
Development and implementation of
RecipeKiosk system.
Commercial application using open-source and free
components.

Master of Science Thesis in the Programme Software Engineering and
Technology

Elvira Kim
Evgeniy Kim

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Göteborg, Sweden, August 2009

The Author grants to Chalmers University of Technology and University of
Gothenburg the non-exclusive right to publish the Work electronically and in a
non-commercial purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the
Work does not contain text, pictures or other material that violates copyright law.
The Author shall, when transferring the rights of the Work to a third party (for
example a publisher or a company), acknowledge the third party about this
agreement. If the Author has signed a copyright agreement with a third party
regarding the Work, the Author warrants hereby that he/she has obtained any
necessary permission from this third party to let Chalmers University of
Technology and University of Gothenburg store the Work electronically and make
it accessible on the Internet.

Development and implementation of RecipeKiosk system.
Commercial application using open-source and free components.

Elvira Kim
Evgeniy Kim

© Elvira Kim, August 2009.
© Evgeniy Kim, August 2009.

Examiner: Joachim von Hacht

Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden September 2008

1

Abstract

This report contains description of the design and developemnt process of the
RecipeKiosk software system and the choice of software components used for the
system realization. The development of the system was initiated by request of
JuzySystems AB.

The developed system is an interactive kiosk implemented using web-based
client-server architecture and consists of hardware and software components.

The first part of the report is dedicated to the description of software analysis and
design and explains requirements specification, use-cases, system architecture and
user interface prototype.

For the implementation of system were used only free and open-source software
components and the second part of this report describes the choice of components
used. Among these components are Google Web Toolkit (GWT), Java Enterprise
platform (JEE 5), GlassFish application server, PostgreSQL database management
system and two distributives of Linux operating system – Puppy Linux and
Ubuntu Server Edition

2

Foreword

This report describes results gained during the work on the thesis in Software
Engineering at the Department of Computer Science and Engineering, Chalmers
University of Technology. The thesis project has addressed needs of Juzy Systems
AB. The project was realized under guidance and with great help of two
supervisors: Joachim von Hacht from Computer Science and Engineering
department at Chalmers University and Alexander G. Haaland from Juzy System
AB. Joachim von Hacht has served as an examiner of thesis as well.

This thesis job has been carried out by two master students of Chalmers
University of Technology: Elvira Kim and Evgeniy Kim.

3

Table of Contents

Abstract...2

Foreword...3

Introduction..5

Background...5

Purpose..7

Design..8

Requirements..8
Hardware requirements..8
Functional requirements..9
Non-functional requrements..10

Use cases...11

System architecture and design...15
Logical view..16
Deployment view...18
Data view...25

Kiosk user interface prototype..27

Software components and tools...33

Programming language and frameworks..34
Google Web Toolkit - client side framework...34
Programming language..37
Java Enterprise Edition 5 – server-side framework.....................................37

Application server - GlassFish..39

Database system - PostgreSQL...40

Operating system...41
Client-side operating system - Puppy Linux..41
Server-side operating system - Ubuntu Server Edition................................42

Web browser - Firefox..43

Conclusion...44

References...45

4

Introduction

Background

Interactive or electronic kiosk is a combination of hardware and software
components used for providing some services such as access to information,
making payments, etc. Usually it is an ordinary computer terminal with a display
as output device and general input devices - mouse or trackball and keyboard.
Also it can have some additional input/output means, such as printer, magnetic
cards or bar codes reader, touchscreen and other. Terminal can be connected to a
network for retrieving information or can work in off-line mode with all data
stored locally.

Today electronic kiosks are used for many purposes. For example, it can be a self-
service system in a library or an airport, terminals in big stores for checking
products' prices and locations or informational kiosk in a museums, where visitors
can get information about current exhibitions. There are many purposes and
applications of kiosks, but several things are common for the most of them. First
of all, kiosks are usually spread geographically – in different parts of one building
or around the city or even country. Second, target users of kiosks are ordinary
people probably with low level of computer skills or without any skills at all, that
is why kiosks have to be easy for use, user-friendly and still be secure. They
should limit an access to underlying system software and prevent improper use.
And third, in the most cases information or service provided by kiosks is shared
amongst many of them simultaneously and should be consistent and actual – they
must have some means of communication between each other or with some
central data storages.

While being well-known and widely used systems, in general electronic kiosks are
still custom-made and complex software. Particular system supposed to be
developed during this project is an ordinary specimen of electronic kiosks family.
The project was initiated by JuzySystems AB and the idea of the system is to
provide service for searching recipes and receiving news and information from
stores. Kiosk are supposed to be used in a crowded public food products selling
places, such as supermarkets. It should be easy to use, install and maintain.

What makes the development task more special is that the project has very limited
budget. Therefore all software building blocks of the system should be free or
open-source. It creates additional set of problems besides the actual system design
and implementation. There is a problem of choice within numerous components
and tools existing, but the chosen components should not be only applicable to the
project itself – they must have licenses appropriate for using in commercial
purposes.

Starting from this point and below the term 'kiosk' in content of this project will
be used for referring to the particular system being developed during project.

5

'Terminal' will be used for referring to the hardware part of system, while
'software system' or 'application' will designate the software part.

6

Purpose

Main purpose of this thesis project is to develop a fully functional commercial
system for searching recipes and accesing store information.

To accomplish this task the following steps will be done:

• analyze provided requirements;

• produce a high-level architecture of system and high-level choice of
general components;

• investigate existing components and tools that can be used for
implementation of each system's component and choose most appropriate
from them;

• develop software systems using chosen components;

• evaluate achieved result.

The following restrictions are put on implementation of the system:

• only free and open-source software components and tools should be used.

The process of design and implemntation will be described in this report.
Emphasis will be put on general and high-level issues and solutions. Also
arguementation for the choice of software components is important. But there is
no opportunity to describe the whole development process and details such as
development methodology, all low-level design decisions or software testing
methods.

7

Design

Design part of this report describes the analysis of requirements to the system,
use-cases of system, software architecture and user interface.

Requirements

The kiosk system is a combination of specific software and hardware components
and its purpose is to provide service for retrieving cooking recipes information
from database, displaying recipes on screen and possibility to print them out.
Supplementary system function is to display additional information, such as news
about system, and play back an audio message with description of kiosk purpose.

There are two stakeholders for the project and the set of requirements was elicited
during informal meetings between development team and Juzy Systems AB CEO.
All requirements are divided into the three main categories: hardware constraints,
functional requirements and other non-functional requirements. Each group is
described below in more details.

Hardware requirements

• x86-based personal computer with touchscreen and without any other
input devices in operational mode. Having only one input device - touch-
screen - will simplify task of preventing user from unintended actions
because user will not be able to use context menus or special key
combinations. On the other hand this could make an interaction with the
system easier for end-user – he/she will have all the controls directly on
the screen and system developers will be forced to make the interaction
logic simple and consistent. Computer must have 512-1024 MB of RAM
memory, which should be enough for use by the most of modern operating
systems and applications. For the permanent storage has to be used
compact flash hard disk. Flash disks have big advantage compared to the
traditional magnetic hard disk drives – they have no moving parts and
noise. But the flash technolgy has disadvantage to deal with –
expensiveness, that is why in case of the kiosk system hard disk has
limited storage capacity of 1GB.

• Thermal printer for ability to print recipes and other information. Printer
has to be compact, reliable, robust and easy for maintenance. It should
allow to print recipes of any length and paper usage should be economical
(possibly automatic paper cut after printing).

8

• Wireless modem and Ethernet network card can be used as an option for
communication with outer world. The kiosk terminal can be placed in
many spots with lack of necessary network infrastructure – cables,
network switches, free telephone lines, etc., that is why mobile broadband
connection is a supplementary option for the network communication. It
can simplify installation of the kiosk. In case, if place of installation is not
covered by mobile network, traditional wired connection can be used.

Functional requirements

• The user of developed system has two options for search for recipes: by
recipe's title or by its categories, such as geographical origin, type of
course or main ingredients. Both search options should be easy to
understand and use – users should not be forced to execute complex
sequences of actions to get result.

• When the search is done, the user gets resulting list of recipes and then he
can choose any of the recipes from the list and browse it with more details
on the screen.

• Recipes will contain following basic parts that should be displayed:
recipe's title, ingredients, description and photo. During browsing through
recipe user should have possibility to return back to search result.

• If the user wants he can print recipe using thermal printer connected to
terminal. Only textual parts of recipe – title, ingredients and description –
should be printed.

• When system is not used by anyone, recipes of the week should be
displayed: one of three random or manually assigned recipes, which
should remain the same during week. The user can choose any of week
recipes for browsing with more details at any moment of time.

• Periodically news about place where kiosk situated, information about
system updates, new functionality or any other kind of news will be posted
and the user should have ability to browse this information.

• User interface should be appealing, consistent and simple for use, because
the most of the kiosk users will be unexperienced computer users. The
most of the actions should be possible to execute using 1-2 'touches'.

• The user should be prevented from accessing any kiosk functionality
except one described in this specification, for examples users can't launch
any other applications or have access to files on the terminal.

• The application will also use some audio messages to attract people to use
it and help them to understand purpose of kiosk. This message should be
played periodically when no one is using the system.

• Many terminals can be used simultaneously from different places and they
should operate on the same recipes set.

9

• Statistical data of how many people have used the terminal and what
recipes they have looked through and printed must be collected. To count
the number of unique users the system should use timeout – if no actions
were executed during some period of time since last action then system
considers new action executed by new user.

• There should be additional utility for administration purposes – adding,
editing and deleting recipes and news, viewing statistical data;

• The utility for administration use should be protected from unauthorized
access by means of user-names and passwords.

Non-functional requrements

• The project has low budget and no additional cost should be paid for any
used software;

• Because of teh low budget it also preferable that amount of the Internet
traffic should be kept as small as possible;

• The kiosk system will be commercial, so the project is not open-source
and the source code cannot be published;

• The kiosk system is the first project for the company, that is why there are
no legacy systems or components that must be used and application can be
developed using any programming languages, components and tools with
regards to other requirements and constraints.

The customer didn't put strict time constraints for the project implementation, but
roughly it was set to 6-8 month for the first working implementation.

Both the customer and the developers did not have any previous experience with a
electronic kiosk developments and the requirements specification is produced in
the general form with many necessary details left undiscovered. However during
the development process some of the requirements were refined especially
hardware configuration. And above is the final version of the customer
requirements was given.

10

Use cases

After the requirements were defined and analyzed it is possible to produce a more
formal specification. This specification is made in form of use-cases, which
describe who will use the system and how they will do it.

There will be two actors who will use the system.

• User is represented by any person, who employ system services through
the publicly available kiosk terminals.

• Administrator is an authorized person, who can control and manage the
system – add or edit recipes, check statistics, etc. He/she can do it using
any available computer.

In the current chapter the term 'database' is used. In the context of use-cases
database is a general abstract place where all persistent information is stored
(recipes, news, statistics journal, etc.) and concrete implementation of such
functionality is not significant at the moment.

Also in the use-case description the term 'statistics journal' is used. It means a
some subsystem of the kiosk application, which will allow to store and keep
different events occurred during system operation. The event will include at least
time and terminal of occurrence and type. This journal will be stored permanently
in the database.

User's use-cases

All the following use-cases are available for unauthorized access from any kiosk
terminal.

1.1 User registration. For possibility to calculate amount of users
utilized kiosk, every time new user touches screen "new user" event
should be stored in statistics journal. To distinguish users timeout
mechanism will be employed: system will have two states: active, when
someone uses it, and inactive, when timeout period has passed since last
user activity. Thus "new user" event is switch from inactive state to active.

1.2 Search recipe by title. User chooses option to search recipes by
title, then he types one or several words, which are used to search through
recipes' titles. Words are matched against recipe's title and in case if all
entered words have been matched recipe will be added to search result.
After search is done result is shown to user.

1.3 Search recipe by categories. User chooses option to search
recipes. Then he chooses set of recipe's categories. Example of categories
are recipe's main ingredient, geographical origin, etc. If recipe belongs to
all chosen categories it will be added to search result. After search is done
result is shown to user.

11

1.4 Browse search result. After one of search variants was chosen and
performed and result recipes collection is shown to user. Recipes should be
shown in short form for the sake of fitting more recipes on screen. User
interface will have usable means of navigating through resulting collection
in case of it contains too many recipes and cannot fit on screen. During
browsing through resulting collection user can choose any recipe to be
shown in full form.

1.5 Choose and browse recipe. When user is browsing recipes
retrieved after search, he can choose any recipe for full view. Full view
includes detailed ingredients and cooking description with full-size recipe
photo. Every time user chooses any of recipe to browse corresponding
event should be added to statistics journal. This event should also include
what recipe was browsed.

1.6 Choose and browse week recipe. When user starts using kiosk he
will see one of three week recipes assigned manually or randomly for
current week. Recipe will be shown in full view (see Use-case 1.5) and is
chosen automatically from current three week recipes, but user will have
possibility to choose any of week recipes to be shown in full view.
Browsing of week recipes should be added to statistical journal in a way
similar to described in Use-case 1.5.

1.7 Print recipe. During browsing chosen recipe in full view (both
after search or one of week recipes) user can print it out using thermal
printer connected to terminal. Information to be printed is full recipe
description except recipe photo. Printing of recipe should be recorded in
statistics journal and record should contain what recipe was printed.

1.8 Browse news. At any moment of time user can browse information
about system updates, place where terminal located, etc. Each piece of
such information, news for simplicity, will have along with content start
and end dates to be displayed. Also news will be assigned to one or more
terminals, on which they should be shown. Every time when user chooses
news to be displayed corresponding event has to be written to statistics
journal.

Administrator's use-cases

As it was stated above administrator can use any ordinary computer for accessing
administration functionality, but this functionality should be protected from
unauthorized access.

2.1. Login to administration service. Every time administrator wants
to use service he needs to provide authentication information in form of
user name and password. But he should not login for every action he wants
to do. Once logged in his session should last until administrator logs out or
he was inactive for defined amount of time

2.2. Browse list of recipes. Administrator can get list of all recipes
stored in database with possibility to filter out list by title or description

12

content and categories. Recipes list will contain only recipe title to be able
to show more recipes on screen.

2.3. Add recipe to database. Administrator can add new recipes to
database at any moment. For adding a new recipe he has to enter its title,
description, choose recipe's photo and select appropriate categories.

2.4. Edit recipe in database. During browsing recipes list (Use-case
2.2) administrator can choose any recipe for editing it. When he do it
recipe will be shown in full view – title, description, categories and photo,
with possibility to edit update any of these components. When updates are
made administrator can save them in database.

2.5. Remove recipe from database. When administrator look through
recipes list (Use-case 2.2) he can choose any of them for deletion. But
before recipe will be deleted from database administrator must confirm it
once more. After confirmation recipe will be erased from database
permanently.

2.6. Browse list of news. Administrator can get list of all news stored
currently in database. News list will contain news title and description,
time period, when news will be displayed, and terminals, where news will
be shown.

2.7. Add news to database. Administrator can add news to database at
any moment. For adding a news he has to enter its title, description,
choose period, when it should be displayed, and select appropriate
terminals, where news will be shown.

2.8. Edit news in database. During browsing news list (Use-case 2.6)
administrator can choose any news and edit it. When he do it all parts of
news will be shown – title, description, terminals and time period, with
possibility to edit update any of these components. When updates are
made administrator can save them in database.

2.9. Remove news from database. When administrator look through
news list (Use-case 2.6) he can choose any of them for deletion. But
before news will be deleted from database administrator must confirm it
once more. After confirmation news will be erased from database
permanently.

2.10. Browse list of terminals. Administrator can browse list of
terminals registered to the system. For each terminal there should be
information if terminal is working currently or not.

2.11. Browse terminal's statistics. While browsing list of terminal
administrator can choose any terminal to browse detailed information
about. This information can include place where terminal is located and
statistical data of terminal's use. Administrator can choose period for
which statistics should be calculated. Statistical data will include how
many people used terminal, what recipes where browsed and what recipes
were printed.

13

Following is use-case diagram drawn from use-cases described above:

14

Image 1: Use-case diagram

System architecture and design

System under development is not trivial and cannot be implemented directly after
requirements elicitation. Preliminary design phase is required to make
development process controllable and to achieve desired result.

After design phase a system architecture can be produced. To describe the system
architecture in more consistent way several representations from different points
of view are used. These representations are also called views.

Description of developed system's architecture contains following views:

• Logical view. This view is a description of high-level components
responsible for required functionality and associations between these
components.

• Deployment view. This view shows disposition of hardware components
and mapping of software components onto them.

• Data view. This view describes structure of data entities that will be used
by system and stored in database.

15

Logical view

Logical view on the system architecture focuses on required functionality.

This view is logical decomposition of system into components with regards of
functional requirements which will be satisfied by every component. Also
relationship between these components are shown.

Following diagram represents logical view on architecture:

16

Image 2: Logical view

Structure above closely resembles model-view-controller (MVC) architectural
pattern.

Model part of pattern contains three components: RecipeService,
TerminalStatisticsService and NewsService. This part is responsible for
management data retrieval and modification activities.

View part is represented by RecipeUI, NewsUI, AdministratorUI and PrintUtility.
These blocks provide data presentation functionality both on screen and on
printer. RecipeUI renders interfaces for recipe search, search results and recipes
themselves, but it is not providing means for recipe management: addition, update
or deletion. Recipe management interfaces are included in AdministratorUI. Also
AdministratorUI is responsible for news management user interface and
displaying statistical data. NewsUI is responsible for displaying news and
navigating through them.

Two intermediate components – KioskController and AdministratorController –
manage data flows between model and view parts. They are supposed to handle
user inputs and send appropriate message to model. After responses from model
received controllers update view depending on information contained in them.
Additional important task of AdministratorController is execute authentication
and authorization functionality before administrator can use rest of its services.

Recipe, LogEvent, Terminal and News components on the top of diagram
correspond to data entities used for informational exchange between view,
controller and model and they are depicted with more details later on in data view.

Note, despite of fact that class diagram is used for representing logical view in
reality components shown on it can be implemented using several programming
language classes. Also for the sake of keeping diagram simple only large
significant components are depicted.

17

Deployment view

Having demand that all terminals will share same recipe data most obvious
deployment architecture is client-server architecture. Client-side part of system, or
client for shortening, is point of access to the system by users and administrator.
Server-side part, or just server, must keep shared information in consistent way
and provide access to it by clients.

To store and record recipes, news and statistics information relational database
system has to be used and server-side will at least include database system.

Client-server architecture can be realized in many different ways. One of
important issues is how much functionality client will have and which way it will
be implemented. There are many ways of how this issue can be solved. It could be
full-sized desktop application (thick client) that connects directly to database for
retrieving raw information and then rest of data processing is done on client – data
transformation, user interface rendering, etc. Serious disadvantage of this
approach is updates of client-side application part. If system patches will be
issued or new functionality will be added to application, then new version of
client side should be installed on every terminal. It has be done in automatic mode
as terminals will be located in different places and with thick client approach it
would be harder to implement these unattended updates.

Second option is to have most of the functionality stored or executed on server-
side. Client-side in this case will be responsible only for rendering user interface,
capturing input message and communicating with server – thin client. This
approach is usually based on using web browser as container for thin client. Thin
client architecture allows to avoid software installation and all updates will
automatically be applied on every client with reloading browser's content. Having
this advantage web-based thin clients can at the same time bring desktop
application alike user interface experience and have quite complex calculations
and data processing being executed on client-side. Additional big advantage of
web-based architecture is cross-platform portability. Most of web browsers have
been ported on many platforms, they are supposed to show similar result after
processing responses from web server and they have additional plug-ins for
handling different type of media – video, audio, flash. As disadvantages of web-
based approach some issues can be mentioned, such as non-trivial ways of
preventing users from access to operating system tool and utilities or
implementing low-level client functionality, such as printing.

In case of developed system web-based architecture is chosen. Reasons behind
this choice are:

• ease of system updates;

• simplification of user interface design and modification;

• flexibility based on rich choice of available components, that can be used
for realization;

• platform-independence based on fact, that most of available components

18

either have versions for many different platforms or have analogues on
different platforms.

Physical architecture

Simple diagram for physical view of system architecture looks following way:

Scheme above is classical client-server architecture. Client is a personal computer
equipped with touch screen as it stated in requirements. Besides all hardware
components of terminal (except printer and modem) are contained inside touch
screen's body (all-in-one computer), which makes client more protected and
appealing and eases hardware deployment.

Client has a thermal printer connected to it. Thermal printing is chosen for
Thermal printer is chosen due its faster and quieter printing comparing to dot-
matrix, laser and ink printers. Thermal printing is also more economical than other
technologies since only paper is consumed. Another advantage is rapid and ease
paper refill. And though thermal paper is more expensive this printing is most
attractive for use on developed kiosk system.

19

Image 3: Web-based system architecture (hardware components)

For connection to server client terminal can use two options: Ethernet network
card or wireless broadband modem. Having two options provides flexibility to
developed system and allows to choose most appropriate solution for particular
place of kiosk installation.

First connection option assumes there exists device which provides access to
public network. Terminal is connected to this device using Ethernet local network
and it can be cable modem, switch or router used as this device.

For second option is chosen mobile broadband modem. Modem uses mobile
network as communication medium and works similar to mobile phones. To have
appropriate data exchange rate both modem and mobile network should support
HSDPA (High-Speed Downlink Packet Access) protocol. HSDPA allows to have
high data transfer rate more than 1 Mbit/sec, which is comparable with traditional
cable technologies. Modem is connected to terminal using USB port.

In both cases connection should have at least 1 Mbit/sec bandwidth for
comfortable kiosk usage. This concerned with big amount of images for recipes to
be fetched from server.

Server side differs significantly from client side. To be able to service many
clients simultaneously server has to have more computing power, memory and
better network connection. Additional important issue is reliability of server
hardware components – server failure will lead to all kiosk stop function. As
solution for server-side hardware configuration and network connection it is
decided to use external service of server hosting. This solution can significantly
decrease amount of resources required on initial stage of project and provides
required level of reliability. Moreover instead of having dedicated hardware server
virtual server hosting is chosen. Having virtual server allows to have less
powerful server on initial phase of testing with few clients and then to scale server
performance with less expenses on later stages, when number of client will grow.

Administrator's terminal can be any personal computer connected to Internet not
necessarily dedicated for developed system administration. It has no specific
hardware requirements and has only to be able run operating system with
graphical user interface and web browser. There are also no specific requirements
on network connection means and bandwidth, only measure is personal perception
of comfortable application use.

Because end-point devices are spread geographically all data communication
between server, kiosk terminals and administrator computer is supposed to run
over Internet and no additional network infrastructure or technologies are required
(dedicated lines, virtual private networks etc.).

Functional blocks of developed software system described in logical view of
architecture can be distributed different ways along hardware components of web-
based system. Some functionality, by intuition, supposed to be placed on the
server-side, for example, data access layer. But most components and
functionality can be placed at both server- and client-side or even one part of
logical component can run on server while second be hosted on client.

20

Software-to-hardware components mapping

Following diagram depicts mapping between software and hardware components
of the system:

Three main hardware parts are server, kiosk terminal and administrator's
computer. All three of them will host some operating. Administrator and kiosk
terminals must have an operating systems with graphical user interface as all user
interaction with system will be done through application interface in web browser,
which will have many images and graphical control elements (buttons etc.).

21

Image 4: Deployment diagram

Server does not require graphical interface, it is even more preferable not to have
one on server, because graphical interface will consume processor time and both
operational and permanent memory. Since server is virtual machine hosted on
external side without direct access to it all server operating system administration
will be carried out in command-line terminal remotely through SSH (secure shell)
over VPN (virtual private network) connection to hosting company's network.

Two other software components required on server are database server software
and web or application server. They both will be run on the same machine to
simplify management and due economical reason, as only one virtual server will
be hosted initially. In case of need they can be separated later or even several
instances of application server can be run for load balancing.

Database server will keep all permanent information supposed to be shared among
kiosk terminals and other auxiliary data. Besides textual information, numbers and
dates database will store recipes photos. Though many web applications keep
images as separate files on the file-system, because it simplifies image updates
and access, in case of developed system it will be rare case when recipe photo
should be changed and having recipes photos stored in database will ease creating
data backups and restoring data in case of failure.

Application or web server software component is required because client part will
be run in web browser and can't access database directly, in contrast to desktop
applications. Three logical components will be executed inside application server
– RecipeService, NewsService and TerminalStatisticsService, responsible for
retrieval and management data in database. Request to these service and
corresponding replies will be carried out over HTTP connection Application
server will process HTTP request arrived from client web browser and pass
control to appropriate logical component. Then generated responses will be
transmitted back to clients browser. Additional function of application server is to
keep shared copy of client part of system. This copy will be transferred on kiosk
terminal after initial request from client web browser. It is discussed in more
details below. when client part is described, and later in chapter about user
interface.

Configurations of kiosk terminals and administrator's point of management are
similar in terms of software components required. As it said previously both will
have operating systems run in graphical mode and also both requires web browser
for executing client part of the system. Only difference is in restrictions applied on
choice of operating system and browser. While kiosk terminals all will have same
operating system and web browser for simplification of their installation and
configuration and choice should be made in the beginning of system
implementation. Especially web browser should be defined in advance because
kiosk user interface supposed be quite specific and it will be harder to maintain its
cross-browser compatibility, which is not necessary as development team has
control over software configuration in contrast to common web application
environments, when client part can have different web browsers and operating
systems. Administrator's terminal will be standard personal computer and user
interface of administrator's client part is supposed to be more standard and
simpler, that is why it is not required to define exact operating system and web

22

browser in advance.

As it was said kiosk and administrators user interfaces will be hosted inside web
browser. Traditional dynamic web applications use HTML pages for providing
user interface and after each request from web browser server generates and sends
page in reply. This leads to page reload and round-trip delays visible to user.
Acceptable for most web-applications in case of developed kiosk terminal it can
distract users from using service.

There are number of technologies existing for providing desktop-alike behavior
web applications. Some of them require additional plug-ins or add-ons to web
browser (Microsoft Silverlight, Adobe Flash), while other can be employed
directly in browser (Ajax). Common bottom of all of them is that shared code for
user interface is stored on server and upon request transmitted to client side and
then is executed there.

To provide richer user interface and seamless navigation across application second
approach is chosen. It means that NewsUI, RecipeUI, AdministratorUI and
PrintUtility logical components will run on client side inside web browser. Along
with these components also controller part of described MVC architecture
described above will be executed on client side. Additional advantage of having
user interface functionality running on client is possibility to decrease amount of
data transferred between server and client.

As it was said above all code of RecipeService, component for recipe data
retrieval and management, will run inside application server. Searching through
set of all recipes is supposed to be done also on server side. But decision is made
to provide additional alternative approach, when part of this service's code will
run in web browser along with user interface and controller. Specifically search
methods can be transferred to client side as it shown on image below:

23

Image 5: Business logic separation

This approach has some advantages comparing to initial one. It assumes all
recipes, except their images, will be fetched once to client on application start.
Then different kind of search will be done on local copy of recipes. It can
significantly improve application responsiveness and decrease time of search by
eliminating data transfer delays upon each search. To have updated copy of
recipes application can be reloaded after given period of time, for example once in
a day, or new copy requested without reload or eve kiosk restarted.

Additional advantage of such approach is possibility to decrease amount of traffic
between server and clients. In case when several users will receive significant
amounts of recipes as search result sum of traffic can exceed total size of all
recipes.

Only issue for this approach is total size of all recipes. This will be calculated
during testing phase when appropriate amount of recipes will be added to
database. In case if size of recipes' data will be too large for keeping them all in
primary storage of kiosk terminal server-side search can be employed.

24

Data view

Data view represents architecture in terms of data used for informational exchange
between system components and which stored in database. Though logical view
already contains high-level data model, data view describes it in more detailed
way.

Below is shown ER diagram for data, which will be used in system:

25

Image 6: ER diagram for system database

Rectangular boxes on above diagram designate main data entities representing
concepts used by kiosk application. These entities can correspond to tables in
relational database and their meaning is straightforward. Worth to mention are
Category and CategoryValue entities. First one is used to depict groups of specific
recipe attributes, such as recipe origin, main ingredient, type of course, etc. While
second represents concrete values inside these groups, for example Sweden, China
for origin category, main course or desert for type of course category.

Box with double border, - Event - is a weak entity, which means its primary key
depends on primary keys of other entities it has relationships with.

Ovals connected to entities are attributes and they corresponds to data fields in
relational table. Attributes with underscored (both solid and dashed lines) labels
are primary keys or components of primary keys.

Rhombuses depict relationships between entities. Many-to-many relationships
having arrow-less lines on both sides need to have separate table in terms of
relational databases. While many-to-one relationships can be implemented by
having primary key of 'one' side be included in table created for 'many' side.

26

Kiosk user interface prototype

Following are blueprints of user interface for different states of the system and
they do not reflect many graphical details (images, font styles, colors) of final user
interface. As it was said above, developed web system will not use traditional
approach, when whole page is reloaded, and it means that prototypes below are
not designs of separate web pages, but rather screen-shots of user interface during
system usage and only some subset of interface elements are updated, added or
removed, while whole interface stays consistent and user gets seamless experience
of interface functioning.

Some elements of user interface are common and should be displayed regardless
of current state of application and only size, color or content of these elements
will change. One of such elements is tab bar on the bottom with two tab buttons –
'Recipes' and 'News'. User always see and use them only size tab button and size
of its title will change depending on which tab is active. Second element is label
on the top of screen which change content according to what part of user interface
is active now.

27

Image 7: Week recipes screen

First blueprint shown on Image 7 is initial page, which user sees when he starts
using kiosk.

User can see one of randomly chosen week recipe in full mode with full-size
photo and description. If recipe's description can't fit allocated area user can scroll
it down and then up again. Also user can choose another week recipe using
buttons on the left side of screen. This buttons are represented by thumbnail
picture of recipe's photo and its title.

Three buttons on the bottom used to switch between week recipes browsing and
two search options. When week recipes are browsed corresponding button is
marked by, for example, different color and/or font style and label on the top of
the screen displays appropriate information.

Additionally 'Print' button is displayed in right bottom corner, pressing on which
user can send currently displayed week recipe for printing.

When user press 'Search By Title' button he will be shown screen on Image 8.

On the top of the screen placed text box control for entering words supposed to be
used as search criteria. Because terminal does not have physical keyboard

28

Image 8: Search by title screen

attached virtual analog is displayed under text box. Virtual keyboard allows to
enter letters of Swedish alphabet and spaces and also to delete last entered
symbol. When user finishes entering search words he has to press 'Search' button
for launching search process. After search is done user automatically will be
shown search results screen described below or he has to be informed that no
recipes were found.

Similarly to week recipes screen on search interface user sees and can use three
buttons for switching between search alternatives and week recipes.

Next screen shown on Image 9 is displayed, when user press 'Search By
Categories' button. This screen allows to chooses one or several category values as
search criteria.

On the left of the screen user sees a panel with buttons corresponding to different
recipe categories that can be used for search. There can be two types of buttons
depending on how many values category has. When category has only one value,
for example, 'vegetarian' category, corresponding button behave as check-box
control. Pressing such button switches choice of corresponding category value in
search criteria and appearance of the button changes between two states.

29

Image 9: Search by categories screen

Second type of buttons on left panel are for categories with several values.
Pressing on such buttons will lead to second panel with buttons will appear on the
right side of the interface. Buttons on this right panel corresponds to values of
category chosen on the left panel. When user press one of the buttons related
value will be added to search criteria and panel will be automatically hidden.
There is also auxiliary button 'Clear' on the values panel, pressing on which
removes chosen value from search criteria. One important thing to note is that
although recipe can be assigned multiple values of same category, during search
user can use only one value of given category in search criteria, choosing another
value will automatically replace previous.

It is not shown the screen above, but when panel on the right side is hidden on its
place shown list of values currently chosen for search. Also category buttons on
the left panel will change their appearance depending on whether value of related
category is currently among search criteria or not.

When choice of category values is finished user has to use search button for
starting search. Analogously to searching by title, when search is finished user
interface automatically shows result or information that search was unsuccessful.

Three buttons on the bottom of the screen have same meaning and behavior as on
week recipe or search by title screens.

30

Image 10: Search result screen

As it is mentioned previously, after any of search alternatives is chosen and
executed and result is not empty system automatically displays it to the user and
blueprint on Image 10 depicts corresponding interface.

In the left-top corner under label with description of current screen user sees
number fetched.

In the middle of the screen four recipe buttons are shown. This buttons are made
similar way to week recipe buttons. They contain recipe's title and thumbnail of
photo, but in this case it is bigger than one on week recipe button.

Number of recipes in result in many cases will exceed four and user can use two
buttons on left and right side of screen for moving between recipes in result set.

When user press one recipes button application interface will look as on the Image
11.

This screen very similar to week recipes screen. It displays full description of
recipe with large photo. One difference of this screen from week recipes screen is
button below recipe photo. Pressing this button returns back screen with results of
last search made by user – screen from which user came to this recipe view
screen. Second obvious difference is absent of week recipe buttons on the right

31

Image 11: Recipe view screen

side.

'Print' button have same behavior as analogous button on week recipes screen.

All above described screens are displayed when 'Recipes' tab is chosen. Screen on
Image 12 appears when user chooses second tab – 'News'.

In the center of screen user sees panel with news titles and descriptions. If
concatenated news titles and descriptions cannot fit screen then this text is split to
pages and user can use two buttons on the left and right side to move between
available pages.

32

Image 12: News view screen

Software components and tools

Modern development of any kind of software systems usually involves using of
third-party components, instead of development of the whole system from scratch.
Using components allows to decrease amount of time and efforts put in the
development process. At the same time it helps to lessen number of errors and
bugs as long as stable and proven components are chosen.

The kiosk system is not exception from this general rule. The system does not
require any compatibility with obsolete software and choice of components and
technologies is free. Besides the obvious criteria of components' choice, such as
stability and functionality, developed system requires a components to be free or
open-source and have an appropriate license for use in commercial applications.
For example, components with only GPL license can not be used in the
application.

Second important criterion is the time required to become familiar with new
components or frameworks. Besides general programming skills project requires
advanced knowledge of web design and development of web applications.

An additional task is to build run-time environment for the application, which
includes server- and client-side operating systems, web-browser and other
auxiliary software.

33

Programming language and frameworks

Nowadays developer or development team can create web applications using wide
range of languages, frameworks and tools. Some technologies provide solutions
for both client- and server-side parts of application, other only for one of the parts.
Appropriate choice depends on application's purpose and requirements, skills and
knowledges possessed by development team.

One of the essential requirements of kiosk system is that the user interface has to
be hosted entirely on the client side and should not employ a full page reload
during interaction with user. This requirement narrows number of technologies
applicable for the application, but still many options exist. As the user interface is
most important part of the system at first client-side technologies will be
discussed.

Google Web Toolkit - client side framework

Considered kiosk system can be classified as rich Internet application (RIA) – a
web application with many desktop application features. For a development of
such applications one can use many approaches and frameworks. In general, they
can be divided in two categories: first requires external plug-in for web browser to
be able to run RIA; second category don't need external plug-ins and a web
application can run directly in almost any web browser.

Plugin based technologies

The first category includes several widely used technologies: Adobe Flash,
Microsoft Silverlight, Curl.

The most popular technology from is Adobe Flash platform. It allows to create
animated interactive applications with the possibility to play video and audio
content. It uses own programming language ActionScript for controlling
animations, handling user input etc. Adobe Flash is a proprietary technology and
while flash player plug-in is available for free, the original authoring tools are
quite expensive. Flash fits very good to requirements of developed application
regarding features of user interface. It is a cross-platform solution with plug-ins
for the most of web browsers and operating systems. But it has several
disadvantages that makes it a poor candidate for use. The first disadvantage is, as
it was said previously, is a high cost of the original authoring tool, though there
are free alternatives available. The second reason for making Flash unattractive is
zero-level knowledge and experience of development team in this technology.

Silverlight is another web framework. It is realised by Microsoft and its purpose is
similar to Adobe Flash. Silverlight provides solid foundation for the development

34

of user interfaces with rich multimedia features. Silverlight applications can be
written on any of .NET languages (languages supported by .NET: C#, Visual
Basic, C++, etc.) It is available for the most of web browsers, but has the original
support only for different versions of Microsoft Windows and Apple MacOS,
however a third-party runtime environment for Linux available. This approach has
same advantages and disadvantages for the system as Adobe Flash technology and
lack of experience and knowledge of it make Silverlight less attractive choice.

Curl is the least well-known from above frameworks. Curl is a programming
language designed for interactive web applications and targeted mainly for
business-to-business applications. It includes both features of the text markup and
scripting within one technology. For executing Curl applications on the client side
web browser plug-in is required. Curl is a proprietary framework freely available
for non-commercial use, but its commercial use for intranet applications should be
paid. Due to an absent of Curl knowledge and its commercial nature this
framework cannot be considered as an appropriate choice for the developed
system.

The all above frameworks share one important advantage and one disadvantage
for the developement of the kiosk system. The advantage is the existence of
development tools and the possibility to apply software engineering
methodologies, such as debugging, code reuse, design patterns, etc.. This is very
important for productive and controllable development process. Also these
technologies allow to avoid differences between browsers and operating systems
as plug-ins behave similar way across different platforms. However having a
plug-in turns out to be also a significant disadvantage for the system because it
adds complexity during deployment process and plug-ins can be a source of
additional errors and problems during development process.

Script based technologies.

The second category of frameworks based mainly on different sets of Java Script
libraries. There are many such frameworks and the most well-known are Dojo,
jQuery, Prototype & script.aculo.us, ExtJS. All of these libraries allows to use
Ajax – a set of web development technologies for building rich client-side front-
ends. Ajax usually includes an asynchronous data transmission between client-
side front-end and server back-end, complex visual elements and effects for user
interface, based on JavaScript and DOM, and an employment of XML for data
exchange. Ajax frameworks are independent of operating system used on client-
side and usually hide differences between web browsers. Some of these libraries
are free for usage in commercial applications, others require fee for it, while third
can be used only in open-source projects.

General problem with JavaScript libraries is a lack of good development tools
comparable with development environments for other popular languages, such
Java, C++ and other. Another problem is that JavaScript is additional language to
learn, because usually server back-end is written using other languages, though
server-side JavaScript solutions exist.

Google Web Toolkit

35

About three years ago Google released their own framework for web application
development – Google Web Toolkit (GWT). This framework combines best
features of both web application frameworks categories.

Web applications developed with GWT do not require any plug-ins for web
browser, because usually GWT applications consist of only JavaScript code,
HTML and CSS documents and other standard media files (however, any other
files can be included and used by application and then additional plug-ins might
be required). This feature make GWT more flexible and cross-platform similar to
the JavaScript frameworks. The big difference between GWT and many other
JavaScript frameworks is that the development process does not involve
JavaScript programming, though custom JavaScript code can be added to
application. Web applications are created using Java programming language. Then
Java source code is compiled to JavaScript by GWT compiler. Resulted code can
be optimized during compilation for size and speed and automatically versions for
different web browser are created.

Using Java as programming languages allows to use the most of the Java
development tools and to apply different software engineering techniques to make
development process more controllable and effective.

Additional plus of GWT is that it is licensed under Apache License 2.0. This
permissive license allows free usage of GWT for any kind of applications.

After studying and comparison of different web technologies and approaches
Google Web Toolkit was chosen for development of client-side of kiosk system.
The choice is based on several reasons:

• GWT uses Java as programming language and development team has solid
experience with this language in contrast to JavaScript;

• GWT can be freely used for development commercial application;

• GWT includes many customizable widgets for ease design of user
interface. It is also easy to create own user interface elements based on
standard GWT widgets thorough inheritance or composition;

• GWT allows data transfer between client and server in form of Java
objects;

• despite of fact that GWT uses Java for development it easily allows to use
HTML and CSS for user interface design;

• web applications developed using GWT can be executed on most of
popular browser without additional plug-ins and on all operating systems,
where compatible browsers can run.

On the moment of development start Google Web Toolkit 1.5 was latest release,
but during development it was upgraded to version 1.6.

36

Programming language

At the moment when GWT was picked as the client-side framework, Java was
chosen as one of the languages. For server-side part one or several other
languages still can be used. But having one language during development process
makes phases of implementation and testing much easier. That is why
employment of any other programming languages should be avoided, except
possibly small code fragments on JavaScript.

Due to fact that the kiosk system is web application and client side will run in web
browser also HTML and CSS will be used during interface design.

Java Enterprise Edition 5 – server-side framework

The number of technologies for server-side programming existing nowadays is
comparable or even exceeds the number of client-sides frameworks. They can be
categorized by the language or technology lying on the bottom - PHP, ASP.NET,
Java, Python, Perl and many others. Additionally for every category might exist
many frameworks or approaches how basic technology can be applied.

The choice of server-side technology in the case of developed system is narrowed
by having Java programming language picked for development, but the choice is
still wide. The most of Java-based server technologies uses parts of Java
Enterprise platform and especially Java Servlet API as common basis. Among
these technologies the most popular are JavaServer Faces, Spring, Apache Struts,
JBoss Seam. All these technologies includes solutions for both the server logic
programming and the user interface producing.

After Google Web Toolkit was chosen as the framework for user interface the
kiosk system requires only instruments for server side part. This part does not
contain any complex logic and does not require a communication with external
services, except database connection and client request handling, that is why Java
Enterprise by itself will be enough for the implementation of server-side
functionality. Also Java Enterprise is a standard that is why there are many
implementations of its specifications and many application servers support it,
which provides flexibility and possibility to change some components without
rewriting code.

Java Enterprise Edition 5 contains many components useful for wide range of
Internet applications: Enterprise JavaBeans 3.0, Java Servlets 2.5, JavaServer
Faces 1.2, JavaServer Pages 2.1, Java Persistence API, Web Services APIs and
other.

The most interesting for developed system are:

• Java Servlet and Filter API, for handling client requests;

• Java Persistence API, for database information retrieval and management;

• Enterprise Java Beans for separating business logic.

37

Java Persistence API (JPA) specifies object-oriented way for database access and
requires one of object-relational mapping (ORM) frameworks to be used. ORM
frameworks hides inconsistent between data representation in relational form in
databases and object-orient form in programming language. There are several
ORM frameworks support implementation of JPA specifications. Among them are
TopLink, EclipseLink and Hibernate. Hibernate was chosen during
implementation as ORM framework due large community and ability to handle
large objects from PostgreSQL database system.

38

Application server - GlassFish

Application server is software product required to for execution of business logic
components of application. In multi-tier architecture it is usually placed between
web server, which receives HTTP requests from client and sends responses back,
and database system, which stores application data. Most application servers are
part of software products that includes also a web server functionality.

Java Enterprise platform chosen for server-side implementation is standard and
that is why there are many application servers, which supports it. Most well-
known and widely used Java EE servers are Sun Java System Application Server
(Sun JSAS), JBoss, WebLogic, WebSphere and GlassFish. All of them, except
Oracle's WebLogic server, allows free of charge use and provide similar
functionality.

Development team had previous small experience only with GlassFish server,
which forced to choose it for development and production of developed system.

Besides some experience of GlassFish following features make this application
server attractive for developed system:

• GlassFish is open-source server ready for production use;

• It is reference implementation of Sun's Java Enterprise platform and much
source code is contributed by Sun.

• It has good integration and support of most popular Java development
tools: Eclipse and NetBeans, which makes development and testing
process easier;

• GlassFish supports clustering and can be scaled-up when load for server
grows.

Last stable release of GlassFish is 2.1 and it was chosen for development and
deployment of system.

39

Database system - PostgreSQL

Next important for developed system software product is database management
system. Development team had good knowledge and previous experience with
different kind of relational database management systems (RDBMS).

For project's purposes standard relational database management system with
possibility to store recipe images inside database is needed and there are many
database systems that can satisfy this. Most well-known and widely used are
Oracle, DB2 from IBM, Microsoft SQL Server, MySQL.

The main disadvantage of above mentioned products as full-featured versions of
them are quite expensive and cannot be freely used for commercial applications,
but all of them have corresponding free editions: Oracle Express Edition, DB2
Express-C, SQL Server Express Edition and MySQL Community Server. These
free versions have following limitations:

• Oracle Express Edition (Oracle XE) is limited to 4 GB of user data and to
1 GB of RAM (SGA+PGA). XE will use no more than one CPU.

• DB2 Express-C has no limit on number of users or on database size and
can run on Windows and Linux machines of any size, but the database
engine will use only two CPU cores and 2GB of RAM.

• SQL Server Express Edition has no limitations on the number of databases
or users supported, but it is limited to using one processor, 1 GB memory
and 4 GB database files.

• MySQL Community Server has no limitations, but MySQL in general has
some criticism about its performance, stability and support for standard
SQL features.

Having above limitations alternative database system was being looked for and
choice was made towards PostgreSQL database system.

PostgreSQL is a powerful, open source object-relational database system with full
support of ANSI 92/99 SQL standards. It runs on all major operating systems,
including Linux, UNIX and Windows. It is fully ACID compliant, has full support
for foreign keys, joins, views, triggers, and stored procedures. It has no limits on
hardware components usage and database and table limits. It is also known to
have both high performance and high availability and according to benchmarks its
performance is comparable commercial enterprise level database systems.

At the moment of choice made PostgreSQL 8.3 was latest available version.

40

Operating system

All software components chosen for developed system can run several operating
systems, such as different versions of Microsoft Windows, Linux, Unix and
MacOS.

Microsoft Windows and MacOS do not have free versions or editions, that is why
they are least attractive choice for developed system for both server- and client-
side parts.

UNIX and, especially, Linux have many free distributives with different set of
features and hardware requirements, which allows flexible choice operating
system separately for client and server.

UNIX family containing several free distributives, such as FreeBSD, OpenBSD,
NetBSD and other, yields to Linux in flexibility of choice especially regarding
light-weight version for desktop computers. Because of this choice made to use
one of Linux distributives for client part of system and for decreasing cost of
maintenance one of Linux versions also has to be used on server.

Client-side operating system - Puppy Linux

Client terminal requires minimal set of software to be run on it. It needs only web
browser with graphical interface, ability to print recipes and process touchscreen
input and network requests through USB modem. The all software installed on
client should fit 1 GB disk space and and be able to run on computer with around
1 GHz processor and 512 MB of operative memory . These requirements shapes
choice of appropriate Linux distributive.

Most of desktop versions of Linux has quite heavy graphical interface and large
set of pre-installed software packages, because they are intended to be used in
normal desktop environments. But there are several distributives with graphical
interfaces and low hard disk and memory requirements. Two of them being known
most stable were considered as possible candidates. These are Damn Small Linux
(DSL) and Puppy Linux.

Damn Small Linux requires only 50MB of free space on hard disk, 16 MB of
memory and 486 processor to run. It contains graphical desktop and simple and
light-weight window manager and Firefox 2 web browser for running web surfing
and running web applications. Disadvantages of DSL are non-standard printer
support, older versions of software packages and not supported touchscreen
functionality.

Second candidate, Puppy Linux, has higher system requirements. It needs around
128 MB of memory, around 100 MB of free space on hard disk and at least 166
MHz Pentium processor. By default it contains many additional software

41

packages installed, but there are versions of Puppy Linux with only basic software
included with possibility add required software later. One of pluses of Puppy
Linux comparing to DSL is that it has full X.Org server required for touch screen
driver to be able to work. Also Puppy Linux is closer to the normal desktop
versions of Linux and offers more flexibility for adding new software than DSL.

Additional advantage of Puppy Linux is that it can be installed in, so called, frugal
mode. In this mode a copy of operating system image from installation media is
put on hard disk and then during system boot it is mounted in read-only mode and
information from it is loaded in operative memory. All configuration updates and
additionally installed software are stored in separate file, which is loaded together
with Puppy Linux image during startup. Frugal installation allows to keep system
files consistent and to easily restore the system in case of failure. Also it can help
to decrease number of writes to hard disk and therefore increase life of compact
flash storage media.

In the comparison with DSL Puppy Linux looks more suitable for the developed
system purposes and Puppy Linux 4.1 was chosen as the client-side operating
system.

Server-side operating system - Ubuntu Server Edition

Server part of the kiosk system contains application server and database system
running on it. Chosen GlassFish and PostgreSQL can run on almost any Linux
distributive. Main requirements for the server-side operating system is availability
of command-line interface, remote access for its configuration and preferably
absence of graphical user interface for saving processor time, operative memory
and hard disk space.

There are several distributives generally used as a server operating systems. They
all provide similar set of features and characteristics and with given requirements
all are suitable for the developed system. The key factor for appropriate server
distributive is experience with different Linux versions. The most extensive
knowledge and experience developers have with Ubuntu-based versions of Linux
and therefore Ubuntu Server Edition 8.10 was chosen.

This distributive was installed on virtual server on external site and all its
management is done remotely using Secure Shell (SSH) network protocol and
utilities

42

Web browser - Firefox

Last component to choose is the web browser for client side. Its choice is
determined by the operating system used on client and the number of features
supported.

The kiosk system requires a web browser with good support of standard web
technologies – HTML 4, CSS 2, JavaScript, DOM, XML and XSLT. Also browser
should have possibility to play back audio files either built in or via external plug-
in and run Java applets, because printing will be implemented using this
technology.

Having Linux installed on the client side the most obvious choice for web browser
is Opera or Firefox. Later was chosen as more wide-used and feature-rich product.

Firefox 3.0 was the latest stable version at the moment of decision and in addition
to it two components were added: Java Runtime Environment and corresponding
plug-in and MPlayer plug-in for ability to play OGG audio files.

43

Conclusion

As the result of thesis project functional RecipeKiosk system was developed with
one kiosk terminal installed as pilot version in one of food stores. All Juzy
Systems AB requirements were satisfied and the desired software product was
built.

According to the customer wish to decrease the cost of the system as much as
possible during development process were found software components, which are
free or open-source and allow their commercial application. Found components
were successfully applied, used or integrated in the developed system.

44

References

[1] http://code.google.com/webtoolkit/ - home page for Google Web Toolkit
framework.

[2] http://java.sun.com/javaee/ - description and documentation for Java
Enterprise platform.

[3] http://glassfish.dev.java.net/ - GlassFish application server's home page.

[4] http://www.postgresql.org/ - PostgreSQL object-relational database
management system's home page.

[5] http://www.puppylinux.com/ - community web site of Puppy Linux.

[6] http://www.puppylinux.org/ - official web site of Puppy Linux.

[7] http://www.ubuntu.com/ - official web site of Ubuntu Linux.

45

	Abstract
	Foreword
	Introduction
	Background
	Purpose

	Design
	Requirements
	Hardware requirements
	Functional requirements
	Non-functional requrements

	Use cases
	System architecture and design
	Logical view
	Deployment view
	Data view

	Kiosk user interface prototype

	Software components and tools
	Programming language and frameworks
	Google Web Toolkit - client side framework
	Programming language
	Java Enterprise Edition 5 – server-side framework

	Application server - GlassFish
	Database system - PostgreSQL
	Operating system
	Client-side operating system - Puppy Linux
	Server-side operating system - Ubuntu Server Edition

	Web browser - Firefox

	Conclusion
	References

