
3D Window Manager Prototype
Master of Science Thesis in the programme Interaction Design

Andreas Jonsson
Marcus Järbratt

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden June 2009

The Author grants to Chalmers University of Technology and University of
Gothenburg the non-exclusive right to publish the Work electronically and in a
non-commercial purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that
the Work does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party
(for example a publisher or a company), acknowledge the third party about this
agreement. If the Author has signed a copyright agreement with a third party
regarding the Work, the Author warrants hereby that he/she has obtained any
necessary permission from this third party to let Chalmers University of Technology
and University of Gothenburg store the Work electronically and make it accessible
on the Internet.

3D Window Manager Prototype
Andreas Jonsson
Marcus Järbratt

c© Andreas Jonsson, June 2009.
c© Marcus Järbratt, June 2009.

Examiner: Olof Torgersson

Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Cover:
A screenshot of the resulting window manager prototype.
See Section 6.1.5 and Figure 17(a).

Department of Computer Science and Engineering
Göteborg, Sweden June 2009

Abstract

The standard graphical user interfaces on leading operating systems
today all use a two dimensional approach for interaction and visualiza-
tion. Handling several applications using this approach often leads to
a cluttered work space which is hard to manage e�ciently. Research
within the 3D window management area has been performed and many
products exist today which utilize 3D in one way or another, but none
of these have had any impact on how windows are managed in leading
operating systems.

The main goal with this thesis was to implement a prototype which
utilized 3D in order to manage open windows in a structured way. The
result is a system where the user can interact with windows in a 3D
world. These windows can be placed and grouped on certain desig-
nated areas, which the user is able to navigate between quickly along
prede�ned paths. In order to work with windows they are brought
up from the 3D environment to a conventional two dimensional work
space.

Di�erent users that tried out the prototype encountered no big
issues with how the prototype solved navigation and interaction with
objects in a 3D environment. While some of them appreciated the
product as a whole, some could not see how this would bene�t them
during their daily computer usage, although they saw advantages with
some of the functionality.

Sammanfattning

De gra�ska användargränssnitt som används i de ledande operativsys-
temen idag använder ett två-dimensionellt tillvägagångssätt för inter-
aktion och visualisering. Att hantera �era applikationer på detta sätt
leder ofta till en rörig arbetsyta som är svår att arbeta med e�ektivt.
Forskning inom fönsterhantering i 3D har utförts och många produk-
ter �nns i dagsläget som utnyttjar 3D på ett eller annat sätt, men
ingen av dessa har haft något genomslag för hur fönster hanteras i de
ledande operativsystemen.

Huvudmålet med denna rapport var att implementera en proto-
typ som utnyttjade 3D för att hantera öppna fönster på ett struk-
turerat sätt. Resultatet är ett system där användaren kan interagera
med fönster i en 3D-värld. Dessa fönster kan placeras och grupperas
på särskilda ytor, som användaren snabbt kan navigera mellan längs
förbestämda banor. För att arbeta med fönster tas de upp från 3D-
miljön till en konventionell två-dimensionell arbetsyta.

En grupp användare som prövade prototypen stötte inte på några
större hinder med hur prototypen löste navigering och interaktion med
objekt i en 3D-miljö. Medan några av dem uppskattade produkten
i sin helhet, hade en del svårt att se hur detta skulle gynna dem i
sin dagliga datoranvändning, även om de såg fördelar med delar av
funktionaliteten.

Preface

This is done as a master thesis on the master program Interaction
Design of Chalmers University of Technology. We want to thank our
supervisor, Olof Torgersson, for giving good feedback and approaching
the prototype with a fresh perspective. We would also like to send our
regards to those trying our prototype o�ering their time to give us
valuable feedback.

Contents
1 Introduction 1

1.1 Aim . 1
1.2 Delimitations . 2

2 Related work 3
2.1 Products & Prototypes . 3
2.2 Research . 6

2.2.1 Window Managing . 6
2.2.2 Interaction With 3D Interfaces 8
2.2.3 Spatial Cognition . 9

2.3 3D Graphics - An Introduction 11

3 Task Analysis 13
3.1 Implementation Requirements 14

3.1.1 Interaction . 14
3.1.2 Rendering engine . 15

4 Method 17
4.1 Project plan . 17

5 Realization 19
5.1 Milestone 1 . 19

5.1.1 Research on Existing Systems 19
5.1.2 Research on Techniques and Technologies 20
5.1.3 Application structure, Basic Rendering, Input 25
5.1.4 Picking Items in Space and Working Dummy OS . . . 26

5.2 Milestone 2 . 28
5.2.1 Iterate Work in Milestone 1 28
5.2.2 Decide Di�erent Ways of Interaction to Implement . . 29
5.2.3 Implement Interaction Functionality 31
5.2.4 Fix Bugs and Usability Before Test With Test Group . 36

5.3 Milestone 3 . 37
5.3.1 Usability Study and Evaluation 37
5.3.2 Adapt System According to Usability Study 38

6 Result 39
6.1 Prototype Functionality . 39

6.1.1 Deskspace State . 40
6.1.2 Birdview State . 40
6.1.3 Workmode State . 42

6.1.4 Widgetmode State . 42
6.1.5 Searchmode State . 43

6.2 Prototype Usability . 43

7 Discussion 47

8 Conclusion 50

9 References 52

A Test person queries 56
A.1 Questionnare prior to prototype testing 56
A.2 Testing the prototype . 57
A.3 Questionnare after the prototype testing 58

B System overview - Class Diagram 59

1 Introduction
Most of the interaction with computers today is made using a graphical user
interface (GUI) in a two dimensional (2D) manner. One of few exceptions is
computer games where three dimensional (3D) worlds have been successfully
used for a long time.

The operating systems (OS) and the way they present the user with
the applications works basically the same as they did a decade back. The
windows are placed on top of each other on the screen, and when the user
exceeds a few open programs, they are cluttering up the view, and it is hard
to separate which window you want, especially if you have a lot of running
instances of the same application.

UNIX, among other systems, has had support for di�erent desktops for a
long time, which enables you to divide the windows and elements on di�erent
views. One of the �rst window managers (WMs) introducing this concept to
the public was the Solbourne Window Manager [15, chapter 6.1]. This is one
enhancement where you can divide up di�erent tasks on di�erent desktops,
but working with one task can still mean having a lot of di�erent applications
running to achieve this.

Some improvements to use multiple applications in todays operative sys-
tems has been made, e.g. by giving an opportunity to quickly switch between
open applications with keyboard shortcuts. These are often tedious to use
though when the number of open windows increases, requiring the user to
scroll through a long list or large amount of thumbnails to �nd that window
he was searching for. A process which still creates unnecessary pauses in the
work �ow.

Within the research area of interaction there has been some tests using
3D, but since the mouse only provides input from two dimensions, the in-
teraction can easily confuse the unaccustomed users who are not using 3D
interaction software on a regular basis. Still, the third dimension may open
up for new functionality and may very well contribute for a more e�ective
computer use.

1.1 Aim
The goal with this thesis is to implement a prototype of a 3D interface
system one can use to simulate common OS functionality. This prototype
does not target any speci�c platform or OS, and the intention is to make
a prototype from scratch designing and implementing all parts needed for
3D graphics and 3D interaction. Using this prototype it is intended to test
whether people are able to perform interaction which feels as intuitive and

1

straight forward to work with as the 2D interfaces standard on computers
today. The main focus will be on managing windows in a 3D space, while
keeping the individual windows' 2D representation, and addressing common
window and desktop management issues.

Previous research within relevant areas and already existing systems will
be used for inspiration. Inspiration for new interaction is hard to �nd in
the systems today, since they are all in�uenced by the regular expected 2D
functionality. By looking at di�erent other software areas, like computer
games, there is hope to �nd exciting and useful new ways of interaction.

Finally, the primary aim with the prototype is not be a replacement for
average computer users. The functionality is foremost intended to ease the
work �ow for users who multitask using several programs simultaneously. It
focuses on increasing productivity while minimizing time wasted on tedious
tasks such as �nding the right window or navigating interfaces. Still, the
intended target group is quite narrow so it will be interesting to see how
people with di�erent computer usage and experience could bene�t from the
ideas as well.

1.2 Delimitations
The amount of work this thesis corresponds to makes it hard to implement
and �nalize a fully functional product. Instead it was decided to make a
prototype which has the needed key functionality to try the concepts of 3D
interaction and window management.

One part which was decided to skip, at least initially in the development
process, was to connect the system to an actual operating system. Di�erent
operating systems would in that case need to be studied in order to be able
to do this, leaving less time to spend on other key functionality such as 3D
rendering and interaction.

A 3D rendering engine can be very complex and is not something that
is easily implemented. The intention is not to make a 3D rendering engine
equipped with a lot of state of the art techniques that are not needed for
the purpose of this project anyway. Instead a basic rendering engine with
functionality su�cient to ful�ll the needs and requirements of visualizing the
functionality in the prototype will do.

2

2 Related work
There are many di�erent aspects of this thesis regarding interaction, 3D
graphics, and window management. A lot of interesting research has been
done in these areas, and many commercial products as well as various free-
ware are of interest and a source of inspiration.

2.1 Products & Prototypes
Today's leading operating systems using a GUI for interaction all share the
same main concepts. 2D is used almost exclusively and a lot of functionality
has been used for many years and has not evolved to any appreciable extent.

There is often a desktop behind everything else on the screen. On this
desktop one can place icons for shortcuts, �les etc. When a window is opened
it gets in the way of the desktop and in order to get access to the desktop
again you either have to move around any open window that is in the way
or minimize them.

Open windows are often placed in a taskbar where you can click with
the mouse in order to switch among them. This tends to work well as long
as there are not too many open programs. When reaching above a certain
number, the titles of the open programs are no longer visible and the only
way to distinguish among the open windows is by looking at which icon the
program has. This leads to problems when having several windows of the
same application running.

In Microsoft (MS) Windows, among other systems, Alt+Tab is a very use-
ful keyboard command combination to quickly switch among open programs
for a keyboard driven user. By using this key combination an overview of the
open windows appear on top of the screen where the user can choose which
program to switch to. In MS Windows XP this has very limited functionality.
For each open window it only displays window title and the application icon
giving the user a poor overview of the open windows. Another drawback is
limitations in how you select a window since the user is only allowed to go
forward/backward one step at a time by pressing the Tab key multiple times
while still holding down the Alt key. In MS Windows Vista this functionality
is slightly improved by showing a preview of each window, making it possible
to select a window by clicking its preview with the mouse, as well as select-
ing window with arrow keys. The user can also by pressing the keyboard
combination Win+Tab get an overview of all open windows in 3D instead.

The Mac OS X also has an interesting feature called Exposé [17]. By
pressing F9 the user can instantly get all the open and unhidden applica-
tions side-by-side. By clicking on any item this is brought to the front, or

3

Figure 1: Screenshot from Mac OS
X getting an overview of the run-
ning applications. [33]

Figure 2: Screenshot from a cus-
tomized desktop with the Litestep
window manager. [34]

Figure 3: Screenshot from a desk-
top with the BumpTop extension.
[35]

Figure 4: Concept image of a desk-
top with the 360Desktop exten-
sion. [36]

by pressing F9 again, the windows are returned to their original scale and
position. See Figure 1 for reference.

There are a number of di�erent window manager replacements for MS
Windows, some of them are just to change the appearance of di�erent ele-
ments of the GUI, like changing the images used on buttons and menus for
instance. There are also some programs that can be used to replace speci�c
elements. ObjectDock [22] for instance, can be used to replace the start
menu, taskbar and system tray. Other existing solutions change how you
interact with the OS on a more extensive way.

LiteStep [16] is a window manager for Microsoft Windows. It centers
on the idea that the users can script any interface they want. By a wide
variety of modules, one can by Lua scripting or by creating C++ modules

4

get any interface wanted. Some elementary GUI elements are forced, such
as the action buttons for the windows, but one can add desktops, di�erent
controller interfaces for running applications into the GUI etc. Since the
themes are script-based, there is no enforced compilation for the packages to
run on the LiteStep core, which means that unwanted or badly performed
functions in a theme can be altered to better suit the user requests. See
Figure 2 for reference.

BumpTop [5] is a physics-based 3D desktop for MS Windows. It is not
really a window manager, but it has a lot of new ideas that still makes it
interesting as an inspiration for this work. It has focused a lot on interaction
of icons and �les on the desktop. Files can be grouped together, piled or
ordered after customized routes over the desktop. There is also an ability
to attach di�erent gadgets to the desktop walls or �oor. See Figure 3 for
reference.

360Desktop [1] has the same functionality as any ordinary window man-
ager, with the only di�erence that instead of having di�erent desktops that
can be switched between, there is an extended desktop. The windows can
be placed on any part of this surface, and the orientation between them is
done by rotating the desktop space. The extension also allows for gadgets
to be placed wherever they are wanted along the surface. See Figure 4 for
reference.

There is also a wide range of applications which all have the same func-
tionality, the classical cube. One of these applications is CubeDesktop Pro
[8]. The idea is that each side of a cube represents an individual desktop.
The only functionality the cube has is for the user to easier locate the di�er-
ent desktops without losing orientation. The cube could be replaced by any
other geometrical shape, although the user orientation might get lost if the
available surfaces grow to large. By having multiple desktops, one can easily
move di�erent application windows to di�erent areas to decrease cluttered
windows. See Figure 5 for reference.

Metisse [19] is a 3D based window manager for the X window system. It
is, at least o�cially, only available for the Linux-based OS Mandriva. Even
though the impression still is 2D, it supports a lot of easy-to-use functions
where the user can fold away windows covering the screen, as well as orienting
and rotating them in any possible way. A lot of the functionality seen in
the demonstration videos from their website is of a great interest for the
development of this system, amongst others their view with the desktops
side-by-side. See Figure 6 for reference.

5

Figure 5: Screenshot of an operat-
ing system with the cube extension
CubeDesktop Pro. [37]

Figure 6: Screenshot of Mandriva
One, running the Metisse window
manager. [38]

2.2 Research
When implementing a 3D window manager prototype di�erent areas of re-
search are of interest. Three areas have been of greater interest than others:
approaches to 3D window managing, di�erent ways of interaction in 3D, as
well as orientation and spatial cognition in a 3D environment.

2.2.1 Window Managing
There is not very much research to be found regarding window managers
using 3D interfaces. One paper from Microsoft research department is fre-
quently cited though. They have made some interesting research within the
area and produced a 3D window manager they called Task Gallery [27]. In
Task Gallery applications and functionality is placed within a 3D environ-
ment which the user is able to walk around in. The environment is designed
to look like an indoor art gallery. In this gallery applications can be grouped
together as tasks and be placed on walls, ceilings, �oors and notice boards
in the scene. See Figure 7 for an example. When using Task Gallery the
primary use of the 3D environment is to manage tasks. When one wants to
work with an application it still uses the 2D approach.

One point with Task Gallery was to study the e�ects of human spatial
cognition and perception while utilizing the 3D hardware in computers. The
primary purpose with this was to ease the process of task management and
ability to compare multiple windows. The results of the user tests are very
interesting showing that the test subjects did remember very well where in
the 3D scene they had placed di�erent tasks. It was also found that the test

6

Figure 7: Screenshot of Task Gallery in use. Active windows have been
grouped as tasks and been put on areas in a 3D room. [39]

subjects did not have any problems adjusting to the approach with a 3D
world concept.

3Dwm (Three-Dimensional Workspace Manager) [10] is another research
project about extending the 2D user interface into 3D. The report covers a
project of implementing a research and development platform for 3D user
interfaces in applications. Compared to Task Gallery, which still uses 2D
user interfaces for running applications, this project is more about replacing
the 2D user interfaces completely with user interface components in 3D.
To succeed with this some tools for creating custom 3D components are
incorporated.

WindowScape [31] is a project that addresses some issues connected to
task management by exploiting users' spatial and visual memories. One of
its main features is to use miniature snapshots of windows to more easily �nd
them among others. It also introduces an interesting approach to grouping
programs as tasks using a history metaphor. Depending on which programs
that are used at a certain time they can be grouped as a task and a snapshot
of that workspace is stored in a history timeline. A task and its corresponding
programs can then be resumed from the timeline.

Later versions of MS Windows among other operating systems, uses a
taskbar to keep and give access to open windows (see Section 2.1). Microsoft
published a paper where the limitations of the taskbar were addressed and the
taskbar was evolved into the GroupBar [29]. The paper mentions the need
for a new way of handling open applications, due to the di�erence in work
structure that has evolved since the size of screens have grown, which has lead
to people using a larger number of simultaneous applications multitasking.

7

2.2.2 Interaction With 3D Interfaces

Interaction in 3D can cause problems for the user and many interaction
designers have made research in this area. Alan Cooper is well known in
the area of interaction design. In his book About Face - The Essentials of
Interaction Design [7] some issues are addressed and some guidelines are
presented on how to design for better interaction in 3D. He states that a 3D
space projected on a 2D screen introduces problems for the human to perceive
the scene correctly. An issue that is brought up is movement. Unconstrained
movement in 3D space is for instance something that humans are not used
to and should be avoided.

Ben Schneiderman is another well-reputed man in the area of interaction
between humans and computers. In the paper Why Not Make Interfaces
Better than 3D Reality? he discusses bene�ts and drawbacks of using 3D
instead of 2D in interfaces [28]. He states some good points, some more ob-
vious than others, although not necessarily unique to 3D interaction. The
advices are amongst others minimizing the number of steps for users to ac-
complish their tasks and keep the text readable by having size, contrast and
tilt in mind, as well as trying to prevent the possibility of making errors by
only making the user able to perform allowed actions and having access to
undo/redo actions. He also wants to avoid unnecessary visual clutter (dis-
tractions, re�ections, contrast-shifts etc) and simplify object movement by
e.g. docking, predictable paths and limiting rotation. Some "enhanced fea-
tures" as they are called in this paper are also mentioned, such as providing
an overview of the scene and allowing teleportation in order to quickly and
easily move around. Another advice is to give the possibility to see beyond or
through objects in order to prevent occlusion of unneeded items and having
the functionality of dynamic queries in order to �lter out unneeded items
rapidly.

One of the bene�ts of using 3D compared to 2D is that you can place
objects more freely in order to save screen estate. When using 3D you have
an opportunity to rotate objects such as windows, menus, and other GUI
related visual parts in relation to the viewer in many di�erent ways. An
advantage of rotating an object away from the viewer is the fact that it will
occupy less screen estate. The drawback on the other hand is that it will
get distorted due to the 3D perspective of the scene. Some research in this
area has been published that shows that text takes longer time to read when
it is distorted in this manner [14]. Hence objects which display important
information should be rotated carefully away from the viewer if rotated at
all.

8

2.2.3 Spatial Cognition

In the systems today the bene�ts of human spatial cognition comes in use
when people who use their desktop to keep shortcuts and �les tend to group
and place icons in a way that they know exactly where each icon is. The
result is that they more easily and quicker can �nd an icon when they need
it without any need to search through lots of icons.

In the paper Data Mountain from 1998 by Robertson et al. [26] they have
made some tests on how spatial cognition can be utilized by introducing a
di�erent approach to storing and accessing information. The Data Mountain
is a 3D document management system which in this paper was implemented
as a prototype for managing web page bookmarks. The idea is that small
thumbnails of web pages are placed on a tilted surface in a 3D scene. These
thumbnails can be moved around freely on this surface. The thumbnails
follows the tilt of the plane making them appear smaller the further back
they are placed. This functionality gives an opportunity to group similar
objects together or placing less important objects further away than the
ones more frequently used.

During the user tests they tested how easy it was for the user to �nd a
particular bookmark using Data Mountain compared to a traditional menu
which lists all web pages top down. Based on this they summarized and
compared how long the reaction time was to �nd bookmarks, how many
incorrect retrievals that had to be done before �nding the right one, and how
many bookmarks that were not found at all within a two minute limit. The
users testing the Data Mountain had better results on all of these points
overall. They found them faster and some even remembered their location
months after the test.

The research of Data Mountain is cited in many more recent publications.
Andy Cockburn and Bruce McKenzie [6] took the tests further and tested
three di�erent approaches of data visualization called 2D, 21

2
D, and 3D. In

(a) 2D (b) 2 1
2D (c) 3D

Figure 8: Three di�erent approaches of visualizing stored data with spatial
cognition in mind. [6]

9

all three of these approaches the bookmark image is faced towards the viewer
without any rotation. The di�erence between them is how the bookmarks
are placed and moved around. For 2D and 21

2
D the bookmarks are placed

on a plane. For 2D the plane is aligned along the screen and for 21
2
D the

plane is tilted away from the screen. For the 3D approach the bookmarks
are placed freely in space. See Figure 8 for reference. In this paper they test
response time for bookmark retrieval with di�erent amount of bookmarks
open. Three di�erent levels were tested which they referred to as sparse,
medium, and dense. Slightly di�erent results could be found between the
three approaches. Access time using the 2D approach increased very much
for each step. For 21

2
D the access time remained almost the same with only

slight increase for each step. The approach with bookmarks placed free in
3D worked well for sparse but had a large increase for medium and dense.

10

2.3 3D Graphics - An Introduction
The process of generating a 2D image from a 3D scene is called rendering.
The rendering process is performed by the rendering pipeline. The rendering
pipeline can be conceptually divided into three parts: application, geometry,
and rasterizer. While the application stage is always performed on the CPU
the other two stages are preferably performed on the GPU.

The application stage is where the software runs. The software holds and
controls all objects in the 3D scene in world space coordinates. All objects
that are rendered consist of connected triangles. Each triangle consists of
three positions in the 3D space called vertices. To determine from which
position and what direction to render the scene a virtual camera is placed
in the 3D world. The objects in the world that are rendered are the objects
that are within the view frustum of the camera (see Figure 9). If the view
frustum is seen as a cut-o� pyramid the top of the frustum is called the near
clipping plane and the bottom the far clipping plane. The camera's position
is where the tip of the pyramid would have been if the pyramid would have
been intact. The angle of the view frustum depends on the �eld of view setup
for the camera.

When it is time to render the scene the application stage feeds the geom-
etry stage with information about all objects in the scene and the location
and direction of the camera. See Figure 9 for a visualization of the most
important steps in the rendering process. All vertices in the scene are at this
point transformed from global world space coordinates into camera space co-
ordinates, which are their positions in the camera's local coordinate system.
After some processing a projection is performed which transforms the view
frustum in camera space into a unit cube, a space with the minimum and
maximum points of -1 and 1 respectively. When this is done all primitives'

Figure 9: Visualization of four big steps in the rendering process seen from
above. From left to right: camera with its view frustum and objects in world
space, objects in camera space, objects in unit cube after projection, and the
resulting image.

11

that are outside the unit cube are clipped and the remaining primitives x-
and y-coordinates are mapped to match the position on screen. These prim-
itives are sent to the rasterizer stage. At this stage each pixel in a color
bu�er is �lled with the correct color, which depends on the position of the
primitives from the previous stage. [2, chapter 2]

12

3 Task Analysis
The primary purpose with this system is to enable anyone using a computer
to have a better structure and overview of running applications giving them
easier and faster access when switching among them. The typical user who
would bene�t the most from this system is a person who needs to multitask
by having several applications running at once, and perhaps even switches
between di�erent work tasks during the day.

The resulting product of this paper is not a fully working window manager
connected to a running operating system. Instead it is a prototype written
with the primary goal to test a new approach to window managing. The
systems architecture is strongly inspired by rendering engines common in
computer games today, which are capable of rendering 3D scenes to the
computer screen using hardware accelerated graphics.

This prototype is based on a slightly di�erent conceptual approach than
the ones you �nd in other common operating system window managers. Even
if the functionality is mainly the same as other window managers have, the
way you interact with the computer is slightly di�erent. The main issues
which this thesis is trying work around have evolved from personal usage and
experience of insu�cient window managing possibilities in common operating
systems. The di�erent concepts and ideas to use in this prototype have
evolved from inspiration received from a combination of successful parts of
existing systems as well as various third-party solutions which also have some
of these issues in mind.

The functionality of this prototype is not something which in the �rst
place is intended for the average computer user. It is intended to make the
work easier for those users who use several programs simultaneously and
have a need to quickly being able to switch among di�erent applications by
not having to spend any more time than necessary searching for a particular
application.

Even if the initially intended target group is rather limited it is still
interesting to see how people from di�erent user type groups will respond
to this solution. With this in mind interviews with people with di�erent
computer backgrounds are planned, as well as some tests to see how they
respond to these concepts and ideas.

The biggest di�erence with the ideas of window management in this pro-
totype and in operating systems today is the use of 3D compared to 2D.
By using 3D you get another dimension of screen estate to place valuable
information in. On the other hand, when you add another dimension of
complexity to the interaction, this can possibly make it harder for the user
to feel comfortable when giving input. Especially since some interaction will

13

be made in 2D and some in 3D. It will also be interesting to see how di�erent
kinds of users will respond to this type of interaction.

The concept of having an area, such as the desktop, behind everything
else that you work with leads to a few interaction related issues. One part
of this prototype was to skip the traditional desktop metaphor and instead
incorporate the bene�ts of the desktop into widgets placed on a widget area.
This area is intended to be placed on top of all running applications when
activated instead of lying behind at all times. Something interesting with
this point is to �nd out how much people actually use their desktops and
what functionality they make use of.

3.1 Implementation Requirements
C++ is the main programming language which is intended to be used in order
to implement the prototype. It will be used for the program structure, the 3D
graphics programming, as well as the interaction needed. The major bene�ts
of C++ are its e�ciency on various platforms with low-level capabilities as
well as its extended object oriented capabilities.

The system will have di�erent layers of functionality. On top there will
be the interaction layer which the user comes in contact with when commu-
nicating with the prototype. This layer needs to get information from the
operating system about the current programs and status. This information
about the operating system and the location of di�erent windows needs be
sent to the graphics hardware in order to be rendered to the screen.

3.1.1 Interaction
This level of the system is the layer that the user sees and interacts with.
This layer needs to be connected to an underlying layer that keeps track of
all running applications. Given the time frame, the prototype will not be
connected to the underlying OS, but will instead be fed with information
from a dummy layer, a dummy OS, keeping record of fake applications.

As the prototype will not actually connect with the OS, the application
must create a window and render a 3D scene in this window. Input from
connected input devices must also be captured within this window.

As input into the system the traditional mouse and keyboard are seen
as the primary devices, even if some other type of input devices might be
interesting to try out. The reason for this is that this prototype is intended
to be used with computers as they are used today and with the input devices
people already are familiar with. To force people to learn using new tools
in order to be able to handle a new system seems to be a too big step since

14

the primary objective with this system is to make the work �ow with current
work stations smoother and more e�cient.

The mouse is intended to be used in order to handle windows in di�erent
ways both in 2D and 3D. Functionality which is seen as interesting to imple-
ment is to move, rotate and scale elements such as windows in both 2D and
3D. In 2D this is fairly straight forward but in 3D it can be done in di�erent
ways, either completely free or with some type of constraint. In order to �nd
which approach to use di�erent constraints need to be implemented in order
to try what feels intuitive and is desired.

The ideas of the presence of windows that are placed in the 3D space is
to either place them completely free or to attach them to a deskspace. A
deskspace is a concept in this prototype which is an area that is placed in a
3D world containing visual representation of running applications. In order
to �nd a certain application among the ones that are open and running an
idea is to implement a search function that is easily accessible and gives a
good overview of matching applications by fading out the applications that
do not match what the user types.

An important feature for visual feedback in any GUI is the mouse tooltip.
In order to have greater control over the prototype usability, the tooltip
functionality will be needed to get implemented in the prototype.

In order to manage running applications in a 3D world some kind of
framework needs to be created. This framework needs to handle window
positioning and movement for instance. How this is realized depends on
other design decisions.

The di�erent elements that one can interact with in the 3D environment,
such as the windows, need some sort of interface that lets the user know
what possible actions there are. To respond correctly input must also be
interpreted and forwarded to the window and its di�erent interface parts
when necessary.

3.1.2 Rendering engine
The rendering engine of the system must be able to keep the current state
of all visible objects as well as being able to visualize them on the computer
screen. Internally this means that the position and orientation of all objects
needs to be stored. These properties need to be stored in a way that they
can be easily modi�ed when the user manipulates the state of any object in
the 3D world.

To be able to render any object to the screen the system must hold a
space representation, including interpreting position and orientation, which
is compatible with the one used by any chosen rendering system.

15

In order get the di�erent objects into the system easily, the system needs
to be able to load and read di�erent kinds of �les. Examples of these would
be image �les for textures and text �les with information about objects'
representation primitives.

Similar to many computer games, the intended design of the prototype is
to have objects in a 3D world as well as objects in 2D "in front of" the 3D
objects. To be able to display information to the user, a vital functionality
is to be able to render text on the screen.

In order to interpret the mouse actions correctly it must be possible to
determine over which object the user is currently holding the mouse. For
the objects in 2D this is a trivial task comparing coordinates, but for the 3D
space some more advanced algorithms needs to be implemented.

Visual e�ects used correctly can be powerful and important to visualize
di�erent states of an interface. If and how e�ects will be used in the prototype
is still unclear, but adding support for it is considered necessary.

16

4 Method
The implementation process was decided to be carried out in an iterative
manner. The reason behind this decision was that it was seen as a good
approach to have a working version of the prototype at all times, even if it
was a prototype with limited functionality. With this approach it was easy
to plan and implement new additions to the system step by step.

4.1 Project plan
All the details about the project are hard to know at an early planning stage,
but the di�erent deliverables can be roughly estimated and planned according
to an approximated time plan.

In order to make the di�erent parts of the tasks easier to grasp and to get
a good structure of the work needed to be done, it was decided to break down
the task into milestones. A milestone is the end of a developing stage where
a signi�cant deliverable is delivered [30, chapter 5.2.2]. In this case three big
steps in the development cycle of the prototype were selected as milestones.
These were: basic rendering and user input, some basic testable functionality
and trying these on a test group, and �nally adapting the system according
to the feedback and polish the functionality.

To complete the �rst milestone and achieve basic rendering and user in-
put, some more detailed subgoals had to be ful�lled. There has to be some
initial research of the systems today, both default and customized products
for di�erent operating systems. There is also a need of creating a basic un-
derlying structure of the prototype. A window should render a 3D scene and
take input from both mouse and keyboard, both navigation and the possi-
bility to pick objects in space using the mouse. Finally, the 3D scene needs
to be fed with application information from a dummy OS as well.

The second milestone was decided to be a program with enough function-
ality to be able to perform some tests on a test group. The result from the
�rst milestone will probably need some correction and �xes, so that most of
the bad design ideas can be caught early and not cause problems later on in
the development process. The next step will be to decide what kind of func-
tionality to implement into the prototype, i.e. which functionality that feels
relevant enough to spend time on investigating further. This functionality
then needs to be implemented and a suitable test group needs to be found
before the next milestone.

The third and �nal milestone was decided to be a working version of the
prototype where the feedback from the user tests was taken into consider-
ation. The feedback from the tests needs to be weighted to decide what is

17

Figure 10: Rough planning of the project's di�erent implementation phases
with milestones and subtasks.

possible to implement given the remaining time, and then adjust the system
according to these ideas, as well as correct any other functionality not work-
ing properly. Each of these milestones and their respective subtasks can be
seen in relation to each other in the Gantt chart in Figure 10.

18

5 Realization
This chapter describes the process of implementing the prototype in chrono-
logical order. Motivating important design decisions and describing di�erent
problems along the way.

5.1 Milestone 1
The deliverable for this milestone was a running application with the most
fundamental functionality implemented. The goal with this milestone was to
look at relevant previous research and existing products, as well as connecting
input devices to a running window in a MS Windows environment, and in
this window render the content of a simple 3D scene using the 3D graphics
hardware.

5.1.1 Research on Existing Systems
As a starting point, it was decided to examine what existing functionality in
today's operating system that could be reused. It would both �ll the func-
tionality as well as ease the transition from the normal window management.
The application window actions (minimize, restore/maximize and close) is
something that has always been working very well.

Both the start menu and the system tray are areas that are not that
frequently visited when the desired applications have been started. The
screen space they require is small, but by being able to hide them when
they are not used valuable screen space is made available. This type of
functionality in today's OSs can be found in MS Windows where these areas
can be hidden until the mouse cursor is hovered upon the lower edge of the
screen.

The multi desktop support was seen as a requirement for this prototype.
It is one way of dividing di�erent task-dedicated applications and is decreas-
ing the windows cluttering the screen. This is a functionality that might
not be as useful for the general computer user, but since this prototype is
focusing on power users and being able to quickly work with applications
and switching between them, this was seen as a natural addition to meet
that need.

Metisse has a way of giving the user an overview of what applications
that are currently running on the di�erent desktops. The user can not only
see what is running where, he can manage the windows from this overview,
moving them quickly between di�erent desktops as well as returning to any
of those desktops from that view.

19

Another source of inspiration is Task Gallery which has an interesting
approach to separate running applications as tasks in a 3D world. This con-
cept is combined with a free-roaming approach letting the user walk around
among these di�erent tasks and applications.

Andy Cockburn and Bruce McKenzie also gave a great deal of inspiration
with the paper on revisiting Data Mountain. One speci�c concept was the
21

2
D data visualization. It was showed to be a good approach to place data

in order to utilize the human spatial memory, and it was decided to at least
give this a try and see if the e�ect of this would be user-friendly and intuitive.

When working with a lot of tasks, the number of running applications
grows. Even if these tasks are divided on di�erent desktops, there might still
be a situation when the user needs to spend some time searching for a window.
It was then decided to allow a search functionality to search for the windows
on the desktop. MS Windows Vista has a similar functionality where the
user can search for applications in the start menu instead of wasting time
searching through the sometimes vast amount of items in there. A similar
functionality was also found in the desktop replacement BumpTop where the
user can search among the items on the desktop to �nd a speci�c icon or �le.

5.1.2 Research on Techniques and Technologies

It was decided to implement a basic rendering engine capable of performing
the tasks needed for this kind of prototype. The rendering engine was de-
cided to be constructed with a general design making it possible to use it
in other types of 3D applications. It was also decided to make it capable
of using di�erent rendering APIs, such as OpenGL [25] and Direct3D [9], in
order to make it more �exible and usable on di�erent platforms. This was
done by creating an interface to the rendering system to use from within
the application. An interface which can be connected to a rendering API by
choice. At this point only OpenGL was decided to be implemented for the
prototype.

To handle input it was decided to use an external library called Object-
oriented Input System (OIS) [24]. This library is open source and handles
input from mice, keyboards, and joysticks on MS Windows and Linux plat-
forms.

When constructing a 3D rendering engine, there are some very vital points
to take into consideration. How will each object be rendered and how will
their orientation in the 3D scene be represented? When the objects are
scattered across the scene, how should they be structured in an organized
manner? These questions will be answered in the following subchapters.

20

Object Representation Every object that is rendered in the scene is a set
of related vertices. Such an object is often referred to as a mesh in computer
graphics. Each vertex in a mesh needs to have at least a coordinate in the
3D space. If a texture is associated with the object a texture coordinate
needs to be included in the vertex information. If no texture is used a color
can be used instead. A vertex can also have a surface normal in order to be
perceived correctly when lightning is used in a scene. For convenience this
information about an object's vertices was decided to be stored in �les which
could be parsed and interpreted by the application runtime. This way you
separate content within the program from actual programming code making
it easier to control and maintain the system. There are many di�erent �le
formats available for storing meshes. It was decided to use a simple text
based format called ASE (ASCII Scene Export) [3] because of its simplicity
and prior experience using it.

Representation of Orientation To represent the orientation of an object
in space in a rendering engine there are typically two di�erent approaches
used. Either to use matrices or to use quaternions [2, chapter 3.2]. The main
bene�t of using matrices is the fact that common 3D APIs (Application
Programming Interface), such as the ones for Direct3D and OpenGL, use
them. When using matrices Euler angles are often used to represent the
rotation around the three axes in space, XYZ. Euler angles do have some
limitations though. When rotating it is possible to end up with a Gimbal
lock, which is a term for losing one degree of freedom. Storing the orientation
in this manner does also make it harder than it needs to be to interpolate
between di�erent orientations.[2, chapter 3]

A solution to both mentioned problems is to use quaternions instead. A
quaternion can represent any possible orientation in a 3D space by storing
any angle of rotation around any possible axis. Quaternions are relatively
easy to use but the mathematics behind is not trivial and is out of scope
for this paper. When using quaternions to represent orientation it is fairly
simple to get a smooth transition between two di�erent orientations by using
spherical linear interpolation. Functionality which can be very useful when
one wants to move the camera from one position to another smoothly and
change its orientation along the way. [2, chapter 3.3.2] Similar to matrices
quaternions are simple to handle. To perform multiple rotations after another
you simply multiply them. The obvious drawback using quaternions is the
fact that matrices are still needed in the last step when communicating with
the rendering API. Fortunately it is simple to convert a quaternion into its
corresponding matrix.

21

Due to their simplicity and �exibility to work with, quaternions were
chosen to be used for storing and working with object orientation. Other
operations that are used a lot in computer graphics are vector and matrix
operations. Instead of trying to implement the math behind these di�erent
operations it was decided to use an external library. The choice fell on
MathGL++ [18]. MathGL++ is an open source library which has an easy
to use API containing the most common functionality needed concerning
vectors, matrices, and quaternions.

Scene Graphs and Spatial Data Structures When having multiple
objects in a 3D scene a structure that keeps track of them makes the work
a lot easier. Scene graph is a concept that refers to a data structure in 3D
graphics which keeps track of all objects. When you have multiple objects
in a scene graph the underlying structure of how this data is stored has
huge impact on performance. These structures are usually called spatial data
structures (SDS). In computer graphics there are several well known and
widely used SDSs. Even if they internally work very di�erently and have
di�erent properties, they are all used to group and keep track of objects in
space.

For this project it was decided to use a Bounding Volume Hierarchy
(BVH). A BVH is a tree structure made up of bounding volumes (BV) as
nodes. A BV can be seen as a container which encloses other child BVs or
objects in a scene. The BVs themselves are generally made up of simple
shapes such as boxes or spheres. This makes it possible to discard an object

Figure 11: An AABB encloses an object and does always align with the axes
of the coordinate system no matter how the object itself is oriented. Here
the AABBs in a 2D coordinate system can be seen as gray boxes around the
same object oriented di�erently.

22

(a) BVH representation seen as
tree structure.

(b) BVH representation where
nested AABBs are used as BVs.

Figure 12: The concept of using AABBs as BVs in a BVH, showing how the
BVs would be nested for a particular BVH tree structure.

if necessary without the need to make any calculations on a 3D model which
might be much more complex. When traversing through the tree structure
one can skip a lot unnecessary traversing in the tree structure and save a
lot of time since every BV is enclosed by its parent BV. This means that
any child object in a BV can be ignored when its parent BV is ignored or
rejected. This kind of structure can be very powerful if the objects in the
scene which belong together, and are located around each other, are grouped
and organized in BVs. In Figure 12 one can see how a BVH can be formed
of several BVs and objects.

As BV shape it was decided to use Axis-aligned Bounding Boxes (AABBs).
The main reason for this choice was their simplicity. An AABB is a box which
is always aligned with the three axes (X,Y,Z) in the coordinate system no
matter of how the contained objects looks or are oriented (see Figure 11). To
compute this box for an object one only needs the minimum and maximum
coordinates in space for that object. To compute the AABB for a BV this
means that you only need to compare the minimum coordinates for all en-
closed AABBs with each other and all maximum coordinates with each other
to construct a correct AABB. In Figure 12(b) the nesting of the BVs and
their AABBs can be seen. Two other common shapes that were discarded
were spheres and Object-oriented Bounding Boxes (OOBBs). Spheres have
the drawback of having to compute distances using a square root which is
an expensive operation. OOBBs on the other hand, which are a bounding
box that encloses the object but rotates along with the object, give a more
accurate result than the AABBs but requires more computations since cal-

23

culations preferably are performed in the OOBB's local coordinate system.
Since the 3D scenes of this prototype will not be very complex using a

BVH as SDS is considered su�cient. A big advantage using BVH compared
to some other SDSs is that objects in this structure can be moved around
without the need to recompute positions and change in the tree hierarchy. It
did also feel like a natural way of dividing the objects used in the scene with
a parent-child structure.

By using a SDS to keep all objects in the scene you have greater control
over their location. Two areas where this have huge e�ect are picking and
culling objects before rendering.

Picking To interact with objects in 3D space it was decided to use a 2D
mouse cursor instead of any 3D version incorporated into the 3D world. The
main reason for this decision was that this prototype is supposed to be used
with mouse and keyboard as input devices and that the step from using other
WMs should be as small as possible. Since this was an approach that has
worked well in computer games for instance, it was seen as a small risk that
people would perceive it as unintuitive.

In order to determine what object in the 3D world the mouse is currently
pointing at a technique often referred to as ray casting was decided to be
used. A ray is vector with a 3D position as origin and normalized 3D vector
as direction. The idea is to use a ray that corresponds to where the mouse
cursor is pointing in the 3D scene. This ray should then be checked for
intersection with objects in the scene.

The choice of BVH as spatial data structure with AABBs as BVs was
made with picking in mind. Since a BV encloses all its children a missed
BV means that none of its children are hit either. A simple recursive check
in the BVH tree structure, where a missed AABB stops the traversing from
going deeper, �nds all possible intersections. This way a lot of unnecessary
intersection tests between the mouse ray and objects in the scene are skipped.

By comparing which objects this ray intersects with you �nd all objects
which the mouse cursor is pointing at. In most cases the object nearest
is the one you would like to pick, but since that is not always the case it
was important to implement a technique where di�erent hits could be sorted
depending on distance.

View Frustum Culling View frustum culling is the process of determin-
ing which objects in the scene that are within the view frustum of the camera
and to separate them from those objects that are outside.

When rendering this makes it possible to determine which objects that

24

are outside the view frustum of the camera without going through each object
individually. This saves a lot of work when rendering, since these objects will
not be visible anyway and they can be discarded. By not passing them on
to the geometry or rasterizer stage of the rendering pipeline, the processing
time can, depending on the complexity of the scene, be greatly improved.

An interesting paper by Akenine-Möller and Assarson [4] was found for
future use. It describes a combination of di�erent methods in order to opti-
mize the view frustum culling for bounding boxes such as those used in this
project.

5.1.3 Application structure, Basic Rendering, Input
An object oriented approach was seen as an obvious choice in order to keep
the system as easy as possible to design and maintain. By designing in
an object oriented manner it is easy to get a good structure of the system
since functionality and information can be encapsulated into logical parts
called objects. These objects can only be accessed by other objects which
are supposed to have access, and information that is only important within
each object is not visible from the outside.

As mentioned in the task analysis the prototype's functionality can be
divided into di�erent parts: one part which the user interacts with, one part
responsible for keeping track of the 3D scene, and another part to communi-
cate with the graphics hardware.

One important design decision that was used throughout the entire system
architecture was to use dedicated managers for all main tasks. These man-
agers were decided to be implemented as singletons since that would make
them possible to be accessed from other classes without a direct reference
to a particular object, but also in order to make sure that there is only one
active instance of the class running simultaneously [13, chapter 26.5]. This
design makes it possible to divide functionality into logically and conceptu-
ally separate parts that do not interfere with each other. It does also give a
common public interface for other classes to use, which means less passing
of references between objects. This type of design is not unique in any way
and is a design that has been used successfully before. The well known open
source rendering engine OGRE [23] uses this approach for instance and has
been a great source of inspiration in this project.

The �rst step of the implementation was to create a window that could
receive input and to render the content of a 3D scene. Since the develop-
ment environment was MS Windows XP/Vista this was made only for MS
Windows. To handle input from all connected input devices a dedicated
event handler was created to handle and respond to input received via the

25

OIS framework. To connect OIS to the application was an easy task, and at
this point the event handler did successfully handle input from the mouse,
keyboard, as well as game pads.

In order to make the development progress smoother one of the �rst
functionalities that was implemented was a terminal. One part of this was to
redirect standard output from the application to a separate console window.
This window could then be used to print debug information, and act as a
console to the application. The terminal with its separate console window
could then be used to print useful information during the development as
well as take input to change predetermined settings, change state of the
application etc.

When rendering a 3D scene a common approach to update the program
is to use listeners which are connected to the frame being rendered. This
means that the listeners are called before each frame is rendered as well as
after each frame. This approach was chosen in this prototype as well in order
to easily and in a structured way be able to respond to input and other events
which occur. These listeners are connected to all parts of the program that
needs to be updated each frame. By having a timer in the rendering loop
the listeners are provided the passed time between each frame in order to
respond correctly even for time dependent events.

When rendering a 3D scene the result depends on where the camera is
located in space and what direction it is facing. In order to capsulate the
settings such as position, direction, and �eld of view of the rendering, a
camera object was created.

5.1.4 Picking Items in Space and Working Dummy OS
Once the basic rendering and input was connected, the implementation of the
fundamental functionality could be done. This included a working dummy
OS to have items to work upon, a content loader to give these items visual
representation in the space as well as basic picking to move these items
around.

DummyOS The DummyOS was built to facilitate the running applica-
tions and provide information about them to the window manager. If time
would allow it, DummyOS would work as a middleware between this win-
dow manager and the OS, but since there is no connection between the real
underlying OS and the prototype, the DummyOS only keeps a list of fake
programs running. Each application initiated by the user is given a unique
ID. The applications themselves knows only which application they are, what
their title is and what application ID it has been given by the DummyOS.

26

Content Loading A mesh loader was implemented to be able to open and
read text �les formatted according to the ASE �le format standard. Only
the needed functionality of the ASE standard at this point was implemented
and the application did now have support for loading meshes and storing
positions, normals, and texture coordinates for all vertices in an object. This
information was encapsulated in a mesh object and in order to connect a
mesh to the 3D scene, functionality in the node objects was added to keep
references to meshes. Only meshes that are connected to a node in the scene
graph exist in the 3D world and only then are they rendered to the screen.
Meshes were decided to not have any position or orientation in the world
themselves, instead they are being rendered depending on where and how its
parent node is located.

The process of writing this loader went on smoothly and the next step
was to enable the possibility to load image �les in order to use as textures in
the rendering process. There are a number of di�erent image types available.
It was decided that support for only one type of image was su�cient at
this point. The choice fell on TGA. An image format that has support
for transparency and in other ways is easy to work with. At this point it
met all the needs of this project. Implementing the loader for this image
format was done easily since good support was found online on how to read
and interpret the TGA �le format [21]. When support for textures was
implemented windows could be rendered in the scene by applying textures
of application screenshots on a rectangle shaped mesh.

Scene Structure A scene manager was created in order to keep track of
all objects in the 3D world. Earlier it had been decided to use a BVH as SDS.
This was implemented by creating node objects which had references to both
their parent and children. By keeping the root node in the scene manager
no additional data structure than this tree of linked nodes was needed for
storing the objects in the scene.

In order to have a �exible tree structure where a child node follows its
parent when the parent's position or orientation is changed, it was decided
to implement the orientations and positions of a node as relative values to
the node's parent.

As BVs it had been decided to use AABBs. These were implemented
and each node object was provided an AABB. Even if the BVs are abstract
containers and should never be seen in the 3D world the functionality to
render these boxes was added in order to more easily see that the di�erent
parts of the BVH behaved as expected. In order for an AABB to always
enclose all of its children's AABBs, functionality was implemented to make

27

the AABBs update themselves before each frame whenever a child had been
updated.

At this point no view frustum culling had been implemented. This meant
that all objects in the scene were being processed each frame even if they
were not visible. Since the complexity of the scene was not very high this
was not a big hit on the performance at the moment but is a problem that
should be addressed if optimization is needed.

Picking Raycasting was implemented in order to be able to distinguish
what the mouse was currently pointing at. When the ray is shot into the
scene, there is a check to see if it collides with any AABBs. If the AABB
is hit its children nodes' AABB are checked for collision as well. By testing
intersection between the picking ray and the root node recursively all objects
that the mouse is pointing at are found.

The ray is easily calculated in terms of unit cube coordinates. The origin
of the ray is the screen relative 2D position of the mouse cursor projected
onto the near clipping plane of the view frustum. Since the frustum in unit
cube coordinates is orthogonal the direction of the ray will always be (0,0,1).
The origin and direction of the ray can then easily be converted with some
matrix calculations into world coordinates in order to be compared with
objects in space. This is done each frame in order to always have a correct
ray according to camera movement and orientation.

The algorithm used to calculate intersection between a ray and an AABB
is strongly inspired by a version of the slabs method by Akenine-Möller pub-
lished in Real Time Rendering [2, chapter 13.6.1]. Some other algorithms
were brie�y investigated but this was chosen for its simplicity to implement
and the good result it yielded. As a �rst version of picking in the prototype
only the AABBs of an object were picked and not the objects themselves.

5.2 Milestone 2
The deliverable for this milestone was to have an application where the key
concepts of this prototype could be tried out by people with di�erent level of
computer experience. The way the work progressed and the decisions about
the design that were taken in milestone 1 in�uenced very much what the
deliverable for this milestone was going to involve.

5.2.1 Iterate Work in Milestone 1
At this point the picking functionality was not su�cient since the AABB of
an object in most cases is bigger than the actual object. There was a need

28

for a more accurate solution where one could pick any object exactly if the
interaction in the prototype was going to be intuitive and usable. To solve
this issue an extra step was added to the picking procedure.

In this second step the mesh of all potential hits received from the AABB
comparison must be tested for intersection. For this purpose the ray needs
to be checked for intersection with the triangles in that mesh. The algorithm
that was implemented to calculate intersection between a ray and a triangle
was strongly inspired by an algorithm published in Real Time Rendering [2,
chapter 13.7.3]. When this algorithm showed to be very easy to implement
and showed good results no need was seen to investigate other algorithms
further.

The code behind the rendering was also refactored in order to have a
more object oriented approach. Input for the rendering process was not
taken directly from OpenGL anymore. Instead the rendering system wrap-
per communicated with the rendering API, OpenGL in this case, and the
rendering system provided the application with information about the ren-
dering state. Some OpenGL speci�c functionality that was previously used
for the origin and orientation of the rendering was now also replaced with
functionality implemented in the camera model. By using functionality in
the quaternion and matrix libraries the rendering system could now be pro-
vided with the correct input regarding position and orientation of the camera
without using utility functionality provided in the OpenGL library.

5.2.2 Decide Di�erent Ways of Interaction to Implement
Some simple interaction techniques were implemented in order test which
interaction ideas to discard and which to investigate further.

The possibility to move around in the scene was tested in a few di�erent
ways. First it was implemented to manually control the viewing position
using a keyboard and gamepad in di�erent ways, similar to how you control
a character or vehicle in a computer game. The biggest issue with these
approaches was the amount of time it took to move to the position of your
choice. Another issue was to place the camera in an optimal position with
optimal orientation to bene�t from the placement of windows and other ob-
jects in the 3D world. The other approach that was implemented and tested
was to not move the camera manually but instead having some prede�ned
positions and orientations that the user with a command could switch be-
tween. This approach addressed both problems with the �rst approach, but
had the obvious drawback of limiting the user in the 3D world.

Since one of the primary goals with this prototype was to implement a
system where the user quickly and easily should be able to switch among

29

running applications the approach of manually moving around freely in the
3D world was discarded. The other approach where a simple command was
enough to move the camera into the correct position was seen as superior
regarding usability in the case of this prototype.

Since the start of the project it was intended to have 2D windows placed
in a 3D world, but exactly how these should be present and how the user
was going to be able to interact with them was yet to be decided. With
inspiration from various products and papers some di�erent approaches on
how the user could manipulate a window using the mouse as input were
implemented.

Di�erent approaches that were considered were to to either let the user
move the windows freely in all directions or to limit the movement in some
way. Thoughts regarding limitation were to let the window follow the current
alignment of the camera or letting it follow a visible plane within the 3D world
similar to Data Mountain [26]. The approach that felt most intuitive was the
last one mentioned having the window following a visible plane. This was
also the approach that was chosen to be used.

Possibility to rotate a window around its di�erent local axes was also
implemented. This functionality was discarded almost directly since it did
not add much good, complicating the interaction and making the content in
the windows harder recognize.

The last functionality that was implemented and tried out at this point
was the ability to scale a window. The intention was that the user could
make important windows larger and less important windows smaller. The
problem with this approach in 3D was that it felt confusing since a smaller
window gave the illusion of being much further away than a large window
instead of di�erent sized. At this point it was decided that all windows in
the 3D world should be equally sized in order to avoid this confusion.

It was decided to have no windows placed freely in space, but instead
to connect each window to a plane. A number of planes should then be
placed in the space in a circle. The camera should be placed in the center
of this circle rotating around facing these di�erent planes. On each plane a
number of windows could be placed. The interaction the user should be able
to perform with each window in the 3D world is to move it around along
the plane within the plane boundaries, bring it up to 2D to work with, bring
it up to 2D to work with maximized, and close it. Once a window was in
the work space the window should be able to interact with as normally, i.e.
the ordinary 2D controls for moving, scaling, minimizing, maximizing, and
closing.

30

5.2.3 Implement Interaction Functionality
To realize the interaction needed at this point some issues needed to be ad-
dressed. The most important parts were functionality in the rendering engine
to accomplish visual e�ects and overlay rendering, managing windows in the
3D world, as well as a framework for navigation and window interaction.

Custom Vertex and Fragment Programs In order to have more �ex-
ibility over the visual result when rendering an object, one can load custom
vertex and fragment programs into the rendering pipeline. These programs
can either be written in low-level assembly that the graphics hardware can
interpret, or in a high-level programming language that can be compiled into
low-level assembly [11].

The obvious choice in this project was to use a high-level language. With
optimizing compilers for the high-level languages and syntax which is easier
and faster to both write and understand, low-level assembly was never even
an option. Since the prototype at this point used OpenGL to render the 3D
graphics the choice of shading language was between the OpenGL speci�c
OpenGL Shading Language (GLSL) [12] or the graphics API independent C
for graphics (Cg) [11]. Since Cg would work even if Direct3D rendering was
going to be implemented at a later point this was chosen as the preferred
shading language, and was implemented into the rendering engine.

Transparency and Translucent Objects A common issue in computer
graphics is to render translucent objects correctly. The reason for this issue is
due to how the graphics rendering pipeline works. When an object is rendered
the default behavior is to a�ect a depth bu�er which is used to make sure
that an object that is placed behind another object is not rendered in front
of that object. This generates problems with translucent objects since the
result of how a translucent object looks depends on the objects behind, which
means that a translucent object requires the objects behind to be rendered
before. A solution to this problem is to render all objects back-to-front, or
even better to render all opaque objects �rst and then render all translucent
objects back-to-front afterwards.

It might sound simple to sort objects. Often the object's position com-
pared to the camera position is su�cient, but in order to be sorted correctly
some special treatment might be necessary since there are a couple of things
to take into consideration. If objects have di�erent shapes and orientations
it can be hard to determine which object that actually is in front of another.
An even harder scenario is if two translucent objects intersect each other.
Then there is a need to split at least one of the objects into several parts

31

where no two parts longer intersect each other and to render these new parts
separately in the correct order. [2, chapter 4.5]

In order to be able to control the transparency for an object in the pro-
totype, custom Cg vertex and fragment programs were written which took
opacity as input from the application. Since all visible window thumbnails
have the same shape and orientation some potential problems previously
mentioned could be ignored when sorting the windows. The only issue was
the plane the windows were placed on. When tilted the plane was closer to
the camera than the windows since the origin of the plane never moved.

The solution to the transparency issues was to create a render queue
where the windows were ordered back-to-front and the plane was set to be
rendered before the windows.

Overlays 2D objects rendered to the screen in front of the 3D scene are
often referred to as overlays. Ability to manage and render overlays was
an important part to implement. Di�erent GUI components as well as the
actual windows to work with in work mode were intended to be rendered as
overlays.

An overlay is a very simple mesh consisting of two triangles put together
as a rectangle. These are rendered after the 3D scene has been rendered.
By rendering without any depth check the overlays are always rendered in
front of everything else, and by rendering them back-to-front no issues with
faulty occlusion or transparency occur. To manage creation, destruction, and
keeping of all overlays an overlay manager was created.

A special type of overlay was also created in order to be able to write text
to the screen. This was needed for e.g. the mouse tooltip and the window
search area. In order to render text to the screen a technique referred to
as texture mapped text [32] was implemented. The font is stored as a tex-
ture where each letter's position corresponds to a certain texture coordinate.
Each character that is rendered to the screen is a rectangle consisting of two
triangles, which is rendered with the font texture with matching texture co-
ordinates for its particular letter. This technique is fast and versatile. The
text can be rendered at any position and orientation, with any color, and
with varying size. One drawback is if the letters are scaled too large. In this
case over-sampling of the font texture can result in poor quality, but since
the size of the text rendered within the application is restricted, this is not
an issue.

Desktop Manager It was decided early that, at least as an initial support,
the window manager would provide four separate desktops. To accommodate

32

this, a desktop manager was implemented.
The desktop manager keeps record of the available desktops, and the

desktops keeps records of what applications they have on their respective
deskspaces, as well as which applications they have visible in work mode. It
also keeps track of all the desktop element settings, such as windows sizes,
plane dimensions and plane tilt. To help decide when and where to activate
di�erent interaction possibilities, it was also decided that the desktop man-
ager to keep track of the available states as well as which state the user has
currently activated. There are �ve di�erent states the user can be in:

• Deskspace state - when interacting with windows on the 3D desktop

• Workmode state - when working with applications in the 2D overlay

• Birdview state - when in overview mode of all the deskspaces simulta-
neously

• Searchmode state - when searching for running applications, either on
a local deskspace or in birdview

• Widgetmode state - when working in the 2D overlay, initiating appli-
cations or using gadgets

Widget Manager To start applications from the prototype, it was de-
cided to implement a Widget Manager. From a �nal product perspective,
this area is meant to contain the start menu, as well as di�erent other OS-
speci�c elements as well as support for gadgets such as weather information
or hardware monitors. Although this was unlikely to be implemented on the
given time frame, the prototype was still designed to allow this extension. In
the meantime, it had support for some of the items on the start menu to be
initiated.

Window Search To easily �nd a speci�c window in a deskspace it had
been decided to implement a search function. By using an overlay and con-
necting input to a text overlay a search �eld was easily created. First the
search interaction was implemented to start a search when the user pressed
Return. In order to get a better �ow it was tested to submit a search after
each key input. The result felt more �uent and dynamic so this interaction
was kept. Pressing Escape was implemented to close the search �eld and exit
the searchmode state.

The idea was to visualize in the 3D world which windows that matched
the query by fading out non-matching windows. This was simply done by,

33

based on the result for each search submit, alter the opacity of the object for
the windows in the the active search. The search algorithm at this point was
just a simple string comparison, comparing if the input given by the user was
contained within the title of each window.

Input handling and Interaction To encapsulate the functionality that
should be able to be performed with the mouse a speci�c class for this purpose
was implemented. Based on input from the OIS framework the class was
implemented to control what objects the user held his mouse over, clicked
on etc. Some key functionality needed for this was to distinguish if the
mouse was over an overlay or not, a trivial check that only requires a simple
coordinate comparison in 2D. If no overlay was found another check within
the 3D world was performed to see if the mouse was placed where it should
pick any 3D object instead. If the mouse a�ected any overlay or interactive
object in the 3D world the mouse class was implemented to trigger any
corresponding event depending on if a mouse button was clicked, released,
or if the cursor was just held over an object.

Window Representation and Window Interaction A running appli-
cation in the prototype is both supposed to be represented in the 3D world
as a thumbnail as well as a 2D application when brought to work mode. This
functionality was implemented and encapsulated in a window object. The
window object kept a node object with a mesh object for the 3D scene, as
well as an overlay object for the 2D representation.

In order to be able to interact with a window it was decided to implement
certain zones of the window which should respond to mouse interaction.
These zones were called action zones and were made to be either active for
the window in the deskspace state or when the window was brought up to
2D in the workmode state. Conceptually these zones were made very similar.
When clicked they activated some prede�ned functionality depending on the
action zone type. The di�erent types of action zones that were implemented
were: move, close, minimize, maximize, bring up to workmode, and bring
up to workmode maximized. These action zones were made relative to the
window they belonged concerning both position and size. They were also
given icons so the user knew when which action zone was activated. The 2D
action zones were made invisible since they were only implemented to mimic
the behavior of the most important user interface controls of an application,
such as the close button for instance, which was visible on the underlying
window texture.

34

Camera Movement The movement of the camera is very important when
moving around in a 3D environment. Especially if the intention is that the
user should have a perception of where he is located and what direction he
is facing. In order to get a good feeling for the camera rotation between
the di�erent deskspaces it was decided to implement smooth transitions.
The �rst step to achieve this was to implement functionality to interpolate
between two di�erent orientations. A good solution for this functionality
is spherical linear interpolation [2, chapter 3.3.2] which was added to the
quaternions library. This functionality was used in combination with a cosine
function in order to get a smooth start and stop.

Another detail that was implemented when rotating the camera was to
zoom out from a deskspace slightly when starting to rotate away from it,
and to zoom in again when reaching the destination deskspace. The purpose
with this was to achieve an e�ect of locking the camera into position when
working with a deskpace. The zooming e�ect was achieved by changing the
�eld-of-view of the camera.

Di�erent durations for switching between deskspaces were tried out and
one second seemed to be a good default value to start with. It was then
possible to follow the movement at the same time as you did not have to
wait for a long time for the switch to �nish.

In order to help the user to keep a sense of orientation when the camera
is moved around it was decided to use some landmarks. The choice fell on
having a distant view enclosing the entire scene. A common approach to
address this is to use a skybox, which is a technique where images of the
environment are put on the inside of a box.

Six images are needed: one on each side of the box, representing what is
seen from a certain point in the six di�erent directions corresponding to the
sides of the box. This box is rendered around the camera to give an illusion
of a seamless environment in the distance. One way of rendering this box is
to make it large enough to contain the entire 3D scene. Another approach
is to render the box at the same position as the camera, while not a�ecting
the orientation of the box, before anything else is rendered to the scene. By
doing this without a�ecting the depth bu�er the objects in the scene will be
rendered "in front" of the box as if the box actually was in�nitely far away.
This second approach was chosen since it is very �exible and the size of the
box does not depend on the objects in the scene, it does only need to be large
enough to not interfere with the near clipping plane. For a skybox to give a
realistic e�ect it has to be a quadratic box where all images should have the
same origin for the viewpoint and cover a �eld-of-view of 90 degrees. It is
also important that the edges of neighboring images coincide.

35

5.2.4 Fix Bugs and Usability Before Test With Test Group

To get some structure of the di�erent states of interaction, a simple state
machine was implemented into the desktop manager to switch among its �ve
di�erent states.

When working with an application in 2D in workmode state it was decided
to blur and darken the 3D scene behind in order to make a clear distinction
between the windows seen in the 3D world and in the 2D overlays, as well
making it clear to the user that the 3D scene is not available in this mode.

To perform e�ects on the entire 3D scene, such as blur for instance, an
approach called post processing was used [20]. An approach that is often
used to create e�ects of di�erent nature [2, chapter 8.8]. The �rst step was
to render the scene to a texture. This texture was then applied to a screen-
aligned billboard covering the entire screen. This billboard was then rendered
with a customized Cg fragment program which applied blur and darkening
depending on input from the prototype. This way the blur and darkening
process could be controlled freely and be faded in and out when switching
between di�erent interaction states.

In order to have a system that is fast and easy to use for an experienced
user, keyboard shortcuts are essential [7, p.490-491]. For this reason a number
of keyboard shortcuts were implemented to enable switching between the
di�erent interaction states. As default it was decided to use the window key
as modi�er to trigger all functionality in the prototype. This key is only
present on PC keyboards but any other modi�er or combination of modi�ers
could be used instead as well. The main bene�t of using this key is that a lot
of potential shortcut clashes can be avoided since it is seldom used by other
applications.

Functionality was implemented to be triggered when holding down the
modi�er at the same time as pressing certain keys. By pressing a number
on the keyboard the 3D space mode was set to be activated if not already
active, and the camera would turn to the deskspace with the corresponding
number. The same functionality was decided for the left/right arrow keys,
but with the di�erence that the camera turned to the deskspace left/right to
the active one. If space was pressed the prototype was made toggling between
the deskspace state and workmode state. By pressing the s key the window
searchmode state started and Tab was used to change mode to the birdview
state. By pressing the modi�er and releasing it before hitting another key
the widget area was brought up.

For mouse driven users a GUI was also planned to be incorporated to
handle switching between the di�erent interaction states. Due to lack of time,
this functionality was not incorporated before the user tests were performed.

36

5.3 Milestone 3
Milestone 3 was the last milestone for this prototype. During this milestone
it was planned to do some testing with the prototype on a test group, and
to take this input to �nalize a version of this prototype. Some of the key
concepts to test were how the test group would respond to moving around
in a 3D environment, how the interaction between 3D and 2D worked, and
how the feeling was of moving windows on the planes with di�erent tilts in
the 3D scene.

5.3.1 Usability Study and Evaluation

The primary purpose with the usability study was to test the key concepts
and core functionality of the intended prototype. The primary target group
for this kind of window management system was people who work with several
di�erent applications and/or tasks simultaneously, needing a framework for
good overview and structure when multitasking among them. Despite of this
it was found interesting to see how people with di�erent backgrounds and
ways of working with a computer would respond to the system.

A test group with a total of ten people was selected. These people had
very di�erent computer experience varying from barely knowing how to check
the mailbox, to using the computer daily at work, to them who have been
using computers their entire life. Most of the test subjects were MS Windows
users, only a couple of them used Mac or Linux as their main OS.

Before testing the prototype a short interview with the test subjects was
performed. The intention with this interview was to get an understanding of
how the user normally uses di�erent elements of the operating system, and
how he usually interacts with e.g. the desktop, open applications and the
start menu. After the interview the system was brie�y explained to the test
subjects. The purpose of the prototype and what di�ered conceptually and
in functionality between systems today was mentioned.

The tests were performed by instructing people to do di�erent tasks and
observing them while performing these tasks. The tasks covered more or less
all functionality in the prototype. They were told to use the widget area to
start programs, manage placement of windows on the deskpace plane with the
plane at di�erent angles, switch between di�erent deskspaces, bring up win-
dows to work mode, toggle between work mode and deskspace mode, search
among open windows, switch to overview mode, moving windows between
di�erent deskspaces in overview mode, switching between overview mode and
deskspace mode, as well as using overview mode as an aid to search for a
particular application and to switch to its deskpace.

37

After the test, follow-up questions were asked in order to try to dig deeper
into the test subject's opinion about the concepts of the system and how
individual parts worked. One of the most important issues was how the
concept of working in a 3D environment felt, and how the interaction in this
3D environment was carried out in the prototype. If the spatial memory in
3D helped them remember where a particular application was placed was also
of great importance since that was one of the main reasons for the current
design of the system. It was also interesting to �nd out whether they saw any
real purpose of a system like this and if they could see themselves using it.
These issues and other feedback such as what worked poorly and suggestions
for improvement were of interest.

5.3.2 Adapt System According to Usability Study
Some issues when switching between di�erent interaction states needed to
be �xed. This was done by rede�ning the di�erent interaction states within
the code and how they were managed. The interaction states were separated
into interaction in the 3D world and interaction made in front of this in
the 2D overlays. In 3D the user could either be working with a deskspace
or be up in overview position. On top of this he can either have no 2D
functionality, be using the widget area, searching among open windows, or
work with applications.

Most users testing the prototype could adapt to using keyboard shortcuts
to change between spaces and do other commands. But they still missed
having a clickable interface to achieve these actions. It was therefore decided
to implement a GUI to navigate the system. This was connected directly to
the desktop manager, since this should be visible at all times, with the only
exception of being in widgetmode, which places this in front of all overlays
on the screen. Another useful mouse interaction that was incorporated after
user suggestion was to switch to the deskspace state if the user was in the
workmode state and clicked somewhere in the free blurred out 3D space.

38

6 Result
The resulting prototype is an application that runs on MSWindows XP/Vista
simulating a window manager. No OS is connected to the prototype. Instead
a dummy OS keeps and manages dummy instances of running applications.
The prototype is implemented to make the user able to navigate in a 3D world
placing and accessing running applications on designated areas. Constraints
such as limiting how and where windows can be placed are implemented in
order to make the interaction as intuitive, easy, and fast to work with as
possible. Movement of windows is limited to follow a plane in the 3D envi-
ronment and all camera movement is controlled by commands meaning that
the user does not have to navigate in 3D space himself.

To be able to utilize 3D e�ectively the prototype uses a 3D rendering
engine for the functionality of visualizing and interacting in 3D. This 3D
functionality is the backbone of the prototype and is the major part of the
application. It was implemented to meet the needs of this prototype hav-
ing support for the most vital functionality such as loading and rendering
of objects and textures from �les, supporting custom vertex and fragment
programs, supporting post e�ects, and performing accurate picking. The
rendering engine performed well enough to test the prototype but there is
room for optimizing various parts; one big feature for instance which was
initially intended to be implemented that was skipped due to lack of time
was view frustum culling.

6.1 Prototype Functionality
The prototype has four di�erent deskspaces placed symmetrically around the
camera position. Switching between them can either be done using the GUI
in the lower left corner of the screen or by using keyboard shortcuts. The
GUI presented to the user is very sparse. There are a few buttons in the
corner that can be used to switch between deskspaces, enter birdview, or
start the search among windows. There is also a button to bring up the
widget area. The idea is that when the user normally uses the start menu,
he has no immediate use of the information from the windows of running
applications, and is therefore not disturbed if the widget area takes over the
entire screen. So instead of presenting the user with a start menu, the user
is redirected to the widgetmode state where the start menu is incorporated.

The di�erent states of the prototype can be divided into states in 3D,
and states in 2D in front of the 3D world. There are two di�erent 3D states.
The user is either in the deskspace state or in the birdview state.

39

6.1.1 Deskspace State

The intention with the deskpace state is that the user should be able to
organize running windows in the 3D space. If an application is started it is
placed in the active deskspace.

By hovering a window, icons showing its action zones are revealed (see
Figure 13). The action zones available in this state make it possible for the
user to move the window, close the window, or to bring the window to the
workmode area. There are two di�erent zones that bring the program to
workmode. One zone that opens with a previously stored position and size,
and one that opens the window in fullscreen. If a window is brought to the
workmode the workmode state is entered.

The windows on a deskspace are scaled to �t four windows next to each
other with some space between. This results in windows being big enough
to be able to quickly determine the content, without taking up too much
space. Since the action zones are limited by the surface of the window, it
is essential that the windows are not made too small, or it will be easy to
unintentionally click somewhere the user did not intend to.

Windows can be moved around freely within the borders of the deskspace
plane using the mouse. In conventional 2D window managers, the physical
mouse movement forward and backward corresponds to up and down on the
screen. In this state this movement instead corresponds to moving windows
along a plane. Although this movement di�ers from the ways of general
window interaction, no users seemed to have any problem with this and
adapted to this almost instantly.

6.1.2 Birdview State

To get an overview over the deskspaces and their windows, the user en-
ters the birdview state. In birdview, the user is presented with all four
deskspaces from a topdown perspective with the active deskspace upwards.
When changing from the deskspace state to the birdview state, the camera is
rotated and translated into birdview position. During the camera movement
the deskspace planes and their windows are tilted to face the new position
of the camera. This way, the user still knows which deskspace he was using
before entering this mode and can easily identify the other desktops.

From the birdview viewpoint, the user can easily go to any of the deskspaces,
or rearrange the content of the spaces. When switching deskpace the user is
taken to the deskspace state.

By moving a window from a deskspace, a ghost copy is made that fol-
lows the user's mouse movements. While moving the ghost window between

40

Figure 13: Hovering over a window shows its action zones.

Figure 14: When moving windows between deskspaces, a copy is made to
show where it is moving, and the initial window is kept on the current parent
space so one knows where it is taken fom.

41

spaces, the real window follows accordingly along the borders of the current
desktop it belongs to. This way, the user can easily see where the window
was taken from and it can be put back if it was moved by accident or if the
user changes his mind. When the ghost reaches another another deskspace,
the window is brought there. See Figure 14 for reference.

6.1.3 Workmode State
The workmode state is where the user works with the applications. This state
is in 2D in front of the 3D world. The intention is that working with windows
here will be carried out in the same manner as it is done in conventional
2D window managers. If the prototype was connected to a running OS the
input from this state could have been redirected to the corresponding running
application. Since no OS was connected, the most important functionality is
imitated by action zones instead. Functionality available in the prototype is
closing, minimizing, and maximizing a window. Since the buttons for these
actions are visible on the underlying window texture the action zones are not
invisible.

When switching to the workmode state, the 3D scene of the deskspace is
blurred out and darkened. This is to emphasize that being in the workmode
state working with an application, is not the same state as being in the
deskspace. A distinction that is important to make in order be able to easily
separate active windows in workmode and inactive windows in the 3D scene
behind (see Figure 15).

When being in the workmode state and changing the active desktop, the
user is still in in the same state, but is instead presented with the workmode
state of that speci�c deskspace and its active windows. During the camera
animation for the deskspace switch, the applications in the current workmode
state are faded out in order to let the applications from the other deskspace
to be faded in.

6.1.4 Widgetmode State
The widgetmode state is intended to replace the start menu and desktop
found in many OSs today. When widgetmode is entered the widget area is put
on top of the screen covering the entire screen. A start menu is incorporated
into the widget area and from here one can initiate new applications as well
as reach other functionality common in a conventional window manager.
Besides from the start menu the widget area is intended to be customizable
to �t the user's needs by using widgets. Functionality similar to the desktop
and the noti�cation area in MS Windows are examples of widgets that can

42

be incorporated.
Instead of having the desktop cluttered with icons and documents, and

having to minimize all windows to gain access to them, one can just open
the widget area, and access a smaller �le area where the wanted documents
or folder shortcuts can be reached. At this point it only works as a dummy
screen, with the only functionality to initiate some applications, but the
intension with this area is to be fully customizable for the user's needs. See
Figure 16 for reference.

6.1.5 Searchmode State

In order to be able to �nd a window fast if its location was forgotten, a search
function was incorporated. By switching to the searchmode state from the
deskspace state, a search is initiated among the windows on the current
deskspace. If the birdview state was active before the switch the search is
global on all deskspaces. When the searchmode state is active a text �eld in
the GUI is visible in the lower right corner of the screen. By typing a search
query all windows which's title do not match are faded out. See Figure 17
for reference.

6.2 Prototype Usability
One fear initially was that people were going to experience problems with
adjusting to interacting in a 3D environment when being used to 2D. During
the user tests nothing indicated that this would be an issue though. No test
subject had any real problems to move windows on the deskspaces and they
adjusted to di�erent tilts without any problem.

There were various testing with the tilt of the desktop board with the
user test group. Using the 0 degree change makes the window placements
very similar to any 2D desktop and a lot of the intended purpose of this
prototype is lost. Still, one small bene�t of this compared to an actual 2D
desktop is that you can scale any window image without having to resize the
window. In this way one can have a number of windows, di�erent sized or
even maximized, and you can still very quickly spot any window you want
to work with. By setting the tilt to 90, some users tended to feel that the
board was tilting at a decline from the screen, giving the illusion of being
more than 90 degrees tilt. This generally got the users to not use the back
of the board because of the low visibility. The tilt most appreciated for good
visibility and still a lot of room to work with was about 55 degrees. See
Figure 18 for references.

43

Figure 15: When in the workmode state, the 3D world is blurred out so the
working windows are emphasized.

Figure 16: The widgetarea has the start menu �xed and the rest of the area
is customizable.

44

(a) Searching the current deskspace for windows matching the string
"photo" while being in the deskspace state.

(b) Searching all deskspaces for windows matching the string "xmoto"
while being in the birdview state.

Figure 17: When using the search function, windows that do not �t the
search query are faded out.

45

(a) 0 degrees (b) 55 degrees (c) 90 degrees

Figure 18: Di�erent tilts of the desktop � 0, 55 and 90 degrees.

Neither did anyone express any problem with orientation and navigation
in the 3D environment. The navigation was implemented with the intention
to avoid making the user feel disoriented by making him able to keep track of
where the camera was located and oriented at all times. After understand-
ing the functionality no test subject pointed out any problem to follow the
prede�ned paths the camera took when switching between di�erent locations.

When test subjects were asked to �nd certain applications they had placed
in the prototype there was generally no problem for them to remember where
it was. This was also the case for systems used for inspiration testing spatial
memory such as Data Mountain.

In the preceding interviews questions were asked about how much and
in what way the test subjects used their desktops. Some of the experienced
users did not use it at all, but most people used it in some way. Despite of this
there was not much resistance to the idea of replacing the traditional desktop
with a widget area with similar functionality. To �nd out if the widget area
would work as a replacement in reality, it would need to be implemented and
tried out, but on a conceptual level the idea seemed accepted.

The feedback regarding the usefulness of the system was diverse. Test
subjects who stated that they did not use a lot of applications simultane-
ously, tended to have accepted the functionality of their preferred OS without
questioning why things worked in a certain way. These people did not see any
reason to switch from a system they used, which they thought worked well,
to start using another one. A few of the test subjects could see themselves
using this kind of system though. In common for these test subjects were
that they used multiple applications simultaneously or switched among dif-
ferent tasks frequently. The bene�ts mentioned were the ability to organize
tasks on di�erent deskspaces and �nding running applications easier since
you have a sense of where you have put it.

46

7 Discussion
The �nal prototype has the fundamentals for a working desktop environment,
but there are always improvements or di�erent solutions that would greatly
improve the value of the product.

We are very pleased with the way the graphics rendering engine turned
out. One of the reasons that the rendering engine turned out to be as stable
and functional as it is, is probably due to the fact that a big part of the
system design was inspired from the open-source rendering engine OGRE,
an engine we have been using frequently during our masters program.

For the window manager, this rendering engine does not require much
more functionality. One thing that could be implemented, both as "eye
candy" as well as an aid for the user orientation is shadows. The most
signi�cant drawback from this would probably be some performance drop.
It is also possible that the visibility of objects is a�ected negatively when
objects cast shadows on each other.

For the underlying functionality, one improvement would be to add sup-
port for Direct3D rendering. Although both OpenGL and Direct3D o�ers
similar functionality and it would make no di�erence for the visual results
of the application, it is still a matter of preference if you want the rendering
to be done using OpenGL or Direct3D. Using a di�erent rendering API can
a�ect the performance depending on the system speci�cations of the running
computer.

The biggest improvement for the application at this point would be to
actually bind it to an actual operating system. As both authors of this report
are MS Windows users, that would be the �rst operating system to bind to
the application. By doing this the system can be used and tried out with
completely di�erent conditions, letting test subjects use the system in a real
environment and feel how it would a�ect their work �ow. The only feedback
received now for instance regarding removing the desktop and incorporate
its functionality into the widget area, was based on the test subjects ability
to see how it could work since the functionality was not implemented in the
prototype. The tests now worked fairly well to test individual parts of the
interaction for instance, but to give the test subjects a really good feeling for
this kind of system as a whole is hard without a fully working environment.

There has been only a limited research into other OSs. This is because
it's hard to gain a good understanding of what a WM can o�er unless it
is tested. Since we run MS Windows XP / Vista, it is mainly these WM
replacements that have been in focused. Both of us has very little experience
in the Mac OS family, but there has been some testing of the functionalities
using friends' computers, as well as our supervisor, who mainly uses Mac OS,

47

has shown us some of the functionality it o�ers. Unix/Linux testing has also
been limited, even though it is available at campus. This is mainly due to
the fact that these OSs, and their di�erent distributions, are not as hands-on
as Mac or MS Windows are. They generally require some scripts and �le
editing to get new modules working properly. Although these have not been
experienced at a personal level, a large number of video captures of di�erent
WM solutions are available at di�erent video streaming sites online. One
might argue that there has been a lack of pre-studies made, based on these
facts. Although we have not been able to try out all the available systems by
ourselves, we still consider the information we gathered good enough to be
properly evaluated. These demonstrational videos, together with the actual
testing of real systems for the MS platform, complements each other enough
to give us a good understanding of the WMs available today.

If the system is going to be usable one of the most important improve-
ments would be to add some kind of interface for the users to customize
settings. Most parameters and presets that controls the application at this
point are either constants that need to be changed in the code or values that
require input in a non-user-friendly terminal window to change. Settings
that are of interest for the user to customize are e.g. the size on planes and
windows, position of planes in relation to the camera, custom wallpapers for
the skybox, animation times for the camera movement, tilt on deskspaces,
number of available deskspaces, type of action zones, size on action zones
etc.

Considering the interaction of the prototype, there are some really inter-
esting concepts in the BumpTop desktop replacement. Instead of being able
to stack and group the icons, these actions could be used on the windows
on the deskspace. By being able to select many windows at once and either
by mouse gestures or by some interface being able to do these actions, it
speeds up the reorganizing compared to just moving them one by one with
the mouse.Another interesting idea would be to implement collision detection
between windows when moving them around. For now the windows just go
through each other when they collide but making a window stop when it hits
another window could make the interaction more intuitive.

A functionality we think would be usable would be to be able to lock
dedicated space on the screen for certain applications, e.g. media players.
When another window is activated it is often placed on top of the media
application. These programs often have functionality to always be on top
of the other windows but this behavior results in them covering important
functionality of the underlying window. If an application can be locked to
take up a part of the screen, maximizing another window still means that it
is only maximized on the remaining area.

48

The results from the interviews and tests with people did not surprise us
very much. Since the intention with the system is to help organizing open
programs when working with several applications simultaneously, people who
do not use a lot of programs have no need to switch to this kind of system.

49

8 Conclusion
The main goal with this thesis was to implement a prototype to try out some
concepts of using 3D to enhance window and task management. It resulted
in a working prototype which uses a 3D world to organize running programs.

The project started with some di�erent ideas on how 3D could be used
to organize windows in a way where the user could have more control and
overview. Most of the ideas in the initial stage were inspired by �aws experi-
enced in di�erent window managers available. To get more inspiration some
research was made. Di�erent products and prototypes available were tried
out and research papers describing di�erent areas relevant to the topic were
read. Some of these papers and products inspired more than others and the
ideas of how the prototype was going to work were reevaluated.

A number of di�erent interaction techniques and concepts were at this
point ready to be implemented and tried out. Many of these were discarded
at an early stage but a �rst version of the prototype and its intended func-
tionality was �nalized in order to be tested on a group of people with di�erent
computer background and experience.

User tests were performed with the primary purpose to �nd out how
people would react and perform using a partially three dimensional and par-
tially two dimensional user interface. The interaction in 3D was intentionally
limited in di�erent ways in order to be as intuitive and straight forward as
possible when using mouse and keyboard as input devices. No problems were
observed for the techniques implemented, neither concerning navigation in
the 3D world nor how one interacted with objects in 3D compared to 2D.

The reactions from people were mixed and no strong correlation between
test subjects' previous computer experience and appreciation of the func-
tionality of the prototype was found. It was not an uncommon response to
question why this functionality was needed. Many of the test subjects were
used to the system they used daily and had not re�ected on how it could
be improved, they had accepted the functionality of their own system and
learned to use it and appreciate it. Some positive feedback was received as
well from people who liked the ideas and concepts and could see themselves
using it.

Feedback from these user tests were taken into consideration and the
functionality of the prototype was updated. A lot of further development
can still be done though. An interesting next step would be to actually
connect the implemented functionality to a running operating system. It
would then be possible to evaluate the functionality more thoroughly since
people could be using the system in their own working environments and get
a feeling of how the system could bene�t them during their daily use. This

50

would probably generate a lot more usable feedback which could be used to
develop this system further.

Even if some more functionality and tuning of a lot of details were desired,
the prototype ful�lls the initial requirements and the �nal results are seen as
satisfying. The implementation process has been instructive and rewarding,
and even if some problems have occurred along they way it went on fairly
smooth with no major delays compared to the planning. Not all test subjects
were positive to this approach of window managing, but the fact that a few
were, means that there is some potential in the prototype which would be
interesting to investigate further.

51

9 References

[1] 360desktop o�cial homepage. http://www.360desktop.com/. Accessed
2009-05-25. Last updated unknown.

[2] Tomas Akenine-Möller, Eric Haines, and Natty Ho�man. Real-Time
Rendering 3rd Edition. A. K. Peters, Ltd., Natick, MA, USA, 2008.

[3] Ase �le format. http://wiki.beyondunreal.com/Legacy:ASE_File_
Format. Accessed 2009-05-25 Last updated unknown.

[4] Ulf Assarsson and Tomas Möller. Optimized view frustum culling algo-
rithms for bounding boxes. J. Graph. Tools, 5(1):9�22, 2000.

[5] Bumptop o�cial homepage. http://www.bumptop.com/. Accessed
2009-05-25. Last updated unknown.

[6] Andy Cockburn and Bruce McKenzie. Evaluating the e�ectiveness of
spatial memory in 2d and 3d physical and virtual environments. In
CHI '02: Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 203�210, New York, NY, USA, 2002. ACM.

[7] Alan Cooper and Robert Reimann. About Face 3.0: The Essentials of
Interaction Design. Wiley & Sons, 3rd revised edition edition, 2007.

[8] Cubedesktop o�cial homepage. http://www.cubedesktop.com/. Ac-
cessed 2009-05-25. Last updated unknown.

[9] Direct3d api. http://msdn.microsoft.com/en-us/library/
bb173477.aspx. Accessed 2009-05-25 Last updated unknown.

[10] Niklas Elmqvist. 3dwm: A platform for research and development of
three-dimensional user interfaces. Technical Report 2003-04, Depart-
ment of Computing Science Chalmers University of Technology and
Göteborg University, 2003.

[11] Randima Fernando and Mark J. Kilgard. The Cg Tutorial: The De�ni-
tive Guide to Programmable Real-Time Graphics. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 2003.

[12] Glsl speci�cation 1.40. http://www.opengl.org/registry/doc/
GLSLangSpec.Full.1.40.05.pdf. Accessed 2009-05-25 Last updated
unknown.

52

[13] Craig Larman. Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and Iterative Development (3rd Edition).
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2004.

[14] Kevin Larson, Maarten van Dantzich, Mary Czerwinski, and George
Robertson. Text in 3d: some legibility results. In CHI '00: CHI '00
extended abstracts on Human factors in computing systems, pages 145�
146, New York, NY, USA, 2000. ACM.

[15] Thomas E. LaStrange. swm: An X window manager shell. pages 299�
306, Summer 1990.

[16] Litestep o�cial homepage. http://www.litestep.net/. Accessed
2009-05-25. Last updated unknown.

[17] Mac osx feature expose. http://support.apple.com/kb/HT2503. Ac-
cessed 2009-05-28. Last updated unknown.

[18] Mathgl++. http://mac.softpedia.com/get/Math-Scientific/
MathGL-plus-plus.shtml. Accessed 2009-05-25 Last updated un-
known.

[19] Metisse o�cial homepage. http://www.mandriva.com/archives/en/
projects/metisse.html. Accessed 2009-05-25. Last updated 2008-07-
29.

[20] Msdn post processing. http://msdn.microsoft.com/en-us/library/
bb147283(VS.85).aspx. Accessed 2009-05-25 Last updated unknown.

[21] Nehe tga loader. http://nehe.gamedev.net/data/lessons/lesson.
asp?lesson=33. Accessed 2009-05-25 Last updated unknown.

[22] Objectdock o�cial homepage. http://www.stardock.com/products/
objectdock/. Accessed 2009-05-25. Last updated unknown.

[23] Ogre o�cial homepage. http://www.ogre3d.org. Accessed 2009-05-25
Last updated unknown.

[24] Ois. http://sourceforge.net/projects/wgois. Accessed 2009-05-25
Last updated unknown.

[25] Opengl api. http://www.opengl.org/sdk/docs/man/. Accessed 2009-
05-25 Last updated unknown.

53

[26] George Robertson, Mary Czerwinski, Kevin Larson, Daniel C. Robbins,
David Thiel, and Maarten van Dantzich. Data mountain: using spatial
memory for document management. In UIST '98: Proceedings of the
11th annual ACM symposium on User interface software and technology,
pages 153�162, New York, NY, USA, 1998. ACM.

[27] George Robertson, Maarten van Dantzich, Daniel Robbins, Mary Cz-
erwinski, Ken Hinckley, Kirsten Risden, David Thiel, and Vadim
Gorokhovsky. The task gallery: a 3d window manager. In CHI '00:
Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 494�501, New York, NY, USA, 2000. ACM.

[28] B. Shneiderman. Why not make interfaces better than 3d reality? Com-
puter Graphics and Applications, IEEE, 23(6):12�15, Nov.-Dec. 2003.

[29] Greg Smith, Patrick Baudisch, George Robertson, Mary Czerwinski,
Brian Meyers, Dan Robbins, Eric Horvitz, and Donna Andrews. Group-
bar: The taskbar evolved. In Proceedings of OZCHI 2003, pages 34�43,
2003.

[30] Ian Sommerville. Software Engineering (7th Edition). Pearson Addison
Wesley, 2004.

[31] Craig Tashman. Windowscape: a task oriented window manager. In
UIST '06: Proceedings of the 19th annual ACM symposium on User
interface software and technology, pages 77�80, New York, NY, USA,
2006. ACM.

[32] Texture mapped text. http://www.opengl.org/resources/features/
fontsurvey. Accessed 2009-05-25 Last updated unknown.

[33] Image source. http://km.support.apple.com/library/APPLE/
APPLECARE_ALLGEOS/HT2503/HT2503_02.png.

[34] Image source. http://kodemind.com/strateng/images/desktop2.
jpg.

[35] Image source. http://image73.webshots.com/173/5/63/49/
2269563490103796773YnGLuP_ph.jpg.

[36] Image source. http://www.veriti.net/liens_dyn/img/39128360_
slideit.jpg.

[37] Image source. http://softmann.com/images/Cube-Desktop-Pro.
jpg.

54

[38] Image source. http://www.jfedor.org/shots/metisse.jpg.

[39] Image source. http://hcil.cs.umd.edu/trs/2004-29/images/
2004-29_img_4.jpg.

55

A Test person queries
A.1 Questionnare prior to prototype testing
Age:

Gender:
Level of Computer Experience:
Operative System:

• Desktop

� Do you start programs by icons on the desktop?
� Do you collect �les/folders on the desktop?
� Can you quickly �nd what you are looking for on the desktop?
� Does it matter if you placed those icons?
� Would you be able to use the computer without the desktop?

Why/Why not?

• Window Management

� Do you often have more than 5 windows open simultaneously?
� Do you see a need for supporting di�erent task areas, where you

can switch between tasks without having to open/close programs?
� Do you use the mouse or keyboard to switch between windows?
� Which of these do you prefer: Alt+Tab / Win+Tab / Taskbar ?

• Start Menu

� Do you use the start menu to start programs?
� Do you use the start menu to open the computer settings?
� Do you use the start menu to open folders?
� Do you use the start menu to open �les?
� Do you use the start menu to do something else?
� Do you use mouse or keyboard for this?

• Is there any functionality you think is missing?

56

A.2 Testing the prototype
• Start a program

• Change to another deskspace

• Start a program

• Fetch the program to workmode

• Test interactability with window in workmode

• Change back to previous deskspace while being in workmode

• Go back to deskspace

• Start multiple programs

• Test the search function

• Go to birdview

• Move windows between deskspaces

• Test the search functionality

By doing these actions, all functionality is tested within the prototype,
although the users are encouraged to continue try out some things on their
own.

57

A.3 Questionnare after the prototype testing
• Deskspace

� What did you think about the tilt?
� What did you think about the window size?
� What did you think about the plane size?
� What did you think about the action zones?
� What did you think about switching deskspaces?
� What did you think about the search in this mode?
� Any other ideas?

• Birdview

� What did you think about the transition from deskspace?
� What did you think about the distance from the deskspaces?
� What did you think about the interaction with windows from

here?
� What did you think about the search in this mode?
� Any other ideas?

• Workmode

� What did you think about the transition from the deskspace?
� What did you think about the window interaction?
� Any other ideas?

• Widget Area

� What did you think about the idea of having the start menu static
and the rest customizable?

� What did you think about having it on top of the deskspace?
� Is there any functionality missing?

58

B System overview - Class Diagram

59

