive
field of each level. Due to time constraints, this study has been omitted, instead,
experiments with anchor placements were performed. Different sizes, amounts, and
placement of anchors were investigated.

3.3.7 Pruning of P6 and P7
In the feature pyramid architecture predictions were made on each feature level in-
dividually. The top levels p6 and p7 are semantically strong however the resolution
of these feature maps is low. Lower resolution feature maps tend to struggle with
accurate detections of smaller objects [5]. An experiment was conducted to inves-
tigate whether these levels could be removed to reduce the computational expense
without reducing accuracy.
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3.3.8 Relaxation of IoU Thresholds

In the standard RetinaNet, implemented by FAIR, an anchor box is considered
a match with an annotation if the IoU is 0.5 or higher. For small objects, this
threshold may be too strict. This would result in fewer or no anchors matching
the ground truth and thus further increase the class imbalance. An experiment was
conducted to investigate how a more relaxed threshold would affect performance,
the IoU threshold was reduced from 0.5 down to 0.4.

3.3.9 Tuning of Inference Parameters

During inference, three parameters can be tuned to increase the performance of
the algorithm. The parameters are TopK, Non-maximum suppression, and a score
threshold. The TopK parameter specifies the maximum amount of predictions al-
lowed by the network, three Topk values were evaluated. By default, the network
keeps only the top 1000 scoring results. Non-maximum suppression was used to
filter out multiple predictions of the same object. Four different values of the IoU
threshold were evaluated. By default, the network has an IoU threshold of 0.5.
The score threshold removes predictions with a confidence score smaller than some
threshold. Four different values of this threshold were investigated. By default, the
lowest allowed confidence score is 0.05. Due to time constraints, these parameters
were only experimented with for a subset of the trained networks. The networks
that were experimented with were the new baseline, the network with reduced IoU-
threshold, and the network with p6 and p7 removed.

The reason for experimenting with the network with reduced IoU threshold comes
from the fact that more anchors will be matched with the ground truth. Since an-
chors of the same size are placed on each feature level, this might cause an increase
in false positives since there might be matches of the same object across different
levels. Should this be the case, the NMS threshold during inference might be able
to filter out these double matches.

It is also interesting to investigate the network with p6 and p7 removed. The
reason for this comes from the fact that when removing p6 and p7 the performance
is expected to decrease somewhat. However, this will make the network lighter and
faster. With experiments of the inference parameters, it might be possible to reduce
this decrease in performance.

3.3.10 Final RetinaNet

Once the optimal parameters for anchor placements, pruning of p6 and p7, relax-
ation of IoU thresholds and tuning of inference parameters were decided, they were
implemented in the final RetinaNet. The final RetinaNet was used for the imple-
mentation of temporal information, and the semi-supervise learning framework.
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3.4 Temporal Information
Once the final RetinaNet was chosen, methods for integrating temporal informa-
tion were investigated. Due to the limited available data from the Drone vs Bird
Detection Challenge, the suggested methods required to be compatible with the pre-
trained backbone. The parameters of the pre-trained backbone have been trained
as feature extractors of images. Therefore to utilize the pre-training, the methods
needed to be integrated to enable the utilization of the pre-trained parameters as
feature extractors in roughly the same way as they were trained. Three methods of
integrating temporal information were implemented and evaluated. Each method
was based on integrating information from one frame at time t, with the information
from a previous time step. Two time steps were investigated, t− 1 and t− 4.

3.4.1 Concatenation of Feature Maps
This method utilized two identical copies of the FPN backbone. One backbone was
given an input image of a frame at time t and the other one was given an input image
of a previous frame. The backbone computed the feature maps for the two images
and the feature maps from t were concatenated with the difference between the fea-
ture maps at time t and the previous time step. The concatenation was performed
along the channels of the feature maps. The approach was inspired by the work of
C. Craye et al [4]. The team concatenated grayscaled images of different time steps
at the input to the network. Instead of performing the concatenation at the input,
the concatenation was performed after the backbone. The additional channels con-
tributed with additional information to the classifier and regression head, regarding
the change of the feature map between frames.

Let P denote the set of feature maps from the backbone. Here P can be described
by:

P = {p3, p4, p5, p6, p7} (3.1)

The concatenation of feature maps was done for two sets of feature maps, from time
step t and the difference between the feature maps at time step t and t − i where
i ∈ {1, 4}. The set of difference between feature maps is denoted by:

Psub = Pt − Pt−i (3.2)

The concatenation was performed on the feature maps in P and Psub and can be
written as:

P‖Psub = {p3 ‖ p3sub, p4 ‖ p4sub , . . . , p7 ‖ p7sub} (3.3)

3.4.2 Siamese Networks with Addition Merge
An implementation of a Siamese network was made. The goal was to utilize the
frozen layers as shared parameters between two consecutive frames. These frames
were merged before the gradient enabled layers. This method aimed to be a more
lightweight approach to integrating temporal information compared to the method
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of concatenating the feature maps. With this method, only one set of model param-
eters needed to be stored in the memory. Furthermore, instead of having to save
two full sets of feature maps, only one full set and one additional Res3 was required.
Backpropagation was only needed to be performed on one set of trainable layers.

Let R represent the set of feature maps from the backbone. This set can be di-
vided into two subsets with one set representing the feature maps from the frozen
layers and the other represents feature maps from the trainable layers. These sets
can be written as RFrozen and RTrainable respectively they are described as:

RFrozen = {Res1, Res2, Res3} (3.4)

RTrainable = {Res4, Res5} (3.5)

The proposed methodology was to feed two consecutive frames through the layers
in RFrozen and then merge the feature maps before the feature maps were fed into
the layers in RTrainable. The merge was performed by adding the feature maps and
take the average by dividing by two. The succeeding layers were pre-trained and
expected an input in the form of a feature map from an image. By receiving the
average of the two feature maps, the input to the pre-trained parameters was similar
to the expected input.

3.4.3 Siamese Networks with Concatenation Merge
The final proposed implementation of temporal information was a combination of
the previous methods. In the same way as the previous Siamese network, the set of
feature maps, R was divided into RFrozen and RTrainable. Two consecutive frames
were fed into the frozen layers. The merge was done by concatenating the feature
map at time t with the difference between the feature map at time t and the feature
map at time t − i. The choice of the merge was based on the common practice of
merging through concatenation rather than addition, thus the difference between
these two types of merge was investigated. The concatenation merge contributed
with additional information regarding the change of the feature map between frames.
An auxiliary convolutional layer with kernel size 1 × 1 was utilized to reduce the
number of channels to the appropriate amount expected by the next coming layer.
This method, in addition to merging at Res3, performed an experiment with merging
at Res4. The reason for this was to investigate how the location of the merge in the
network affected performance.

3.5 Implementation of Semi-supervised Learning
Framework

The goal of the semi-supervised learning framework suggested in this thesis was to
enable the use of unannotated data in a modern object detection algorithm. Since
gathering data is considered rather easy at Saab, the difficult part would be to
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manually annotate a vast amount of data. Therefore it was investigated whether
the algorithm could reliably be utilized as an annotation tool for unlabeled data. The
data collected for this thesis contains scenes that were largely different compared
to the data found in the Drone vs Bird Detection Challenge datasets. This will
challenge the generality of the algorithm since the collected data can be considered
belonging to another domain. Furthermore, the data collected and annotated by the
framework was incorporated into the Drone vs Bird Detection Challenge datasets,
to investigate whether data from another domain than the Drone vs Bird Detection
Challenge could be utilized to further improve the performance of the algorithm.

3.5.1 Semi-supervised Learning Framework
The semi-supervised learning framework draws inspiration from the work of E.
Sangineto et al [11]. The team utilized a Fast-RCNN to generate bounding box
annotations on images using the region proposal network in the first iteration and
later utilizing the predicted bounding boxes as annotations. The annotations were
performed on easily classified samples for the first iterations and more difficult clas-
sified examples were successively added between iterations. By utilizing easily clas-
sified samples in the first iterations the training was kept from diverging in the
early stages due to noisy annotations. The framework in this thesis utilized easily
classified samples of drones flying in an area that differs from the provided train-
ing data from the Drone vs Bird Detection Challenge. Predictions were made on
the easy samples using the algorithm and if these samples proved to be compara-
ble to hand annotated data, they were utilized as training data for the next iteration.

The collected data consisted of three parts, background, training and test data.
The background dataset consisted of a scene where birds may be present, however,
no drones were included thus the scene was annotated as background. The training
data consisted of a video with a rather easy case where the drone was flying towards
an area that was occupied with traditional Swedish houses as well as pine trees.
The test dataset was similar to the training dataset, however, with more emphasis
on difficult cases such as flying the drone around treetops and multiple cases of the
drone flying in front of buildings.

3.5.2 Evaluation of Generated Annotations
The evaluation of the network trained with the generated annotations was made
with visual inspection, investigation of confidence scores and misclassifications, and
through evaluation against the Drone vs Bird Detection Challenge test data. The
visual inspection was performed by sampling a section of the proposed annotations
and an investigation whether the annotations were competitive to work done by hu-
man annotators was made. The quality of the annotations was investigated between
iterations of the framework, by investigating the confidence scores of predictions
made between iterations and how accurately the annotations were placed on the
drone. Furthermore, misclassified objects were investigated between iterations, to
investigate whether these misclassifications were reduced between iterations.
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Furthermore, the number of frames that were deemed to be usable between training
iterations was a factor when evaluating the performance of the framework.

Since only a sample of the generated annotations was evaluated through visual
inspection, further evaluation of the quality of the annotations was needed. The
performance of the network trained with the generated annotated dataset was eval-
uated with the Drone vs Bird Detection Challenge test data. The reason for this was
to investigate whether the generated annotations could contribute to an increase in
performance on any of the test videos from the Drone vs Bird Detection Challenge.
The generated annotations might prove to contain noisy labels that were not dis-
covered in the visual inspection. Therefore this evaluation was used to determine
whether the benefits of the generated annotations outweigh the shortcomings. The
F1-score was used as the evaluation metric.
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Results

This chapter will give an in-depth explanation of the experiments conducted in the
methodology and present the results of these experiments. Section 4.1 will present
the evaluation metrics. In Section 4.2 the results regarding the modifications of the
RetinaNet will be presented. Section 4.3 will present the results of the implementa-
tion of temporal information. In Section 4.4, the results from the semi-supervised
learning framework will be covered. In this thesis, five different datasets have been
used. Section 4.2 and 4.3 will only utilize the training and test data from the
Drone vs Bird Detection Challenge. In Section 4.4, three new datasets will be intro-
duced. These datasets will be utilized by the semi-supervised learning framework in
conjunction with the training and test datasets from the Drone vs Bird Detection
Challenge.

4.1 Evaluation Metrics
Two main evaluation metrics have been utilized to evaluate the performance, the
COCO AP metric, and the F1-score. The results regarding the tuning of the Reti-
naNet and temporal information were evaluated with the implemented COCO AP
function. The AP-score calculated for each evaluation was based on an average over
multiple IoU-thresholds. Theses thresholds ranged from 0.50 : 0.95 with an incre-
ment of 0.05 between each threshold. AP-score for small, medium, and large objects
was obtained for each evaluation. An object was considered small if the area of its
ground truth bounding box was smaller than 32 pixels, medium if it was between
32-96 pixels and finally large if it was larger than 96 pixels [48].

4.1.1 Evaluation Drone vs Bird Detection Challenge
In the Drone vs Bird Detection Challenge, another metric was utilized to evaluate
the final algorithms, the F1-score. To compare the final algorithm with the state
of the art algorithms, the F1-score of the final RetinaNet was evaluated using this
metric.

4.1.2 Evaluation of Semi-Supervised Learning Framework
To evaluate the semi-supervised learning framework, visual inspection was utilized.
Furthermore, the semi-supervised learning framework was evaluated with the F1-
score to compare how the use of this framework improved the results in the Drone
vs Bird Detection Challenge.
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4.2 Results RetinaNet

This section presents the results of the original implemented baseline, how transfer
learning was utilized, and the inclusion of P2. Thereafter a new baseline is intro-
duced followed by the results of the anchor placement and the pruning of p6 and
p7. Consequently, the results of the relaxation of the IoU thresholds and the tun-
ing of inference parameters will be presented. Finally the results of the Drone vs
Bird Detection Challenge will be presented. The datasets used in Section 4.2 is the
training and test data from the Drone vs Bird Detection Challenge.

4.2.1 Evaluation of Baseline
The baseline parameters of the RetinaNet are the default settings from the Reti-
naNet implemented by FAIR, see Table 4.1. The anchor sizes were selected based
on the sizes of the annotations in the Drone vs Bird Detection Challenge dataset.
The initial input size was down-sampled from the native resolution of 1080 × 1920
to the size 800 × 1333. The AP-scores for this baseline were calculated, see Table
4.2.

Table 4.1: The standard RetinaNet parameters used in this work.

Frozen until IoU Feature levels Aspect ratios Anchors Input size
Res4 [0.4, 0.5] p3-p7 [0.5, 1.0, 2.0] [4, 8, 16, 32, 64, 128, 256] 800 x 1333

Table 4.2: Performance of the baseline.

AP AP(50) AP-s AP-m AP-l
11.659 30.705 6.954 38.517 36.583

4.2.2 Utilizing Transfer Learning
In these experiments, all parameters were kept constant according to the baseline,
and only the point where the backbone was frozen until was changed, see Table
4.3. These experiments indicated that to achieve the highest overall AP-score, the
backbone should be frozen until Res3, see Table 4.4.

Table 4.3: Parameters for experimenting with which layer to freeze until.

Frozen until IoU Feature levels Aspect ratios Anchors Input size
Experiment 1 Res1 [0.4, 0.5] p3-p7 [0.5, 1.0, 2.0] [4, 8, 16, 32, 64, 128, 256] 800 x 1333
Experiment 2 Res2 [0.4, 0.5] p3-p7 [0.5, 1.0, 2.0] [4, 8, 16, 32, 64, 128, 256] 800 x 1333
Experiment 3 Res3 [0.4, 0.5] p3-p7 [0.5, 1.0, 2.0] [4, 8, 16, 32, 64, 128, 256] 800 x 1333
Experiment 4 Res4 [0.4, 0.5] p3-p7 [0.5, 1.0, 2.0] [4, 8, 16, 32, 64, 128, 256] 800 x 1333
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Table 4.4: Results of freezing the baseline at different levels.

AP AP(50) AP-s AP-m AP-l
Experiment 1 13.678 38.248 10.566 32.029 30.898
Experiment 2 13.221 31.392 6.231 43.556 38.677
Experiment 3 14.583 38.792 9.575 37.673 43.811
Experiment 4 11.659 30.705 6.954 38.517 36.583

4.2.3 Inclusion of P2
When including p2 it became apparent that this feature level was computationally
expensive. To reduce the training time, the top feature levels p6 and p7 were re-
moved. To get a fair comparison, an additional model with the same parameters as
the baseline with p6 and p7 removed was trained, see Table 4.5. These experiments
indicated that the inclusion of p2 would be beneficial, see Table 4.6. The inclusion
of p2 improved the network’s ability to detect smaller objects significantly. Even
without p6 and p7, the overall AP-score was higher compared to the baseline Reti-
naNet. However, due to computational expense, it was elected to not include p2 in
the final algorithm since the limited GPU-resources prohibited this.

Table 4.5: Parameters for the experiments when including p2 and removing p6
and p7.

Frozen at IoU Feature levels Aspect ratios Anchors Input size
Experiment 1 Res4 [0.4, 0.5] p2-p5 [0.5, 1.0, 2.0] [4, 8, 16, 32, 64, 128, 256] 800 x 1333
Experiment 2 Res4 [0.4, 0.5] p3-p5 [0.5, 1.0, 2.0] [4, 8, 16, 32, 64, 128, 256] 800 x 1333

Table 4.6: Results of including p2 compared to not having p2.

AP AP(50) AP-s AP-m AP-l
Experiment 1 11.977 34.442 8.179 35.254 7.827
Experiment 2 9.661 21.369 2.218 46.143 35.525

4.2.4 Definition of New Baseline
A new baseline was evaluated where the image was not resized and the standard
aspect ratios were changed. For this baseline, the number of frozen layers were based
on the result of the experiments in Section 4.2.2. A comparison between the old
baseline and the new baseline was made, see Table 4.7. A tremendous increase in
accuracy was achieved for the new baseline. The AP-score for small and medium
objects increased significantly since the higher resolution of the input image enabled
the network to detect smaller objects with higher accuracy. Based on these results,
it was elected to use the new baseline, see Table 4.8.

Table 4.7: Parameters of the old baseline compared to the new baseline.

Frozen until IoU Feature levels Aspect ratios Anchors Input size
Experiment 1 Res4 [0.4, 0.5] p3-p7 [0.5, 1.0, 2.0] [4, 8, 16, 32, 64, 128, 256] 800 x 1333
Experiment 2 Res3 [0.4, 0.5] p3-p7 [0.4, 0.7, 1.0] [4, 8, 16, 32, 64, 128, 256] 1080 x 1920
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Table 4.8: Comparison of results from the old baseline and the new baseline.

AP AP(50) AP-s AP-m AP-l
Experiment 1 11.659 30.705 6.954 38.517 36.583
Experiment 2 22.009 48.585 17.267 49.365 22.207

4.2.5 Anchor Placement
Experiments regarding the anchor placement were conducted for the new baseline,
see Table 4.9 and Table 4.11. The experiments were mainly performed with the same
anchors placed on all feature levels. However, one experiment was conducted with
different sizes of anchors placed on each feature level individually. This experiment
was inspired by the implementation of the original RetinaNet where a fixed anchor
size is scaled with a vector [20, 2 1

3 , 2 2
3 ], see Table 4.11. Based on these results, it was

elected to use anchors of size [4, 8, 16, 32, 64, 128, 256] placed across all feature
levels, see Table 4.10 and Table 4.12.

Table 4.9: Experiments with anchor placement. These experiments have the spec-
ified anchors across all feature levels.

Frozen until IoU Feature levels Aspect ratios Anchors Input size
Experiment 1 Res3 [0.4, 0.5] p3-p7 [0.4, 0.7, 1.0] [4, 8, 16, 32, 64, 128, 256] 1080 x 1920
Experiment 2 Res3 [0.4, 0.5] p3-p7 [0.4, 0.7, 1.0] [2, 4, 8, 16, 32, 64] 1080 x 1920
Experiment 3 Res3 [0.4, 0.5] p3-p7 [0.4, 0.7, 1.0] [2, 4, 8, 16, 32] 1080 x 1920
Experiment 4 Res3 [0.4, 0.5] p3-p7 [0.4, 0.7, 1.0] [4,8,16,32,64,128] 1080 x 1920

Table 4.10: Comparison of results for the anchor placements.

AP AP(50) AP-s AP-m AP-l
Experiment 1 22.009 48.585 17.267 49.365 22.207
Experiment 2 19.132 49.21 14.363 43.81 44.071
Experiment 3 21.195 49.50 16.011 53.452 42.845
Experiment 4 19.481 49.259 17.618 34.92 24.739

Table 4.11: Experiment with anchors placed on individual feature levels.

P3 P4 P5 P6 P7
Experiment 5 2× [20, 2 1

3 , 2 2
3 ] 4× [20, 2 1

3 , 2 2
3 ] 8× [20, 2 1

3 , 2 2
3 ] 16× [20, 2 1

3 , 2 2
3 ] 32× [20, 2 1

3 , 2 2
3 ]

Table 4.12: Result of placing individual anchors across each feature level.

AP AP(50) AP-s AP-m AP-l
Experiment 5 16.064 30.761 6.585 59.985 63.767
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4.2.6 Pruning of P6 and P7

A comparison of the new baseline and the new baseline with p6 and p7 removed
was made, see Table 4.13. Based on the results of this experiment, it was elected
to keep p6 and p7, see Table 4.14. When P6 and P7 were removed the overall AP-
score decreased which was expected. The AP-score for small and medium objects
stayed roughly the same which indicates that the majority of these objects were not
dependent on p6 and p7 to be detected. However, the AP-score for larger objects
increased when p6 and p7 were removed. Even though the model performed rather
similar when including p6 and p7 versus removing them, the removal still resulted
in a lower overall AP-score. Since the highest feature levels are the least compu-
tationally expensive, the levels were deemed to be worth the cost in computational
expense for the ability to increase the overall AP-score.

Table 4.13: Comparison of the new baseline and the new baseline with p6 and p7
removed.

Frozen until IoU Feature levels Aspect ratios Anchors Input size
Experiment 1 Res3 [0.4, 0.5] p3-p7 [0.4, 0.7, 1.0] [4, 8, 16, 32, 64, 128, 256] 1080 x 1920
Experiment 2 Res3 [0.4, 0.5] p3-p5 [0.4, 0.7, 1.0] [4, 8, 16, 32, 64, 128, 256] 1080 x 1920

Table 4.14: Comparison of results of the new baseline and the new baseline with
p6 and p7 removed.

AP AP(50) AP-s AP-m AP-l
Experiment 1 22.009 48.585 17.267 49.365 22.207
Experiment 2 20.542 47.586 16.95 43.894 35.364

4.2.7 Relaxation of IoU Thresholds

An experiment was conducted for the new baseline where the threshold of the IoU
during training was reduced, see Table 4.15. By reducing the IoU threshold in
training, a larger amount of the anchor boxes will be labeled as matches. The
result of lowering the IoU threshold parameters from [0.4, 0.5] to [0.3, 0.4] proved to
be beneficial since the AP-score in all categories increased, thus it was elected to
reduce the IoU threshold during training, see Table 4.16.

Table 4.15: Comparison of the new baseline and the new baseline with the IoU
thresholds reduced.

Frozen until IoU Feature levels Aspect ratios Anchors Input size
Experiment 1 Res3 [0.4, 0.5] p3-p7 [0.4, 0.7, 1.0] [4, 8, 16, 32, 64, 128, 256] 1080 x 1920
Experiment 2 Res3 [0.3, 0.4] p3-p5 [0.4, 0.7, 1.0] [4, 8, 16, 32, 64, 128, 256] 1080 x 1920
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Table 4.16: Results of the new baseline and the new baseline with the IoU thresh-
olds reduced.

AP AP(50) AP-s AP-m AP-l
Experiment 1 22.009 48.585 17.267 49.365 22.207
Experiment 2 22.540 50.321 18.223 49.881 31.199

4.2.8 Tuning of Inference Parameters
Experiments with tuning of inference parameters were conducted for three versions
of the algorithm, the new baseline, the new baseline with reduced IoU-threshold,
and the new baseline with p6 and p7 removed, see Table 4.17 - 4.19. The highest
AP-score achieved was for the new baseline with reduced IoU threshold and thus
this network was selected as the final RetinaNet, see Table 4.20.

Table 4.17: Comparision of results after tuning the score threshold.

Score threshold New baseline Reduced IoU Without P6 and P7
0.05 22.009 22.540 20.542
0.01 22.059 22.576 20.593
0.20 21.571 22.410 20.287
0.30 20.788 22.297 19.783

Table 4.18: Comparison of results after tuning the NMS parameter.

NMS New baseline Reduced IoU Without P6 and P7
0.5 22.009 22.540 20.542
0.3 21.994 22.702 20.574
0.2 22.021 22.723 20.576
0.1 22.048 22.715 20.582

Table 4.19: Comparison of results after tuning the topK parameter.

TopK New baseline Reduced IoU Without P6 and P7
1000 22.009 22.540 20.542
10 22.003 22.456 20.531
2 20.936 21.161 19.936

Table 4.20: A comparison of the highest AP-scores achieved for the three versions
of the new baseline after tuning the inference parameters.

New baseline Reduced IoU Without P6 and P7
AP 22.089 22.704 20.566
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4.2.9 Results Drone vs Bird Detection Challenge
The results from the final RetinaNet, with regards to the true positive, false positive,
and false negative, was compared with the contestants from the Drone vs Bird
Detection Challenge, see Figure 4.1. The final RetinaNet was evaluated with the
test dataset from the Drone vs Bird Detection Challenge. Compared to the other
contestants in the Drone vs Bird Detection Challenge, the final RetinaNet produces
a large number of false positives. However, the number of false negatives is rather
low and the number of true positives is high.

(a) Comparison of results from video 1. (b) Comparison results from video 2.

(c) Comparison of results video 3.

Figure 4.1: Comparison of true positives, false positives and false negatives with
the final RetinaNet and the networks presented in the Drone vs Bird Detection
Challenge.

The winner was determined with the highest total F1 score. Team 3 was the winner
however the proposed algorithm in this thesis outperforms Team 1, see Table 4.2.9.
For the visual results of the algorithm, see appendix A.

Table 4.21: Comparison of F1-scores from the Drone vs Bird Detection Challenge.

The final RetinaNet Team 1 Team 2 Team 3 Team4
F1 score 0.35 0.12 0.68 0.73 0.41
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4.3 Results Temporal Information
This section presents the results of the concatenation of feature maps, the Siamese
network with addition merge, and the Siamese network with concatenation merge.
The datasets used in this section are the Drone vs Bird Detection Challenge training
dataset and the Drone vs Bird Detection Challenge test dataset.

4.3.1 Concatenation of Feature Maps
The implementation of the concatenation of feature maps was expensive in terms
of GPU memory. Therefore, the input images were required to be cropped. The
crop was performed with the center of the annotated bounding box always present
in the cropped image. The crop size was defined as [0.4× height, 0.4×width]. The
network was trained with the two different time steps and the inference parameters
were tuned accordingly to Section 4.2.8. Based on the results, it was elected to not
utilize this implementation of temporal information, see Table 4.22. It is clear from
the results that larger time steps are more beneficial compared to smaller time steps
since the AP-score increased. Both timesteps resulted in a decreased performance
for small objects, a similar performance on medium sized objects, and an increased
performance on large objects compared to the final RetinaNet.

Table 4.22: Results of concatenation of feature maps for the two time steps com-
pared with the final RetinaNet.

t-1 t-4 The final RetinaNet
AP 19.542 21.166 22.735
AP-s 15.324 16.687 18.223
AP-m 45.901 46.841 49.881
AP-l 47.206 52.346 31.199

4.3.2 Siamese Networks with Addition Merge
The Siamese networks were trained with a crop size of [0.7 × height, 0.7 × width].
The crop was performed as in Section 4.3.1 i.e with the center of the annotation
always present in the crop. The network was trained for the two time steps, and
the inference parameters were tuned accordingly to Section 4.2.8. Based on these
results, it was elected to not use this implementation of temporal information, see
Table 4.23.

Table 4.23: Results of Siamese networks with addition merge for the two time
steps compared to the final RetinaNet.

t-1 t-4 The final RetinaNet
AP 15.584 7.120 22.735
AP-s 14.511 8.322 18.223
AP-m 28.520 10.698 49.881
AP-l 16.028 15.123 31.199
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4.3.3 Siamese Networks with Concatenation Merge
The siamese networks with concatenation merge were trained with a crop size of
[0.7×height, 0.7×width], the crop was performed as in section 4.3.1. The networks
were trained with two different time steps and the inference parameters were tuned
accordingly to Section 4.2.8. The concatenation merge was performed at two differ-
ent locations in the network. The merge was performed after Res3 and after Res4.
Based on the results of these implementations it was elected to not use these imple-
mentations of temporal information, see Table 4.24 and Table 4.25. When freezing
until Res3 it is shown that timestep t− 4 is performing better than timestep t− 1.
When freezing until Res4 it is shown that timestep t− 1 is performing better than
timestep t− 4.

Table 4.24: Results of concatenation merge for the two time steps at Res3.

t-1 t-4 The final RetinaNet
AP 17.382 18.804 22.735
AP-s 11.993 12.728 18.233
AP-m 41.294 47.952 49.881
AP-l 35.768 44.330 31.199

Table 4.25: Results of concatenation merge for the two time steps at Res4.

t-1 t-4 The final RetinaNet
AP 20.904 19.368 22.735
AP-s 18.218 17.389 18.223
AP-m 38.084 35.008 49.881
AP-l 50.522 25.311 31.199

4.4 Results Semi-Supervised Learning Framework
This section presents the results of the semi-supervised learning framework. Section
4.4.1 presents the results of the visual inspection and Section 4.4.2 displays the
results of the framework with regards to the Drone vs Bird Detection Challenge test
dataset.
The semi-supervised learning framework was trained on the training dataset from the
Drone vs Bird Detection Challenge, and with two new datasets with data collected
by Saab. The first of the new datasets contained a background scene with no drones.
The second contained easy examples of a drone flying in the background scene. The
first of the new datasets will be referred to as Saab-train-BG, the second will be
referred to as Saab-train. The semi-supervised learning framework was evaluated
with the test dataset from the Drone vs Bird Detection Challenge and a new test
dataset containing the drone flying in the background scene, however, with more
emphasis on drones flying in front of buildings and close to treetops. The new test
dataset will be referred to as Saab-test, see Table 4.26.
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Table 4.26: Amount of available data for the three datasets.

Amount of data (Frames)
Saab-train-BG 840
Saab-train 2123
Saab-test 1921

The final RetinaNet was in addition to the training dataset from the Drone vs Bird
Detection Challenge, trained with the Saab-train-BG dataset. The network was
utilized to generate annotations from the Saab-train data. To filter out predictions
with high uncertainty, a score threshold of 0.2 was utilized. This choice of score
threshold was deemed to be a good compromise between generating predictions of
drones while filtering out predictions with high uncertainty. The topK and NMS
inference parameters were not changed. Thereafter, the final RetinaNet was trained
with the training dataset from the Drone vs Bird Detection Challenge, the Saab-
train-BG dataset, and the drone data with annotations generated from the Saab-
train dataset.

4.4.1 Visual Inspection of the Semi-Supervised Learning Frame-
work

The final RetinaNet, trained with the Drone vs Bird Detection Challenge training
dataset and the Saab-train-BG dataset was able to generate 1060 annotations from
the Saab-train dataset and 769 annotations from the Saab-test dataset. Thereafter,
the final RetinaNet was trained with the 1060 generated annotations from the Saab-
train dataset and the Drone vs Bird Detection Challenge training dataset and the
Saab-train-BG dataset. This version of the final RetinaNet managed to generate
1860 annotations from the Saab-train dataset, which was an increase of 800 anno-
tations. Furthermore, this version of the final RetinaNet was able to generate 1089
annotations from the Saab-test data, an increase of 320 frames, see Table 4.27. The
final RetinaNet trained with the training dataset from the Drone vs Bird Detection
Challenge and the Saab-train-BG dataset will be referred to as the first network
and the final RetinaNet trained with the training dataset from the Drone vs Bird
Detection Challenge, the Saab-train-BG dataset and the Saab-train dataset with
the 1060 generated annotations will be referred to as the second network.

Table 4.27: Comparison of the amount of data the two networks can annotate.

The first network The second network
Saab-train 1060 1860
Saab-test 769 1089
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The vast majority of the generated annotations were deemed to be comparable to
data annotated by a human. To further analyze the capabilities of the framework,
the confidence score of annotations between the first and second networks was com-
pared, see Figure 4.2.

(a) Prediction with the first network. (b) Prediction with the second network.

Figure 4.2: Comparison of predictions from the Saab-test dataset on the same
image by the two networks.

The confidence scores of the second network were higher compared to the confi-
dence scores of the first network. Furthermore, the bounding boxes matched the
drone slightly more accurately. Therefore the network was deemed to be capable
of utilizing data with annotations generated by the semi-supervised learning frame-
work.

Misclassifications for the first and second network was investigated. The results
indicated that with the addition of data with generated annotations, the network
was able to gain more information of drone features to localize drones better. Fur-
thermore, the network is able to reduce the number of birds misclassified as drones
with additional data labeled with generated annotations, see Figure 4.3.
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(a) The first network misclassified
the bird.

(b) The first network does not manage to
find the drone.

(c) The second network does not
misclassify the bird.

(d) The second network managed to find
the drone.

Figure 4.3: Comparison of misclassifications between the first and second network
on the same image from the Saab-test dataset.

An additional experiment was conducted for cases when the first network and the
second network misclassified a bird as a drone. Since the framework used the pre-
diction with the highest confidence score, it is possible to accidentally annotate a
misclassified bird as a drone. The experiment was performed on 24 frames where a
bird was misclassified as a drone while a drone was present in each frame, see Figure
4.4.

(a) Prediction with the first network. (b) Prediction with the second network.

Figure 4.4: Comparison of misclassifications of the first and second network.

The experiment was based on the amount of birds in the 24 frames that were falsely
annotated as drones. The result of this experiment was then compared for the two

50



4. Results

networks, see Table 4.28.

Table 4.28: Comparison of amount of falsely annotated birds.

Number of
drones found

Number of
wrong annotations

The first network 19 24
The second network 23 17

The results of this experiment show that the first network manages to find 17 out
of 24 drones, but annotated 24 out of 24 birds as drones. The second network,
however, managed to find 23 out of 24 drones and annotated 20 out of 24 birds as
drones. This indicates that even in difficult cases where the bird is misclassified as a
drone the majority of the time, the addition of the data with generated annotations
manages to reduce the number of misclassifications.

4.4.2 Semi-Supervised Learning Framework with Regards
to the Drone vs Bird Detection Challenge

The first and second network was evaluated with the F1-score on the Drone vs Bird
Detection Challenge test dataset, see Table 4.29. For video 3 the performance of
the algorithm continued to increase when data with generated annotations from the
semi-supervised learning framework was added. However, for videos 1 and 2 the
best result was achieved with only the background data.

Table 4.29: F1-score on the annotated Drone vs Bird Detection Challenge test
data with the inclusion of generated annotations and background.

The final
RetinaNet

The first network
(Background)

The second network
(Background +
generated annotations)

Video 1 0.48 0.72 0.53
Video 2 0.40 0.64 0.60
Video 3 0.20 0.25 0.34
Total F1-score 0.35 0.49 0.48

Since the F1-score did increase for video 3, the semi-supervised learning framework
was deemed to be beneficial since it was able to increase the performance of at least
one of the test videos from the Drone vs Bird Detection Challenge test data.
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5
Discussion

This chapter will discuss in-depth the results achieved. The discussion of the im-
plemented RetinaNet is presented in Section 5.1. The result of the Drone vs Bird
Detection Challenge is discussed in Section 5.2. Section 5.3 discusses the temporal
implementations and Section 5.4 discusses the Semi-supervised learning framework.
Lastly, suggestions for future work are presented in Section 5.5.

5.1 Discussion of Results of RetinaNet
Freezing until Res3 resulted in the highest AP-score. This indicated that the pre-
trained parameters could be utilized as feature extractors for the general features
of the drones. When freezing at higher layers, the pre-trained parameters failed to
extract specific drone features. When freezing at lower layers, the network suffered
from overfitting since the distribution of the training dataset deviated too much
from the test dataset in the Drone vs Bird Detection Challenge.

The inclusion of p2 proved to be beneficial for detecting smaller objects since lower
feature levels have feature maps with higher resolution and thus are suitable for
detecting smaller objects. However, the computational expense for including p2 was
high, since higher resolution feature maps require more computations.

The original implementation of the RetinaNet elected to place anchors of different
sizes at each feature level. By performing a study of the receptive field on each fea-
ture level, appropriate anchor sizes are selected for each level. In this work, it was
elected to place anchors of the same size on all feature levels, since no study of the
receptive field was conducted. There is nothing inherently wrong by placing anchors
of the same size across multiple feature levels, however, this strategy introduces a
few aspects to be taken into considerations. Firstly, since anchors of the same shape
and size were placed across multiple feature levels, the same object may be detected
across different feature levels. Secondly, there is the question of computational ex-
pense. Since more anchors require more computation, the networks demand more
resources.

Higher feature levels are more suited to detect larger objects since a feature map
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with lower resolution has increased semantic strength due to being processed by
more convolutional layers and the increased size of the receptive field. However, the
increase in semantic strength comes with a cost of loss in spatial information. The
increase in the AP-score for larger objects when p6 and p7 were removed might be
the result of larger objects being detected sufficient enough on the other levels in the
feature pyramid. Therefore, the addition of higher levels might increase the number
of multiple detections for larger objects across multiple feature levels since the same
anchors are placed on each feature level. Hence it is a possibility that the larger
objects are detected sufficiently enough on lower levels and the inclusion of higher
feature levels only results in multiple detections.

A lowering of the IoU threshold leads to an increase in accuracy since lower quality
matches that could contribute meaningful information will be included. Another
benefit of having more anchors labeled as foreground is the reduction of class im-
balance. However, the downside is that if the threshold is set too low, the lower
quality matches might instead provide false information to the network and thus
reduce accuracy since the number of false positives increases. Furthermore, since
the same anchors are placed on multiple feature levels, a decrease of this threshold
might increase the probability that the network detects the same object on multiple
feature levels.

The experiments with the inference parameters indicated that it was beneficial for
the final RetinaNet to include many uncertain predictions to find additional matches.
In conjunction with electing to use the same anchors across all levels, this would
lead to an increase in false positives. Therefore, lowering the NMS threshold proves
to be beneficial since this parameter filter out a portion of detections across multiple
levels.

5.2 Discussion of Result Drone vs Bird Detection
Challenge

The final RetinaNet is, compared to the other contestants in the Drone vs Bird
Detection Challenge, quite aggressive and produces a large number of false positives.
However, the final RetinaNet rarely fails to classify drones, and this results in a large
number of correct classifications. The behavior of the algorithm could be explained
by the relatively low IoU threshold during training and the anchor placement. Due to
the anchor placement, anchors of the same shape and size are placed across multiple
feature levels. This might result in smaller objects being detected on feature levels
more suitable for detecting larger objects during training. The decrease of the
IoU-threshold further increases the probability that these matches occur since more
anchors, in general, will be labeled as matches. The low resolution of higher feature
levels dilutes the detectable features and the distinct drone features become more
general for small objects at higher feature levels. The diluted features result in
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a network capable to detect relatively specific features for drones. However, the
features are not specific enough since similar features are found in other objects and
thus these objects are classified as drones. This will increase the number of false
positives since features that share some similarities to the diluted drone features will
be regarded as drones. Due to the same reasoning, the network manages to find the
more difficult matches since the network is trained to classify features only similar
to drones as drones, and thus, the number of positive matches increases. Overall,
this aggressive approach leads to a result that is adequately comparable to the state
of the art algorithms since the increase in detections partially outweighs the increase
in misclassifications. There are benefits for not failing to classify these specific kinds
of objects since drones might be weaponized. Therefore, as a design choice, it could
be elected to rather find these drones at the cost of more false predictions, than the
other way around.

5.3 Discussion of Results of Temporal Informa-
tion

This Section will discuss the achieved results for the different implementations of
temporal information. Furthermore, a discussion regarding the utilization of tem-
poral information will be included.

5.3.1 Concatenation of Feature Maps
The implementation of this version of temporal information required large compu-
tational resources in terms of memory. This was expected since two separate sets of
parameters for Res4 and Res5 were required to be saved since these two layers were
not frozen. Furthermore, two sets of feature maps from all the feature levels also
need to be stored in the memory since the concatenation was performed after the
FPN backbone had extracted these features. Due to this, the input image needed
to be cropped to fit inside the memory of the GPU.
An increase in performance for a larger timestep could be explained by the content
of the data. The majority of data contained drones from far away and therefore the
motion of the drone between frames is far less noticeable with only t−1 compared to
t−4. Since the movement of objects closer to the camera is more noticeable between
frames, the frame difference is more significant for these objects. Therefore, the net-
work was capable of extracting this information and thus the accuracy for larger
objects was increased. On the contrary, the movement of smaller objects between
frames is far less significant. Therefore, the frame difference will not contribute with
useful information. This might result in an abundance of useless information that
the classifier can not find any useful patterns in. Thus the accuracy was reduced
when utilizing time step t-1 compared with t-4.

The limited GPU might have affected the result since the images required to be
cropped to fit inside the GPU. The images were cropped with the center of the
drones always present in the image. In this case, the position of the drone in the
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Drone vs Bird Detection Challenge training dataset is mainly up in the air. Inferring
elements such as building and vegetation will not be included in the training process
if the image is cropped to aggressively. When these elements are introduced during
testing, the network has only been trained with images of drones and their immedi-
ate background. Therefore a large number of false positives may occur once objects
such as buildings and vegetation are present. The semi-supervised framework proved
to reduce the number of false positives significantly when only utilizing additional
background. This further indicates the requirement of diverse background samples
during training. Hence to obtain a better result, cropping without always centering
the object might be beneficial.

5.3.2 Siamese Networks with Addition Merge
Using Siamese networks to integrate temporal information is far less computation-
ally expensive compared to the method of concatenating feature maps, therefore
more contextual information will be provided due to the ability to use a larger input
size.

This method, however, proved to be unsuccessful. Instead of utilizing the aver-
age between the feature maps, the network was handed a feature map where the
information had been corrupted. Compared to the previous method, an increase
in the timestep decreased the performance of the network. The network might be
unable to integrate the average of the feature maps and thus, a more diverse pair
of feature maps will corrupt the resulting feature map further. Since the differ-
ence between feature maps is more noticeable between larger timesteps, the network
partially managed to suppress the influence of the second frame at timestep t − 1.
However, as the timestep increased, the change was more noticeable and the network
failed to suppress this change.

5.3.3 Siamese Networks with Concatenation
The result of this experiment showed that merging through concatenation is more
beneficial than merging through addition. When merging after Res3, it was once
again shown that the detection of larger objects was improved through the use of
temporal information since the information between frames is significant enough for
the network to be able to utilize it. On the contrary, the difference between smaller
objects is not significant enough and thus only provide useless information. Fur-
thermore, a larger timestep is proved to be more beneficial since this will further
increase the difference between frames and thus make it easier for the network to
utilize the temporal information.

A smaller time step is more beneficial when merging after Res4. This might be
because when merging after Res4, only Res5 is available to process the temporal
information. When merging after Res3, there were two layers available for handling
temporal information and extracting features. When only a single level is required
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to handle temporal information by itself while simultaneously extracting features,
the single layer is not sufficient enough to handle these two tasks. Therefore, it
elects to focus on feature extraction since the pre-trained parameters are tuned for
that task. Since Res5 now focuses on feature extraction, the temporal information
is only corrupting the feature map and thus reduces accuracy.

5.3.4 Utilizing Temporal Information
The methods for temporal information proposed in this thesis failed to produce a
higher accuracy compared to the final RetinaNet. The highest accuracy when inte-
grating temporal information is achieved when the merge is performed higher up in
the network. This indicates that the network utilizes the full capacity of Res4 and
Res5 to extract features.

When concatenating the feature maps before the classification head, all of the
features have been fully processed by the ResNet backbone. However, the small
classification head is unable to fully utilize the temporal information.
When merging at Res3 the network is able to recognize the temporal information
since it has Res4, Res5 and the classifier head to process it. However, this comes at
the cost of not utilizing the feature extraction fully which results in overall reduced
accuracy.

In the work by D. Iglesia et al. [5], a frame difference channel is included at the
bottom of the network. This method proves to be successful since the temporal
information proves to increase accuracy. Based on these results and the results in
this thesis, a larger part of the network might be required to be trainable, since the
network need to be able to extract all the necessary features as well as handling
temporal information.

5.4 Discussion of the Semi-supervised Learning
Framework

This Chapter will discuss the results from the visual inspection of the semi-supervised
learning framework and the results achieved on the Drone vs Bird Detection Chal-
lenge test dataset.

5.4.1 Visual Inspection
The visual inspection made on the generated annotations showed that a vast major-
ity of the generated annotations were similar to the work done by a human annotator.
It was noted that not only did the confidence score of predictions on drones increase
with the addition of data with generated annotations, but the annotations seemed
to fit the drone more accurately as well. This indicates that both the classification
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and the localization capabilities of the network improved with additional data. Even
though the generated annotations contain noise in the form of misclassifications and
bounding boxes with a slight off-set to the actual drone, the benefits from the ac-
curate predictions outweigh the downsides. One can, therefore, draw the conclusion
that the network was able to at least partially utilize the annotations to iteratively
improve the quality of the annotations in the next cycle. The generated annotations
are deemed to have the potential to be comparable to hand annotated data.

The number of detections on the training and test datasets increased between iter-
ations. This was an indication that the network managed to utilize the generated
annotations since not only did the visual quality of the annotations increase, the
number of drones that were detected also increased.

The final evaluation was based on how misclassified examples changed between
iterations. These results showed that with the inclusion of more data annotated
with the framework, the number of misclassifications decreased. In hard cases when
both the first and second network detects a bird as a drone, the second network had
improved since it was able to detect more drones and being more confident in drone
detection than bird detection in some cases. This shows that with more data with
generated annotations, more drone features had been learned by the network and
thus it was able to somewhat reduce the number of falsely detected birds that would
have been annotated as drones. Furthermore, the second network showed capabil-
ities of being able to entirely remove false detections of birds while simultaneously
localize the actual drone in cases where the first network only detected the bird.

5.4.2 Semi-Supervised Learning Framework with Regards
to the Drone vs Bird Detection Challenge

The increase in F1-score for training the network with additional background data
could be explained by the nature of the background data. Since the network was
trained with data with a richer distribution, the network receives a larger amount of
information in the form of negative examples. It was hypothesized that by including
more negative examples, the number of false positives could be decreased. In the
work by [49], negative examples are incorporated in the task of detecting ships from
satellite images while using the fast-RCNN architecture. Similarly to the case in
this thesis, a lot of false positives would occur and to reduce the number of false
positives, negative examples were included in the training data much in the same
way as the proposed method in this thesis. The results showed that by incorporating
negative examples, the number of false positives could be reduced drastically.

When adding the data with generated annotations and evaluating on the Drone
vs Bird Detection Challenge test data, the results showed an increase in perfor-
mance on video 3 and a reduction in performance on video 1 and 2. This indicates
that in some cases, the generated annotations can be used to improve the perfor-
mance of the algorithm. Video 3 is visually close to the domain of the data with
generated annotations with regards to the background and drone positions, however,
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videos 1 and 2 are not. There is, unfortunately, no quantitative way to evaluate the
performance of the semi-supervised learning framework in the domain of the Saab
data, due to the lack of hand annotated data. However, based on the results of the
visual inspection and the improvement on a hand annotated example close to the
domain, this indicates that the semi-supervised learning framework can be utilized
as an annotation-tool.

5.5 Future Work
Since the approach with exploiting temporal information did not improve the results
it would be interesting to experiment further with transfer learning and perhaps try
to freeze until Res1 and perform the merge thereafter. It would also be interesting
to try the temporal implementations without cropping the images. One could also
experiment with larger time steps to further investigate the impact of the time step.
Another approach could be to concatenate or merge more time steps to incorporate
even more temporal information to the network.
More investigations regarding the semi-supervised learning framework should be
carried out to obtain more than a rough performance of the framework. It would be
interesting to evaluate the semi-supervised learning framework on a hand-annotated
dataset in the same domain as the unannotated drone data collected for this thesis
and utilize the AP-metrics. Since the number of false positives decreased when
background data was added it would be interesting to train the network with more
specific background data on objects that proved to be hard to classify, for example
birds. Another approach could be to investigate if the framework is adaptable to
other objects than drones and if it could handle the classification of multiple object
classes. To further test the performance of the framework it would be interesting
to implement another type of deep learning algorithm, for example a two stage
detector, and evaluate the semi-supervised learning framework.
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Conclusion

In this thesis, one final RetinaNet optimized for small drone detection is presented.
The final optimal RetinaNet utilizes transfer learning and anchors of the same size
are placed on all feature levels. The IoU threshold during training is reduced and
the aspect ratio is adapted to the specific data used in the Drone vs Bird Detection
Challenge. It was discovered that the proposed methods for integrating temporal
information were not advantageous due to the network’s inability to both extract
features and take advantage of the temporal information. It was concluded that the
incorporation of data with generated annotations and background data increased
the performance of the algorithm. In particular, the inclusion of unannotated back-
ground data proved to be beneficial for reducing false positives. The suggested
approach of placing the same anchors across all feature levels resulted in a fairly
aggressive RetinaNet. This approach resulted in a large number of true positives
and false positives. The inclusion of unannotated background data heavily reduced
the number of false positives while simultaneously keeping a high number of true
positives. This resulted in a large increase in performance. The aggressive approach
might be beneficial in real-life applications since background data are easily ob-
tainable and require no manual labor in the form of hand-annotation. The overall
purpose of the thesis was to detect and classify drones and not classify birds as
drones. The results show that this object detection task can be carried out with
the proposed approach, however, it could not outperform state-of-the-art super-
vised learning results on the Drone vs Bird Detection Challenge. The resulting
framework did however show remarkable promise of being able to be used as an
annotation tool for unannotated data, however, a more quantitative evaluation of
the semi-supervised learning framework is required.
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Figure A.1: Visual results from video 1. The drone is detected, however a false
positive also occur

Figure A.2: Closer inspection of the detected drone from video 1
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A. Appendix 1

Figure A.3: Visual results from video 2. The two drones are detected, however
three false positive also occur

Figure A.4: Closer inspection of the detected drones from video 2

II



A. Appendix 1

Figure A.5: Visual results from video 3. The drone is detected and the nearby
bird is not classified as a drone. However there is also a false positive

Figure A.6: Closer inspection of the detected drone from video 3

III
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