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ABSTRACT

We propose and investigated a novel method for global navigation and localization of an autonomous
commercial vehicle within a confined area using a hybrid map. The hybrid map is based on a topology using
nodes and edges where significant places are adapted as nodes. The hybrid map is able to store different type
of machine learning algorithms and its flexible design allows the topology to be easily extended. The hybrid
map operates using a node detector algorithm complimented with a node classification algorithm for increased
robustness. The machine learning algorithms uses two dimensional lidar data as inputs exclusively. When it
comes to the detection of nodes, performance evaluation showed that the Adam method are superior to the
common gradient descent method when training feed forward neural networks in the considered scenario. In
order to classify the nodes, one class support vector machines are preferred.

The performance of the hybrid map system was further on evaluated by implementing it on a Raspberry Pi
3 to prove its simplicity.

In conclusion, our results suggest that the system has potential for implementation in a real vehicle. However,
it needs further verification and improvements to ensure a robust system and for it to be useful as a real
application.
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PREFACE

In 2015, a Vinnova ( Verket fér innovationssystem) financed project was initiated with the purpose to increase
safety and efficiency in transport systems using autonomous vehicles '. The main application area is within the
mining industry where autonomous ore trucks would, according to Parreira et al., increase efficiency, reduce
the risk of human injuries, and lower fuel consumptions [PM10].

ACKNOWLEDGEMENTS

This master thesis was carried out at CPAC Systems AB during the spring of 2016. We want to thank CPAC
Systems AB for giving us this opportunity and all the resources needed to make this project possible. Especially,
we want to show our gratitude to our supervisor Peter Forsberg who has encouraged and motivated us through
the whole thesis. We have had many interesting discussions about this topic and his endless passion for
technology is hard to not get influenced by.

We also want to thank our examiner, Krister Wolff, who has given us academical feedback throughout the
whole thesis time. This type of feedback is most valuable.

lvinnova. se/sv/Resultat/Projekt/Effekta/2009-02186/AUTOMATED-SAFE-AND-EFFICIENT-TRANSPORT-SYSTEM/

iii



iv



NOMENCLATURE

ANN Artificial Neural Network

ASGD Averaged Stochastic Gradient Descent
BLOB Binary Large OBject

BP Back-Propagation

BPTT Back-Propagation Through Time
ES Exhaustive Search

FFNN Feed Forward Neural Network
GD Gradient Descent

GUI Graphical User Interface

OSVM One-class Support Vector Machine
RBF Radial Basis Function

RNN Recurrent Neural Network

RP3 Raspberry Pi 3

SGD Stochastic Gradient Descent

SMA Simple Moving Average

SQL Structured Query Language

SVM Support Vector Machine
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1 Introduction and background

Intelligent vehicle systems has recently been one of the most prominent research areas within the field of
robotics. Autonomous vehicles has a rich history with experiments conducted as early as in the 1920s [Sen26].
It began to seem promising already in the 1950s when General Motors and Radio Corporation of America
developed automated highway prototypes with radio control for speed and steering [G M14]. The first genuinely
autonomous cars emerged in the 1980s with the work of Ernst Dickmanns and his team at Bundeswehr
Universitdt Miinchen [Dic07]. They were able to control their own motions in more complex environments
such as highways and similar. Advances in sensor and computation technology has aroused an interest in the
area and vast progress has been made in the past decade. Today, a majority of the leading car companies
and related research organisations have developed numerous prototypes [Vie+15]. In the mid 2000s, DARPA
organized the Grand Challenges where teams gathered to compete with their self-driving vehicles [BISO7].
Another major project within autonomous vehicles was initiated in 2009 by Google X which aims to develop
highly advanced self driving vehicles using lidars [Chal3].

1.1 Background and context

One of the most difficult tasks in autonomous driving is to generate an accurate estimate of the vehicles position
and orientation [Bic4+04]. Most autonomous vehicles needs some information regarding its current environment
in order to generate appropriate control inputs. This information is often acquired through a variety of sensors
mounted on the vehicle that could be of different types. There are several methods solving the positioning and
orientation problem in the literature where different methods are more suitable in some circumstances [SNS11].
In some cases, if the environment allows, a camera sensor could be enough in order to maintain the vehicles
position. Some autonomous vehicles that travels in urban environments uses information given by its sensors
for mapping its environment while simultaneously positioning itself in this map.

Since there are several applications areas in which autonomous driving is being tried out and evaluated,
there are just as many solutions to the localization problem [Raol0]. In order to take care of all conceivable
scenarios that a vehicle can encounter, more and more sensors are being introduced into the systems. It can be
said that the complexity of the system increases with the complexity of the tasks that the vehicle has to be
able to take care of [Sanl5]. This is of course also correlated with the computational power because of the
considerable amount of data being treated.

Machine learning has become more and more common within autonomous vehicles simply because of the
complexity of the problem. The techniques has been available since the late 1950s [Sim13] but it did not start
to flourish before the 1990s. With faster computers, machine learning has become feasible solutions to several
problems within autonomous vehicles. In April 2016 Nvidia published a preprint of their promising results
of DAVE2 [Boj+16], a project that has been going on since October 2015. Their system consists of a neural
network that has been trained with less than a 100 hours of random driving data. It is able to map raw pixel
data from a camera directly to steering commands of the vehicle. The results was surprising and their method
is seen as very powerful in terms of their end-to-end approach. With results as these, it is hard to see a future
without machine learning on the road of making a vehicle fully autonomous.

1.2 Purpose

Solving the localization problem is of great interest in the industry today as it opens up a big area of applications
in many industrial fields. Many of these applications today involves a human driver who is exposed to dangerous
elements such as traffic and non-reliable environments. A completely autonomous vehicle would remove these
elements of risk as well as increase efficiency and lower environmental impacts [PM10].

The purpose of this thesis is to investigate the possibility of maintaining the position of an autonomous
vehicle within a confined area, such as a mining system, without considering absolute positioning by instead
using a relative hybrid map. The intention behind this is to minimize data acquisitions and reduce unnecessary
computations and further explore the prospects of solving the localization problem in a simplistic fashion.



1.3 Scope

Since the thesis is of an exploratory nature, it is of high importance that the existing work within these areas is
evaluated. The final goal, i.e. what is to be accomplished, is defined while how to reach it is to be discovered.
The goal is to build a functional concept for global localization and path execution for an autonomous vehicle
within a confined area by using a hybrid map. The aim is to base the hybrid map on new underlying ideas and
it should be designed in such a way that it contains all information needed in order to let the vehicle navigate
and localize itself.

The commencing task consists of studies of relevant literature in combination with experiments in order to
define the extent of the thesis work. When the thesis work is characterized, a proposed solution (hypothesis)
is presented. Based on the findings of the literature study and experiments, the proposed solution forms a
framework which, in theory, solves the identified problems. The remaining part of the thesis work consists of
the realization and evaluation of the proposed solution.

1.4 Limitations

This thesis considers the localization part of making a vehicle autonomous. It is assumed that navigation on a
local level is available such that no effort will be put into this part. The local navigation system is built up of
several algorithms that should be used in different scenarios. These algorithms are referred to as behaviours
which will be selected depending on the position of the vehicle.

Autonomous vehicles operate in a wide variety of environments such as urban areas, private households
and plantations. Developing a system that is able to operate in all these environments is a tough task as the
prerequisites are different. This is why a confined environment with the character of a underground mine is
considered.

The amount of research in the field of autonomous vehicles is substantial and the amount of research that
can be considered in this thesis is limited. Therefore, only machine learning methods are considered as this
area of research falls well in line with the purpose of this thesis.

1.5 Thesis outline

This thesis consists of seven chapters. Followed by this introduction, the theory chapter serves the purpose to
brief the reader of the different methods and concepts that is used in this thesis work. Main topics described
are map theory for autonomous vehicles and various machine learning methods that are commonly used today.
This is followed by a methodological chapter of a proposal of what the final system is to result in together
with the different methods that are considered. Next is a chapter that explains the platform used to acquire
data and to evaluate system performance. This chapter is followed by the implementation of the system. The
results from this work is then presented and discussed. Finally, the thesis work is rounded up with a conclusion
of the final results as well as future improvements.



2 Theoretical background

In comparison to how a person operates a vehicle, it is equally important to be able to handle the vehicle on
the roads as it is to maintain the correct route in order to fully make use of its purpose. This is also the case
when dealing with autonomous vehicles. An autonomous vehicle needs to make use of its surroundings in order
for it to make appropriate control decisions, while it also needs to exploit this information to locate itself to
preserve the right track or route. Information of the vehicles surroundings is received through different sensors
mounted on it, as for example a lidar which conveys distances to any objects in the vicinity of the vehicle. The
newly arrived sensor information can then be compared to information that has been stored in advance to see
if the vehicle is maintaining its course. There are several methods of performing this comparison mentioned in
the literature such as map matching, various Bayesian approaches and machine learning techniques [SNS11].
As mentioned in Section 1.4, only machine learning techniques are considered in this thesis work. This chapter
provides the information needed to understand these selected machine learning methods, how to evaluate them
together with various other utilities necessary to grasp the coming chapters in this thesis.

2.1 Maps

Maps are used by autonomous vehicles as internal representations of their surroundings which can be one
solution to the problem that is to successfully plan and move to target locations. Many different kinds of maps
are proposed in the literature, all with different advantages and disadvantages [Bus05]. Due to the contrast
in convenience of map types, it is common today to create a combination of maps into a so called hybrid
map. Thus, hybrid maps integrates different kinds of representations in order to draw advantage of each map’s
strengths.

2.1.1 Metric maps

The most common type of map is the metric map where a distance corresponds to a distance in the real world.
A map of this type can be used to for instance return a length of a certain path, the size of a building or an
absolute position of a particular object. As a consequence of the high precision of a metric map, it consists of
considerable amount of data and it can be utilized when detailed information is of importance.

2.1.2 Topological maps

Kuipers introduced topological maps for autonomous robots in 1978 where nodes represents geographical places
and edges represents paths [Kui78|. Kuipers further extended the framework in 1999 with more topological and
metric maps [Kui00]. Other map types are also introduced to the framework.

Unlike metric maps, topological maps do not contain metric information such as distance between objects.
Instead, topological maps describes how objects are related and connected. This makes it intuitively easy to
understand that these kind of maps contain less information than a metric map and are also more easy to
interpret. A typical example of a topological map is a subway map which describes how, and in what order
different stations are connected.

Topological maps uses different definitions of nodes and edges. Nodes can represent properties of the
environment, such as rooms and entrances, which makes them easy for a human to understand. This also
facilitates graphical representations of the map.

There are also topological maps where nodes represents internal states of the robot. One such map is
proposed by Duckett et al., where nodes are placed when the robot has travelled a certain distance [DMS02].
Edges connects two nodes and holds information about distance and angle between the nodes.

The properties of topological maps make them suitable for global path planning. As the maps consists
of nodes and edges, algorithms used in graph theory can be used [Bus05]. Graph search algorithms such as
Dijkstra’s algorithm can be used for calculating shortest path from a initial node to a destination node [Dij59].

2.1.3 Hybrid maps

As mentioned, hybrid maps are combinations of maps, usually metric and topological maps. One such map can
be seen in Figure 2.1. The reason is to utilize their respective advantages. However, several types of hybrid
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Figure 2.1: An example of a hybrid map containing a metric map with a topological map that describes the
relations between the intersection and corridors.

Y

maps have been proposed since the late 70s. Buschka attempts to categorize hybrid maps into ”parallel maps’
and ”patchworks maps” [Bus05].

Parallel maps are defined as systems that has at least two maps covering the same area. In many of these
maps, a topological map is extracted out of a metric map by using different techniques. This way, the best
suited map can be used for a given task. For example, the topologic map could be used for path planning and
the metric map used for navigation. Thrun et al. uses a topological map and a so called grid-based metric map
[TB96]. The topological map is extracted from the grid-based metric map by using Voronoi diagrams such that
the metric space has a corresponding node in the topological map.

In patchwork maps, each node in the topological map contains a small metric patch. This way, the topological
map covers the whole area and describes how the metric patches are connected. This structure allows the
map to cover very large areas with high detail and still be easily scalable. One such type of hybrid map was
proposed by Kuipers et al. [Kui+04].

2.2 Localization

An autonomous vehicle bases its control decisions on information it receives from various sensors, prior
knowledge about the intended route or any other useful information that describes its environment. Usually,
the localization problem can be divided into two sub-problems; the current location of the vehicle and its
orientation. The location of the vehicle could correspond to its position in relation to, for example a map of
the vehicles surroundings or coordinates in relation to earth. The orientation tells which way the vehicle is
facing. Two types of localization is mentioned in this chapter, namely metric and topological localization.

2.2.1 Metric localization

Estimation of the vehicles location and orientation can be done using motion tracking based on odometry or
dead reckoning. This means to determine the current position based on the previous position. This is rarely
a sufficient solution for most fully autonomous vehicles, due to the fact that the accuracy decreases in time
without any further information of the surroundings [Mia+07]. Appropriate sensors available that provides
external information of the vehicles’ position and orientation would be a global positioning system (GPS)
[MKHO06]. However, a GPS does not work in all situations as they can have bad reception in some areas.

In order localize the vehicle metrically, both orientation tracking and global positioning requires some sort
of information in relation to the vehicles surroundings. Nowadays, it is common to adopt information from a
map for the vehicle to use as reference. If the area is known, the map can be constructed in advance which can
give high precision results. Some autonomous vehicles are however used in urban environments such that the
area is unknown. Thus, it is of interest to generate the map as the vehicle traverses. In order for it do so, it
has the recurring problem of knowing its location in the map. A common technique used today is to generate
or update a map of the unknown environment while simultaneously keeping track of the vehicle residing within



it. This problem is referred to as SLAM (Simultaneous Localization And Map building) [Dis+01]. Although
the SLAM method provides accuracy, it requires computational power which is a limited resource in some
applications. Usually the algorithm builds up a metric map of its surroundings which can end up in large data
sets depending on the resolution/accuracy of the map as well as how large the area of which the vehicle is
operating in is.

2.2.2 Topological localization

Using just a topological map as an instrument to localize, it is not of interest for the vehicle to know its absolute
position. By simply having the knowledge of which section or part of the working area a vehicle is residing
in could be enough. In such a case, it would be sufficient to use a topological map with nodes and edges
corresponding to certain sections of the real world. Thus, it would be enough to know the vehicles position if
the it could distinguish in which node or edge it is operating in.

There are many methods of detecting node and edge transitions in the literature. Kosnar et al. finds nodes
by constantly searching for the number of outgoing edges from the current position [Kos+09]. The edges are
found by looking for perpendicular vertices in the lidar data that are larger than a threshold value. If more
than two edges are detected, a transition happens.

Choi et al. uses a global topological map that is compared to temporary local topological map [Cho+02].
The modified probability method and the Bayesian update rule is then used to compute the most likely position
in the global topological map. Another type of topological localization was introduced by Ulrich et al. where a
panoramic vision system is used to compare reference images, associated with every node, to what the robot
currently sees. The similarity is computed by using the Jeffrey divergence [UNOO].

2.3 Lidar sensor

Laser scanners or lidars are a type of surveying equipment that measures distances by lighting up surfaces
using laser light. The technique is similar to the one used by radars but instead of measuring the time delay of
radio waves, it measures the delay of light pulses. There are numerous advantages using a lidar instead of, say,
a camera. It works in dark areas, the data is usually easier to process, and no calibration is needed.

Lidars are mainly used in a wide range of applications where high resolution is of the essence such as
mapping geography or atmospheric physics [Cra07]. By letting light pulses from the lidar hit a rotating mirror,
distances in a range of degrees can be measured very efficiently. A visualization can be seen in Figure 2.2 where
two objects are blocking the field of view of the lidar.

. B
@

Figure 2.2: Visible space (in blue) of a Lidar (circle) with 180 degrees vision field.

This technique is something that is widely used when information of the surroundings rather than a single
measurement to a certain object is of interest. Doing this, an array of distances is returned from the lidar
where each element corresponds to a certain angle.

One can think of this stream of information as polar coordinates that describes the environment at a specific
time instance. These polar coordinates are defined in terms of Cartesian coordinates as

x; =15 - cos(6;)

Yi =715 sm(@l)



where 1; is radial distance from the origin to any hit object and 6; is the counterclockwise angle from the
horizontal axis. In terms of x and vy,

2.4 Machine learning

Machine learning is a field within computer science that has emerged from studies within pattern recognition
and learning theories from artificial intelligence. Arthur Lee Samuel is said to be the pioneer within machine
learning and artificial intelligence. His program called Samuels Checkers-playing program became the worlds
first self-learning program which demonstrates the fundamental concepts of artificial intelligence [Sam59].
Machine learning is a collection term for several methods that explores the study and construction of
algorithms that can learn and make predictions from given data. Machine learning is often used for classification
or regression. Classification means to identify class membership, and regression is used for estimating or
predicting an answer. An example of how one learning algorithm for classification works is shown in Figure 2.3.

New example

Labeled . . l

L Machine learning —.
training | algorithm Prediction rule
examples

Predicted
classification

Figure 2.3: Ezxample of supervised learning algorithm for classification. The training data together with the
desired output is given to the algorithm during training.

The learning that is being done is based on some observed data, such as constructed examples, experiences
or given instructions [Dom12]. The learning stage is used to build up a training model that is able to make
predictions on other data sets. It can be said that machine learning algorithms learns to do better in the future,
based on past attempts or experiences. The soul purpose of these types of algorithms is that they can improve
their own learning without any human interaction or assistance in order to perform better.

Traditionally, the way of solving a computational based problem is by identifying the problem and explicitly
programming the software such that it solves this specific problem. Instead, the machine learning algorithm
builds its own model that solves the problem provided learning data rather than following any strict instruc-
tions. Machine learning is often used to solve complex tasks and algorithms that uses large data sets where
computational power is a limited resource [CMMS83]. In general, it can be said to exist three types of machine
learning methods:

e Supervised learning: The algorithm is taught with example inputs with corresponding desired outputs
given by a teacher. The goal is to learn a rule that is able to map inputs to specific outputs.

e Unsupervised learning: No labels are given to the algorithm, letting it structure its inputs on its own.
This type of learning can be used to find hidden patterns in data or feature data.

e Reinforcement learning: The algorithm is set to act freely and learn from interactions with a dynamic
environment with a specific goal (such as traversing forward), without any other tutoring such as its
getting closer to this goal.

As mentioned above, these three general methods have advantages and disadvantages depending on the
problem it is to solve. This is mainly dependant on of what type of information is available to the algorithm as
well as identified by the tutor.



2.4.1 Support Vector Machine

In the field of machine learning, support vector machines (SVMs) are supervised learning models that can be
used for labelling (classification) or regression. SVMs has been successfully used within a large variety of fields
such as bioinformatics, text and image recognition [BGV92].

Given a set of training data each labelled such that they correspond to a specific category, the SVM builds
a model that is able to classify new data as a member of one of these categories. The SVM maps its training
data as points in a n-dimensional space where each category is separated as much as possible from the others.
New data are then mapped into the same space to belong to one of the classes. An example of a linear SVM
performing binary classification is shown in Figure 2.4.

Linear SVM
T T T T T
N — Learned frontier ° ° °

eoe Class 1
1.5Heee Class 2

2.0

1.0r

0.5F
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—1.0F o

—1.5F
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Figure 2.4: Representation of a linear SVM performing binary classification of 2D data. In this case, all data
is separable such that the model reaches convergence.

In 1999, Scholkopf et. al introduced a modified version of SVM with a new parameter v which can be used
to control the upper bound on the fraction of margin errors and the lower bound of the fraction of support
vectors [CL02]. This new parameter is, as opposed to the non-modified SVM, bounded between 0 and 1.

Linear Support Vector Machine

A big advantage of using linear SVMs is that they can be trained using stochastic gradient descent (SGD)
which is useful for very large data sets [Men09]. Gradient descent (GD) is a first order optimization algorithm
that uses the whole training set in every iteration to find a local minima:

1 n
Wi41 = Wy — ﬂﬁ va Q(Zu wt) (2~3)
i=1

where 7 is the learning rate and V., Q(z;, w;) is the gradient of the empirical risk. Instead, SGD uses only
one sample from the data set in every iteration for training the SVM, which makes it faster than GD [Bot12]:

Wip1 = wg — NV Q2 wt) (2~4)

where z; is a randomly picked sample from the training set. In some cases, the averaged stochastic gradient
descent (ASGD) is proven to perform better than SGD [Xull]. The algorithm first performs the normal SGD
update and then computes the average:

t—t
0 i—tot1



One-class Support Vector Machine

In a scenario when only data from one class is available (i.e. only positive data), supervised training is not
possible as no negative data is available. The One-class SVM (OSVM) is a special case of SVM as it is trained
unsupervised on only positive data to determine whether a new observation is a outlier or not. This type of
SVM were introduced by Schélkopf et. al in 1999 [Sch+-01].

One-class SVM One-class SVM
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Figure 2.5: One-class classification of toy 2D data using OSVM with RBF kernel, for two different values of .
Not all positive samples are classified correctly.

In linearly non-separable data sets, a kernel can be used to map the data to a higher dimensional space
where it linearly separable. A common kernel used in OSVMs is the Gaussian Radial Basis Function (RBF)
which only has one hyperparameter, v, which can, intuitively, be seen as the learning rate:

K (i, 25) = exp(—llzi — a5]*) , v > 0 (2.6)

A large v means a Gaussian with a small variance so the influence of the sample z; is smaller compared to
when a small v is used. Two examples of OSVM classification for different v are illustrated in Figure 2.5.

When designing a OSVM, a common technique to find best combination of v and v is to use Exhaustive
Search (ES). ES is of brute force type as it iterates through all possible candidates to find the one with the
highest amount of correctly classified samples.

2.4.2 Artificial neural network

Artificial neural networks (ANNs) are a collections of mathematical models inspired by the biological neural
networks of brains in humans and animals. These networks are used to solve a wide variety of complex tasks
without using rule-based programming where the behaviour is decided by the designer. Instead, ANNs are, just
like other machine learning methods, systems that learn from data. A comprehensive summary of artificial
neural networks were written by S. Haykin [HNO04].

ANNSs consists of interconnected groups of computational elements called neurons and input elements. All
connections have an associated weight consisting of a numerical value. The two basic types of ANNs are
feedforward neural networks (FFNNs) and recurrent neural networks (RNNs). The difference between them is
that FFNNs only have forward-pointing connections and RNNs have both forward- and backward-pointing
connections.

The most common model of an artificial neuron was proposed by McCulloch et al. in 1943 and is defined as
in Equation (2.7) and vizualised in Figure 2.6 [MP].

v=o gwx) (27)
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Figure 2.6: A vizualisation of the McCulloch neuron in Equation (2.7)

Every connection has a associated weight w which is used to scale every signal x to a neuron. The neuron
computes the weighted sum and converts it by using a activation function o(z). The activation function defines
the output of the neuron and is, in some cases, used for practical reasons as they often put a upper and lower
limit to the neuron output. Several types of activations functions exists but three common functions are the
logistic sigmoid function, the hyperbolic tangent function, and the rectified linear unit function:

1
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Perceptrons

The perceptron is the simplest type of FFNN as it do not have any hidden neurons, the inputs are directly fed
to the output layer via the associated weights. With this structure, the perceptron is only able to perform
linear classification. The perceptron was invented by F. Rosenblatt in 1957 [Ros57].

Figure 2.7: A perceptron with a fully connected input- and output layer.

Because of the simplicity of the perceptron, it can be trained in a simple and fast way compared to
multi-layered ANNs where backpropagation has to be used. However, as the model is a linear classifier, it will
never successfully classify all data correct if the data set is not linearly separable. An advantage is that the
model is only updated when a false classification has been performed, making it suitable for very large data
sets. The weight w; is updates as

w; = w; + Aw;
i i i (2.9)
Aw; = n(t — o)x;
where z; is the associated input, n is the learning rate, ¢ is the current training sample’s output, and o is
the current output of the perceptron.

Hidden layered feedforward neural networks

FFNNs consists of multiple layers with a number of neurons in each layer. Every neuron in a layer is the input
to all other neurons in the next layer. One such FFNN can be seen in Figure 2.8. The layers in the middle of
the network is called hidden layers, and the last layer is always the output layer.

When designing a FFNN, the amount of hidden layers and the amount of neurons in each layer has to be
specified by the designer. A majority of problems can be solved using only one hidden layer and if the data is



Figure 2.8: A feedforward neural network (FFNN) with a input layer, two hidden layers, and a output layer.
The hidden layers have three and two neurons respectively.

linearly separable, no hidden layers are needed at all. When choosing the number of neurons in a hidden layer,
a common rule-of-thumb is to use 2/3 as many neurons as in the previous layer [Karl2].

A common way to train FFNNs is to use the back-propagation (BP) algorithm. This learning procedure
was introduced by Rumelhart et al. [RHWS8]. In order to use this method every input value needs a desired
output value, which is why it is considered a supervised learning method. Another requirement to use BP in
the learning process is that the activation function is differentiable [HN04]. Both of the activations functions
mentioned above have this property.

First, a forward pass is performed in order to compute a prediction. The error is then calculated by taking
the difference between the predicted value and the true value. This error, or cost, is then used to compute
weights for all connection in the network, normally using gradient descent described in Section 2.4.1. This step
is called the backward pass as the error is passed back into the network. The process is performed iteratively
until all training data are predicted correctly or until a stop criterion is fulfilled.

In 2015, Kingma et al. introduced a new algorithm, named Adam, for gradient-based optimization for use in
neural network training [KB14]. This algorithm is similar to stochastic gradient descent as both are stochastic
processes but Adam has been shown to be more robust if the learning rate of the SGD is not properly tuned
[KB14]. Adam is, just like SGD, preferable over GD when training on very large data sets.

Recurrent neural networks

FFNNs can be used to solve a great deal of problems. However, in these networks the input-output pairs are
assumed to be independent. This means that, for any given input, the output signal will be the same. In RNNs,
the output is dependent on previous computations, which gives them a dynamic memory. This is useful in a lot
of applications where sequential information is fed to the network, such as handwriting recognition by Graves
et al. and generation of natural language descriptions of images by Karpathy et al. [Gra+09] [KF15].

Figure 2.9: A fully recurrent RNN with five neurons. This network has, opposed to FFNNs, feedback connections.

Most RNNs have, as opposed to FFNNs, feedback connections where a neuron can receive input signals
from any other neuron in the network. One such RNN can be seen in Figure 2.9. A neuron could also be the
input to itself. These type of RNNs are called fully recurrent and is the most general form.

Training of RNNs can be performed similar to training FFNNs using the back-propagation algorithm. In
this case, the output does not only depend on the current time step but also previous time steps. This is why
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Backpropagation Through Time (BPTT) is used. However, training fully recurrent RNNs have known issues,
the vanishing and the exploding gradient problems described by Bengio et al. in 1994 [BFS93]. The problem
manifests itself in that RNNs have problem learning long-term dependencies.

2.5 Performance evaluation

In this section, different methods of evaluation are presented.

2.5.1 Confusion Matrix

A confusion matrix consists of information of the actual and the predicted classifications that has been done by
a classification system. The matrix is used as a measurement of how well the classifier is performing. Table 2.1
describes a two classifier system.

Table 2.1: A confusion matrix and a accuracy measure.

‘ Actual positive  Actual negative

Predicted positive | TP FP
Predicted negative | FN TN
Accuracy ACC

To explain it further, the entry TN describes how many samples that has been corrtectly predicted as
negative. Entry FP describes how many negative samples that has incorrectly been labeled as positive. Entry
FN says how many samples that has been labeled as negative by the classifier when these samples actually
where positive. And finally, entry TP says how many samples that has been correctly predicted as positive.
In order to evaluate the accuracy of the system equation (2.10) is used which is a measure of how often the
classifier is correct.

TP+ TN
ACC = TP+TN+FP+ FN (2.10)

2.5.2 CPU and memory usage

The measure of CPU usage of a specific process is the ratio between CPU time to real time. The CPU time is
seen as the duration of which the process has been running and real time is a certain time interval.

CPU time

CPU =
Hsage Real time

(2.11)

This way, the ratio is an averaged CPU measure which might not cover all characteristics of a process if
the time interval is large. At times, processes can go from idle to active and vice versa. However, using small
enough time intervals the current CPU usage of a process can be monitored.

A common way to evaluate a process’s memory usage, is to measure the resident set size (RSS) of the
process. RSS is the amount of memory allocated in primary memory by the process. By taking the ratio of the
RSS and the total size of RAM, a measure of memory usage is achieved.

RSS

Total RAM (2.12)

memory usage =
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3 Proposed hybrid map

This chapter presents and describes the proposed system. The general structure is first described, followed by a
more in depth description of the methods to be evaluated and used.

3.1 Overview of the system structure

As mentioned in the introduction, it is of interest to solve the localization problem with the underlying idea
that an absolute positioning is not needed. This means, without ruling out any options, that the autonomous
system only needs to know its whereabouts in critical locations. The reason behind this is that the vehicle
might need to behave differently depending on the vehicle’s current environment and situation. A prosed way of
doing this is to represent the area of which the vehicle is operating in on a topology, such that critical locations
in the actual world represent nodes in a topological map.

The structure of this proposal will consist of three main blocks that together forms a hybrid map. Each
block has different tasks which together are able to do node detection, node classification, global positioning,
global path planning, and behavior selection. The reason why the map is of a hybrid type is because the vehicle
will navigate using topological data combined with temporary local metric information. In Figure 3.1, the
relation between the three blocks is shown.

Hybrid Map
Graphical
2D Lidar c User
data Interface

Behaviour
Selection

Figure 3.1: Relationship between the tree main blocks. Lidar data is the input to both the detector and the
classifier block. The output of these are then fed to the topological map. The topological map decides the behavior
of the vehicle and a graphical user interface is used to represent the position of the vehicle in the topological
map.

The proposed hybrid map is based on a number assumptions:
e The initial position of the vehicle is known.

e The world is known a priori. This way, the topological map can be built in advance and sensory data
from the world is available.

e Every place is assumed to be distinguishable to the sensors used, i.e. there are no identical places.

The topological map stores the relative position of the vehicle and keeps track of the path in the system.
The nodes represents crossings, meeting places, dead ends and other significant places. The edges is seen as
the corridors between these significant places. This type of topological map is easy for a human to interpret
as all nodes corresponds to physical places. The representation is also suitable for global path planning (e.g.
Dijkstra’s algorithm [Dij59]) as the length of the edges can be stored in the map. Different behaviors of the
vehicle can be selected by the hybrid map depending on criteria, such as the current position and the type
of the next node. Using this approach, exact positioning is not possible. On the other hand it is not needed
according to this proposal.

By detecting nodes, it is possible to know when an edge or a node transition happened. It is in this way
the position in the topological map is updated. The position of the vehicle is described by the topology of
the hybrid map as a particular node or edge. The detection of nodes is performed using lidar data exclusively.
This way, the system is kept as simple as possible and negative aspects that can arise from using other sensors
are avoided. Different methods of node detection is considered and evaluated.
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Node classification is needed to make sure that the hybrid map is robust. If a node has been detected, it is
possible that the vehicle has drifted away from its course and ended up in a neighbouring node, away from the
intended one. This would result in global miss-positioning. By performing classification of the nodes as well,
the map does not only know that a node transition has happened, it also knows which nodes it has transitioned
into. As the initial position of the vehicle is known, all possible neighbouring places to travel is known. This
fact is utilized as the hybrid map will only try to classify the neighbouring nodes from its current node, thus
creating synergy in the map and reducing the computational complexity as fewer nodes are considered. Having
this structure of a detection block and a classification block, the classification process is simplified as the edges
in the map does not have to be considered. The node classifier only considers nodes, while the node detector
considers both nodes and edges.

3.2 Machine learning methods

Different machine learning methods for node detection and classification are considered, as mentioned in Section
1.4. An advantage of using these types of methods is that human interaction is kept low which would not be
the case if explicit programming methods were used. As the world is assumed to be known in advance, sensory
data is available which makes learning based programming methods suitable. Figure 3.2 depicts an example of
how a lidar sensor scan can look like represented on a 2D plane when the vehicle is positioned in a crossing.

Figure 3.2: Ezample of sensory data from lidars when the vehicle is located in a node of type crossing.

The task is to let the vehicle interpret this data in order to detect that it is a node and to classify which
specific node it is using machine learning methods. The main difference between detecting and classifying a
node is that the algorithm used in the detection is able to differentiate between node and edge in the system
the vehicle operates in. The classification algorithms is able to distinguish nodes from each other in order to
tell which node the vehicle currently is in.

The two libraries used for machine learning methods are PyBrain library and Scikit learn library depending
on the learning method. Both libraries are written in Python and are open source.

Recurrent neural networks are decided to not be evaluated, neither as a detector nor as a classifier. The
reason is the dependency of previous inputs to the RNN and the character of the problem to be solved by the
detector and classifier. It is desirable to at all times be able to, no matter previous inputs, detect and classify
the surrounding of the vehicle.
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3.2.1 Topological definitions

Let N be a finite set containing all nodes in the topological map, where the nodes are of type crossing, meeting
place, dead end, or room:

N ={N¢, N™ N% N"} (3.1)

Further on, E represents the finite set of edges between all nodes in the topological map.

3.2.2 Definition of data sets

One requirement when using machine learning methods is that the data used in the training process needs to
be appropriately configured to the specific method in order for it to be able to build up a feasible model. The
data should also be representative of real scenarios. The problem of making the model representative is usually
solved by collecting large sets of training data, while configuring it beforehand requires a process of trial and
error.

Machine learning methods benefits differently depending on how the data set used for training is composed.
As mentioned in the Section 3.1, the area of which the vehicle is to travel can consists of several different places
with distinctive features. The data sets used for training are collected in different fashions depending on the
intended machine learning method. The factors that can be altered are the field of view of the lidars, what
type of data that the set consists of and how it has been labeled.

e D;: Full field of view. Labeled data. ¥ nodes € N and V edges € E.
e Ds: Front field of view. Labeled data. ¥ nodes € N and V edges € E.
e Dj: Full field of view. Data from one node € N. All scenarios.

e D,: Full field of view. Data from one node € N. One specific scenario.

The term all or one specific scenario can be confusing. If the specific node is of type crossing, there are
several ways of entering and exiting this crossing. All scenarios means to collect data from traversing through
this crossing in every way, including all routes possible in all directions. The term One specific scenario means
to collect data from only one specific route through this crossing.

These four data sets will be referred to throughout the report. Sections 4.3 explains how data is collected.

3.2.3 Node detection

The node detection should be able to detect any node type, such as crossings, meeting places, and dead ends.
Therefore, the data collected from all these places have varying characters. However, it is assumed that the
corridors have, throughout the confined area, a uniform character.

One way to see this problem is to describe it as a binary classification problem. Another way is to describe
it as a regression problem where the output variable is the probability of one class compared to another. The
nodes in the topological map represents one class C;, and the edges another C, such that:

C; = N
C, = E (3.2)

There are several methods for these type of problems in the literature. In this thesis, different types of
artificial neural networks and support vector machines are considered. Other not considered methods are
Decision trees, Bayesian networks and Logistic regression [TSK06] [Ben07] [Cox58] among others.

Linear SVMs are considered as they are trained in a short amount of time and results in very small weight
sets compared to ANNs. The evaluated linear SVMs will be trained using the stochastic and averaged stochastic
gradient descent in order to find the optimal training method. If the data is not linearly separable, these
methods will perform poorly.

Four artificial neural networks with different number of hidden layers and training methods are also
considered for node detection. A perceptron trained with SGD, two single layered hidden FFNNs trained with
GD and Adam, and a two layered hidden FFNN trained with GD. The FFNN trained with Adam uses ReLu
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activation function and the other two uses the hyperbolic tangent sigmoid. The number of neurons in each
layer is decided by using the the 2/3 rule-of-thumb mentioned in Section 2.4.2. All these methods are trained
for the two different data sets, Dy and Ds:

Dy, : 248 inputs, 165 hidden neurons(, 110 hidden neurons), one output
Dy : 124 inputs, 82 hidden neurons(, 54 hidden neurons), one output (3.3)

Table 3.1 provides an overview of all combinations of evaluated node detection methods. All methods uses
the same class definition, but are evaluated for two different data definitions.

Table 3.1: Overview of the twelve evaluated combinations of node detection. The definitions refers to equation
numbers described in this section. The prefixes 1’ and ’2’ in front of 'TFFNN’ refers to single and dual hidden
layers respectively.

Method: | SVM (SGD) | SVM (ASGD) | Perc. (SGD) | 1-FFNN (GD) | 2-FFNN (GD) | 1-FFNN (Adam)
Data set: D1 D2 D1 D2 D1 D2 D1 D2 D1 D2 Dl .D2
Definition: | (3.2) | (3.2) | 32) | 32) | (32) | 32 | 32 | (32 | (32|32 |62 62

3.2.4 Node classification

It is assumed that all corridors has a uniform character such that classification of these are disregarded. The
classification of nodes is a very different type of problem, in comparison to the detection of it as every node in
the topological map should be distinguishable. One straight-forward way to define this problem is to let every
node be one class:

C. = N(1)
C, = N(2)
cn; N(n) (3.4)

This way a single SVM or ANN model could be used for classification of all nodes. However, this would
result in a non-modular hybrid map as this classifier would have to be retrained if the confined area were to
grow such that the map has to be updated. Because of this reason, this implies a impractical approach and is
therefore not considered.

Another, way of defining the classification models is to let every node ¢ have one classifier each where the
first class contains node ¢ and the second class contains all other nodes:

C, = N()
C, = N\C (3.5)

This way the hybrid map can easily be extended as new places are added to the confined area. With this
definition, the same machine learning methods as in the node detection are evaluated for the same parameters.

A third option would be if the classifier is able to classify node 4 solely on positive training data. This would
result in a considerably simpler training procedure. Since only positively labeled data is used only one class is
defined as:

C; = N(i) (3.6)
One class support vector machines are suitable for this type of problem as they are trained with positive

data exclusively. Depending on the character of the data, one OSVM could be used for an entire node (data
set D3 or one OSVM for every entrance in the node (data set D). The RBF kernel is used in the OSVMs
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and initial experiments using exhaustive search showed that using v = 0.1 and v = 0.1 had highest score of
classification.

Unlike the node detector, hidden layered neural networks will not be considered as a node classifier.
Compared to SVMs, using hidden layered FFNNs results in much larger weight sets. These weight sets should
be as small as possible as the map will have at least one weight set per node. The combinations that are
evaluated are shown in Table 3.2. All methods except the OSVM uses the class definition described in (3.5).

Table 3.2: Overview of the eight evaluated combinations of node classification. The definitions refers to equation
numbers described in this section.

Method: SVM (SGD) | SVM (ASGD) | Perc. (SGD) | OSVM (Unsupervised)
Data set: D3 D4 D3 D4 D3 D4 D3 D4
Definition: | (3.5) | (3.5) | (3.5) | (3.5) (3.5) | (3.5) | (3.6) | (3.6)
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4 Platform for data acquisition and evaluation

In order to evaluate the performance of the software, a simulation environment is built up. Having a simulated
environment allows easy testing and evaluation of the proposed system. Also, if the simulation is sufficiently
accurate, sensory data can be recorded and used offline to train the machine learning methods.

The platform is written in C++ and Python as so called nodes which are executables in program packages
used in Robot Operating System (ROS). ROS is an meta-operating system for setting up the software for any
kind of robot. It is an open source software that consists of useful libraries and tools with the intent to simplify
the development of robotic systems [Qui+09]. There is a substantial amount of third party packages available,
many of them widely used within robotics such as linking different frames together or merging sensors. It also
has the support of running code across multiple computers. The fact that every function is made up from
separate processes makes the system architecture flexible and exchangeable.

The evaluation platform consists of two computers connected via ethernet. The hybrid map itself is
implemented on a Raspberry Pi 3 (RP3) running Raspbian Jessie and ROS Indigo. The RP3 has a 1.2 GHz
64-bit quad-core ARMv8 CPU and 1 GB of RAM [16b]. It is presumed that if the system works with the RP3,
it is evidently a light-weight system. The other computer is a laptop running Ubuntu 14.04 and ROS Indigo.
The scheme showed in Figure 4.1 illustrates the interaction between the two computers and what they are
responsible for.

Laptop Raspberry Pi 3

Ethernet
GUI E )
Gazebo
Manual controller

Figure 4.1: The evaluation platform. The laptop is running the graphical user interface and Gazebo. The
simulated vehicle is controlled by a manual controller. The Raspberry Pi 8 is running the hybrid map.

The laptop runs a so called Gazebo simulator tool together with the graphical user interface (GUI). The
GUTI is used for setting a destination node and for supervising the position of the vehicle. A manual controller
is used to interact with ROS in order to control the simulated vehicle in Gazebo. If the system where to be
used in a real world application, the RP3 would be integrated with the vehicle. The laptop running Gazebo
would of course not be needed.

4.1 World model

The interface gazebo_ros_pkgs is used which integrates the open source software Gazebo with ROS. Gazebo is
chosen as the simulation tool as it comes with a physics engine and graphics with support for three dimensions
[KHO4].

Images from areas where the vehicle is meant to travel in are available. These images are sections of a
mining system or testing environment seen from a birds eye perspective. By seeing these pictures as binary,
image tracing is used which essentially performs raster-to-vector conversion. The now vectorized image can be
imported into Google Sketchup which enables the extension to the third dimension. Sketchup is used since it is
a simple and free design tool for 3D models. By utilizing image tracing, any picture can be used to rapidly
build up a world that can be used in simulations. This procedure is described in Figure 4.2.
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Figure 4.2: The four different levels in producing a world model from an image. The fourth illustration will be
used in the testing process.

The area seen in Figure 4.2 is a map of Sdve Depa. It is here training data will be collected and it will serve
as testing grounds of the system. The first illustration is a metric map built from sensory data. While this
map is an accurate representation of reality, it is too rough to vectorize. The second image is a cleaned up
version of the first. In the third illustration, the image has been vectorized such that it describes inner and
outer coordinates which forms the thickened lines. The final result comes from extruding the plane into a third
dimension using Sketchup, which is presented in the fourth illustration. The nodes and edges are labeled as N
and E respectively.

4.2 Vehicle model

In order to gather data from the world model, a model that represents the actual truck is used. This vehicle
model is based on the Volvo FMX truck which is the one used in the confined area. It can be seen in Figure 4.3.

Figure 4.3: The model of the Volvo FMX truck used for simulation.

The most important part of this model is that the sensors are placed in a similar fashion as they are mounted
on the real truck. The sensors are themselves models of the LMS111-SICK 2D lidar [16a] which are the ones
used on the Volvo FMX truck. The sensors have an adjustable field of view, update frequency and number of
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readings in each scan.

The vehicle traverses within the world by manual driving using Ackermann steering geometry [BHWO04]. It
is important that the vehicle behaves the same in the simulation as it does in the real world. The model is
designed using real dimensions in order to simulate appropriate dynamics as well as for visualization purposes.

4.3 Data collection

The data used in training and evaluation of the different learning methods is collected by traversing the vehicle
model within the built world. The driving is executed in such a way as it would in the real world such as
extending the turning angle during a sharp turn and driving slow in more complex areas. While driving, the
sensors picks up distances to the surroundings which are stored. The readings from the sensors are received
in forms of an array where each slot in the array corresponds to a certain angle in relation to the lidar. The
output arrays of all four lidar are concatenated into one named x for easier management. The data is stored as

D= {Xt7xt,1,...,Xt7n} (41)

where every x; is timestamped and associated with a label.

An advantage using machine learning techniques is that no regard has to be taken to in which order each
lidar output is fed into the training process. If an ANN where to be used, the only requirement is that every
output from the lidar represent the same input to the network at every occasion. Each lidar outputs 720
readings evenly spread out over its field of view of 270 degrees. Seeing the field of view of all lasers as one
results in a total of 1080 degrees, evidently resulting in angular overlapping. Reducing the number of inputs
to the system simplifies the training of the machine learning models. The field of view of the each lidar are
therefore reduced in such a way that it is made sure that no critical information is bypassed. This is explained
in Figure 4.4.

L2

w/2

Figure 4.4: The rectangle represents the vehicle. The field of view for one lidar sensor is described.
Looking at Figure 4.4, k and j are design variables that are determined based on how close to the vehicle
each lidar should receive information. Since the lidars are placed in a symmetric fashion, the critic angles are

the most outer ones of each lidars field of view. Thus, the critical distances k and j are evaluated at the middle
points of the short and long side of the vehicle. The angular portions o and § are calculated as:

a = tan~! (LTM)
B =tan~! (M;/2>

Since the two drawn triangles in Figure 4.4 are perpendicular to each other, the reduction of the lidars field
of view at the vehicles long and short side (& and f respectively) results in:

(4.2)

=~ 555
A i (4.3)
52(17?/2)'5
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where 7 represents the original 90 degree portions of the lidar field of view at the vehicles long and short
side when k, 7 — 0. In order to reduce the number of inputs even further, only every n:th value are extracted
from the lidar output (seeing the four of them merged into one). This means that the angular increment of

which a distance is extracted from can be seen as

n(% = @+ )
o (1.4)
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5 Implementation of the hybrid map

This chapter serves as a description of how the final hybrid map with all its components is designed and
implemented. Every part is presented individually in order to describe how they complement each other.

Based on the results from Section 6.1, two candidates of machine learning methods are selected and are
used in the final hybrid map. The neural network trained with Adam is used for node detection and OSVMs
are used for classification of every entrance of each node. This is mainly based on their ability to make correct
classifications according to the performed tests. The data sets that seems the most appropriate in solving this
particular problem is Dy and D4. Data set D, is used in the node detector because of the full field of view.
With a 360° view of the surroundings, information of when the vehicle is leaving a node is available. The
OSVM performed better classifications with data set D4 such that this definition is preferable. This means
that every node will have as many OSVMs as entrances.

The three blocks, described in Chapter 3.1, which, together with the vehicle behaviors, constitutes the
hybrid map are implemented as ROS nodes. These nodes passes information between each other using the
framework specified in ROS. A few utility nodes are used as well for various minor tasks. The full system
structure is presented in Figure 5.1. All ROS nodes are written in Python.

Detector Coordinator

__ Target position

~  GUl

N Current
2D lidar Topological position
data )
Behavior
selection
Filter
Vehicle
behaviors

Activation
signal

Predicted
node

Classifier

Figure 5.1: An abstractified illustration of the hybrid map’s structure.

A filter ROS node first performs pre-treatment of the lidar sensor data. The data is first treated as explained
in Section 4.3 and thereafter normalized to be in range [—1,1]. The normalization is performed in order to
have a standardized input.

The detector ROS node takes one pre-treated lidar scan and activates the neural network with the given data.
The output of the detector is a binary activation signal and is constantly fed to the classifier. A fundamental
idea behind the implementation is to only have the classification active when the detector indicates the vehicle
is located in a node. This allows the classification class definitions presented in Section 3.2.4 but also reduces
computational complexity.

The output of the classification is then used to update the position of the vehicle in the topological map.
Depending on the position of the vehicle, and additional information, the behavior of the vehicle can be selected.
A ROS node, named Coordinator, contains the database and handles most of the data communication between
the different blocks. It also keeps track of the current position and handles the path planning using Dijkstra’s
algorithm [Dij59].
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5.1 Topological map

The map is stored using SQLite, which is a light-weight, serverless, Structured Query Language (SQL) database
engine. This database engine was chosen because of these given properties and as it is well documented. The
engine is written in C but both python and C++ interfaces are available for integration with ROS.

In the database, relations between places (e.g. nodes and edges) are stored together with unique information
about every place. Three tables are used: Edge, Node and Turn. The structure is designed with flexibility in
mind. This means that extending the map with additional information is simple such that possible developments
of the confined area can easily be added. For example, new nodes and edges can be added under table Node
and Edge. In the Edge table, the length of every edge are stored in meter. This information is used by the
path planner when computing the shortest route to target destination. The database structure is illustrated
with a entity diagram in Figure 5.2.

Edge Node Turn
edge_id »| node_id - node_id
node_a nr_of_edges fromM
node_b node_name toN
edge_length rightLeftStraight
OSVM a
OSVM_b
edge_name

Figure 5.2: Entity diagram of the SQLite database. The edge table holds information about the edges and
relations between nodes. The turn table holds navigation information for the vehicle behaviors.

The weight sets for node detection and classification are also stored in the database. This way of implemen-
tation allows a modular structure where every node has individual weight sets. This structure also allows the
topological map to be expanded. These weight sets are stored as binary large objects (BLOBs) in the database,
which is a way to store large collection of binary data.

5.2 The coordinator node

As mentioned, a ROS node named Coordinator handles most of the data communication and contains the
SQL database. The node especially contains logic that computes the next set of possible nodes, depending on
current position, and updates the node classifier with new weight sets which are associated with the nodes.
The path planner, implemented using Dijkstra’s algorithm, is able to compute the shortest path between two
nodes [Dij59]. The length of every edge is fetched from the SQL database.

This node also handles the communication with the graphical user interface which allows the user to set a
destination node and monitor the current position of the vehicle in the topological map.

5.3 Node detection

The ROS node performing the node detection is a simple implementation. The detector node takes one

pre-treated lidar scan and activates the neural network model with the given data. The output, which is a

prediction certainty, is then low-pass filtered in order to make the prediction more stable and robust to outliers.
The filter is of simple moving average (SMA) type as it is the mean of the n latest outputs:

T+ Te1+ 0+ T (n-1)

Yt = " (5.1)

where x is the output prediction certainty of the neural network. The filtered output is then compared to a
threshold value th. Below the threshold, the node outputs a zero for not being in a node. Above or equal, it
outputs a one for being in a node:

1, ify >th

Node detection output = ]
0, if yr < th
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5.4 Node classification

The classifier ROS node has two states, activated or deactivated. When activated, classification is performed.
The switching between these two states is controlled by the activation signal from the detector node.

When the classifier is deactivated, new weight sets are loaded in to the OSVMs from the database. These
weight sets corresponds to the number of possible next nodes. When the detector then indicates a node, the
classifier is turned active and classification is performed for as long as the activation signal is high. As soon
as the activation signal goes low, the result from the OSVMSs are computed and the maximum likely node is

outputted as the predicted node. Based on this output, the coordinator ROS node updates the current position
in the topological map.
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6 Results and discussion

This chapter is divided into two parts. The first section evaluates the different machine learning methods that
are considered for use in the proposed hybrid map. The second section evaluates the proposed hybrid map as a
whole system. Both its localization ability and computational complexity is evaluated.

6.1 Evaluation of machine learning methods

The machine learning methods are evaluated mainly in terms of their ability to make correct classifications as
the robustness of the system is of highest priority. The results will be visualised through confusion matrices,
with additional information about the accuracy, as they provide a clear view of the performance.

The methods are also evaluated based on their memory usage and computational complexity as these are
important factors in an industrial application. Also, the amount of time required for training is taken into
consideration as the system should be able to adapt to the confined area when it expands.

6.1.1 Node detector

The experiment is conducted by traversing in the simulated world starting at F; taking one lap counter
clockwise before ending up in N7. Figure 4.2 illustrates the placement of nodes in the simulated world. While
traversing, negative samples in edges and positive samples in the nodes are collected. This same particular run
has been used for all different methods in the experiment, such that they can be compared fairly. The results
from the experiments are displayed as confusion matrices. Table 6.1 shows the results from using data set D;.

Table 6.1: Confusion matrices for all experiments specified in Table 3.1 with data set D;. A total of 15664
sample sets were used for training and a total of 1159 test sample sets were used for validation.

SVM (SGD) SVM (ASGD) Perceptron (SGD)
Actual node Actual edge | Actual node Actual edge | Actual node Actual edge

Predicted node | 548 2 542 8 550 0
Predicted edge | 7 602 11 598 94 515
Accuracy 0.992235 0.983607 0.918896

1HL-FFNN (GD) 2HL-FFNN (GD) 1HL-FFNN (Adam)
Predicted node | 411 139 399 151 550 0
Predicted edge | 53 556 33 576 17 592
Accuracy 0.83434 0.841242 0.985332

By looking at Table 6.1 it can be seen that the support vector machines has the best performance while the
gradient descent trained feed forward neural networks has the worst, in terms of accuracy. The fact that the
SVMs has such good results is an indication that the data used in the training process is linearly separable.
Seeing that the Perceptron has better results than the hidden layered FENNs (GD) indicates that it is a simple
classification problem. It can also be seen that the training methods used for the neural networks has large
impact on the results. Using the Adam training method is favourable as it has by far best performance between
the FFNNs. Since the SGD and ASGD training methods are both stochastic, their results vary between training
runs which can be seen in Figure 6.1.
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Figure 6.1: An illustration of the stochasticity in the SGD and ASGD process. The accuracy of the ASGD
method is more stable between training runs.

As mentioned in Section 2.4.1, the ASGD method performs an average in its training. This means that the
SGD trained SVM needs to be retrained a few times in order to find a better accuracy while the accuracy of
the ASGD is more stable. The overall performance of the SGD and 1HL-FFNN Adam trained models and
when they make their respective faulty classifications can be seen in Figure 6.2. The same test data as that has
been used to generate Table 6.1 has been used to generate the figures.

150 I — 15 T T —T
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(a) SVM (SGD) (b) 1HL-FFNN (Adam,)

Figure 6.2: Two methods, trained with data set D1, evaluated with the test scenario. The green and red areas
represents the true positive and negative labels respectively.

Figure 6.2 is meant to compare the differences between two of the methods, the best performing SVM
and the best performing FFNN. This is interesting because there are no clear rules in the literature when to
use either one. Although, the FFNN is preferable over the linear SVM if the problem is more complex since
the FFNN are not limited to linear problems. For the SVM, the y-axis represents a measure of prediction
probability, higher positive or negative values means higher certainty. For the FFNN, it strives to classify the
input data as one or minus one. In this particular scenario, it is hard to determine which method that has
the best performance. The only measure would be to look at the accuracy depicted in 6.1. The figures are
interesting in terms of seeing where the respective methods does actually performs a bad classification. As can
be seen, no faulty classifications are done in the midst of a node or an edge. Instead, the methods misses in the
transitions between the two, which actually is not a big problem. By looking at, for example, gradient descent
trained the 2HL-FFNN in Figure 6.3, the reason behind its poor accuracy is clearly depicted.
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Figure 6.3: The result of the 2HL-FFNN (GD) method depicted over time. Faulty classifications are performed
at positive labeled data.

It can be seen that the neural network in Figure 6.3 constantly performs poorly when doing classification of
positive data. While traversing within the world model, large changes in the sensor scans are being done in
nodes in terms of turning while traversing though an edge is very similar each time. This means that the test
data differs much while in a node, while it is resembling in an edge. This is clearly shown in the figure. One of
the reasons why this particular training provides worse results than the other methods is because no shuffling
of the data has been performed while training. This means that the FFNN might have learned the pattern in
the training data which does not exactly correspond to the same scenario used for testing the method. This is
of course not the desired behavior. Shuffling the data such that the order is more or less completely random
is important when working with neural networks [CC98]. This aspect is something that does not affect the
support vector machines since it simply is a problem of separating the data. The library used for the Adam
method shuffles the data in advance.

Considering the performance of the simple Perceptron, it is unlikely that the bad performance is a result
of underfitting. If this where the case, the commonly known solution would be to add more hidden layers or
neurons. However, it could be a result of that there is not enough data such that overfitting is one reason
behind the bad results. In this case, adding more data or reducing the amount of hidden layers or removing
neurons could solve the problem. Another way to avoid overfitting is to use regularization techniques [GJP95].

The fact remains that the best results are achieved from using the SVM (SGD). A likely reason for the
superior performance of the linear classifiers could simply derive from the character of the world which the data
was recorded in. If the data labelled as positive is distinctly different from the negative labelled data it might
be easily separable in a linear fashion. This said, it is yet unknown if the linear classifier would outperform the
non-linear FFNN in all types of confined areas.

In order to evaluate if less complex data is beneficial to the different methods, the same tests is performed
with data set Dy which uses 180 degrees field of view in front of the vehicle. The results can be seen in Table
6.2.
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Table 6.2: Confusion matrices for all experiments specified in Table 3.1 with data set Dy. A total of 10345
sample sets were used for training and a total of 897 test sample sets were used for validation.

SVM (SGD) SVM (ASGD) Perceptron (SGD)
Actual node Actual edge | Actual node Actual edge | Actual node Actual edge
Predicted node | 445 8 449 4 419 34
Predicted edge | 20 424 26 418 15 429
Accuracy 0.968785 0.966555 0.945373
1HL-FFNN (GD) 2HL-FFNN (GD) 1HL-FFNN (Adam)
Predicted node | 356 97 399 54 450 3
Predicted edge | 19 425 29 415 14 430
Accuracy 0.87068 0.907469 0.981048

These results resembles the results in Table 6.1 as the well performing methods has similar results. However,
a few slight differences can be observed. The accuracy of the gradient descent trained FFNNs has increased by
approximately five percent. They seems to benefit from being trained with less data. This can be the result of
several things. Reducing the field of view reduces the number of inputs to the networks. Since the 2/3 thumb
of rule (explained in Section 2.4.2) still applies, the size of the hidden layers are also reduced, resulting in
overall less complex models. The networks in Table 6.1 and 6.2 are trained using the same amount of cycles,
meaning that the models have been treated differently with respect to their complexity. This could be one of
the reasons why better results are achieved. Similar results of the networks might have been yielded in Table
6.1 if they would have been trained during more cycles.

The accuracy of the two SVMs has become slightly worse. Less training data should be beneficial to the
SVMs as the decision boundary between the two classes is more easily determined. At the same time, less
data yields a simpler model that might cover less scenarios in the test data. It is difficult to know exactly
why the results differ from using D; and D>. Since the data has been collected manually, it might as well be
a results from the human factor. When manually labeling during data collection, it is difficult to determine
the exact transitions between the nodes and edges. Inconsistency of this will result in models that gives noisy
classifications when transitioning to or from a node. The neural networks can learn to handle badly labeled
transitions which is a powerful attribute in terms of, to some extent neglecting the human factor.

Even though similar results are achieved with the two data sets, D; is seen as the preferred one. This is
because of the fact that information of when a node is left is advantageous. The hybrid map is to provide the
navigation system with behaviours that it selects based on its current position and the next upcoming one.
Thus, a field of view that covers more ground is more suitable.

6.1.2 Node classifier

The results from the experiment can be seen in Table 6.3 and 6.4. The test scenario consisted of traversing
through the one node the models has been trained for and another foreign node.

Table 6.3: Confusion matrices for all experiments specified in Table 3.2 with data set D3. A total of 2353
sample sets were used for training and a total of 169 test sample sets were used for validation.

SVM (SGD) SVM (ASGD)
Actual positive  Actual negative | Actual positive Actual negative

Predicted positive | 76 0 76 0

Predicted negative | 93 0 93 0

Accuracy 0.449704 0.449704

Perceptron (SGD) OSVM (unsupervised)

Predicted positive | 72 4 61 15

Predicted negative | 93 0 51 42

Accuracy 0.426036 0.609467

Looking at the Table 6.3, it can be seen that the SGD, ASGD, and Perceptron performs horribly. This is a

clear indication that the character of the data is not linearly separable such that the line that is to separate
negative and positive data is displaced. Since the OSVM is a non-linear classifier, it can be seen to perform a
bit better. Although it is not well enough in order to take it into practice. Using data set D3, the classifiers are
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trained such that they should be able to classify a node from all possible entrances and exits. Trying to make
this data linearly separable is clearly not possible, while a non-linear classifier seems more appropriate. This
theorem is investigated further using data set D, which consists of less complex data for one node. The results
can be seen in Table 6.4.

Table 6.4: Confusion matrices for all experiments specified in Table 3.2 with data set Dy. A total of 2353
sample sets were used for training and a total of 169 test sample sets were used for validation.

SVM (SGD) SVM (ASGD)
Actual positive  Actual negative | Actual positive Actual negative

Predicted positive | 68 8 72 4

Predicted negative | 76 17 83 10

Accuracy 0.502959 0.449704

Perceptron (SGD) OSVM (unsupervised)

Predicted positive | 75 1 66 10

Predicted negative | 90 3 0 93

Accuracy 0.461538 0.940828

As mentioned, data set Dy consists of traversing through a node in one specific direction, which means that
the data is less complex to the classifiers. Although looking at Table 6.4, the linear classifiers still finds it hard
to classify. To them, the difference between the node of which they have been trained for and a foreign node is
indistinguishable.

The OSVM benefits from reducing the complexity of the data and it has a satisfying accuracy. Its
performance can be seen in Figure 6.4.
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— OSVM output
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Figure 6.4: The OSVM, trained with D4 training data, activated with the same test data used for the confusion

matrices above. The y-axis represents a measure of prediction certainty. The green area represents positive

data (the node which the OSVM has been trained for) and the red negative data (another node). Note that the

OSVM is not trained to recognize the negative data.

In Figure 6.4 is the one-class SVM tested with the same test data used in the experiments above. Again,
this classifier is only trained with data collected from one entrance in one node. The negative data (in red) is
collected from another node, which the classifier is able to distinguish as the value is below zero. An interesting
observation is the higher certainty of the classifier when the vehicle is in the middle of the node. This is a
indicator that the features of a node is the most distinguishable in the center of the node. At an entrance or
exit of a node, they are more similar to each other. This can also be observed in the fall of certainty-value
between samples 65-75. When the vehicle is leaving the node, the features of the node is harder to classify.

All the methods that have been evaluated has been based on an approximately equal amount of negative
and positive data which seemed as an appropriate approach. Since some methods that is evaluated uses a
two class classifier, it was interpreted that these models should be built up from as much data from nodes
as for edges. In the world models where data is collected, the character of edges are to some extent uniform
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while the nodes can be seen as complex polygons that differ much in appearance from node to node. What is
meant by this is that in order to make the corresponding systems work better it might be appropriate to train
the models using more data from nodes than edges. This is something that has not been evaluated or taken
into account when training the different systems but might have influence on the results. It should also be
mentioned that the models have been trained with small amounts of data, especially the OSVM classifiers.
Getting these results with such a small amount of data is a good indication that they can get a lot better if
more effort would be put into the training process.

6.2 Evaluation of the hybrid map

Several aspects are taken into consideration when the hybrid map is evaluated. Primarily is the map’s ability
to position itself in the topological map. As mention in the introductory chapter 1, the problem should be
solved in a simplistic fashion such that heavy computations are avoided. Therefore, other aspects in relation to
the CPU and memory usage is to be evaluated.

Two experiments are carried out. The first experiment evaluates the global localization ability of the hybrid
map and the second experiment evaluates the CPU and memory usage.

6.2.1 Global localization performance

The hybrids map’s ability to do correct localization is evaluated by performing an experiment focusing on the
node detection and classification. In the world model, the vehicle is manually driven in a counter clockwise
defined path as:

El—+N1—E5—N4 —-FE4—+N3—E3—N2—E2—N1

The node and edge labels are explained in Figure 4.2. As can be seen, when the vehicle is positioned in
Edge 1 (E1) there is only one neighboring node. The weight set for that particular entrance to the node is
therefore loaded into the classifier from the database. As soon as the node detector indicates that the vehicle is
now located in a node, the classifier is activated and a classification is performed. When the node detector
indicates that the vehicle has left the node, the classifier is deactivated and new weight sets for next possible
nodes are loaded. This process is repeated for as long as the hybrid map is operating. The results from the
experiment can be seen in Figure 6.5.
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Figure 6.5: A test of the node classifier and node detector by letting the vehicle travel through the world model
i a predefined path. The dashed blue line is the output of the detector and the constant dashed green line is
the detector-threshold, using value th = 0.1. For visualization purposes, the detector output and the threshold
is magnified by a factor 5. Whenever the detector indicates a node, the classifier is activated. The classifier
classifies the node by running the OSVMs that corresponds to the next possible set of nodes and computes the
most likely node. The green and red field are the labels of the test data and can be seen as the ground truth.
The text labels above the plot shows what node the green field corresponds to. "N1” is Node 1, as shown in
Figure 4.2.

Looking at Figure 6.5, it can be seen that the detector performs well in terms of node detection. The
instances where faulty classifications are occurring is when the vehicle transitions between nodes and edges. As
mentioned, this is most likely due to the human factor - when the training and testing data is recorded. This
is, however, a minor issue as long as the classifier has enough time to make the correct classification.

Further, the classifier is able to classify all nodes correctly in the experiment. As can be seen in Figure
6.5, the difference in certainty between the OSVMs is, at all times, large such that the classifier has negligible
difficulties performing correct classifications.

Even if this experiment indicates good localization performance of the hybrid map, it does not prove the
map’s ability to perform localization in all types of confined areas. As of now, the map is designed with
underground mines in mind where there is a clear difference in character between nodes and edges. The
proposed solution would most likely perform worse in large open spaces such as open pit mines.

Comparing this system’s global localization ability to other existing similar methods in the literature is not
easy. There are no recognized methods for this type of evaluation and the preconditions among the existing
localization methods differs with the application area. To our knowledge, this type of approach for solving the
topological localization problem is novel.

6.2.2 CPU and memory usage

While running the complete system on the RP3, an experiment to measure the computational complexity is
carried out. Each running ROS node is measured separately for average CPU and memory usage. The results
can be seen in Figure 6.6. Note that these result is the averaged CPU and memory usage during the whole
time interval that these processes were running.
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Figure 6.6: Average CPU and memory usage expressed in percentage for the four ROS nodes shown in Figure
5.1.

As can be seen, all ROS nodes uses between 12 and 15 percent CPU time each. Summed together they use,
in average, 55 percent of the RP3 CPU time. Summed with all background processes not related with the
hybrid map, the total CPU usage was at no time above 70 percent.

The memory usage of each ROS node differs. The Detector and Classifier nodes use each, in average, 4,4
percent of the total available memory of 1GB. This is most likely due to the SVMs are contained in these nodes.
The other two ROS nodes, Filter and Coordinator, use 1.5 percent of the total memory each. The total memory
usage of the hybrid map is 11.7 percent. The total size of the hybrid map on the secondary storage is 2.2 MB.

The RP3 is able to run the system without any complications. With further improvements of the imple-
mentation, it is believed that these results would be even better. However, the experiment did not cover the
full hybrid map as the vehicle behaviors are excluded as of now. When new nodes and edges are added to
the topological map, it is important to note that the CPU and memory usage would stay unaffected as only a
subset of all OSVMs are loaded into memory at all times. However, the size of the hybrid map on secondary
storage would grow.
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7 Conclusions and Future Work

The final solution follows the initial proposal. It consist of a hybrid map that uses the basic features of a
topological map which can store behaviour algorithms used for local navigation. These behaviours gets selected
based on the location of the vehicle. The hybrid map also contains a neural network weight set used in the
detection of nodes and edges as well as support vector machines that classifies nodes. The solution is flexible
and modular since more OSVMs can be added to the hybrid map as the confined area grows and the detector
is trained in such a way it will detect all types of nodes. It is also shown by running the system on a Raspberry
Pi 3 that the solution is of a simple fashion in terms of computation.

It is shown that using a full field of view lidar setup (D) gave the best results in terms of accuracy for both
the detection of nodes and edges and classification of nodes. The SGD trained SVM turned out to have the
highest performance closely followed by the Adam trained neural network. Because of the discussed limitations
of an SVM, the neural network is chosen as the preferred method. When it comes to classifying nodes, all
methods except the one class SVM had poor performance. The OSVM is also very easy to handle since it only
requires positive training data (Dy). It is shown that it is beneficial to have several OSVMs, one for every
entrance of a node rather than having one OSVM that covers all entrances.

This thesis work shows that features of a simulated underground mining system is classifiable using 2D lidar
data, neural networks and support vector machines. To our knowledge, the research regarding this matter is
limited. The work also shows that it is possible to use relative localization using a topological map as opposed
to an absolute metric map. This approach is not new in the literature, however, the technique used for node
and edge transition is novel.

As of now, no effort has been put into optimization of the code. This has, of course, a negative impact on
the CPU and RAM usage performance. With further improvements of the code, an even cheaper computer
could have been used. Porting the code to C/C++ would most likely provide a performance improvement.

In order to guarantee a robust localization ability of the system, the system needs to be tested on noisy
lidar data. This would probably not be a time consuming evaluation as it is easy to apply Gaussian noise to
the lidar data using Gazebo. The system should also be verified in different world models before use in an
actual application. It is clear that the world model that has been used for training and evaluation has specific
characteristics that does not resemble other application areas.
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