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Abstract
The fields of graphical modelling and constraint satisfaction have been very active
in recent years, which is unsurprising given the large range of problems which may
be described using such techniques. While many novel algorithms have been pre-
sented, there are still areas of the field in which improvements are possible. Reviews
have uncovered strong links between the linear programming and graphical mod-
elling fields, and it is therefore of interest to survey the possible application of linear
programming methods to graphical models and constraint satisfaction problems.

The in-the-middle algorithm, an approximate solution method in linear program-
ming which has seen extensive use in the industry, was extended to max-sum prob-
lems by Grohe and Wedelin (2008). Graphical models and constraint satisfaction
problems are easily translated into max-sum formulations, and the in-the-middle
algorithm is therefore an ideal candidate in reformulating linear programming al-
gorithms to the field of constraint satisfaction.

This thesis presents an implementation of the in-the-middle algorithm applied
to max-sum problems, which may be applied to general constraint satisfaction in-
stances.The implementation is benchmarked against three existing high-performance
exact solvers in the field, using a problem set consisting of several hundred problems.
Results indicate that the in-the-middle algorithm may have potential in the fields of
constraint satisfaction and graphical model optimization, but that further research is
required to make the algorithm competitive. Several avenues for further research on
the algorithm are proposed.

Keywords: Combinatorial optimization, Constraint programming, Graphical mod-
els, Integer linear programming, Markov random fields, Max-SAT, Max-sum, Undi-
rected graphical models, Wedelin heuristic, Weighted constraint satisfaction
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I
Introduction

Optimization is a very relevant topic in industry, with applications to planning, cost-
efficiency and many other areas. Since many optimization problems are formulated
through linear programming (LP) models, there are many mature and efficient al-
gorithms aimed at solving such problems. However, some problems are most easily
expressed through graphical models or as constraint satisfaction problems (CSPs) in
which constraints and variables are expressed through a hypergraph. It is therefore
of interest to examine the application of known LP methods to problems in these
fields.

This thesis will expand a known LP optimization algorithm which has seen ex-
tensive use in industry, the in-the-middle algorithm1 (and its accompanying heuris-
tic), to a wider set of problems in graphical model discrete optimization, specifi-
cally weighted constraint satisfaction problems (WCSPs) and related instances. This
will be done by implementing a reformulation of the algorithm (due to Grohe and
Wedelin 2008) which applies to max-sum problems, with a suitable transformation
of WCSP instances into max-sum instances. This implementation will then be bench-
marked against solvers in the constraint programming (CP), constraint satisfaction
and graphical model optimization fields.

The objective and purpose of the thesis is then to determine the usefulness of the
max-sum in-the-middle algorithm within the field of graphical model discrete op-
timization, and to shed light on potential areas of improvement of the algorithm

1. Originally proposed by Wedelin (1995), and sometimes referred to as the Wedelin heuristic
(Bastert, Hummel, and de Vries 2010).
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I. Introduction

within that field. However, this thesis will not develop any significant variations of
the algorithm, nor will it develop stronger theory on its functionality.

1 background
The in-the-middle algorithm (Wedelin 1995) for LP problems can be interpreted as
a coordinate descent algorithm, and with a simple heuristic it has been shown to
solve integer programming problems efficiently in large scale applications. The al-
gorithm has been extended to also apply to max-sum problems (Grohe and Wedelin
2008; Wedelin 2013), but this variant has not yet been benchmarked against other
algorithms in that field. The primary aim of this thesis is therefore to implement and
benchmark the in-the-middle algorithm applied to max-sum problems.

When formulated to solve max-sum problems, the algorithm is applicable to a host
of problems including but not limited to weighted, valued and regular CSPs, cost
function networks (CFNs) and weighted partial max-SAT (WPMS) problems. Addi-
tionally, though a simple logarithmic transformation of the problem, maximum pos-
terior (MAP) optimization problems on Markov random fields (MRFs) may also be
restated as max-sum problems.This makes the algorithm (including the approximate
heuristic variant) interesting in fields ranging from scheduling, protein folding and
combinatorial puzzles to classification and pattern recognition.

The CSP and maximum satisfiability (max-SAT) communities have been very ac-
tive in recent years, producing benchmarks of solvers in those fields at the Inter-
national Conference on Theory and Applications of Satisfiability Testing (Argelich et
al. 2011) and the Annual Congress of the French Society of Operations Research and
Decision Support (Allouche et al. 2014a). Using the results of such benchmarks, the
in-the-middle algorithm on max-sum problems may be compared to existing algo-
rithms in the mentioned fields, determining the interest of developing, analysing or
specializing the algorithm further for such problems.

2 related work
Since the purpose of this thesis is to extend an existing algorithm and benchmark
it against known solvers, it is interesting to note previous work both related to the
algorithm itself (either its LP formulation or the max-sum variant discussed in this
thesis) as well as previous benchmarks and recent algorithms in the related fields.

Previous work on the algorithm itself, especially the LP variant, will be examined
to determine if known modifications of the algorithm apply to the max-sum vari-
ant as well. Publications (primarily benchmarks and competitions) in the CSP field
will be surveyed to collect suitable problem sets and to pick appropriate solvers to
benchmark the algorithm against.
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Related work

2.1 the in-the-middle algorithm
Although the in-the-middle algorithm and heuristic has mostly been discussed by
its principal author (Wedelin 1995; Grohe andWedelin 2008; Wedelin 2013; Alefragis
et al. 2000), there is some literature evaluating and improving upon the algorithm
available.

Bastert, Hummel, and de Vries (2010) note the practical relevance of the field of
heuristics for integer linear programming (ILP), and evaluate the in-the-middle heuris-
tic applied to such problems. In addition to explicitly providing the generalizations
mentioned by Wedelin (1995), they also introduce a “push” operation intended to
improve the quality of the approximate solutions. Finally, they also compare the al-
gorithm with commercial software, with favourable results.

Ernst, Jiang, and Krishnamoorthy (2006) applied amethod based on the Lagrangian
relaxation used by the in-the-middle algorithm to the task allocation problem, with
favourable results compared to the commercial CPLEX mixed integer linear pro-
gramming (MILP) solver. Similarly, Mason (2001) applied a specialized variant of the
in-the-middle algorithm to personnel scheduling, outperforming CPLEX on difficult
commercial rostering problems.

2.2 max-sum and constraint satisfaction problems
Graphical models allow the modelling of a range of NP-hard optimization problems
in a consistent manner (Allouche et al. 2014b), and recent articles on the subject ex-
pose strong connections between linear programming and graphical models (Werner
2007; Kolmogorov 2013). As such, there is reason to believe that the application of lin-
ear programming algorithms to constraint satisfaction may have practical relevance.

Although several specialized solvers— e.g.Toulbar2 (Allouche, deGivry, and Schiex
2010), WPM2 (Ansótegui et al. 2013), MaxHS (Davies and Bacchus 2013), Max-DPLL
(Larrosa, Heras, and de Givry 2008) and several others — have been developed for
CSPs in recent years, benchmarks indicate that there are areas of constraint satisfac-
tion in which LP solvers perform better, and areas where no existing solvers excel.

Allouche et al. (2014a, 2014b) evaluate several exact optimizers to CSPs, and the re-
sults indicate that there may be several problem domains (most notably MRF, WPMS
and Max-CSP) which could benefit from fast, approximate solvers. Additionally, sev-
eral large problem sets from each domain are included in the benchmark, and these
problem sets have also been made available online by the authors.1

1. http://genoweb.toulouse.inra.fr/~degivry/evalgm (Allouche et al. 2014a, p. 7).
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II
Background theory

The formulation of the in-the-middle algorithm provided by Grohe and Wedelin
(2008) is based on a definition of the max-sum problem. In order to apply this algo-
rithm to general weighted constraint satisfaction problems (WCSPs), it is necessary
to provide a link between themax-sum problem and problem formulationswithin the
graphical model optimization field, where WCSP is one of the more general formula-
tions. This will be done by first introducing the max-sum problem along with some
useful interpretations in other fields, followed by a similar introduction of the WCSP
family. Finally, a theoretical link between the two fields will be provided, along with
an explicit method of translation between the formulations.

1 max-sum problems
The general max-sum problem is an NP-hard optimization problem with many appli-
cations in fields ranging from statistical physics to artificial intelligence and pattern
recognition. In general, constrained optimization problems (crucially, several vari-
ants of constraint satisfaction) may be restated as max-sum problems. Formally, the
following definition (based on that of Wedelin 2013, p. 11) may be used:

Definition 1 (Max-sum problem) The max-sum problem is the optimization problem

max
x

f (x) =
∑
дk ∈G

дk (xk ),

where дk (xk ) ∈ R are distinct arbitrary functions over xk ⊆ x .
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II. Background theory

The max-sum problem then has three distinct components by which it is defined:

• A finite set of variables X = {x1, . . . ,xn}. Let Xk ⊆ X denote a specific subset
of X , and let xk ∈ Xk and x ∈ X be assignments of the variables.

• Domains of the variables, D = {D1, . . . ,Dn}, such that xi ∈ Di ,∀i . Subsets
Dk ⊆ D may be defined analogously to the variable subsets.

• A finite set G of cost functions or components. Every cost function дk ∈ G is
defined over a variable subset X k , i.e. it is a map дk : Dk 7→ R≤0 ∪ {−∞}.

The cost functions may additionally be divided into three kinds: those defined on the
empty set (constants), those defined on singleton subsets Xk = {xi} ⊆ X (variable
components) and those defined on larger subsets (constraint components) — this is the
component model introduced by Grohe and Wedelin (2008, p. 98).

One should also note that the co-domains of дk need not be restricted to R≤0 ∪
{−∞}, but for the purposes of this thesis that is the chosen output. This allows solu-
tions x to the max-sum problem to be ordered by their cost, where the cost is defined
as cost (x) = f (x) = ∑k дk (xk ), and additionally allows the definition of infeasible
solutions to the max-sum problem as those for which cost (x) = −∞. This will be
useful in the translation between WCSPs and max-sum problems.

There are several algorithms available for solving max-sum problems, withWerner
(2007) mentioning the augmented DAG algorithm, the max-sum diffusion algorithm
and a linear programming (LP) relaxation method. In addition to those direct meth-
ods, the relation to constraint satisfaction problem (CSP) provides manymore (which
will be mentioned later), and algorithms such as belief propagation andmessage pass-
ing are also applicable to some max-sum problems.

1.1 markov random fields
A restricted variant of the max-sum problem called the binary max-sum labelling
problem has direct applications to artificial intelligence and pattern recognition, where
the problem is known as computing the maximum posterior (MAP) configuration of
Markov random fields (Werner 2007, p. 1165).

2 weighted constraint satisfaction problems
CSPs are very general decision problems, defined through a set of objects whichmust
satisfy a set of constraints. Many problems in artificial intelligence and operations re-
search (including planning and resource allocation) may be stated as CSPs, as well as
several academic problems such as Boolean satisfiability (SAT), queens puzzles and
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Weighted constraint satisfaction problems

map colouring. One of the corresponding combinatorial optimization problems,1 the
WCSP,2 additionally introduces weights on the constraints, and classify these as hard
(must be satisfied) or soft. All CSPs may of course be restated as WCSPs with only
hard constraints, while the relaxed objective of the combinatorial optimization ap-
proach allows even over-constrained CSPs to be “solved”. Additionally, many prob-
lems in complexity theory such as maximum satisfiability (max-SAT), max-clique,
max-cut and minimal vertex cover may be modelled using WCSPs (Meseguer, Rossi,
and Schiex 2006, p. 315). Due to these facts, WCSPs may be regarded as more inter-
esting than CSPs, especially in an optimization context.

There are several ways to formally define a WCSP, but the one used here closely
matches the definition of amax-sum problem, which simplifies the formal translation
between the two. The definition is based on that presented by Meseguer, Rossi, and
Schiex (2006), which defines WCSP (p. 284) in terms of a regular CSP (p. 281):
Definition 2 (Constraint satisfaction problem) A CSP is a decision problem consist-
ing of three parts:

• A finite set of variables X = {x1, . . . ,xn}. Let V ⊆ X denote a specific subset of
X .

• Domains of the variables,D = {D1, . . . ,Dn}, such that xi ∈ Di ,∀i . SubsetsDV ⊆
D may be defined analogously to the variable subsets.

• A finite setC of constraints RV ∈ C defined by a relation R defined on a subset of
variables V ⊆ X , which specify the assignments of V allowed by the constraint.

The problem is to find an assignment t which is allowed by all constraints RV ∈ C .
The reformulation as an optimization problem mainly concerns the introduction

of weights, and a reformulation of the objective:
Definition 3 (Weighted constraint satisfaction problem) AWCSP (denoted byMeseguer,
Rossi, and Schiex (2006, p. 284) as a k-weighted constraint network) is a 4-tuple ⟨X ,D,C,k⟩,
where X and D are variables and domains as in definition 2,C is a set of weighted con-
straints and k is an upper bound. A weighted constraint fV ∈ C maps a subset V of
variables to the set [0,k], i.e. fV : DV 7→ [0,k]. The cost of an assignment t is defined
as the (bounded) sum of all fV , and the optimization problem amounts to

min
t

cost (t) =
∑
fV ∈C

fV (tV ).

1. Both the valued constraint satisfaction problem (VCSP) and semiring-based constraint satisfac-
tion problem (SCSP) frameworks may be seen as the corresponding optimization problems (Meseguer,
Rossi, and Schiex 2006; Bistarelli et al. 1999), but WCSPs may be described using either. 2. In some
literature these problems are called cost function networks (CFNs), but the definitions are in essence
equivalent.
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II. Background theory

The attentive reader will notice the similarity between definition 3 and definition 1.
Using this definition, feasible solutions are assignments t for which cost (t) < k .
One may also make a distinction between hard constraints (fV (tV ) = k for some
assignment(s) tV ) and soft constraints.

2.1 max-csp and (weighted) max-sat
The special case of WCSP where all constraints have either unit or zero cost (i.e.
fV : DV 7→ {0,1}, regardless of choice of k) is normally referred to as max-CSP
(Meseguer, Rossi, and Schiex 2006, p. 284). Here, the objective value is exactly the
number of violated clauses, and as such it is the most natural formulation of existing
CSP instances as optimization problems.

The special casewhere all constraints are clauses of a Boolean formula (andweights
are unrestricted) yields the weighted partial max-SAT (WPMS) problem (Allouche et
al. 2014b). If the weights are restricted to unit or zero costs as above, the problem be-
comes the well-known max-SAT problem (Meseguer, Rossi, and Schiex 2006, p. 284).

This makes explicit the fact that many real-world and academic problems in satis-
fiability and operations research may be restated as WCSP (and therefore max-sum)
problems, and consequently that the in-the-middle algorithm may present a viable
alternative to solving these problems using LP formulations (Ansótegui and Gabàs
2013; Davies and Bacchus 2013) or special algorithms (Ansótegui et al. 2013; Larrosa,
Heras, and de Givry 2008).

3 translating wcsp to max-sum
The translation from WCSP to max-sum, when using the definitions given above, is
fairly straight-forward. In addition to the superficial similarity between definitions 1
and 3, the two problems have deep connections and are in a sense equivalent. When
regarding theWCSP formulation as an instance of SCSP (Meseguer, Rossi, and Schiex
2006, p. 285 sq.), the WCSP has an associated ordered semiring ⟨[0,k],+k ,min,≤⟩
(p. 290). Werner (2007, p. 1167) noted that the max-sum problem is also associated
with a similar ordered semiring structure ⟨(−∞,∞),+,max,≥⟩ (although in our case
the set is R≤0 ∪ {−∞}). Werner additionally provides a connection between max-
sum and the regular CSP through a labelling problem, of which they are both special
cases.

In fact, it seems that the only difference between the two problems as stated is
the definition of the set included in the semiring — while the WCSP from defini-
tion 3 considers a domain {0, . . . ,k}, the max-sum problem according to definition 1
has domain R≤0 ∪ {−∞} — and the fact that one is a minimization problem while
the other is a maximization problem. However, by transforming the weighted con-
straints of the WCSP problem in such a way that the ordering is preserved but re-
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Translating WCSP to max-sum

versed (i.e. by negating all costs), and additionally setting k = −∞ (and changing
the costs of all hard constraints accordingly), a formulation which has a semiring
⟨R≤0 ∪ {−∞},+,max,≥⟩ is obtained, which is exactly what the max-sum problem
has. From there, it is only a matter of translating the constraints of the WCSP into
corresponding cost functions in the max-sum formulation.

The translation from WCSP to the equivalent max-sum problem may be summa-
rized by a few steps:

1. Variable sets and domains are kept in the translation; the sets D, X and XV in
definitions 2 and 3 correspond directly to the sets D, X and Xk of definition 1.
Additionally, the subsets V of the WCSP problem correspond to the subsets k
in definition 1.

2. The weighted constraints fV of definition 3 are replaced by new constraints f ′V
defined as

f ′V (t) =
−fV (t) if fV (t) < k

−∞ otherwise
, ∀t .

3. The cost functions дk of the max-sum formulation are constructed from the
new constraints, i.e. дk = f ′V , as appropriate.

9





III
The in-the-middle algorithm

This chapter will present the in-the-middle algorithm for max-sum problems, and
the framework of variable components, constraint components and constraint updates
employed by the algorithm.1 It will provide theoretical results on the feasibility and
optimality guarantees provided by the algorithm, and will present two variations of
the update procedure used in the algorithm. Previous improvements to the LP formu-
lation will also be applied to the max-sum version. Finally, the theoretical framework
surrounding the algorithm will be compared to theoretical results in a CSP context.
First, however, the original LP algorithm will be reviewed.

1 original lp formulation
To provide context for the max-sum formulation of the in-the-middle algorithm and
heuristic, the original algorithm as applied to LP problems will be briefly described,
and explicit pseudo-code for the algorithm will be presented. Full descriptions of
the LP variant of the in-the-middle algorithm are available from Wedelin (1995) and
Bastert, Hummel, and de Vries (2010).

The algorithm solves an integer linear programming (ILP) problem

min c⊤x
s.t. Ax = b,

x ∈ {0,1}n ,
(1)

1. The algorithm will be described in theory, with practical implementation issues and considera-
tions being discussed in the next chapter.
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III. The in-the-middle algorithm

where A ∈ {0,1}m×n and b ∈ Nm (a generalization to the case A ∈ {−1,0,1}m×n
exists). The idea is to exploit the Lagrangian relaxation of the problem,

min c⊤x − y⊤(Ax − b)
s.t. x ∈ {0,1}n , (2)

where y are the Lagrangian multipliers — once a value of y has been fixed to ŷ
it is easy to find the minimum of this relaxation. Assuming all reduced costs c =
(c⊤ − ŷ⊤A) are non-zero one may then express an optimal solution x̂ to the original
problem, with x̂ i = 1 for ci < 0 and x̂ i = 0 for ci > 0.

The goal of the algorithm is to manipulate y to minimize (2) while maintaining
feasibility for (1).The basic idea is to, for every single constraint j of the problem, find
the elements in c that correspond to the variables of that constraint (denoted by c j )
and subtract the average of two critical values r+ and r−.The critical values are chosen
so that at mostbj of the values in c j are strictly positive. If no sign changes occur after
visiting each constraint once, the algorithm has converged and a feasible (assuming
c , 0) and optimal solution has been found. Algorithm 1 provides complete pseudo-
code for this algorithm, andWedelin (1995, 2013) provides further theoretical results.

The attentive reader will note that the method described by algorithm 1 may pro-
duce situations in which ci = 0 for some i , terminating without an integer solution to
the original problem. To address this issue, the algorithm is transformed from being
exact to being approximate by introducing a heuristic. The purpose of the heuristic
is to “nudge” the reduced costs and move them away from 0, while still distorting
them as little as possible. This will force an integer solution through what may be
interpreted as coordinate search. A parameter κ is introduced to govern the heuristic:
for κ = 0 there is no approximation and for κ = 1 there is maximal approximation.

The idea of the heuristic is then to add a small positive value to positive elements
ci , and a small negative value to negative ones. To this end, the empty line 11 of
algorithm 1 is replaced, introducing an assignment

s ji ← s ji ±
( κ

1 − κ (r
+
j − r−j ) + δ

)
where addition is used when ri − s ji ≥ 0 and subtraction otherwise. This assignment
is (as implied) applied to all elements of s j . The (small) parameter δ > 0 ensures that
elements of c are kept non-zero at all times.

Note that Bastert, Hummel, and de Vries (2010, p. 97) provide a different but equiv-
alent formulation of algorithm 1 with the approximate heuristic.

2 max-sum formulation
Working from the LP formulation of the in-the-middle algorithm, Grohe andWedelin
(2008) introduce a similar algorithm for max-sum problems (which they call cost prop-

12



Max-sum formulation

Algorithm 1: The in-the-middle algorithm without its heuristic. Counting the
sign changes may be done efficiently in the final assignment to c .
Input: A ∈ {−1,0,1}m×n , b ∈ Nm , c ∈ Rn

Output: Optimal solution x̂ ∈ {0,1}n to eq. (1) or ∅
1 c ← c
2 s j ← 0
3 repeat
4 for j = 1, . . . ,m do
5 r ← c j + s j

6 d ← r · a ·,j
7 r+ ← bj th largest element of d
8 r− ← (bj + 1)th largest element of d
9 ∆y ← (r+j + r−j )/2
10 s j ← ∆y · a ·,j
11 ▶ Intentionally left blank
12 c ← r − s j
13 end
14 until no sign changes in c
15 if c , 0 then
16 for i = 1, . . . ,n do
17 if ci ≤ 0 then x̂ i ← 1 else x̂ i ← 0
18 end
19 else
20 return ∅
21 end

13



III. The in-the-middle algorithm

agation). The formulation is examined further by Wedelin (2013, p. 11 sqq.). This sec-
tion will describe the max-sum formulation of the in-the-middle algorithm, reference
some theoretical results, and provide explicit pseudo-code for the algorithm.

The algorithm considers a max-sum problem

max
x

∑
дk ∈C

дk (xk ), (3)

in accordance with definition 1. Recalling the component model (page 6), the func-
tions дk may be divided into variable and constraint components — for instance, the
problem

max
x

д1(x1) + д2(x2) + д3(x3) + д4(x1,x2) + д5(x2,x3)
has variable components д1,д2,д3 and constraint components д4,д5. While it is pos-
sible to implement the algorithm so that all functions дk are translated into con-
straint components, this division has computational advantages in that the variable
components may be represented implicitly in a cost variable. Therefore, to keep the
variable and constraint components apart, the former will be denoted by γ1, . . . ,γn
and the latter by д1, . . . ,дm . The components are then γi : Di 7→ R≤0 ∪ {−∞} and
дk : Dk 7→ R≤0 ∪ {−∞}, where each дk is associated with a subset of all variable
components as well, as shown by fig. 1 (this subset will be called γ j ).

With this in mind, the basic framework of the algorithm may be introduced (al-
gorithm 2), which intentionally is very similar to that of the LP formulation. Note
especially the modified variable components γ̂ i , which roughly correspond to the
reduced costs c of the LP formulation (in the same way that the actual variable com-
ponents γi roughly correspond to the actual cost vector c).

The constraint updates used in the algorithm will now be described and theoret-
ically related to the updates used in the LP formulation. In addition to this, some
important theoretical results will be mentioned. Finally, two specific updates will be
described.

The basic idea of the constraint update, as with the LP formulation, is to modify
the variable components in an invariant manner to uniquely identify the (optimal)
solution given the constraint component. This is done by considering only the sub-
problem consisting of the constraint component дj along with its associated variable
componentsγ j and performing a local optimization. While Grohe andWedelin (2008,
p. 100 sq.) present a framework for updates defining a few sought-after properties,
only what they call consistent and locally optimal updates are considered here. These
guarantee that any solution found by algorithm 2 will be feasible. Some updates (in
particular the fractional DP update described later, for some parameter values) are
additionally non-conflicting, which guarantees that any feasible solution found is also
optimal.
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0

0

−∞

0

−∞

0

−∞

0

0

0 0 0

0
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0

constraint component дk (xi ,x j )

variable components γi (xi ),γj (x j )

Figure 1: A single constraint of two variables xi ,x j with |D | = 3, and consequently a
cost table дk (xi ,x j ) with nine values. This particular constraint is a hard all-different
constraint xi , x j .

Algorithm 2: The basic framework of the max-sum in-the-middle algorithm. If
the constraint updates are non-conflicting, the output is an optimal solution to
eq. (3).
Input: Variable components γ1, . . . ,γn , constraint components д1, . . . ,дm
Output: Feasible solution x̂ ∈ X to eq. (3) or ∅

1 for i = 1, . . . ,n do γ i ← γi

2 for j = 1, . . . ,m do s ji ← 0
3 repeat
4 for j = 1, . . . ,m do
5 γ j ,s j ← UpdateConstraint(дj , γ j , s j)
6 end
7 until argmaxxi γ i (xi ) did not change for any i
8 if argmaxxi γ i (xi ) is unique for all i then
9 foreach i = 1, . . . ,n do x̂ i ← argmaxxi γ i (xi )
10 else
11 return ∅
12 end
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Figure 2: An illustration of a constraint update (in this case a dynamic programming
(DP) update). Note that this particular update is conflicting, which results in a lost
optimality guarantee.

Algorithm 3: The DP constraint update.
1 Function UpdateConstraint(дk , γ k , sk)

Data: A constraint component дk , variable components γ k and offsets sk
Result: Updated variable components γ ′k and offsets s ′k

2 forall the γ j ∈ γ k do rkj ← γ j − skj
3 hk (xk )← дk (xk ) +∑r j ∈rk r j (x j )
4 forall the γ j ∈ γ k do γ ′j (x j )← maxx ∈xk \x j h(x)
5 forall the γ ′j ∈ γ ′k do s ′kj ← γ ′j − rkj
6 return γ ′k ,s ′k

7 end

Each update, as illustrated by fig. 2, first moves in the costs of the variable compo-
nents into the constraint component (fig. 2b, i.e. a temporary constraint component
hk (xk ) = дk (xk )+∑γj ∈γ k γj (x j ) is constructed). Then, costs from the temporary con-
straint component hk are moved out again (fig. 2c). It is mainly this last step that
varies between different updates — it is desirable to move out as much as possible
(this improves the convergence rate of the algorithm), but if one moves out too much
the non-conflicting property is lost and optimality is no longer guaranteed (Grohe and
Wedelin 2008, p. 105; Wedelin 2013, p. 15).

2.1 the dp constraint update
The first update considered is the DP update (algorithm 3 and fig. 2). It is a fairly un-
sophisticated update — equivalent to the well-known max-sum algorithm (as shown
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Algorithm 4: The fractional DP constraint update. Note that the only difference
between this and algorithm 3 is on line 4.
1 Function UpdateConstraint(дk , γ k , sk)

Data: A constraint component дk , variable components γ k and offsets sk
Result: Updated variable components γ ′k and offsets s ′k

2 forall the γ j ∈ γ k do rkj ← γ j − skj
3 hk (xk )← дk (xk ) +∑r j ∈rk r j (x j )
4 forall the γ j ∈ γ k do γ ′j (x j )← α maxx ∈xk \x j h(x)
5 forall the γ ′j ∈ γ ′k do s ′kj ← γ ′j − rkj
6 return γ ′k ,s ′k

7 end

by Wedelin 2013, p. 17 sq.) — which extracts the max-marginals along each dimen-
sion of the constraint component дk and moves this amount into the corresponding
variable component γi (xi ) (i.e. the new variable component value becomes γ ′i (xi ) =
maxx ∈xk \xi h(x) for every variable component γi and value xi ∈ Di ). While this
should ensure quick convergence since it in effect moves out as much as possible,
the update isn’t non-conflicting (Grohe and Wedelin 2008, p. 105), which means op-
timality cannot be guaranteed.

2.2 the fractional dp constraint update
Since the regular DP update cannot guarantee optimality, it is interesting to see if it
may be modified to provide such a guarantee. Grohe and Wedelin (2008, p. 105 sqq.)
provide some theory useful in the construction of non-conflicting updates, in partic-
ular a weak upper bound on the amount possible to move out. They also introduce
the fractional DP update (algorithm 4), which is very similar to the regular DP update
— instead of moving out the max-marginals of the constraint component, a fraction
α of the max-marginal is moved out (i.e. the new variable component value becomes
γ ′i (xi ) = α maxx ∈xk \xi h(x)).

In order to control the α parameter of this update variant, one may introduce a
parameter sweep strategy. Higher values of α are expected to improve the rate of
convergence, but sufficiently large values compromise the non-conflicting property
and thus the optimality guarantee. Therefore, a good sweep strategy will attempt
to solve the problem using non-conflicting updates at first, only increasing α if this
fails.

The parameter sweep strategy will therefore start at a lower limit α⊥ that guaran-
tees non-conflicting updates, keep this value for a fixed number of iterations, then
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increase α until it reaches an upper limit α⊤. Experience from the LP variant of the
heuristic additionally suggests that inceases should be more careful close to the up-
per limit α⊤. These limits are taken individually1 for each constraint, since they will
depend on properties of the constraints themselves.

Grohe and Wedelin (2008) provide a suitable lower bound α⊥ through their proof
that α⊥ = 1/n (where n is the number of variables associated with a constraint) guar-
antee non-conflicting updates (p. 107). The upper limit is chosen to be α⊤ = 1, which
corresponds to the regular DP update.2 In subsequent runs on the same problem, the
upper limit α⊤ may be taken to be the α at which the algorithm terminated in the
previous run.

3 extensions and improvements
Previous work on the LP formulation of the in-the-middle algorithm has yielded
useful improvements in performance, and it is therefore interesting to apply these
variants to the max-sum variant as well. Two such improvements are presented.

First, a modification of the LP algorithm introduced by Bastert, Hummel, and de
Vries (2010) is considered. Then, an important addition to the algorithm designed to
break ties in variables is introduced.

3.1 the “push” operation
In their paper examining the in-the-middle algorithm, Bastert, Hummel, and de Vries
(2010) introduce a “push” operation intended to improve the quality of any non-
optimal solutions found by the approximate algorithm (p. 99 sq.). The operation is
aimed at improving the solution by modifying the reduced costs c to make them
“more similar” to c , contending that the algorithm in fact optimizes with respect to
the reduced costs (to which the approximate variant applies non-invariant changes).
This is done by setting c ← c + ρc (with ρ > 0) and reducing the parameter κ of the
approximate LP formulation (algorithm 1) by a set factor when a feasible solution
is found (and κ > 0). Additionally, a flag is set that makes the algorithm treat all
constraints as violated (p. 100).

Given the favourable results of Bastert, Hummel, and de Vries (2010), it is inter-
esting to benchmark the operation for the max-sum algorithm as well. Luckily, the
“push” operation is easily translated to apply to the max-sum formulation of the in-
the-middle algorithm. After encountering a feasible solution (and assuming the opti-
mality guarantee does not apply), the modified variable components γ i are updated

1. This is different from the LP heuristic, where the parameter is identical for all constraints.
2. However, note that values α > 1 are in no way prohibited by the algorithm and may prove

meaningful in some situations.
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as in the LP formulation (i.e. γ i ← γ i + ργi ), and the parameter α is reduced in a
similar way.

3.2 tie-breaking using noise
In some problems — especially those with few hard constraints — there may be sev-
eral solutions in a neighbourhood which have the same objective value. Such situ-
ations may result in the modified variable components γ j being tied for some vari-
ables j, which means the algorithm cannot determine a feasible solution (since the
corresponding variable value x̂ j is ambiguous). To address this issue, a stochastic
tie-breaking mechanism is introduced.

The tie-breaking mechanism considers the modified variable components γ j , in
which argmaxx j γ j (x j ) is non-unique if variable x j is ambiguous. Moving through
all the variable components γ j , any element whose value “too close” (determined by
a threshold value ϵ) to the maximum value M = maxx j γ j (x j ) is modified by adding
uniformly distributed random noise of magnitude ζ , i.e.

γ ′j (x j ) = γ j (x j ) +
u sgn

�
γ j (x j ) −M�

if |γ j (x j ) −M | ≤ ϵ

0 otherwise
, ∀x j ∈ D j ,

where u ∈ U (−ζ ,ζ ) is a random variable taken from a uniform distribution. If noise
has been added in a previous iteration, that noise is removed from the variable com-
ponent first.

4 interpretation in a wcsp context
The framework commonly employed in WCSP optimization focuses on providing
equivalence-preserving transformations of the problem graph, in order to obtain
good upper and lower bounds which are then used in branch-and-bound strategies.
A fairly thorough presentation of the arc consistency notions used in this framework
is given by Cooper et al. (2010).

The notion of generalized arc consistency (p. 7) is in fact used by the algorithm, cor-
responding to the consistent updates introduced by (Grohe andWedelin 2008, p. 101).
This type of arc consistency is normally not utilized inWCSP theory, since it is rather
weak. Stronger notions, such as (full) arc consistency and existential arc consistency
(de Givry et al. 2005), are centred around providing very good bounds on the prob-
lem by projecting costs away from constraints and moving them into the variable
components or the nullary constraint, which then immediately provides an easily
accessible lower bound on the optimal solution.

Algorithms enforcing full arc consistency are in fact very similar to the non-conflicting
updates proposed by Grohe and Wedelin (2008). De Givry et al. (2005, p. 85 sq.)
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present an algorithm enforcing this property, and the general structure of this al-
gorithm is very similar to the DP update described above. First, the costs in one of
the variable components are moved into the constraint component. Then (as in the
DP update), the max-marginals are calculated and “moved out” (projected) onto the
other variable component. The result is one variable component with mostly zero-
value costs, and one variable component with (if possible) no zero-value costs. This
fact is then used when enforcing another property, node consistency (Cooper et al.
2010, p. 7), which in effect moves redundant costs from the variable components to
the nullary constraint.

4.1 stronger constraint component updates
Although the theory behind the in-the-middle algorithm isn’t aimed at providing
good upper and lower bounds, instead being concerned with providing an optimality
guarantee, there is no reason to discard existing theory in the WCSP field. It appears
feasible to implement some of the consistency-enforcing algorithms of de Givry et
al. (2005) as constraint component updates, and enforcing node consistency could be
done once every few iterations independently of the updates (or in a preprocessing
stage). This could provide lower bounds which could be employed as a secondary op-
timality guarantee, which could be used to measure the optimality gap in situations
where potentially conflicting updates are used.

It may therefore be possible or even desirable to extend notions of stronger arc
consistency to the in-the-middle algorithm.
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Implementation

In this chapter, specific implementation details relating to the algorithm as used in
the benchmark will be presented. This includes considerations which are of great
importance when implementing efficient variants of the algorithm, including mem-
ory considerations as well as computational ones. The implementation details are
intended to facilitate independent implementations of the algorithm.

The algorithm — including code for reading the wcsp file format (Otten 2008), pa-
rameter sweep strategy and timing facilities —was implemented in C++11.The imple-
mentation is partly based on an existing framework for the original LP in-the-middle
algorithm. The code was compiled using version 5.1 of the LLVM compiler, with all
safe optimizations enabled (i.e. -O3).

There are several implementation details which are highly relevant to the perfor-
mance of the algorithm, and this section will explore such details in depth. In particu-
lar, the choice of data structure for constraint component data as well as implementa-
tion of constraint updates makes significant impact on the runtime of the algorithm.

Implementation details regarding the parameter sweep strategy presented earlier,
which controls the α parameter of the fractional DP update, will also be explained in
further detail.

1 constraint component design decisions
Several design decisions in the implementation of the constraint components have
significant impact on the performance of the constraint component updates. These
design decisions mostly relate to the data structure representing costs inside the con-
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Algorithm 5: Fast implementation of the fractional DP update described in algo-
rithm 3.
1 Function UpdateConstraint(дk , γ k , sk)

Data: A constraint component дk , (pointers to) variable components γ k and
offsets sk

Result: Updated variable components γ k and offsets sk , number of sign
changes c

2 c ← 0 forall the γ j ∈ γ k do
3 rkj ← γ j − skj
4 skj ← −∞ ▶ Allows omitting дk (xk ) = −∞
5 γ+j ,γ

−
j ← −∞ ▶ Used in transforming γ j

6 end
7 forall the pairs ⟨xk ,дk (xk )⟩ do
8 v ← ∑xki ∈xk

γi (xki )
9 v ← α(v + дk (xk ))
10 forall the x j ∈ xk do
11 skj ← max

{
skj ,v

}
12 if v > γ+j then
13 γ−j ← γ+j
14 γ+j ← v

15 else if v > γ−j then
16 γ−j ← v

17 end
18 end
19 end
20 forall the γ j ∈ γ k do γ j ← γ j − (γ+j + γ−j )/2 ▶ Transforms γ j
21

22 forall the γ j ∈ γ k do
23 Increment c by #{γ j : γ j · skj ≤ 0} ▶ Counts number of variable components

changed by this update
24 γ j ← skj
25 skj ← skj − rkj
26 end
27 return γ k ,sk ,c
28 end
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straint component, and the main concern in selecting this data structure is quick
access in the update loop. Since the constraint component is kept constant through
all iterations, and the temporary cost table h can be made implicit, this is the only
major concern.

Another implementation detail to note is the storage of the (modified) variable
componentsγ i . Storing these sequentially inmemory is a good choice, but care needs
to be taken when ordering the variable components in memory — due to CPU cache
characteristics, storing variable components used in the same constraint component
next to each other is highly beneficial. However, the implementation used here does
not reorder variable components in this manner, instead storing them in the order
they have been defined in the problem input.

A good data structure for the constraint components дk is a vector with a sparse
representation of the table costs (omitting infeasible values, i.e. дk (xk ) = −∞). These
values may be implicitly represented by proper initialization of variables in the con-
straint update.The vector representationmay be described as a list of pairs ⟨xk ,дk (xk )⟩,
where the (fixed) variable values xk additionallymay be used to access corresponding
variable component values γ i (xki ). In the actual implementation, xki are represented
as pointers to the values γ i (xki ).

Algorithm 5 highlights these implementation details, and also shows the use of an
invariant transformation of the variable components γ i (xki ) that allows the use of
existing code to detect solution changes by counting sign changes.

2 parameter sweep strategy
As explained earlier, the fractional DP update may be accompanied by a parameter
sweep strategy. Due to the structure of the algorithm implementation, the constraint-
specific upper and lower limits of the parameter sweep as described earlier are awk-
ward to handle. Therefore, these are consolidated into a single parameter κ ∈ [0,1].
This is done by mapping κ, individually for each constraint, from [0,1] to [α⊥,α⊤]
using the transformation α = α⊥ + κ (α⊤ − α⊥).

Initially, the limits on alpha are α⊥ = n−1 and α⊤ = 1 as suggested by theory.
However, the implementation used will make several subsequent attempts at solving
the problem; in subequent attempts (“trials”, futher explained later) the upper limit
α⊤ is lowered to match the value at which the prevoius trial found a solution. This
upper limit is implemented in terms of a new upper limit κ⊤ on κ (exemplified by
fig. 3a, for which κ⊤ will be roughly 0,3 in the next trial).

Figure 3 shows the value of κ for two different problems, along with the number
of sign changes which is used as a termination criterion. In particular, fig. 3b shows
a full run in which κ is varied throughout the entire range [0,1]. As can be seen,
κ is initially kept at 0 for a number of iterations — attempting to find guaranteed
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(a) A max-CSP problem from the “Composed” set.
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(b) A Markov random field (MRF) problem from the “Object Detection” set.

Figure 3: Influence of the κ parameter for two different problems using the fractional
update, with noise applied to resolve ties. Only the first trial is shown.
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optimal solutions if possible — after which the parameter is increased fairly quickly
until reaching 0.7κ⊤, after which it is increased more slowly.

2.1 trials
As briefly mentioned above, the optimization involves several trials. Before each trial
all constraints, variables and costs are reset to their original state. Then, the param-
eter sweep is performed and until the final κ value is reached or a feasible solution
is found. If κ = 0 (i.e. the solution is optimal), no more trials are run. Otherwise, the
program moves on to the next trial.

The number of trials is configurable, but the current implementation moves on to
a new trial unless the best solution hasn’t been improved in the last 4 trials.
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V

Benchmarking

In order to determine the efficiency of the algorithm, and determine what problem
paradigm the algorithm is most usefully applied to, extensive benchmark testing will
be performed. This chapter will describe the settings in which the benchmark was
performed, as well as introducing the problem sets used and the solvers compared
against.

The algorithm was tested against (part of) the large problem set used by Allouche
et al. (2014b), which includes problems from the MRF, WPMS, CFN, Max-CSP, con-
straint programming (CP) and Computer Vision and Pattern Recognition (CVPR)
domains. All problems in the set are available in the wcsp file format. Exact data
(elapsed time and obtained solution for every solver, as well as proven optima and
upper bounds for every problem) for these data sets have been obtained directly from
Allouche et al.

This section will describe the method used to benchmark the algorithm, including
the calculation of presented data. It will also briefly present the problems used in the
benchmark, to provide background that may explain the performance characteristics
of the algorithm, as well as short introductions to other solvers with which the in-
the-middle algorithm will be compared.

1 benchmarking method
All problem instances were limited in runtime by the upper time limit tmax = 1200 s,
and the benchmarks were run on a single core of an Intel Core i5 processor at 2,3 GHz,
with 8GiB RAM. This is comparable to the conditions of the benchmark performed
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by Allouche et al. (2014b), and should ensure that the comparisons are valid.1 Due
to time constraints, data for the comparison solver used in the benchmark was not
regenerated on this hardware.

Since the algorithmwhen used with the corresponding heuristic is an inexact algo-
rithm (while the solvers benchmarked by Allouche et al. (2014b) are all exact solvers)
the quality of the solution must be compared in addition to the elapsed time per prob-
lem. While the time may be compared as-is (given the comparable hardware condi-
tions), the found solution will have to be compared relative to the proven optimum
for each problem.

The relative deviation of the obtained solution (an optimality gap) may be calcu-
lated as (f − f )/(UB − LB), where f is the solution found by the algorithm, f is the
proven optimum and UB,LB is the trivial upper and lower bound of the problem (the
upper bound is the sum of the largest cost of each constraint component, and the
lower bound is trivially the lowest cost among all constraints). When f is unknown,
the lower bound is used instead.

For the “push” operation, the constant ρ was set to 5, the reduction of κ was set to
0,8 and the algorithm was run for at most 100 additional iterations. This matches the
parameters used by Bastert, Hummel, and de Vries (2010).

The stochastic tie-breaking mechanism was included in all benchmark runs, with
threshold ϵ = 0,01 and noise amplitude ζ = 1. Since all constraint clauses of the
problems used in the benchmark have integer costs, having ζ ≤ 1 ensures that the
tie-breaking noise will never promote tied variables above better, non-tied solutions.

2 problem sets
The problem sets obtained from Allouche et al. (2014b) belong to a number of dif-
ferent domains and represent different types of problems from industry, academia
and random generation. This section will briefly review each problem set used in the
benchmark, and review both problem source, interpretation and size. All of these
problems are directly representable as WCSPs, and hence as max-sum optimization
problems, and Allouche et al. (2014b) provide details on the translation from each
field to the WCSP formulation used in this benchmark.

Several sets from the benchmark performed by Allouche et al. (2014b) have been
omitted from this benchmark. This is because the in-the-middle algorithm wasn’t
able to solve any instances in the set (due to time or memory constraints), making
themuninteresting in the sense that the algorithm isn’t a feasible alternative for those
problems. The omitted problem sets are mostly from the CP and WPMS categories
(where only two resp. one problem(s) were kept), but the Chinese Characters, Colour

1. In fact, brief testing with the Toulbar2 solver on the same hardware supports this — runtimes are
of the same order of magnitude as those found by Allouche et al. (2014b).
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Segmentation, Matching Stereo and Photo Montage sets from CVPR are also omitted
from the benchmark.

It is important to note that the omissions are due to the in-the-middle implementa-
tion not being able to solve enough instances for a comparison to be meaningful, and
that this will be reflected in the discussion. In particular, it is already clear that the
algorithm has abysmal performance in the CP and WPMS categories. Comparisons
in the CVPR category are valid even with the omissions, since the competing solvers
show equally poor performance (i.e. solve no problems) in the omitted sets.

2.1 constraint function network (cfn)
This category contains six problem sets, all from the CFLib collection mentioned
by Allouche et al. (2014b). Most of them are real-world problems or generated to
approximate such problems, and all of them are readily available in the WCSP file
format mentioned earlier.

Auction The combinatorial auction problem has been previously used by Larrosa,
Heras, and de Givry (2008) and Sandholm (1999). In summary, the problem
allows bidders to bid for indivisible subsets of goods, and the optimization
problem is to maximize the revenue of the bid-taker. The problems are gener-
ated, but inspired by real-world scenarios. All variables are binary (the original
problem is a binary max-SAT problem), and the problems contain up to 246
variables and 12 000 constraints.

The problem set includes scheduling and path distribution problems, but omits
the regions distributionmentioned by Larrosa, Heras, and deGivry (2008, p. 228).

CELAR As detailed by Cabon et al. (1999) (and to some extent Meseguer, Rossi, and
Schiex 2006, p. 315 sq.), this problem set concerns radio frequency assignment,
i.e. the problem of providing communication channels from limited resources
while minimizing interference in the network. The problems where initially
introduced in 1993 by Centre d’Electronique de l’Armement, and are based on
real-world data.

The CELAR problems are fairly large, with variable domains ranging up to
44, with up to 458 variables and 2400 constraints. Problems included in the
benchmark are mainly the CELAR sub-instances (Cabon et al. 1999, p. 85) and
some GRAPH instances.

Pedigree This category contains problems relating to the Mendelian error correc-
tion on complex pedigree (Sánchez, Givry, and Schiex 2008; Meseguer, Rossi,
and Schiex 2006, p. 317 sq.), which is a real-world WCSP. The problem may be
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described as surveying a pedigree (similar to a family tree), detecting individu-
als that are erroneous in the sense that they do not conform to the Mendelian
laws of inheritance. Specifically, the problem formulation is to find the mini-
mum number of errors needed to explain erroneous data.
The problems are very large, with the number of variables reaching 10 000 and
almost 20 000 constraints, with variable domains around 25.

Protein Design Computational protein design (CPD) problems concern the iden-
tification of proteins performing given tasks. The actual problem statement is
the optimization of a complex energy function over amino acid sequences, and
it is described in length by Allouche et al. (2012).
The problems may be expressed by CFN or ILP models — only the CFN for-
mulations are used in this benchmark. The problems contain few (roughly 20)
variables with very large domains (up to 200), and around 170 constraints.

SPOT5 The SPOT5 problems are in essence planning problems, taken from real-
world planning of earth optical observation satellites. Given a number of im-
ages to be taken during one day using one of three instruments, an associated
importance and a set of imperative constraints (transition times, data flow lim-
itations, on-board recording capacity etc.), the problem is to find a feasible
subset of images that maximize the sum of the associated weights (Bensana,
Lemaître, and Verfaillie 1999).
The problems are large, with roughly 1000 variables and 22 000 constraints, but
the variables are all 4-ary.

Warehouse Originally presented by Kratica et al. (2001), the uncapacitated ware-
house location instances are randomly generated instances of the facility lo-
cation problem. In essence, the problem concerns the optimal placement of
facilities (in this case warehouses) while minimizing transport costs. These in-
stances were previously used by de Givry et al. (2005) in their evaluation of
existential arc consistency for CSPs.
These problem instances are very large. The variable domain reaches 300 for
some problems, with 1100 variables and 101 100 constraint functions.

2.2 constraint programming (cp)
Two problems (one real-world problem and one academic) from this category have
been included in this benchmark. All problems in these sets come from the MiniZinc
Challenge1 (Allouche et al. 2014b), and represent specific problems (representable as

1. http://www.minizinc.org/
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WCSP instances) defined through constraint programming languages. Note that CP
problems are not generally representable as WCSPs, which makes this category less
interesting in the context of WCSP or max-sum algorithms.

On-call Rostering This problem is a planning problem in which staff members are
assigned to days in a rostering period. Requirements on staff (both forced ros-
tering and staff being unavailable) affect the schedule, and work load should
be even over the rostering period. Additionally, staff members are not allowed
to be on call more than two days in a row, and prefer not to be on call for two
consecutive days. Other, similar constraints may also be present.
Problems in this set are generally fairly large in terms of domain size (up to
90), but only contain up to 2200 variables and 4500 constraints, which is small
compared to other sets.

Parity Learning The parity learning set contains instances of an optimization vari-
ant of theminimal disagreement parity (MDP) problem (Crawford, Kearns, and
Schapire 1994). A set of input/output samples of a Boolean function is given,
where the function outputs the parity of an unknown subset of the input vari-
ables. A stated number of the input/output samples are incorrect with respect
to the given function, and the goal of the parity learning problem is to find a
subset of the input variables that minimizes the number of errors.
In terms of problem size, instances of this set are fairly small. The number of
variables is below 760, and the number of constraints at most 1440.The variable
domain sizes are below 20.

2.3 computer vision and pattern recognition (cvpr)
In this category there are nine problem sets containing MRF instances from the
OpenGM2 benchmark (Kappes et al. 2013). The problems have been collected from
various sources (p. 1330), but all concern various computer vision tasks performed
on real-world images.

The size of these problems vary, with 20 to 500 000 variables, 210 to 2 000 000 con-
straints and variable domains reaching 20 for some sets.

2.4 max-csp
The seven max-CSP sets are restated binary CSP instances such that the optimal so-
lution of each instance is the minimum number of unsatisfiable constraints in the
original CSP problem. The instances are from the 2008 max-CSP competition.1,2 The

1. http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html
2. http://www.cril.univ-artois.fr/CPAI08/
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problems are mostly academic and random, with a relatively small number of vari-
ables and constraints (below 450 and 6500, respectively).

Black Hole “Black Hole” is a solitaire card game in which card from 17 piles are
moved to a centre pile according to certain rules. The instances in this set cor-
respond to a simplification of this solitaire game, and were used in the 2005
CSP Solver Competition. Gent et al. (2007) provide a theoretical background to
the CSP formulation of this problem.

Colouring In the well-known graph colouring (decision) problem, the objective is
to decide whether a given graph is k-colourable, i.e. whether each edge can
be assigned one of k distinct colours such that no adjacent (connected) nodes
have the same colour. As such, the instances are crafted academic problems.
The instances in this set originate from the the Center for Discrete Mathematics
andTheoretical Computer Science (DIMACS), and have been previously studied
by Benhamou and Saïdi (2007).

Composed These are random instances composed of an unconstrained CSP core
combined using binary constraints with auxiliary fragments. Such problems
have been previously used by Lecoutre, Boussemart, and Hemery (2004) and
Jussien, Debruyne, and Boizumault (2000).

EHI TheEHI problem instances are random3-SAT (SATproblemswhere every clause
consists of exactly three literals) problems converted into CSP instances with
binary constraints, then further restated as max-CSP problems. They have pre-
viously been considered by Lecoutre, Boussemart, and Hemery (2004).

Geometric This set contains problems generated from random points in the unit
square. For every pair of points, a hard constraint forbidding the pair is added
if they are within a certain distance from each other.These instances were used
in the 2005 max-CSP competition (Boussemart, Hemery, and Lecoutre 2005).

Langford The Langford instances are academic instances solving the problem of
arranging k sets of numbers ranging from 1 to n so that appearances of the
number m are exactly m places apart. A general formulation of the problem
has been presented by Linek (2003).

QCP The quasi-group completion problems (QCPs) are concerned with deciding if
a partial Latin square can be filled in order to obtain a full Latin square. The set
consists of 60 instances previously used in the 2005 CSP Solver Competition,
and the general problem has previously been studied by Gomes and Shmoys
(2002).
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2.5 markov random fields (mrf)
This category consists of seven sets, where the task is to estimate MAP probabilities
on MRF. The sets represent different underlying problems such as image alignment,
genetic linkage analysis, protein folding and other probabilistic problems.

All of these problems, except those in the Linkage set (whichwas used in the UAI’08
probabilistic inference evaluation and later by Favier et al. (2011) and Kishimoto and
Marinescu (2013)), are from the 2011 Probabilistic Inference Challenge.1 The prob-
lems were translated into their WCSP equivalent using a − log transformation (Al-
louche et al. 2014b).

Most problems are modest in size, with 60 to 2000 variables and 1000 to 10 000
constraints and variable domains below 30. Some problems have variable domains
approaching 500, and some have up to 6400 variables and 20 000 constraints. Notably,
the Segmentation set contains both binary and 21-ary formulations of each problem.

2.6 weighted partial max-sat (wpms)
From the field ofWPMS, only one problem set was kept. Problems in this field contain
a very large number of (binary, for obvious reasons) variables and cost functions with
very large arity — in fact, this is the only field in which cost function arity exceeds
5 (most other sets have cost functions of two variables only). The only kept problem
set, Max-Clique, has a cost function arity of 2. Discarded sets were omitted due to
memory concerns, likely caused by inefficient representation of the cost functions.
The instances were used in the 8th Max-SAT Evaluation.2

Max-Clique The Max-Clique problem, which may be restated as a max-SAT prob-
lem (Heras and Larrosa 2008), is the well-known problem of finding the largest
clique (complete subgraph) of a graph. It may be regarded as an academic prob-
lem, but has many applications to real-world problems and has seen extensive
study when it comes to tailored algorithms for the original formulation. The
original instances are from the second DIMACS challenge (Johnson and Trick
1996), and have been previously used by e.g. Östergård (2002) for benchmark-
ing max-clique algorithms.
When translated into their max-SAT equivalent, max-clique instances become
very large. While the number of variables is fairly low (below 3400), the num-
ber of constraints is very large (approaching 380 000).

1. http://www.cs.huji.ac.il/project/PASCAL/ 2. http://maxsat.ia.udl.cat/13/benchmarks/
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3 solvers
Three solvers used by Allouche et al. (2014b) are included in this benchmark. This
section will briefly describe their original field of application, give brief pointers to
the methods they employ, and relate them to the in-the-middle algorithm.

3.1 toulbar2
The Toulbar2 solver is an exact anytime solver for WCSPs based on a depth-first
branch-and-bound algorithm (Allouche, de Givry, and Schiex 2010). In addition to us-
ing a strong arc consistency property,1 the solver uses a sizeable bag of tricks includ-
ing variable elimination, dead-end elimination (de Givry, Prestwich, and O’Sullivan
2013) and pairwise decomposition (Favier et al. 2011).

The Toulbar2 solver is by far the most advanced solver in the WCSP field, with sig-
nificant amounts of theory behind it especially with respect to strong arc consistency
properties. It is therefore an interesting benchmark “opponent”, and matching it in
a benchmark (especially in the MRF, CFN and max-CSP categories) could indicate
potential for the in-the-middle algorithm in those categories.

3.2 cplex
The well-known CPLEX solver, which is an exact mixed integer linear programming
(MILP) solver rather than a WCSP solver, is also included in the benchmark. Using
the direct encoding described by Allouche et al. (2014b) of WCSPs into 0–1 ILP prob-
lems, CPLEX was found to have very good performance for some problem categories
an therefore it is also included in this benchmark. CPLEX is highly optimized propri-
etary software, but uses the well-known simplex and barrier interior point methods
to solve LP problems. Even so, previous results (Mason 2001; Ernst, Jiang, and Krish-
namoorthy 2006) have shown that the LP formulation of the in-the-middle algorithm
is competitive with CPLEX, and it is therefore interesting to see how the two relate
in the WCSP field.

3.3 maxhs
The MaxHS solver is a max-SAT and WPMS solver based on decomposing max-SAT
problems into several smaller SAT instances and solving these using cooperation
between an underlying SAT solver and a MILP solver (Davies and Bacchus 2011). It
has been found to perform well in solving non-random max-SAT instances (Davies
and Bacchus 2013), and is therefore a prime candidate for comparison in the WPMS
(and to some extent max-CSP) categories.

1. Existential directed arc consistency, as presented by de Givry et al. (2005).
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Results

This chapter will review the results of the benchmark, and compare these to previous
results due to Allouche et al. (2014b). Results from two modified variants, using the
“push” operation and using the non-fractional DP update, will also be reviewed and
compared to the benchmark of the standard algorithm. Problem sets which yield
good performance will be identified and examined further.

The chapter is divided into three parts. First, benchmarking results of the standard
in-the-middle algorithm will be presented. Then, results from both modified variants
will be presented along with the chosen subset of benchmarking problems applied
to these specific variants. Finally, the results are discussed and interpreted in further
depth.

1 standard algorithm
Benchmarking the standard algorithm on the large set of problems provided earlier
produced mixed results. The number of problems (out of the total number available
from each set) that were solved by the in-the-middle algorithm indicate that the al-
gorithm is able to solve the same types of problem as the Toulbar and CPLEX solvers,
with a few exceptions. This implies that the algorithm may be useful in most of the
fields from which problems were drawn, but does not indicate whether it is useful in
its current state, performance-wise.

However, as table 1 shows, the algorithm performed very well when comparing
runtime to other solvers and in fact it was the fastest for almost half of the sets
after removing incomplete data (runtimes based on data where less than 70% of the
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problems were solved). In most problem sets the optimality gap was small as well (for
several sets optimal solutions were found) with the notable exception of the Scene
Decomposition set.1

It should be noted that Toulbar2, CPLEX and MaxHS may be at a slight disadvan-
tage in terms of runtime presented in table 1. Brief testing of the Toulbar2 solver
indicated that the difference in hardware between the in-the-middle runtimes and
those provided by Allouche et al. (2014b) may skew the results in favour of the in-
the-middle solver, with actual runtimes on the same hardware being 0% to 50 % lower
for Toulbar2. Fortunately, this difference only makes comparisons in a small number
of the sets (Pedigree, In-Painting andMax-Clique) potentially invalid, since the differ-
ence in runtime between solvers is large in most cases.

The algorithm shows promise especially in theMax-CSP andMRF categories, where
overall solution quality is good and the algorithm had the best performance for sev-
eral sets. Compared to both Toulbar2 and CPLEX, the in-the-middle algorithm ap-
pears to be a useful complement providing (good) approximate solutions to prob-
lems the other solvers have great difficulty in solving. Results from the CP category
are also promising, but these problem sets are small and not all CP problems have
max-sum formulations.

Figure 4 shows accumulated runtimes for two of the sets in which the algorithm
performed well. The algorithm has a consistent advantage in the Segmentation set
(fig. 4a), which is reflected by themean runtime in table 1. Figure 4b highlights amore
interesting situation. It shows performance in the DBN set, in which the algorithm
has an advantage in total runtime across the whole set, almost entirely due to good
performance on the more difficult problems. In fact, the runtimes are fairly evenly
distributed whereas the runtimes for CPLEX and Toulbar vary significantly between
the difficult and easy problems of the set.

The largest problem solved optimally by the in-the-middle algorithm was an in-
stance of in the In-Painting set with search space dn = 414 400. The smallest unsolved
instances are in the Auction set, with search spaces dn ≈ 280.

2 extensions and improvements
Two variants of the algorithm have been discussed earlier in the thesis, with differ-
ent purpose and functionality. Benchmark data was produced for these variants as
well, but on a limited subset of the problems chosen specifically to test the variants
and their intended purpose. Results for both variants will be reviewed in in order to
determine if they have the desired effect, and if their function is satisfactory with
respect to the drawbacks they introduce.

1. Note however that the Toulbar2 solver finds the same non-optimal solutions in this problem set.
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Table 1:Optimality gap and runtime. For each problem instance used in the benchmark,
the in-the-middle solver runtime is compared the other solvers included in the bench-
mark, and the objective value is compared to the best known optimum from Allouche et
al. (2014b). Problem sets marked with † include unsolved problems (no feasible solution
found by the in-the-middle solver), and n/a values indicate that none of the problems in
the set were solved. Runtimes based on less than 70 % of the problems are faded, while
the best runtime of those remaining is emphasized.

Mean solution time (s)
Category Set Gap (%) ITM Toulbar2 CPLEX MaxHS

CFN Auction† 0,000 82,86 8,20 0,03 0,04
CELAR† 0,000 193,34 22,38 1200,00 n/a
Pedigree 1,805 2,38 4,13 0,71 0,03
ProteinDesign 0,000 43,40 2,33 1200,00 n/a
SPOT5† 0,005 6,44 1200,00 0,47 0,82
Warehouse† 0,000 55,86 0,16 0,05 0,56

CP OnCallRostering† 0,000 10,35 71,04 1200,00 18,95
ParityLearning 0,000 34,53 368,08 1200,00 222,69

CVPR GeomSurf 2,091 0,05 0,07 6,62 27,11
InPainting 0,018 1009,51 1200,00 1200,00 n/a
Matching 0,000 17,93 4,12 1200,00 n/a
ObjectSeg 0,000 1200,00 1200,00 1200,00 n/a
SceneDecomp 75,455 0,02 0,02 1200,00 521,16

Max-CSP BlackHole 0,901 58,89 1200,00 315,05 0,64
Coloring 0,000 1,69 0,41 1,28 0,03
Composed 0,134 20,34 0,12 5,76 32,69
EHI 0,900 191,22 1200,00 1200,00 n/a
Geometric 1,082 98,98 0,62 1200,00 0,15
Langford 1,311 70,78 600,26 851,61 0,27
QCP 1,292 43,26 1200,00 1200,00 0,13

MRF DBN 0,000 37,90 0,18 48,28 20,02
Grid† n/a n/a 1200,00 160,64 542,85
ImageAlignment 0,000 0,58 1,80 1200,00 n/a
Linkage† 0,000 41,07 32,05 327,63 16,52
ObjectDetection 6,466 279,86 1200,00 1200,00 n/a
ProteinFolding† 0,000 1200,00 23,14 116,74 n/a
Segmentation 0,000 0,03 0,15 600,07 0,30

WPMS MaxClique† 2,583 257,09 389,75 481,55 8,80
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(a) The Segmentation set of the MRF category.

1

100

10000

0 30 60 90
Number of problems

Cu
m
ul
at
iv
e
CP

U
tim

e

Solver
In-the-middle
Toulbar2
CPLEX
MaxHS

(b) The DBN set of the MRF category.

Figure 4: Accumulated runtime of the algorithms in three different sets, sorted by run-
time individually for every solver. Note the logarithmic scale of the y axis.
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Table 2: Optimality gap and runtime using the “push” operation. For several chosen
problem sets, the “push” variant runtime is compared to the results obtained by the
standard algorithm (see table 1).

# solved Gap (%) Mean time (s)
Category Set Std. “Push” Std. “Push” Std. “Push”

CFN Pedigree 10 10 1,805 1,512 2,38 5,61
CVPR GeomSurf 600 600 2,091 2,091 0,05 0,04

SceneDecomp 715 715 75,455 75,455 0,02 0,02
Max-CSP BlackHole 37 37 0,901 1,081 58,89 31,33

Langford 4 4 1,311 1,554 70,78 56,29
QCP 60 60 1,292 1,304 43,26 38,07

MRF ObjectDetection 37 37 6,466 6,466 279,86 167,02

2.1 the “push” operation
The purpose of the “push” operation is to decrease the optimality gap of the approxi-
mate algorithm once a feasible solution has been found. Six problem sets from table 1
were therefore chosen for this benchmark, all with comparatively bad solutions (op-
timality gaps close to or above 1 %) but competitive runtimes. The expectation was
to obtain better solutions while maintaining good runtimes.

Table 2 shows the results of benchmarking the “push” operation on the selected
problems. Surprisingly, the optimality gap did not improve for a majority of the prob-
lems. In fact, for some sets the optimality gap was increased, and the runtime of the
algorithm improved instead (which given the already competitive runtime of the
standard algorithm is an unwanted result). In fact, the only problem set for which
the expected result was obtained is the CFN Pedigree set.

2.2 the non-fractional dp update
The non-fractional DP update, which is equivalent to the well-known max-sum algo-
rithm and obtained by fixing α = 1 of the fractional DP update, should theoretically
improve convergence at the expense of solution quality. To test this a large num-
ber of problems from table 1 were selected, all exhibiting low optimality gaps and a
reasonable but noncompetitive runtime. The expectation was to decrease runtime at
the expense of solution quality. Additionally, some sets with zero optimality gap and
competitive runtime were included to observe the effects of this variant on already
well-performing problem sets.

Table 3 shows the results of benchmarking the non-fractional DP algorithm against
the selected problems. As expected, the runtime of all sets (except the Auction set)
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Table 3:Optimality gap and runtime using the non-fractional DP update (setting α = 1).
For several chosen problem sets, the non-fractional DP runtime is compared to the results
obtained by the standard algorithm (see table 1). Problem sets marked with † include
unsolved problems (no feasible solution found by the non-fractional DP update), and
n/a values indicate that none of the problems in the set were solved. Runtimes based on
less than 70 % of the problems are faded.

# solved Gap (%) Mean time (s)
Category Set Std. α = 1 Std. α = 1 Std. α = 1

CFN Auction† 102 0 0,000 n/a 82,86 n/a
ProteinDesign† 10 9 0,000 0,000 43,40 0,72
Warehouse† 38 53 0,000 0,000 55,86 0,68

CP ParityLearning 7 7 0,000 0,000 34,53 3,13
CVPR Matching 4 4 0,000 0,000 17,93 4,55

Max-CSP BlackHole† 37 36 0,901 1,081 58,89 13,17
Coloring 22 22 0,000 0,000 1,69 0,21
Composed 80 80 0,134 0,000 20,34 1,00
Geometric 100 100 1,082 0,941 98,98 13,37
Langford 4 4 1,311 0,967 70,78 7,39
QCP 60 60 1,292 2,123 43,26 4,42

MRF DBN 108 108 0,000 0,000 37,90 0,45
ObjectDetection 37 37 6,466 6,466 279,86 0,84
Segmentation 100 100 0,000 0,000 0,03 0,13
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Figure 5: Accumulated runtime of the standard and non-fractional algorithm in the
Black Hole set, sorted by runtime individually for each variant. Note the logarithmic
scale of the y axis.
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was improved significantly — between 4 and 350 times — in some cases with little or
no increase in the optimality gap.The runtime improvements are most significant for
the CFN andMRF problems, where the non-fractional DP variant is competitive with
all three other solvers. Three problem sets from the max-CSP category additionally
show improved optimality gaps as well as better runtimes. The only set in which
the non-fractional update performs significantly worse is the Auction set, in which
it fails to solve any problems at all.

Figure 5 illustrates the utility of the non-fractional DP update. While it is slower
for very small problems in the Black Hole set, it is significantly faster in solving the
larger problems.

3 discussion
Analysing the shortcomings of the algorithm it is clear from table 1 that it had sig-
nificant difficulties in solving the problems from some categories, while it was very
successful in others.

The algorithm shows some promise in the WPMS category. While most problem
sets in this category were omitted due to memory concerns, the algorithm has good
runtime performance in the remaining set. The current implementation represents
binary variables of the problem using two distinct variables internally, which could
be improved by representing binary variables using only one variable. This could
improve both memory use and runtime, making the algorithm more interesting for
approximate applications in the WPMS field. The same variable representation issue
applies to problems in the Auction and DBN sets.

One would expect the algorithm to perform well on problems with many hard
clauses (due to the sparse representation of constraint components including these
implicitly, resulting in fewer clauses to operate on in the constraint update), and this
is the case for such sets included in the benchmark. The algorithm performs well in
all sets where a majority of the clauses are hard (On Call Rostering, Parity Learning
and Pedigree), but performs worse in sets where only 25 % to 50 % of the clauses are
hard (Max-Clique, Protein Design and Linkage).

The number of zero-value clauses does not seem to have any effect on the per-
formance of the algorithm, suggesting that the tie-breaking method employed effi-
ciently resolves any resulting ties.

Compared to the results of CPLEX, the LP-based competitor in the benchmark, the
in-the-middle algorithm performs better in most sets. This indicates that the transla-
tion of the algorithm to a max-sum based approach is a better approach than trans-
lating max-sum problems to LP instances. The only sets in which CPLEX performs
decisively better (those fromCFN)mainly contain problems of an operations research
character (resource allocation, planning etc.).
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Runtimes could potentially be improved by re-implementing the algorithm using
single-precision or integer arithmetic. The implementation used in the benchmark
uses double-precision arithmetic throughout in order to take advantage of the exist-
ing framework of the LP formulation, for instance when considering sign changes in
the modified variable components and when applying noise for tie-breaking. Single-
precision arithmetic could probably be used with little impact on either the imple-
mentation or the solution quality achieved by the algorithm. The problems used in
the benchmark all have integer costs (in fact, the Toulbar2 solver appears to work
exclusively with integer-valued WCSPs), so in theory it would be possible to use
integer arithmetic. This would however require a reimplementation of the code de-
tecting changed variable components, potentially causing worse performance, and
would also require a new tie-breaking mechanism.

3.1 extensions and improvements
The performance of the two variants of the algorithms was fairly unexpected, espe-
cially with respect to the “push” operation. While the optimality gap was expected to
decrease, with a corresponding increase in runtime, the opposite happened instead.
The reason for this may be that the algorithm, in trials after the “push” operation has
been applied, is more conservative than the original algorithm in that themaximumκ
value will be lower. This means more trials fail to force an integer solution, reducing
the number of trials and as a consequence reducing the runtime as well as increasing
the optimality gap. A more correct implementation would take into consideration
the reduction of κ caused by the push operation when calculating the maximum κ
value of subsequent trials.

Due to the results presented above, the “push” operation is not as interesting when
applied to the max-sum algorithm as it is in the original LP formulation.

The result of the non-fractional DP update was more in line with expectations, but
nonetheless unintuitive given the mostly insignificant changes in solution quality.
Solution quality was in fact largely maintained while improving runtimes signifi-
cantly. The maintained solution quality may be due to the problem instances having
very large ranges between trivial upper and lower bounds, with many solutions of
similar cost — this would result in very small changes in the optimality gap, which
may not show in the data. However, the optimality gap is still small in all problem
sets, which may be an acceptable compromise given the very low runtimes.

For one problem set (Auction) the non-fractional DP update showed abysmal per-
formance, failing to solve any instances. It seems that the reason for this is that the
algorithm never reaches a situation where the solution doesn’t change between two
iterations, instead oscillating between a set of solutions. This could potentially be
resolved by increasing the threshold ϵ and amplitude ζ of the tie-breaking noise.

With these results in mind, the non-fractional algorithm may be very useful when
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exact solutions aren’t required. The non-fractional update variant may also be useful
as part of a broader strategy, by for instance providing fast and good upper bounds
or by providing fast unproven solutions while waiting for exact solvers. Another
interesting direction for the non-fractional DP update could be to run it in parallel
with the standard algorithm (perhaps sharing the immutable constraint components
in memory), again providing quick approximate solutions as well as good solutions.
This would also be useful in e.g. the Black Hole set, where the standard algorithm
performed better on easy instances and the non-fractional DP update was better on
difficult ones.

3.2 limitations
The benchmark has a few limitations which should be mentioned. For instance, the
implementation as it stands has the capability to combine regular WCSP constraints
with linear (set-partitioning) constraints (Grohe andWedelin 2008, p. 102), for which
more efficient constraint updates may be constructed. For some problem sets, this
could result in runtime improvements. However, identifying such constraints in a
preprocessing stage increases the complexity of the implementation.

Another limitation of the benchmark is the omission of most WPMS instances.
This is a category where conventional WCSP solvers have difficulties due to the large
cost function arities, which causes issues with local consistency enforcing. In theory,
in-the-middle algorithm has no such issues with large cost function arities, but the
memory requirements for such problems are significant. Including these problems
in the benchmark would likely require better hardware and/or a specialized imple-
mentation (specifically, simplifications can be made when solving WPMS problems
due to their binary variable domains).

Finally, the benchmark does not take into consideration the structure of the prob-
lems used. It may well be the case that some problems can be modelled or expressed
in a way that makes them easier to solve (for instance, Allouche et al. (2014b) men-
tion that some problem translations are not appropriate for LP solvers because they
decompose linear constraints). By tailoring each problem to each solver (for instance,
in-the-middle has the ability to combine linear constraints and general max-sum con-
straints) performance may be significantly improved.
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Conclusions

In this final chapter I will attempt to consolidate the results of the thesis work, con-
clusively addressing the objective and purpose of the thesis itself. I will do this by
identifying already apparent applications of the in-the-middle algorithm within the
field of graphical models while also identifying the limitations and weaknesses of
the algorithm, and by pointing out some areas of further research which I believe
are tractable and meaningful to pursue when it comes to applying the algorithm to
optimization within that field.

1 applications
Since the performance of the algorithm varies widely between different problem sets,
one cannot immediately identify any single field in which the algorithmwould be de-
cisively competitive. However, the good overall performance and low optimality gap
of the algorithm — especially when applied to problem sets in which other solvers
struggle — suggest that the algorithm may be a good candidate for a so-called port-
folio approach, wherein several solvers are applied in parallel.

The same properties, especially the small optimality gap, suggest that the algo-
rithm may be useful in applications where good upper bounds on the solution are
required. Since the non-fractional DP variant of the algorithm provides such upper
bounds quickly, that variant of the algorithm may have applications in branch-and-
bound applications. In combination with an exact solver, the in-the-middle algorithm
may serve as an approximate anytime solver providing good approximate solutions
while waiting for the exact solver to supply provably optimal solutions.
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2 further research
The algorithm shows promise in several categories of those included in the bench-
mark. In these fields it would therefore be of interest to extend the algorithm and
develop the underlying theory to further improve performance in these fields.

Previouswork,mainly from the Institut national de la recherche agronomique (INRA),
has provided strong theory on graphical model optimization especially with respect
to arc consistency (Cooper et al. 2010, 2008; de Givry, Schiex, and Verfaillie 2006;
de Givry et al. 2005). The in-the-middle algorithm, as previously detailed, uses a rel-
atively weak arc consistency property (general arc consistency). If stronger notions
such as existential (de Givry et al. 2005) or optimal soft (Cooper et al. 2010) arc con-
sistency can be extended to the framework used by the in-the-middle algorithm, it
may increase performance and solution quality.

Another area requiring further research is the design of the constraint updates,
especially their effect on the optimality guarantee of the algorithm. A common situ-
ation for the algorithm is that the heuristic finds optimal solutions but cannot guar-
antee the optimality, which in turn means the algorithm wastes time in subsequent
trials. Constructing constraint updates with better guarantees or providing stronger
theory on other parts of the algorithmmay therefore improve the performance of the
algorithm. Additionally, common constraint types such as the all-different constraint
may benefit from specialized constraint component updates.

There are also many tricks, some of them used in LP implementations of the in-the-
middle heuristic, that may be applied to the algorithm. In this benchmark, only tie-
breaking using noise was introduced. Further modifications that would require fur-
ther research include not updating constraint components for which the associated
variable components are unchanged and using the existing LP or set-partitioning
constraint update (Grohe and Wedelin 2008, p. 102) for constraints of that type. Both
these modifications may improve runtime for some problems.

Finally, specializations of the implementation may prove interesting in some ar-
eas. For example, the WPMS category of problems would benefit from a formulation
where the binary variables are stored in a single, shared variable component element
instead of two different ones as in the current implementation. Similar simplifica-
tions based on various assumptions of the problem structure may be introduced in
the constraint component updates.
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