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Abstract

Background: In the automotive industry, as the complexity of ECU’s increase, there
is need for creation of models that facilitate early tests to ensure functionality; but
there is little guidance on how to write these tests in order to achieve maximum
coverage.

Objective: We evaluated our prototype CANoe™ which uses the CANoe and
GraphWalker tools Vs CANoe with regard to coverage maximization of generated
test cases from the viewpoint of both software developers and software testers. The
possibilities and limitations of this approach are also stated.

Method: We conducted a controlled experiment using a nested design with the
authors executing sample functions using the prototype and CANoe tools multiple
times (240 runs) for each tool. The coverage data from the experimental runs of the
two treatments i.e. CANoet and CANoe was collected and statistically analyzed.

Results: CANoe™ was significantly more effective than CANoe at an alpha level
of 0.05 for a one-tailed test while using the Mann-Whitney-Wilcoxon statistical test.

Limitations: Using the presented approach could be unfeasible if one attempts
to test the whole system in one go. It is best suited for when a specific module of
the system needs to be tested after which one can move to the next module and
then cover the whole system in the long run.

Conclusion: The results reinforced the existing evidence regarding the superiority
of using model-based testing techniques like CANoe™ over using testing methods like
CANoe in automotive systems.

Keywords: Model-Based Testing, Graph Theory, GraphWalker, CANoe, Tran-
sition Based Modelling, Software Testing, ECU, Automotive Industry, Controlled
Experiment.






Acknowledgements

I would like to thank our supervisor, Richard Torkar, for his support and guidance
throughout this thesis. Special thanks go to our industrial supervisors; Alixan-
der Ansari and Daniel Nilsson for providing valuable input throughout this thesis
project. My thanks go to my co-author Lynnie Nakyanzi for her co-operation during
this thesis work. Additionally i thank Emma Fornander for the CANoe training she
gave to us. Last but not least, I want to thank my parents, my wife Amna, my sister
Natalie, my brother Khaled and the family at large for all their love and support.

Rashid Darwish, Gothenburg, June 2016

I would like to express my deepest gratitude to our supervisor, Richard Torkar,
who has guided us through the work of the thesis. We thank Richard, not only for
his useful remarks on the report, but also for sharing his knowledge within the field
and unabridged willingness to aide us during the work on the thesis. I would also like
to appreciate our industrial supervisors; Alixander Ansari and Daniel Nilsson for all
their support and guidance throughout the project as well as Emma Fornander for
the CANoe training she gave to us. My thanks go to my co-author Rashid Darwish
for his co-operation during this thesis work.

Special thanks go to the Swedish Institute for granting me a scholarship to study
my master program, it will always be much appreciated.

Finally i want to thank my mother, my husband Ivan, my brother Lyndon and
my friends for all their love and endless support during my education, without them
i wouldn’t have come this far.

Lynnie Nakyanzi Gwosuta, Gothenburg, June 2016

vii






1

Contents

List of Figures
List of Tables
Introduction
1.1 Problem Statement . . . . . . . ... ... ... ... ... ...
1.2 Research Objectives . . . . . . . . .. .. ... ... .
1.3 Context . . . . . . . . e
1.4 Research Methods . . . . . . . . .. .. ... .. ... .. ... ....
Background
2.1 Technology Under Investigation . . . . .. ... ... ... ... ...
2.1.1 Transition Based Modelling with (yEd Graph Editor) . . . . .
2.1.2  GraphWalker . . . . . ... ..o
2.1.3 CANoe. . . . . . . e
2.2 Alternative Technologies . . . . . . . . .. .. .. ... ... .....
2.3 Relevance to Practice . . . . . ... ... .. ... ... ... .. ..
CANoe™t
3.1 Modelling . . . .. ..
3.2 GraphWalker . . . . . . . . .. ...
3.3 CANoe. . . . . . . e
3.4 Execution . . . . . . . ...
3.5 Effort and cost considerations . . . . . ... ... L.
Related Work
4.1 Related Work . . . . . . . ...
Experimental Design
5.1 Goals . . . . .
5.2 Experimental Units . . . . . ... ... ... .. ...
5.3 Experimental Material . . . . . .. ... ..o
5.4 Tasks . . ..
5.5 Hypothesis, Parameters and Variables . . . . . ... ... ... ...
5.6 Design . . . . . ..
5.7 Procedure . . . . . . . ...
5.8 Analysis Procedures . . . . . ... ...

xi

xiii

13
13
14
14
14
15

17
17

21
21
21
22
22
22
23
24
24

ix



Contents

6 Analysis 25
6.1 Descriptive Statistics . . . . . . . . ... ... 25
6.1.1 Without Faults . . . . . . ... .. ... ... ... ... 25

6.1.2 OneFault . . . ... ... . ... ... 26

6.1.3 Two Faults . . . . . . . . . ... ... ... 26

6.1.4 Custom Faults . . . ... .. ... .. ... ..., 27

6.1.5 General Conclusion . . . . . . . .. . .. ... ..., 27

6.2 Dataset Preparation . . . .. ... ... ... .. ... ... ..... 28
6.2.1 Without Faults . . . . .. ... .. .. ... ... ... ..., 28

6.22 OneFault . ... ... ... ... .. 29

6.2.3 Two Faults . . . .. . . . . ... ... .. 30

6.2.4 Custom Fault . . . . ... ... ... ... 31

6.2.5 General Conclusion . . . . . . . . . ... 31

6.3 Hypothesis Testing . . . . . . . ... ... ... ... .. 33
6.3.1 Without Faults . . . . . . ... ... ... ... ... ..... 33

6.3.2 OneFault . ... .. ... . ... ... 34

6.3.3 Two Faults . . . . . . . . ... ... 35

6.3.4 Custom Fault . . . . . . .. ... ... 35

6.3.5 General Conclusion . . . . . . . ... ... ... ... .. 36

7 Discussion 37
7.1 Evaluation of Results and Implications . . . . .. .. ... ... ... 37
7.1.1 Without faults . . . .. . ... ... ... 38

712 Onefault . ... .. ... ... 38

713 Twofaults . . . . . . . . . 38

714 Custom fault . .. .. ... ... 39

7.1.5 General conclusion . . . . ... .. ... ... ..., 40

7.2 Inferences . . . . . . . .. .. 42

8 Threats to Validity 43
8.1 Conclusion Validity . . . . . . .. ... ... .. 43
8.2 Internal Validity . . . . . . . . . . . .. .. 43
8.3 Construct Validity . . . . . . . . ... .o 44
8.4 External Validity . . . . ... ... ... .. ... ... ... 44

9 Conclusions 45
Bibliography 47
A Appendix 1 I
B Appendix 2 111
C Appendix 3 \%



2.1
3.1

5.1

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

7.1

List of Figures

Sample model for ignition functionality . . . . . .. .. ... ... ..
Context diagram for CANoe®™ . . . . . . . .. ... ... ... . ...

Nested design for coverage and tool usage showing how the functions
will be crossed in the first two runs and subsquently . . . . . . . . ..

This is the density plot for failed testcases in CANoe and CANoe™
without faults. No faults were discovered using both the tools hence
the distribution of the density plot. . . . . ... .. ... ... ...
These are the density and box plots for failed testcases in CANoe
with one fault injection. . . . . . . . .. ... oL
These are the density and box plots for failed testcases in CANoe™
with one fault injection. . . . . . . . .. ... ... L.
These are the density and box plots for failed testcases in CANoe
with two fault injections. . . . . . . . . . ... .. ... ...
These are the density and box plots for failed testcases in CANoe™
with two fault injections. . . . . . . . .. ...
These are the density and box plots for failed testcases in CANoe™
with a custom fault injection. . . . . . . . ... ... ... ...
These are the density and box plots for failed testcases in CANoe for
the general conclusion . . . . . . .. ...
These are the density and box plots for failed testcases in CANoe™
for the general conclusion . . . . . . .. .. ... ... ... ...
This is the Q-Q plot for failed testcases in CANoe and CANoe™ with-
out fault injections. . . . . . .. ... oL
This is the Q-Q plot for failed testcases in CANoe and CANoe™ with
one fault injection. . . . . . .. ...
This is the Q-Q plot for failed testcases in CANoe and CANoet with
two fault injections. . . . . . ...
This is the Q-Q plot for failed testcases in CANoe™ with a custom
fault injection . . . . ... ..o
These are the Q-Q plots of failed testcases in CANoe and CANoe™
for the general conclusion. . . . . . . .. .. ... ... ...

Effect size for the two faults injection using Vargha and Delaney’s
A-statistic. . . . . . . .

X1



List of Figures

Xii

7.2

7.3

Al

C1
C.2
C.3

C4
C.5

C.6
C.7

C.8

Effect size for the custom faults injection using Vargha and Delaney’s
A-statistic. . . . . . .. 40
Effect size for the general conclusion using Vargha and Delaney’s A-
statistic. . . . . . Lo 41
Sample model for the four modelled functionalities i.e. closing and

opening of a car door, starting and stopping the ignition, rolling up
and down the windows and turning on and off of lights in a car system 1

Collected data for the two tools without faults, continued on next page V
Collected data for the two tools without faults . . . . . .. .. .. .. VI
Collected data for the two tools with one fault injection, continued

on Next PAge . . . . ... VI
Collected data for the two tools with one fault injection . . . . . . . . VII
Collected data for the two tools with two random faults Injected,

continued on the next page . . . . . . .. ... ... ... ... VII
Collected data for the two tools with two random faults Injected . . . VIII
Collected data for the two tools with a custom fault Injected, contin-

ued on the next page . . . . . . . . ..o VIII
Custom Fault Injection . . . . . . . ... ... ... ... ... IX



6.1

6.2

6.3

6.4

6.5

6.6

List of Tables

Descriptive statistics of CANoe and CANoet with one fault injec-
tion. CANoe™ has a higher mean of 27.18 as it finds more faults as
compared to CANoe whose mean is 20.35. . . . . . . ... ... ...
Descriptive statistics for CANoe and CANoe™ with two fault injec-
tions. In comparison to Table 6.1, Mean for CANoe(14.42) decreases
as less faults are discovered whereas CANoe™ mean(43.42) increases
as more faults are discovered. . . . . . . ... ... L.
Descriptive statistics for CANoe and CANoe™ for the general conclu-
sion. All the collected data is used in this scenario to describe the
statistics. As seen from the mean, CANoe™ still has a high mean of
1.96 due to the number of faults discovered to the disadvantage of
CANoe whose mean is 8.69. . . . . . . . .. .. ... ... .. ...,
Mann-Whitney-Wilcoxon table of results for the two tools with one
fault injection. . . . .. ..o o
Mann-Whitney-Wilcoxon table of results for the two tools with two
fault injections. . . . . . ...
Shapiro wilk and Mann-Whitney-Wilcoxon test tables. . . . . . . ..

x1il



List of Tables

Xiv



1

Introduction

This chapter presents the Problem Statement, Research Objectives, Context and
research methods for this thesis.

1.1 Problem Statement

Today as software in Electronic Control Units (ECUs) gets more and more complex,
there is an ever increasing need for efficient testing processes in the automotive
industry. ECUs is a generic term for any embedded system that controls one or
more of the electrical system or subsystems in a motor vehicle [35]. Automated
model based software testing has been proposed but due to the complexity of the
systems being built, there is a challenge to generate automated test cases that are
effective and have a high coverage [9].

With this in mind, creating a method that enables the developers to model the
behavior of the desired system using graph theory techniques and generate auto-
mated test cases to intelligently test the system functionality is most sought after.
Addressing this challenge will give an insight into the possibilities and limitations
of using model based testing with graph theory techniques to generate effective test
cases that have a maximum coverage.

The knowledge will be applied in the automotive industry by capitalizing on the
advantages of two tools i.e. CANoe! and GraphWalker? to generate and execute test
cases with maximum coverage. By maximum coverage we mean how much of the
system’s functionality is exercised by the generated test cases.

This will verify the system requirements by the use of models and validate that
the system under test meets the customer’s needs. Additionally, our assumption is
that in the long run this approach will reduce the costs of regression testing® and
the developer efforts will be channeled to exploratory and negative testing.

1.2 Research Objectives

We aimed to evaluate our built integration prototype of the CANoe and Graph-
Walker tools when used together to generate and execute tests as well as ensure
maximized coverage for the executed tests. We shall subsquently refer to our de-

thttp:/ /vector.com/vi_canoe_en.html
2http:/ /graphwalker.github.io/
3https://en.wikipedia.org/wiki/Regression_ testing
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veloped prototype that uses CANoe and GraphWalker tools as CANoe™. This was
carried out from the point of view of both the software developers and software
testers in the automotive industry.

With this thesis, we expect to have both an industrial and an academic impact. In
terms of academia, we shall address challenges which have previously been identified
by empirical studies [4] that relate to maximizing coverage in automated model based
testing. Additionally by addressing this challenge, we shall get insights into the
possibilities and limitations in regards to this approach as well as aim at publishing
this thesis.

As the targeted challenge is highly relevant to industry, successfully addressing
it will have an impact on the industry. Furthermore, if the thesis shows enough
potential, there is a realistic chance that the proposed solution will be directly
transferred to the automotive industry.

1.3 Context

The prototype that was evaluated made use of sample ECU functionality e.g. closing
and opening of a car door, starting and stopping the ignition, rolling up and down
the windows and turning on and off of lights in a car system that was simulated in
the CANoe software.

Andrea et al. notes that empirical studies of randomized algorithms do not in-
volve human subjects and the number of runs (i.e. n) is only limited to computational
resources [2]. Further more, they state that the probability distribution of a ran-
domized algorithm can be analyzed by running such an algorithm several times in
an independent way, and then collecting the appropriate data about it’s results and
performance.

Since CANoe™ contains a notion of randomness, we chose to evaluate the pro-
totype ourselves as opposed to using human subjects. The authors acted as the
participants and took part in the experiment as they executed the sample functions
multiple times while using both the CANoet and CANoe tools. Coverage data of
the two tools was collected and later used in the analysis and discussion chapters to
ascertain which of the two tools gave more advantages and/or disadvantages than
the other.

Randomization was used to assign the participants to the treatments in order to
assume independence and validity of results. The participants who had an average
experience of five years in the software engineering field were involved in the two
treatments i.e. the use of CANoe and then the use of the new prototype which is
CANoe™ .

The prototype (CANoe™) took six person months effort and was evaluated against
the current state of practice which is the use of the CANoe tool without the notion
of coverage. The participants used the sample functionality for multiple runs of the
two treatments and the test metrics from the execution of the functions were noted
down.
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1.4 Research Methods

In software engineering, empirical methods are crucial, since they allow for incor-
porating human behaviour into the research approach taken. The main motivation
is that it is needed from an engineering perspective to allow for informed and well-
grounded decisions to help evaluate as well as validate the research results [36]. Here
we describe four research methods; case studies, surveys, post-mortem analyses and
controlled experiments. We also motivate why controlled experiments was our best
option.

Case studies are conducted to investigate a single entity or phenomenon within
a specific time space. They normally study real projects and hence are used for
monitoring projects, activities or assignments. Data is collected for a specific purpose
throughout the study and it has a low level of control as it is an observational study.
An advantage of case studies is that they are easier to plan but the disadvantages are
that the results are difficult to generalize and harder to interpret, i.e. it is possible to
show the effects in a typical situation, but it cannot be generalized to every situation.
Furthermore, researchers are not completely in control of a case study situation.
This is good, from one perspective, because unpredictable changes frequently tell
them much about the problems being studied. The problem is that one cannot
be sure about the effects due to confounding factors. The difference between case
studies and experiments is that experiments sample over the variables that are being
manipulated, while case studies sample from the variables representing the typical
situation. Also one does not have the same level of control over a case study as in
an experiment.

Surveys are referred to as research-in-the-large (and past), since it is possible
to send questionnaires to or interview large numbers of people covering whatever
target population is available. Thus, surveys are often an investigation performed in
retrospect, when e.g. a tool or technique, has been in use for a while. The primary
means of gathering qualitative or quantitative data are interviews or questionnaires.
The advantage is that they are relatively easy to administer since they can be
administered remotely and there is also a capability of collecting data from a large
number of respondents. The disadvantage is the cost and time, which depend on
the size of the sample, and are also related to the intentions of the investigation.

Post-mortem analyses are conducted on the past as indicated by the name but
they also focus on a typical situation that has occurred. Thus, post-mortem analyses
are similar to case studies in terms of scope and to surveys in that they look at the
past. The basic idea behind post-mortem analyses is to capture the knowledge and
experience from a specific case or activity after it has been finished. Post-mortem
analyses help to collect data and feedback which can be used in the future for
improvements. It is easy for the people being analyzed to conceal information out
of anxiety about negative consquences, this can greatly affect the analysis being
carried out.

Finally controlled experiments are often conducted to compare a number of dif-
ferent techniques, methods, working procedures and are appropriate when testing
the effects of a treatment. In an experiment, the state variable can assume different
values and the objective is normally to distinguish between two situations. The
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researcher has control over the study and how the participants carry out the tasks
that they are assigned to. More so, the study can be planned and designed to en-
sure high validity, although the drawback is that the scope of the study often gets
smaller.

We chose to carry out a controlled experiment as we wanted to have control over
the participants and since the prototype involved random algorithms, executing it
several times made more sense for an experiment to be carried out while ensuring
high validity. Most importantly, the results of an experiment are usually more
generalizable and experiments have a high level of replication than any of the other
research methods.

The rest of the report is structured as follows; we first describe the background
(Chapter 2) ; a description of our developed prototype follows in Chapter 3. Chapter
4 describes the most relevant related work to our study and next the design of the
experiment which lists the hypotheses in (Chapter 5). Chapter 6 then follows with
the analysis of the collected data and treatment of the results. The Discussion is
presented in Chapter 7 stating the evaluation of results and Chapter 8 states the
threats to validity. Conclusions are drawn in Chapter 9.



2

Background

Model Based Testing is the process of test generation from models of /related to a
system under test (SUT) by applying a number of sophisticated methods. The basic
idea of model based testing is that instead of creating test cases manually, a selected
algorithm automatically generates test cases from a model [4]. This reduces the test
design time and allows for the generation of a variety of test suites from the same
model simply by using different test selection criteria among others.

With the use of a model-based testing tool, test cases are generated from the
abstract model of the software under test and the test cases are implemented into
executable tests that are later executed automatically using the selected algorithm.
Test reports are also generated from the resulting comparison between each of the
test outputs from the software under test with each of the expected outputs [32].

The model-based testing process consists of several main steps i.e. modelling of
the software under test, generation of abstract tests from the model, concretization
of the abstract tests to make them executable, execution of the tests against the
software under test (SUT) to assign verdicts and the analysis of the test results.

The first step, modelling of the software under test, is to write an abstract model
of the system that is to be tested based on an actual model as in figure 2.1. The
abstract model has to focus on just the functionality the test developers want to
test and abstract away other details that are not to be tested. After describing the
model, it can be checked for verification and validation of which GraphWalker can
be used to this effect.



2. Background

osean

INnit
/startlgnition=false;

e_Startignition
( [!startignition]]

Figure 2.1: Sample model for ignition functionality

The second step involves generation of abstract tests from the model. The ab-
stract tests are generated automatically and are a simple view of the software under
test. Hence, they don’t contain detailed information on how to execute test cases di-
rectly but are an interface of the methods to be implemented before the tests can be
executed. The test developer then has to decide on the test selection criteria which
also determines the test coverage to identify which tests one wants to generate from
the model as there can be an infinite number of possible tests. The output from this
step are the abstract tests which are sequences of operations from the model.
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Listing 2.1: Sample interface that is generated from the model in Figure 2.1

// Generated by GraphWalker (http://www.graphwalker.org)
package org.myorg.testautomation;

import org.graphwalker.java.annotation.Model;
import org.graphwalker. java.annotation.Vertex;
import org.graphwalker.java.annotation.Edge;

@Model (file = "org/myorg/testautomation/ignition.graphml")
public interface ignition {

Q@Vertex ()
void v_Ignition_Started();

@Edge ()
void e Exit ();

@Edge ()
void e_StartIgnition();

@Vertex ()
void v_engine_not_running () ;

@Edge ()
void Init ();
+

The third step is to transform the abstract tests into executable concrete tests.
This can be done by the use of a transformation tool which translates each abstract
test into an executable test script. This bridges the gap between the abstract tests
and the concrete software under test by adding in the low-level SUT details that
were not mentioned in the abstract model.

The fourth step is to execute the concrete tests against the system under test.
This can either be done online where a model-based testing tool connects directly to
a SUT and tests it dynamically or offline where a model-based testing tool generates
test cases as computer-readable assets that can later be run automatically.

Lastly, the analysis of results from the test execution and taking of corrective
action. For each failed test, the fault that caused the failure must be determined.
When a test fails, it may be due to a fault in the SUT or it could be a fault in
the test case itself. Nonetheless, we are able to get feedback on the correctness of
the model as faults can either be tied back to the model or to the executable tests.
Some of the advantages of model based testing include; Fault detection in the SUT,
reduced cost and time for testing, improved test quality, detection of requirements
defects, traceability and requirements evolution [4].
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2.1 Technology Under Investigation

The main investigation involved generating tests from models, implementing the
tests and then executing the tests for maximized coverage. Different tools were used
to achieve this and they include;

2.1.1 Transition Based Modelling with (yEd Graph Editor)

yEd is a desktop application that aids users to quickly and effectively create high
quality diagrams which we call models; in our case finite state machines or extended
finite state machines. It models the software under test as states and transitions
which means that the system under test can be in a finite number of different
states and the transitions from one state to another are determined by the rules of
the machine. It saves the models in GraphML format which are later used in the
GraphWalker tool [40].

2.1.2 GraphWalker

GraphWalker is a model based testing tool built in java that uses the command line.
It reads models in the form of finite state diagrams or directed graphs and generates
tests from the models, either offline or online [11]. These models are saved in the
GraphML format and are created using the yEd tool. GraphWalker also provides
a way to check the model to ensure there is at least one direct path from the start
state to the end state. Additionally, it provides different algorithms to generate test
cases and can also generate skeleton code for test adapters using a default or user
provided code template. An interface is available to the user to describe the adapter
behavior, including the software under test. In our case, GraphWalker uses CANoe
as the test driver to execute the test cases i.e. GraphWalker aides CANoe in the
generation of the different test sequences that are executed by CANoe. The results
of the execution are shown in a report that is generated by CANoe.
There are a number of reasons for using GraphWalker as the model based testing
tool of choice. These include;
e Modeling using a finite-state diagram is visual, it’s easy to understand. Getting
feedback from team members and stakeholders is so much easier with models.
o The models create an abstraction layer between the test design and the im-
plementation of automation code. This is important when it comes to main-
tenance.
o GraphWalker is very easy to setup and start using in your test automation
code. More so, it’s highly modularized, and easy to extend if you need to
customize it.

2.1.3 CANoe

CANoe is the most widely used comprehensive software tool for development, test
and analysis of entire ECU networks and individual ECUs in the automotive indus-
try today. It provides support throughout the entire development process - from

8
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planning up to final system-level tests [33]. In our case, CANoe was used as a test
driver to execute the tests of the system under test which is the simulated network
or signals of the ECU.

CANoe stores the actual values of our tests which we compare against the inputs
in the model. It runs the test sequence as provided by GraphWalker to generate the
test report. Responses from the SUT and from the model can then be compared
by means of test cases as executed by the sequencer(test generation algorithm i.e.
functional test). If the response from the SUT is the same as the output from the
model ( according to a defined signal comparison method ), the test case is passed
or failed otherwise.

An aspect of testing with models worth mentioning is that very often this type
of testing enforces what is referred to as gray-box testing; i.e. internal model signals
are compared with internal SUT signals [4].

2.2 Alternative Technologies

In the recent past, the development of automotive embedded devices has changed
from an electrical/mechanical engineering discipline to a combination of software
and electrical /mechanical engineering. The effects of this change on development
processes, methods and tools as well as on required engineering skills has been very
significant and is still ongoing today. At the present, the trend is to use model-based
development in the automotive industry as models improve reliability of systems and
facilitate reliability measurements [27].

Software components are no longer handwritten in C or assembler code but mod-
eled with MATLAB/Simulink trade, Statemate, or similar tools. However, quality
assurance of model-based developments especially testing is still poorly supported
[4]. Traditional tests that are still in use suffer from,"pesticide paradox" because the
tests become less effective at catching bugs as the testing process progresses [27, 26] .
The software under test is constantly changing in functionality while the traditional
tests are static and they need to be adapted to the new behavior. The maintenance
of the static tests could be costly [27, 26] .

With this realization, model based testing has become a niche for testing systems
as it has been used in industries like telecommunications and avionics which have
a stringent software quality bar with reported success [4, 27]. Model based testing
tackles the above challenges by explicitly describing the software under test behavior
to generate and maintain useful, flexible tests [27, 26]. One distinct advantage of
model based testing shows up when measuring coverage; it is not possible to execute
all combinations of test paths. However, it is feasible to measure what part of the
model has been covered when generating test cases with graph traversal algorithms
[27].

Testing tools for example TPT (Time partition test) tools have been developed
based on graphical test models but such tools are limited to supporting major test
activities, aiding the selection of test cases, formation of simple representations of
test cases and providing an infrastructure for automated test execution. However,
there is still a long way to a fully integrated and feature rich testing technique for
model based testing in the automotive domain that utilizes models as the basis for
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integration tests let alone aide in regression testing [4].

In another study where event sequence graphs were used, test cases representing
complete sequences of events were automatically generated basing on event sequence
graphs. Also the test cases were minimized by using the chinese postman problem
[26] and later transformed into test scripts for CANoe which were then applied to
exercise the SUT. This approach significantly reduced the time to implement the
test cases and their execution. By using the approach, generation of test cases was
fully automated hence simplifying regression testing and a new fault which had not
been previously detected with the classification tree method was uncovered. The
only downside to this approach was the amount of time it took to create the event
sequence graph models. Lastly, this approach requires the generated test cases from
the event sequence graph models to be automatically translatable to a format that
is readable by the CANoe tool that is used within the test environment [3].

The real challenge here was to address the maximization of coverage by interfacing
two tools ie GraphWalker based on graph theory techniques and CANoe that is used
for test execution in the automotive industry which to the best of our knowledge
has not been done before. In our opinion, we think that it would be the best of both
tools if there is an interface that integrates the two tools. Effective test cases would
be generated from models that would then be executed automatically for maximum
coverage. The integration has a number of advantages which include;

o Different paths through the model are executed hence making the testing pro-

cess more effective.

» Different personnel can work on different levels of abstraction i.e. the modellers,
the software programmers and the software testers.

o It saves time during regression testing as with CANoe™' changes to values or
improvements can be made in the model and the variables in the code base
are automatically updated and executed.

« Lastly, it helps in visualization between the different stakeholders as the model
can be widely understood by all. Chaudron et al. states one benefit of mod-
elling as the stakeholders have a shared common representation of the system
being built among others [5].

2.3 Relevance to Practice

GraphWalker as a tool has been applied to a number of software projects where it
helps engineers generate offline or online test cases from finite state machines and
extended finite state machines. Online test cases are automatically generated and
executed on the fly while offline tests are generated as computer readable assets that
can later be run automatically. It reduces the efforts that are needed by engineers
in testing through the automation of tests which can also be run as regression tests.
It has also been used in tree traversals where it keeps track of the visited nodes [19].

GraphWalker has been used in safety automata like in [10] for test case gener-
ation where different coverage criteria were used to that effect. They went ahead
to focus test case generation on specific parts of the safety automaton where the
test case length was limited to 50 test steps so as to have full transition coverage.
Since the generated test cases covered all transitions and hence all states, it became

10



2. Background

much easier to detect missing states or transitions as well as erroneous transition
conditions.

Additionally, GraphWalker has been integrated with keyword and behavior driven
framework and Robot framework. The integration had positive results as there
were improvements in the flexibility, maintenance and coverage as a result of using
GraphWalker [29].

Lastly, it has also been used in mobile systems [12] to generate abstract tests
and also to traverse the models for 100% coverage of states and transitions. Many
faults were discovered in an application that had already been tested and this goes
on to assert that GraphWalker produces the necessary coverage to find most if not
all faults and bugs in systems. 100% coverage does not mean the system is free from
bugs or faults it just implies that all the transitions through the model have been
covered.

A survey [1] lists CANoe among the tools used in the automation industry during
test design and the test execution phase which offers test environments and simu-
lation capabilities. It further states that it offers graphical editors to design the
tests and setup the execution after which it generates a test report. CANoe helps
engineers in simulation of ECU functionality as well as in running tests which later
generate test reports with the verdict of the software or system under test.

Like GraphWalker, CANoe has been used as an automated test execution tool for
test cases in several projects; [3, 23, 21, 38| where ECU signals are simulated and
diagnostics validated. After execution of the tests, the tool generates a test report
indicating the test cases that have passed and or failed.

Other tools for example Petra [30] which is used by Porsche have been developed
based on CANoe to validate gateway ECU’s. The tool automatically generates gate-
way tests from routing tables and the tests are later used in driving trials or to check
the routing functions online.
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CANoet

CANoe™ is the proposed solution to solve the challenge at hand and it is the result
of intergrating the GraphWalker and CANoe tools. An interface was implemented
with the aim to act as a communication bridge between the two tools. However, in
addition to the above tools, the solution includes a model and test Modules. There
are three major steps involved when writing tests with CANoe™ as can be seen in
the context diagram below;

Confirms ‘

salelauag

SendRequesls

ExecutesTests

H

Figure 3.1: Context diagram for CANoe™

3.1 Modelling

CANoe+ involves modelling of the functionality that is to be tested. Using the yEd
desktop application, a model of the expected behavior of the system under test is

13
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drawn as an extended finite state machine. It models the system under test as states
and transitions, the model is saved in the GraphML format. The saved model is
provided to the GraphWalker tool as an input of the expected states, transitions and
the values that need to be tested. The model that we drew can be seen in Appendix

A.

3.2 GraphWalker

In our context, GraphWalker has three major roles;

o Checks the model to ensure that there is atleast one direct path from the start

state to the end state.

o Generates an interface i.e. abstract tests from the provided model.

o Executes the tests in an non-deterministic sequence.

GraphWalker is connected to CANoe by the communication bridge mentioned
above and for the purpose of this communication, the interface that is generated
by GraphWalker is implemented and it uses the “gwlnterface.jar”. We used the
100% edge coverage selection criteria to enable all the edges to be covered which
in turn leads to the coverage of the states. The jar file has one single task when
GraphWalker is executed, which is to deliver a GraphWalker request to a server
which in its turn executes the test. The GraphWalker request includes a snapshot
of the current state/transition and it’s values. The snapshot is packed in a “JSON”
object.

3.3 CANoe

CANoe includes a simulated CAN network, and a database which holds the values
of the network. The simulated CAN network in our context is the system under test.
CANoe is responsible for the test framework and it is the test driver that we use to
test the system under test. We used a .Net test module and it’s libraries provided
by CANoe to implement the test module. The test module is the implementation of
the adapter to the SUT, which should correspond 100% with the interface generated
by GraphWalker in the previous step. The test module uses "MBT.dIl", which is the
other end of the bridge mentioned above, and acts as a server to execute the requests
received from GraphWalker.

3.4 Execution

GraphWalker uses random functions to generate random test sequences through the
model that ensure edge coverage and hence when it is executed, it sends a request
for a given function to be executed. While sending the request, it has the expected
value appended to it. When the function to be executed in the test module is found,
a comparison is made between the expected value from the model and the actual
value from the CANoe database. A confirmation is sent back to GraphWalker to
affirm that the functionality was executed and also CANoe then produces a test

14
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report showing the verdict of if the function which is referred to as the testcase
passed or failed.

3.5 Effort and cost considerations

To use CANoe™, one needs to model the the system under test, add the gwlnter-
face.jar to GraphWalker and use the interface it provides to implement the exe-
cutable tests . At the CANoe side , the MBT.dIl library is added into the test
module and the generated interface is implemented as a .NET test module.

Incase modifications or changes need to be made in the system under test, for
example if a variable is defined in the model and one needs to use it in the test, all
that needs to be done is to define it in the java class that implements the generated
interface and in the .NET test module that implements the generated interface as
well. That is all that is needed.

With this approach, regression testing becomes easier as changes and functional-
ity are easy to incorporate and write tests easily at a much lower cost.
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Related Work

There has been substantial research in the area of automated test case generation
and model based testing in general but below, we briefly describe the most relevant
studies to our thesis and their findings.

4.1 Related Work

A study by [22] shows that in model based testing, models form the basis for gen-
erating test cases which can be used to show model-Code conformance. It also
notes that coverage achieved by individual test generation techniques in a broader
sense complement each other hence the need to integrate the different test genera-
tion techniques. An integrated test generation tool SmartTestGen that uses various
test generation engines with each engine implementing a different technique was
developed. Simulink stateflow models were used for modeling and it was evaluated
against REACTIS and embedded tester. The tool takes models and a test speci-
fication as input and produces a test suite as output. From the evaluation, it can
be noted that coverage increases when tests are automatically generated and cover-
age is evaluated in three ways ie decision coverage, condition coverage and modified
condition/decision coverage.

[20] looks at an approach to automatically generate a small number of test cases
that cover all reachable states in closed loop controller software without losing the
coverage of any state. In their approach they assume one has access to source code
hence they focus on path coverage since covering all reachable paths through the
code would imply covering all reachable states. The goal is not to achieve 100%
path coverage through the whole program but rather to cover 100% of the sub paths
through the various functions. Their results demonstrated that their approach could
reduce the number of test cases by tens of thousands and test generation time by
dozens of hours with no negative impact on the fault - finding capability.

Also [14] describes how mutation testing suffers from high computational cost
of automated test-vector generation due to a large number of mutants that can be
derived from programs and the cost of generating test-cases in a white box manner.
A novel algorithm is proposed for mutation -based test case generation for simulink
models that combines white box testing with formal concept analysis. By exploita-
tion of similarity measures on mutants, it is possible to generate small sets of short
test cases that achieve high coverage on a collection of simulink models from the au-
tomotive domain. Even though the paper focusses on dataflow models given in the
simulink design language, test case generation for simulink models is complicated
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by the fact that the simulink language lacks a formal semantics and makes heavy
use of floating -point arithmetic. Their results indicate that using their algorithm,
the smallest number of test cases is produced along with the best coverage.

Some studies have pointed to the use of statistical tools and methods like markov
chains [13, 7] to generate and execute tests from software specifications. MaTeLo
uses markov chains as the usage model for software applications to generate test
cases. The key point of the approach is no longer oriented to ensure that all the
code has been successfully tested, but more focused to know and model the fu-
ture usage of the software application in order to guarantee the use of the released
software without failure. In some cases [28] even before the test cases were exe-
cuted, deficiencies and ambiguities in the system specifications were identified. The
MaTeLo tool further provides metrics that could help technical staff determine the
software quality and evaluate how much of the expected results are met.

MTest [17] combines module tests with model-based development. The central
element is the classification tree method which is mostly used for C-code testing
and has now been adopted to the needs of a model-based development process for
embedded systems. MTest is used to test automotive software from model-in-the-
loop over software-in-the-loop down to processor-in-the-loop testing. Additionally,
test scenarios once developed can be reused in a hardware-in-the-loop environment
thus, providing a means to automatically test automotive software within the whole
development process.

A control function to be developed is described by the means of simulation tools
like MATLAB/Simulink/Stateflow (function design). Based on the interface of the
logical model, and by using the classification-tree method, the function developer
can derive test scenarios systematically and describe them graphically. With the
graphical representation the user gets visual information about the test coverage
which indicates, how well the test cases cover the range of possible test input com-
binations. Once the tests have been executed, a report is instantly generated and
displayed with the results structured hierarchically and displayed as a tree. The re-
sult tree can include any data item and any test which has been done in the different
simulation modes. The user can navigate through the tree and view all details.

The MB3T [6] approach was developed to minimize the challenges of the test
development process by creating a systematic procedure for the design of test sce-
narios of embedded automotive software and its integration in the model-based
development process. Test scenarios are defined in two different perspectives i.e.
requirement-based test design and model-based test design with a consistency check
to create consistency between them. According to the approach, logical test scenar-
ios are first defined based on the textual requirements specification of the embedded
software. The test scenarios are specified at a high level of abstraction and don’t
contain any implementation details of the test object. Due to their close link to
the requirements, it is easy to check which requirements are covered by which test
scenario. Subsequently, the requirement-based logical tests are refined to executable
model-based test scenarios. Also the approach helps to check, whether or not the
logical test scenarios are fully covered by the executable test scenarios. The re-
quirements based design helps to check necessary requirements coverage while the
model-based test design with the classification tree method for embedded systems
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guarantees the systematic derivation of time-variant scenarios for the executable
artifacts of model-based development. The comparatively higher effort, resulting
from the tests being designed from two different angles, leads to a better and more
systematic way of generating tests which, in turn, ensure a test coverage with regard
to two complementary coverage criteria.

A case study [25] where an automotive network controller was used to assess
different test suites in terms of error detection, model coverage and implementation
coverage. An experiment was setup where requirements documents were used to
build an executable behavior model of the network controller whereby this process
revealed inconsistencies and omissions in the specification documents that were up-
dated accordingly. The models were then used by the developers, test engineers
and different engineers who both manually and automatically derived tests on the
grounds of the model. Some of the test suites were generated automatically with
and without models, purely at random, and with dedicated functional test selection
criteria. Other suites were derived manually, with and without the model at hand.
Both automatically and manually derived model-based test suites detected signif-
icantly more requirements errors than handcrafted test suites that were directly
derived from the requirements.

It was found that tests derived without using a model detected fewer failures
than model-based tests. The number of detected programming errors was approx-
imately equal, but the number of detected requirements errors—those that neces-
sitated changing the requirements documents—was higher. Hence automatically
generated test suites detect as many failures as handcrafted model-based test suites
with the same number of tests. A sixfold increase in the number of automatically
generated tests leads to 11% additionally detected errors. None of the test suites
detected all errors.

vTESTstudio [39] is a high performance development environment for creating
test sequences which can be used in all product development phases. It generates test
sequences which can be executed with the CANoe test sequencer in real-time and
evaluated in detailed reports. It seamlessly intergrates both proven and new types
of test design methods and test notations. Graphical test diagrams i.e. flowcharts
are used to model sequences of tests and even though its close to our prototype,
it does not generate random test sequences which are crucial in uncovering hidden
bugs.
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Experimental Design

We chose to carry out a controlled experiment to evaluate the prototype because we
had control over which participants were to use the prototype, when and where it
would be used so as to facilitate in the generalization of results [16]. The prototype
evaluation was carried out by the authors who executed the software multiple times
while using the CANoe™ and CANoe tools. We followed [16] guidelines on reporting
experiments in software engineering which aims to make reporting styles homoge-
neous and to aide in the integration of experiment results into a common body of
knowledge as well as to support readers.

5.1 Goals

With the above in mind, the goal of the experiment was to evaluate our developed
prototype (CANoe™) and assess if it increased the coverage of automated model-
based software test cases in the automotive domain while studying its possibilities
and limitations.

Since no solution that uses the CANoe and GraphWalker tools has been developed
yet, we intended to evaluate our prototype against the current way of testing software
which is in use. CANoet and CANoe are going to be referred to as the treatments
subsequently. Our aim was to answer the question;

Does the use of CANoe™ in automotive systems increase coverage of
test cases as compared to the current way of testing? The current way of
working involves writing tests which are executed sequentially and automatically by
CANoe.

5.2 Experimental Units

The authors who are both master students in software engineering and had been
using CANoe for close to five months were the participants. Their mean years
of working in the software engineering field is five years. Both the authors were
assigned randomly by tossing a coin to the treatments i.e. they both used CANoe and
CANoe™ to give results. The authors chose to participate in the experiment because
CANoe™ comprised of random algorithms which were used to generate random test
sequences that were executed by CANoe. The sample functions had to be executed
several times to increase validity of the experiment. Futhermore, we aimed to show
with high confidence that the obtained results were statistically significant and to
assess the performance for each of the tools.
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5.3 Experimental Material

The participants used the four sample functions to exercise the CANoet and CANoe
tools. They were running CANoe 8, Visual Studio 2012 and Eclipse in order to
accomplish this task. The functionality to be tested included; closing and opening
of a car door, starting and stopping the ignition, rolling up and down the windows
and turning on and off of lights in a car system that was simulated in the CANoe
software.

During the multiple runs, the test metrics for each test suite i.e. the total number
of test cases executed, passed and failed were noted and later analyzed. The sample
software was executed in a total of 480 test runs; 240 runs for each tool, 3 faults
injected and the coverage metrics noted. This was done in order to ascertain which
treatment was better at catching faults. The effort required to use each of the tools
was also taken into consideration as we used [18] as a guide to assess the workload of

the participants so as to reach a conclusion on which tool required the most effort.
It was based on the NASA Task Load Index [34] as attached in Appendix B .

5.4 Tasks

After the test environment was up and running the software was loaded into the
testing environment and tests executed to ascertain the effectiveness of fault discov-
ery and coverage by the two treatments. The participants also injected faults and
the coverage measurements were noted for each fault and if there were any faults at
all.

5.5 Hypothesis, Parameters and Variables

The experience of the participants was used as the blocking factor to increase the va-
lidity of the experiment since we were only interested in investigating to see whether
CANoe™ produces better test coverage than CANoe.

The participants were sampled randomly over the two treatments to prevent
variability from biasing the results. The factor we considered for this experiment
was;

o Coverage of the tools i.e. we compared the use of CANoe™ to the use of CANoe.

The dependent or response variable which was coverage facilitated us to know
how much of the given model was covered by the tests we created. Coverage is
measured in three different aspects ie the smoke test, functional test and stability
test. But we focussed on functional tests which depend on 100 % coverage of the
edges in the model to fully exercise the software under test and hence determine
how much of the software had been exercised. Since we had multiple runs, the mean
coverage for the runs were calculated.
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Below we formalize our hypotheses:
Hy: MCc= MCc*
H,: MCc< MCc™
Null Hypothesis: There is no maximization in the coverage of automated model
based software test cases produced using CANoe™ tools as opposed to using CANoe.
Experimental (alternative) Hypothesis: The coverage of automated model
based software test cases is maximized by the use of CANoe™ tool as opposed to
using CANoe.
Using the collected data, the hypotheses were able to give us a basis on whether
to reject or fail to reject the null hypothesis.

5.6 Design

Since we had control over the application area, system under test type, developers
experience with the language, tools that were used; we used the nested design with
the participant’s experience as the blocked variable to eliminate bias and exper-
imental error. We chose to use the nested design so that we would not have any
interaction effects that were not needed [24] as we were only interested in if CANoe™
produced better coverage of tests than CANoe. More so, the participant’s were as-
signed randomly to the treatments within each block. Repeated measurements were
also used to validate the results.

Coverage
Tool Usage
CANoe CANoe*
Run 1 Functions 1,2 Functions 3,4
Run 2 Functions 3,4 Functions 1,2

Figure 5.1: Nested design for coverage and tool usage showing how the functions
will be crossed in the first two runs and subsquently

As shown in the above figure coverage for each of the tools was evaluated in a
nested design by use of four different sample functions. We had one level for coverage
and two levels for the tool usage i.e. CANoet and CANoe. As mentioned earlier due
to the randomness of CANoe™ the participants executed the software several times
hence yielding a completely related-within subjects design. Threats to validity like
experimenter expectancies were ruled out since random algorithms were used for
execution in the prototype.
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5.7 Procedure

The participants were running CANoe and CANoe™ on different workstations where
they used the sample software functions for execution. During the execution, test
metrics were noted for each test suite i.e. the total number of test cases executed,
passed and failed test cases. At the start of the experiment, each of the two experi-
menters agreed on how the execution was to be done, when and how the faults were
to be injected.

5.8 Analysis Procedures

We chose our analysis techniques while considering the nature of the data that had
been collected, the reason for performing the experiment and the type of experimen-
tal design that we used. After the experiment was concluded, analysis of the data
was carried out. We performed rigorous statistical testing and also measured effect
sizes together with the confidence intervals [24].

Since we were trying to confirm a theory that test cases generated while using
CANoe™ tool have an increased coverage than those run while using CANoe, the
analysis approach that we chose was the analysis of variance. We considered two
populations ie those that used the CANoe method and those that used CANoe™,
a statistical test was performed to see if the difference in treatment results was
statistically significant.
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Analysis

This chapter presents the descriptive statistics, data set preparation and hypothesis
testing of the data collected. It also summarizes the data collected and its treatment.
The sample functions were executed in 240 runs for each tool while recording the
number of passed, failed and total test cases with respect to 100% edge coverage of
the model. The collected data is shown in Appendix C. Within these runs, there
were three fault injections of which data was also collected. The subsequent sections
are presented with regards to five scenarios i.e. run without faults injected, run with
one fault injected, run with two faults injected, run with the custom fault and lastly
a general conclusion with all the collected data. Each of the first four scenarios had
120 independent runs for both the CANoet and CANoe tools ,the general conclusion
section had all the 480 runs that had been executed in order to validate the data.
The focus was mostly on the number of failures that were reported for each
individual run as this gave an overview of how effective each of the tools was at
catching faults hence translating into the test coverage for the software under test.

6.1 Descriptive Statistics

Using the R programming language, we were able to compute the descriptive statis-
tics for our data. The describe () R function was used on the number of failed test
cases for each run to give the measures of central tendency and dispersion for each
of the run scenarios i.e. without faults, with one fault, two faults, custom fault and
the general conclusion.

6.1.1 Without Faults

In this scenario, no faults were reported using the two tools hence the descriptive
statistics were not meaningful to be reported.
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6.1.2 One Fault

Method

CANoe | CANoe™t
Vars 1 1
n 60 60
Mean 20.35 27.18
Sd 15.63 16.85
Median 32 24
Trimmed | 21.33 25.4
Mad 0 11.12
Min 0 2
Max 37 111
Range 37 109
Skew -0.53 2.2
Kurtosis | -1.73 8.34
se 2.02 2.18

Table 6.1: Descriptive statistics of CANoe and CANoe™ with one fault injection.
CANoe™ has a higher mean of 27.18 as it finds more faults as compared to CANoe
whose mean is 20.35.

6.1.3 Two Faults

Method

CANoe | CANoe™t
Vars 1 1
n 60 60
Mean 14.42 43.42
Sd 16.03 21.89
Median 1 40
Trimmed | 13.81 40.94
Mad 1.48 18.53
Min 0 11
Max 37 109
Range 37 98
Skew 0.27 0.99
Kurtosis | -1.95 0.63
se 2.07 2.83

Table 6.2: Descriptive statistics for CANoe and CANoe™ with two fault injections.
In comparison to Table 6.1, Mean for CANoe(14.42) decreases as less faults are
discovered whereas CANoe' mean(43.42) increases as more faults are discovered.
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6.1.4 Custom Faults

When a custom fault is injected in the functionality, the CANoe tool is not able
to catch this fault and it can never find the fault but CANoe™ catches the fault as

expected.

6.1.5 General Conclusion

Method

CANoe | CANoe™
Vars 1 1
n 240 240
Mean 8.69 19.96
Sd 14.28 21.9
Median 0 14
Trimmed | 6.76 16.34
Mad 0 20.76
Min 0 0
Max 37 111
Range 37 111
Skew 1.05 1.5
Kurtosis | -0.89 2.62
se 0.92 1.41

Table 6.3: Descriptive statistics for CANoe and CANoe™ for the general conclusion.
All the collected data is used in this scenario to describe the statistics. As seen
from the mean, CANoe™ still has a high mean of 1.96 due to the number of faults

discovered to the disadvantage of CANoe whose mean is 8.69.
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6.2 Dataset Preparation

The collected data was further prepared by drawing box plots and density plots for
the number of failed test cases in each run. The R functions plot () and boxplot ()
were used to show the distribution of the failed testcases and help notice outliers
in the data respectively. This section also analyzes the data in five scenarios i.e.
without faults, with one fault, two faults, custom fault and general conclusion. We
present a density plot and a box plot side by side where applicable for the scenarios
that were run.

6.2.1 Without Faults

Faults Distribution in CANoe

0.8

Density

0.0 04

I I
-1.0 -05 0.0 0.5 1.0

Total Faults
(a) Density plot for CANoe

Figure 6.1: This is the density plot for failed testcases in CANoe and CANoe*
without faults. No faults were discovered using both the tools hence the distribution
of the density plot.
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6.2.2 One Fault
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(a) Density plot for CANoe (b) Box plot for CANoe

Figure 6.2: These are the density and box plots for failed testcases in CANoe with
one fault injection.
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(a) Density plot for CANoe* (b) Box plot for CANoe™

Figure 6.3: These are the density and box plots for failed testcases in CANoe™
with one fault injection.
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6.2.3 Two Faults
CANoe
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Figure 6.4: These are the density and box plots for failed testcases in CANoe with
two fault injections.
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Figure 6.5: These are the density and box plots for failed testcases in CANoe™
with two fault injections.
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6.2.4 Custom Fault

In this scenario, the collected data from using the CANoe tool is not described since
it does not discover any faults.

CANoe™
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(a) Density plot for CANoe* (b) Box plot for CANoe™

Figure 6.6: These are the density and box plots for failed testcases in CANoe™
with a custom fault injection.

6.2.5 General Conclusion

CANoe

Faults Distribution in CANoe

30

0 10
L

I I
-10 0 10 20 30 40 50
Total Faults

Density
0.00 0.03 0.06

(a) Density plot for CANoe (b) Box plot for CANoe

Figure 6.7: These are the density and box plots for failed testcases in CANoe for
the general conclusion
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Figure 6.8: These are the density and box plots for failed testcases in CANoe™ for
the general conclusion
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6.3 Hypothesis Testing

To analyze the chosen analysis model, we ran the following R functions ; shapiro.test ()
to test for the normality of the sample distribution of the failed test cases, qgnorm()
and qqline() to calculate the quantiles from the normal distribution and to add a
line to the Q-Q plot which passes through the quantiles respectively.

As stated earlier, we had planned on carrying out the analysis of variance test as
of our experimental design but after evaluating our data, we noticed that all our data
was non-normal and hence an ANOVA test could not be carried out. The assumption
of normal data and homoscedasticity of variances would have been violated if we
had continued with the ANOVA test. In light of that, we resolved to use a different
test which was the Mann-Whitney-Wilcoxon test. This test had three assumptions
[31] which were all fulfilled by our data. They include;

e The sample drawn from the population is random.

e Independence within the samples and mutual independence is assumed.

e Ordinal or numeric measurement scale is assumed.

The R function wilcoxon.test() was run at a 0.05 significance level with an
alternative less to mean a one sided test. This gave the P-Values that were used
to determine the statistical significance which is discussed in Chapter 7. The al-
ternative less was used as from our alternative hypothesis we state that the mean
coverage by CANoe is less than the mean coverage by CANoe™t. For each scenario
we display the normality tests, Mann-Whitney-Wilcoxon test, the Q-Q plots with
qqlines for the tools where applicable.

6.3.1 Without Faults

All Values for the failed tests in CANoe and CANoe™ were identical hence the
shapiro wilk normality test could not be described.

Normal Q-Q Plot

1.0

0.0

Sample Quantiles

-1.0

-2 -1 0 1 2

Theoretical Quantiles

(a) Q-Q plot for CANoe

Figure 6.9: This is the Q-Q plot for failed testcases in CANoe and CANoe™ without
fault injections.
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6.3.2 One Fault

A shapiro wilk test for normality was run for the Canoe and CANoe™ tools and it
confirmed that our data was non-normal. It was on this that we based to perform
a Mann-Whitney-Wilcoxon non-parametric test to check if there was any statistical
significance in our data.

Significance Level | W P-Value
Data | 0.05 1641 | 0.1985

Table 6.4: Mann-Whitney-Wilcoxon table of results for the two tools with one
fault injection.

Normal Q-Q Plot

Sample Quantiles
60
|

Theoretical Quantiles

Figure 6.10: This is the Q-Q plot for failed testcases in CANoe and CANoe™' with
one fault injection.
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6.3.3 Two Faults

The Canoe and CANoe™ tools gave non normal data when the shapiro wilk test
was run. Since we were analyzing two sets of data, a Mann-Whitney-Wilcoxon non-
parametric test was run to determine if there was statistical significance between
the two tools.

Significance Level | W P-Value
Data | 0.05 580.5 | 6.503e-11

Table 6.5: Mann-Whitney-Wilcoxon table of results for the two tools with two
fault injections.

Normal Q-Q Plot

100
!

60
|

Sample Quantiles

20

Theoretical Quantiles

Figure 6.11: This is the Q-Q plot for failed testcases in CANoe and CANoet with
two fault injections.

6.3.4 Custom Fault

The shapiro wilk test for normality was only run for CANoet and it showed non-
normal data. The same test could not be run for CANoe as from the data, it was
evident CANoe would never find the fault.
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Normal Q-Q Plot

Sample Quantiles
10 20 30

0
!

Theoretical Quantiles

Figure 6.12: This is the Q-Q plot for failed testcases in CANoe™ with a custom
fault injection .

6.3.5 General Conclusion

In this section, we analyzed all the data we collected with respect to the tools in
order to get an overview of the analysis.

Method
+
- CANoe | CANoe Significance Level | W P-Value
Significance Level | 0.05 0.05 Data | 0.05 17750 | 1.003e-14
W 0.568% | 0.83857 = S
P Valie <92.90.16 | 4.334e-15 (b) Mann-Whitney-Wilcoxon table of results of the

two tools for th 1 lusi
(a) Shapiro wilk test for the two tools WO Toois Tot The general conciusion

Table 6.6: Shapiro wilk and Mann-Whitney-Wilcoxon test tables.

Normal Q-Q Plot Normal Q-Q Plot

O O

30
!

40 80

Sample Quantiles
10
|
Sample Quantiles

0

-3 -2 - 0 1 2 3

Theoretical Quantiles Theoretical Quantiles
(a) Q-Q plot for CANoe (b) Q-Q plot for CANoe™

Figure 6.13: These are the Q-Q plots of failed testcases in CANoe and CANoe*
for the general conclusion.
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Discussion

7.1 Evaluation of Results and Implications

All the data was collected and analyzed according to five scenarios i.e. without
faults, with one fault, two faults, custom fault and the general conclusion because
the observations were different per scenario. The descriptive statistics for the five
scenarios in which we run the experiment were analyzed to give both the central
measures of tendency as well as the measures of dispersion for our data. Density
plots were then used so as to show the distribution of the failed test cases with
respect to the tool that was being used. Box plots were also used to show the shape
of the data as well as the outliers in the data sets for each scenario.

The shapiro wilk tests were run for four scenarios with the exception of the
without faults scenario at a significance level of 0.05 to see if the data was normally
distributed or close to normal distribution. The without faults scenario was left
out because all the collected data in this scenario was identical hence the test for
normality could not be described. The null hypothesis for the shapiro wilk test was
that the population was normally distributed. Thus if the P-Value was less than
the chosen significance level of 0.05, then the null hypothesis would be rejected as
that was enough evidence that the data tested was not from a normally distributed
population hence the data was concluded to be non-normal. On the contrary, if the
P-Value was greater than the significance level of 0.05, the null hypothesis could
not be rejected.

From these tests, we were able to pass all the three assumptions for the Mann-
Whitney-Wilcoxon test as our data was an independent random sample due to
the random algorithms used in CANoe™, a numeric scale was assumed and most
importantly it was non-normal data. Lastly the Mann-Whitney-Wilcoxon tests were
run to show statistical significance between the two tools for all the scenarios in
accordance with the stated hypotheses.

For the scenarios where the difference in the mean coverage of the two tools was
statistically significant, the effect sizes were calculated to show the size of the differ-
ence. A script for the calculation of non-parametric effect sizes which uses Vargha
and Delaney’s A statistic was used to calculate the effect sizes in each scenario where
applicable [8].

The paper gives the following examples for interpreting the A-Statistic:

A ~0.56 => Small effect size (i.e. small superiority of X1 over X2)
A ~0.64 => Medium effect size (i.e. medium superiority of X1 over X2)
A ~0.71 => Large effect size (i.e. large superiority of X1 over X2)
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Below is the analysis per scenario with the detailed fault injections where appli-
cable;

7.1.1 Without faults

Like the heading suggests, for the first run, no faults were injected in the tested
functionality and this was our baseline for the analysis while using the two tools. The
experiment was executed with identical functionality and since it was the correct
functionality for the sample functions, no faults were discovered hence reported
faults were zero for both the tools. It was observed from the execution that without
fault injections, the two tools had the same fault finding capabilities.

The P-Values for the shapiro wilk tests couldn’t be described because there was
zero variance. For the Mann-Whitney-Wilcoxon test, the P-Value was 1 and this
meant that there was no difference in the mean coverage between the two tools:

CANoe and CANoet .

7.1.2 One fault

The first random fault that was injected; a random function to set a random value
to start the ignition. The random value is always either 1 or 0, where 1 starts the
ignition and 0 stops the ignition. Depending on the random number generated; 1
will cause the ignition to start and 0 otherwise. It is worth mentioning that at least
one feature is dependent on the ignition, if the ignition fails to start then executing
the other functions that are dependant on it will also definitely fail.

It was observed from the execution of the experiment that whereas faults were
only generated when a random value of 0 was set to the ignition, all the functions
that depended on the ignition failed in CANoe*t and there were no passed test cases
at all. For the CANoe execution, passed test cases were recorded 30% of the time
and this is not good for safety critical software.

By analyzing the shapiro wilk test for normality, it was seen that the P-Values
were 4.177e-11 and 9.317e-07 for CANoe and CANoe™ respectively at a 0.05 signif-
icance level. These values were less than the 0.05 significance level hence we reject
the null hypothesis as there is enough evidence that the data is non-normal.

The P-Value from the Mann-Whitney-Wilcoxon test was 0.1985 which is greater
than the significance level of 0.05, we conclude that there isn’t a statistically signif-
icant difference in the mean coverage between the two tools: CANoe and CANoe™.

7.1.3 Two faults

We extended the one fault scenario and injected a new random fault in the func-
tionality of locking doors. The functionality for locking doors was not dependent on
the ignition hence it could still function correctly even when the ignition had failed
to start. The fault was similar to the fault injection in the one fault scenario; a
random value was assigned to the locking functionality. The random number that
gets assigned is either 0 or 1, where the bit 1 opens the door and is the normal
behavior while bit 0 locks the door and causes the system under test to fail. Testing
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this scenario was expected to report fails when assigning an invalid value to unlock
the door, fail when the ignition had an invalid value, fail when both features were
assigned invalid values, or pass if the random function generated the valid value.

From the executions observation of both the tools, in CANoe™ there was no single
test case that passed due to the injected faults which is how the tool should behave.
But the CANoe tool managed to report passed test cases 26% of the time despite
the faults.

The shapiro wilk test gave P-Values of CANoe and CANoe™ as 2.014e-10 and
0.001159 respectively. Both these values were less than the 0.05 significance level
hence depicted enough evidence to reject the null hypothesis and conclude that the
two populations contained non-normal data. While analyzing the Mann-Whitney-
Wilcoxon test, we observed that the P-Value was 6.503e-11 which is way below the
0.05 significance level for a one-tailed test hence there was enough evidence to reject
our stated null hypothesis as there was a statistically significant difference in the
mean coverage of the two tools.

We went ahead to calculate the effect size in order to know the size of the differ-
ence, and below is the result;

Vargha and Delaney's A statistic, i.e. the measure of stochastic superiority

Call:
a.stotistic.default(canoe = canoe, canoeplus = canceplus)

A statistic = @.16125
i.e. the probability that a value from cance is larger than a value from canceplus is 16.12%

95% confidence interval for A = [0.183, ©.244]
Difference is SIGNIFICANT at alpha = @.85 level (Note: EXPERIMENTAL)

99% confidence interval for A = [0.889, ©.274]
Difference is SIGNIFICANT at alpha = @.81 level (Mote: EXPERIMENTAL)

Superior: canoeplus
Effect size: Large

Figure 7.1: Effect size for the two faults injection using Vargha and Delaney’s
A-statistic.

From the effect size calculations, the A- statistic gives 0.16125 indicating a large
effect size and that CANoe performed worse than CANoe™. The values are in-
terpreted as follows: 16.12% of the time CANoe will work better than CANoe™.
Equivalently, 83.88% of the time CANoe™ will work better than CANoe.

7.1.4 Custom fault

A custom fault was injected in the door lock functionality that is responsible for
unlocking the door. This fault would only be triggered if the unlocking feature
of the door was executed two times successively, if any other action was executed
between the clicks, the fault would not be triggered and the system under test would
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execute normally with no errors. This fault sets the bit value of 0 when the fault is
triggered else the bit 1.

This was the most interesting observation as in CANoe™ the affected functional-
ity of unlocking the door failed during all the runs but suprisingly CANoe passed
100% without a single fault reported. This can be attributed to the fact that CA-
Noe executes sequentially hence is not designed to catch such faults. This kind of
failure can be classified in the same way as the one that occured in the Ariane 5
rocket[15]. Such kinds of faults are hard to catch as they are not triggered in the
usual execution and for safety critical systems like automotives, identifying them
could be the difference between life and death.

The shapiro wilk test for CANoe was not applicable as there were 0 failed test
cases but for CANoe™ the P-Value was 0.0001187 which was less than the 0.05 signif-
icance level and sufficient evidence for the null hypothesis to be rejected which meant
that the data from this scenario was non-normal. The Mann-Whitney-Wilcoxon test
gave a P-Value of <2.2e-16 which was very much below the 0.05 significance level
for a one tailed test. This was enough evidence to reject the null hypothesis as
the highest statistical significant difference in the mean coverage of the tools was
observed in this scenario.

The effect size for the scenario was calculated and below is the result;

Vargha and Delaney's A statistic, 1.e. the measure of stochastic superiority

Call:
o.statistic.default(canoe = cance, canoeplus = canceplus)

A statistic = @.808333333
i.e. the probability thot a value from cance is larger than a value from conoceplus is @.83%

95% confidence interwval for A = [B.801, ©0.046]
Difference is SIGNIFICANT at alpha = @.85 level (Mote: EXPERIMENTALD

99% confidence interwval for A = [@.801, 0.068]
Difference is SIGNIFICANT at alpha = @.81 level (Mote: EXPERIMENTALD

Superior: canoeplus
Effect size: Large

Figure 7.2: Effect size for the custom faults injection using Vargha and Delaney’s
A-statistic.

The effect size calculations, give the A- statistic as 0.008333333 indicating a
large effect size and that CANoe performed worse than CANoe™. The values are
interpreted as follows: 0.83% of the time CANoe will work better than CANoe™.
Equivalently, 99.17% of the time CANoet will work better than CANoe.

7.1.5 General conclusion

The last analysis that was conducted involved using all the data from the different
scenarios to come up with one data set with respect to the tools. A shapiro wilk test
was conducted and the P-Values for both the tools were less than 0.05 significance
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level which signified non-normal data. We went on to perform the Mann-Whitney-
Wilcoxon test and found that there was an overall statistical significance in the mean
coverage as the P-Value was less than 0.05 significance level for a one tailed test.
With this data we were able to reject the null hypothesis and enforce our alter-
native hypothesis that indeed the mean coverage of the CANoe tool is less than the
mean coverage of the developed prototype of CANoe™. From this we can confidently
affirm that this study positively confirmed the theory that the use of CANoe™ in au-
tomotive systems increases coverage of test cases as compared to the use of CANoe.

Vargha and Delaney's A statistic, i.e. the measure of stochastic superiority

Call:
a.statistic.default{cance = canoe, canoeplus = canoeplus)

A statistic = @.3081684
i.e. the probability that a value from canoe is larger than a value from canceplus is 30.82%

95% confidence interval for A = [@.264, ©.356]
Difference is SIGNIFICANT at alpha = @.85 level (Note: EXPERIMENTAL)

99% confidence interval for A = [@.251, @.372]
Difference is SIGNIFICANT ot alpha = @.81 level (MNote: EXFERIMENTAL)

Superior: canoeplus
Effect size: Large

Figure 7.3: Effect size for the general conclusion using Vargha and Delaney’s
A-statistic.

The effect size calculations, give the A- statistic as 0.3081684 indicating a large
effect size and that CANoe performed worse than CANoe™. The values are in-
terpreted as follows: 30.82% of the time CANoe will work better than CANoe™.
Equivalently, 69.18% of the time CANoet will work better than CANoe.
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7.2 Inferences

From our findings, we believe that the use of model-based testing in the automotive
industry facilitates rapid exercising of the software under test to discover faults that
can’t normally be unmasked using the usual testing methods. Our solution is not
limited to CANoe and the automotive industry, any test module based on .NET /C#
can benifit from our solution. More so, this model-based testing approach can be
extended to more safety critical systems like avionics to ensure that there is no
hidden undesirable functionality that can cause failures.

As had been stated earlier, we had planned on using the NASA Task Load Index
to report on the effort needed in terms of efficiency to use our developed prototype
but since we were the subjects of the experiment the result would have been biased
had we filled it in. We believe that CANoet does not take alot of effort in terms
of mental, physical and temporal demand. However we leave it to future studies to
use the prototype and assess the workload.

Due to the nature of the approach, regression testing is also made possible as
whenever new functionality is added, the whole test suite can be exercised over and
again with limited effort.

However, it has to be noted that for the approach to be effective, it has to be
done on a specific function basis i.e. it would be hard to build one model for a whole
system to be used for model-based testing. It is better if a module to be tested is
identified, modelled and then tested with the model-based testing approach.
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Threats to Validity

In this section we discuss all the threats that could have had an impact on the
validity of our results and how they were mitigated [37].

8.1 Conclusion Validity

Violated assumptions of statistical tests could have been a threat but before conclud-
ing to use the Mann-Whitney-Wilcoxon test, we made sure that all the assumptions
of the test had not been violated i.e. the collected data was an independent random
sample, a numeric scale was assumed and most importantly it was non-normal data.

Fishing for a specific result, could have been a threat but both the CANoe and
CANoe™ tools were automatically executed to assess the fault finding capability for
each of the tools. From the execution, the failed test cases from each tool were
noted down and there is no possible way in which a specific outcome could have
been fished.

The sample software was executed for a total of 480 runs for the two tools to
mitigate the threat of measurements reliability. The total failed test cases were
recorded from the automatic execution of the tools. The runs and injected faults
were considered enough as adding faults would just diverge the results more to show
that CANoe™ is a better treatment.

Since the authors were the subjects in the experiment, the reliability of treatment
implementation was reduced by having the subjects perform the same exact actions
during the experiment. Hence, the treatment was as standard as possible over the
subjects and occasions.

8.2 Internal Validity

There was no perceived threat to the internal validity. The design of the CANoe™
tool was in such a way that it used random algorithms which mandated the elimi-
nation of human subjects and instead promoted the involvement of the authors to
execute the software multiple times so as to find faults.

Each of the authors(subjects) would apply a treatment to the sample software
successively e.g. when executing the scenario where no faults were inserted, the sub-
ject would execute the software with CANoe then CANoe™ interchangeably during
the experiment hence ruling out the history threat.

Maturation and testing couldn’t have been threats since the experiment involved
automatic execution of the sample software, and all the subjects had to do was to
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note down the test metrics.

A nested design was used hence we had one level for the coverage of the generated
tests and two levels for the tool usage as shown in Figure 5.1. Within the nested
design, a crossed design was used to randomly assign the subjects to the treatments
to cross out the variability that could have affected the experiment results. By
so doing we mitigated the threats to internal validity which are concerned with the
influences that can affect the independent variable with respect to causality, without
the researcher’s knowledge.

8.3 Construct Validity

The interaction of testing and treatment threat was tackled by having well defined
faults prior to the actual process of injecting faults. This ensured uniformity of the
tests and the subjects were under no influence to become either sensitive or receptive
to the treatment.

To avoid unintended negative constructs like experience of the subjects in the
experiment, the experience of the subjects was used as a blocked variable hence
focusing on only the fault finding capability of the two tools.

Besides the above, other threats were amicably mitigated as noted below;

To prevent experimenter expectancies or bias, random algorithms were used in
CANoe™ and the execution of the two tools for failed test cases was fully automated.

For inadequate preoperational explication of constructs, our constructs were evi-
dently defined as well as the measures i.e. evaluating the effectiveness of each of the
tools at catching faults and this was translated into the number of failed test cases
for each tool.

Interraction of different treatments threat was minimized due to the automatic
execution of the two tools and there was no way in which the effect of the two
treatments was due to a combination of the treatments. This applied to hypothesis
guessing as well.

8.4 External Validity

There were no observed external validity threats. For interaction of selection and
treatment, the authors who are both software developers and testers participated
in the experiment and this was a good representation of the population we wanted
to generalize to. These tools are mostly used by software developers and software
testers in the industry.

To rule out the interaction of setting and treatment validity threat, the same
exact tools that are used in the industry i.e. CANoe 8, Visual Studio 2012 were
used during the execution on the two tools in addition to Eclipse which was used
for CANoe™.

All in all, we aimed to make the execution environment as realistic as possible so
as to increase the generalizability of our prototype.
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Conclusions

Our contribution in this thesis was the prototype for our tool CANoe™ which was
developed with the aim to investigate if there is coverage maximization of model-
based test cases with our new tool(CANoe') as compared to the current way of
working which is CANoe. Sample functions were developed e.g. closing and opening
of a car door, starting and stopping the ignition, rolling up and down the windows
and turning on and off of lights in a car system that was simulated in the CANoe
software.

The sample functions were then executed with the use of the two tools to deter-
mine which was best at catching faults. This fault finding capability was translated
into the coverage. The functions were executed multiple times i.e. 480 runs while
injecting faults to assess the fault finding capabilities for each of the tools. For each
run, the number of failed test cases were recorded and later used in the analysis.
The collected data was statistically analyzed and reported in form of a controlled
experiment.

During the analysis, the Mann-Whitney-Wilcoxon one-tailed test was used at
an alpha level of 0.05. We were able to reject the null hypothesis in favor of the
alternative hypothesis as the results reinforced the superiority of model-based testing
approaches like CANoe™ over testing methods like CANoe. The results gave enough
evidence for us to affirm that the use of CANoe™ in automotive systems increases
the coverage of test cases as compared to the use of CANoe.

The limitation to this approach is that for it to be effective, functions that need
to be tested have to be identified, modelled and then tested as opposed to modelling
the whole system as a whole.

Future Work
To ascertain that, this solution is not limited to CANoe or the automotive industry,
it needs to be tried out in other fields let alone other projects and also the work load
assessed using the NASA Task Load Index in Appendix B.
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Appendix 1

e_Init/IgnitionStatus=0;WinDown=0; winUp=0;LockStatus=0;LightStatus=0;
e_TurnOfflgnition/IgnitionStatus=0;

\

‘ v_IgnitionStatusOff

e_TurnOfflgnition/IgnitionStatus=0; w
e_TurnOnlgnition/IgnitionStatL ¢ Yo
/ e_TurnOf
. W

e_TurnOnlgnition[IgnitionStatus==1]/IgnitionStatus=1; l v_Igniti

NW"‘" ition/L 1; Igniti
€

ockDoor][L 0J/L 1; e_LockDoor/LockStatus=1;

oor[LockStatus==1]/LockStatus=0; e_UnlockDoor{L 1]/LockStatus=0;
AN I
e_LockDoor[L 0J/L 1;
s=U;LockStatus=0;

e_TurnLightOn[Lig! e_UnlockDoor/LockStatus=0;

e_TurnOnlgnition/IgnitionStatus=1;DightStatus=1;

- - e_TurnLightOn[LightStatus==0]/LightStatus=1;
e_RollWindowDown/WinDown=1;

e_TurnOnlgnition/IgnitionStatus=1; -j

e_TurnLightOff[LightStatus==1]/LightStatus=0;
e_RollWindowUp/WinUp=1; |

e_TurnLightOn[LightStatus==0]/LightStatus=1;

e_TurnOnlgnition/IgnitionStatus=1;LightStatus=0;

Figure A.1: Sample model for the four modelled functionalities i.e. closing and
opening of a car door, starting and stopping the ignition, rolling up and down the
windows and turning on and off of lights in a car system
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B. Appendix 2

IV

NASA Task Load Index

Hart and Staveland’s NASA Task Load Index (TLX) method assesses
work load on five 7-point scales. Increments of high, mediuvm and low
estimates for each point result in 271 gradations on the scales.

Mame Task Date

Mental Demand How mentally demanding was the lask?
N T T T O B B
Wery Low Very High

Physical Demand How physically demanding was the lask?
N I Y N | | L1 1 111 11
WVery Low WVery High

Temporal Demand How hurried or rushed was the pace of the task?
N
Wery Low Very High

Performance How successful were you in accomplishing what

you were asked 1o do?

Perfect Failure

Effort How hard did you have 1o work o accomplish
your level of performance?

lIIlllIIJllIIIllIIJll

Very Low Wery High

Frustration How insecure, discouraged, irritated, stressed,
and annoyed wereyou?

WVery Low Very High




Appendix 3

Total number of test runs: 60
CANoe CANoe+
Total Passed Failed Time Total passed Failed Time
1 37 37 0 00:00:29 187 187 0 00:05:48
2 37 37 0 00:00:30 80 80 0 00:02:33
3 37 37 0 00:00:29 102 102 0 00:03:07
4 37 37 0 00:00:30 142 142 0 00:04:20
5 37 37 0 00:00:29 106 106 0 00:03:11
6 37 37 0 00:00:29 193 193 0 00:05:46
7 37 37 0 00:00:29 120 120 0 00:03:35
8 37 37 0 00:00:29 179 179 0 00:05:20
9 37 37 0 00:00:30 154 154 0 00:04:35
10 37 37 0 00:00:29 172 172 0 00:04:58
1 37 37 0 00:00:30 98 98 0 00:02:57
12 37 37 0 00:00:30 329 329 0 00:09:14
13 37 37 0 00:00:29 241 241 0 00:06:59
14 37 37 0 00:00:29 340 340 0 00:09:43
15 37 37 0 00:00:30 128 128 0 00:03:51
16 37 37 0 00:00:29 165 165 0 00:04:51
17 37 37 0 00:00:30 198 198 0 00:05:46
18 37 37 0 00:00:30 108 108 0 00:03:14
19 37 37 0 00:00:29 249 249 0 00:07:05
20 37 37 0 00:00:30 193 193 0 00:05:36
21 37 37 0 00:00:30 186 186 0 00:05:27
22 37 37 0 00:00:29 200 200 0 00:05:51
23 37 37 0 00:00:29 189 189 0 00:05:28
24 37 37 0 00:00:30 154 154 0 00:04:35
25 37 37 0 00:00:30 236 236 0 00:07:13
26 37 37 0 00:00:30 263 263 0 00:07:30
27 37 37 0 00:00:29 229 229 0 00:06:30
28 37 37 0 00:00:29 21 21 0 00:06:02
29 37 37 0 00:00:29 317 317 0 00:08:59
Without faults 30 37 37 0 00:00:30 529 520 0 00:14:42

Figure C.1: Collected data for the two tools without faults, continued on next
page
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CANoe CANoe+
Total Passed Failed Time Total passed Failed Time

31 37 37 0 00:00:29 329 329 o 00:09

32 37 37 0 00:00:30 138 138 0 00:04

33 37 37 0 00:00:30 117 117 o 00:03:34

34 37 37 0 00:00:29 134 134 0 00:04:24

35 37 37 0 00:00:30 198 198 o 00:05:51

36 37 37 0 00:00:29 454 454 o 00:12:48

37 37 37 0 00:00:30 223 223 o 00:06:34

38 37 37 0 00:00:30 207 207 o 00:06:04

39 37 37 9] 00:00:29 223 223 o 00:06:34

40 37 37 0 00:00:29 168 168 o 00:05:02

41 37 37 9] 00:00:29 162 162 o 00:04:49

42 37 37 0 00:00:29 224 224 ] 00:06:27

43 37 37 0 00:00:29 138 138 0 00:04:12

a4 37 37 0 00:00:30 223 223 ] 00:06:23

45 37 37 0 00:00:29 173 173 0 00:05:01

46 37 37 0 00:00:30 135 135 ] 00:04:04

47 37 37 0 00:00:30 216 216 0 00:06:24

48 37 37 0 00:00:30 276 276 o 00:07:59

49 37 37 0 00:00:30 226 226 0 00:06:41

50 37 37 0 00:00:30 258 258 o 00:07:28

51 37 37 0 00:00:30 134 134 0 00:04:09

52 37 37 0 00:00:29 131 131 o 00:04:04

53 37 37 0 00:00:29 115 115 o 00:03:30

54 37 37 0 00:00:30 279 279 o 00:07:59

55 37 37 0 00:00:29 206 206 o 00:05:59

56 37 37 9] 00:00:29 561 561 o 00:15:33

57 37 37 0 00:00:29 271 271 o 00:07:49

58 37 37 9] 00:00:30 232 232 o 00:06:45

59 37 37 0 00:00:30 178 178 ] 00:05:16

Without faults 60 37 37 0 00:00:29 139 139 0 00:04:08

Figure C.2: Collected data for the two tools without faults
Total number of test runs: 60
CANoe CANoe+

Total Passed Failed Time Total passed Failed Time
1 37 5 32 00:00:30 240 194 46 00:07
2 37 37 0 00:00:30 180 157 23 00:05
3 37 37 0 00:00:29 114 109 5 00:03:27
4 a7 5 3z 00:00:30 171 145 26 00:05:03
5 37 5 32 00:00:30 82 74 8 00:02:34
6 37 5 32 00:00:30 127 113 14 00:03:48
7 37 37 0 00:00:30 168 153 15 00:04:59
8 37 5 32 00:00:30 172 148 24 00:05:07
] 37 a7 0 00:00:30 157 141 16 00:04:44
10 37 37 0 00:00:30 202 177 25 00:05:55
11 37 5 32 00:00:30 182 161 21 00:05:23
12 37 3r 0 00:00:30 132 108 24 00:04:02
13 37 5 32 00:00:30 161 120 31 00:04:28
14 37 5 32 00:00:30 171 157 14 00:05:03
15 a7 5 3z 00:00:30 132 99 33 00:04:04
16 37 5 32 00:00:30 165 139 26 00:04:51
17 37 5 32 00:00:30 285 232 53 00:08:14
18 a7 ar 0 00:00:29 208 188 20 00:06:07
19 37 5 32 00:00:29 96 84 12 00:02:58
20 37 37 0 00:00:29 191 158 33 00:05:41
21 37 37 0 00:00:29 163 134 29 00:04:51
22 37 37 0 00:00:30 235 213 22 00:06:54
23 37 a7 0 00:00:29 142 125 17 00:04:14
24 37 5 32 00:00:30 174 152 22 00:05:02
25 37 37 0 00:00:30 128 110 18 00:03:46
26 37 5 32 00:00:30 198 181 17 00:05:47
27 37 37 0 00:00:30 89 83 6 00:02:46
28 37 37 0 00:00:30 281 236 45 00:08:04
29 a7 5 3z 00:00:30 259 228 31 00:07:26
With 1 fault 30 37 37 0 00:00:29 132 108 24 00:03:58

Figure C.3: Collected data for the two tools with one fault injection, continued
on next page
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CANoe CANoe+
Total Passed Failed Time Total passed Failed Time
31 37 5 32 00:00:30 267 238 29 00:07
32 37 5 32 00:00:30 200 174 26 00:05
33 37 5 32 00:00:30 279 242 37 00:08:09
34 37 37 0 00:00:29 250 236 14 00:07:21
35 37 37 0 00:00:30 206 175 31 00:06:04
38 37 5 32 00:00:30 326 289 27 00:09:25
37 37 5 32 00:00:30 244 207 37 00:07:04
38 37 5 32 00:00:30 202 171 31 00:06:03
39 37 37 0 00:00:30 221 168 53 00:06:34
40 37 5 32 00:00:30 498 387 111 00:14:05
41 37 5 32 00:00:30 189 160 29 00:05:50
42 37 5 32 00:00:30 173 152 21 00:05:24
43 37 37 0 00:00:29 124 104 20 00:03:52
44 37 5 32 00:00:29 150 141 9 00:04:31
45 37 37 0 00:00:30 232 198 34 00:06:59
46 37 37 0 00:00:30 382 344 38 00:11:02
47 37 5 32 00:00:30 97 91 6 00:03:02
48 37 5 32 00:00:30 314 278 36 00:18:48
49 37 5 32 00:00:30 184 161 23 00:05:27
50 37 37 0 00:00:29 189 187 2 00:05:41
51 37 5 32 00:00:30 346 304 42 00:10:05
52 37 5 32 00:00:30 263 228 35 00:07:43
53 37 5 32 00:00:29 147 127 20 00:04:28
54 37 5 32 00:00:30 210 174 38 00:08:07
55 37 5 32 00:00:30 112 102 10 00:03:33
56 37 5 32 00:00:30 387 320 67 00:11:08
57 37 5 32 00:00:30 154 133 21 00:04:43
58 37 5 32 00:00:30 368 322 46 00:10:33
59 37 5 32 00:00:30 134 M7 17 00:04:07
With 1 fault 60 37 37 37 00:00:30 162 139 23 00:04:54
Figure C.4: Collected data for the two tools with one fault injection
Total number of test runs: 60
CANoe CANoe+
Total Passed Failed Time Total passed Failed Time
1 37 36 1 00:00:30 224 181 43 00:08
2 37 37 4] 00:00:29 233 181 52 00:08
3 37 5 32 00:00:30 237 186 51 00:06:55
4 37 36 1 00:00:30 162 131 31 00:04:48
5 37 36 1 00:00:30 223 182 41 00:06:40
6 37 4 33 00:00:31 105 94 11 00:03:22
7 37 5 32 00:00:30 128 110 18 00:03:54
8 37 a7 4] 00:00:30 172 145 27 00:05:09
9 37 37 4] 00:00:29 84 73 11 00:02:37
10 37 36 1 00:00:30 102 84 18 00:03:06
11 37 5 32 00:00:30 380 321 69 00:12:47
12 37 5 32 00:00:30 203 134 69 00:05:58
13 37 5 32 00:00:30 161 129 32 00:04:47
14 37 36 1 00:00:30 98 76 22 00:03:08
15 37 36 1 00:00:30 175 151 24 00:05:11
16 37 36 1 00:00:30 127 98 29 00:03:51
17 37 37 4] 00:00:29 277 208 69 00:08:10
18 37 36 1 00:00:30 299 216 83 00:08:36
19 37 4 33 00:00:30 148 105 43 00:04:27
20 37 a7 4] 00:00:29 143 98 45 00:04:21
21 37 37 4] 00:00:29 170 135 35 00:05:03
22 37 36 1 00:00:30 164 128 36 00:04:52
23 37 36 1 00:00:30 161 140 21 00:03:31
24 37 4 33 00:00:30 480 355 105 00:13:01
25 37 4 33 00:00:30 186 126 60 00:05:32
26 37 4 33 00:00:31 186 129 57 00:05:24
27 37 36 1 00:00:30 223 177 46 00:06:26
28 37 37 4] 00:00:30 209 169 40 00:06:20
29 37 37 4] 00:00:30 291 204 87 00:08:23
‘With 2 Random faults 30 37 5 32 00:00:30 171 110 61 00:05

Figure C.5: Collected data for the two tools with two random faults Injected,

continued on the next page
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CANoe CANoe+
Total Passed Failed Time Total passed Failed Time
£l 37 37 0 00:00:29 253 203 50 00:07
32 37 37 0 00:00:29 124 102 22 00:03
33 37 37 0 00:00:29 148 126 22 00:04:31
34 37 5 32 00:00:30 273 251 22 00:07:53
35 37 36 1 00:00:30 186 138 48 00:05:32
36 37 4 33 00:00:31 124 103 21 00:03:53
37 37 5 32 00:00:30 12 92 20 00:03:34
38 37 36 1 00:00:30 150 127 23 00:04:28
39 37 5 32 00:00:30 146 104 42 00:04:22
40 37 0 37 00:00:30 130 98 32 00:03:58
41 37 ar 0 00:00:30 113 79 34 00:03:34
42 37 6 31 00:00:31 150 113 a7 00:04:31
43 37 5 32 00:00:30 106 77 29 00:03:21
44 37 4 33 00:00:30 195 150 45 00:05:47
45 37 36 1 00:00:30 240 167 73 00:07:00
46 37 4 33 00:00:31 248 177 69 00:07:19
47 37 5 32 00:00:30 233 149 84 00:07:02
48 37 ar 0 00:00:29 113 73 40 00:03:35
49 37 36 1 00:00:30 123 89 34 00:03:48
50 37 3r 0 00:00:29 138 108 29 00:04:11
51 37 36 1 00:00:30 269 205 64 00:07:57
52 37 36 1 00:00:30 114 85 29 00:03:29
53 37 5 32 00:00:30 190 139 51 00:05:46
54 37 5 32 00:00:30 488 377 109 00:13:58
56 37 4 33 00:00:31 113 58 55 00:03:35
56 37 4 33 00:00:31 180 130 50 00:05:27
57 37 3r 0 00:00:30 143 111 32 00:04:28
58 37 36 1 00:00:30 182 141 41 00:05:32
59 37 4 33 00:00:31 141 114 27 00:04:17
With 2 Random faults 60 37 37 0 00:00:29 126 91 35 00:03:54

Figure C.6: Collected data for the two tools with two random faults Injected

Total number of test runs: 60
CANoe CANoe+
Total Passed Failed Time Total passed Failed Time
1 37 37 0 00:00:30 223 215 8 00:06
2 37 37 0 00:00:30 189 171 18 00:05
3 37 37 0 00:00:30 208 200 8 00:05:53
4 37 37 0 00:00:29 292 278 14 00:08:46
5 37 37 0 00:00:30 377 361 16 00:10:39
6 37 37 0 00:00:29 154 142 12 00:04:46
7 37 37 0 00:00:30 226 218 8 00:06:24
8 37 37 0 00:00:30 229 213 16 00:06:34
] 37 37 0 00:00:30 362 352 10 00:10:06
10 37 37 0 00:00:30 156 142 14 00:04:33
11 37 37 0 00:00:29 193 173 20 00:05:35
12 37 37 0 00:00:29 206 184 22 00:05:58
13 37 37 0 00:00:30 196 194 2 00:05:35
14 37 37 0 00:00:29 225 213 12 00:06:22
16 37 37 0 00:00:29 139 131 8 00:04:14
16 37 37 0 00:00:29 106 104 2 00:03:08
17 37 37 0 00:00:30 464 448 16 00:12:48
18 37 37 0 00:00:29 209 185 14 00:05:59
19 37 37 0 00:00:30 266 248 18 00:07:30
20 37 37 0 00:00:30 85 7 8 00:02:40
21 37 37 0 00:00:30 231 221 10 00:06:29
22 37 37 0 00:00:29 256 224 32 00:07:19
23 37 37 0 00:00:30 176 170 6 00:05:01
24 37 37 0 00:00:29 176 174 2 00:05:07
25 37 37 0 00:00:29 145 139 6 00:04:27
26 37 37 0 00:00:30 195 191 4 00:05:38
27 37 37 0 00:00:30 210 206 4 00:05:56
28 37 37 0 00:00:30 238 230 8 00:06:43
29 37 37 0 00:00:30 282 256 26 00:08:09
Custom fault 30 37 37 0 00:00:29 222 214 8 00:06:17

Figure C.7: Collected data for the two tools with a custom fault Injected, continued
on the next page
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CANoe CANoe+
Total Passed Failed Time Total passed Failed Time
31 37 37 2} 00:00:29 210 206 4 00:06
32 37 37 8] 00:00:29 261 257 4 00:07
33 37 37 0 00:00:29 199 185 14 00:05:50
34 37 37 a 00:00:30 198 194 4 00:05:45
35 37 37 0 00:00:30 189 187 2 00:05:23
36 37 37 2} 00:00:29 214 196 18 00:06:14
37 37 37 8] 00:00:30 204 194 10 00:05:56
38 37 37 0 00:00:29 211 195 16 00:06:07
39 37 37 a 00:00:29 102 96 & 00:03:07
40 37 37 0 00:00:30 113 107 3} 00:03:55
41 37 37 2} 00:00:30 112 106 i} 00:03:27
42 37 37 s} 00:00:30 266 262 4 00:07:25
43 37 37 0 00:00:29 373 365 8 00:10:28
44 37 37 a 00:00:29 144 144 s} 00:04:13
45 37 37 0 00:00:29 120 108 12 00:03:41
46 37 37 2} 00:00:29 415 385 20 00:11:39
47 37 37 a 00:00:30 429 427 2 00:11:54
48 37 37 8} 00:00:30 115 105 10 00:03:32
49 37 37 a 00:00:29 385 3N 4 00:10:53
50 37 37 0 00:00:29 370 366 4 00:10:14
51 37 37 2} 00:00:29 119 115 4 00:03:33
52 37 37 a 00:00:29 217 207 10 00:06:14
53 37 37 8} 00:00:30 339 337 2 00:09:16
54 37 37 2} 00:00:29 204 196 [:} 00:05:55
55 37 37 0 00:00:30 168 162 6 00:04:51
56 37 37 0 00:00:30 412 408 4 00:11:22
57 37 37 a 00:00:29 131 127 4 00:03:52
58 37 37 0 00:00:30 201 199 2 00:05:43
59 37 37 2} 00:00:30 163 159 4 00:04:44
Custom Fault 80 37 37 8] 00:00:29 398 394 4 00:11:06

Figure C.8: Custom Fault Injection
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