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Three-Mode Hybrid Powertrain Optimal Control to Track Offline Optimized Refer-
ences
Nonlinear Model Predictive Control of Switched Systems used to Track References
Established with Dynamic Programming
DANIEL HULTGREN, TEODOR HUSMARK
Department of Electrical Engineering
Chalmers University of Technology

Abstract
This thesis implements a new offline-online coupled powertrain control solution for
a three-mode hybrid electric vehicle with the purpose of minimizing the total en-
ergy consumption over a route. The offline component uses a simplified version of
the powertrain to generate optimized SoC and velocity references through dynamic
programming given speed limits and topographic profile of a road segment. To act
on the references, the online component employs the optimal control technique of
nonlinear model predictive control on a detailed dynamical model of the powertrain
by generating torque setpoints to the power sources and selecting the most optimal
gear. The coupled solution is also given the feature of treating driver interaction by
acting on driver requested torque in overtake scenarios.

The full solution was implemented and tested through simulations in MATLAB and
Simulink. The coupled solution showed benefits over a pure online controller due to
its strong predictive performance. Compared to solely using the online controller, the
coupled solution produces less engine events which is beneficial for drivability, can
ensure that regenerative braking segments are utilized and can cope with emission
free zones while meeting the control objective.

Further simulation results shows that the developed solution is able to act on driver
requested torque in a satisfactory manner and that the tuning parameters of the
solution plays a big role in the overall behavior of the coupled solution.

Keywords: Nonlinear Model Predictive Control, Dynamic Programming, Optimal
Control, Optimization, Powertrain, Hybrid Electric Vehicle, Switched Systems.
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Strategi för optimal reglering av en hybrid Drivlina för att nå energikrav
Olinjär modellprediktiv reglering med växlade system för att följa offline optimerade
referenser skapade genom dynamisk programmering på en tre-läges hybrid drivlina
DANIEL HULTGREN, TEODOR HUSMARK
Institutionen för Elektroteknik
Chalmers tekniska högskola

Sammanfattning
Detta projekt implementerar en ny lösning för styrningen av en hybrid drivlina
med tre körlägen. Den nya lösningen sammanfogar offlineoptimering med onlinere-
glering med syftet att minimera den totala energiförbrukningen för en given rutt.
Denna optimering använder en förenklad matematisk modell av drivlinan för att
genom dynamisk programmering kunna generera optimerade laddningstillstånds-
och hastighetsreferenser givet hastighetsbegränsningar och topografisk profil av den
aktuella rutten. Onlineregleringen använder sedan olinjär modellprediktiv regler-
ing i kombination med en detaljerad matematisk modell av drivlinan för att agera
på referenserna genom att generera börvärden till drivlinans effektkällor samt välja
den mest optimala växeln. Den sammanfogade lösningen gavs också möjligheten
att realisera förfrågan om vridmoment från föraren vilket kan vara nödvändigt i
situationer så som en omkörning.

Helhetslösningen implementerades och testades genom upprepade simuleringar i
MATLAB och Simulink. Den sammankopplade lösningen visar fördelar över en
enbart onlinereglering tack vare dess starka prediktiva förmåga. Till skillnad från
att enbart använda onlinereglering så producerade den sammankopplade lösningen
färre lägesbyten vilket är fördelaktigt för körbarheten. Dessutom kan den kopplade
lösningen säkertställa att tillfällen för generativ inbromsning alltid utnyttjas samt
att utsläppsfria zoner följs utan att bryta mot kontrollmålet.

Resultaten visar också att helhetslösningen kan realisera en förfrågan om vridmo-
ment från föraren på ett tillfredsställande sätt. Slutligen visade även resultaten att
justeringar av onlineregleringens parametrar spelar en stor roll för dess beteende.

Nyckelord: Olinjär Modellprediktiv Reglering, Dynamisk Programmering, Optimal
Reglering, Optimering, Drivlina, Hybridfordon, Växlade System.
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1
Introduction

This chapter introduces the issue and relevance of hybrid powertrain control, earlier
research and presents the trend of making control predictions based on GPS and
route data and why that can be beneficial for control performance. The chapter
further states the project aim and limitations along with the main and sub research
questions.

Bad air quality, among other motivators, forces emission legislation and regulations
to become stricter over time. For instance, the NOx emission limit was reduced by
58 % in relation to the previous year when the Euro 6 regulation for passenger cars
was implemented in 2015 [1]. Emission legislation regarding other pollutants such
as Particulate Matter (PM) and CO2 are following the same trend which forces a
response by vehicle manufacturers. These factors among with the public’s general
interest of lowering the contribution to global warming has placed hybrid powertrains
in the spotlight. By seeking the optimal power split between the power sources,
a Hybrid Electric Vehicle (HEV) can in most cases outperform the conventional
powertrain in terms of fuel economy and emissions [2]. However, a hybrid powertrain
requires advanced and resource consuming control techniques in order to reach its
full potential, a field which has not fully been explored yet [3]. This motivates the
importance of projects which develops high-end energy management controllers for
HEV powertrains to compete with, and eventually replace, the regular and more
harmful combustion powertrains.

A hybrid vehicle consists of multiple power sources which allows the power demand
by the powertrain to be satisfied in multiple ways. Despite the added complexity
of a hybrid powertrain, the driver interface is still similar to the driver interface
of a vehicle with a conventional powertrain. The simplicity can be preserved by
allowing software to control the power split of the power sources during various
driving scenarios. This necessitates the need for clever control logic which decides
how much to utilize each power source in every driving scenario. Optimal control is
becoming a more frequent control methodology used for this task. Optimal control is
a family within control theory which formulates control inputs based on optimality
of an objective function. The ability to specify an objective function allows for
intuitive tuning using weights while remaining optimal.

The technical progress regarding computing power and algorithmic developments [4]
has enabled a switch from the previous rule-based control approach to the optimal
control approach within hybrid powertrain control. The movement towards more

1



1. Introduction

powerful control schemes opens the ability of including more features to the control
solution, such as predictive behavior. This can come in the form of GPS and route
data which allows the controller to predict future road conditions and prepare for
them, in order to further optimize the fuel economy and driver experience. Previous
studies have shown that including such predictions leads to more sophisticated and
intelligent control actions and hence overall control performance [5]. Furthermore,
the implementation of predictive ability opens up the possibility of new features
such as allowing the driver to specify a desired state-of-charge of the vehicle battery
when arriving at the destination.

Making such predictions is computationally heavy and requires a mathematical and
often nonlinear model of the powertrain. Thus the computational time increases
rapidly with the prediction length and hence eliminates the ideal scenario of being
able to predict over an entire driving route in an online manner. The benefit with
such predictions is that control actions formulated by the controller in the beginning
of the route can be influenced by predictions of the powertrain’s future and even
terminal state. This would for instance allow the controller to manage the state-of-
charge in the most optimal manner during the whole route while making sure that
it reaches a specified terminal value at the end of the route.

Since the optimality of the solution increases with the prediction length, researchers
have started to investigate if predictions can be based on the full driving route
without affecting the computational time of the online controller. A promising
approach is to couple an offline optimization step to the online controller. Since
the optimization is offline, it does not have to be as fast as for online applications.
The offline optimization is usually carried out with Pontryagin’s Minimum Principle
(PMP) or Dynamic Programming (DP). Its purpose is to predict the behavior of the
powertrain over the full driving route and based on these predictions, the optimal
reference signals with respect to a specified objective function are formulated. The
reference signals are then treated by the online controller. By following the reference
signals, the online controller enforces a behavior stated by the offline controller.
Hence, the behavior of the online controller is influenced by the long prediction of
the offline controller which entails the previously stated benefits of predicting over
the full route without affecting the computational complexity of the online controller.

Previous research that has pursued this coupled approach is presented in Section 1.1.
From the research within this area it can be noted that the field has not yet been
fully explored. A coupled solution requires a combination of an offline optimization
approach and an online control scheme. This thesis will therefore investigate a new
combination where the offline optimization utilizes the common DP algorithm while
the online controller uses the Nonlinear Model Predictive Control (NMPC) scheme.
NMPC is considered as a promising candidate to perform the tasks of the online con-
troller. NMPC can formulate control inputs through prediction-based optimizations
of an objective function over user defined horizons while satisfying a set of specified
input and state constraints. Unlike the most common form of MPC, namely lin-
ear MPC, the NMPC scheme can handle both nonlinear dynamics and constraints
without excessive simplifications and linearizations which is suitable for powertrain
dynamics. Furthermore, by allowing the NMPC to make short predictions on top
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1. Introduction

of the already prediction-based references it may lead to further optimality and re-
quires investigation. The thesis is therefore aimed towards both the vehicle industry
and the academic audience whom are active within the research field of powertrain
control.

1.1 Previous research
The results of an experimental benchmark of offline full route optimization and
online actuator control for a hybrid powertrain have been presented by Chasse A.
and Sciaretta A. in [5]. The offline optimization uses the PMP approach on a so-
phisticated dynamical model of the powertrain. The online component then uses
a Equivalent Cost Minimization Strategy (ECMS) as control scheme which aims
at minimizing the energy cost of both fuel and electric energy by converting the
consumption figures into an equivalent unit. The results presented emphasizes the
benefit of adding a full route offline optimization to the online actuator control.
Their choice of including a detailed dynamical model of the powertrain in the of-
fline optimization surely increases the accuracy of the optimization but excluding
it from the online controller might also entail some disadvantages. The real con-
trol performance and behavior of the powertrain relies heavily on the fact that the
environment behaves similarly or close to identical to the conditions of which the
offline optimization was carried out. In a real driving scenario, the chances are high
of being exposed to unexpected disturbances along the way which causes the driver
to act and hence interfere with the offline optimized driving profile. It can therefore
be argued that the solution presented by Chasse A. and Sciaretta A. in [5] is limited
regarding disturbance robustness. There is therefore a need to expand the research
within the offline-online coupled control architecture by investigating if the perfor-
mance can be enhanced by moving the detailed dynamical models of the powertrain
from the offline optimization to the online actuator controller which this project also
seeks to investigate.

In addition to the valuable benchmark results of an offline-online coupled optimal
control strategy presented by Chasse A. and Sciaretta A. in [5], Yang W. et al.
[6] presents the results from an offline velocity optimization strategy for unmanned
hybrid mining trucks. By adopting velocity and state-of-charge as state variables,
their offline optimization with dynamic programming generates an optimal velocity
trajectory which can enhance the fuel economy of their series hybrid mining truck
by 26.59 % under the same travel time.

1.2 Problem statement
Multiple attempts at offline-online coupled optimal powertrain control can be found
in previous research such as in the previously mentioned article by Chasse A and
Sciaretta A (2011) in [5]. However, the field has not fully been explored and requires
further investigation. In the literature, the majority of the papers found presents so-
lutions with a sophisticated offline optimization while restraining the online control
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1. Introduction

component, usually with a rule-based ECMS controller. With algorithmic devel-
opments and enough computational power available in the vehicles of today and
certainly tomorrow, the prerequisites are in place for more complex online optimal
control algorithms to be used. One such promising algorithm is the NMPC approach
which formulates control inputs based on optimality of a cost function subject to
a predefined set of constraints for a dynamical system of nonlinear character. The
main problem for this thesis is therefore to investigate the benefits and disadvan-
tages of coupling an established offline optimization technique in terms of DP with
a more complex and advanced NMPC online control. Such investigation leads to
the following main research question.

Main Research Question: What are the strengths and weaknesses of coupling an
offline optimization with an online NMPC for hybrid powertrain control in terms of
fuel consumption and drivability, compared to using a standalone online NMPC?

In order to assist answering the main research question, several sub questions are
formulated.

How can NMPC be implemented to fit the purposes of hybrid powertrain optimal
control?

How can the control solution be adapted to regard driver needs in terms of acting on
driver requested torque?

How does the choice of horizon lengths influence the overall behavior of the control
solution in terms of driveability and fuel consumption?

1.3 Aim
The aim of this project is to develop an online NMPC controller which manages
the energy usage and velocity of a hybrid vehicle with three driving modes and a
gearbox while meeting offline optimized references in terms of SoC and velocity,
computed using DP. Additionally, the effects of including an offline optimization
step to assemble a coupled solution will be evaluated in relation to a solely online
control solution. The evaluation will be based on relative fuel consumption and
drivability metrics for a given driving route.

1.4 Limitations
The main focus of this thesis is to develop the online controller of the coupled solu-
tion. Thus, limited time will be allocated for developing the offline optimization step
and only a basic one will be created. The main compromise in the offline optimizer
will be to have a fixed gear ratio. This limits the vehicle to only freeway driving
and implies that the reference signals which are treated by the online controller
are only accurate for such driving conditions. Regarding the development of the
online NMPC, dynamic models for tasks such as changing hybrid mode will not be
used and will instead be assumed that such actions are instantaneous. The online
controller will not be given the feature to apply the mechanical brakes for control
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1. Introduction

purposes. The online controller will only control longitudinal movement, steering
is not involved at all. Additional loads that are not contained by the powertrain,
such as AC, heated seats etc, will not be modeled and not regarded by the control
solution. Neither the offline optimizer nor the online controller will consider any
detailed battery dynamics. Finally, a key element in the online controller is the
ability to measure the relevant system states. These measurements will be artificial
readings of sensors in the simulation model and will be assumed to be free from
the presence of noise and any delays. Hence, filtering approaches to deal with noise
removal will not be considered in this project.

1.5 Thesis outline
In the following Chapter 2, the theory in terms of concepts and technical approaches
utilized in the thesis are explained in order to prepare the reader for the work method
which is described by Chapters 3, 4, 5, 6 and 7. Chapter 3 presents the concept de-
sign of the coupled solution and the process of gathering and preprocessing the data
required for development and testing. Chapter 4 presents the mathematical mod-
eling of the vehicle and powertrain required for the online controller due to NMPC
being a model based control approach. Chapter 5 explains the functionality and
development methodology of the offline optimizer denoted C1. Chapter 6 declares
the development process of the online NMPC denoted C2. In this chapter, C2 is
broken down in to several sub components where the functionality and development
of each is presented along with the fully assembled C2. Chapter 7 describes how the
system was implemented in order to evaluate its performance. The results acquired
from previous chapters are then presented and discussed in Chapter 8. The findings
are then compiled and put in relation to the formulated research questions to draw
conclusions in Chapter 9. Lastly, Chapter 10 lists a number of future work tasks
which can be performed to further enhance the performance of the developed control
solution.
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2
Theory

This chapter aims to explain various concepts and technologies utilized in the thesis,
in order to prepare the reader for the system description in the upcoming chapters.

2.1 Dynamic programming

This section builds on the theory presented in [7]. Dynamic programming can be
performed with either forward or backward recursion and affects the definitions
of transfer and objective functions among others. This section presents dynamic
programming with backwards recursion.

Dynamic programming is an optimization method which can be applied to various
optimization problems. The key approach of DP is to break down the original
problem into subproblems. The subproblems can then be solved for optimality
and the solutions from each subproblem can be reassembled to find the optimal
solution of the original problem. Since this solution relies on optimal solutions of
subproblems, the DP approach relies of the principle of optimality first defined by
Richard Bellman as “An optimal policy has the property that whatever the initial
state and initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision”.

DP is closely related to shortest path problems. However, a big advantage with
DP is that the network diagram does not have to be stored explicitly to find the
solution since it builds on recursion. Furthermore and as the name implies, the
problem has to be of dynamical character in order to solve it with DP. This means
that the original problem must be able to be broken down into a number of stages
and where the movement through the stages is done by sequential decision making.
At each stage, the optimal solution is determined by a number of subproblems, each
containing only one variable. Each subproblem is defined by a number of potential
states for the corresponding stage. The optimal decisions, represented by decision
variables, are found by regarding the potential states in each subproblem. Applying
a decision at each state results in a new set of states and hence a new stage where
the process can be repeated to find the next optimal decision. Hence, the stages can
be connected by optimal decisions to the subproblems which assembles the optimal
solution to the original problem.

7
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2.1.1 Key Components of DP

Stage partition: t = 1, .., T
Each stage partition is a subproblem of the original problem.

Decision Variables (Input): ut, t = 1, .., T
Influences the behavior of the system. The optimal value of the input is found by
regarding the subproblems at each stage and then applied to reach the next stage.
The decision variables are usually constrained to a specific set of values as ut ∈ Ut
at stage t.

State: st, t = 1, .., T
A state st describes an attribute of the system which can include many states. As
for the decision variables u, the states s can be constrained within a set of values as
st ∈ St at stage t.

Model (Transfer function): st+1 = Tt (st, ut)
The model connects the state and input for current stage t to the state in the next
stage k + 1. Some problems may include disturbances w, which usually affects the
behavior of the system at each stage t, denoted wt. For problems which includes
disturbances, the model might not yield a value which directly corresponds to a state
value st+1. The model with disturbance can be formulated as xt+1 = Tt (st, ut, wt)
where xt+1 does not directly match st+1. In those cases, linear interpolation is often
used to find the next state value st+1 that best matches the output of the predictive
model xt+1.

Objective function:

• Regular definition:

Jt (st) = min
ui

T∑
i=t

ci (si, ui)

• Recursive definition:

Jt (st) = min
ut
{ct (st, ut) + Jt+1 (st+1)}

The objective function Jt (st) describes the optimal function value computed for
the stages up until the t:th stage, ∀st ∈ S. The term ci (si, ui) denotes the cost of
applying the input ui on state si at stage i, also known as the cost-to-go.

The recursive definition aims at finding J1 (s1) which is the cost-to-go from the first
to final stage. To start the backward recursion, a boundary condition is required in
stage T , which usually initializes the objective function as JT+1 (sT+1) = 0.. This
can be compared to setting the cost of the starting node to zero in a shortest path
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problem.

2.1.2 The DP algorithm
1. Set boundary condition, usually as JT+1 (sT+1) = 0

2. Set current stage as last, t := T

3. While t ≥ 1:

• ∀st ∈ St, find ut which minimizes the recursive definition of the cost
function

Jt (st) = min
ut
{ct (st, ut) + Jt+1 (st+1)}

• t := t− 1

4. Save the optimal input sequence as u∗ = {u∗1, u∗2, .., u∗T}

5. Do a “forward pass” by applying the optimal input sequence to the predictive
model to obtain the optimal state trajectory s∗ = {s∗1, s∗2, .., s∗T}

2.2 CasADi
This project uses the CasADi [8] toolkit in combination with MATLAB to develop
the control solution and for other optimization needs. CasADi is an open source
MATLAB compatible tool which mainly focuses on numerical optimizations of both
linear and nonlinear character. CasADi acts as a framework with components such
as symbolic math and helper classes which lets the programmer interact with com-
plicated optimization tools in a familiar way, without the need to worry about com-
pilation or dependencies. The toolkit is shipped with many different optimization
solvers, including linear, quadratic and nonlinear solvers. The solver used in this
project for the nonlinear programs is the IPOPT[9] library for large-scale nonlinear
optimization.

Another reason for choosing CasADi is that it supports generating fast and efficient
C-code which can be directly implemented in embedded systems. This is highly
beneficial since the ultimate goal is to implement the control solution in the vehicle.
However, due to time constraints, this was not further investigated.

2.3 Spatial-derivative state dynamics
In the offline optimization, the reference data (road parameters) of the route is
distance based which means that the data points have a known distance between
them. This also means that the full route length is known beforehand. However,
the time required to traverse the route is a result of the optimization, because it is
based on the variable velocity of the vehicle. This creates a problem in the offline
optimization since the algorithm requires a fixed horizon length and step size. The
result of this is that time-based state derivatives cannot be used since the horizon
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length is not fixed in that case. In order to circumvent this issue, spatial-based state
derivatives can be utilized instead, as described in [10] and [11]. State equations can
be rewritten using the chain rule, as:

ẏ = dy

dt
= dy

ds

ds

dt
= dy

ds
v ⇒ dy

ds
= ẏ

1
v
, v 6= 0 (2.1)

A special effect appear with this rewrite, namely as v → 0+ ⇒ dy
ds
→ ∞. This is

intuitive because as the vehicle slows down and eventually comes to a stop, the time
required to reach a certain point goes to infinity. Since the offline optimization in
this thesis is limited to not reach such low speeds, this problem will not manifest
here. However, it is important to remember with future development.

2.4 Model predictive control
Model Predictive Control (MPC) has increased in popularity within recent years
since it has become computationally affordable by recent algorithmic developments
[4] and hardware advancements. The main benefits of the MPC control technique
is its ability to formulate control actions based on real-time optimization of a linear
constrained multi variable and quadratic objective function [12]. At each controller
time step, the result of the real-time optimization is a sequence of control signals
which minimizes the objective function, also referred to as the cost function. The
number of control moves in the sequence is called the control horizon, denoted Nc.
The objective function is not only optimized at the current time but also over a
future time segment by predicting the system outputs, the length of the future time
segment is called the prediction horizon [13], denoted Np. A special property of the
MPC approach is the application of the receding horizon control law which implies
that only the first input of the acquired sequence is applied to the plant. With
knowledge of this concept, the main working scheme of the MPC control approach
can be expressed as below [14].

• Find input sequence which minimizes the objective function over the prediction
horizon.

• Apply only the first input of the obtained sequence of inputs according to the
receding horizon law to the plant.

• Repeat at the next controller time step.

The MPC formulation consists of the objective function and the set of constraints.
The constraints also include the state constraints which define the dynamic behavior
of the system over time, which gives the predictive behavior. The objective function
can be established in many ways, one way is to use a quadratic objective function
as:

J =
Np∑
i=1
xi
>
Qxi +

Np−1∑
i=1

ui
>
Rui (2.2)

10
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Where xi contains the system states, and ui denotes the control inputs. Q and R
are square matrices containing quadratic costs for the states and inputs respectively.
Further note that the objective function can take any form as long as it is quadratic
for the regular linear MPC.

The objective function will be minimized by the optimization algorithm, subject to
a set of constraints which can be established as:

xi+1 = f(xi,ui)
ui = uNc ∀ i ∈ (Nc + 1, Np)

xi ∈ X ∀ i ∈ (1, Np)
ui ∈ U ∀ i ∈ (1, Np − 1)

(2.3)

where f is the state integration function, also known as the prediction model, X
is the set of feasible system states and U is the set of feasible inputs. The second
constraint adds the ability to pick a different, shorter control horizon as explained
earlier by setting all remaining inputs in the prediction horizon equal to the last free
input. Note that since all constraints must be linear for the linear MPC, f must
also be linear, which means the system itself must be linear.

2.5 Nonlinear model predictive control
Nonlinear Model Predictive Control (NMPC) calculates the control actions in a sim-
ilar manner as for regular MPC. However, in the case of NMPC, both the prediction
model of the system dynamics and the constraints can be nonlinear. The objective
or cost function in the optimization does not have to be quadratic and can instead
be linear or nonlinear [4].

NMPC falls under the category of optimal control problems (OCP). An objective
function is minimized subject to a set of constraints which can either be of discrete,
ODE, DAE or PDE character. The essential strategy to solve an OCP of nonlinear
character according to the approach of direct optimal control is to first transform it
to a nonlinear program (NLP) and then solve the NLP. Such transformation is often
called transcription or discretization. The transcription can be achieved by various
approaches and the chances of solving the acquired NLP relies heavily on the choice
of transcription approach. Consequently, the best solving method depends on the
choice of transcription method [15].

This project uses the direct multiple shooting method as transcription strategy in
combination with the Interior Point OPTimizer (IPOPT) as NLP solver. The mul-
tiple shooting method can be seen as an extension to the single shooting method
which repeatedly simulates the system, given an initial guess, until the constraints
are fulfilled and the cost function is minimized resulting in an optimized state trajec-
tory. Zero-order-hold or piecewise linear functions are usually used to approximate
the continuous input. The multiple shooting method applies the procedure of sin-
gle shooting but for smaller segments of the trajectory, which can be expressed as
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breaking up the system integration into smaller time intervals. For each segment,
the system ODEs are solved numerically. By allowing the length of the segments to
become shorter, the relationship between the cost, constraints and decision variables
can be considered “arbitrarily linear”. By splitting the trajectory into segments, the
multiple shooting method can handle complicated OCPs, something which single
shooting struggles with [16]. Other benefits with multiple shooting is the ability of
being able to simultaneously simulate and optimize, can handle unstable systems
and is easy to parallelize [17].

The IPOPT solver can handle both nonlinear and nonconvex constraints and objec-
tive functions [9] which is suitable for this project.

2.6 Control of switched systems
Many applications, such as applications within powertrain control, often entails
both continuous and discrete dynamics. Hybrid powertrains can include both a
gearbox and different multiple driving modes which may add discontinuities to the
system dynamics. A system which contains a combination of discrete and continuous
elements in the dynamics is often referred to as a hybrid system and is usually fairly
complex. To increase the chances of successful control of such system, the system can
be broken up into several subsystems, allowing each subsystem to exclusively contain
continuous dynamics. The discrete elements of the dynamics are then represented
by allowing for an external unit to deliver switching signals, governing the process
of switching between the subsystems to assemble the original system behavior. The
architecture of such system representation is often referred to as a switched system,
see e.g. [18].
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3
Concept Design and Data

Preparation

This chapter presents the choice of control design and explains the offline-online
coupled control concept. The chapter further explains the methodology to acquire
and preprocess the data required for simulation and testing during development of
the control solution and the final product.

3.1 Concept design
The overall design of the control solution can in a comprehensive manner be illus-
trated as in Figure 3.1.

Road Altitude Data

Speed Limits

C1 C2

Velocity Reference

SoC Reference

Offline

Optimization

DP

Online

Optimal Control

NMPC

u

Figure 3.1: A block diagram of the control concept design. The C1 block contains
the offline DP optimization which computes references for the online NMPC in the
C2 block to track by generating control inputs to the powertrain denoted u.

Road altitude and speed limit data for a full driving route is fed to the offline
optimization contained in C1. The C1 optimizer is run before the driving starts and
it generates optimized velocity and SoC references which are to be tracked by the
online optimal control contained in C2, throughout the driving session. The online
optimal controller in C2 generates control inputs to the plant based on the references
delivered by C1. The coupling of offline and online optimization is motivated by
the belief that the strengths of both methods can be combined into a more optimal
controller than if only one of the optimizations are to be used. C1 is able to take the
full route into account when optimizing, which it can do by having a relatively large
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step size and no hard time restriction. Shorter step sizes are not necessary in the
C1 controller since both freeway road inclination and SoC have slow dynamics. The
downside of the C1 optimization is that it cannot generate accurate control inputs
on a fine resolution since it is run ahead of time and with a large step size, something
that is needed for maintaining a responsive and smooth driving experience. This is
where the strengths of the C2 controller can be seen. The shorter step size allows it
to accurately predict the dynamics of the powertrain and vehicle. Additionally it can
respond rapidly to unforeseen events since it utilizes an online control technique. The
C2 controller still has a prediction horizon, but it is only in the range of seconds to
minutes to make room for a more complex optimization algorithm. A long horizon is
still preferable, as that yields a more optimal result, as well as a better predictability.
However, since the offline optimized references are generated for the full route, the
online control behavior is influenced by information from the full route even if the
horizon lengths in the online controller are much shorter.

The choice of using SoC as one of the references was made based on the control
objective, which is to minimize the energy consumption subject to an offline op-
timization. A SoC reference enforces how the battery should be used throughout
the route, which is a key aspect for energy management. By offline optimizing a
SoC reference curve based on the full length of the route, the behavior of the online
controller can be enforced by allowing it to track the reference. Hence, control ac-
tions by the online controller will be influenced by knowledge from the full route by
following the reference, which is beneficial for the overall energy consumption.

Additionally, previous research has shown that a predictive cruise control has a
positive impact on both travel time and energy consumption [19] [20]. One way to
achieve the predictive ability is to compute a velocity reference offline which the
online controller is then able to follow. Since the controller in this thesis is already
built with this methodology, an offline optimized velocity reference can trivially be
added to the full solution.

3.2 Route data acquisition
The offline optimization needs to know about road inclination throughout the route
in order to be able to compute the SoC and velocity references. The road inclination
angle α affects the vehicle both in terms of gravity and friction force, which in turns
affects the behavior on the SoC and velocity. Furthermore, the velocity references
needs to track the legal speed limit of the road.

This data is available for all Swedish roads for free in the NVDB1 (National Road
Database) after creating an account. Road altitude and speed limit was downloaded
as a dataset along a desired route in the GIS (Geographic Information System) data
format shapefile. The data was filtered by a specific road number in the download
tool on NVDB in order to download only a single stretch of road. The downloaded
data however still contain a lot of intersections, side roads and other road features,
which is not desirable since the route should be one continuous stretch of road. To

1http://www.nvdb.se/en
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further filter the road data, the freely available program QGIS2 was used. The route
shapefile was loaded in to the program and a shortest path analysis was performed
from start to end in order to select a continuous stretch of road. The selection
was then inverted and the unnecessary road pieces removed. Finally, the route was
manually examined and cleaned for any remaining intersection pieces. The final
route was exported to the GIS data format GeoJSON which is a plain text format
that can be easily read and interpreted by a MATLAB script.

With the route fully cleaned up, it had to be loaded into MATLAB in an appropriate
format for the offline optimizer to utilize. Unfortunately, the data coordinate points
in the GeoJSON file is not spatially ordered, they are not ordered in a sequence from
route start to route end. Instead, the route is split up into small road segments which
are completely unordered in the file. This was solved in MATLAB by starting with
the first coordinate point of the route, and then iterating over all coordinates to find
the closest one and add that to the end of the route. By repeating this process, the
coordinates have been spatially sorted. Then, a moving median filter with horizon
length 20 was passed over the data in order to remove outliers in the altitude data.
Finally, the data points were resampled with a fixed sample distance as specified by
the C1 optimization.

2https://qgis.org/en/site/
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4
Mathematical Modeling

This chapter presents the powertrain architecture and describes the process of mod-
eling the dynamics of the powertrain to fit the purposes of the offline and online
components of the control solution.

Since the NMPC control scheme and the DP optimization used in this thesis utilize
a model based approach, it is necessary to establish a mathematical model of the
powertrain. This is done by finding the appropriate internal states in the system,
and deriving continuous state equations for them.

DP uses a simplified version of the mathematical model to simulate the system
to formulate the optimal control signals, and thus the optimal reference signals.
The NMPC on the other hand uses the detailed dynamical mathematical model
presented in this chapter to make predictions of future outputs of the powertrain,
which is used to formulate optimal control sequences.

4.1 Vehicle and powertrain modeling

The architecture of the powertrain used in this project can be seen in Figure 4.1.

The powertrain includes three power sources - two electric motors and an internal
combustion engine (ICE). The three power sources in the powertrain are connected
to the transmission in the specific order to achieve the following three distinct pow-
ertrain operating modes - electric mode, serial mode and parallel mode.

In the electric vehicle mode, also denoted EV mode, the propulsion comes from the
P2 motor which receives its energy from the battery. The ICE and P1 motor are
completely ignored in this mode and the DE is disconnected. The serial mode is
similar, however, the ICE drives the P1 motor which acts as a generator and can
thus both power the P2 motor and charge the battery. Finally, for the parallel
mode, the DE is connected and both the P2 motor and the ICE can contribute to
the propulsion. Theoretically, the P1 motor can also contribute to the propulsion of
the vehicle, however it is in this powertrain designed primarily as a generator and
should thus only be used for that task.

The online controller in C2 uses ICE output shaft speed (ω1), gearbox input shaft
speed (ω2), State-of-Charge (ζ), and distance (d) as state variables. ω1 and ω2 are
the anti-derivatives of the shaft accelerations and are thus required for modeling the
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Battery

P2

P1

ICE

Gearbox

Wheels +
Final Gear

ω2

ω1
DE

Figure 4.1: The powertrain architecture. DE denotes the disconnect element which
manages the coupling between the ω1 shaft and the rest of the powertrain.

powertrain dynamics. The SoC is necessary for predicting the battery behavior and
the influence of the power sources on it. Finally, the distance d is necessary in order
to pick the distance-based reference values on the route used for tracking velocity
and SoC.

In order to control the powertrain behavior, a set of input signals are available. The
DE can be disconnected or connected using the logic signal iDE. The controller is
able to request a torque from the different power sources using TP1, TP2 and TICE.
It is assumed in this thesis that the motors can always respect the torque request,
except for if the signal requests beyond the motors current max torque. Finally, the
gear of the gearbox can be set using the integer signal igear. This gear, along with
the final differential gear results in the total gear ratio rgear. It is assumed that the
plant responds instantly for these signals.

Furthermore, it is assumed that all four state variables are measured on the plant
with no sensor dynamics or noise. To conclude, the inputs and outputs of the
powertrain is represented as a system block, seen in Figure 4.2.

iDE

TP1

TP2

TICE

igear

ω1

ω2

ζ

d

Plant

Figure 4.2: Inputs and outputs of the plant.
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The DE is modeled as a discrete system with disconnected and connected as the two
available states which are represented iDE = 0 and iDE = 1 respectively. The state of
the DE causes the powertrain to switch between two distinct discrete modes, which
have different dynamics. When the DE is connected, the two shafts get linked and
thus the state equations for ω1 and ω2 become equal. When DE is disconnected,
the two shafts are independent systems, only connected by the battery. The state
equations for corresponding connected and disconnected DE are:

iDE = 0 :

ω̇1 = 1
J1

(TICE + TP1)

ω̇2 = 1
J2 + Jm

(TP2 − Tload)

ζ̇ = −TP1ω1ηP1 − TP2ω2ηP2

Ebat

ḋ = v

(4.1a)

iDE = 1 :

ω̇1 = 1
J1 + J2 + Jm

(TICE + TP1 + TP2 − Tload)

ω̇2 = ω̇1, (ω2 = ω1)

ζ̇ = −TP1ω1ηP1 − TP2ω2ηP2

Ebat

ḋ = v

(4.1b)

The state equations for ω1 and ω2 is simply Newton’s second law of motion for angu-
lar movement. The torques from the power sources are modeled such that a positive
torque produces mechanical energy, and a negative torque consumes mechanical en-
ergy. This means that a negative torque recharges the battery for the two electric
motors, and the vehicle load also acts as a negative torque.

In the state equations, Jm is the equivalent inertia of the vehicle mass, which can
be calculated using:

Jm = r2
wheelm

r2
gear

(4.2)

The SoC is modeled as:

ζ = 1
Ebat

∫ Ts

0
Pdt (4.3)

where P is the sum of the electrical power from the two electric motors. This model
does not capture any battery efficiency losses, which can vary with different SoC
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levels and power inputs. The model is used despite its limitations in order to reduce
the complexity of the optimization problem.

The total load from external forces can be formulated by a load torque on the ω2
shaft represented by Tload in Equation (4.1) and can in forces be expressed as:

Tload = (Fair + Froll + Fgrad) rwheel

rgear
(4.4)

The external vehicle forces can consequently be expressed as:

Fgrad = m · g · sin (α) (4.5a)

Froll = m · g · crr · cos (α) (4.5b)

Fair = cd · A · ρ ·
v2

2 (4.5c)

where g is the gravitational acceleration constant, crr is the vehicle roll resistance
coefficient, cd is the vehicle drag coefficient, A is the vehicle frontal area, ρ is the air
density and v is the speed of the vehicle which can be calculated from ω2 using:

v = ω2rwheel

rgear
(4.6)

4.2 Engine modeling
The characteristics of the ICE contained by the powertrain are represented by an
efficiency map and a max torque curve. These are key components in the opti-
mization steps since they affect both the components in the cost function and the
constraints which the optimization is subject to. Unlike the offline optimization in
C1, the optimal controller in C2 has a strict requirement on being computationally
fast. This becomes a problem when the NMPC solver has to deal with the raw
efficiency map and torque curve of the ICE which contains aggressive derivatives,
something which many solvers have trouble dealing with. In order to deal with this
problem, the efficiency map can be simplified by using the curve fitting technique.
However, one of the components to be minimized in the cost function is the fuel
consumption. Hence it is more intuitive to work with a consumption map rather
than an efficiency map. The efficiency map can be converted to a consumption map
by using:

ξ = 1
ηICE · cFHV

(4.7)

where cFHV is the Fuel Heating Value which defines the amount of heat power re-
leased when combusting a specific amount of fuel. By multiplying it with the effi-
ciency, the engine power is achieved.
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The obtained consumption map is then curve fitted with a 2D polynomial of degree 2
in the angular velocity dimension and degree 3 in the torque dimension. This reduces
the accuracy to some degree but is a small compromise for the vastly quicker solving
speed it provides. The curve fitted map retains the same features as the original
map which is the main importance for the NMPC solver.

To further increase the speed of the optimization, the curve of maximum engine
torque in relation to engine speed is also curve fitted with a polynomial of degree 4.

4.3 Electric motor modeling
The two electric motors P1 and P2 are modeled as power conversion blocks, without
any modeling of the internal electric behavior. This is done to simplify the pow-
ertrain model and allow us to specify the motor dynamics using only an efficiency
map, denoted η. From the efficiency map, the max rated torque Tmax and max
rated power Pmax of the motor can be extracted. Figure 4.3 represents the shape
of the torque-speed curve of a generic electric motor. The max rated torque of the
motor is the torque value of the max rating curve in the constant torque region.
Likewise, the max rated power of the motor can be extracted by picking a point
on the max rating curve in the constant power region, and calculating the power as
P = ωT . The motors also specify a continuous torque and power rating, which is
the maximum torque and power you can request under a sustained load from the
motor. When working at an operating point above the continuous rating, the motor
housing is not able to dissipate the waste heat quickly enough, which can eventually
damage the motor windings or other internal components. Modeling this behavior
requires additional states in the system model, thus the motors are limited to only
the continuous rating.

ω

T

max rating
continuous rating

Constant
torque region

Constant
power region

Figure 4.3: The torque-speed curve of a generic electric motor.

As mentioned earlier, the motors are modeled as power conversion blocks. That
is, they can be seen as a stateless system block with the formula P out = P in · η.
The definition of P in and P out can however change depending on if the requested
torque is positive or negative, since a negative torque would turn the motor into a
generator instead, thus reversing the direction of the energy flow. For a motor that
is producing torque, P in is electrical energy from the other motor or the battery,
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and P out = Tω, and vice-versa for a generating motor that is consuming torque. In
order to simplify the state equations, the efficiency has been modified so that it is
inverted for positive torque values. The definition of ηf is:

ηf(T ) =


1
η
, T > 0
η, T < 0

(4.8)

The result of this definition is that P in is now always the mechanical energy and
P out the electrical energy.

The efficiency map of an electric motor is a function that maps a torque and angular
speed to an output efficiency. The angular speed is always defined as positive, but
the torque can be both negative and positive. Figure 4.4 shows a cross-section of
the efficiency map of a generic electric motor at an angular speed above 0 and the
redefinition of it by using Equation (4.8).
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ηf

Figure 4.4: The cross-section of a typical efficiency map and the redefinition of it
of an electric motor at an angular speed operating point above 0.

At T = 0 the energy flow changes direction which leads to a discontinuity in ηf.
For this case, the function is only piecewise continuous and piecewise differentiable,
two factors which many NMPC solvers have trouble dealing with without severe
performance penalties. One example why this is an issue is due to the fact that the
solvers needs to bring the system forward in terms of calculating the new states,
usually done by discrete stepping methods. These methods relies on derivatives of
the state trajectories which hence needs to be differentiable over the whole trajectory
and where discontinuities may interfere with this property at some trajectory pieces.

A raw efficiency map with the behavior of the typical efficiency map seen in Figure
4.4 was firstly used in the project. However, the discontinuity at T = 0 led to a
very slow solving speed. Thus the decision was made to redefine and simplify the
efficiency map by firstly replacing it with a hyperbolic tangent function, denoted ηt,
which can be seen in Figure 4.5.

As seen in the figure, the ηt function is greatly simplified, but it captures the nec-
essary components of the ηf function while remaining continuous and differentiable
over the entire domain. One could in theory also consider a straight line fitted to
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Figure 4.5: A fitted tanh function in blue compared to the discontinuous ηf.

the asymptotes of the ηf function, which would have an even less complex derivative
for the NMPC solver. However, the downside of such a line is that the NMPC solver
would believe that torque values close to 0 would have a near perfect efficiency and
thus attempt to work in those points more often. This is definitely not true though
given the actual efficiency function. The tanh representation solves this problem by
being steep in the neighborhood of T = 0.

The dependency of angular speed in the efficiency map was decided to be ignored
in the η simplification since the shape of it would contribute very little to the de-
cision process in the NMPC solver and would only add unnecessary complexity.
The torque dimension is of much more importance since it captures the concept of
positive/negative power which is vital for the solution.

4.4 Optimal engine operating point

A major benefit of the serial hybrid mode is the ability to put the ICE at any
desired operating point. This is possible because it is not connected to the wheels,
so the ω1 shaft can work at any angular speed. Furthermore, the acceleration of the
vehicle is no longer dependent on the torque from the ICE or the P1 motor which
means the torque for these two motors can be picked freely as well. The ability
to pick any operating point means the engine can constantly operate at its peak
efficiency point, which means that it can output as much mechanical power per unit
of fuel as requested. However, the constraints of other system components must be
kept in mind. Common limiting factors are the torque and power limits of the P1
generator, and the charging power limit of the battery. Additionally, the efficiency
of the generator must be regarded as well.

Since this problem contains nonlinearities in the form of the efficiency maps and
also a set of constraints, a nonlinear program is built and solved to find the optimal
operating point. The formulated NLP is:
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min
ω1,TICE

− ηICE(ω1, TICE)ηP1(ω1, TP1)

s.t. TP1 := −TICE

− Tmax
P1 ≤ TP1 < 0

− Pmax
P1 ≤ TP1ω1

0 ≤ ω1 ≤ 5000 RPM
− TP1ω1ηP1(ω1, TP1) ≤ Pmax

bat

(4.9)

which is solved using CasADi and IPOPT.

The result of solving this NLP is an operating point for the ICE which is able
to generate electrical power as efficient as possible but still respecting the system
constraints. This operating point is denoted ωopt

1 and T opt
ICE. The battery power

constraint can be exchanged to an equality constraint in order to specify a specific
desired power output if necessary.

A feature of the NMPC controller in C2 is to be able to choose any specific serial
charging power during operation. To allow this, it must be able to freely choose
either the shaft speed ω1 or the torque TICE. We chose to keep the shaft speed fixed,
and let the controller tweak the torque since that allows it to instantly adjust the
power instead of having to operate the power via the angular acceleration derivative.
After minimizing, it was found that the best ω1 operating point is the same one as
for the fixed speed and torque operating point. Thus, that same ωopt

1 will be used
for this case.
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5
Development of C1: Offline
Optimized SoC and Velocity

References

According to the concept design in Section 3.1, the control solution is divided into two
main components, C1 and C2. This chapter presents and explains the development
process of the offline optimization component contained by C1.

Using established route data, the offline optimization can be done over the route.
The optimization is achieved using the DP algorithm, which is explained in Section
2.1. MATLAB does not have any built-in DP solver, instead a third-party solution
is used which is created by O. Sundström and L. Guzzella[21]1. This DP solver,
henceforth referred to as the dpm function, is suited for optimal control problems
since it is based on objective functions, model equations and infeasiblity matrices.

5.1 Establishing the state-space grid
The model equations for the system are established in a MATLAB function that
is supplied to the dpm function. In order to minimize the amount of dimensions
required for the DP algorithm, the mathematical model of the powertrain has to
be simplified. One such simplification is to only consider the system as a hybrid
powertrain with two driving modes, electric and serial, and ignore the parallel driving
mode. This means that the propulsion is achieved only using the P2 motor, and
the ICE serves as a battery charger that is either running at the computed optimal
operating point or turned off. Additionally, the gearbox is fixed at a specific gear
ratio. With these simplifications, the system requires only two states, the vehicle
speed v (which is proportional to ω2) and SoC ζ. ω1 is not necessary since the
dynamics between P1 and the ICE is not modeled. Furthermore, the distance d
is not needed either since the optimization is performed using spatial derivatives
as explained in Section 2.3 (just as a state for the time t is not required in time
derivative optimizations). Another benefit with the spatial domain is the distance
dependency of the reference signals. With such reference signals, the ability of the
online controller to cope with tracking error is better, since the reference changes
over distance and not over time; the reference can never de-synchronize which may

1Downloadable at https://idsc.ethz.ch/research-guzzella-onder/downloads.html
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happen with time-based references.

Along the two states, two inputs are required, TP2 which controls the torque from
the P2 motor and the logic signal iICE which controls the ICE state. Finally, in order
to reduce oscillating behavior, a memory state for the iICE input is implemented.
This state holds the previous iICE input applied. The combination of the three states
and two inputs results in a 5-dimensional problem.

The 5-dimensional space is constructed using the built in functionality of the dpm
function, by specifying the number of grid points in each dimension, along with
the lower and upper bound. The following grids on each respective dimension are
established:
Table 5.1: The established DP grid. Ng is the number of grid points. vmax and
vmin is the upper and lower bound on the speed limit of the route.

Dim Name Ng Lower bound Upper bound
1 ζ 201 20 % 80 %
2 v 16 vmin − 5 km/h vmax + 5 km/h
3 iprev

ICE 2 0 1
4 TP2 21 −200 Nm 200 Nm
5 iICE 2 0 1

The established grid results in a problem with 201 · 16 · 2 · 21 · 2 = 270144 elements,
which for the dpm algorithm takes roughly 0.4 s per distance step to compute on a
modern PC given the supplied model equations. On a 50 km route with a sample
distance of 50 m, which is 1000 steps, this results in a total computational time
of approximately 7.5 min. A sample distance of 100 m results in 500 steps in the
optimization, but with a total computational time of approximately 3.2 min. Hence,
the value of the sample distance is a compromise between optimization accuracy
and computational time. On freeway driving, the slow dynamics of the environment
along with the high speeds means high sample distances are still feasible without
instability or inaccuracy problems. Additionally, the ∆v cost which will be explained
soon has a more desirable impact on higher sample distances as that produce a
smoother behavior.

By altering Ng, the computational time of the program increases or decreases. A
doubled Ng in any dimension results in a doubled computational time, likewise a
twice as short sample distance also results in a doubled computational time. This
means that the problem can quickly become infeasible to compute in reasonable
time unless care is taken to optimize Ng across the dimensions. The decided Ng for
each dimension were found through trial and error experiments, where the overall
drivability and performance of the simulation result were compared between runs.
A high Ng for the SoC was determined necessary due to its slow dynamics which
means it changes little between the stages and thus finer detail is necessary for the
cost. During the simulation runs, it was also noted that both v and TP2 did not
require as fine detail.

The lower and upper bounds are selected to minimize the distance between the
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grid points and thus maximize their use. In order to optimize life-time, a vehicle
battery should not be charged/discharged beyond roughly 20-80 %, as explained in
[22]. The velocity grid is bounded by the upper and lower speed limit of the road
in the route, with some added margin. The P2 motor is able to deliver more torque
than the specified bounds, but during normal driving, torques greater than 200 Nm
in magnitude are rarely necessary. The lowered bounds allow for a finer resolution
on the control input to the P2, so that is more desirable. Finally, iICE and iprev

ICE are
discrete states, thus 0 and 1 were picked as bounds.

5.2 Integrating the states
The parameterized grid, along with the vehicle parameters and route data, is fed
to the dpm function. The function then calls the supplied MATLAB function for
every stage where the model equations and objective function are evaluated. The
states are updated using the Euler forward integration method with the distance
derivatives. In the following equations, ds is the constant sample distance between
each step.

Firstly, the velocity state is updated. This is achieved using the torque balance
equation:

dv
ds (k) = 1

m

(TP2(k)− Tload(k))rgear

rwheel

1
v(k)

v(k + 1) = v(k) + ds
dv
ds (k)

(5.1)

Secondly, the SoC state is updated. This is done by calculating the power consumed
by the P2 motor and the power produced by the ICE, through the P1 generator.
PP1 and PP2 are defined as the output power of each motor, thus efficiency losses
must be accounted for. The SoC derivative is the sum of the powers, and is then
updated in the same way as v:

PP1(k) = iICE(k) · T opt
ICE · w

opt
ICE · ηt

P1

PP2(k) = TP2(k) · v(k)rgear

rwheel
· ηt

P2

dζ
ds (k) = PP1(k)− PP2(k)

Ebat

1
v(k)

ζ(k + 1) = ζ(k) + ds
dζ
ds (k)

(5.2)

where ηt is used here since it is also used in the C2 controller which should be able
to follow this reference as closely as possible.

27



5. Development of C1: Offline Optimized SoC and Velocity References

5.3 Defining the objective function
For each DP stage, the objective function is evaluated according to:

J = KfuelPP1ds +Kverrv
2
err +K∆v∆v2 +K∆iICE∆i2ICE (5.3)

where:
verr = ds (v(k + 1)− vref(k + 1))

∆v = 1
ds

(v(k + 1)− v(k))

∆iICE = 1
ds

(iICE(k)− iprev
ICE (k))

The PP1ds term represents the “fuel cost” which is used to minimize ICE usage and
thus fuel consumption. verr is used to make the vehicle track the speed limit on the
route. The ∆v cost is necessary to smooth the velocity changes for better drivability,
however the benefit of this cost is slightly compromised due to the limited resolution
of the fixed grid. That is, since the algorithm has a finite discrete set of what inputs
it can pick, it can only achieve a finite discrete set of ∆v values, which may not
always be the most desired. Finally, the ∆iICE cost displays the purpose of the iprev

ICE
state. Due to the simple way that the SoC is modeled, any specific SoC value is just
as optimal as any other. This means that the SoC can take many different equally
optimal paths through the optimization, which allows the ICE to switch on or off at
any time. This can lead to an oscillating behavior which reduces the drivability of
the vehicle. By introducing a high cost on switching the ICE on or off, this problem
can be eliminated.

5.4 Computing infeasible states
The final calculation of each DP stage is to compute the infeasibility matrix for the
dpm solver. The infeasibility matrix contains boolean values for every element in
each dimension that indicate whether that combination of states are feasible or not.
This allows us to put constraints on both states and inputs:

20 % ≤ ζ(k + 1) ≤ 80 %
−Pmax

bat ≤ Pcharge ≤ Pmax
bat

−0.9Pmax
P1 ≤ P in

P1 ≤ 0.9Pmax
P1

−0.9Pmax
P2 ≤ P in

P2 ≤ 0.9Pmax
P2

(5.4)

where
Pcharge = PP1(k)− PP2(k)

P in
P1 = PP1(k)

ηt
P1

P in
P2 = PP2(k)

ηt
P2
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The first constraint is trivial, the optimizer should prevent charging and discharging
the battery beyond the set limits. The second constraint on Pcharge prevents the
difference between PP1 and PP2 from exceeding the battery charge and discharge
capacity which stems from the battery chemistry and thermal constraints. The
practical implications of this constraint involves that the ICE sometimes has to be
switched on or off in order to fulfill the constraint. In scenarios which involves
steep downhills where the vehicle can perform regenerative braking, either the ICE
must be turned off or the vehicle must be allowed to speed up in order to prevent
charging the battery with too much power. Likewise, in steep uphills, the ICE
might need to be turned on in order to prevent discharging the battery with too
much power. The final two constraints limits the input power to each motor. The
input power is defined as the requested power by the sources, thus the efficiency
component is removed since the efficiency is the conversion factor from input to
output power. Additionally, the power limits are scaled with a factor of 0.9 in order
to prevent the optimizer from picking points that are on the limit, which impedes
the C2 controller from making more optimal decisions. A main motivator for using
a two-stage structure of the control solution is that the online controller in C2 can
further enhance the offline optimized behavior from C1 by allowing some freedom
to deviate from the reference signals. Without scaling down the maximum power
limits, there is a chance that the C1 optimizer decides to run at maximum power for
some segments. In such cases, the C2 controller has limited freedom and is forced to
follow the suggested operating point by C1 to follow the reference. By lowering the
power limit, the C2 controller can choose operating points both above and below
the C1 operating point at all times, thus giving it more freedom.

Beyond the specified infeasibility matrix, lower and upper bound constraints can be
set on the terminal values of all states in the dpm framework. This function is used
in order to make the SoC meet the desired terminal value.

5.5 Optimization results
With the stage function setup, the dpm solver can be run. It outputs a set of chosen
signals over the optimization horizon. The optimized velocity and SoC is saved as
vectors where each element is the value separated by ds m apart. During the online
optimization, the saved vectors can be loaded and the velocity and SoC reference
values are picked using linear interpolation.
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6
Development of C2: Online

NMPC Controller

This chapter presents and explains the development process of the online NMPC
controller contained by C2

For development purposes, C2 is split into additional subcomponents. The method-
ology presented in this chapter relies on the approach where the functionality of
each component is developed while black boxing the other systems. Many iterations
are then performed back and forth between the components until the demonstrated
product was completed. The following sections aims to explain the various compo-
nents in C2, how they interact with each other, what sort of problems arose and
how they were solved.

C2 uses the Nonlinear Model Predictive Control (NMPC) approach. The control
actions are based on minimizing a cost function subject to a predefined set of con-
straints and plant output predictions which builds on detailed dynamics of the pow-
ertrain.

6.1 Online control architecture

With the multiple speed fixed ratio transmission and the three available driving
modes, the powertrain can operate in various combinations of driving mode and
selected gear. NMPC entails many advantages such as influencing control actions
with predictions and the ability to consider constraints in the optimization. How-
ever, handling discrete elements such as driving mode switches is a weakness of the
NMPC framework and places high demands on the solver which has to treat dis-
continuities. With such motivation, the proposed control architecture uses a set of
NMPC controllers which all have different dynamics depending on the discrete state
of the system. The number of NMPC controllers are as many as there are driving
mode and gear combinations. By using a set of NMPC controllers, the discrete
dynamics of switching driving mode and/or gear can be moved outside of the NM-
PCs which lets them focus solely on the continuous dynamics of the current driving
mode and gear. The processes of selecting the appropriate NMPC controller based
on several conditions is dedicated to a component here denoted the Elector. The
actual control of the vehicle is performed by the Controller.

31



6. Development of C2: Online NMPC Controller

Each of the NMPCs contains a version of the state dynamics presented in Equation
(4.1). For each controller, the dynamics are adapted to conform with the specific
gear and driving mode. In addition to state of the DE, the presence of the power
sources differs between the three driving modes. Hence, the state dynamics for the
Electric, Serial and Parallel driving modes can in a more precise manner be written
as:

EV:

ω̇2 = 1
J2 + Jm

(TP2 − Tload)

ζ̇ = −TP2ω2η
t
P2

Ebat

ḋ = v

(6.1a)

Serial:

ω̇2 = 1
J2 + Jm

(TP2 − Tload)

ζ̇ = −TP1ω
opt
1 ηt

P1 − TP2ω2η
t
P2

Ebat

ḋ = v

(6.1b)

Parallel:

ω̇ = 1
J1 + J2 + Jm

(TICE + TP1 + TP2 − Tload)

ζ̇ = −TP1ωη
t
P1 − TP2ωη

t
P2

Ebat

ḋ = v

(6.1c)

Each NMPC contains the corresponding dynamics presented in these equations. The
state equations all include Tload which in turn includes the total gear ratio rgear as
previously presented in Equation (4.4). In order to assist the controller in the serial
mode, the ω1 shaft speed is assumed to always be at its optimal point, thus, its
state dynamics does not need to be modeled. In the EV mode, the ICE and P1
motors are completely ignored, thus the ω1 shaft speed is not necessary here either.
Finally, due to DE being connected in the parallel mode, the two states ω1 and ω2
are combined into just ω.

The combination of three hybrid modes and the available gears results in multiple
NMPCs where each controller contains the state equations for the specific driving
mode, adjusted for the specific gear. The optimization objective in terms of the cost
function is however identical for all NMPCs:
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J = Kfuel||mfuel||22 +KVerr||v − vref||22 +Kζerr|| |ζ − ζref| ||33 +K∆ω2 ||∆ω2||22
where:

mfuel =
{
ts

ξjωj1T
j
ICE

1000 · 60 · 60

∣∣∣∣∣ j ∈ (2, Np)
}

v =
{
vj
∣∣∣ j ∈ (2, Np)

}
ζ =

{
ζj
∣∣∣ j ∈ (2, Np)

}
∆ω2 =

{ 1
ts

(ωj+1
2 − ωj2)

∣∣∣∣ j ∈ [1, Np − 1] , ω1
2 = x2(k)

}
(6.2)

The fuel component is the criteria which makes the optimizer try to minimize the fuel
consumption. The Verr and ζerr are used to make the controller follow the reference.
Finally, ∆ω2 acts to smooth the velocity of the vehicle, which increases drivability.

It is important that all the NMPCs share the same cost function, as will be explained
later in the Elector sections.

As an additional clarification for Equation (6.2), Kfuel, KVerr , Kζerr , K∆ω2 are scalar
weights for the corresponding components in the cost function. Furthermore, the
fuel consumption over the horizon, mfuel uses the curve fitted consumption map
presented in Section 4.2 which delivers the BSFC at every time instant t, denoted
ξt. Somewhat unconventionally, the SoC error uses a cubed L3-norm. It was found
during testing that if only a squared L2-norm is used, the fuel cost can sometimes be
more expensive than the SoC error if the system is far away from the SoC reference.
This would make the system fall into a bad state where it will never attempt to
recharge the lost SoC since it is cheaper to drain SoC than consume fuel. Having a
cubed error makes the cost grow faster which mitigates this issue. Finally, ∆ω2 is the
numerically differentiated derivative of ω2. It is differentiated using the two-point
method.

The NMPCs applies the direct optimal control approach to convert the OCP to
an NLP. Each NMPC uses the multiple shooting approach with an explicit Euler
integration scheme on short time intervals to transcribe the OCP to an NLP. The
acquired NLP is then solved with the IPOPT solver. The optimization in each
NMPC is carried out with respect to a defined set of constraints tied to corresponding
driving mode:

EV:
−Tmax

P2 ≤ TP2 ≤ Tmax
P2

−Pmax
P2 ≤ TP2ω2 ≤ Pmax

P2

−Pmax
bat ≤ Pcharge ≤ Pmax

bat

0 ≤ ω2

where:
Pcharge = −TP2ω2η

t
P2

(6.3a)
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Serial:
−Tmax

P1 ≤ TP1 ≤ 0
−Pmax

P1 ≤ TP1ω
opt
1

−Tmax
P2 ≤ TP2 ≤ Tmax

P2

−Pmax
P2 ≤ TP2ω2 ≤ Pmax

P2

−Pmax
bat ≤ Pcharge ≤ Pmax

bat

0 ≤ ω2

where:
Pcharge = −TP1ω

opt
1 ηt

P1 − TP2ω2η
t
P2

(6.3b)

Parallel:
−Tmax

P1 ≤ TP1 ≤ 0
−Pmax

P1 ≤ TP1ω

−Tmax
P2 ≤ TP2 ≤ Tmax

P2

−Pmax
P2 ≤ TP2ω ≤ Pmax

P2

25 ≤ TICE ≤ Tmax
ICE

ω ≤ ωmax
ICE

TICE ≤ Tload − TP1

−Pmax
bat ≤ Pcharge ≤ Pmax

bat

where:
Pcharge = −TP1ωη

t
P1 − TP2ωη

t
P2

(6.3c)

Most constraints are self-explanatory. The constraints pertaining to the different
Tmax and Pmax are necessary in order to not request more torque or power from the
motors, battery and engine than what is available and can physically be delivered.
Note that Tmax

ICE here is the curve-fitted max torque curve. The parallel mode has
an arbitrary lower torque limit on the ICE of 25 Nm. The friction losses in the ICE
is modeled by the engine efficiency, which is only present in the mfuel equation and
not defined separately in the state equations. This means there is an inherent loss
of being in parallel mode which the controller does not know about. Without this
constraint, the controller would often pick TICE = 0 which it would assume results in
no fuel consumption and no friction losses, but actually results in the engine idling.

Finally, the TICE ≤ Tload − TP1 constraint implies that the torque generated from
the ICE must not be larger than what is necessary to oppose the load torque and
the generated P1 torque. This is used to prevent the P2 motor from consuming
any torque delivered by the ICE, and is necessary since the P2 motor is designed
primarily to act as a torque producing motor in this powertrain, not a generator.
Note that no constraints on SoC nor velocity is included since it is only supposed
to follow the reference values. Additional unnecessary constraints only lead to more
complex computations for the solver and increases the risk of infeasibility which is
undesired.
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6.2 Elector and Controller architecture and func-
tionality

The online powertrain controller is split up in two parts, the Elector and the Con-
troller, as mentioned earlier. The separation of the control algorithm is done in
accordance with the switched system control scheme. The purpose of the Elector
is to orchestrate the Controller by computing which hybrid mode and gear is the
most appropriate for the current driving scenario. The purpose of the Controller is
to compute the input signals to the plant.

Both components contain NMPC solvers with a high computational cost, but having
a split up system lets them run asynchronously and in parallel which is ideal for the
real time operating systems in vehicles. Furthermore, the Elector does not need to
be run as often as the Controller since the current vehicle state scenario changes with
a long time constant when driving on the freeway. The Controller however, needs
to run more often in order to produce a smooth and responsive driving behavior.

6.2.1 Elector
In order to decide which NMPC to use for controlling the vehicle among the set of
NMPCs, a decision process must be held. This is performed by the Elector, which
holds an election process at a fixed time period. The election process consists of
polling all feasible NMPCs, “asking” them which is the best to use at the current
situation given the current measured states. Simplified, the Elector elects the NMPC
which is able to achieve the lowest value of the objective function until the next
election is held.

The block diagram representation of the Elector can be seen in Figure 6.1. The
Elector takes the current plant state and gear as input, and outputs which NMPC
to use for control by specifying the desired mode and gear, denoted ielected

gear and ielected
mode .

The distinction between igear and ielected
gear is important since they have different sample

times, igear is which gear the powertrain currently uses, while ielected
gear is the gear that

the powertrain should use the next controller timestep.

ielected
mode

Elector

x(k) = [ω1 ω2 ζ d]

igear

ielected
gear

ζref

vref

Figure 6.1: System model of the Elector.

The election process starts by screening the set of NMPCs for those who are able
to provide a feasible solution. The aspect which influences the chances of a feasible
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solution the most is the gear selection. Dependent on the vehicle speed, some gear
selections are infeasible since they would violate the constraints on the angular
speeds of ω2. For the parallel driving mode, the vehicle speed also affects the angular
speed of ω1 since the DE is connected. Both shafts in the power train are set to
have an upper speed limit of 5000 RPM to represent mechanical limits. The upper
RPM limit of ω1 is further motivated to prevent the possibility of exceeding the
redline RPM limit of the engine. Additionally, the ICE is set to have a lower limit
on the angular speed of the output shaft ω1 to prevent stalling the engine, set at
1000 RPM.

With the NMPC screening complete, each NMPC in the feasible set delivers the
optimal value of their objective function by predicting the plant outputs based on
the control actions in accordance to the MPC control scheme. In order for the
feasible NMPCs to deliver the correct optimal objective value, they are supplied
with the measured current plant states. Additionally, since ω2 has different values
for a specific vehicle speed v based on which gear is in use, the measured ω2 must
be adjusted to the respective NMPCs gear. Otherwise, the prediction in the NMPC
optimization will be incorrect. The optimal objective function values are stored in
a cost matrix JNmodes×Ngears . The cost of the infeasible NMPCs are represented as∞
in the cost matrix.

With the cost matrix J established, the decision process can be held. This can be
seen as an additional optimization problem where the most optimal cost in the cost
matrix is to be picked given a set of criterion. Advanced control methods can be
utilized for complex decision strategies, however in this project a simple rule-based
hysteresis controller is employed since it aligns well with the scope of this project.
Advanced decision controllers can for more sophisticated control solutions be at-
tractive since the effectiveness of such strategies scales well for decision problems of
higher complexity as if auxiliary loads were to be considered for instance.

6.2.2 Elector hysteresis
The hysteresis element of the rule-based controller is implemented by introducing
the concept of winning margin. The “winner NMPC” is the NMPC with the lowest
cost in the cost matrix. However, for the winner NMPC to be elected, it must pass
the winning hysteresis criteria:

Ju,v < θ · Ji,j (6.4)

In the equation, (u, v) is the winner NMPC mode and gear, and (i, j) is the previ-
ously elected NMPC mode and gear. Finally, 0 < θ ≤ 1 is the winning margin.

By setting θ = 1, no hysteresis will be taken place. Instead, by setting θ = 0.9
for example, the winner NMPC must have a 10 % better cost than the previously
elected NMPC. If the winner NMPC does not fulfill the winning criteria the NMPC
which currently controls the plant will be re-elected to control the plant until the
next election is held.
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The inclusion of a hysteresis element in the rule-based controller is implemented to
increase the drivability aspect of the full control solution by reducing the number of
driving mode switches through the tunable winning margin θ.

By implementing the hysteresis with only a multiplier criteria has some flaws. By
doing so, the hysteresis becomes sensitive to the magnitudes of the objective costs.
One could for instance argue that an objective cost of 105 is far better than a cost
of 106 while an objective cost of 8 is only marginally better than a cost of 10 for
the same objective function weights. Both cases fulfills a winning criteria of 10 %,
but only in the first example would a switch produce any noticeable improvement
in vehicle performance. Thus, some better hysteresis criteria could be implemented,
however this has not be investigated in this thesis.

6.2.3 Election period and horizon lengths

The Elector periodically holds an election where the fixed time between the elections
is determined by the election period tE. When tE seconds have passed, the election
process is initiated by a trigger signal denoted ψE. The NMPCs then delivers the
objective costs by using control and prediction horizons NE

c and NE
p respectively,

which are solely used within the election process. In order to simplify the tuning of
the controller, the control horizon is set to be equal to the prediction horizon, i.e.
NE

c = NE
p . A critical tuning parameter is the relation between the election period

tE and the prediction horizon N e
p. The horizon were picked such as NE

p = dtE/tse,
where ts is the Controller time step. This results in a prediction horizon that predicts
the vehicle behavior up until the next election and thus results in objective costs
which are the most relevant for the election process.

The election period tE is a tunable parameter which greatly influences the behavior
of the full control solution. By selecting a long election period, the frequency of gear
and mode switches is restricted since they can only occur once every election. This
implies that the NMPC controlling the plant might not be optimal at all points
during control. Since NE

p = dtE/tse, another disadvantage with a long election
period is the computational burden that long prediction horizons have.

Computational burden is also something which very short election period can suffer
from since the frequency of the elections becomes high. And since NE

p = dtE/tse, us-
ing short election periods also reduces the predictive ability of the NMPCs and hence
the purpose of using a predictive control approach. Additionally, a shorter election
period can have a negative impact on drivability due to rapid NMPC switches if the
hysteresis is not tuned well.

In theory, the election period should be selected to represent the speed at which
the environment changes, with some limitations. For example, for freeway driving,
the road slope changes relatively slowly and there are rarely any interruptions. In
city driving however, start-stopping is frequent and perhaps a fixed election period
is not a viable option. In this project where we only consider freeway driving the
election period should hence be adjusted accordingly.
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6. Development of C2: Online NMPC Controller

6.2.4 Controller
The gear and mode decided by the Elector is sent to the Controller, which gets
translated to a specific NMPC to use for controlling the plant. At each Controller
time step ts, the Controller receives the current measured plant states and then runs
the NMPC for the given inputs. A block diagram with the inputs and outputs of
the Controller can be seen in Figure 6.2.

Controllerx(k) = [ω1 ω2 ζ d]

iDEielected
mode

TICE

TP2

TP1

igear

ielected
gear

ζref

vref

Figure 6.2: Overview of the Controller.

The controller utilizes a time step set to ts = 1 s which can be considered to be fairly
large. However, running the NMPCs is a heavy operation and by setting time step
to 1 s has a positive impact on the overall computational time. Furthermore, the
main purpose of the online controller is to perform well on freeway driving where
fast changes are not as frequently occurring as for e.g. city driving which further
implies that a time step of 1 s is sufficient.

Similar to the Elector, the Controller has to account for the fact that different gears
entails different angular speeds of ω2. Hence, the Controller checks if a change of
gear has been made since the last run. If so, the angular speed of ω2 is updated
with respect to the new choice of gear.

The Controller contains a new independent set of NMPCs used to control the plant.
In contrast to the Elector, the NMPCs in the Controller uses different lengths of
prediction and control horizons denoted NC

p and NC
c respectively. As for the Elector,

the prediction and control horizons for the Controller are set to be of equal length,
i.e. NC

p = NC
c . The Controller allows for longer horizons lengths than the Elector

since only one NMPC is allowed to run in the Controller, something which should
be utilized. Using longer horizon lengths in the Controller enhances the predictive
performance, since the active Controller can “see further” which implies a smoother
control behavior due to increased optimality of the objective function. Smoother
control behavior also enhances the drivability aspect since it reduces oscillations
and drastic changes of the actuator signals in terms of requested torque to the
torque sources of the powertrain.

Since ω1 is fixed at the optimal operating point in the serial NMPC, the NMPC will
not take into account the acceleration of the ω1 shaft. That is, the torques sent by the
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NMPC will not make sure that the shaft holds the specified operating point. Thus,
a separate controller is necessary to solve this control problem. Since the dynamics
of the ω1 shaft are relatively simple in the serial mode, this control problem is solved
by a basic P-controller which adds an additional signal on top of the TP1 and TICE
sent from the NMPC. By modifying the requested torque signals, the P-controller
can make ω1 follow the desired reference. Once the reference is reached and the
error is 0, TP1 will be equal to TICE which keeps the angular acceleration at 0. The
TP1 and TICE computations in the P-controller are defined as:

TP1 := TP1 + 2(ωopt1 − ω1)
TICE := TICE + 2(ωopt1 − ω1)

(6.5)

By adding the new signal on top of the computed ones lets the controller still respect
the requested torque from the NMPC and also eliminates any steady-state error.
Note that this is the desired torque values, in reality the P1 motor and ICE has
torque limits, thus the signals will get saturated. The P-controller is run with a
sample time of 10 ms in order to produce a fast response. An additional benefit of
this controller is that the P1 motor will act as a starter motor for the engine. The
value of the P constant is not very sensitive and was found through trial and error
via simulations.

6.3 Responding to driver requested torque
Driver interaction is something which the online controller has to consider in order
for it to be viable in practice. The type of driver interaction which has been con-
sidered in this project is the possibility of the driver to request a specific torque,
Td, by pressing the gas pedal for situations such as overtakes. The solution assumes
that Td is delivered from the driver and has already been translated from gas pedal
angle.

A sudden torque demand from the driver such as in the case of an overtake has to be
treated as quickly as possible by the Elector and then delivered by the Controller. A
new election is therefore forced by utilizing the trigger signal ψE which disregards the
election period and forces a new election when a driver requested torque is detected.
The trigger signal then becomes active when the numerical derivative of Td exceeds
a specified threshold, i.e. when the driver suddenly request a large torque. The logic
for the trigger signal is:

ψE =

1 if
∣∣∣∆Td

∆t

∣∣∣ > 20 Nm
0 Otherwise

(6.6)

When the new election is triggered, the Elector checks if Td > Tload. If so, the driver
wants to accelerate beyond the optimized vehicle speed, which the controller has to
allow. The main control objective for the NMPCs is therefore to follow the torque
reference from the driver and will in the driver engagement mode utilize a modified
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cost function. Hence a new set of NMPCs are used, where the cost function in all
NMPCs is replaced by:

iDE = 0 :
J =Kfuel||mfuel||22 +Kζerr ||ζ − ζref||33

+KTd||TP2 − Td||22
(6.7a)

iDE = 1 :
J =Kfuel||mfuel||22 +Kζerr||ζ − ζref||33

+KTd|| (TICE + TP1 + TP2)− Td||22
(6.7b)

This cost function depends on the state of the DE. If the DE is disconnected, the
only power source which provides traction force is the P2 motor. Otherwise if the
DE is connected, all power sources can affect the vehicle acceleration. Td is assumed
to be constant over the entire horizon.

The other components of the original cost function in Equation (6.2), such as velocity
tracking, are omitted because their sole purpose would be to actively impede the
requested torque from the driver.

In addition the cost function, another property which differs in the driver engage-
ment mode is the length of the election period. As for regular control, the relations
between the horizon lengths and the election period are however kept the same.
I.e. NE

p = dtE/tse, NE
p = NE

c and NC
p = NC

c . The election period for the driver
engagement mode is set to tE = 2 s and NC

p = NC
c = 5. By doing so, the election

frequency increases and the horizon lengths are short which is suitable since driver
interaction yields an unpredictable behavior in general.

The election procedure is then identical to the regular election process. The NMPC
which delivers the lowest objective cost and satisfies the winning criteria is elected
as the winner NMPC and allowed to control the plant. As for the Elector, the
Controller block contains an additional set of NMPCs used for driver engagement
mode with the objective cost in (6.7). In order the use the new set of NMPCs, the
Controller checks in the same manner as for the Elector if Td > Tload. Tload can be
computed from the system states so no additional block input is needed.

Responding to driver requested torque is a challenging task since the response has
to be fast. The throttle response is a vital aspect for customers. The switched
system architecture used in this project makes responding to driver requested torque
possible, but comes with a downside. When the driver requests a large enough
torque to trigger a new election, both the Elector and Controller switches to the
new set of NMPCs with adapted objective costs. This procedure is fairly fast, but
the Elector still has to hold an election process to find the NMPC which satisfies
the requested torque in the most optimal way. Such election is not instantaneous
and has a negative impact on responsiveness.
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6.4 Full control solution
By coupling the Elector together with the Controller, the full control system in C2
is achieved. The Elector runs every tE seconds by a timer pulse, or from a change
in requested torque. Once the election process has finished, the decided hybrid
mode-gear combination is sent to the Controller which is run at every time step to
compute the different input torques necessary for the vehicle to follow the SoC and
velocity references. The full system solution can be seen in Figure 6.3.

6.5 Evaluation and measures taken to increase
drivability

Drivability is the “subjective perception of dynamic performance and comfort for
passenger car in response to driver input during longitudinal driving” according
to W. Zhou et al.[23]. It is a key aspect when designing vehicle controllers since
the comfortability of the driver is of high importance. Drivability is a challenging
aspect to evaluate, since it is often a subjective measure. However, some metrics can
be still be calculated for a simulation that allows for a rough comparison between
runs. The drivability metrics utilized in this report are the number of engine events
EICE and the maximum magnitudes of acceleration amax [m/s2] and jerk jmax [m/s3]
over a driven route. An engine event is considered as either starting the ICE or
turning it off. In addition to regarding the maximum magnitudes of these metrics,
it is also beneficial to regard the occurrences of acceleration and jerk values over
specified comfortability thresholds. The acceleration and jerk thresholds are set in
accordance with what is presented in [24] to â = 1.47 m/s2 and ĵ = 0.9 m/s3. The
number of accelerations and jerks which exceeds these thresholds will be counted
and represented by nâ and nĵ respectively. Engine events are important to reduce
since starting the engine is a loud process and often causes annoying vibrations for
the passengers. This subjective evaluation of drivability builds on the opinion that
lower values of the listed metrics increases drivability.

Throughout the project, drivability has always been kept in mind when designing
components. The focus has been on reducing the number of mode and gear switches
since they often implicate jerky and/or unresponsive behavior. Smoothing control
signals and states have also been important when designing elements, which for
example explains the extra cost on ∆ω2 in the NMPC control scheme.

A benefit with the developed solution is that it contains multiple tunable parameters
which affects drivability such as winning margin, election period and horizon lengths.
The current state of the solution employs rule-based decisions by the Elector. To
further enhance the drivability aspect of the solution, the Elector can be extended to
utilize optimization techniques where drivability metrics can be included and hence
affect the decisions.
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Figure 6.3: Full solution architecture
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7
System Evaluation and Simulation

This chapter presents the simulation environment and the framework for evaluating
the system.

In order to evaluate the performance of the system and allow for quick iterations
between trial and error when tuning, a simulation environment was created using
Simulink and MATLAB. A detailed vehicle plant was provided by CEVT that uses
the Simscape Driveline add-on for Simulink, which aims to mimic the three mode
hybrid powertrain. Simscape Driveline lets you intuitively connect various vehicle
and powertrain components such as engines, gearboxes and inertias using block
diagrams. The vehicle plant acts as a black box in which the designed controller
sends the different input signals and acts on the output signals.

A variable step length was chosen for the simulation, which allows Simulink to adjust
the step length when necessary in order to preserve simulation accuracy, while still
be relatively fast to simulate. The Controller block has a fixed time step of ts seconds
since that is what the Controller calculations are based on.

The vehicle battery is simulated using only an integrator block which takes Pcharge
that is based on the real efficiency maps of the electric motors as input, and outputs
the battery SoC. This is a highly simplified battery model, but suits the scope of
this project well.

The ICE is modeled using the Simscape Driveline Generic Engine block, which takes
the desired torque as input. Furthermore, supplying the fuel consumption map to
the block makes it also calculate the real fuel consumption, which is the one used
for metric analysis later. The ICE block does not simulate any engine lag or other
dynamics.

The electric motors are modeled using two ideal torque sources, with the saturated
desired torque as input. The efficiency loss from the motors are modeled in the
battery plant as said before.

All simulations used in this report were performed with an initial SoC of 50 % and a
desired terminal SoC of 50 %. Furthermore, all simulations assume that the initial
velocity is equal to the reference velocity at distance d = 0.
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7.1 Controller and Elector implementation
The Controller and Elector consists of two separate MATLAB System blocks which
contains code for running the NMPC solvers when desired. The NMPC solvers are
implemented as individual independent objects wrapped around CasADi opti func-
tions. The NMPC objects contains an internal state which remembers the NMPC
solution of the previous run. By saving the previous solution, it can be utilized
in the next NLP solve to ‘pre-warm’ the solver, which significantly speeds up the
computational performance. Additionally, this pre-warming proved highly beneficial
beyond just computational time. Due to the non-linearity of the controllers, there
can be multiple local minima in the solution. If the solver is not pre-warmed and
has to start from scratch, it randomizes the internal variables and optimizes from
there. This means it can sometimes, randomly, reach a different local minimum
compared to the last solution. The solution at this local minimum can have vastly
different optimal variables compared to other minima, thus the controller output
can oscillate violently between iterations. By pre-warming, the controller will reach
the same local minimum most of the times and thus these oscillations are prevented.

7.2 SoC loss compensation
In order to be able to compare the fuel consumption in a less biased way in between
the simulations, it is important that the terminal SoC is equal to the initial SoC as
the chosen simulation cases suggests. This is difficult to manage in the simulation
since it is not a hard constraint of any controller in the system to achieve this
behavior. When computing the final fuel consumption of the run, the result must
be compensated to account for any loss or gain in SoC over the run. The battery
energy which was “stolen” from the battery can in relation to the energy capacity
of the battery, Ebat, be expressed as:

Estolen = Ebat(ζ(0)− ζ(Ts))[J] (7.1)

Where ζ(0) and ζ(Ts) is the initial and terminal SoC, respectively. The “stolen”
energy can be used as:

trecharge = Estolen

ωopt
1 T opt

ICEη
t
P1

[s]

mextra
fuel = trecharge

ωopt
1 T opt

ICEξ
opt

1000 · 60 · 60[g]
(7.2)

in order to calculate a fuel consumption compensation.

In Equation (7.2), ξopt is the brake specific fuel consumption [g/kWh] at the optimal
serial operating point as described in Section 4.4. The first equation gives the engine
running time in serial mode needed to recharge the missing energy. The second
equation calculates the mass of fuel required to run the engine at its optimal point
for that amount of time. The total fuel consumption could then be computed as:
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mfuel = 1
1000 · 60 · 60

∫ Ts

0
ω1(t)TICE(t)ξ(t)dt +mextra

fuel [g] (7.3)

where the fraction of 1
1000·60·60 is used to convert the fuel consumption from g/kWh

to g/Ws. Further note that the integration is performed by the Generic engine block
in Simulink.

To obtain the fuel consumption in l/10km, the mass of consumed fuel can be divided
by the product of fuel density ρfuel in grams per liter and the driven distance d in
meters as:

Vfuel = mfuel

ρfuel · d · 10−4 [l/10km] (7.4)

7.3 Route
The majority of the simulations are performed on a route consisting of the first
50 km of National Road 40 from Gothenburg to Borås in Sweden, referred to as the
test route. This stretch of road starts with a speed limit of 70 km/h and gradually
increases to 110 km/h, which aligns with the scope of the project to only consider
freeway driving. Furthermore, the road is a freeway with no intersections which
means stops does not have to be taken into account in an ideal scenario.

In order to further evaluate the performance of the solution, an additional and
artificial route was created, denoted the “bowl route”. This route is only 20 km
long compared to the length of the test route which is 50 km. The bowl route was
created by replicating a segment of a sine wave. It is simple to its character and
only contains one downhill followed by a single uphill to reach the starting altitude.
The bowl route consists of a constant speed limit set to 70 km/h.

The characteristics of the two routes can be seen in Figure 7.1.
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Figure 7.1: Comparison of altitude characteristics for the test and bowl route used
to generate simulation results of the developed solution.
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8
Results and Discussion

This chapter presents and discusses the project results. In order to present the
behavior of the developed control solution, an array of simulations was performed that
aims to showcase the solution and lay the foundation for answering the formulated
research questions.

8.1 C1: Offline optimization
The DP optimization was performed on the test route with a number of different
sample distances in order to find the best sample distance. Figure 8.1 and Table
8.1 shows a comparison of the simulation results between a set of sample distances,
ds = {20, 50, 100, 200, 300}. All the different optimizations used the same cost tuning
for an unbiased comparison:

Kfuel = 1× 10−3

Kverr = 6× 10−2

K∆v = 5× 106

K∆iICE = 1× 109

(8.1)

Table 8.1: Optimization metrics for a set of sample distances ds. EICE denotes the
number of engine events, vmax

err states the maximum deviation from the route speed
limits, amax and jmax is the maximum acceleration and jerk respectively and Tc is
the computational time for the specific setup.

ds Ts Vfuel [l/10km] EICE amax [m/s2] jmax [m/s3] Tc
20 29m 27s 0.7821 7 1.062 2.221 17m 45s
50 29m 13s 0.7731 5 0.643 0.439 8m 20s
100 29m 13s 0.7720 1 0.444 0.081 4m 39s
200 29m 7s 0.7696 2 0.595 0.069 2m 35s
300 29m 11s 0.7660 2 0.411 0.031 1m 36s

As evident in Table 8.1, the different sample distances show little change in fuel
consumption. Since the differences in fuel consumption and travel time are small,
the comparison was expanded with additional metrics as can be seen in the table.
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Figure 8.1: SoC reference for a set of different sample distances

By regarding the additional metrics, it is evident that a longer sample distance ds
leads to a smoother behavior of the references. By increasing ds the number of
engine events EICE, maximum acceleration amax and jerk jmax all decreases which is
beneficial when regarding the drivability aspect.

Additionally, from the amax and jmax metrics in Table 8.1 it can be seen that the
smoothness of the velocity reference increases with the sample distance as predicted
in Section 5.1. Furthermore, the drivability suffers from lower sample distances as
can be seen by the increased number of engine events. Cases with a very low sample
distance, such as ds = 20 s, may require some re-tuning of the costs in order to
achieve similar performance as for the cases with longer sample distances. A theory
as to why the number of engine events increase with shorter sample distance is due
to the added ds multiplier in the PP1 cost term mentioned in Section 5.3. This makes
sense because it would be a larger commitment to turn on the engine for cases with
longer sample distance since that would consume more fuel. This could make the
optimization more careful with switching it on. The difference in the amount of
engine events manifests as the difference in the shape of the SoC reference as seen in
Figure 8.1. This is due to the fact that more engine events enables the SoC reference
to track the terminal goal SoC of 50 % in an earlier stage.

The different shapes of the SoC trajectory can be explained by referring back to
what was mentioned in Section 5.3. Due to the simple model of the battery, any
SoC trajectory that starts and ends at 50 % is just as valid as any other. Thus, it
does not matter if the SoC increases then decreases, or vice-versa, when considering
the control objective.

Picking a best sample distance is difficult since for ds ≥ 100 the metrics are mostly
the same. In our case, the computational time Tc is not a factor of concern since we
have plenty of time to perform the offline optimization. However, for a normal use
case it would be a significant factor. Due to this, the sample distance was chosen
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as ds = 100 m since it has a good fuel consumption and among the best drivability
considering the singular engine event, however it might as well have been picked as
200 m or 300 m without any significant difference regarding their affect on the C2
behavior.

As evident from the figures, the offline DP algorithm is able to achieve a stable and
optimized trajectory despite only utilizing a simple Euler forward stepping method.
Allowing for more computational complexity, we believe that this method of per-
forming the offline optimization is definitely a viable one.

Early attempts were made where an NMPC solver would perform the offline opti-
mization. However, the combination of large route distances and relatively short
sample distances resulted in an extreme amount of prediction horizon steps, which
together with the different system states resulted in a completely infeasible prob-
lem to solve in a reasonable time. This allows the less computationally heavy DP
algorithm to outshine an NMPC solution under these circumstances. However, the
drawbacks of the DP algorithm must be kept in mind when developing the algo-
rithm. The most notorious problem we faced is the lack of taking past and future
states into account in the cost function, which is possible for NMPC. The oscillating
behavior explained in Section 5.3 was solved by introducing the iprev

ICE state, however
the introduction of that results in a doubled computational time, and that is only
for a 1-step history.

8.2 C2: Optimal control
In order to evaluate the performance of the online controller, a baseline controller
was tuned as good as possible, which is then used to compare to different tunings
and simulation cases.

8.2.1 Establishing the baseline controller
With respect to the effects of the election period length presented in Section 6.2.3,
the election period used for simulation on the test route was moderately selected as
tE = 20 s. Likewise, the winning margin was moderately set to 10 % (θ = 0.9). The
objective cost was tuned accordingly:

Kfuel = 1× 102

KVerr = 3× 102

Kζerr = 1× 109

K∆ω2 = 5× 102

(8.2)

The results from simulations on the test route are presented in Figures 8.2, 8.3 and
8.4. In the plots, the x-axis is color coded to facilitate the reader with determining
what driving mode is active under at what times during the simulation. As can
be seen for all Figures, the color coding indicates that only EV and Parallel Mode
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are used throughout the simulation, which is determined reasonable due to the high
speed profile. Serial is less useful in power demanding situations such as freeway
driving since the generated energy will be spent immediately anyway, which results
in unnecessary energy losses in the electric motors and the battery.
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Figure 8.2: Delivered torque of the three power sources along with the altitude
profile. Red = EV, Blue = Parallel
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Figure 8.3: Actual and reference SoC trajectories. Red = EV, Blue = Parallel

As can be seen in Figure 8.2, the controller starts by utilizing the EV mode since
the SoC reference in Figure 8.3 suggests to drain the battery. At approximately
t = 350 s the SoC reference changes direction and starts to increase. In order to
follow the SoC reference and the relatively high velocity reference in combination
with the uphill, the controller selects the Parallel driving mode by delivering the
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Figure 8.4: Actual and reference velocity trajectories. Red = EV, Blue = Parallel

required torque with the ICE. P1 applies a negative torque to regenerate energy
to charge the battery and hence follow the SoC reference. The remaining torque
provides the necessary traction force to follow the velocity reference. During parallel
mode, some segments can be seen where the P2 motor is involved. In those cases, the
P2 motor assists the ICE by delivering the additional torque needed for climbing
the hills. Additionally, during steeper downhills, the P2 assists the P1 motor in
regenerating when its power limit is being reached.

By regarding Figure 8.3 it can be noticed that the actual SoC profile is below the
reference SoC for the majority of the route. This behavior is due to the weighting
between the different cost parameters. The SoC tracking cost Kζerr tries to achieve
ζ = ζref which is something that takes energy to achieve if the SoC is below the
reference. However, a cost is also placed on the fuel consumption Kfuel, which is
the main source of energy. These two costs will inhibit each others goal and thus a
compromise gets made where the SoC is slightly below the reference.

The computed fuel consumption of this simulation is 0.7361 l/10km and the travel
time is 29m 15s. This can be compared to the C1 predicted values of 0.7720 l/10km
and 29m 13s. Thus, C2 actually performed better than predicted by C1, which
can partly be attributed to C2 being able to make use of parallel drive which C1
cannot. The other reason why C2 is able to improve the performance is due to its
ability to make slight deviations from the reference signals where the magnitude
of the deviations are determined by the weighting of the cost function. Since C2
also includes a predictive behavior which is based on a more accurate model of the
powertrain compared to C1, it is able to notice enhancements which can be made
during control which may require small deviations from the reference signals. Hence,
by allowing such behavior, the control performance can achieve further optimality
which is reflected in the fuel consumption figures.

From Figure 8.4 one of the benefits with a offline-online coupled solution can be
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seen. Since the online controller in C2 is allowed to make minor deviations from
the reference velocity, the oscillating behavior seen in the reference signal can be
eliminated which results in a smoother actual velocity. It can further be noticed
that there is a minor drop in the vehicle velocity for a short period of time when
the parallel mode is engaged. This is a result of the DE being connected. When the
controller switches from EV to Parallel mode, ω2 which is rotating at high speed is
directly attached to ω1 which is at standstill. By connecting the axes with the DE,
a portion of the kinetic energy in the ω2 shaft is used to accelerate the ω1 shaft since
they must have synchronous speed in the parallel mode. Hence the vehicle speed
will drop for a short period of time. The issue with the drop in velocity when the
DE connects has hence been observed but not treated.

In addition to developing a functioning solution to the hybrid powertrain energy
management problem, it is also of high value to investigate the performance effects
of some key components of the solution. The results of this investigation is presented
in the following sections.

8.2.2 The effects of election period length on fuel consump-
tion and driveability

This section investigates how the performance of the control solution in terms of
relative fuel consumption and drivability is affected by the length of the election
period. The controller setup and results presented in Sections 8.1 and 8.2 is con-
sidered as the baseline case by which the following tests will be compared to. The
performance metric of relative fuel consumption is defined as:

∆fuel = 100 · V
T

fuel − V BC
fuel

V BC
fuel

[%] (8.3)

where V T
fuel denotes the total fuel consumption of the test case and V BC

fuel denotes the
total fuel consumption of the baseline case.

In addition to the baseline case, five additional C2 controllers were created with
identical tuning of the cost function but with election periods of 5, 10, 15, 25 and
30 s respectively. Each test case was simulated on the 50 km test route, the fuel
consumption and travel time results can be seen in Table 8.2.

Table 8.2: Compilation of consumption results for the test cases and baseline case.

tE [s] Vfuel [l/10km] ∆fuel [%] Ts ∆Ts [%]
30 0.7410 0.6695 29m 15s -0.0032
25 0.7419 0.7936 29m 15s -0.0001

20 (BC) 0.7361 - 29m 15s -
15 0.7360 -0.0193 29m 15s 0.0022
10 0.7360 -0.0193 29m 15s 0.0025
5 0.7380 0.2551 29m 17s 0.1271

From the table it can be concluded that the election period selected as the baseline
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case achieves one of the lowest fuel consumptions over the driven route. Based on the
relative fuel consumption figures, it can further be concluded that varying the length
of the election period does not significantly affect the fuel consumption. However,
the behavior of the controllers in terms of control signals is something which changes
notably more than the consumption figures when changing the length of the election
periods. This behavior is very similar for election periods of length 10 s and above
and is shown in Figure 8.5. However, for shorter election periods, such as the
simulated case of 5 s, the torque behavior drastically changes, see Figure 8.6.
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Figure 8.5: Torque inputs for controller with 10 s election period. Red = EV,
Green = Serial, Blue = Parallel

Since these drastic changes is not reflected in the fuel consumption figure, other
aspects have to be considered in order to give a more fair evaluation of the impact
which different lengths of election periods have, such as drivability. The drivability
was evaluated in accordance with the metrics stated in Section 6.5 and the results
are presented in Table 8.3.

Table 8.3: Values of the drivability metrics for each length of election period. EICE
is the number of engine events. amax and jmax is the maximum achieved acceleration
and jerk magnitude achieved, respectively. nâ and nĵ is the number of comfortable
acceleration and jerk threshold violations done, respectively.

tE s EICE amax [m/s2] jmax [m/s3] nâ nĵ
30 2 1.1060 0.4055 0 0
25 4 1.1059 1.6970 0 1

20 (BC) 2 1.1060 2.0753 0 2
15 2 -1.2070 2.5739 0 3
10 2 -1.1476 2.4640 0 2
5 63 -1.2808 2.6719 0 63

As seen in the table, the number of engine events increased drastically for the 5 s

53



8. Results and Discussion

0 200 400 600 800 1000 1200 1400 1600

Time [s]

-150

-100

-50

0

50

100

150

200
Torques

Altitude [m]

T
ice

 [Nm]

T
p1

 [Nm]

T
p2

 [Nm]

Figure 8.6: Torque inputs for controller with 5 s election period. Red = EV, Green
= Serial, Blue = Parallel

election period test. A potential reason for this is that the winning margin criteria
is very sensitive to the length of the election period. A longer election period results
in a longer election horizon, which results in objective costs of higher value. This
means that the relative difference between the costs of the different NMPCs in each
election is higher for longer election periods, thus the winning margin must be tuned
for each specific election period.

Contrary to the engine events EICE, the maximum acceleration amax and jerk jmax

does not differ to the same extent for varying lengths of the election period. Fur-
thermore, no controller violates the acceleration comfortability threshold, which is
desirable. However, when comparing the number of occurrences of jerks nĵ over the
specified threshold, a major difference can once again be seen when comparing the
election period of 5 s to the other election periods. It appears that the number of
jerk violations correlates with the number of engine events, which proves why the
number of engine events is an important metric when considering drivability.

8.2.3 Gearshifting and unexpected stops
An early opinion, stated in the thesis introduction, was that the full control solution
benefits more from having the detailed dynamical model in the online component
rather than in the offline component. The opinion was that, by doing so, the dis-
turbance robustness would increase. Hence, the developed solution was exposed to
a disturbance in the shape of an unexpected stop when simulating on the 50 km
test route. The stop was modeled as a timed braking segment where the mechani-
cal brakes supply 600 Nm braking force for a period of 60 s with all motor torques
overridden to zero, resulting in a complete stop. When the 60 s have passed, the
controller is able to start following the references to recover the deviations.

The controller used in this test was re-tuned in order to produce a gear shift and
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hence display that the implemented gear shift functionality works. The baseline
controller presented earlier uses a fairly long election period of 20 s and a winning
margin of 10 % which is too restrictive for rapid accelerations. A long election period
results in few gear shifting opportunities during the acceleration period which means
that the chosen gear must be the one that is optimal during the majority of the
acceleration period. The optimal gear in that case becomes the highest gear since
the reference velocity is a freeway speed, any lower gears would be limited by the
power limit in the motor and battery. Hence the controller was given an election
period of 2 s for this test. Furthermore, as discussed in Section 8.2.2, the winning
margin must be set lower when the election period is shorter in order for the reference
tracking to still work, thus it was set to 0 %.

The simulation results can be seen in Figures 8.7 and 8.8. From the figures it can
be concluded that the controller is able to recover accurate tracking of the reference
signals after the stop. The figures further displays the benefit of utilizing distance
based reference signals since they become constant at the point of a complete stop.
If time based reference signals were to be used instead, the references would keep
changing and effort would need to be put in place in order to make sure the reference
stays synchronized with the vehicle position.
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Figure 8.7: Actual and reference velocities during brake test simulation. The
vertical arrows represent down and upshift events. Red = EV, Blue = Parallel

8.2.4 The effects of excluding the offline optimization
In order to evaluate the impact of the offline optimization, a simplified controller was
designed which does not utilize any offline computed references. Instead the simple
online controller follows a constant SoC reference of 50 % and the velocity reference
is strictly set to the speed limit of the road. It was noted that upon simulating the
simple controllers on the test route, the Kζerr cost had to be tuned since the default
cost resulted in the controller barely utilizing the battery at all. With a lower Kζerr

cost, the controller may start to drain the battery below the limit of 20 %, thus an
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Figure 8.8: SoC from brake test simulation. Red = EV, Blue = Parallel

additional constraint on the lower bound of the ζ value was added to the NMPC
controllers for this test. The results from the 50km test route simulations for a range
of Kζerr is presented in Table 8.4.

Table 8.4: Results from comparing the baseline and the simple non-reference based
controller with a set of different Kζerr .

Controller Kζerr ζerr(Ts) [%] ζmax − ζmin [%] vmax
err [km/h] ∆fuel [%] ∆Ts [%] Vfuel [l/10km] Ts

Baseline 1e9 -0.63 15.60 2.52 - - 0.7361 29m 15s
Simple 1e9 -0.26 0.64 6.59 1.8558 -0.6456 0.7498 29m 3s
Simple 1e8 -0.83 1.68 6.53 0.3743 -0.6322 0.7389 29m 4s
Simple 1e7 -3.11 4.01 6.51 0.3846 -0.6426 0.7389 29m 3s
Simple 1e6 -9.79 29.88 8.11 4.4239 -0.5491 0.7687 29m 5s

By regarding Table 8.4, the simple controllers with SoC tuning of 1e9 and 1e8 can
be considered to perform equally well as the baseline controller in terms of fuel
consumption, travel time and terminal SoC, ζerr(Ts). However, it should be noted
that these simple controllers do not utilize the battery to the same extent as the
baseline controller which can be seen by looking at the ζmax − ζmin metric. The 1e7
and 1e6 case are diverging too far from the desired terminal SoC to be considered
as good results. For the controllers with tuning 1e9 and 1e8, the slightly decreased
travel time comes with a price of either increased fuel consumption or a greater
deviation from the set terminal SoC value. To further evaluate whether or not these
simple controllers are equally good as the baseline controller, drivability aspects
such as number of engine events should be considered. Engine events is regarded as
a key drivability metric since the opinion is that they are highly noticeable by the
driver and can be regarded as a distraction when occurring in excess. The number
of engine events for the simple controllers with tuning 1e8 and 1e9 are 20 and 14
respectively. The baseline controller however, only contains 1 engine event. This
may indicate that a strength of the offline optimization is that it improves drivability
in terms of lowering the number of engine events. This would be explained by the
expensive engine switching cost in the objective function in C1 while still being able
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to achieve the desired terminal SoC value.

To extend the comparison of the controllers, they were simulated on the bowl route
described in Section 7.3. The results from these simulations are shown in Table 8.5
as well as Figures 8.9 and 8.10.

Table 8.5: Bowl route simulation results with a set of different Kζerr .

Controller Kζerr ζerr(Ts) [%] vmax
err [km/h] ∆fuel [%] ∆Ts [%] Vfuel [l/10km] Ts

Baseline 1e9 -0.73 0.87 - - 0.4274 17m 16s
Simple 1e9 -0.39 24.53 9.8310 -8.0030 0.4694 15m 53s
Simple 1e8 -1.66 1.98 0.8238 -1.1016 0.4309 17m 4s
Simple 1e7 -6.15 3.25 -5.5140 -0.1922 0.4038 17m 14s
Simple 1e6 -17.30 0.42 -1.9722 -0.1505 0.4190 17m 14s
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Figure 8.9: Comparing the SoC trajectories between the baseline simulation that
follows the C1 reference and the simple controllers that follow a constant reference.

As for the results from the test route, the simple controllers which deviate too much
from the terminal SoC ζerr(Ts) are removed from the evaluation, in this case the
simple controllers with tuning 1e7 and 1e6. The simulation results from the bowl
route are more dramatic than the results from the test route. For instance, the
simple controller with SoC tuning of 1e9 has a significantly lower travel time but
with a relative fuel consumption of almost 10 % as can be seen in Table 8.5. However,
the simple controller with SoC tuning of 1e8 has a similar behavior as the baseline
controller when regarding the SoC and velocity trajectories seen in Figures 8.9 and
8.10.

The considerable decrease in travel time Ts and increase in relative fuel consumption
∆fuel produced by the simple controller with SoC tuning of 1e9 is a result of the SoC
tracking being too aggressive for this route on a constant reference. The gained
energy in the downhill is absorbed using both kinetic and battery energy instead of
just battery energy, which results in an increased velocity and thus a shorter travel
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Figure 8.10: Comparing the velocity trajectories between the baseline simulation
that follows the C1 reference and the simple controllers that follow a constant ref-
erence.

time, which can be seen in the corresponding vmax
err metric in addition to Figure

8.10. Furthermore, it should be noted that gaining kinetic energy by simply rolling
down a hill can also be the most energy efficient approach in some situations, such
as climbing a hill following a downhill. It is a question of choosing the energy
storage method with the minimum overall losses. The decision whether to roll or
to use generative braking should be made by regarding the increased loads from
drag and friction as an efficiency and then compare to the energy conversion losses
that regenerative braking entails. Additionally, such decision is highly dependent on
velocity since the aerodynamic load for instance is exponentially increasing with the
vehicle velocity. The simple controller with SoC tuning 1e9 is greatly over speeding
during the bowl route simulation which results in very large aerodynamic and friction
loads. Despite this the controller chooses to roll down the hill instead of using the
generative brake which manifests as an increased fuel consumption and a decreased
travel time. Since vmax

err = 24.53 km/h for this controller and the bowl route uses a
speed limit of 70 km/h, the violation from the speed limit is illegal which of course
is a downside of simple controller. A mechanical brake would alleviate this issue,
but would result in a net energy loss.

In conclusion, despite the baseline controller not having any significant improvement
in fuel consumption in this situation, it can still outshine the simple controller due to
its ability to plan ahead. Only the baseline controller manages to properly minimize
both the ζerr(Ts) and vmax

err metrics over the bowl route. Furthermore, for the baseline
route, the results have shown that the baseline controller achieves equally good
travel time, terminal SoC deviation and fuel consumption as the best performing
simple controllers but with only 1 engine event which is due to the added cost in
the C1 optimization. Hence, other aspects which enhances the online performance
can be regarded in this offline optimization as well, such as prioritizing ICE usage
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during freeway speeds where the engine noise is less prominent. Furthermore, the
ability to plan the SoC allows the offline optimization to fully utilize regenerative
braking segments of the route, where a non-planning controller may have already
fully charged the battery ahead of the downhill. An additional benefit of being
able to plan the route is that the optimizer can generate references which encourage
charging the battery ahead of city driving segments, allowing the EV mode to be
utilized to a further extent within city borders, which helps reduce emissions and
noise pollution.

8.2.5 Emission free zones
A scenario was constructed where the last 5 km of the 50 km test route was flagged as
an “emission free zone” where the ICE must be turned off. This was done to highlight
one of the earlier mentioned strengths of the offline-online coupled solution, namely
that the planning property which C1 offers can be used to ensure that emission
free zones are obeyed while respecting the constraints. Through simulations, the
baseline controller and one of the best performing simple controller were exposed
to this scenario. The most interesting aspect to regard when comparing the two
controllers for this scenario is the SoC trajectories. In order to ensure that the
emission free zone can be obeyed while also ensuring that the terminal SoC of 50 %
is fulfilled, the SoC trajectories must take height in advance. The SoC trajectories
for the two controllers can be seen in Figure 8.11.
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Figure 8.11: SoC trajectories for the baseline controller and the simple controller
with SoC tuning of 1e8

The main conclusion which can be drawn from Figure 8.11 is that both controllers
are able to obey the emission free zone by draining the battery in EV mode but
only the baseline controller manages to achieve a terminal SoC value with almost
neglectible difference from the specified value at 50 %. This highlights one of the
main benefits with the baseline controller, and hence the coupled solution. By
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including the offline optimization, the predictive behavior of the controller is greatly
increased. This allows the baseline controller to plan for the emission free zone
in time by charging in excess before the emission free zone arrives. The simple
controller however, which only relies on a predictive behavior scaled by the fairly
short prediction horizon, does not notice the emission free zone in time and is hence
not able to increase the SoC trajectory in advance. Since the EV mode is forced
within the emission free zone, the battery is drained past the terminal SoC value
and thus the simple controller fails to fulfill the terminal SoC constraint.

8.2.6 Responding to driver requested torque
An overtake scenario was simulated on the test route to verify that the technical
implementations described in Section 6.3 can treat driver requested torque for such
scenario. The driver requested torque was set as Td = 300 Nm between d = 2−3 km
on the route in the simulation. The KTd cost was set to the rather high value of
1× 108 in order to make sure that it always has a higher cost than the SoC error
cost. By doing so, the tracking of the driver requested torque always has priority
over the SoC tracking. This ensures that the driver receives the requested torque in
all situations. The SoC error and fuel costs were kept the same as for the previous
runs. The simulation result can be seen in Figure 8.12 and 8.13.
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Figure 8.12: Torque inputs of simulation with driver requested torque. Red =
EV, Green = Serial, Blue = Parallel

According to the results of the baseline simulation, the EV mode is solely utilized
during the first 400 s of the route. However, the simulated overtake scenario includes
all three driving modes within the same time segment due to the applied driver
requested torque. The request is firstly satisfied by P2 in the serial mode. At
roughly 100 s into the simulation, the parallel mode takes over and satisfies the
driver requested torque for the remaining period of time with both P2 and the ICE
while also charging with P1. The switch from using serial to parallel mode during
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Figure 8.13: Actual and reference velocities with driver requested torque. Red =
EV, Green = Serial, Blue = Parallel

the driver torque request can be explained by P1 closing in on its power limit. P2
solely meets the requested torque in serial mode and the power needed is supplied by
a combination of the battery power and the generated power from P1. As the power
supply from P1 becomes saturated, the remaining part of the P2 power demand has
to be supplied by the battery. But since the battery has a power limit, the total
power cannot be delivered. Hence, a switch from the serial to the parallel mode is
necessary.

Figure 8.13 shows how the velocity deviates from the reference velocity during the
driver interaction. Note that the velocity does not rapidly decrease to the reference
value when the driver requested torque returns to zero. Instead, the velocity is above
the reference velocity for a fairly long period of time. The initial velocity reduction
comes from regenerative braking which charges the battery. The regenerative brak-
ing is however limited since the controller wants the SoC to track its reference and
not be neither above nor below the reference. The cost of the SoC error is now
higher than the cost of velocity error, and since no mechanical brake is involved in
the model according to the limitations of this project, the vehicle must operate at a
velocity higher than the reference.
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9
Conclusion

This chapter draws conclusions based on the presented and discussed results in the
previous chapter. The conclusions are drawn by answering the formulated research
question and concludes the findings in relation to the stated project aim.

According to the aim of this thesis, an online NMPC controller was developed that
manages the energy usage and velocity of the hybrid vehicle while tracking offline
optimized SoC and velocity references generated by DP. In further accordance to
the stated aim, the project has evaluated whether or not the offline optimization
contributes to the performance of the solution when compared to solely using the
online controller by considering fuel consumption and drivability metrics.

Simulation results show that the coupled solution does not produce better figures
on fuel consumption than a standalone ‘simple’ online controller, however some
improvements regarding drivability can be seen. Furthermore, simulations with no
emission zones show that the coupled solution is capable of fulfilling such zones while
also satisfying the control objective. The ’simple’ online controller however showed
the capability of complying with such zones but failed to meet the terminal SoC
constraint due to its poor planning capabilities. Despite the lack of improvement in
fuel consumption, we believe that the coupled solution should not be rejected as a
promising solution. The simple offline optimization implemented in this thesis might
just be too simple in order to contribute to energy optimization and may benefit
a lot from using a more detailed dynamical model of the powertrain. It is further
concluded that the coupled solution is fully functional where the online component
is able to act on the offline optimized references with the additional functionality of
acting on driver requested torque.

In Chapter 1 the main research question was formulated along with three research
sub questions. The idea is that by assembling the answers to the sub questions, the
main research question can be answered.
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How can NMPC be implemented to fit the purposes of hybrid powertrain optimal
control?

NMPC can successfully be implemented by using a switched system methodology.
A hybrid powertrain involves discrete elements in the dynamics which brings discon-
tinuous behavior. By applying the switched system approach, the discrete elements
can be isolated and treated by switching logic, leaving only continuous dynamics
within the models accessed by the NMPCs. With only continuous dynamics and
the established state equations, objective function and constraints, NMPC proves
to be viable for controlling the system.

How can the control solution be adapted to regard driver needs in terms of acting on
driver requested torque?

By monitoring for pedal changes, the online controller can switch from tracking
velocity to instead track the desired torque from the driver. Furthermore, drivability
is considered in multiple ways, as described in Section 6.5, which also leads to the
third research sub question below.

How does the choice of horizon lengths influence the overall behavior of the coupled
solution in terms of driveability and fuel consumption?

As seen in the results, a short election period and thus horizon length result in
worse drivability due to an increased number of mode switches. However, the results
indicate a very weak connection between fuel consumption and length of election
period. This would probably change by modeling the dynamic components in more
detail, such as the disconnect element DE, gear changes and the ICE. These are
situations where mode switching losses can be found.

Both drivability and fuel consumption is heavily reliant upon the tuning of the cost
function, as is normal in MPC theory. A cost on ∆ω2 was necessary in order to
remove erratic behavior. Furthermore, the fuel consumption is heavily dependent
on how well the controller should track the references. By allowing the controller
to deviate more from the references, the controller can take even more efficient
decisions, which can result in a lower fuel consumption. However, by doing so
exposes the risk of the vehicle not ending up on the desired terminal SoC or that
the travel time is increased since it does not follow the velocity reference strict
enough.
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Main Research Question What are the strengths and weaknesses of coupling an
offline optimization with an online NMPC for hybrid powertrain control in terms of
fuel consumption and driveability, compared to using a standalone online NMPC?

By compiling the answers of the sub research questions and regarding the presented
results, the conclusion can be drawn that the developed solution in its current state
performs equally well as the standalone online NMPC in terms of fuel consumption
and slightly better in terms of drivability. However, the coupled solution revealed
a major strength which a standalone NMPC does not provide. The references in
the coupled solution are generated based on knowledge from the full route. This
allows for greater adaptability where preferences such as terminal SoC value can
be regarded and can be enforced to be reached due to the references. This cannot
be guaranteed for a standalone online controller which solely relies on a predictive
ability scaled by a restricted prediction horizon due to complexity limitations.

Furthermore, with references based on full route knowledge, the most appropriate
driving mode can be accessed by the coupled solution at the right time. For in-
stance, with an offline optimized SoC reference, regenerative braking segments can
always be utilized since they have been regarded by C1 already at the start of the
route. Hence the references formulated by C1 makes sure that the battery is not
fully charged at the time of a regenerative braking scenario. Without the offline
optimization, such segments can be missed due to lack of planning. The simulation
results with a no emission zone further highlighted the strength which the excel-
lent planning capability of the coupled solution brings compared to the standalone
online controller. From the simulation results it was noted that the coupled solu-
tion obeyed the emission free zone while fulfilling the control objective, which the
standalone online controller failed at. These results show that the references greatly
influences the behavior of the online controller in the coupled solution. This opens
the possibility to make the coupled solution even more sophisticated which is an ad-
ditional strength of the developed solution. For instance, the SoC optimization can
be adjusted to encourage charging with serial or parallel mode at high speeds when
the engine sound is less prominent. With such SoC reference, the EV mode can
than be utilized to a greater extent during city driving even if the driving segment
allows for emissions.

The results of this thesis does not succeed in highlighting any benefits of includ-
ing velocity as an optimization variable. The cause of this is considered to be the
very simple implementation of C1. The belief is that by including a more detailed
dynamical model of the powertrain in C1, more relevant velocity references for the
particular powertrain can be produced which would have a positive impact on the
fuel economy. This belief is based on previous research within predictive cruise con-
trol, where for example E. Pearson [20] noted an improvement in fuel consumption
for a route with an offline optimized velocity reference.

It should also be highlighted that the coupled solution performs well despite the great
simplifications of the powertrain model it uses. Hence, the coupled solution and the
concept of utilizing an offline-online control architecture is deemed promising. We
therefore suggest further development and testing on C1 with the belief that it can
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greatly outperform a standalone NMPC in its final form.

The simulation results further shows that the coupled solution can recover reference
tracking after being exposed to unexpected stops and driver interaction. However
if such disturbances becomes too challenging, a re-optimization of the reference
might be needed which is a disadvantage of the coupled solution since the offline
optimization is a time consuming process.
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Future work

Based on the presented results, discussions and drawn conclusions, the developed
energy manager can be further improved by performing a number of tasks. This
chapter lists the tasks in an order which regards the value for effort. Meaning that
the most value for effort would be achieved by performing the first task in the list.

• Include a detailed dynamical model of the powertrain in C1.

– Based on the results, it is difficult to improve on the C1 solution in
the C2 controller. Hence, a more complex C1 model and optimization is
necessary. Particularly, implementing parallel mode would be highly ben-
eficial in the C1 since the C2 controller utilizes that mode a considerable
amount.

• Spend more effort on tuning. There are many different parameters to tune and
their relationship is complicated, which makes the tuning a time consuming
but important task since it was proven that the tuning has a strong impact
on the control behavior.

• Use more advanced battery/SoC model. The current model is most likely too
simple to be applicable to a real system.

– Efficiency of the battery is assumed to be 100 %. However, in reality this
efficiency is usually in the range of 70-95 % and is also a function of the
power charge/drain power and the SoC. By modeling this behavior, a soft
limit on the power output of the battery is put in place, which a more
intelligent C1 controller could exploit.

– Tied together with the above point, the current battery model assumes
that the battery temperature is constant and thus the controller can
demand a high load for an indefinite time. This is not the case since a
higher power demand results in a less efficient chemical process which
can quickly cause the temperature to rise in the battery, which can have
catastrophic consequences if not adequately cooled. By including a model
of the battery temperature, a cost in the NMPC cost function could be
put in place to prevent high temperatures.

– The lifetime of the battery is not taken into account at all with the current
model. This is a parameter of high importance, and should be a priority
in the optimization. By reducing the depth of discharge, and keeping the
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battery temperature cool, the lifetime of the battery can be significantly
increased.

• Formulate a sophisticated SoC cost function which differentiates between reach-
ing SoC values above and below the SoC reference.

– As presented in 8.2.6, a flaw in the current SoC cost function can be
seen. The controller fails to utilize the regenerative braking ability since
the SoC will diverge from the reference SoC if it does that, instead it
maintains the vehicle at a high speed in order to bleed off the excessive
energy. Obviously, a more optimal solution would be to utilize the regen-
erative braking all the way down to the reference velocity and then utilize
the stored energy later. In order to achieve this, the SoC cost function
can be made more complex to allow for less strict reference tracking above
the SoC reference compared to below.

• Add a transport delay for the plant input signals in the simulation in order to
simulate the computational time of the Controller. This was not investigated in
this project since the online computational time was not of focus. However, the
delay could potentially have significant impact on the stability and drivability
of the solution.

• Implement functionality to re-optimize when unexpected stops makes recovery
of reference tracking impossible.

– Due to the inclusion of a detailed dynamical model of the powertrain in
the online component of the energy manager, the presented results show
that the solution recovers well from unexpected stops. However, if the
length of unexpected stop becomes too large in relation to the length of
the route, cases may appear where recovery is impossible. In such situa-
tion, it is necessary to allow for C1 to re-optimize the remaining segment
of the route as an attempt to enhance the behavior of the controller.

• Implement the ability for C1 to detect segments of city driving in the route,
in which it can prioritize EV mode in order to be more prepared for the start-
stop behavior in city driving, as well as reduce emissions where it matters the
most.

• Implement the ability for C1 to generate an additional reference which states
a suggested election period length for driving route.

• Mitigate the issue with the SoC often being slightly below the reference. This
is undesirable since generally the SoC should be as high as possible for the
solution to be robust to disturbances and unexpected events.
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