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ABSTRACT 

During the last years, the media reported about several timber roof collapses all across 
Europe, especially during rough winters. This is a serious problem that bears the risk 
of many fatal incidents and needs to be encountered in order to improve the safety of 
structures. One solution could be to estimate the axial loads in the structural members 
using resonance frequency analysis. The results could then be used to assess the safety 
of timber structures and to decide about their continued use or temporary closure. 
While this method had already been reported for steel structures, only little research 
had been carried out in the area of timber structures. 

The aim of this project was therefore to investigate if it is possible to estimate the 
axial loads in timber beams using resonance frequency analysis and if yes, what are 
the precision requirements for the material properties and the measured frequencies. 
This was achieved by performing transversal frequency measurements on 32 timber 
specimens and an aluminium bar under tension. The latter hereby served as 
homogeneous reference for better interpretation of results. The two first frequencies, 
together with different values for the E-modulus were then used to estimate the axial 
load and the rotational stiffness at the boundaries. The numerical model behind the 
calculations was based on Timoshenko beam theory, allowing to include effects of 
shear deformations and rotary inertia. The material properties of the specimens were 
previously determined by static and dynamic tests. Finally, a sensitivity analysis was 
carried out to investigate the influence of errors in input parameters on the final 
results.  

The best results were obtained using the E-modulus derived from transversal vibration 
tests and showed a mean error ranging from 7.6% to 46.6%, where the results 
generally improved for higher loads. When using the E-moduli from longitudinal 
vibration tests, the mean errors increased to 12.4% to 89.5%. It was also attempted to 
use the static E-modulus for the calculations, which led however to incorrect results. 
Dynamic values should be used for the parameter estimation with the presented 
resonance frequency method. The results of the sensitivity analysis showed that the 
sensitivity of the estimated axial load decreases for higher load levels, which could 
also be observed in the test results. The most influential parameters on the quality of 
the results were the measured frequencies and the clear beam length, followed by the 
density and the E-modulus. 

Key words: resonance frequency analysis, timber beams, axial load, non 
destructive testing, Timoshenko beam theory, dynamic E-modulus, 
modal analysis, parameter estimation 
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Notations 
In the notation table, all variables occurring in the report are listed alphabetically.  

 
Roman upper case letters 

𝐴 Area of cross section 
𝐴 Equation coefficient 
𝐵  Equation coefficient 
𝐶  Equation coefficient 
𝐶𝑖  Equation coefficients 
𝐶𝑖′  Equation coefficients 
𝐷  Equation coefficient 
𝐷𝑖  Equation coefficients 
𝐸 E-modulus 
𝐸0,𝑚𝑒𝑎𝑛 Mean E-modulus parallel to the grain for timber 
𝐸𝑖,𝑏 Dynamic E-modulus from transversal vibration tests 
𝐸𝑖,𝐿 Dynamic E-modulus from longitudinal vibration tests 
𝐸𝑠𝑡𝑎𝑡𝑖𝑐 Static E-modulus 
𝐺 G-modulus 
𝐺𝑖 Dynamic G-modulus from transversal vibration tests 
𝐺𝑚𝑒𝑎𝑛 Mean G-modulus for timber 
𝐻 Factor in the continuous numerical model  
𝐼 Moment of inertia 
𝐼𝑝 Polar moment of inertia 
𝐾𝑖 Load levels for the static four-point bending test 
𝐾𝑡 Torsional constant  
𝐿 Beam length or clear span length 
𝐿𝑚𝑎𝑥 Maximum clear length for the beam in the tensile machine 
𝐿𝑚𝑖𝑛 Minimum clear length for the beam in the tensile machine 
𝑀 Bending moment 
𝑀𝑡 Torsional moment 
𝑁 Number of terms in the Rayleigh-Ritz method 
𝑆 Axial load (positive in tension) 
𝑆𝐸 Euler buckling load for a simply supported beam 
𝑆𝑒𝑠𝑡 Estimated axial load 
𝑆𝑚𝑎𝑥 Maximum tensile load 
𝑇∗ Reference kinetic energy 
𝑇𝑚𝑎𝑥 Maximum kinetic energy 
𝑉 Shearing force 
𝑉𝑚𝑎𝑥 Maximum potential energy 
𝑋 Normal function or modal shape of a vibrating beam 
𝑋𝑖 Modal shapes of a vibrating beam 
𝑌 Modal shape of a transversally vibrating beam 
𝑍 Factor in the continuous numerical model 
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Roman lower case letters 

𝑎  �𝐸 𝜌⁄  

𝑎  Distance from the support to the first load (four-point bending test) 

𝑎𝑖 Coefficients in Rayleigh-Ritz method 

𝑏 �(𝐺 ∙ 𝐾𝑡) �𝜌 ∙ 𝐼𝑝�⁄  

𝑏 Beam height 

𝑏 Factor in the continuous numerical model 

𝑏𝑖 Coefficients in Rayleigh-Ritz method 

𝑐𝑖 Factors in continuous numerical method 

𝑓 Resonance frequency 

𝑓𝑖 Resonance frequencies for different vibration modes 

𝑓𝑖𝑏 Transversal resonance frequencies for different vibration modes 

𝑓𝑖𝑡 Torsional resonance frequencies for different vibration modes 

𝑓𝑖𝐿 Longitudinal resonance frequencies for different vibration modes 

𝑓𝑡,0,𝑘 Characteristic tensile strength parallel to the grain 

𝑓𝑡,0,𝑚𝑎𝑥 Maximum tensile strength parallel to the grain from tensile tests 

𝑓𝑢 Ultimate tensile strength 

ℎ Beam height 

𝑖 Natural integer 

𝑘 Rotational stiffness at boundary 

𝑘 �𝜔/𝑎 

𝑘𝑖 Translational and rotational stiffness at boundary 

𝑘𝑖 �𝜔𝑖/𝑎 

𝑘𝑒𝑠𝑡 Estimated rotational stiffness at boundary 

𝑘𝑠 Shear factor, in general 𝑘𝑠 = 5/6 

𝑙 Beam length, span or finite element length 

𝑛 Natural integer  

𝑝 Factor in the continuous numerical model 

𝑠 Factor in the continuous numerical model 

𝑡 Time 

𝑢 Longitudinal displacement 

𝑣 Transversal displacement 

𝑤 Moisture content or deflection 
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𝑤𝑖 Moisture content or deflection in different points 

𝑥,𝑦 Main directions in coordinate system 
 

Greek letters 

Δ  Factor in the continuous numerical model 
Θ Y or Ψ 
Ψ Modal shape of a transversally vibrating beam 
𝛽 Angle of shear 
𝜀 Strain 
𝜃 Rotation angle 
𝜃 y or 𝜓 
𝜆1 Factor in the continuous numerical model 
𝜆2 Factor in the continuous numerical model 
𝜌 Density 
𝜌𝑘 Density 
𝜎 Stress level 
𝜙 𝑘𝑠𝐺𝐴 for the continuous numerical model 
𝜙 12𝐸𝐼/(𝑘𝑠𝐺𝐴𝑙2) for the discrete numerical model 
𝜓 Angle of rotation of cross section 
𝜔 Angular resonance frequency 
𝜔𝑖 Angular resonance frequencies for different vibration modes 
 

Signs and mathematical symbols 
% Percentage 
∫  Integral 
[ ] Matrix/vector parentheses 
𝑐𝑜𝑠 Cosinus function 
𝑠𝑖𝑛 Sinus function 

𝑻 Transponation of a matrix 
̇  First derivate of a function 
̈  Second derivate of a function 
𝜕𝑖 ith order derivate in multiple calculi 
𝑑 Infinite small increment 
𝜕 Derivate in multiple calculi 
 

Matrix notations (bold style) 

𝑪 Coefficient vector 
𝑪  Damping matrix 
𝑪𝑴 Matrix for continuous numerical model 
𝑲 Stiffness matrix 
𝑲𝒆 Element stiffness matrix 
𝑲𝑳
𝒆 Part of element stiffness matrix accounting for the axial load 

𝑲𝑺
𝒆 Part of element stiffness matrix accounting for the strain 

𝑴 Mass matrix 
𝑴𝒆 Element mass matrix 
𝑴𝑹

𝒆  Part of element mass matrix accounting for effects of rotary inertia 
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𝑴𝑻
𝒆  Part of element mass matrix accounting for effects of translatory inertia 

𝒇(𝒕) Time dependent force vector 
𝒗 Vector of displacement 
𝝓 Eigenvector to the eigenvalue problem 
 

Abbreviations 
°C Degree Celsius 
CEN Comité Européen de Normalisation  
E-modulus Modulus of elasticity 
FE(M) Finite element (method) 
FFT Fast Fourier Transformation 
FRF Frequency response functions  
G Giga- 
Glulam Glued-laminated timber 
G-modulus Shear modulus 
M Mega- 
N Newton 
OSB Oriented Strand Boards 
Pa Pascal 
TC Technical Committee 
k kilo- 
m Meter 
m milli- 

s Second 
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1 Introduction 
1.1 Background  
Over the last years, the media reported about several roof collapses across Europe that 
occurred mostly during winter times after high snow precipitations. The fact that roof 
structures failed under the loads of snow and ice cost several human lives and caused 
many injuries. In January 2006, the Bad Reichenhall Ice Rink in Bavaria, Germany 
collapsed after continuing snowfalls. The failure of the 36-year-old roof claimed 15 
lives and caused 34 injured. In February of the same year, the collapse of a market 
hall in Moscow claimed the lives of 50 Caucasian guest workers. These are only a few 
examples of collapses that occurred during this particularly strong winter. In February 
2009, the roof of a three-year-old school sports hall in St. Gallen, Switzerland 
collapsed just two hours before start of classes. In January 2012 a one-year old roof 
structure of an ice-hockey hall in Slovakia collapsed during a match. All these 
examples show the severity of this safety issue that exists in many different countries 
and damages the public confidence in the construction sector. 

The main reasons for the collapses consist in general of high snow loads, combined 
with moisture effects or wrong assumptions considering the structural behaviour. 
Branco (2010) stated that the “assessment of constructed timber trusses shows various 
differences in their structural model” and that “visual inspections are the basis of any 
analysis of timber structures” to ensure the detection of decay or mechanical damages. 
In the case that a snow removal does not occur, it is therefore important to assess the 
real behaviour of the structure that can considerably derive from the assumed model. 
Also a condition assessment of the structural members should be carried out to assure 
a realistic evaluation, especially for older structures. An example for this is further 
shown in Branco (2010), where two timber trusses from a construction situated near 
Caldonazzo Lake, Italy were analysed. The over 70 year old trusses were 
disassembled and reconstructed in the laboratory, where their real structural behaviour 
was assessed by visual grading as well as dynamic and static testing. Both trusses 
showed asymmetric behaviour even under symmetric loading, which is a clear 
deviation from the structural model. All this indicates that a lack of information about 
the structural behaviour of roofs can lead to incorrect or even unnecessary 
reinforcements or replacements.  

The problem of uncertainties in structural integrity is furthermore enhanced by 
uncertainties in future snowfall development affected by climate change. Strasser 
(2008) indicates that climate change could have a harmful effect on snow loads, at 
least in colder regions. Even if higher temperatures will result in less frequent 
snowfall, extreme weather events and precipitations are likely to become more 
frequent. In regions that will remain cold enough these precipitations will occur in 
form of strong snowfalls, which most likely will exceed today’s design values. In 
other words, instead of many moderate snowfalls it is probable that there will be 
fewer snowfalls with higher peaks. It is therefore important to know if today’s 
structures can bear these increased loads.  

The solution to these problems could lie in non-destructive testing (NDT) methods, 
namely frequency based identification methods. In contrast to strain gauges, these 
methods allow to estimate actual stress levels at any time and without the need of a 
reference state. This means that stresses inside the structural members caused by self-
weight, creep or changes in temperature or moisture are included in the results, which 
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allows a realistic assessment of the structural behaviour and the detection of the most 
loaded, hence most vulnerable members. With this information, a better computer 
model can be created from which a more realistic assessment of the load bearing 
capacity can be drawn. This gives for example answers to the questions “What snow 
load levels can the roof bear?” and “When should a structure be temporary closed and 
reinforced for safety reasons?”. 

Livingston (1994) was one of the first to introduce a method based on frequency 
measurements to estimate the axial load in members. His model furthermore allowed 
identifying the rotational restraint at the supports of prismatic beams. The principle is 
to transversally excite a beam under axial force and to determine the first frequencies 
with the help of an accelerometer linked to a computer software. Resonance frequency 
analysis then allows deriving the axial loads and boundary conditions from these 
frequencies. The method was tested on a square steel rod under tension to verify the 
results. Even though it could be observed that the axial loads were in general 
overestimated, the method showed promising results, especially for high-tension 
forces. The same technique was also used by Amabili (2010)to determine the in-situ 
tensile forces in steel rods being part of ancient masonry buildings in Italy. The results 
could then be used as a basis to decide whether the bars needed to be replaced or not. 
In Maille (2008) the method was used to assess the safety of an old breeding barn’s 
roof structure. The testing led to the axial loads in the steel members of the truss 
construction, which were then compared to the ones predicted by different computer 
models. The most accurate model could then be used to determine the bearing 
capacity of the structure. As these works show, the technique has been approved for 
steel, which is a homogeneous material with isotropic properties. However it seems 
that no experiments have yet been carried out to verify the method for inhomogeneous 
materials like timber, on which is the focus in this thesis. 

Since one of the main application fields of timber products are roof structures and 
since the exact material behaviour is not entirely clear, a reliable non-destructive 
testing method would represent a major contribution to the safety assessment of 
existing structures. 

 

1.2 Aim of the thesis 
The aim of this thesis was to investigate the possibility of estimating axial loads in 
timber members by means of resonance frequency analysis. For promising results, this 
method could be used in the future to assess the safety of timber structures by 
determining the actual stress of state in the loaded members. The main difference to 
steel structures is that the material properties of timber are subject to a large spread 
given by its inhomogeneity and natural growth. It is therefore important to analyse 
what precision is required for the use of this method and what parameters have the 
highest influence on the estimation of the axial load.  

 

1.3 Method 
Based on a literature study carried out on resonance frequency testing for the 
determination of axial forces, the framework for the specimen dimensions and the test 
setup was elaborated. Static and dynamic testing was then performed on 32 timber 
specimens of Norway spruce to determine their material properties. Furthermore, the 
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same tests were carried out on an aluminium bar serving as reference for 
homogeneous material. Finally, transversal frequency measurements were performed 
on the specimen under different load levels. The collected data was then evaluated 
using Timoshenko beam theory to estimate boundary conditions and axial load. A 
sensitivity study was carried out to analyse the influence of the different input 
parameters on the estimation of the axial load and the boundary conditions. 

 

1.4 Limitations 
The main limitations in this research were a lack of time and available laboratory 
space and equipment. This led to small-scale experiments on 32 timber specimens of 
identical dimensions and an aluminium bar. No moisture variation or long-term 
effects could be considered. The available machine limited the research to tensile 
loads only.  

 

1.5 Outlines 
In the following, the contents of the different chapters and their chronological order 
are presented. 

 

1. Introduction: This chapter gives the necessary background information as 
well as the aims of the thesis. Moreover, the methods to the respective aims 
are explained. 
 

2. Building material timber: In this chapter, the material properties of timber 
are discussed. Furthermore, non-destructive methods for timber grading are 
explained. 
 

3. Determination of axial load and boundary conditions in slender beams:  
A literature review is presented on resonance frequency analysis for the 
purpose of parameter estimation. Conclusions are drawn on how to chose the 
specimen size and test framework. 
 

4. Vibration theory  
The theory behind different types of beam vibrations is explained and the 
according assumptions are listed. The difference between Euler and 
Timoshenko theory is explained. 
 

5. Numerical modelling and parameter estimation: In this chapter, different 
numerical models are presented and compared. The parameter estimation used 
in later data processing is explained. Finally, a sensitivity analysis is carried 
out to analyse the sensitivity of the axial load and the boundary conditions 
with regard to measured input parameters. 
 

6. Modal analysis: This chapter explains the difference between theoretical and 
experimental modal analysis. The most important aspects of data acquisition 
and data processing are illustrated. 
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7. Determination of material properties: The specimens are presented along 
with information on the test equipment and the data processing. The material 
properties of each beam are determined using static and dynamic testing.  
 

8. Tension tests: The tensile machine and setup of the final tests are explained. 
The results of the frequency measurements as well as the according estimation 
of axial loads and boundary conditions are presented. This is followed by a 
comparison and discussion of the results for timber and aluminium. Finally, 
tensile tests on some specimens are presented to determine their ultimate 
tensile strength. 
 

9. Conclusions and further research: This chapter presents the final 
conclusions made from the data acquisition and the parameter analysis. In 
addition, suggestions for further research are made. 
 

10. References: An alphabetical summary of the used literature is listed in this 
chapter. 
 

11. Appendices: This chapter contains a summary of all test results, frequency 
response function plots and Matlab codes used in this paper. 
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2 Building material timber 
The demand for construction timber has been rising considerably during the last 
decades. One main reason is the new awareness with regard to the environment 
caused by the climate change and resource scarcity. Timber meets this new 
requirement by being a naturally regrowing material with low energy consumption 
during the whole life cycle. Another reason for the raising use of timber materials is 
the high level of prefabrication. The different parts can be produced in indoor 
workshops prior to construction. This ensures high quality standards and weather 
independence. After the prefabrication, the different parts can then be transported on 
site and assembled in a quick and precise way.  

A major disadvantage of timber is however its anisotropy. Unlike steel or other 
homogeneous materials, timber has different material properties in different 
directions, which requires much care and consideration during the design phase. This 
is given by its cell structure, which is illustrated in more detail in the next paragraph, 
together with the material properties of timber. 

 

2.1 Characteristics of timber 
When analysing the cell structure of wood, one has to distinguish softwood 
(coniferous wood) and hardwood (deciduous wood). From the cell structure 
illustrations in Figure 2-1, it can be seen that softwood has a more uniform 
composition parallel to the grain than hardwood, where the grain is penetrated by 
vessels variable in size and shape. This leads to a higher variation in material 
properties.  

 

   
Figure 2-1 SEM images showing the difference between softwood (left) and hardwood 

(right), Wikipedia.org (2006) 

It is however true for all types of clear wood, that the stiffness and strength properties 
generally increase with higher densities. Also the stiffness and strength properties are 
always considerably higher in grain direction than perpendicular to the grain. Figure 
2-2 shows the variation of tensile and compression strength with the angle variation 
from the grain direction for strength class C24 according to SIA (2003). It is obvious 
that the strength perpendicular to the grain is very low, even negligible for tension, 
compared to the one in grain direction. This is also one of the most common failure 
modes observed in practice. The E-modulus for the same strength class is around 35 
times higher in the grain direction than perpendicular to it SIA (2003). 
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Figure 2-2 Tensile and compression strength of C24 for different angles α to the grain 

direction SIA (2003) 

The strength of a timber beam also depends on the loading mode, i.e. moment, 
tension, compression or shear. The according strengths are usually determined by 
direct testing methods under the assumption of elastic behaviour. Beams under 
tension generally show a brittle failure, while some plastic deformations are possible 
for compression forces, due to the buckling of the fibres. 

The good properties of clear wood in grain direction are significantly reduced by 
random defects such as knots, oblique fibre orientation and resin pockets. The varying 
number and location of these defects cause a large spread in properties shown in 
Figure 2-3. 

 
Figure 2-3 Probability density functions for solid wood and glulam Thelandersson and 

Larsen (2003) 

This spread let to the development of Engineered wood products (EWP), which in 
general aim to reduce the high variability of timber. For glue-laminated timber for 
instance, several lamellas of solid wood are glued together. This improves the 
material properties since local weak zones can redistribute stresses to adjacent 
stronger regions. Another approach is to shred the wood to smaller pieces and 
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reassembling it with the use of adhesives as it is done for OSB panels. Figure 2-4 
shows some examples of EWPs. 

 
Figure 2-4 Examples of Engineered wood products Buyleedlumber.com (2012) 

According to Thelandersson and Larsen (2003), these are some of the main 
advantages of EWPs: 

• Size is not limited by tree dimensions. 
• Reduced effect of defects by distributing them over the whole beam. 
• Reduced anisotropy 
• Higher dimensional stability and tolerances 

One should however also note that EWPs are generally more expensive than solid 
wood and that adhesives like glue are necessary for their production. The latter 
somewhat decrease the ecological character of the timber use. 

Another consideration, that needs to be taken into account when dealing with timber, 
is that it interacts with the humidity in the environment until it reaches the equilibrium 
moisture content. This change in moisture can result in internal stresses causing 
deformations or even cracks, for example perpendicular to the grain. Also it has to be 
considered that the material properties vary with the moisture content. For high 
moisture contents, strength and stiffness values need to be reduced, while values 
around 12% at an ambient temperature of 20°C are optimal SIA (2003). 

Another important aspect is that timber has a low shear modulus compared to 
homogeneous materials like steel. This means that shear deformations need to be 
taken into account for timber structures since they can be of the same order as 
deformations from bending. This effect becomes even more important for a high 
presence of knots since the reduction they cause in G-modulus is more important than 
the one in the E-modulus. The deformations of timber beams increase furthermore 
over time, since the strength decreases under permanent loading. 

All these illustrations show that there are various uncertainties related to timber 
construction and that there is a need for non-destructive methods to estimate the 
material properties and make sure they are within desirable limits. The next paragraph 
gives an overview of methods used in practice for the grading of timber and the 
determination of some important properties of timber beams, namely the density, 
strength and stiffness. 
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2.2 Non-destructive methods for timber grading 
According to Thelandersson and Larsen (2003), two types of strength grading can be 
distinguished: 

• Visual grading: it is based on visual inspections to determine number and 
distribution of defects like knots, grain slope, compression wood, resin pockets etc. 
According to specific rules, the specimen can then be assigned to a strength class. 

• Machine grading: there are different methods that can be used to measure several 
parameters including knots, ring width, density etc. The resulting information can 
then be combined to predict the strength and stiffness of the specimen. 

The most numerous, yet also harmful defects are knots since they considerably reduce 
the stiffness and are in general also the cause for failure in ultimate bending or tensile 
tests.  

One should keep in mind that even after timber grading there are still uncertainties 
concerning the material properties and that these values can only be considered as 
estimates based on more or less accurate correlations between different parameters. 
There is for example a good correlation between E-modulus and strength, even in 
presence of knots. The correlation between density and E-modulus on the other hand 
is only strong for clear wood specimens, which are not the general case Thelandersson 
and Larsen (2003). 

Determination of density 
The easiest way to determine the global density of a specimen is to calculate its 
weight-to-volume ratio. Since this is however not possible for existing structures 
without taking a probe, there is a need for other non-destructive methods that can be 
used on-site.  

Accurate results can is this case be achieved by means of radiation techniques (x-ray 
or gamma rays). They allow to determine not only the global density, but even the 
density distribution of a beam. Furthermore it is possible to find the location as well 
as size of hidden knots since they have a higher density then the surrounding material 
(cf. Figure 2-5). An application of this technique can be found in Oja (2001) and 
(Schajer, 2001) where it was used to determine the density of logs and lumber from 
which it was then attempted to derive strength and stiffness. 

 

 
Figure 2-5 Illustration of the determination of wood density using x-rays Oja (2001) 
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Determination of E-modulus 
One of the most widely used methods to determine the static E-modulus is to perform 
continuous flatwise-bending tests. This is in fact a three-point loading test carried out 
along the beam length (cf. Figure 2-6). The result is the E-modulus distribution over 
the beam length, excluding the ends since it is not possible to carry out the 
measurements there.  

  
Figure 2-6 Bending type machine for continuous timber grading, based on 

(Performancepanels.com, 2012) 

A more recent approach to determine the E-modulus are dynamic testing methods. 
They have gained much importance during the last decades, since they provide a 
quick assessment of wood quality with relatively low means of equipment. In the 
following, some of these non-destructive dynamic grading methods are described in 
more detail. 

Resonance frequency measurements are based on the fact that for free boundary 
conditions, the frequencies depend only on the density, the E-modulus and the 
geometry of the specimen. With known density it is then possible to estimate the E-
modulus. The free boundary conditions can be simulated by suspending the specimen 
on rubber bands or by using soft foam pieces as support. The specimen is excited with 
a hammer and the response can be recorded using an accelerometer or a microphone. 
The frequencies can then be calculated by performing a Fast Fourier Transformation 
(FFT) on the raw time data, which can be done using a computer software Haines 
(1996). From these frequencies, longitudinal and transversal E-moduli can then be 
derived. The test setups for both kinds of frequency measurements are illustrated in 
Figure 2-7.  

 

 
Figure 2-7 Illustration of the test-setup for longitudinal (top) and transversal (bottom) 

frequency measurement 
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The E-moduli calculated from dynamic testing are usually higher then the ones 
obtained from static testing. The reason for this is the difference in duration of the 
tests. Static tests are carried out during several minutes where the timber starts to 
creep, giving its viscoelastic material behaviour. This results in lower stiffness values. 
Dynamic tests only last seconds and therefore represent a short-time stiffness that is 
higher in value (Haines, 1996). The correlation between the different E-moduli is 
however quite strong, depending on the number of defects and the type of wood. In 
general it can be said that the correlation is higher for clear wood since defects like 
knots cause a local reduction of the stiffness and reduce the accuracy of the dynamic 
tests. 

Ohlsson and Perstorper (1992) carried out both, flexure and longitudinal tests on a 
clear piece of Norway spruce to determine its E- and G-modulus using different 
numbers of frequencies together with Timoshenko theory. The test setup comprised 
several accelerometers to be able to determine the vibrations modes also for higher 
frequencies. The excitations were made using an instrumented hammer. The best 
results for the E-modulus could be achieved using only the two lowest longitudinal 
frequencies and the lowest flatwise bending frequency. The use of additional 
information from higher frequencies did not improve the results, but rather lowered 
the accuracy. For non-defect-free specimens it seems therefore reasonable to only use 
the lowest frequency.  

Another possibility to determine the E-modulus from a known density is the 
ultrasonic test developed by Sandoz (1989), also known as Sylva-test. The test is 
based on the velocity of stress wave propagation in materials. In simple words, an 
impulse is induced at one end of a beam and the response is measured at the other 
end. The time delay of the impact over the length of the beam can then be used to 
compute the wave velocity from which the E-modulus can eventually be derived. The 
results presented in Sandoz (1989) show very good correlation between dynamic and 
static E-modulus. The general test-setup as well as the application in practice are 
illustrated in Figure 2-8.  

 

 
Figure 2-8 Schematic model of the Sylva-test (left) and application on a stress-laminated 

timber deck (right), Ross (1994) 
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Determination of G-modulus 
The G-modulus can be determined in the same way as the E-modulus using torsional 
instead of bending vibrations Ohlsson and Perstorper (1992). To record the torsional 
modes, the accelerometer needs to be placed at the edge of the cross section at some 
distance from the neutral axis (cf. Figure 2-9). The beam then needs to be excited in an 
eccentric point to cause torsional vibrations. An additional accelerometer can be 
placed in the neutral axis to simplify the detection of the torsional frequencies. 
Comparison of the frequency plots for both accelerometers will then show that the 
torsional frequencies are only recorded by the eccentric accelerometer. As already 
mentioned, Ohlsson and Perstorper (1992) also presents good results for the 
measurement of the G-modulus, for which only the first two lowest torsional 
frequencies were used.  

 

 
Figure 2-9 Test setup for transversal and torsional frequency measurement 

Apart from the transversal excitation, all these methods can, at least in theory, be also 
applied to loaded structures. This means that material properties like density, E- and 
G-modulus can theoretically be determined on existing structures.  
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3 Determination of axial load and boundary 
conditions in slender beams 

This chapter analysis research that was carried out in the past concerning the 
determination of axial loads and boundary conditions using of transversal frequency 
analysis. The different case studies are examined regarding the overall test setup, the 
testing equipment, the theoretical models and the accuracy of the results. Based on 
this analysis, conclusions are drawn on how to plan the laboratory tests and to process 
the data collected within this research. 

 

3.1 Determination of axial loads 
One of the first frequency based laboratory tests to determine the axial load in a 
prismatic Euler beam under tension was carried out by Livingston (1994). The setup 
consisted of a square steel rod subjected to loading and unloading cycles in a vertical 
Tinius Olsen tensile machine. A single accelerometer was attached at a distance of 4/5 
of the specimen length, which was then excited with an impact hammer equipped with 
a soft tip. From the resulting frequency response function (FRF), the first three 
frequencies were then extracted for each loading and unloading cycle. Using a non-
linear least square parameter technique described in Béliveau (1987) together with a 
continuous model, the axial force and the boundary conditions represented by 
rotational springs were then estimated, considering at first only the first two, then the 
first three frequencies. Even though the axial loads were in general overestimated, the 
results were promising, especially for higher forces. It can be said that the additional 
data provided by the third frequency did not improve the results of the experiment. 
The estimated boundary conditions varied over the loading and unloading of the rod 
and were not discussed in further detail. 

A different approach was used by Tullini and Laudiero (2008). Instead of using 
several frequencies to determine the axial loads and boundary conditions, only the 
mode shape and frequency of the first mode were used. The necessary information 
was gathered by three accelerometers situated in each quarter point of the specimen. 
The displacements of the accelerometers were used to determine the shape of the first 
mode, whereas the frequency was again derived from the FRF. An impact hammer 
was used to measure the force function. This method was applied on both, a steel rod 
under tension and a slender box beam under compression. For both test setups, the 
results for the axial loads showed very good accordance with the real values. The 
estimation of the end constraint stiffness however was rather far away from the 
analytical values for the limit conditions pinned-pinned and fixed-fixed and was 
therefore not convincing. 

Maille (2008) carried out in-situ experiments on an old breeding barn to assess its 
structural integrity for a full snow load. For this purpose, transversal frequency testing 
was carried out on the structural steel members to determine the axial tensile forces 
under different load combinations. The results of these measurements were then 
compared with different computer models to find out which one comes closest to the 
actual behaviour of the structure. Based on this model, the axial forces under a full 
snow load were then computed which could then be used for the structural 
assessment.  
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The tests were performed by striking every steel member in three different ways to 
excite as many frequencies as possible. These three methods included a steel hammer, 
a rubber mallet and plucking the members by hand. One single accelerometer was 
used to detect the frequencies. However, since in many cases not all of the frequencies 
could be detected, the author suggests for further research to use an additional 
accelerometer situated close to the end of the members. As the members were 
assumed to be pinned at both ends, the axial loads could be determined by a single 
parameter estimation using the first 6 measured frequencies and the formula for Euler 
beams Eq. (3.34) in Maille (2008). In addition, a dual parameter estimation was 
carried out by means of least square linear regression to also verify the E-modulus of 
each member. Even though most of them coincided well with the assumed value, 
there were still some outliers. For the testing of inhomogeneous materials with a high 
variation in material properties like timber, it is therefore reasonable to always verify 
the assumed parameters with additional measurements and estimations. 

A somewhat different model was used in Italy to assess the safety of tie-rods in 
ancient masonry buildings, Amabili (2010). Using finite elements, the rods were 
modelled as Timoshenko beams, taking into account shear deformations and effects of 
rotary inertia. The equipment for the in-situ tests consisted of a single accelerometer 
situated at 2/5 of the span and an impact hammer to determine the first 6 resonance 
frequencies. The portion of the beam inside the wall at both sides was assumed to be 
elastically founded. The calculated values were found by applying Rayleigh-Ritz 
method (cf. Chapter 5). The unknown parameters were estimated by minimizing the 
weighted difference between the computed and measured frequencies. This was done 
in several ways, from first using only the two first modes from the estimation, then the 
first three and so on till finally all six modes. The advantage of this method is that 
measurement and modelling errors are minimized through the use of redundant data 
given by the several frequencies. It is however questionable if this could be done in 
the same way for timber since the accuracy requirements might not be fulfilled for 
higher frequencies. 

As it can be seen, this literature study only yielded research that has been done on 
steel structures. It seems that not much research has been done on the possibility to 
determine the axial loads in timber members using resonance frequency analysis. 
There are however investigations on the boundary conditions of timber elements in 
frames or trusses.  

 

3.2 Determination of boundary conditions 
Crovella and Kyanka (2011) made use of vibration techniques to determine the 
rotational stiffness of timber joints. The main incentive for his research was the little 
amount of research available investigating the member joint properties, even though 
the failures usually occur in the joints. Transversal vibration tests were carried out on 
timber beams and frames of softwood and hardwood for different boundary 
conditions. The beams were unloaded, so that no axial tension needed to be taken into 
account. Furthermore the beams were modelled as Euler beams meaning that effects 
of shear deformations or rotary inertia were neglected. Shear deformations can 
however have a big influence on the vibration of timber beams, especially for the 
present span-to-depth ratios, that are 16 and 36. Chui and Smith (1990) suggests that 
shear deformations need to be taken into account for values below the region of 32 for 
simply supported beams. For stiffer boundary conditions, this limit value is even 
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lower. Here, the use of Timoshenko theory could have been further investigated to see 
if there is an improvement in results. A single accelerometer was used to record the 
beam vibrations that were then used to derive the first resonance frequency. With the 
above-mentioned assumptions a simple relation between the frequency and the joint 
stiffness could be used for the estimation. When looking at the continuum of joint 
stiffness plot in Figure 3-1, one can see that the ratio of the joint rotational stiffness 
and the beam flexural stiffness is of importance. If one of them is considerably higher 
than the other one, a change of the joint stiffness has a minimal effect on the 
frequency.  

 

 
Figure 3-1 Plot of continuum joint stiffness against the normalised minimum natural 

frequency, McGuire (1995) 

According to Leichti (2000), a 50% rigid connection is the maximum that can be 
achieved for timber joints. This theory seems to be supported by the results of 
Crovella and Kyanka (2011) that were all below that value, even for stiff connectors. 
To be able to assess the accuracy of the results, the rotational stiffness at the beam-
ends was derived from deflection tests. The conclusion was that the results were good 
for semi-rigid joints, but rather poor for joints of low stiffness. This can possibly be 
explained by the small slope of the formula plot in low frequency regions, where 
small changes in frequency result in rather high changes for the estimated rotational 
stiffness. All these considerations can lead to the conclusion that it could be possible 
to determine also the rotational stiffness for beams under axial tension, at least if the 
boundary conditions are stiff enough and if Timoshenko theory is used. 
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3.3 Conclusion 
For the determination of axial loads, most of the investigated members were steel bars 
with a high length compared to their sectional dimensions. The span-to-depth ratios 
ranged from around a 100 in Livingston (1994) to over 300 in Maille (2008). The 
reason for this is that for a given change in axial load, a change in frequency increases 
for a higher slenderness of the loaded member. This needs to be considered when 
choosing a sample size for the experiments in this research, since changes in axial 
load might not even be possible to detect for beams with a low slenderness. The 
tension machine used in this research is similar to the vertical one used in Livingston 
(1994). Since the friction grips at both ends of the beam are the same, it is reasonable 
to assume equal boundary conditions. The static system consequently is a simply 
supported beam with identical rotational springs at both ends. This leads to two 
unknown parameters, namely the axial force 𝑆 and the rotational stiffness 𝑘. This 
means that at least two bending frequencies are necessary to determine the 
parameters. It will however be investigated if additional information from higher 
frequencies can be used for error minimisation, even if this is doubtful given the 
inhomogeneous properties of timber and their influence on the precision of frequency 
measurement. In this case, a least linear regression is necessary to solve the over-
determined system. It is necessary to keep the number of unknown parameters to a 
minimum to make sure not too much accuracy is lost, even if it would theoretically be 
possible to include more parameters, like for example material properties. For the 
actual tests, the use of one single accelerometer seems appropriate since the vibration 
modes are well known for the given system. The accelerometer needs to be placed 
away from modal nodes to make sure the desired frequencies can be recorded. A 
distance of 20% of the length is a good position to enable measurements of the first 
five frequencies. If necessary, an additional accelerometer placed closer to one end, 
can be used to record more frequencies. The beams should be excited on the weak 
axis, since the lower moment of inertia causes a higher variation of frequency for a 
change in axial force. Since the results seem to be sensible to the stress level, the 
specimen should be tested for a wide range of axial loads. As mentioned above, shear 
deformations have a big influence on the frequencies of timber beams, even if they are 
rather slender. It is therefore necessary to include them according to Timoshenko 
theory. This can be done in different ways, either by using an exact continuous model 
or using approximations through discrete modelling (finite elements) or Rayleigh-Ritz 
theory.  
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4 Vibration theory 
The following paragraphs present derivations and applications of differential 
equations for several kinds of beam vibrations. All derivations were made according 
to Timoshenko (1974) and Howson and Williams (1973). 

 

4.1 Derivations 
4.1.1 Longitudinal vibrations 
 

(a) 

 

(b) 

 
Figure 4-1 Illustration of a beam subjected to longitudinal vibration (a) and the 

according forces acting on an infinitesimal element (b) 

Figure 4-1 (a) shows a prismatic beam of length 𝑙 and the cross-section 𝐴 subjected to 
longitudinal vibration. An according infinitesimal segment of length 𝑑𝑥,  in a distance 
𝑥 from the left end of the beam, is illustrated in Figure 4-1 (b). Forming equilibrium of 
the acting forces yields 

𝑆 + 𝜌 ∙ 𝐴 ∙ 𝑑𝑥 ∙ 𝜕
2𝑢
𝜕𝑡2

− 𝑆 − 𝜕𝑆
𝜕𝑥
∙ 𝑑𝑥 = 0 (4.1) 

where 𝑆 is the internal force acting on the beam, 𝜌 the density and 𝑢 the longitudinal 
displacement of the segment, which makes 𝜕2𝑢 𝜕𝑡2⁄  its acceleration.  

Applying Hooke’s law on the axial force 𝑆, we obtain 

𝑆 = 𝐴 ∙ 𝜎 = 𝐸 ∙ 𝐴 ∙ 𝜀 = 𝐸 ∙ 𝐴 ∙ 𝜕𝑢
𝜕𝑥

 (4.2) 

where 𝐸 is the modulus of elasticity, 𝜎 the axial stress and 𝜀 = 𝜕𝑢 𝜕𝑥⁄  the axial strain. 
Substitution of Eq. (4.2) into Eq. (4.1) yields 
𝜕2𝑢
𝜕𝑥2

= 𝜌
𝐸
∙ 𝜕

2𝑢
𝜕𝑡2

 (4.3) 

If we introduce the wave velocity 𝑎 = �𝐸 𝜌⁄ , Eq. (4.3) can be rewritten as 
𝜕2𝑢
𝜕𝑥2

= 1
𝑎2
∙ 𝜕

2𝑢
𝜕𝑡2

 (4.4) 
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which is called the one-dimensional wave equation. For the natural vibration modes of 
the beam, the solution to Eq. (4.4) can be written as 

𝑢 = 𝑋 ∙ (𝐴 ∙ cos(𝜔 ∙ 𝑡) + 𝐵 ∙ sin(𝜔 ∙ 𝑡)) (4.5) 

where 𝑋 is called the normal function that defines the shape of the natural modes. 
Substitution of Eq. (4.5) into Eq. (4.4) yields the time-independent differential 
equation for longitudinal vibration 
𝑑2𝑋
𝑑𝑥2

+ 𝜔2

𝑎2
∙ 𝑋 = 0 (4.6) 

which is the differential equation of motion for beams subjected to longitudinal 
vibrations according to Euler theory.  

The solution to Eq. (4.6) is of the kind: 

𝑋 = (𝐶 ∙ cos �𝜔∙𝑥
𝑎
�+ 𝐷 ∙ sin �𝜔∙𝑥

𝑎
�) (4.7) 

The constants 𝐶 and 𝐷 are determined by applying the boundary conditions of the 
beam. Examples are presented in Chapter 4.2. 

 

4.1.2 Torsional vibrations 

(a) 

 

(b) 

 
Figure 4-2 Illustration of a beam subjected to torsional vibration (a) and the according 

moments acting on an infinitesimal element (b) 

Considering the same beam subjected to torsion (Figure 4-2 (a)), the moment 
equilibrium can be derived according to Figure 4-2 (b): 

𝑀𝑡 + 𝜌 ∙ 𝐼𝑝 ∙ 𝑑𝑥 ∙
𝜕2𝜃
𝜕𝑡2

− 𝑀𝑡 −
𝜕𝑀𝑡
𝜕𝑥

∙ 𝑑𝑥 = 0 (4.8) 

where 𝑀𝑡 is the torsional moment acting on the beam, 𝐼𝑝 the polar moment and 𝜃 the 
angular displacement of the segment, which makes 𝜕2𝜃 𝜕𝑡2⁄  its acceleration.  
Elementary torsion theory gives 

𝑀𝑡 = 𝐺 ∙ 𝐾𝑡 ∙
𝜕𝜃
𝜕𝑥

 (4.9) 
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where 𝐺 is the modulus of shear, and 𝐾𝑡 is the torsional constant that varies with the 
shape of the cross-section. For circular sections 𝐾𝑡 is equal to the polar moment 𝐼𝑝. 
For other cross-sections refer to Roymech.co.uk (2010). 

Substitution of Eq. (4.9) into Eq. (4.8) yields 
𝜕2𝜃
𝜕𝑥2

= 𝜌∙𝐼𝑝
𝐺∙𝐾𝑡

∙ 𝜕
2𝜃
𝜕𝑡2

 (4.10) 

Introducing 𝑏 = �(𝐺 ∙ 𝐾𝑡) �𝜌 ∙ 𝐼𝑝�⁄ , Eq. (4.10) can be rewritten as 

𝜕2𝜃
𝜕𝑥2

= 1
𝑏2
∙ 𝜕

2𝜃
𝜕𝑡2

 (4.11) 

which has the same form than the one-dimensional wave equation from before, which 
is why the same solution as in Eq. (4.5) can again be used: 

𝜃 = 𝑋 ∙ (𝐴 ∙ cos(𝜔 ∙ 𝑡) + 𝐵 ∙ sin(𝜔 ∙ 𝑡)) (4.12) 
Substitution of Eq. (4.12) into Eq. (4.11) yields the time-independent differential 
equation for torsional vibration 
𝑑2𝑋
𝑑𝑥2

+ 𝜔2

𝑏2
∙ 𝑋 = 0 (4.13) 

which is the differential equation of motion for beams subjected to torsional 
vibrations according to Euler theory.  

Since Eq. (4.13) is of the same kind as Eq. (4.6), its solution has also the same form as 
Eq. (4.7): 

𝑋 = (𝐶 ∙ cos �𝜔∙𝑥
𝑏
�+ 𝐷 ∙ sin �𝜔∙𝑥

𝑏
�) (4.14) 

which can again be solved for different boundary conditions. 

 

4.1.3 Transversal vibrations – Euler beam theory 
The Euler beam theory is based on the assumptions that the cross-sections of a 
prismatic beam remain plane during vibration. This means that deformations caused 
by shear forces as well as rotary inertia effects are not taken into account when using 
this theory. The consequence is that it only gives accurate results if the deformations 
from shear are small compared to the ones from bending. This is in general the case 
for slender beams.  
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(a) 

 

(b) 

 
Figure 4-3 Illustration of a beam subjected to an axial load and transversal vibration (a) 

and the according forces and moments acting on an infinitesimal element 
according to Euler beam theory (b) 

Figure 4-3 (a) shows a vibrating beam subjected to a tensile force 𝑆 and transversal 
vibration. Forming the equilibrium on an infinitesimal element (Figure 4-3 (b)) for 
both, vertical forces and moments, yields  

𝑉 − 𝜌 ∙ 𝐴 ∙ 𝑑𝑥 ∙ 𝜕
2𝑣
𝜕𝑡2

− 𝑉 − 𝜕𝑉
𝜕𝑥
∙ 𝑑𝑥 = 0 (4.15) 

and 

𝑉 ∙ 𝑑𝑥 − 𝜕𝑀
𝜕𝑥
∙ 𝑑𝑥 = 0 (4.16) 

where 𝑉 is the shearing force acting on the beam, and 𝑣 the transversal displacement 
of the segment, which makes 𝜕2𝑣 𝜕𝑡2⁄  its acceleration. 

Solving Eq. (4.16) with respect to 𝑉 and substituting into Eq. (4.15) yields 
𝜕2𝑀
𝜕𝑥2

= −𝜌 ∙ 𝐴 ∙ 𝑑𝑥 ∙ 𝜕
2𝑣
𝜕𝑡2

 (4.17) 

The differential equation for the deflection of a beam subjected to a tensile force and a 
transverse load is  

𝑀 = 𝐸𝐼 ∙ 𝜕
2𝑣

𝜕𝑥2
− 𝑆 ∙ 𝑣 (4.18) 

Substitution of Eq. (4.18) into Eq. (4.17) leads to 

𝐸𝐼 ∙ 𝜕
4𝑣

𝜕𝑥4
− 𝑆 ∙ 𝜕

2𝑣
𝜕𝑥2

= − 𝜌 ∙ 𝐴 ∙ 𝜕
2𝑣
𝜕𝑡2

 (4.19) 

If a beam vibrates in one of its natural modes, a solution to this equation is given by 

𝑣 = 𝑋 ∙ (𝐴 ∙ cos(𝜔 ∙ 𝑡) + 𝐵 ∙ sin(𝜔 ∙ 𝑡))  (4.20) 

Substitution of Eq. (4.20) into Eq. (4.19), yields: 

𝐸𝐼 ∙ 𝜕
4𝑋
𝜕𝑥4

− 𝑆 ∙ 𝜕
2𝑋
𝜕𝑥2

= 𝜌 ∙ 𝐴 ∙ 𝜔2 ∙ 𝑋 (4.21) 

which is the differential equation of motion for beams under axial load subjected to 
transversal vibrations according to Euler theory.  
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4.1.4 Transversal vibrations – Timoshenko beam theory 
This paragraph gives a derivation of the transversal vibrations of prismatic beams 
under axial load according to Timoshenko beam theory. In general, shear 
deformations can be neglected for flexural vibrations if a beam’s cross-sectional 
dimensions are small compared to its length. For timber, however, shear deformations 
can be of the same order as deformations from bending, even for slender beams. The 
reason is that the shear stiffness of the material is small compared to other materials. 
For this reason, it is important to include shear effects in the calculation, especially 
when studying the vibration modes of higher frequencies where they gain more and 
more of importance Timoshenko (1974), Howson and Williams (1973).  

 
Figure 4-4 Illustration of forces and moments acting on an infinitesimal element of a 

transversally vibrating beam under axial load according to Timoshenko 
beam theory, based on Howson and Williams (1973) 

Figure 4-4 shows a deformed infinitesimal element to a transversally vibrating beam in 
the x-y plane. To include the shear deformations, it must be considered that the beam 
not only performs a translatory movement, but also rotates. The angle of rotation 
𝜕𝑀 𝜕𝑥⁄  is the deflection slope and can be expressed as the sum of the angle of shear 𝛽 
and a parameter 𝜓 that represents the angle of rotation of the cross-section: 
𝜕𝑦
𝜕𝑥

= 𝜓 + 𝛽 (4.22) 

The rotation of the beam produces a moment 𝜌 ∙ 𝐼 ∙ 𝜕
2𝜓
𝜕𝑡2

∙ 𝑑𝑥, that needs to be taken 
into account when forming the dynamic moment equilibrium on an infinitesimal 
element of length 𝑑𝑥: 

𝑉 ∙ 𝑑𝑥 − 𝜕𝑀
𝜕𝑥
∙ 𝑑𝑥 − 𝜌 ∙ 𝐼 ∙ 𝜕

2𝜓
𝜕𝑡2

∙ 𝑑𝑥 − 𝑆 ∙ 𝜕𝑦
𝜕𝑥
∙ 𝑑𝑥 = 0 (4.23) 

The dynamic equilibrium for the forces in the vertical direction is 

−𝑉 − 𝜌 ∙ 𝐴 ∙ 𝑑𝑥 ∙ 𝜕
2𝑦
𝜕𝑡2

+ 𝑉 + 𝜕𝑉
𝜕𝑥
∙ 𝑑𝑥 = 0 (4.24) 

The differential equation for the deflection of a beam subjected to a tensile force and a 
transverse load is  

𝑀 = −𝐸𝐼 ∙ 𝜕𝜓
𝜕𝑥

 (4.25) 
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Furthermore, consideration of the shearing yields 

𝑉 = (𝑘𝑠 ∙ 𝐴 ∙ 𝐺 + 𝑆) ∙ 𝜕𝑦
𝜕𝑥
− 𝑘𝑠 ∙ 𝐴 ∙ 𝐺 ∙ 𝜓 (4.26) 

Eliminating 𝑉,𝑀, and either 𝜓 or 𝑦 by combining Eq. (4.22) - (4.26), leads to the 
complete differential equation for transverse vibrations of prismatic beams under axial 
load: 

𝐸𝐼 ∙ �1 +
𝑆

𝑘𝑠 ∙ 𝐴 ∙ 𝐺
�
𝜕4𝜃
𝜕𝑥4

− 𝑆 ∙
𝜕2𝜃
𝜕𝑥2

+  𝜌 ∙ 𝐴 ∙
𝜕2𝜃
𝜕𝑡2

 

                                        − 𝜌 ∙ 𝐼 ∙ �1 + 𝑆
𝑘𝑠∙𝐴∙𝐺

+ 𝐸
𝑘𝑠∙𝐺

� ∙ 𝜕4𝜃
𝜕𝑥2∙𝜕𝑡2

+ 𝜌2∙𝐼
𝑘𝑠∙𝐺

∙ 𝜕
4𝜃
𝜕𝑡4

= 0 (4.27) 

where  

𝜃 = 𝑦 or 𝜓 

If a beam vibrates in one of its natural modes, a solution to this equation is given by 

𝜃 = Θ ∙ (𝐴 ∙ cos(𝜔 ∙ 𝑡) + 𝐵 ∙ sin(𝜔 ∙ 𝑡))  (4.28) 
Substitution of Eq. (4.28) into Eq. (4.27), leads to 

𝐸𝐼 ∙ �1 + 𝑆
𝑘𝑠∙𝐴∙𝐺

� 𝜕
4Θ
𝜕𝑥4

− 𝑆 ∙ 𝜕
2Θ
𝜕𝑥2

− 𝜌 ∙ 𝐴 ∙ 𝜔2 ∙ Θ  

                                 + 𝜌 ∙ 𝐼 ∙ 𝜔2 ∙ �1 + 𝑆
𝑘𝑠∙𝐴∙𝐺

+ 𝐸
𝑘𝑠∙𝐺

� ∙ 𝜕
2Θ
𝜕𝑥2

+ 𝜌2∙𝐼
𝑘𝑠∙𝐺

∙ 𝜔4 ∙ Θ = 0 (4.29) 

where 

Θ = Y or Ψ 

and which is the differential equation of motion for beams under axial load subjected 
to transversal vibrations according to Timoshenko theory.  

 

4.2 Applications 
In the following, the equations of motion derived in Chapter 4.1 are used to determine 
the mode shapes and resonance frequencies for different boundary conditions. 

 

4.2.1 Longitudinal vibrations 
Beam with free ends 

For a free-free beam, the axial force, which is proportional to 𝑑𝑋 𝑑𝑥⁄ , has to be zero 
at both ends. 

�𝑑𝑋
𝑑𝑥
�

(𝑥=0)
= 0 �𝑑𝑋

𝑑𝑥
�

(𝑥=𝑙)
= 0 (4.30) 

The first condition is only fulfilled if 𝐷 = 0. To obtain a non-trivial solution, the 
second condition requests 𝐶 ≠ 0, which leads to  

sin �𝜔∙𝑙
𝑎
� = 0 (4.31) 

This is only fulfilled if  
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𝜔𝑖∙𝑙
𝑎

= 𝑖 ∙ 𝜋 (4.32) 

where 𝑖 is an integer. Substituting 𝜔𝑖 = 2𝜋 ∙ 𝑓𝑖 and 𝑎 = �𝐸 𝜌⁄  into Eq. (4.32) results 
in 

𝑓𝑖 = 1
2𝑙
∙ �𝐸

𝜌
∙ 𝑖 (4.33) 

which for 𝑖 = 1,2,3 … yields the natural frequencies of the longitudinal vibration 
modes of the beam. Together with Eq. (4.7), the first three frequencies with the 
corresponding modes can be determined to 

𝑓1 = 1
2𝑙
∙ �𝐸

𝜌
 𝑋1 = 𝐶1 ∙ cos �𝜋∙𝑥

𝑙
� (4.34) 

𝑓2 = 1
𝑙
∙ �𝐸

𝜌
 𝑋2 = 𝐶2 ∙ cos �2𝜋∙𝑥

𝑙
� (4.35) 

𝑓3 = 3
2𝑙
∙ �𝐸

𝜌
 𝑋3 = 𝐶3 ∙ cos �3𝜋∙𝑥

𝑙
� (4.36) 

The shape of the three first modes is illustrated in Figure 4-5. 

 

 

 
Figure 4-5 Three first longitudinal vibration modes of a beam with free boundary 

conditions 

Beam with fixed ends 
For a beam with fixed ends, the displacement has to be zero at both ends. 

𝑋(𝑥=0) = 0 𝑋(𝑥=𝑙) = 0 (4.37) 

The first condition is only fulfilled if 𝐶 = 0. To obtain a non-trivial solution, the 
second condition requests 𝐷 ≠ 0, which brings us again to  

sin �𝜔∙𝑙
𝑎
� = 0 (4.38) 

and the according frequencies 

𝑓𝑖 = 1
2𝑙
∙ �𝐸

𝜌
∙ 𝑖 (4.39) 
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which are the same as for the free-free condition. The modal shapes change however. 

𝑓1 = 1
2𝑙
∙ �𝐸

𝜌
 𝑋1 = 𝐷1 ∙ sin �𝜋∙𝑥

𝑙
� (4.40) 

𝑓2 = 1
𝑙
∙ �𝐸

𝜌
 𝑋2 = 𝐷2 ∙ sin �2𝜋∙𝑥

𝑙
� (4.41) 

𝑓3 = 3
2𝑙
∙ �𝐸

𝜌
 𝑋3 = 𝐷3 ∙ sin �3𝜋∙𝑥

𝑙
� (4.42) 

The shape of the three first modes is illustrated in Figure 4-6. 

 

 

 
Figure 4-6 Three first longitudinal vibration modes of a beam with fixed boundary 
conditions 

 

4.2.2 Torsional vibrations 
Beam with free ends 
The bending moment has to disappear at the ends: 

�𝑑𝑋
𝑑𝑥
�

(𝑥=0)
= 0 �𝑑𝑋

𝑑𝑥
�

(𝑥=𝑙)
= 0 (4.43) 

The first condition is only fulfilled if 𝐷 = 0. To obtain a non-trivial solution, the 
second condition requests 𝐶 ≠ 0, which leads to  

sin �𝜔∙𝑙
𝑏
� = 0 (4.44) 

This is only fulfilled if  
𝜔𝑖∙𝑙
𝑏

= 𝑖 ∙ 𝜋 (4.45) 

where 𝑖 is an integer. Substituting 𝜔𝑖 = 2𝜋 ∙ 𝑓𝑖 and 𝑏 = �(𝐺 ∙ 𝐾𝑡) �𝜌 ∙ 𝐼𝑝�⁄  into Eq. 

(4.45) results in 
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𝑓𝑖 = 1
2𝑙
∙ �

𝐺∙𝐾𝑡
𝜌∙𝐼𝑝

∙ 𝑖 (4.46) 

which for 𝑖 = 1,2,3 … yields the natural frequencies of the torsional vibration modes 
of the beam. Together with Eq. (4.14), the first three frequencies with the 
corresponding modes can be determined to 

𝑓1 = 1
2𝑙
∙ �

𝐺∙𝐾𝑡
𝜌∙𝐼𝑝

 𝑋1 = 𝐶1 ∙ cos �𝜋∙𝑥
𝑙
� (4.47) 

𝑓2 = 1
𝑙
∙ �

𝐺∙𝐾𝑡
𝜌∙𝐼𝑝

 𝑋2 = 𝐶2 ∙ cos �2𝜋∙𝑥
𝑙
� (4.48) 

𝑓3 = 3
2𝑙
∙ �

𝐺∙𝐾𝑡
𝜌∙𝐼𝑝

 𝑋3 = 𝐶3 ∙ cos �3𝜋∙𝑥
𝑙
� (4.49) 

The shape of the three first modes is illustrated in Figure 4-7. 

 

 

 
Figure 4-7 Three first torsional vibration modes of a beam with free boundary 

conditions 

Beam with fixed ends 
For a beam with fixed ends, the rotation has to be zero at both ends. 

𝑋(𝑥=0) = 0 𝑋(𝑥=𝑙) = 0 (4.50) 

The first condition is only fulfilled if 𝐶 = 0. To obtain a non-trivial solution, the 
second condition requests 𝐷 ≠ 0, which leads again to  

sin �𝜔∙𝑙
𝑏
� = 0 (4.51) 

and the according frequencies 

𝑓𝑖 = 1
2𝑙
∙ �

𝐺∙𝐾𝑡
𝜌∙𝐼𝑝

∙ 𝑖 (4.52) 

which are the same as for the free-free condition. The modal shapes however are 
different again. 

𝑓1 = 1
2𝑙
∙ �

𝐺∙𝐾𝑡
𝜌∙𝐼𝑝

 𝑋1 = 𝐷1 ∙ sin �𝜋∙𝑥
𝑙
� (4.53) 
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𝑓2 = 1
𝑙
∙ �

𝐺∙𝐾𝑡
𝜌∙𝐼𝑝

 𝑋2 = 𝐷2 ∙ sin �2𝜋∙𝑥
𝑙
� (4.54) 

𝑓3 = 3
2𝑙
∙ �

𝐺∙𝐾𝑡
𝜌∙𝐼𝑝

 𝑋3 = 𝐷3 ∙ sin �3𝜋∙𝑥
𝑙
� (4.55) 

 

The shape of the three first modes is illustrated in Figure 4-8. 

 

 

 
Figure 4-8 Three first torsional vibration modes of a beam with fixed boundary 

conditions 

As it can be seen, the modes and frequencies have the same shape for longitudinal and 
rotational vibrations for the same boundary conditions. 

 

4.2.3 Transversal vibrations – Euler beam theory 
Beam with free ends, S=0 
The following boundary conditions apply for free-free beams: 

�𝑑
2𝑋

𝑑𝑥2
�

(𝑥=0)
= 0 �𝑑

3𝑋
𝑑𝑥3

�
(𝑥=0)

= 0 (4.56) 

�𝑑
2𝑋

𝑑𝑥2
�

(𝑥=𝑙)
= 0 �𝑑

3𝑋
𝑑𝑥3

�
(𝑥=𝑙)

= 0 (4.57) 

The conditions in Eq. (4.56) are satisfied by the solution 

𝑋 = 𝐶 ∙ (cos(𝑘 ∙ 𝑥) + cosh(𝑘 ∙ 𝑥)) + 𝐷 ∙ (sin(𝑘 ∙ 𝑥) + sinh(𝑘 ∙ 𝑥)) (4.58) 
while the other two conditions in Eq. (4.57) yield the equations 

𝐶 ∙ (− cos(𝑘 ∙ 𝑙) + cosh(𝑘 ∙ 𝑙)) + 𝐷 ∙ (− sin(𝑘 ∙ 𝑙) + sinh(𝑘 ∙ 𝑙)) = 0 (4.59) 

𝐶 ∙ (sin(𝑘 ∙ 𝑙) + sinh(𝑘 ∙ 𝑙)) + 𝐷 ∙ (− cos(𝑘 ∙ 𝑙) + cosh(𝑘 ∙ 𝑙)) = 0 (4.60) 
A solution for this system different from zero only exists if the determinant of Eq. 
(4.59) and Eq. (4.60) disappears: 

(− cos(𝑘 ∙ 𝑙) + cosh(𝑘 ∙ 𝑙))2 − (sin(𝑘 ∙ 𝑙)2 − sinh(𝑘 ∙ 𝑙)2) = 0 (4.61) 
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With the equations 

cosh(𝑘 ∙ 𝑙)2 − sinh(𝑘 ∙ 𝑙)2 = 1  

cos(𝑘 ∙ 𝑙)2 + sin(𝑘 ∙ 𝑙)2 = 1  
Eq. (4.61) can be rewritten as 

cos(𝑘 ∙ 𝑙) ∙ cosh(𝑘 ∙ 𝑙) = 1 (4.62) 

for which the solution can be approximated to 

𝑘𝑖 ∙ 𝑙 ≈ (𝑖 + 1 2⁄ ) ∙ 𝜋 (4.63) 

Substitution of 𝑘𝑖4 = 𝜔𝑖
2

𝑎2
 , 𝑎 = �(𝐸 ∙ 𝐼) (𝜌 ∙ 𝐴)⁄  and 𝜔𝑖 = 2𝜋 ∙ 𝑓𝑖, yields 

𝑓𝑖 = 𝜋
8∙𝑙2

∙ �𝐸∙𝐼
𝜌∙𝐴

∙ (2 ∙ 𝑖 + 1)2 (4.64) 

The shape of the three first modes is illustrated in Figure 4-9. 

 

 

 
Figure 4-9 Three first transversal vibration modes of a beam with free boundary 

conditions 

Beam with clamped ends, S=0 
For clamped ends, the boundary conditions are 

 𝑋(𝑥=0) = 0 �𝑑𝑋
𝑑𝑥
�

(𝑥=0)
= 0 (4.65) 

𝑋(𝑥=𝑙) = 0 �𝑑𝑋
𝑑𝑥
�

(𝑥=𝑙)
= 0 (4.66) 

The first two conditions in Eq. (4.65) are satisfied by the solution 

𝑋 = 𝐶 ∙ (cos(𝑘 ∙ 𝑥) − cosh(𝑘 ∙ 𝑥)) + 𝐷 ∙ (sin(𝑘 ∙ 𝑥) − sinh(𝑘 ∙ 𝑥)) (4.67) 
while the other two conditions in Eq. (4.66) yield the equations 

𝐶 ∙ (cos(𝑘 ∙ 𝑙) − cosh(𝑘 ∙ 𝑙)) + 𝐷 ∙ (sin(𝑘 ∙ 𝑙) − sinh(𝑘 ∙ 𝑙)) = 0 (4.68) 

𝐶 ∙ (sin(𝑘 ∙ 𝑙) + sinh(𝑘 ∙ 𝑙)) + 𝐷 ∙ (− cos(𝑘 ∙ 𝑙) + cosh(𝑘 ∙ 𝑙)) = 0 (4.69) 
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A solution for this system different from zero only exists if the determinant of Eq. 
(4.68) and Eq. (4.69) disappears: 

(− cos(𝑘 ∙ 𝑙) + cosh(𝑘 ∙ 𝑙))2 − (sin(𝑘 ∙ 𝑙)2 − sinh(𝑘 ∙ 𝑙)2) = 0 (4.70) 
from which the same equation as in Eq. (4.62) can be deduced, which results in the 
same frequencies as for the free-free beam: 

𝑓𝑖 = 𝜋
8∙𝑙2

∙ �𝐸∙𝐼
𝜌∙𝐴

∙ (2 ∙ 𝑖 + 1)2 (4.71) 

The shape of the three first modes is illustrated in Figure 4-10. 

 

 

 
Figure 4-10 Three first transversal vibration modes of a beam with fixed boundary 

conditions 

Beam with simple supports under axial load, S≠0 
For a simply supported beam, the boundary conditions are 

𝑋(𝑥=0) = 0 𝑋(𝑥=𝑙) = 0 (4.72) 

which are satisfied for 

𝑋𝑖 = sin �𝑖∙𝜋∙𝑥
𝑙
�  (4.73) 

where 𝑖 is an integer. Substituting Eq. (4.73) into Eq. (4.21) and replacing 𝜔𝑖 = 2𝜋 ∙
𝑓𝑖 yields  

𝑓𝑖 = 𝑖2 ∙ 𝜋
2∙𝑙2

∙ �𝐸∙𝐼
𝜌∙𝐴

∙ �1 + 𝑆∙𝑙2

𝑖2∙𝐸∙𝐼∙𝜋2
 (4.74) 
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The three first mode shapes are illustrated in Figure 4-11. 

 

 

 
Figure 4-11 Three first transversal vibration modes of a beam under axial load with 

simply supported boundary conditions 

For other boundary conditions there are no simple expressions, which states the need 
for numerical solutions. These can for example be found in Shaker (1975). 

4.2.4 Transversal vibrations – Timoshenko beam theory 
No simple expressions for an exact solution are available to solve Eq. (4.29). This 
makes it necessary to use numerical methods to determine the frequencies for beams 
with different boundary conditions, like for instance clamped-clamped or elastic 
supports, cf. Chapter 5. 
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5 Numerical modelling and parameter estimation 
This chapter contains an overview of different means to calculate the resonance 
frequencies for a beam under axial load subjected to transversal vibrations for 
different boundary conditions using Timoshenko theory. The end conditions are 
modelled using translational and rotational springs (cf. Figure 5-1), based on the 
assumption that the supports show linearly elastic behaviour. 

 
Figure 5-1 Illustration of an axially loaded beam with translational and rotational 

spring supports, Livingston (1994) 

The according boundary conditions can be written as: 

𝑉𝑥=0 = 𝑘1 ∙ (𝑌)𝑥=0 (5.1) 

𝑉𝑥=𝑙 = −𝑘3 ∙ (𝑌)𝑥=𝑙 (5.2) 

𝑀𝑥=0 = −𝑘2 ∙ (𝑌′)𝑥=0 (5.3) 

𝑀𝑥=𝑙 = 𝑘4 ∙ (𝑌′)𝑥=𝑙 (5.4) 
A dual parameter estimation method is furthermore presented that can be used to 
estimate axial load S and boundary conditions k, assuming rigid transversal supports 
and identical rotational supports (cf. Figure 5-2). 

 
Figure 5-2 Illustration of a simply supported beam under axial load with rotational 

spring supports, Livingston (1994) 

At the end of the chapter, a sensitivity analysis is carried out to determine the 
sensitivity of the output parameters S and k with regard to errors in different input 
parameters. 

 

5.1 Rayleigh-Ritz method 
Since the exact determination of the first frequencies of a vibrating system is not 
always possible or even necessary, it can be reasonable to use approximation methods 
for this purpose. Such methods are for example Rayleigh’s method or its further 
development according to Ritz Harris (2002). While Rayleigh’s method gives only 
good results for the fundamental frequency, Ritz’s method can also be used to 
estimate some of the higher frequencies. Rayleigh’s method is based on the fact that 
the total energy in a vibrating system without damping is constant. When a beam 
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reaches its maximal deflection from its neutral state, the global potential energy is 
maximal and the kinetic energy is zero. When it passes through its equilibrium 
position, the opposite is true. For conservation of energy, these two energies therefore 
have to be equal, which is from where the fundamental frequency can be computed. 
Ritz’s method is based on the same principle with the difference that the deflection 
functions contain several undetermined parameters, which are adjusted in a way to 
minimize the frequency. It can be shown that frequencies found by using inexact 
shapes are always higher than the actual frequencies Den Hartog (1985). The accuracy 
of the result therefore depends largely on the choice of the deflection function. For the 
exact deflection function the computed frequency is the exact solution. Rayleigh–Ritz 
method is appropriate to determine the lower frequencies of simple systems. 

In the case of the Timoshenko beam presented in Figure 5-1, the maximal potential 
and kinetic energies can be expressed as follows, according to Harris (2002):  

𝑉𝑚𝑎𝑥 =
1
2
� �𝐸𝐼 �

𝜕𝜃
𝜕𝑥
�
2

+ 𝑘𝑠𝐺𝐴 �
𝜕𝑣
𝜕𝑥

− 𝜃�
2

�
𝑙

0
𝑑𝑥 +

1
2
� �𝑆 �

𝜕𝑣
𝜕𝑥
�
2

�
𝑙

0
𝑑𝑥 

                                 + 1
2
𝑘1(𝑣𝑥=0)2 + 1

2
𝑘3(𝑣𝑥=𝑙)2 + 1

2
𝑘2(𝜃𝑥=0)2 + 1

2
𝑘4(𝜃𝑥=𝑙)2 (5.5) 

𝑇𝑚𝑎𝑥 = 𝜔2 ∙ 𝑇∗ = 𝜔2 ∙ 1
2 ∫ �𝜌𝐴�̇�(𝑥)2 + 𝜌𝐼�̇�(𝑥)2�𝑙

0 𝑑𝑥 (5.6) 

where 𝑇∗is the reference kinetic energy of the system. 
For conservation of energy Eq. (5.5) and Eq. (5.6) have to be equal, which leads to the 
following equation, where 𝑉𝑚𝑎𝑥 and 𝑇∗ are functions of 𝑣 and 𝜃. 

𝑉𝑚𝑎𝑥(𝑣,𝜃) − 𝜔2 ∙ 𝑇∗(𝑣, 𝜃) = 0 (5.7) 
If we are only interested in the first resonance frequency, we can assume functions for 
𝑣(𝑥) and 𝜃(𝑥), substitute into Eq. (5.7) and solve for 𝜔. The accuracy of the result 
will improve the more boundary conditions are fulfilled and the closer the functions 
are to the actual deflection shapes. However good results can already be obtained for 
rather poor input functions.  

If we are however interested in resonance frequencies of higher order, Ritz’s 
improvement needs to be used to find accurate results. In this case the input functions 
are expressed as sums of functions multiplied by unknown parameters, as for example 
in: 

𝑣(𝑥) = ∑ 𝑎𝑖 ∙ 𝑠𝑖𝑛(𝑖𝜋𝑥/𝑙)𝑁
𝑖=1  (5.8) 

𝜃(𝑥) = ∑ 𝑏𝑖 ∙ 𝑖 ∙ 𝑐𝑜𝑠(𝑖𝜋𝑥/𝑙)𝑁
𝑖=1  (5.9) 

Substituting Eq. (5.8) and Eq. (5.9) into Eq. (5.7) and minimizing with regard to each 
unknown parameter yields a system of 2𝑁 equations with 2𝑁 unknowns. Written in 
matrix form, this system has a trivial solution only if the determinant equals to zero. 
The according equation can then be solved for the resonance frequencies. The 
accuracy will improve with a higher number of terms N, so will however also the 
computational effort. 
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5.2 Discrete model 
The discrete model is in fact a finite element approach, which means that the results 
are only approximations to the actual behaviour of a system. It is most suitable to 
determine the dynamic characteristics of complicated structures that are modelled 
using discrete mass, stiffness and damping matrices. These matrices have different 
shapes, depending on which element theory is used and how many degrees of freedom 
are included. In this paper, all the presented matrices were formed using Timoshenko 
beam elements. 

 

5.2.1 Element mass matrix 
The element mass matrix can be calculated using cubic polynomial shape functions 
and the principle of virtual work Friedman and Kosmatka (1993). The results are two 
element matrices, one accounting for effects of translatory, the other one for rotary 
inertia. The final element mass matrix is then obtained by forming the sum of these 
two matrices: 

𝑴𝒆 = 𝑴𝑻
𝒆 + 𝑴𝑹

𝒆  (5.10) 
where 

𝑴𝑻
𝒆 =

𝜌𝐴𝑙
(1 + Φ)2

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
13
35

+
7

10
Φ +

1
3
Φ2 �

11
210

+
11

120
Φ +

1
24

Φ2� 𝑙

 �
1

105
+

1
60

Φ +
1

120
Φ2� 𝑙2

9
70

+
3

10
Φ +

1
6
Φ2 −�

13
420

+
3

40
Φ +

1
24

Φ2� 𝑙

 �
13

420
+

3
40

Φ +
1

24
Φ2� 𝑙  −�

1
140

+
1

60
Φ +

1
120

Φ2� 𝑙2

𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐                                                  

     
13
35

+
7

10
Φ +

1
3
Φ2         −�

11
210

+
11

120
Φ +

1
24

Φ2� 𝑙

             �
1

105
+

1
60

Φ +
1

120
Φ2� 𝑙2⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

𝑴𝑹
𝒆 =

𝜌𝐼
(1 +Φ)2𝑙

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡                    

6
5

            �
1

10
−

1
2
Φ� 𝑙

               �
2

15
+

1
6
Φ +

1
3
Φ2� 𝑙2

−
6
5

  �
1

10
−

1
2
Φ� 𝑙

 �−
1

10
+

1
2
Φ� 𝑙   −�

1
30

+
1
6
Φ−

1
6
Φ2� 𝑙2

𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐                             

             
6
5

                �−
1

10
+

1
2
Φ� 𝑙

                  �
2

15
+

1
6
Φ +

1
3
Φ2� 𝑙2 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

𝛷 = 12𝐸𝐼/(𝑘𝑠𝐺𝐴𝑙2) 

If shear effects and rotary effects can be neglected, these matrices can be reduced to 
Euler theory by setting 𝛷 = 0 and 𝐌𝑹

𝒆 = 0. The reduced matrices are then the same as 
in Livingston (1994). 

 

5.2.2 Element stiffness matrix 
In a similar way, the element stiffness matrix can be formulated using again the 
principle of work. Two element matrices are obtained, one accounting for the strain of 
the beam, cf. Friedman and Kosmatka (1993), the other one for its axial load Paz 
(1997). The sum of these matrices yields the element stiffness matrix:  

𝑲𝒆 = 𝑲𝑺
𝒆 + 𝑲𝑳

𝒆 (5.11) 
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where  

𝑲𝑺
𝒆 =

𝐸𝐼
(1 + Φ)𝑙3

�

   12    6𝑙
   6𝑙       (4 + Φ)𝑙2    −12   6𝑙

−6𝑙    (2 −Φ)𝑙2
 −12  −6𝑙
  6𝑙      (2 −Φ)𝑙2

   12  −6𝑙
   −6𝑙     (4 + Φ)𝑙2

� 

𝑲𝑳
𝒆 =

𝑆
30𝑙

�
  36  3𝑙
  3𝑙   4𝑙2

−36 3𝑙
−3𝑙 −𝑙2

−36 −3𝑙
 3𝑙 −𝑙2

 36 −3𝑙
 −3𝑙   4𝑙2

� 

𝛷 = 12𝐸𝐼/(𝑘𝑠𝐺𝐴𝑙2) 

The according Euler element stiffness matrix can again be obtained by setting 𝛷 = 0, 
Livingston (1994). 

 

5.2.3 Element damping matrix 
The damping matrix can be taken into account in different ways, depending on the 
damping properties of the system (for example viscous or hysteretic), cf. Harris 
(2002) for more information. In this thesis, damping is considered as a negligible 
parameter. 

 

5.2.4 Global matrix formulation 
According to Livingston (1994), there are three steps in the formulation of the global 
matrices: 

1. Divide the system in a number of elements 
2. Identify nodes between the elements and number consequently the degrees of 

freedom 
3. Determine the mass and stiffness matrices for each element and add them into 

the global mass and stiffness matrices 

This procedure is called the direct method.  

As an example, consider the beam from Figure 5-1 with 𝐿 = 3, 𝐸 = 1, 𝐼 = 1 and 
𝑆 = 0, modelled with three elements, each having a length of 𝑙 = 1. Neglecting 
effects from shear and rotary inertia, the global mass and stiffness matrices are: 
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𝑴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
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420
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−
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140
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−
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140
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140
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420

26
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9

70
−

13
420

−
13

420
−

1
140

0
2

105
13

420
−

1
140

9
70

13
420

13
35

−
11

210

−
13

420
−

1
140

−
11

210
1

105 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

𝑲 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡12 + 𝑘1 6 −12 6

6 4 + 𝑘2 −6 2
−12 −6 24 0 −12 6

6 2 0 8 −6 2
−12 −6 24 0 −12 6

6 2 0 8 −6 2
−12 −6 12 + 𝑘3 −6

6 2 −6 4 + 𝑘4⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

As it can be seen, the element matrices overlap and the first and last element stiffness 
matrices contain the boundary conditions of the beam.  

The so obtained global matrices can be used to formulate the equation of motion for 
an undamped system under free vibration: 

𝐌 �̈� + 𝑲 𝒗 = 𝟎 (5.12) 

where 𝒗 and �̈� are vectors of transversal displacement and acceleration respectively, 
and 𝐌 and 𝐊 the global mass and stiffness matrices. The solution of the eigenvalue 
problem to Eq. (5.12) yields the natural frequencies of the examined system. 

There are several FE softwares available that are based on the above or similar 
calculations. In this thesis, the Matlab based FE software SFVIBAT Akesson and O. 
(1980) is used in Chapter 5.4 for validation of the models. 
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5.3 Continuous model 
The continuous model is most suitable for simple systems, like for example single 
bars or beams. For complex systems, the computational effort is too large, resulting in 
an inefficient use of memory. The advantage of the continuous model is however that 
it yields an exact solution since the differential Eq. (4.29) is solved directly. 
According to Howson and Williams (1973), this equation can be solved with the 
following functions: 

𝑌 = 𝐶1 cosh �𝜆1 ∙
𝑥
𝑙
� + 𝐶2 sinh �𝜆1 ∙

𝑥
𝑙
� + 𝐶3 cos �𝜆2 ∙

𝑥
𝑙
� + 𝐶4 sin �𝜆2 ∙

𝑥
𝑙
� (5.13) 

Ψ = 𝐶1′ sinh �𝜆1 ∙
𝑥
𝑙
� + 𝐶2′ cosh �𝜆1 ∙

𝑥
𝑙
� + 𝐶3′ sin �𝜆2 ∙

𝑥
𝑙
� + 𝐶4′ cos �𝜆2 ∙

𝑥
𝑙
� (5.14) 

where 

𝜆1 =
𝑏

�2(1 − 𝑠2𝑝2)
�−Δ + �Δ2 +

4
𝑏2

(1 − 𝑠2𝑝2)(1 − 𝑏2𝑟2𝑠2) 

𝜆2 =
𝑏

�2(1 − 𝑠2𝑝2)
� Δ + �Δ2 +

4
𝑏2

(1 − 𝑠2𝑝2)(1 − 𝑏2𝑟2𝑠2) 

with 

𝑏2 = 𝜌𝐴𝑙2𝜔2/𝐸𝐼 

𝑟2 = 𝐼/𝐴𝑙2 

𝜙 = 𝑘𝑠𝐺𝐴 

𝑠2 = 𝐸𝐼/𝜙𝑙2 

𝑝2 = 𝑃𝑙2/𝐸𝐼 

Δ = (𝑝2/𝑏2) + 𝑟2(1 − 𝑠2𝑝2) + 𝑠2 
Furthermore it can be shown that Howson and Williams (1973): 

𝐶1′ = 𝐻𝐶1 (5.15) 

𝐶2′ = 𝐻𝐶2 (5.16) 

𝐶3′ = −𝑍𝐶3 (5.17) 

𝐶4′ = 𝐻𝐶4 (5.18) 
where 

𝐻 =
(1 − 𝑠2𝑝2)𝜆12 + 𝑏2𝑠2

𝜆1𝑙
 

𝑍 =
(1 − 𝑠2𝑝2)𝜆22 − 𝑏2𝑠2

𝜆2𝑙
 

Substituting Eq. (4.25) and Eq. (4.26) together with Eq. (5.13)-(5.18) into the 
boundary conditions (5.1)-(5.4) yields a system of four equations with four unknowns 
that can be written in the following matrix form: 
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𝑪𝑴 ∙ 𝑪 = 𝟎 (5.19) 
where  

𝑪𝑴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ < −𝑘1 > < −𝜙𝐻 + 𝜙

𝜆1
𝑙 + 𝑆

𝜆1
𝑙 >

< 𝑘3𝑐2 − 𝜙𝐻𝑐1 + 𝜙𝑐1
𝜆1
𝑙 + 𝑆𝑐1

𝜆1
𝑙 > < 𝑘3𝑐1 − 𝜙𝐻𝑐2 + 𝜙𝑐2

𝜆1
𝑙 + 𝑆𝑐2

𝜆1
𝑙 >

 < −𝐸𝐼𝐻
𝜆1
𝑙 >                     < 𝐻𝑘2 >

 < −𝐸𝐼𝐻𝑐2
𝜆1
𝑙 − 𝐻𝑘4𝑐1 >                      < −𝐸𝐼𝐻𝑐1

𝜆1
𝑙 − 𝐻𝑘4𝑐2 >

 

< −𝑘1 > < −𝜙𝑍 + 𝜙
𝜆2
𝑙 + 𝑆

𝜆2
𝑙 >

< 𝑘3𝑐4 + 𝜙𝑍𝑐3 − 𝜙𝑐3
𝜆2
𝑙 − 𝑆𝑐3

𝜆2
𝑙 > < 𝑘3𝑐3 − 𝜙𝑍𝑐4 + 𝜙𝑐4

𝜆2
𝑙 + 𝑆𝑐4

𝜆2
𝑙 >

< 𝐸𝐼𝑍
𝜆2
𝑙 >                           < 𝑍𝑘2 >

< 𝐸𝐼𝑍𝑐4
𝜆2
𝑙 + 𝑍𝑘4𝑐3 >                          < 𝐸𝐼𝑍𝑐3

𝜆2
𝑙 − 𝑍𝑘4𝑐4 > ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

𝑪 = �

𝐶1
𝐶2
𝐶3
𝐶4

� 

and 

𝑐1 = 𝑠𝑖𝑛ℎ(𝜆1) 

𝑐2 = 𝑐𝑜𝑠ℎ(𝜆1) 

𝑐3 = 𝑠𝑖𝑛(𝜆2) 

𝑐4 = 𝑐𝑜𝑠(𝜆2) 

A non-trivial solution to this system can only be found if the determinant of 𝑪𝑴 
vanishes, leading to 
|𝑪𝑴| = 0 (5.20) 

This equation can be solved for the angular eigenfrequencies 𝜔𝑛, from which the 
corresponding frequencies 𝑓𝑛 can be computed. This can be done for different 
boundary conditions 𝑘1-𝑘4. In this thesis, the 𝑘𝑖 are set to zero to model free support 
conditions, or they are set to values of 1015 to simulate rigid supports. 

 

5.4 Model comparison 
Table 5-1 and Table 5-2 shows the frequencies for different boundary conditions with 
and without axial load, calculated using the discrete and continuous model, cf. 
Appendix A, as well as the above-mentioned SFVIBAT software. Furthermore the 
frequencies according to Euler theory are presented to show the difference in the 
results compared to the Timoshenko theory. The chosen parameters are: E = 13000 
MPa, G = 760 MPa, ρ = 400 kg/m3, L = 1.5m, h = 75mm and b = 35mm.  
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Table 5-1 Comparison of transversal frequencies of a beam with different boundary 
conditions calculated with different numerical models 

 
 
Table 5-2 Comparison of transversal frequencies of an axially loaded beam with 

different boundary conditions calculated with different numerical models 

 
The discrete models calculate with n = 50 finite elements while the continuous models 
yield exact solutions for the respective model assumptions. Rigid supports are 
modelled setting k = 1015 Nm. The Euler model assumes a much stiffer behaviour of 
the system since shear deformations are neglected, leading to higher frequencies. 
They derive already considerably for the second bending mode. The comparison of 
the Timoshenko models shows good accordance for the first mode, while the 
differences are already higher for the second mode. The reason is the limited number 
of finite elements and leading to the fact that these models always yield approximate 
solutions. It can furthermore be observed that the continuous solution always lies in 
between the two discrete solutions, indicating a good validation of this model.  

 

5.5 Parameter estimation 
For the actual parameter estimation, the continuous model based on Timoshenko 
theory is used in the following. In most practical cases, as well as in the tests in 
Chapter 8, it is reasonable to assume that the translational supports can be modelled as 
rigid, while the rotational supports are modelled as springs. In some cases, it is even 
acceptable to assume identical support conditions at both sides. These considerations 
yield to the two systems illustrated in Figure 5-3 (a).  
The first system in has two unknown parameters for which the solution requires 
therefore at least two resonance frequencies. In theory, also more frequencies could be 
used for error minimisation. The measurement of higher vibration modes might 
however be more likely to contain errors, which makes the error minimisation 
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unsuitable for some materials. This is for example the case for inhomogeneous timber, 
especially in presence of knots. Homogeneous materials like steel do not show these 
problems and allow also the accurate measurement of higher frequencies. If only two 
resonance frequencies are used, a plot similar to the one in Figure 5-3 (c) is the result. 
For a known rotational stiffness k, there exists only one axial load S for which the 
beam vibrates in a given frequency. This way, a so-called contour curve can be 
depicted for each frequency by varying one of the parameters k and S. 

The second system in Figure 5-3 (b) has three unknown parameters for which the 
solution requires therefore at least three resonance frequencies. Instead of curves, each 
frequency is determined by a surface (cf. Figure 5-3 (d)). The intersections of these 
surfaces are the solutions to the system. Here, there are two solutions since 𝑘1 and 𝑘2 
are exchangeable for symmetry reasons.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5-3 Simply supported beam under axial load with spring supports of identical 
stiffness (a), simply supported beam under axial load with spring supports of 
different stiffness (b), illustration of dual parameter estimation (c) and 
illustration of triple parameter estimation (d). 

 

5.6 Sensitivity analysis for continuous model with k1 = k2 
In the following, the sensitivities of the parameters S and k are investigated for 
different load levels and under the assumption of equal boundary conditions with 
regard to the following input parameters:  

• Clear length L 
• Density ρ 
• E-modulus E 
• G-modulus G 
• Measured frequencies fi 

The errors of S and k are standardised to 25%, which allows a direct comparison of 
the values. A steep curve means a high sensitivity to the according parameter. 
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5.6.1 Sensitivity of S 
 

 
Figure 5-4 Sensitivity of the axial load S with regard to the clear length L for different 

load levels 

 

 
Figure 5-5 Sensitivity of the axial load S with regard to the density ρ for different load 

levels 

 

 
Figure 5-6 Sensitivity of the axial load S with regard to the E-modulus E for different 

load levels 
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Figure 5-7 Sensitivity of the axial load S with regard to the shear modulus G for different 

load levels 

 

 
Figure 5-8 Sensitivity of the axial load S with regard to the first measured frequency for 

different load levels 

 

 
Figure 5-9 Sensitivity of the axial load S with regard to the second measured frequency 

for different load levels 
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5.6.2 Sensitivity of k 
 

 
Figure 5-10 Sensitivity of the rotational stiffness k with regard to the clear length L for 

different load levels 

 

 
Figure 5-11 Sensitivity of the rotational stiffness k with regard to the density ρ for 

different load levels 

 

 
Figure 5-12 Sensitivity of the rotational stiffness k with regard to the E-modulus E for 

different load levels 
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Figure 5-13 Sensitivity of the rotational stiffness k with regard to the shear modulus G for 

different load levels 

 

 
Figure 5-14 Sensitivity of the rotational stiffness k with regard to the first measured 

frequency for different load levels 

 

 
Figure 5-15 Sensitivity of the rotational stiffness k with regard to the second measured 

frequency for different load levels 
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5.6.3 Discussion 
In Figure 5-4 - Figure 5-9, it can be seen that the sensitivity of S with regard to other 
parameters decreases for high loads. The highest sensitivity can be observed for the 
measured frequencies, which shows the importance of a high measurement quality. 
The second highest sensitivity is associated with L. It is therefore important to choose 
a reasonable restraint length at the supports, which is not always easy, especially for 
complicated connections or when the load is transferred over more than one 
connection part. The next highest sensitivity is related to ρ and E, followed by the 
shear modulus G. While the density can usually be determined with good accuracy, 
the estimation of E and G is not so straightforward. 

The sensitivity of k is less influenced by the size of the axial load. Figure 5-14 and 
Figure 5-15 show however that its sensitivity with regard to the measured frequencies 
increases for high axial loads, contrary to the sensitivity of S. Figure 5-10 - Figure 5-15 
illustrate, that just as for the axial load, the sensitivity of k is highest for the 
frequencies, followed by the length L and finally the material properties ρ, E and G. In 
general, one can say that the sensitivity of k is higher than the one of S.  
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6 Modal analysis 
Modal analysis is used to describe a structure’s dynamic properties, like resonance 
frequencies, mode shapes and damping. Those are specific for every system and do 
not depend on the excitation, but only on the nature of the system and its components. 

This chapter gives a short summary of different aspects from theoretical and 
experimental modal analysis with a main focus on data acquisition and processing. 

 

6.1 Theoretical modal analysis (TMA) 
In theoretical modal analysis, the modal parameters are determined by solving the 
differential equation of motion.  

Every vibrating system can be described by using the equation of motion 

𝑴 ∙ �̈� + 𝑪 ∙ �̇� + 𝑲 ∙ 𝒗 = 𝒇(𝑡) (6.1) 

where 𝑴 is the mass matrix, 𝑪 the damping matrix and 𝑲 the stiffness matrix. 𝒇(𝑡) is 
a vector containing a time-dependant excitation force. The vector 𝑢 describes the 
displacement of the system over time, �̇� and �̈� the velocity and acceleration, 
respectively. 

If we only consider the free vibration of Eq. (6.1) and neglect the damping 

𝑴 ∙ �̈� + 𝑲 ∙ 𝒗 = 0 (6.2) 
and chose a solution of the form 

𝒗 = 𝝓 ∙ cos (𝜔 ∙ 𝑡 − 𝜑) (6.3) 

where 𝝓 is a vector, 𝜔 the angular frequency and 𝜑 the phase angle, we obtain the 
following Eigenvalue problem: 

(−𝜔2 ∙ 𝑴 + 𝑲) ∙ 𝝓 = 0 (6.4) 
For a non-trivial solution, the determinant of Eq. (6.4) must vanish 

|−𝜔2 ∙ 𝑴 + 𝑲| = 0 (6.5) 

By solving Eq. (6.5) for 𝜔, we obtain the angular resonance frequencies 𝜔𝑖 of the 
system. Substitution of each eigenfrequency into Eq. (6.4) then yields the 
eigenvectors 𝝓𝑖 of the system. Each eigenvector 𝝓𝑖 represents a deflection over time 
at a frequency 𝜔𝑖 and defines a specific modal shape of the free vibration. The 
deflection pattern of a structure subjected to any excitation force can in theory be 
expressed as the linear summation of its modal shapes. 

While the solution of the eigenvalue problem is simple for harmonic force functions, 
it is not adaptable for pulses or other non-harmonic excitations. In this case, the 
resonance frequencies can be determined using a Fourier transformation. 
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6.2 Experimental modal analysis (EMA) 
In practice, it is often not possible to use the analytical model because of different 
uncertainties. In this case the modal parameters can be determined experimentally. 
According to Dossing (1988) there are two different approaches in experimental 
modal analysis: 

• Signal analysis (operational data) 
• System analysis (modal data) 

In signal analysis, only the response signal of the system is detected, while in system 
analysis also the force function is measured. As an example, consider the bridge in 
Figure 6-1. During service, it is subjected to wind forces that can cause undesirable 
vibrations. These vibrations can be measured and the obtained operational data can be 
used to study the bridges’ behaviour and to see what resonance frequencies are 
excited during operation and if there is need for adjustments. If one is however 
interested for example in specific resonance frequencies of the bridge, it is necessary 
to subject it to a force able to excite these frequencies. In this case the force can also 
be measured and considered in the modal analysis of the structure. The main 
difference is that the force has to be taken as given in the first case, while it is actively 
controlled in the second case.  

 
Figure 6-1 Illustration of a bridge with measurement of operational data (left) and 

modal data (right) 

For a given force function it is possible to detect which resonance frequencies are 
actually excited by having a look at the frequency response function (FRF). The FRF 
is defined as the ratio of response function (Output) to the force function (Input):  

𝐹𝑅𝐹 = 𝑂𝑢𝑡𝑝𝑢𝑡
𝐼𝑛𝑝𝑢𝑡

 (6.6) 

The force and response functions can be measured using accelerometers and force 
transducers. The collected data are time signals. Since however the frequencies are of 
interest, it is necessary to convert the signals from the time domain into the frequency 
domain (cf. Figure 6-2), which is done by performing a Fast Fourier Transformation 
(FFT). 
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Figure 6-2 Illustration of the Fast Fourier Transformation (FFT) from the time into the 

frequency domain 

 

6.3 Data acquisition 
According to Avitabile (2001), there are two ways in system analysis to find the 
frequencies and mode shapes of a vibrating system (cf. Figure 6-3): 

• Measure in one point and excite in several points 
• Excite in one point and measure in several points 

If only the frequencies are of interest and if the mode shapes can be predicted (or are 
actually known) since it is a simple structure like a beam with known boundary 
conditions, it is also possible to determine the according frequencies by only making 
one measurement and one excitation in the same point (drive point measurement). 
When doing this it is however very important that the point being measured is not a 
node for any of the desired mode shapes, since in this case the mode and its 
corresponding frequency are not being excited. 

 

  
Figure 6-3 Two different approaches for the determination of resonance frequencies: 

measuring in one point and exciting in several points (left) or measuring in 
several points and exciting in one point (right), Avitabile (2001) 

Accelerometers can be used for the measurement of the response signal. According to 
Dossing (1988), the main advantages are their low weight, wide frequency range and 
the simple mounting using either magnets, steel studs or bee-wax. The system can be 
excited either using a shaker or a hammer equipped with a piezoelectric transducer. 
While shakers are suitable to excite a system over longer time periods, hammers are 
used for short impulses. The hammers come in different sizes and tips, depending on 
what frequency range is of interest. The essential parameters are the weight of the 
hammer and the stiffness of the tips. The heavier a hammer is, the lower are the 
excited frequencies. The stiffer the tip, the higher are the excited frequencies. Soft tips 
(rubber, plastic) can therefore excite lower frequencies while hard tips (steel) are 
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better to excite higher frequencies. It is important to choose an adequate hammer and 
tips so that the energy of the hammer blow excites the desired frequency range and a 
good response is obtained. Figure 6-4 shows impulse shapes for different hammer tips. 

 
Figure 6-4 Impulse shape for different hammer tips, Kjaer (2012) 

When using accelerometers and additional equipment to acquire the modal data of a 
structure, it is also important that their weight is small compared to the one of the 
structure and its components. If this is not the case, they have to be considered as 
additional masses that change the mass properties of the system. The same applies for 
suspensions that can have a stiffening effect to the structure, which means a change in 
the stiffness properties. Furthermore it has to be investigated if the damping has to be 
taken into account to determine the frequencies or if it can be neglected.  

The results acquired by accelerometers and force transducers represent timeline data 
that need to be further processed to obtain the eigenfrequencies. The advantage of 
measuring the input function is that errors originating for example from noise can be 
reduced. 

 

6.4 Data processing 
The time data acquired during measurements can be transformed to the frequency 
domain by performing a FFT. 

Steps of the FFT according to Figure 6-5: 

1. Analog signals must be filtered to remove high frequency signals that might be 
detected during testing without having any connection to the actual test 
(background noise) 

2. The analog signals are approximated by conversion into digital signals 
3. Weighting functions called Windows are used to reduce leakage (cf. below) 
4. The actual FFT is performed to create linear spectra of the input and output data, 

transfer from time domain to frequency domain 
5. The input, output and cross power spectra are computed. 
6. These functions are then averaged and used to compute the FRF and the 

coherence function. While the FRF can be used to read out the resonance 
frequencies, the coherence function can be used for quality assessment of the 
data. 
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Figure 6-5 Illustration of the different steps of an FFT Analyser, Avitabile (2001) 

 

Figure 6-6 shows an example of a FRF and the according coherence function. Peaks in 
the coherence function at a resonance frequency indicate a poor quality of the 
measurement. In this case, the quality of the results decreases for frequencies higher 
than approximately 4000 Hz. This is the maximum range of the hammer tip in use. 

 
Figure 6-6 Example of a frequency response function and the according coherence 

function  
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Leakage is a signal processing error causing the distortion of data (cf. Figure 6-7). It is 
one of the most serious errors when processing data and has to be treated with special 
care. It occurs during the FFT transformation, which in theory requires a 
representation of data for all times or at least a periodic repetition. In practice, this is 
of course not possible since every signal has a finite observation period. There are 
however ways to reduce the leakage effect already during the data acquisition phase. 
On the one hand, the observation period should be chosen long enough so that the 
signal is not truncated before it has decayed to zero. One the other hand, it should not 
be longer than necessary since during the additional time only background noise can 
be recorded. In both cases, the result can be a blurry power spectrum with too low and 
unclear peaks.  

 
Figure 6-7 Illustration of the effect of truncation during data acquisition on result for the 

frequency response function, Dossing (1988) 

After data acquisition, it is possible to further increase the resolution by applying the 
already mentioned window functions. While there are different window functions, 
they all have more or less the same effect on the signal, by improving its periodicity 
and forcing it to zero. A popular example for a window is the Hanning function, 
which is good to improve the periodicity of the sample. It is bell-shaped and heavily 
reduces the beginning and end of the sample function to zero. Another example is the 
transient window that can for example be used to remove noise following an impact 
pulse. Exponential windows can in addition be used to process truncated data. It 
should be noted however that windows cause some data distortion themselves and 
should be avoided, if possible. They have a negative influence on the accuracy of 
peak amplitudes and the damping ratios. If only the frequencies are of interest, these 
effects can however be considered of secondary importance and are therefore 
acceptable.  
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7 Determination of material properties 
7.1 Specimen dimensions and properties 
The material for the specimen comes from previous experiments on glulam beams 
from Norway spruce (Picea abies). These beams were first sorted to make sure only 
intact timber was used to produce the new specimens. Further requirements were to 
minimize the amount of knots, finger joints and other natural defects like resin 
pockets. A total of 32 beams, each consisting of two lamellas with the dimensions 
42×45 mm2, were then cut out to a length of 1.5 m from the original glulam beams. 
The thereby obtained pieces were then evenly planed to the following final 
measurements of the samples: L×H×B = 1500×75×35 mm3. Figure 7-1 shows one of 
the final specimens. 

The choice of the sample size is based on the following conditions: 

• The tensile machine limited the cross-sectional dimensions to a size smaller than 
77×45 mm2, which is why a height of 75 mm was chosen. 

• The height-to-width ratio had to be high enough to facilitate the measurement of 
torsional vibrations and to be able to distinguish the frequencies from the different 
vibration modes. The torsional frequencies are important to determine the shear 
modulus that is needed to take into account the effect of shear deformation on the 
bending modes. Also the proportions had to be realistic with regard to real-life 
constructions. 

• The length-to-width ratio was chosen high enough to make sure that frequency 
changes for different stress levels are in a detectable range.  

All these considerations yielded a bar-like timber beam of realistic proportions, such 
as they can be found for instance in roof structures, bridges or supports. 

 
Figure 7-1 Illustration of timber specimen with body dimensions (left) and the according 

cross section composed of two lamellas (right) 

The original glulam beams were graded CE L40c according to European standards. 
This class is constituted of a combination of lamellas of different strength, the weaker 
ones situated on the inside, the stronger forming the outside layers (at least two strong 
lamellas per side). The specimens were cut out from the outer lamellas and can thus 
be considered as part of the higher quality timber. The mean values for the material 
properties of L40c are listed in Table 7-1.  
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Table 7-1 Material properties of the timber specimens according to SIA (2003) 

Material properties of L40c 

Mean modulus of elasticity parallel to the grain E0,mean 13000 MPa 

Mean modulus of shear Gmean 760 MPa 

Tensile strength parallel to the grain ft,0,k 17.6 MPa 

Density ρk 400 kg/m3 

The specimens were packed in plastic after being cut. Over the whole testing period, 
they were kept in a room with an average temperature of 20°C and a relative humidity 
of ranging from 30 to 40%. The moisture content of each specimen was measured in 
three places. The registered average moisture contents are shown in Appendix B. The 
mean moisture content of all the specimens was determined to 12.5%. 

The actual densities for each sample were determined by weighing them. The results 
are also shown in Appendix B. The mean value of 488.6 kg/m3 is well above the one 
given in Table 7-1. The reason could be that only higher quality lamellas were cut out 
of the initial beams, which in general have higher densities. 

The tests carried out on the inhomogeneous timber specimen were also conducted on 
an aluminium bar, representing a homogeneous reference. The comparison of the final 
results should eventually allow identifying the material-related deviations. The 
aluminium bar had the dimensions 1495×50×10 mm3. The general material properties 
of industrial aluminium are presented in Table 7-2 and the bar itself is illustrated in 
Figure 7-2. 

 
Figure 7-2 Illustration of reference aluminium specimen with body dimension 
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Table 7-2 Material properties of the reference aluminium specimen according to 
Wikipedia.org (2012) 

Material properties of Aluminium 

Modulus of elasticity  E 70000 MPa 

Modulus of shear  G 26000 MPa 

Tensile strength  fu 45 MPa 

Density ρk 2700 kg/m3 

 

7.2 Test equipment and data processing 
For all the dynamic tests carried out throughout this study, the same equipment was 
used. The beams were tapped with an instrumented hammer shown in Figure 7-3 (a). It 
was equipped with a piezoelectric force transducer PCB 208B05 that allowed 
measuring the impulse function. These hammers come with different exchangeable 
tips, depending on the desired frequency range. The response signal from the beams 
was recorded using uniaxial accelerometers PCB 303A02, cf. Figure 7-3 (b). Their 
weight of 2.8 g was small enough to exclude effects on the beam vibration. The 
accelerometers were attached to the beams with bee-wax. Hammer and 
accelerometers were connected over PCB 478A01 power suppliers to an HP 8-
channel system linked to the computer. 

  

(a) (b) 
Figure 7-3 Impact hammer equipped with piezoelectric force transducer and steel tip (a) 

and uniaxial accelerometer (b) 

The software DAC Express from VTI Instruments was used for the acquisition of the 
raw signal data. The actual data processing was carried out using the software Matlab 
from the company MathWorks to transform the signal data from the time into the 
frequency domain by means of a Fast Fourier Transformation (FFT). The result of this 
transformation is the Frequency Response Function (FRF) from which the resonance 
frequencies of a beam can be extracted.  
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7.3 Determination of static E- and G-modulus 
Four-point bending tests according to CEN/TC (2007) were carried out to determine 
the static E-modulus of each specimen. The beams were tested with two sets of 
weights for which the deflection at mid-point was measured. Furthermore, the 
deflections over the supports were measured and subtracted from the mid-deflection 
to take into account local compressions. The E-moduli were then calculated using 
(7.1): 

𝐸 =  𝐿3(𝐾2−𝐾1)
𝑏ℎ3(𝑤2−𝑤1)

��3𝑎
4𝐿
� − �𝑎

𝐿
�
3
�  (7.1) 

where h and b are the cross-sectional dimensions, L is the span, a is the distance 
between the loading and the nearest support, K are the total loads and w the according 
deflections (cf. Figure 7-4). The test setup is shown in Figure 7-5.  

 
Figure 7-4 Illustration of test setup for the four-point bending test according to CEN/TC 

(2007) 

 

  
Figure 7-5 Test setup for the determination of the static E-modulus according to 

CEN/TC (2007) 

The test results are shown in Table 7-3. 
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Table 7-3 Measured deflections and computed E-moduli from the four-point bending 

test 

 
The mean value of 12717 MPa shows good accordance with the mean E-modulus 
given in Table 7-1. The slightly lower values probably result from the fact that only 
two lamellas are left from the original beam, which increases the negative influence of 
local defects on material properties. Figure 7-6 shows a good correlation between E-
moduli and densities of the samples. In general, it can be said that material properties 
improve with an increasing density. In this case, outliers from this rule result from 
extreme concentrations of knots and other defects.  
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Figure 7-6 Correlation between the density and the static E-modulus for the timber 

specimens 

 

7.4 Determination of longitudinal E-modulus 
The longitudinal E-moduli were determined trough dynamic tests on the beams under 
free boundary conditions. For this purpose, the beams were supported on foam pieces 
as shown in Figure 7-7. The beams were then tapped five times in one end with the 
instrumented hammer and the vibration was measured over a time period of 7 seconds 
using the uniaxial accelerometer situated on the other end. For this test, a steel tip was 
chosen that is suitable to excite higher frequencies. 

 
Figure 7-7 Test setup for the determination of the dynamic longitudinal E-modulus 

The results for each experiment were the timelines for the accelerometer and the force 
transducer, upon which a Fast Fourier Transformation (FFT) was then carried out via 
the software Matlab. The results of this transformation were the input and output 
power spectra, the Coherence Function and finally the Frequency Response Function 
(FRF), cf. Figure 7-8. 
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Figure 7-8 Frequency plots and coherence function resulting from the data processing of 

the different signals recorded during the longitudinal tests 

 

 

 

 



 

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:60 58 

It can be seen that the input power spectrum shows a break at around 4.2 kHz. The 
coherence function shows also high fluctuations from this point on. This is the 
maximum frequency range for the chosen hammer-tip combination. The first two 
longitudinal frequencies could be read out from the FRF and subsequently be used to 
calculate the longitudinal E-modulus with help of the following formula derived from 
(4.33): 

𝐸𝐿 = 4𝑓2𝑙2𝜌
𝑖2

 (7.2) 

The E-moduli were calculated using either the first or the second frequencies. 
Furthermore the mean value was computed (cf. Table 7-4). 

 
Table 7-4 Measured frequencies and computed E-moduli from the longitudinal tests 

 
The best correlation with the static E-moduli from the bending tests could be obtained 
using only the first frequency. The mean value was found to be 14308 MPa, which 
means that the longitudinal E-moduli are on average 12.5% higher than the static 
ones. This is in accordance with previous studies Ilic (2001).  

A summary of the correlation as well as the FRF plots can be found in Appendix B. 
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7.5 Determination of transversal E- and G-modulus 
Transversal vibration tests were carried out to determine the E- and G-moduli of the 
beams. The determination of the G-moduli was necessary to include effects of shear 
deformations that become more important for higher modes. Just as for the 
longitudinal tests, the beams were tested under free boundary conditions. The setup is 
however different from the one in Chapter 7.4. The free-free conditions were achieved 
by hanging the beams vertically on soft rubber strings. These elastic strings are 
necessary to reduce the overall stiffness of the system to get as close as possible to a 
state of the free boundary conditions. The beams were tested in a vertical position to 
minimize the influence of the supports on the transversal waves. The support is 
illustrated in Figure 7-9 (a).  
 

  

(a) (b) 
Figure 7-9 Support conditions for the determination of the transversal E-modulus (a) 

and the according test setup (b) 

The equipment used for the tests consisted of two uniaxial accelerometers attached to 
the beam with bee-wax. For a free-free beam, the ends are antinodes that allow the 
measurement of frequencies for different vibration modes. This is why the 
accelerometers were placed on the end of the beam in two different spots according to 
Figure 7-9 (b). The specimens were excited five times with the instrumented hammer, 
equipped this time with a plastic tip, since the expected frequencies were in a lower 
range than for the longitudinal tests. The specimens had to be tapped on the edge to 
also excite torsional frequencies. The response signals were recorded for 15s and then 
transmitted to the computer where they could finally be processed to calculate the 
FRFs (cf. Figure 7-10).  
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Figure 7-10 Frequency plots and coherence function resulting from the data processing of 

the different signals recorded during the transversal tests 
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Since A1 was placed in the neutral axis of the beam, it could only detect vibrations 
corresponding to bending modes. A2 however was placed on the edge and would 
therefore also record torsional vibrations. By comparing the FRFs of A1 and A2 it 
was then possible to distinguish bending and torsional frequencies (cf. Figure 7-11). 

 
Figure 7-11 Comparison between the frequency response funciton from the accelerometer 

situated in the neutral axis of the beam (left) and the one situated on the edge 
of the beam (right) 

The G-moduli were calculated using Eq (7.3) derived form of Eq (4.46)  

𝐺𝐹 = 4𝑓2𝑙2𝜌𝐼𝑝
𝑖2𝐾𝑡

 (7.3) 

with the either the first or second frequency. Also the mean value of both G-moduli is 
presented (cf. Table 7-5). 
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Table 7-5 Measured torsional frequencies and computed G-moduli from the transversal 
tests 

 
 

The transversal E-moduli were calculated using Timoshenko theory as well as Euler 
theory for comparison. Since no simple expression is available for a free-free beam, 
the self-developed Matlab code in Appendix A was used for the calculations. Again, 
the E-moduli were calculated for different frequencies, as shown in Table 7-6.  

 



 

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:60 63 

Table 7-6 Measured transversal frequencies and computed E-moduli from the 
transversal tests 

 
 

The difference between Euler and Timoshenko theory becomes more important with 
higher modes. Nevertheless, the difference is already very significant for the second 
and third mode. The best correlation with the static E-moduli was obtained using only 
the first frequency. The mean value was calculated to 13931 MPa, 9.5% higher then 
the static one.  

Appendix B presents a summary of the correlation and FRF plots. 

 

7.6 Summary of results 
In conclusion, one can say that the first frequencies are most suitable for the 
estimation of material properties since they are least influenced by material defects 
and hence can be measured with higher precision. The negative effect of defects 
increases with the number of modes, which excludes the use of higher frequencies for 
error minimisation. 
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Table 7-7 Summary of the determined material properties for each specimen 

 
 

Table 7-7 summarizes the results from the material properties estimation. As already 
mentioned, the dynamic E-moduli are higher then the static ones. Also, the mean of 
the estimated G-moduli is higher than the one in Table 7-1. This difference is mainly 
due to creeping that occurs during static testing. While the dynamic tests are carried 
out over a short time period of just a few seconds, the static tests last several minutes 
during which the timber starts to creep, resulting in the lower values for the static E-
modulus. 

Nevertheless, good correlations could be observed between the different E-moduli (cf. 
Figure 7-12 - Figure 7-14). The correlation between longitudinal and translational E-
moduli is even nearly perfect.  
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Figure 7-12 Correlation between static and longitudinal E-moduli 

 

 
Figure 7-13 Correlation between static and transversal E-moduli 

 
Figure 7-14 Correlation between longitudinal and transversal E-moduli 
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Figure 7-15 gives a summary of the estimated E-moduli and their mean values.  

 

 
Figure 7-15 Summary of the estimated E-moduli from the different tests and according 

mean values 
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8 Tension Tests 
8.1 Setup and equipment 
The tensile tests were carried out using the Aktiebolaget Alpha Sundbyberg machine 
shown in Figure 8-1. The beams were fixed at both ends with friction grips illustrated 
in Figure 8-2. The beams were chosen to stand out 10 mm on both sides to prevent 
them from sliding out of the grips for higher loads. The grips had a length of 120 mm 
which reduced the minimum possible clear length of the beams to 𝐿𝑚𝑖𝑛 = 1500 − 2 ∙
10 − 2 ∙ 120 = 1240 𝑚𝑚. Since the surface of these grips is not flat, but curved in 
both directions with a global maximum at approximately 60% of their length, the 
maximum possible clear length results in 𝐿𝑚𝑎𝑥 = 𝐿𝑚𝑖𝑛 + 2 ∙ 50 = 1340 𝑚𝑚. This 
caused difficulties in assessing the actual clear length of the beams, which is further 
discussed in Chapter 8.3.  

  

  
Figure 8-1 Tensile machine and setup of the accelerometer (left) and scale for the 

determination of the axial load (right) 
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Figure 8-2 Illustration of the curved surface of the friction grips (left) and the position of 

the beams between the grips with according dimensions (right)  

The scale chosen for the tensile machine was 10000 kg, which allowed a precision of 
10 kg. The accelerometer was attached with bee-wax at a distance of 250 mm from 
the lower grip, which equals approximately 20% of 𝐿𝑚𝑖𝑛. This ensured the recording 
of the first three bending frequencies. The excitation was performed with 5 hammer 
blows right next to the accelerometer using an instrumented hammer equipped with a 
plastic tip. The technical equipment used for the modal testing is described in more 
detail in Chapter 7. The data acquisition settings are shown in Table 8-1. These 
settings allowed a resolution of the frequencies of approximately 0.1 Hz. 

 
Table 8-1 Settings for data acquisition 

 
The frequency measurements were carried out for 6 different load levels between 5 
kN and 30 kN with an interval of 5 kN. These levels were chosen on the assumption 
that the maximum tensile load was around 40 kN, corresponding to a tensile strength 
of 15 MPa. Later ultimate tensile tests described in Chapter 8.4 showed however that 
the mean tensile strength is considerably higher, namely 25.9 MPa for the tested 
beams.  
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8.2 Test results 
The FRF plots and results from the frequency measurements are shown in Appendix 
C. Figure 8-3 shows the FRFs for the aluminium bar and one timber specimen for 
different load levels. It can be seen that the geometry of the aluminium bar was 
chosen in a way that the frequency increase do to a higher load is of a comparable 
magnitude as for a timber specimen. This is important for the comparison of 
parameter estimation results since the sensitivity study showed that the axial load is 
very sensitive to errors in frequency (cf. Chapter 5). Moreover one can see that the 
peaks are much more clear for the aluminium than for the timber specimen, which is 
mainly due to the differences in material homogeneity. 

 

       
Figure 8-3 Comparison of frequency plots for aluminium (left) and timber (right) 

 

Table 8-2 lists the first three bending frequencies of the above specimen for the 
different load levels. 

 
Table 8-2 Comparison of measured frequencies for aluminium (left) and timber (right) 

        
 

Figure 8-4 - Figure 8-6 show plots of the squares of the three first measured 
frequencies 𝑓𝑖2 against the applied load 𝑆 under the assumption of equal boundary 
conditions 𝑘 at both ends of the beams. Since different friction grips were used for 
timber and aluminium, the respective restraint lengths are also different, namely 1260 
mm and 1245 mm respectively. For the aluminium bar, the measured frequencies are 
all more or less arranged in a line, which shows that the boundary conditions remain 
nearly constant for different load levels. The assumption of equal restraints at both 
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ends is valid for the aluminium bar as the friction grips are identical and the 
aluminium is homogeneous. For the timber specimen only the frequencies of the three 
highest loads are situated on a line. The main reason for this is that the clear length 
changes over different load levels. The problem is that the pressure from the grips 
applied on the timber is not constant, but increases with the strain applied on the 
beam. Thereby, the grips penetrate deeper and deeper into the soft wood and through 
their curved surface, more and more reduce the clear length. In the next chapter, this 
will be taken into account by setting different lengths for the lower load levels. 
Another observation when comparing the figures is that the graph of the third 
frequency does not correspond well with the other two graphs. Already during data 
acquisition, it became clear that the peak of the third frequency is not clear enough to 
fulfil the precision requirements, at least not for the applied measurement method. 
The same conclusion could already be drawn in Chapter 7 during the estimation of the 
material properties. The higher the frequency modes, the lower are their accuracies 
and thus their use for parameter estimation. This is further discussed in the next 
paragraph. 

 

         
Figure 8-4 Plots of axial load against square of calculated first frequency for different 

boundary conditions together with measured first frequencies for different 
load levels for aluminium (left) and timber (right) 

 

          
Figure 8-5 Plots of axial load against square of calculated second frequency for 

different boundary conditions together with measured second frequencies for 
different load levels for aluminium (left) and timber (right) 
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Figure 8-6 Plots of axial load against square of calculated third frequency for different 

boundary conditions together with measured third frequencies for different 
load levels for aluminium (left) and timber (right) 

 

8.3 Estimation of tensile force S 
The bending frequencies resulting from the data processing in Chapter 8.2 are in the 
following used to estimate the axial load S and the boundary conditions at the 
restraints. In the first step, this is done using only the two first frequencies under the 
assumption of equal boundary conditions. In the second step, it is attempted to use 
also the third frequency either for error minimisation or to expand the model by a 
third parameter by dropping the assumption of equal boundary conditions. Since the 
stiffness of the timber specimen is much smaller compared to the steel grips, the 
rotational stiffness at the supports is mainly influenced by the E-modulus of the 
specimen. For the inhomogeneous timber, the E-modulus is however not constant 
over the whole specimen length, which can consequently lead to a difference in 
boundary conditions. This means that the use of an extra frequency should have a 
positive effect on the results, provided that it could be determined with an appropriate 
precision. 

For the parameter estimation, Timoshenko theory was used to include effects of shear 
deformations and rotary inertia since they can have a rather high influence on the 
results (cf. Chapter 5). The Matlab code illustrated in Appendix B was used for this 
purpose. 

While the material properties and the sectional dimensions had already previously 
been determined, the choice of the clear specimen length L was still unknown. As 
explained above, this length changes for different load levels due to characteristics of 
the tensile machine. This effect is illustrated in Figure 8-7 and Figure 8-8 for 
aluminium and timber, respectively.  
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Figure 8-7 Variation of estimated rotational stiffness with different assumptions for clear 

length L for aluminium and different load levels 

 

 
Figure 8-8 Variation of estimated rotational stiffness with different assumptions for clear 

length L for timber and different load levels 

The plots show the variation of the rotational stiffness k for different lengths L and 
load levels S. When comparing the two graphs, it is obvious that the effect of the grips 
is much less pronounced for aluminium than for timber. In Figure 8-8, the curves 
associated with the two lowest load levels show strong deviations from the pattern of 
the other levels. In Figure 8-7, the curves are much closer together and the deviation 
therefore less obvious. The conclusion was that the clear length could be assumed 
constant for the aluminium bar while it had to be varied for the timber beam, at least 
for the two lowest load levels, where the clear length turned out to be bigger 
compared to the other levels. For the timber specimen, the length for the lowest load 
was chosen to the maximum length 𝐿𝑚𝑎𝑥 = 1295 𝑚𝑚. Under the assumption of 
constant boundary conditions, the length for the second highest load was then 
determined to 𝐿 = 1275 𝑚𝑚, and the length for the remaining levels to 𝐿 =
1255 𝑚𝑚. For aluminium, 𝐿 was assumed to be 1245 𝑚𝑚 for all load levels. The 
difference in length for the two materials is related to the fact that different grips with 
different surface properties had to be used. 

After all the input parameters were now determined, the parameter estimation could 
be initiated. Figure 8-9 shows the graphical estimation for aluminium and timber, 
previously explained in Chapter 5.  
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Figure 8-9 Plot for the dual parameter estimation technique for aluminium (left) and 

timber (right) 

The use of two frequencies gave reasonable results of the axial load S for both 
materials. The comparison of the graphs shows however that the third frequency is 
only of use for aluminium, while it is far off the crossing point of the two first 
frequencies for the timber specimen. As previously mentioned, the third frequency 
could not be determined with the required precision. This is why the parameter 
estimation was limited to the two first frequencies, which makes the assumption of 
equal boundary conditions indispensible and therefore excludes the expansion of the 
model to a third parameter. Table 8-3 and Table 8-4 show the according results for the 
aluminium bar and a timber specimen using the transversal as well as the longitudinal 
E-moduli to investigate the difference in results. It was also attempted to use the static 
E-modulus, but the results were far from accurate for both materials, showing that the 
estimation requires dynamic values for the material stiffness. 

 
Table 8-3 Results from the dual parameter estimation for the reference aluminium 

specimen using the transversal and longitudinal E-modulus 

 
 
Table 8-4 Results from the dual parameter estimation for the timber specimen N°6 

using the transversal and longitudinal E-modulus 

 
 

The results for aluminium are very good, with absolute errors ranging from 15.2% to 
3.2% for the transversal E-modulus. As expected, the results tend to improve for 
higher loads since the sensitivity of the system with regard to the input parameters 
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decreases. There is however a small error spread that can be explained by the choice 
of a constant mean clear length and probably also some measurement errors. The 
results using the longitudinal E-modulus turned out to be less accurate than the ones 
using the transversal E-modulus. The same conclusions can be drawn for the timber 
specimens, where the results for this particular sample range from 68.1% to 10.3% 
when using the transversal E-modulus. The results for the other specimens are listed 
in Appendix C. 

Table 8-5 shows the mean errors and deviations for the estimated axial load S using 
different E-moduli for all 32 timber specimens. The variation of the mean error for 
different load levels is illustrated in Figure 8-10. A complete illustration of the 
individual errors and deviations for all specimens is listed in Appendix C. 

 
Table 8-5 Mean errors of the estimated axial load Sest for all timber specimens using the 

transversal and longitudinal E-moduli 

 
 

 
Figure 8-10 Graphical representation of the mean errors from Table 8-5 for the different 

load levels 

The results show that the estimation of S improves for higher load levels. Again, the 
best results could be obtained using the transversal E-modulus. It can be seen that the 
differences for the two E-moduli decrease for higher loads. The axial loads are in 
general overestimated, with mean errors ranging from 7.6% to 46.6%. The standard 
deviations are of the same order, which results in a very high spread for the results. 
The main reason is probably the clear lengths L that was chosen the same for every 
specimen, even though there might be differences caused by varying material 
properties. This parameter was the most difficult to assess since the restraint length 
cannot be visually determined, but has a big influence on the results. Other errors 
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result from the assumption of equal boundary conditions and frequency measurement 
errors. Also, the applied model assumes that material properties are constant over the 
specimen length, which is clearly not the case for the inhomogeneous timber. 
Considering all these model uncertainties, the estimated axial loads appear quite 
reasonable and give an incentive for further research.  

In addition to the estimated axial loads, the boundary conditions were analysed in 
more detail. Figure 8-11 shows the estimated rotational stiffness kest for different load 
levels of two timber specimens. The plots show rather random variations of the 
rotational stiffness. The only trend that can be recognized is that it seems to increase 
in the range of higher loads. This could however also be related to the choice of the 
varying clear length that has a high influence on the estimation for the rotational 
stiffness. Overestimated values of the clear length L lead to higher values of k (cf. 
Figure 5-10).  

 

 
Figure 8-11 Plots of the estimated rotational stiffness kest for different load levels and two 

different timber specimens using the transversal and longitudinal E-moduli 

Figure 8-12 illustrates the correlation of the mean estimated rotational stiffness over 
different load levels for one specimen and its static E-modulus. The respective values 
are listed in Appendix C.  
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Figure 8-12 Plot of the estimated rotational stiffness kest averaged over different load 

levels against the E-moduli of the according timber specimens  

It was expected that k would increase for a higher the specimen stiffness since the 
boundary conditions were believed to be mainly determined by the material 
properties. However no such trend could be verified from the data. Maybe this is due 
to the fact that the range of the E-moduli is rather small and that the errors to k are 
rather high. The distribution of the boundary conditions seems rather constant with a 
mean value of 207695 Nm and a standard deviation of 169567 Nm when using the 
transversal E-moduli. For comparison, the mean value was 9358 Nm for the 
Aluminium bar. The difference is due to the smaller dimensions of the bar and the 
resulting much lower polar moment and bending stiffness.  

 

8.4 Determination of ultimate tensile strength 
Tensile tests according to CEN/TC (2007) were carried out on some of these 
specimens to determine an approximate tensile strength and to put it in relation to the 
E-moduli and the applied loads. The results are shown in Table 8-6 and Figure 8-13. 
Even though a small correlation between E-moduli and tensile strength is 
recognisable, the amount of data is too small to make final conclusions on this 
subject. The mean tensile strength was found to be 25.9 MPa with a standard 
deviation of 4.7 MPa for this amount of data.  
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Table 8-6 Results from the ultimate tensile tests 

 
 

 
Figure 8-13 Plot of the static E-modulus against the maximum tensile load for the tested 

specimens 

Figure 8-14 illustrates the failure mode of the timber beams. The pressure caused by 
the friction grips induced local compression at the restraints, leading to a reduced 
section and hence stress peaks in this area. Resulting cracks at the restraint section of 
one lamella then relocated the tension on the remaining intact one, which in turn 
yielded at a knot or otherwise weakened section leading to ultimate failure.  

  
Figure 8-14 Timber specimen after ultimate tensile test: local compression at the restraint 

(left) and final failure mode (right) 
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9 Conclusions and further research 
9.1 Conclusions 
The results of the dual parameter estimation showed that it is possible to estimate the 
axial loads in timber beams using resonance frequency analysis. The sensitivity 
analysis showed however that the quality of the results is very sensitive to errors in 
the input parameters, especially the measured frequencies, the clear length and the E-
modulus. 
It was therefore very important to ensure a high measurement quality and to only use 
a minimum of resonance frequencies since the precision decreased quickly for higher 
vibration modes. An error minimisation through additional frequency information was 
hence not possible in this research. The length of the measurement time and number 
of excitations was just too small to obtain clear peaks for the higher resonance 
frequencies of the timber specimens. For the reference aluminium specimen, these 
factors were however sufficient. This shows that the inhomogeneous character of 
timber, in association with its natural defects, requires more sophisticated 
measurement techniques than a homogeneous material. One possibility of improving 
the frequency resolution would be to use a modal vibration shaker instead of an 
instrumented hammer. This way more measurements can be made over a longer 
period of time, resulting in more clear frequency peaks.  

The clear length of the beams was another factor that had a strong influence on the 
test results and caused a high standard deviation from the mean value. The problem 
was that the available tensile machine was not designed to apply a constant grip 
pressure on the beam ends. In fact, the grip pressure increased for higher load levels, 
leading to a varying clear length and also rotational stiffness at the restraints. In 
addition, these parameters varied for each specimen caused by the difference in 
material properties. It was therefore not possible to identify the exact clear length for 
each measurement. Hence, a mean clear length had to be chosen that caused the high 
spread in results for the parameter estimation. Note that the determination of the 
restraint length will also be of high importance when applying this method on real 
structures and therefore needs to be treated with special care.  

The best results for the axial load were obtained using the E-modulus obtained from 
transversal vibration tests with a mean error ranging from 7.6% to 46.6%. When using 
the longitudinal E-moduli, the mean errors increased to 12.4% to 89.5%. Note, that in 
both cases the results consistently improved for higher loads. This was in accordance 
with the results from the sensitivity analysis. It was furthermore attempted to use the 
static E-modulus for the calculations, which led however to unusable results. This 
shows that dynamic values need to be used for the estimation of parameters when 
using the presented resonance frequency method. For the application of the method on 
real structures, it would therefore be possible to determine the E-modulus using 
longitudinal frequency measurements or maybe even time of flight measurements. 

The model used for the parameter estimation was based on Timoshenko theory. This 
allowed to include effects of shear deformations and rotary inertia that had a major 
influence on results, especially for higher vibration modes. 
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9.2 Suggestions for further research 
The results of the presented research were promising and hence raise the need for 
further research in this area. In the following, some suggestions are listed.  

• Influence of specimen geometry 
One of the limitations of this research was the geometry of the specimen. It would 
be interesting to see how the sensitivity of the results changes for other specimen 
dimensions, especially bigger sizes. It is hereby important to use a machine that 
applies constant grip pressure to the specimen ends, so that the restraint length does 
not vary for different load levels and can be determined with more precision. 

• Testing of specimens under compression 
Only specimens under tension were analysed in this thesis. The research could be 
expanded to specimens under compression to see if similar results can be obtained 
or if there are maybe additional effects that need to be taken into account in this 
case. 

• Tests on real structure 

Finally, in-situ tests could be carried out on an existing structure to analyse the 
applicability of the method under real-life conditions. For this purpose, a modal 
vibration shaker might be necessary to improve the frequency resolution by 
increasing the measurement time. Also the frequency plots will probably be more 
complicated since other structural members might participate in vibration. One 
solution to this problem could be to attach additional accelerometers in different 
points of the structure to be able to allocate the frequencies to the respective 
members. 
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11 Appendices 
11.1 Appendix A – Matlab codes 
11.1.1 Calculation of transversal frequencies  
Discrete model – Euler beam theory 
The program uses the input parameters to define element mass and stiffness matrices 
for each finite element, which are then put together to one global matrix. The solution 
of the according eigenvalue problem then yields the resonance frequencies. 

 
%%Remove all variables from the workspace and clear command window 
 
clear all 
 
clc 
  
%%Enter input data 
  
E = 13000*10^6;     %%E-modulus in N/m2 
 
G = 760*10^6;       %%G-modulus in N/m2 
 
p = 400;            %%Specimen density in kg/m3 
  
L = 1.5;            %%Clear length in m 
  
H = 0.075;          %%Specimen height in m 
 
B = 0.035;          %%Specimen width in m 
  
S = 20000;          %%Axial load in N 
  
k1 = 10^15;         %%Value for translational support in x=0 in N/m 
 
k3 = 10^15;         %%Value for translational support in x=L in N/m 
  
k2 = 10000;         %%Value for rotational support in x=0 in Nm 
 
k4 = 10000;         %%Value for rotational support in x=L in Nm 
  
n = 50;             %%Number of finite elements 
 
nnf = 2;            %%Number of resonance frequencies 
 
%%Calculation 
  
A = B*H;      
  
Iz = B^3*H/12;  
  
el = L/n; 
 
if (k1 == 0) && (k2 == 0) &&  (k3 == 0) &&  (k3 == 0); 
     
    nnf = nnf + 2; 
     
end 
  
%%Connection matrix 
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for ie = 1:n 
     
    ktr = 2*ie; 
 
    cn(ie,:) = [ktr-1:1:ktr+2]; 
     
end 
  
%Consistent element mass matrix 
  
em = zeros(4); 
  
em = [ 156       22*el      54       -13*el; 
       22*el     4*el^2     13*el    -3*el^2; 
       54        13*el      156      -22*el; 
      -13*el    -3*el^2    -22*el     4*el^2]; 
   
em = p*A*el/420 * em; 
  
%%Element stiffness matrix 
  
ek = zeros(4); 
  
ek = [ 6       3*el      -6         3*el; 
       3*el    2*el^2    -3*el      el^2; 
      -6      -3*el       6        -3*el; 
       3*el    el^2      -3*el      2*el^2]; 
    
ek = (2*E*Iz/el^3)*ek; 
  
gk = [ 36       3*el      -36         3*el; 
       3*el     4*el^2    -3*el      -el^2; 
      -36      -3*el       36        -3*el; 
       3*el    -el^2      -3*el       4*el^2]; 
    
kg = (S/(30*el))*gk; 
    
ek = ek + kg; 
  
%%Global matrix 
  
k = zeros(ktr+2); 
 
m = zeros(ktr+2); 
  
for ie = 1:n 
     
    index = cn(ie,:); 
     
    m(index,index) = m(index,index) + em; 
 
    k(index,index) = k(index,index) + ek; 
     
end 
  
k(1,1) = k(1,1) + k1; 
 
k(2,2) = k(2,2) + k2; 
 
k(ktr+1,ktr+1) = k(ktr+1,ktr+1) + k3; 
 
k(ktr+2,ktr+2) = k(ktr+2,ktr+2) + k4; 
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%%Solve eigenvalue problem 
  
[v,nu] = eig(k,m); 
 
[w2,ie] = sort(diag(nu)); 
 
v = v(:,ie); 
  
%%Print natural frequencies (Hz) 
  
for ie = 1:nnf 
 
    fcalc(ie) = sqrt(w2(ie))/(2*pi); 
 
    fcalc(ie) 
 
end 

 
Discrete model – Timoshenko beam theory 
The program uses the same principles as for the Euler theory, except that the mass and 
stiffness matrices are composed of additional terms to take into account effects from 
shear deformations and rotary effects. 

 
%%Remove all variables from the workspace and clear command window 
  
clear all 
 
clc 
  
%%Enter input data 
  
E = 13000*10^6;     %%E-modulus in N/m2 
 
G = 760*10^6;       %%G-modulus in N/m2 
 
p = 400;            %%Specimen density in kg/m3 
  
L = 1.5;            %%Clear length in m 
  
H = 0.075;          %%Specimen height in m 
 
B = 0.035;          %%Specimen width in m 
  
S = 20000;          %%Axial load in N 
  
k1 = 10^15;         %%Value for translational support in x=0 in N/m 
 
k3 = 10^15;         %%Value for translational support in x=L in N/m 
  
k2 = 10000;         %%Value for rotational support in x=0 in Nm 
 
k4 = 10000;         %%Value for rotational support in x=L in Nm 
  
n = 50;             %%Number of finite elements 
  
nnf = 2;            %%Number of resonance frequencies 
  
%%Calculation 
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A = B*H;    
  
ks = 5/6; 
  
Iz = B^3*H/12;  
  
el = L/n;  
  
fi = 12*E*Iz/(ks*G*A*el^2); 
  
if (k1 == 0) && (k2 == 0) &&  (k3 == 0) &&  (k3 == 0); 
     
    nnf = nnf + 2; 
     
end 
  
%%Connection matrix 
  
for ie = 1:n 
     
    ktr = 2*ie; 
 
    cn(ie,:) = [ktr-1:1:ktr+2]; 
     
end 
  
%Consistent mass matrix 
  
em = zeros(4); 
  
emt = [13/35+7/10*fi+1/3*fi^2   (11/210+11/120*fi+1/24*fi^2)*el    
          9/70+3/10*fi+1/6*fi^2   -(13/420+3/40*fi+1/24*fi^2)*el; 
       (11/210+11/120*fi+1/24*fi^2)*el  
          (1/105+1/60*fi+1/120*fi^2)*el^2 
             (13/420+3/40*fi+1/24*fi^2)*el 
                -(1/140+1/60*fi+1/120*fi^2)*el^2; 
       9/70+3/10*fi+1/6*fi^2   (13/420+3/40*fi+1/24*fi^2)*el 
          13/35+7/10*fi+1/3*fi^2   -(11/210+11/120*fi+1/24*fi^2)*el; 
      -(13/420+3/40*fi+1/24*fi^2)*el  
         -(1/140+1/60*fi+1/120*fi^2)*el^2 
            -(11/210+11/120*fi+1/24*fi^2)*el 
               (1/105+1/60*fi+1/120*fi^2)*el^2]; 
   
emr = [6/5   (1/10-1/2*fi)*el   -6/5   (1/10-1/2*fi)*el; 
       (1/10-1/2*fi)*el   (2/15+1/6*fi+1/3*fi^2)*el^2  
          (-1/10+1/2*fi)*el   -(1/30+1/6*fi-1/6*fi^2)*el^2; 
       -6/5   (-1/10+1/2*fi)*el   6/5   (-1/10+1/2*fi)*el; 
       (1/10-1/2*fi)*el   -(1/30+1/6*fi-1/6*fi^2)*el^2    
          (-1/10+1/2*fi)*el   (2/15+1/6*fi+1/3*fi^2)*el^2];    
    
em = p*A*el/(1+fi)^2*emt + p*A*Iz/((1+fi)^2*el)*emr; 
  
%%Stiffness matrix 
  
ek = zeros(4); 
  
kb = [12       6*el           -12        6*el; 
      6*el     (4+fi)*el^2    -6*el      (2-fi)*el^2; 
     -12       -6*el           12       -6*el; 
      6*el     (2-fi)*el^2    -6*el      (4+fi)*el^2]; 
    
kg = [36       3*el      -36         3*el; 
      3*el     4*el^2    -3*el      -el^2; 
     -36      -3*el       36        -3*el; 
      3*el    -el^2      -3*el       4*el^2]; 
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ek = (E*Iz/((1+fi)*el^3))*kb + (S/(30*el))*kg; 
 
%%Global matrix 
  
k = zeros(ktr+2); 
 
m = zeros(ktr+2); 
  
for ie = 1:n 
     
    index = cn(ie,:); 
     
    m(index,index) = m(index,index) + em; 
 
    k(index,index) = k(index,index) + ek; 
     
end 
  
k(1,1) = k(1,1) + k1; 
 
k(2,2) = k(2,2) + k2; 
 
k(ktr+1,ktr+1) = k(ktr+1,ktr+1) + k3; 
 
k(ktr+2,ktr+2) = k(ktr+2,ktr+2) + k4; 
  
%%Solve eigenvalue problem 
  
[v,nu] = eig(k,m); 
 
[w2,ie] = sort(diag(nu)); 
 
v = v(:,ie); 
  
%%Print natural frequencies (Hz) 
  
for ie = 1:nnf 
 
    fcalc(ie) = sqrt(w2(ie))/(2*pi); 
 
    fcalc(ie) 
 
end 

 
Continuous model – Timoshenko beam theory 
For the entered input parameters, the program determines the lowest transversal 
frequency for the chosen frequency range by finding the first root of equation (5.20). 
If no root exists for the entered frequency range, the output will be ‘change frequency 
range’. For higher frequencies, the range needs to be adjusted. 

 
%%Remove all variables from the workspace and clear command window 
  
clear all 
 
clc 
  
%%Enter input data 
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E = 13000*10^6;     %%E-modulus in N/m2 
 
G = 760*10^6;       %%G-modulus in N/m2 
  
p = 400;            %%Specimen density in kg/m3 
  
L = 1.5;            %%Clear length in m 
 
H = 0.075;          %%Specimen height in m 
 
B = 0.035;          %%Specimen width in m 
  
S = 20000;          %%Axial load in N 
  
k1 = 10^15;         %%Value for translational support in x=0 in N/m 
 
k3 = 10^15;         %%Value for translational support in x=L in N/m 
  
k2 = 10000;         %%Value for rotational support in x=0 in Nm 
 
k4 = 10000;         %%Value for rotational support in x=L in Nm 
  
%%Define frequency range of interest 
  
fmin = 20;          %%Minimum frequency 
 
fmax = 77;          %%Maximum frequency 
  
%%Iteration 
  
A = B*H;          
 
ks = 5/6;       
     
Iz = B^3*H/12;  
 
step = 0.01; 
 
i = 0; 
  
for f0 = fmin:step:fmax 
  
    w = 2*pi*f0; 
  
    b2 = A*L^4*p*w^2/(E*Iz); 
 
    r2 = Iz/(A*L^2); 
 
    fi = ks*A*G; 
 
    s2 = (E*Iz)/(fi*L^2); 
 
    p2 = -((L^2*S)/(E*Iz)); 
 
    delta = p2/b2+r2*(1-p2*s2)+s2; 
    
    m1 = (sqrt(b2)*sqrt(sqrt((4*(1-p2*s2)*(1-b2*r2*s2))/b2+delta^2)- 
          delta))/sqrt(2*(1-p2*s2)); 
 
    m2 = (sqrt(b2)*sqrt(sqrt((4*(1-p2*s2)*(1-b2*r2*s2))/b2+delta^2)+ 
          delta))/sqrt(2*(1-p2*s2)); 
 
    H = (b2*s2+m1^2*(1-p2*s2))/(L*m1); 
 
    Z = (m2^2*(1-p2*s2)-b2*s2)/(L*m2); 
        
    c1 = sinh(m1); 
 
    c2 = cosh(m1); 
 



 

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:60 89 

    c3 = sin(m2); 
 
    c4 = cos(m2); 
 
    M =  [-k1   -fi*H+fi*m1/L+m1*S/L   -k1   -fi*Z+fi*m2/L+m2*S/L; 
           k3*c2-fi*H*c1+fi*m1*c1/L+m1*S*c1/L    
              -fi*H*c2+fi*m1*c2/L+m1*S*c2/L+k3*c1              
                 k3*c4+fi*Z*c3-fi*m2*c3/L-m2*S*c3/L            
                    -fi*Z*c4+fi*m2*c4/L+m2*S*c4/L+k3*c3;    
          -E*Iz*H*m1/L   H*k2   E*Iz*Z*m2/L   Z*k2; 
          -E*Iz*H*m1*c2/L-H*k4*c1   -E*Iz*H*m1*c1/L-H*k4*c2 
             E*Iz*Z*m2*c4/L+Z*k4*c3   E*Iz*Z*m2*c3/L-Z*k4*c4]; 
    
Det = det(M); 
  
i=i+1; 
 
result(i,1) = f0; 
 
result(i,2) = Det; 
 
sig(i) = sign(Det); 
 
end 
 
sig = sig'; 
  
for i=1:length(sig)-1 
 
   diff = sig(i)-sig(i+1);  
 
   if diff==0 
 
     continue 
 
   else break 
 
   end 
  
end 
  
%%Print output in [Hz] 
  
if i == (fmax-fmin)/step 
 
    output = 'change frequency range' 
 
elseif abs(result(i,2)) < abs(result(i+1,2)) 
 
     f = result(i,1) 
 
else f = result(i+1,1) 
 
end 

 

11.1.2 Calculation of longitudinal E-moduli  
After the data from the measurements is imported, the time signals are transformed 
into frequency data from which the first two resonance frequencies are extracted. 
These are then used to calculate the dynamic longitudinal E-moduli for the according 
specimen. The input and output power spectra are plotted along with the frequency 
response function and the coherence function. The output of the program is the two 
frequencies and the according E-moduli. 
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%%Remove all variables from the workspace, clear command window and 
close 
%%%%open windows 
  
clc 
  
clear all 
  
close all 
  
%%File import 
  
[filename, pathname] = uigetfile('*.txt', 'Pick an Input File'); 
  
infile=[pathname filename]; 
  
importfile(infile)   
  
clear('colheaders'); 
  
clear('textdata'); 
   
%%Variable declaration 
  
s=data(:,1);                       %%time vector 
  
V=data(:,2);                       %%imput signal 
  
V1=data(:,3);                      %%output signal  
  
specnum = sscanf(filename,'T%f');  %%specimen number for density 
  
SR = 10240;                        %%Sampling rate 
  
%%Densities of the 32 specimen in kg/m3 
  
M = [527.7 
     511.7 
     485.6 
     496.5 
     515.0 
     497.0 
     483.6 
     466.5 
     511.5 
     505.4 
     532.8 
     522.2 
     511.7 
     464.8 
     500.8 
     493.0 
     447.5 
     494.0 
     462.0 
     460.7 
     488.6 
     484.1    
     460.4 
     507.4 
     501.3 
     465.0 
     479.0 
     517.1 
     447.5 
     459.7 
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     462.2 
     471.4]; 
  
%%Density extraction 
  
p = M(specnum); 
  
%%Geometry 
  
L=1.5;                              %%Length in m 
  
%%FFT into spectra 
  
[x0,f] = pwelch(V,[ ],[ ],[ ],SR); 
  
[x1,f] = pwelch(V1,[ ],[ ],[ ],SR); 
  
%%Estimation of FRF 
  
[x2,f] = tfestimate(V,V1,[ ],[ ],[ ],SR); 
  
%%Estimation of Coherence function 
  
[x3,f] = mscohere(V,V1,[ ],[ ],[ ],SR); 
  
%%Logging for semi-logarithmic plot 
  
P0=log(x0); 
  
P1=log(x1); 
  
P2=real(log(x2)); 
  
P3=real(log(x3)); 
  
%%Deleting of initial peaks 
  
P0(1:20)=0; 
  
P1(1:20)=0; 
  
P2(1:20)=0; 
  
P3(1:20)=0; 
  
%%Plotting of input and output spectra, FRF and Coherence function 
  
figure('Color',[1 1 1]); 
  
plot(f,P0); 
  
xlim([0 4200]); 
  
title(['Specimen N∞',num2str(specnum),': Input Power Spectrum']); 
  
xlabel('Frequency [Hz]'); 
  
ylabel('Amplitude [dB]'); 
  
figure('Color',[1 1 1]); 
  
plot(f,P1); 
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xlim([0 4200]); 
  
title(['Specimen N∞',num2str(specnum),': Output Power Spectrum']); 
  
xlabel('Frequency [Hz]'); 
  
ylabel('Amplitude [dB]'); 
  
figure('Color',[1 1 1]); 
  
plot(f,P3); 
  
xlim([0 4200]); 
  
title(['Specimen N∞',num2str(specnum),': Coherence Function']); 
  
xlabel('Frequency [Hz]'); 
  
ylabel('Magnitude [-]'); 
  
%%Peak identification for first two frequencies 
%%For some specimens, the Minpeakdistance needs to be adjusted 
  
[PKS,LOCS] = findpeaks(P2,'SORTSTR','descend','MINPEAKDISTANCE',400); 
  
for i=1:2 
     
    peaks(i,1) = LOCS(i); 
     
    peaks(i,2) = PKS(i); 
     
end 
  
peaks_sort = sortrows(peaks,1); 
  
f1l=f(peaks_sort(1,1)); 
  
b1=P2(peaks_sort(1,1)); 
  
f2l=f(peaks_sort(2,1)); 
  
b2=P2(peaks_sort(2,1)); 
  
%%Printing frequencies 
  
f1l=roundn(f1l,0) 
  
f2l=roundn(f2l,0) 
  
%%Marking of the identified frequencies 
  
figure('Color',[1 1 1]); 
  
plot(f,P2); 
  
xlim([0 4200]); 
  
title(['Specimen N∞',num2str(specnum),': Frequency Response  
       Function']); 
  
xlabel('Frequency [Hz]'); 
  
ylabel('Amplitude [dB]'); 
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hold on; 
  
plot(f1l,b1+0.05,'k^','markerfacecolor','r'); 
  
plot(f2l,b2+0.05,'k^','markerfacecolor','r'); 
  
text(f1l-40,b1+0.3,num2str(f1l)); 
  
text(f2l-40,b2+0.3,num2str(f2l)); 
  
hold off; 
  
%%Calculation of E-modulus using Euler theory 
  
E1_Euler=round(4*f1l^2*L^2*p/(1^2)*10^(-6)); 
  
E2_Euler=round(4*f2l^2*L^2*p/(2^2)*10^(-6)); 
  
%%Print E 
  
E1_Euler 
  
E2_Euler 
  
%%Create output file 
  
fid = fopen('Output.out','w'); 
  
fprintf(fid, '%g\n',specnum); 
  
fprintf(fid, '%g\n',f1l); 
  
fprintf(fid, '%g\n',f2l); 
  
fprintf(fid, '%g\n',E1_Euler); 
  
fprintf(fid, '%g\n',E2_Euler); 
  
%%Plot FRF and Coherence 
  
plotyy(f,P2,f,P3) 
  
[AX,H1,H2] = plotyy(f,P2,f,P3,'plot'); 
  
set(get(AX(1),'Ylabel'),'String','Amplitude [dB]') 
  
set(get(AX(2),'Ylabel'),'String','Magnitude [-]') 
  
xlabel('Frequency [Hz]'); 
  
title(['Specimen N∞',num2str(specnum),': FRF and Coherence  
       Function']); 
  
set(AX(1),'XLim',[0 4200]); 
  
set(AX(2),'XLim',[0 4200]); 
  
hold on; 
  
plot(f1l,b1+0.05,'k^','markerfacecolor','r'); 
  
plot(f2l,b2+0.05,'k^','markerfacecolor','r'); 
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text(f1l-40,b1+0.3,num2str(f1l)); 
  
text(f2l-40,b2+0.3,num2str(f2l)); 
  
hold off; 

 

11.1.3 Calculation of transversal E-moduli 
This script works very similar than the one for longitudinal frequencies. It is however 
distinguished between transversal and torsional frequencies. Also additional functions 
need to be used to calculate the different material properties. The output is the 
measured transversal and torsional frequencies as well as the calculated E- and G-
moduli according to Euler and Timoshenko theory. 

 
%%Remove all variables from the workspace, clear command window and 
%%close open windows 
  
clc 
  
clear all 
  
close all 
  
%%File import 
  
[filename, pathname] = uigetfile('*.txt', 'Pick an Input File'); 
  
infile=[pathname filename]; 
  
importfile(infile)   
  
clear('colheaders'); 
  
clear('textdata'); 
  
%%Variable declaration 
  
s=data(:,1);                        %%time vector 
  
V=data(:,2);                        %%imput signal 
  
V2=data(:,4);                       %%output signal at the edge 
  
specnum = sscanf(filename,'T%f')    %%specimen number for density 
  
SR=2560;                            %%Sampling rate 
  
NFFT=2^16;                          %%Number of FFT points 
  
%%Densities of the 32 specimen 
  
M = [527.7 
     511.7 
     485.6 
     496.5 
     515.0 
     497.0 
     483.6 
     466.5 
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     511.5 
     505.4 
     532.8 
     522.2 
     511.7 
     464.8 
     500.8 
     493.0 
     447.5 
     494.0 
     462.0 
     460.7 
     488.6 
     484.1    
     460.4 
     507.4 
     501.3 
     465.0 
     479.0 
     517.1 
     447.5 
     459.7 
     462.2 
     471.4]; 
  
%%Density extraction 
  
p = M(specnum); 
  
%%Geometry 
  
L=1.5;                              %%Length in m 
  
H=0.075;                            %%Height in m 
  
B=0.035;                            %%Width in m 
  
A=B*H;                      
  
ks=5/6;                        
  
Iy=B*H^3/12;      
  
Iz=B^3*H/12;    
  
Ip=Iy+Iz;        
  
Kt=H*B^3/3*(1-0.630*B/H+0.052*B^5/H^5);      
  
%%FFT into spectra 
  
[x0,f] = pwelch(V,[ ],[ ],NFFT,SR); 
  
[x2,f] = pwelch(V2,[ ],[ ],NFFT,SR); 
  
%%Estimation of FRF 
  
[x4,f] = tfestimate(V,V2,[ ],[ ],NFFT,SR); 
  
%%Estimation of Coherence function 
  
[x5,f] = mscohere(V,V2,[ ],[ ],NFFT,SR); 
  
%%Logging for semi-logarithmic plot 
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P0=log(x0); 
  
P2=log(x2); 
  
P4=real(log(x4)); 
  
P5=log(x5); 
  
%%Reducing data to the deserved range 
  
P0(1:20)=0; 
  
P2(1:20)=0; 
  
P4(1:50)=0; 
  
P4(18049:32769)=0; 
  
P5(1:20)=0; 
  
%%Plotting of input and output spectra, FRF and Coherence function 
  
figure('Color',[1 1 1]); 
  
plot(f,P0); 
  
xlim([0 700]); 
  
title(['Specimen N∞',num2str(specnum),': Input Power Spectrum']); 
  
xlabel('Frequency [Hz]'); 
  
ylabel('Amplitude [dB]'); 
  
figure('Color',[1 1 1]); 
  
plot(f,P2); 
  
xlim([0 700]); 
  
title(['Specimen N∞',num2str(specnum),': Output Power Spectrum']); 
  
xlabel('Frequency [Hz]'); 
  
ylabel('Amplitude [dB]'); 
  
figure('Color',[1 1 1]); 
  
plot(f,P5); 
  
xlim([0 700]); 
  
title(['Specimen N∞',num2str(specnum),': Coherence Function']); 
  
xlabel('Frequency [Hz]'); 
  
ylabel('Magnitude [-]'); 
  
%%Peak identification for first four bending frequencies 
%%For some specimens, the Minpeakdistance needs to be adjusted 
 
[PKSb,LOCSb] =  
   findpeaks(P4,'SORTSTR','descend','MINPEAKDISTANCE',300); 
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for i=1:6 
     
    peaksb(i,1) = LOCSb(i); 
     
    peaksb(i,2) = PKSb(i); 
     
end 
  
peaksb_sort = sortrows(peaksb,1); 
  
f1b=f(peaksb_sort(1,1)); 
  
b1=P4(peaksb_sort(1,1)); 
  
f2b=f(peaksb_sort(2,1)); 
  
b2=P4(peaksb_sort(2,1)); 
  
f3b=f(peaksb_sort(4,1)); 
  
b3=P4(peaksb_sort(4,1)); 
  
%%Peak identification for first two torsional frequency 
%%For some specimens, the Minpeakdistance needs to be adjusted 
 
[PKSt,LOCSt] =  
   findpeaks(P4,'SORTSTR','descend','MINPEAKDISTANCE',500); 
  
for i=1:6 
  
    peakst(i,1) = LOCSt(i); 
     
    peakst(i,2) = PKSt(i); 
  
end 
  
peakst_sort = sortrows(peakst,1); 
  
f1t=f(peakst_sort(3,1)); 
  
t1=P4(peakst_sort(3,1)); 
  
f2t=f(peakst_sort(5,1)); 
  
t2=P4(peakst_sort(5,1)); 
  
%%Printing frequencies 
  
f1b=roundn(f1b,-1) 
  
f2b=roundn(f2b,-1) 
  
f3b=roundn(f3b,-1) 
  
f1t=roundn(f1t,-1) 
  
f2t=roundn(f2t,-1) 
  
%%Calculation of G-modulus using Euler theory 
  
G1_Euler=round(4*f1t^2*L^2*p*Ip/(Kt*1^2)*10^(-6)); 
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G2_Euler=round(4*f2t^2*L^2*p*Ip/(Kt*2^2)*10^(-6)); 
  
Gm=(G1_Euler+G2_Euler)/2; 
  
%%Calculation of flexural E-modulus using Euler theory 
  
E1_Euler=Euler_b(f1b,p,A,Iz,L); 
  
E2_Euler=Euler_b(f2b,p,A,Iz,L); 
  
E3_Euler=Euler_b(f3b,p,A,Iz,L); 
  
%%Calculation of flexural E-modulus using Timoshenko theory with Gm 
  
E1_Timo=Timo_b(f1b,p,G1_Euler,A,ks,Iz,L); 
  
E2_Timo=Timo_b(f2b,p,G1_Euler,A,ks,Iz,L); 
  
E3_Timo=Timo_b(f3b,p,G1_Euler,A,ks,Iz,L); 
  
%%Print G and E 
  
G1_Euler 
  
G2_Euler 
  
E1_Euler 
  
E2_Euler 
  
E3_Euler 
  
E1_Timo 
  
E2_Timo 
  
E3_Timo 
  
%%Plot of FRF and Coherence 
  
figure('Color',[1 1 1]); 
  
plotyy(f,P4,f,P5) 
  
[AX,H1,H2] = plotyy(f,P4,f,P5,'plot'); 
  
set(get(AX(1),'Ylabel'),'String','Amplitude [dB]') 
  
set(get(AX(2),'Ylabel'),'String','Magnitude [-]') 
  
xlabel('Frequency [Hz]'); 
  
title(['Specimen N∞',num2str(specnum),': FRF and Coherence  
       Function']); 
  
set(AX(1),'XLim',[0 700]); 
  
set(AX(2),'XLim',[0 700]); 
  
hold on; 
  
%%Marking of the identified frequencies 
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plot(f1b,b1+0.05,'k^','markerfacecolor','r'); 
  
plot(f2b,b2+0.05,'k^','markerfacecolor','r'); 
  
plot(f3b,b3+0.05,'k^','markerfacecolor','r'); 
  
plot(f1t,t1+0.05,'k^','markerfacecolor','g'); 
  
plot(f2t,t2+0.05,'k^','markerfacecolor','g'); 
  
text(f1b-40,b1+0.3,num2str(f1b)); 
  
text(f2b-40,b2+0.3,num2str(f2b)); 
  
text(f3b-40,b3+0.3,num2str(f3b)); 
  
text(f1t-40,t1+0.3,num2str(f1t)); 
  
text(f2t-40,t2+0.3,num2str(f2t)); 
  
hold off 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function E = Euler_b(f,p,A,Iz,L) 
  
%%Definition of the range for E 
  
Emin = 8000; 
 
Emax = 20000; 
  
%%Calculation 
  
w = 2*pi*f; 
 
i = 0; 
  
for E0 = Emin:Emax 
  
    E0 = E0*10^6; 
     
    a = E0*Iz; 
 
    b = 0; 
 
    c = -A*p*w^2; 
  
    l1 = sqrt(sqrt((-(b/(2*a)))^2-c/a)-b/(2*a)); 
 
    l2 = sqrt(sqrt((-(b/(2*a)))^2-c/a)+b/(2*a)); 
  
    c1 = sinh(L*l1); 
 
    c2 = cosh(L*l1); 
 
    c3 = sin(L*l2); 
 
    c4 = cos(L*l2); 
 
    M = [-(a*l2^3-b*l2)   0   a*l1^3+b*l1   0; 
         0   -a*l2^2   0   a*l1^2; 
         -c4*(a*l2^3-b*l2)   c3*(a*l2^3-b*l2)   c2*(a*l1^3+b*l1)         
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            c1*(a*l1^3+b*l1); 
         -a*c3*l2^2   -a*c4*l2^2   a*c1*l1^2   a*c2*l1^2]; 
  
    Det = det(M); 
  
    i=i+1; 
 
    result(i,1) = E0*10^(-6); 
 
    result(i,2) = Det; 
 
    sig(i) = sign(Det); 
 
end 
  
sig = sig'; 
  
for i=1:length(sig)-1 
 
   diff = sig(i)-sig(i+1);  
 
   if diff==0 
 
     continue 
 
   else break 
 
   end  
 
end 
  
if abs(result(i,2)) < abs(result(i+1,2)) 
 
     E = result(i,1); 
 
else E = result(i+1,1); 
 
end 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function E = Timo_b(f,p,G,A,ks,Iz,L) 
  
%%Definition of range for E 
  
Emin = 8000; 
  
Emax = 20000; 
 
%%Calculation 
  
G = G*10^6; 
  
S = 0; 
  
ka = 0; 
  
k = 0; 
  
w = 2*pi*f; 
  
i = 0; 
  
for E0 = Emin:Emax 
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    E0 = E0*10^6; 
     
    b2 = A*L^4*p*w^2/(E0*Iz); 
     
    r2 = Iz/(A*L^2); 
     
    fi = ks*A*G; 
     
    s2 = (E0*Iz)/(fi*L^2); 
     
    p2 = -((L^2*S)/(E0*Iz)); 
     
    delta = p2/b2+r2*(1-p2*s2)+s2; 
    
    m1 = (sqrt(b2)*sqrt(sqrt((4*(1-p2*s2)*(1-b2*r2*s2))/b2+delta^2)- 
         delta))/sqrt(2*(1-p2*s2)); 
     
    m2 = (sqrt(b2)*sqrt(sqrt((4*(1-p2*s2)*(1-  
         b2*r2*s2))/b2+delta^2)+delta))/sqrt(2*(1-p2*s2)); 
  
    H = (b2*s2+m1^2*(1-p2*s2))/(L*m1); 
     
    Z = (m2^2*(1-p2*s2)-b2*s2)/(L*m2); 
        
    c1 = sinh(m1); 
     
    c2 = cosh(m1); 
     
    c3 = sin(m2); 
     
    c4 = cos(m2); 
  
    M =  [-ka   -fi*H+fi*m1/L+m1*S/L   -ka   -fi*Z+fi*m2/L+m2*S/L; 
           ka*c2-fi*H*c1+fi*m1*c1/L+m1*S*c1/L      
              -fi*H*c2+fi*m1*c2/L+m1*S*c2/L+ka*c1    
                 ka*c4+fi*Z*c3-fi*m2*c3/L-m2*S*c3/L     
                    -fi*Z*c4+fi*m2*c4/L+m2*S*c4/L+ka*c3;   
          -E0*Iz*H*m1/L   H*k   E0*Iz*Z*m2/L   Z*k; 
          -E0*Iz*H*m1*c2/L-H*k*c1   -E0*Iz*H*m1*c1/L-H*k*c2 
             E0*Iz*Z*m2*c4/L+Z*k*c3   E0*Iz*Z*m2*c3/L-Z*k*c4]; 
    
    Det = det(M); 
  
    i=i+1; 
     
    result(i,1) = E0*10^(-6); 
     
    result(i,2) = Det; 
     
    sig(i) = sign(Det); 
  
end 
  
sig = sig'; 
  
for i=1:length(sig)-1 
     
   diff = sig(i)-sig(i+1);  
    
   if diff==0 
        
     continue 
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   else break 
        
   end  
    
end 
  
if abs(result(i,2)) < abs(result(i+1,2)) 
     
     E = result(i,1); 
      
else E = result(i+1,1); 
  
end 

 

11.1.4 Dual parameter estimation 
Extraction of frequencies 
This program extracts the frequencies from the tensile tests. It works in the same way 
as the one for the free-free tests. Furthermore the input and output spectra as well as 
the frequency response and coherence function are depicted. 

 
%%Remove all variables from the workspace, clear command window and 
%%close open windows 
  
clc 
  
clear all 
  
close all 
  
%%File import 
  
[filename, pathname] = uigetfile('*.txt', 'Pick an Input File'); 
  
infile=[pathname filename]; 
  
importfile(infile)   
  
clear('colheaders'); 
  
clear('textdata'); 
   
%%Variable declaration 
  
s=data(:,1);    %%time vector 
  
V=data(:,2);    %%imput signal 
  
V1=data(:,3);   %%output signal at the edge 
  
testnumber = sscanf(filename,'T%f_%f');   %%specimen number and load 
level 
  
specnum = testnumber(1)   
  
level = testnumber(2)   
  
SR=2560; %%Sampling rate 
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NFFT=2^16; %%Number of FFT points 
  
%%FFT into spectra and Windowing using Welch method 
  
[x0,f] = pwelch(V,[ ],[ ],NFFT,SR); 
  
[x1,f] = pwelch(V1,[ ],[ ],NFFT,SR); 
  
%%Estimation of FRF 
  
[x2,f] = tfestimate(V,V1,[ ],[ ],NFFT,SR); 
  
%%Estimation of Coherence function 
  
[x3,f] = mscohere(V,V1,[ ],[ ],NFFT,SR); 
  
%%Logging for semi-logarithmic plot 
  
P0=log(x0); 
  
P1=log(x1); 
  
P2=real(log(x2)); 
  
P3=log(x3); 
  
P2(1:20)=0; 
  
P2(18049:32769)=0; 
  
P3(18049:32769)=0; 
  
%%Plotting of input and output spectra 
  
figure('Color',[1 1 1]); 
  
plot(f,P0); 
  
xlim([0 700]); 
  
title(['Specimen N∞',num2str(specnum),': Input Power Spectrum']); 
  
xlabel('Frequency [Hz]'); 
  
ylabel('Amplitude [dB]'); 
  
figure('Color',[1 1 1]); 
  
plot(f,P1); 
  
xlim([0 700]); 
  
title(['Specimen N∞',num2str(specnum),': Output Power Spectrum']); 
  
xlabel('Frequency [Hz]'); 
  
ylabel('Amplitude [dB]'); 
  
%%Peak identification for first three bending frequencies 
%%For some specimens, the Minpeakdistance needs to be adjusted 
 
[PKSb,LOCSb] =  
   findpeaks(P2,'SORTSTR','descend','MINPEAKDISTANCE',1700); 
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for i=1:5 
     
    peaksb(i,1) = LOCSb(i); 
     
    peaksb(i,2) = PKSb(i); 
  
end 
  
peaksb_sort = sortrows(peaksb,1); 
  
f1b=f(peaksb_sort(1,1)); 
  
b1=P2(peaksb_sort(1,1)); 
  
f2b=f(peaksb_sort(2,1)); 
  
b2=P2(peaksb_sort(2,1)); 
  
f3b=f(peaksb_sort(4,1)); 
  
b3=P2(peaksb_sort(4,1)); 
  
%%Printing frequencies 
  
f1b=roundn(f1b,-1) 
  
f2b=roundn(f2b,-1) 
  
f3b=roundn(f3b,-1) 
  
%%Plot of FRF and Coherence 
  
figure('Color',[1 1 1]); 
  
plotyy(f,P2,f,P3) 
  
[AX,H1,H2] = plotyy(f,P2,f,P3,'plot'); 
  
set(get(AX(1),'Ylabel'),'String','Amplitude [dB]') 
  
set(get(AX(2),'Ylabel'),'String','Magnitude [-]') 
  
xlabel('Frequency [Hz]'); 
  
title(['Specimen N∞',num2str(specnum),': FRF and Coherence Function     
       S = ',num2str(level),' N']); 
  
set(AX(1),'XLim',[0 700]); 
  
set(AX(2),'XLim',[0 700]); 
  
hold on; 
  
%%Marking of the identified frequencies 
  
plot(f1b,b1+0.05,'k^','markerfacecolor','r'); 
  
plot(f2b,b2+0.05,'k^','markerfacecolor','r'); 
  
plot(f3b,b3+0.05,'k^','markerfacecolor','r'); 
  
text(f1b-40,b1+0.3,num2str(f1b)); 
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text(f2b-40,b2+0.3,num2str(f2b)); 
  
text(f3b-40,b3+0.3,num2str(f3b)); 
  
hold off 

 
Parameter estimation 
This script uses the entered frequencies to estimate the axial load S and the rotational 
stiffness k at the supports assuming equal boundary conditions. This is done by using 
each frequency to calculate S for a range of different k. The results are two curves of 
which the crossing point is searched, which finally yields the result for the two 
unknown parameters. The two curves together with the solutions are depicted. 

 
%%Remove all variables from the workspace, clear command window and 
%%close open windows 
  
clear all 
  
close all 
  
clc 
  
%%Enter input data 
  
f1 = 134.3;         %%First measured frequency 
  
f2 = 336.7;          %%Second measured frequency 
  
E = 16805*10^6;      %%E-modulus in N/m2 
  
G = 789*10^6;       %%G-modulus in N/m2 
  
p = 527.7;          %%Specimen density in kg/m3 
   
L = 1.255;          %%Clear length in m             
  
H = 0.075;          %%Specimen height in m 
  
B = 0.035;          %%Specimen width in m 
  
ka = 10^15;         %%Value for translational support in x=0 in N/m      
  
%%Definition of range for S and k 
  
Smin = 0; 
  
Smax = 1000000; 
  
kmin = 0; 
  
kmax = 750000; 
  
%%Iteration 
  
A = B*H;          
  
ks = 5/6;           
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Iz = B^3*H/12;    
  
iii=1; 
  
n = 150; 
  
diffk = kmax-kmin; 
  
kount = 0; 
  
while diffk > 0.1 
  
%%Approximation of S1 
  
dk = (kmax-kmin)/n; 
     
for j = 1:(n+1) 
     
    k0 = kmin+dk*(j-1); 
     
    resultk(j) = k0; 
     
    count = 0; 
     
    dS = (Smax-Smin)/n; 
      
    for i=1:(n+1) 
     
        S0 = Smin+dS*(i-1); 
         
        b2 = A*L^4*p*(2*pi*f1)^2/(E*Iz); 
  
        r2 = Iz/(A*L^2); 
         
        fi = ks*A*G; 
         
        s2 = (E*Iz)/(fi*L^2); 
         
        p2 = -((L^2*S0)/(E*Iz)); 
         
        delta = p2/b2+r2*(1-p2*s2)+s2; 
    
        m1 = (sqrt(b2)*sqrt(sqrt((4*(1-p2*s2)*(1- 
             b2*r2*s2))/b2+delta^2)-delta))/sqrt(2*(1-p2*s2)); 
     
        m2 = (sqrt(b2)*sqrt(sqrt((4*(1-p2*s2)*(1- 
             b2*r2*s2))/b2+delta^2)+delta))/sqrt(2*(1-p2*s2)); 
  
        H = (b2*s2+m1^2*(1-p2*s2))/(L*m1); 
     
        Z = (m2^2*(1-p2*s2)-b2*s2)/(L*m2); 
        
        c1 = sinh(m1); 
    
        c2 = cosh(m1); 
         
        c3 = sin(m2); 
         
        c4 = cos(m2); 
  
        M =  [-ka   -fi*H+fi*m1/L+m1*S0/L   -ka    
                 -fi*Z+fi*m2/L+m2*S0/L; 
               ka*c2-fi*H*c1+fi*m1*c1/L+m1*S0*c1/L    
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                 -fi*H*c2+fi*m1*c2/L+m1*S0*c2/L+ka*c1                   
                     ka*c4+fi*Z*c3-fi*m2*c3/L-m2*S0*c3/L          -  
                        fi*Z*c4+fi*m2*c4/L+m2*S0*c4/L+ka*c3;    
              -E*Iz*H*m1/L   H*k0   E*Iz*Z*m2/L   Z*k0; 
              -E*Iz*H*m1*c2/L-H*k0*c1   -E*Iz*H*m1*c1/L-H*k0*c2        
                  E*Iz*Z*m2*c4/L+Z*k0*c3   E*Iz*Z*m2*c3/L-Z*k0*c4]; 
    
        Det = det(M); 
         
        sig = sign(Det); 
         
        if count == 1 
          
            change = sig/prevsig; 
             
            if change <= 0                 
                
                force(1,1) = prevS; 
            
                force(1,2) = S0; 
                 
                break 
               
            end 
        end 
         
        prevS = S0; 
    
        prevsig = sig; 
         
        count = 1; 
         
    end 
     
    error = 0.1; 
  
    Smin1 = force(1,1); 
  
    Smax1 = force(1,2); 
  
    diff = Smax1-Smin1; 
  
    while diff > error   
         
        count = 0; 
     
        dS1 = (Smax1-Smin1)/n; 
      
        for i=1:(n+1) 
     
        S0 = Smin1+dS1*(i-1); 
         
        b2 = A*L^4*p*(2*pi*f1)^2/(E*Iz); 
     
        r2 = Iz/(A*L^2); 
         
        fi = ks*A*G; 
         
        s2 = (E*Iz)/(fi*L^2); 
         
        p2 = -((L^2*S0)/(E*Iz)); 
         
        delta = p2/b2+r2*(1-p2*s2)+s2; 
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        m1 = (sqrt(b2)*sqrt(sqrt((4*(1-p2*s2)*(1- 
             b2*r2*s2))/b2+delta^2)-delta))/sqrt(2*(1-p2*s2)); 
   
        m2 = (sqrt(b2)*sqrt(sqrt((4*(1-p2*s2)*(1- 
             b2*r2*s2))/b2+delta^2)+delta))/sqrt(2*(1-p2*s2)); 
  
        H = (b2*s2+m1^2*(1-p2*s2))/(L*m1); 
         
        Z = (m2^2*(1-p2*s2)-b2*s2)/(L*m2); 
        
        c1 = sinh(m1); 
         
        c2 = cosh(m1); 
         
        c3 = sin(m2); 
         
        c4 = cos(m2); 
     
        M =  [-ka   -fi*H+fi*m1/L+m1*S0/L   -ka    
                 -fi*Z+fi*m2/L+m2*S0/L; 
               ka*c2-fi*H*c1+fi*m1*c1/L+m1*S0*c1/L    
                 -fi*H*c2+fi*m1*c2/L+m1*S0*c2/L+ka*c1                   
                     ka*c4+fi*Z*c3-fi*m2*c3/L-m2*S0*c3/L          -  
                        fi*Z*c4+fi*m2*c4/L+m2*S0*c4/L+ka*c3;    
              -E*Iz*H*m1/L   H*k0   E*Iz*Z*m2/L   Z*k0; 
              -E*Iz*H*m1*c2/L-H*k0*c1   -E*Iz*H*m1*c1/L-H*k0*c2        
                  E*Iz*Z*m2*c4/L+Z*k0*c3   E*Iz*Z*m2*c3/L-Z*k0*c4]; 
 
        Det = det(M); 
         
        sig = sign(Det); 
         
        if count == 1 
          
            change = sig/prevsig; 
             
            if change <= 0                 
                
                force(1,1) = prevS; 
               
                force(1,2) = S0; 
                 
                break 
               
            end 
        end 
         
        prevS = S0; 
    
        prevsig = sig; 
         
        count = 1; 
         
        end 
     
        Smin1 = force(1,1); 
         
        Smax1 = force(1,2); 
    
        diff = Smax1-Smin1; 
   
    end 
     
    resultS1(j) = Smin1; 
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end 
     
resultk = resultk'; 
  
resultS1 = resultS1'; 
  
figure(1); 
  
scatter(resultk,resultS1,'o'); 
  
hold on; 
  
%%End of Approximation of S1 
  
%%Approximation of S2 
  
dk = (kmax-kmin)/n; 
     
for j = 1:(n+1) 
  
    k0 = kmin+dk*(j-1); 
     
    resultk(j) = k0; 
    
    count = 0; 
     
    dS = (Smax-Smin)/n; 
      
    for i=1:(n+1) 
     
        S0 = Smin+dS*(i-1); 
         
        b2 = A*L^4*p*(2*pi*f2)^2/(E*Iz); 
    
        r2 = Iz/(A*L^2); 
         
        fi = ks*A*G; 
         
        s2 = (E*Iz)/(fi*L^2); 
         
        p2 = -((L^2*S0)/(E*Iz)); 
         
        delta = p2/b2+r2*(1-p2*s2)+s2; 
    
        m1 = (sqrt(b2)*sqrt(sqrt((4*(1-p2*s2)*(1- 
              b2*r2*s2))/b2+delta^2)-delta))/sqrt(2*(1-p2*s2)); 
         
        m2 = (sqrt(b2)*sqrt(sqrt((4*(1-p2*s2)*(1- 
              b2*r2*s2))/b2+delta^2)+delta))/sqrt(2*(1-p2*s2)); 
  
        H = (b2*s2+m1^2*(1-p2*s2))/(L*m1); 
         
        Z = (m2^2*(1-p2*s2)-b2*s2)/(L*m2); 
        
        c1 = sinh(m1); 
         
        c2 = cosh(m1); 
         
        c3 = sin(m2); 
         
        c4 = cos(m2); 
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        M =  [-ka   -fi*H+fi*m1/L+m1*S0/L   -ka    
                 -fi*Z+fi*m2/L+m2*S0/L; 
               ka*c2-fi*H*c1+fi*m1*c1/L+m1*S0*c1/L    
                 -fi*H*c2+fi*m1*c2/L+m1*S0*c2/L+ka*c1                   
                     ka*c4+fi*Z*c3-fi*m2*c3/L-m2*S0*c3/L          -  
                        fi*Z*c4+fi*m2*c4/L+m2*S0*c4/L+ka*c3;    
              -E*Iz*H*m1/L   H*k0   E*Iz*Z*m2/L   Z*k0; 
              -E*Iz*H*m1*c2/L-H*k0*c1   -E*Iz*H*m1*c1/L-H*k0*c2        
                  E*Iz*Z*m2*c4/L+Z*k0*c3   E*Iz*Z*m2*c3/L-Z*k0*c4]; 
    
        Det = det(M); 
         
        sig = sign(Det); 
         
        if count == 1 
          
            change = sig/prevsig; 
             
            if change <= 0                 
                
                force(1,1) = prevS; 
                
                force(1,2) = S0; 
                 
                break 
               
            end 
        end 
         
        prevS = S0; 
        
        prevsig = sig; 
         
        count = 1; 
         
    end 
     
    error = 0.1; 
  
    Smin1 = force(1,1); 
   
    Smax1 = force(1,2); 
  
    diff = Smax1-Smin1; 
  
    while diff > error   
       
        count = 0; 
     
        dS1 = (Smax1-Smin1)/n; 
      
        for i=1:(n+1) 
     
        S0 = Smin1+dS1*(i-1); 
         
        b2 = A*L^4*p*(2*pi*f2)^2/(E*Iz); 
   
        r2 = Iz/(A*L^2); 
         
        fi = ks*A*G; 
         
        s2 = (E*Iz)/(fi*L^2); 
         
        p2 = -((L^2*S0)/(E*Iz)); 
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        delta = p2/b2+r2*(1-p2*s2)+s2; 
    
        m1 = (sqrt(b2)*sqrt(sqrt((4*(1-p2*s2)*(1- 
              b2*r2*s2))/b2+delta^2)-delta))/sqrt(2*(1-p2*s2)); 
   
        m2 = (sqrt(b2)*sqrt(sqrt((4*(1-p2*s2)*(1- 
              b2*r2*s2))/b2+delta^2)+delta))/sqrt(2*(1-p2*s2)); 
  
        H = (b2*s2+m1^2*(1-p2*s2))/(L*m1); 
  
        Z = (m2^2*(1-p2*s2)-b2*s2)/(L*m2); 
        
        c1 = sinh(m1); 
         
        c2 = cosh(m1); 
         
        c3 = sin(m2); 
         
        c4 = cos(m2); 
  
        M =  [-ka   -fi*H+fi*m1/L+m1*S0/L   -ka    
                 -fi*Z+fi*m2/L+m2*S0/L; 
               ka*c2-fi*H*c1+fi*m1*c1/L+m1*S0*c1/L    
                 -fi*H*c2+fi*m1*c2/L+m1*S0*c2/L+ka*c1                   
                     ka*c4+fi*Z*c3-fi*m2*c3/L-m2*S0*c3/L          -  
                        fi*Z*c4+fi*m2*c4/L+m2*S0*c4/L+ka*c3;    
              -E*Iz*H*m1/L   H*k0   E*Iz*Z*m2/L   Z*k0; 
              -E*Iz*H*m1*c2/L-H*k0*c1   -E*Iz*H*m1*c1/L-H*k0*c2        
                  E*Iz*Z*m2*c4/L+Z*k0*c3   E*Iz*Z*m2*c3/L-Z*k0*c4]; 
    
        Det = det(M); 
         
        sig = sign(Det); 
         
        if count == 1 
          
            change = sig/prevsig; 
             
            if change <= 0                 
                
                force(1,1) = prevS; 
 
                force(1,2) = S0; 
                 
                break 
               
            end 
 
        end 
         
        prevS = S0; 
       
        prevsig = sig; 
         
        count = 1; 
         
        end 
     
        Smin1 = force(1,1); 
     
        Smax1 = force(1,2); 
         
        diff = Smax1-Smin1; 
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    end 
     
    resultS2(j) = Smin1; 
  
end 
     
resultk = resultk'; 
  
resultS2 = resultS2'; 
  
scatter(resultk,resultS2,'x'); 
  
%%End of Approximation of S2 
  
%%Determination of crossing point 
  
diffS = resultS2-resultS1; 
  
signdiff = sign(diffS); 
  
[Y,I] = min(abs(diffS)); 
  
if diffS == 0 
  
    kfin = resultk(I); 
     
    Sfin = resultS1(I); 
  
end 
     
if signdiff(I) == signdiff(I+1) 
  
    kmin = resultk(I-1);  
     
    kmax = resultk(I); 
    
    Smin = resultS2(I+1); 
     
    Smax = resultS2(I-2); 
  
else 
     
    kmin = resultk(I); 
     
    kmax = resultk(I+1); 
     
    Smin = resultS2(I+2); 
     
    Smax = resultS2(I-1); 
  
end 
  
diffk = kmax-kmin; 
  
if kount == 0 
  
    resultkplot = resultk; 
     
    resultS1plot = resultS1; 
     
    resultS2plot = resultS2; 
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end 
  
kount = kount+1; 
  
end 
  
%%Plot of iteration curves 
  
figure(2) 
  
plot(resultkplot.*0.001,resultS1plot.*0.001,'Color',[0 0 1]) 
  
hold on 
  
plot(resultkplot.*0.001,resultS2plot.*0.001,'Color',[0 
0.498039215803146 0]) 
  
scatter(kmin.*0.001,Smax.*0.001,'filled','red') 
  
plot(0:0.1:kmin.*0.001,Smax.*0.001) 
  
plot(kmin.*0.001,0:0.1:Smax.*0.001) 
  
title(['Reference Aluminium Specimen  S = 1245 N']); 
  
xlabel('Rotational stiffness k [kNm]'); 
  
ylabel('Axial load S [kN]'); 
  
legend('f1','f2'); 
  
%%Print results 
  
kmin 
  
Smax 
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11.2 Appendix B – Material properties 
11.2.1 Density measurements 
 

Data 
 
Table 11-1 Weights and densities of the specimen 
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11.2.2 Moisture measurements 
 

Data 
 
Table 11-2 Moisture measurements in three different point and mean moisture contents 

of the specimen 
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11.2.3 Four-point bending tests 
 

Data 
 
Table 11-3 Results of four-point bending tests 
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11.2.4 Longitudinal vibration tests 
 

Data 
 
Table 11-4 Results of the longitudinal tests 
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Correlations 
 

 
Figure 11-1 Correlation between longitudinal E-modulus found using f1L and static E-

modulus 

 

 
Figure 11-2 Correlation between longitudinal E-modulus found using f2L and static E-

modulus 

 

 
Figure 11-3 Correlation between longitudinal E-modulus found using both frequencies 

and static E-modulus 
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FRF plots 
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11.2.5 Transversal vibration tests 
 

Data 
 
Table 11-5 Results of transversal tests 
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Correlations 
 

 
Figure 11-4 Correlation between transversal E-modulus found using f1b and static E-

modulus 

 

 
Figure 11-5 Correlation between transversal E-modulus found using f2b and static E-

modulus 

 

 
Figure 11-6 Correlation between transversal E-modulus found using f3b and static E-

modulus 
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Figure 11-7 Correlation between transversal E-modulus found using all frequencies and 

static E-modulus 
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FRF plots 
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11.3 Appendix C - Tension tests 
 

11.3.1 Results for each specimen 
 

T1 
 

Data 
 
Table 11-6 Results of frequency measurements and dual parameter estimation for 

specimen N°1 using the transversal and longitudinal E-modulus for different 
load levels 
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FRF plots 
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T2 
 

Data 
 
Table 11-7 Results of frequency measurements and dual parameter estimation for 

specimen N°2 using the transversal and longitudinal E-modulus for different 
load levels 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:60 148 

FRF plots 
 

 
 

 
 

 
 



 

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:60 149 

 
 

 
 

 
 

 



 

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:60 150 

T3 
 

Data 
 
Table 11-8 Results of frequency measurements and dual parameter estimation for 

specimen N°3 using the transversal and longitudinal E-modulus for different 
load levels 
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T4 
 

Data 
 
Table 11-9 Results of frequency measurements and dual parameter estimation for 

specimen N°4 using the transversal and longitudinal E-modulus for different 
load levels 
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T5 
 

Data 
 
Table 11-10 Results of frequency measurements and dual parameter estimation for 

specimen N°5 using the transversal and longitudinal E-modulus for different 
load levels 
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T6 
 

Data 
 
Table 11-11 Results of frequency measurements and dual parameter estimation for 

specimen N°6 using the transversal and longitudinal E-modulus for different 
load levels 
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T7 
 

Data 
 
Table 11-12 Results of frequency measurements and dual parameter estimation for 

specimen N°7 using the transversal and longitudinal E-modulus for different 
load levels 
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T8 
 

Data 
 
Table 11-13 Results of frequency measurements and dual parameter estimation for 

specimen N°8 using the transversal and longitudinal E-modulus for different 
load levels 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:60 166 
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T9 
 

Data 
 
Table 11-14 Results of frequency measurements and dual parameter estimation for 

specimen N°9 using the transversal and longitudinal E-modulus for different 
load levels 
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T10 
 

Data 
 
Table 11-15 Results of frequency measurements and dual parameter estimation for 

specimen N°10 using the transversal and longitudinal E-modulus for different 
load levels 
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T11 
 

Data 
 
Table 11-16 Results of frequency measurements and dual parameter estimation for 

specimen N°11 using the transversal and longitudinal E-modulus for different 
load levels 
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T12 
 

Data 
 
Table 11-17 Results of frequency measurements and dual parameter estimation for 

specimen N°12 using the transversal and longitudinal E-modulus for different 
load levels 
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T13 
 

Data 
 
Table 11-18 Results of frequency measurements and dual parameter estimation for 

specimen N°13 using the transversal and longitudinal E-modulus for different 
load levels 

 
 

The results for the second load levels were not calculated since the according 
coherence function showed strong irregularities. 
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T14 
 

Data 
 
Table 11-19 Results of frequency measurements and dual parameter estimation for 

specimen N°14 using the transversal and longitudinal E-modulus for different 
load levels 
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T15 
 

Data 
 
Table 11-20 Results of frequency measurements and dual parameter estimation for 

specimen N°15 using the transversal and longitudinal E-modulus for different 
load levels 
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T16 
 

Data 
 
Table 11-21 Results of frequency measurements and dual parameter estimation for 

specimen N°16 using the transversal and longitudinal E-modulus for different 
load levels 
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T17 
 

Data 
 
Table 11-22 Results of frequency measurements and dual parameter estimation for 

specimen N°17 using the transversal and longitudinal E-modulus for different 
load levels 
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T18 
 

Data 
 
Table 11-23 Results of frequency measurements and dual parameter estimation for 

specimen N°18 using the transversal and longitudinal E-modulus for different 
load levels 

 
 

The results for this specimen were very erroneous for undeclared reasons, which is 
why they were not considered in following calculations. 
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T19 
 

Data 
 
Table 11-24 Results of frequency measurements and dual parameter estimation for 

specimen N°19 using the transversal and longitudinal E-modulus for different 
load levels 
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T20 
 

Data 
 
Table 11-25 Results of frequency measurements and dual parameter estimation for 

specimen N°20 using the transversal and longitudinal E-modulus for different 
load levels 
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T21 
 

Data 
 
Table 11-26 Results of frequency measurements and dual parameter estimation for 

specimen N°21 using the transversal and longitudinal E-modulus for different 
load levels 
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T22 
 

Data 
 
Table 11-27 Results of frequency measurements and dual parameter estimation for 

specimen N°22 using the transversal and longitudinal E-modulus for different 
load levels 
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T23 
 

Data 
 
Table 11-28 Results of frequency measurements and dual parameter estimation for 

specimen N°23 using the transversal and longitudinal E-modulus for different 
load levels 
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T24 
 

Data 
 
Table 11-29 Results of frequency measurements and dual parameter estimation for 

specimen N°24 using the transversal and longitudinal E-modulus for different 
load levels 
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T25 
 

Data 
 
Table 11-30 Results of frequency measurements and dual parameter estimation for 

specimen N°25 using the transversal and longitudinal E-modulus for different 
load levels 
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T26 
 

Data 
 
Table 11-31 Results of frequency measurements and dual parameter estimation for 

specimen N°26 using the transversal and longitudinal E-modulus for different 
load levels 
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T27 
 

Data 
 
Table 11-32 Results of frequency measurements and dual parameter estimation for 

specimen N°27 using the transversal and longitudinal E-modulus for different 
load levels 
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T28 
 

Data 
 
Table 11-33 Results of frequency measurements and dual parameter estimation for 

specimen N°28 using the transversal and longitudinal E-modulus for different 
load levels 
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T29 
 

Data 
 
Table 11-34 Results of frequency measurements and dual parameter estimation for 

specimen N°29 using the transversal and longitudinal E-modulus for different 
load levels 
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T30 
 

Data 
 
Table 11-35 Results of frequency measurements and dual parameter estimation for 

specimen N°30 using the transversal and longitudinal E-modulus for different 
load levels 
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T31 
 

Data 
 
Table 11-36 Results of frequency measurements and dual parameter estimation for 

specimen N°31 using the transversal and longitudinal E-modulus for different 
load levels 
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T32 
 

Data 
 
Table 11-37 Results of frequency measurements and dual parameter estimation for 

specimen N°32 using the transversal and longitudinal E-modulus for different 
load levels 
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Aluminium 
 

Data 
 
Table 11-38 Results of frequency measurements and dual parameter estimation for the 

reference aluminium specimen using the transversal and longitudinal E-
modulus for different load levels 
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11.3.2 Summary of results 
 
Table 11-39 Error on the estimated axial load S for each specimen and different load 

levels using the transversal E-modulus 

 
 
Table 11-40 Error on the estimated axial load S for each specimen and different load 

levels using the longitudinal E-modulus 
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Table 11-41 Mean estimated rotational stiffness k for each specimen using the transversal 
and longitudinal E-modulus and comparison with the static E-modulus 
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