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Abstract

This thesis investigates novel approaches to use nonlinear methodology for dose-
response data in drug discovery. Such methodology could potentially create insights
and value within the field, saving resources such as time and usage of animals in
experiments. Methods for dimensionality reduction and visualization, as well as
methods for classification of compounds into clinical classes based on therapeutic
usage, are investigated. The thesis builds partly upon previous research where linear
methods, based on partial least squares and principal component analysis, have been
used for dimensionality reduction in drug discovery. By using results from linear
methods as a benchmark, this thesis investigates the nonlinear methods kernel par-
tial least squares and t-distributed stochastic neighbor embedding for dimensionality
reduction. Moreover, methods for classification of compounds are investigated using
the linear method multinomial logistic regression as well as the nonlinear methods
random forest and multi-layer perceptron networks.
Results from nonlinear methods for dimensionality reduction do not detect any
distinctly new patterns or clusters, compared to linear methodology. However, some
results are promising to build upon in further methodology development.
The best performing classification method shows results corresponding to well-
known effects for 70.6% of the compounds evaluated. Moreover, classifications of
11.8% of the compounds indicate potentially unknown effects, which are considered
interesting and could be a springboard for further analysis and innovation. There-
fore, this classification methodology can create insight and potentially high value.

Keywords: drug discovery, machine learning, classification, multi-layer perceptron,
random forest, dimensionality reduction, partial least squares, kernel partial least
squares, t-sne

v





Acknowledgements

I want to thank everyone at IRLAB and Smartr for contributing in different ways
to make this thesis possible.

A special thank you to Adam Andersson, my supervisor at Smartr, for going above
and beyond by providing invaluable guidance and answering all of my questions with
so much patience.

I also want to send a special thank you to those at IRLAB who introduced me to
their drug discovery process. Thank you, Susanna Waters and Peder Svensson, for
helping me develop the data and evaluate the results with such passion. Further, I
want to thank Johan Kullingsjö and Fredrik Wallner for enthusiasticly assisting me
in the data exploration.

In addition, I want to thank Mattias Sundén for supporting me in the writing
process.

Thank you, Gustav, for involuntarily volunteering to help me reduce the dimensions
of my concerns.

Finally, I want to thank my family and friends for their outstanding support through-
out my studies. You are all (classified as) fantastic (with 100% probability).

Klara Granbom, Gothenburg, June 2020

vii





Contents

1 Introduction 1

2 Dimensionality Reduction 3
2.1 Partial Least Squares Regression . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Partial Least Squares and the NIPALS algorithm . . . . . . . 3
2.1.2 Principal Components for Visualization . . . . . . . . . . . . . 6

2.2 Kernel Partial Least Squares . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Kernel functions . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 T-distributed Stochastic Neighbor Embedding . . . . . . . . . . . . . 11

3 Classification 14
3.1 Multinomial Logistic Regression . . . . . . . . . . . . . . . . . . . . . 14
3.2 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Multi-layer Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Synthetic Minority Over-sampling Technique . . . . . . . . . . . . . . 19
3.5 Classifier evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5.1 K-fold Cross-Validation . . . . . . . . . . . . . . . . . . . . . . 20
3.5.2 Confusion Matrix . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5.3 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . 21

4 Data 23
4.1 Structure and Experiments . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Methods 26
5.1 Current Methodology at IRLAB . . . . . . . . . . . . . . . . . . . . . 26

5.1.1 Dimensionality Reduction Visualization . . . . . . . . . . . . . 26
5.1.2 Pre-processing of Data in Current Methodology . . . . . . . . 26

5.2 Pre-processing of Data . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3 Dimensionality Reduction . . . . . . . . . . . . . . . . . . . . . . . . 28

ix



Contents

5.3.1 Implementation of Partial Least Squares . . . . . . . . . . . . 28
5.3.2 Implementation of Kernel Partial Least Squares . . . . . . . . 29
5.3.3 Implementation of T-distributed Stochastic Neighbor Embed-

ding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3.4 Remark on Methods for Dimensionality Reduction . . . . . . . 30
5.3.5 Visualization of Observations . . . . . . . . . . . . . . . . . . 30

5.4 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.4.1 Classifier training and evaluation . . . . . . . . . . . . . . . . 31
5.4.2 Implementation of Multinomial Logistic Regression . . . . . . 32
5.4.3 Implementation of Random Forest . . . . . . . . . . . . . . . . 33
5.4.4 Implementation of Multi-layer Perceptron . . . . . . . . . . . 33

6 Results 34
6.1 Dimensionality Reduction . . . . . . . . . . . . . . . . . . . . . . . . 34

6.1.1 Partial Least Squares . . . . . . . . . . . . . . . . . . . . . . . 34
6.1.2 Kernel Partial Least Squares . . . . . . . . . . . . . . . . . . . 36
6.1.3 T-distributed Stochastic Neighbor Embedding . . . . . . . . . 38
6.1.4 Qualitative Evaluation . . . . . . . . . . . . . . . . . . . . . . 40

6.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2.1 Parameter Values . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2.2 Performance Metrics from K-fold cross-validation . . . . . . . 42
6.2.3 Confusion matrices from Classification of Test Data . . . . . . 44
6.2.4 Qualitative Evaluation of Experimental Data . . . . . . . . . . 46

7 Conclusions & Future Work 53
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

References 56

A Additional Results from Kernel Partial Least Squares I
A.1 Radial Basis Function Kernels . . . . . . . . . . . . . . . . . . . . . . I
A.2 Polynomial Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV

x



1
Introduction

This thesis is a collaboration with Integrative Research Laboratories (IRLAB), a
biotech company focusing on the discovery and development of drugs to fight Parkin-
son’s disease. IRLAB has data from experiments performed during two decades and
works very rigorously with data quality. In their drug discovery process, parallel as-
sessment of biological measures is performed on experimental rats and hundreds of
variables are measured. This process and the rigorous data approach result in more
flexible data which can be used to answer questions of different origin, compared to
more conventional drug screening programs [1].

To evaluate data from drug discovery processes efficiently, previous research have
discussed the potential usage of machine learning [2, 3]. Machine learning meth-
ods seek to detect mathematical relationships and can potentially be used to, for
instance, predict chemical and biological properties of novel chemical compounds.
Generalization of machine learning methods to big data sets can be made without the
need for extensive computational resources, compared to more conventional physi-
cal models based on explicit equations from e.g. quantum chemistry or molecular
dynamics [4]. Usage of machine learning methods can potentially extract additional
information from drug discovery experiments. Hopefully, this results in both faster
processes and that fewer experiments are needed. Through an ethical perspective,
fewer experiments would reduce the harm of using animals in experiments.

The methods for data analysis used by IRLAB today are mainly linear dimension-
ality reduction methods based on principal component analysis and partial least
squares. Since it might create new insights, IRLAB now wants to investigate non-
linear methodology, possibly from machine learning, and evaluate qualitatively and
quantitatively if such methods can extract patterns and clusters which the linear
methods are unable to detect. IRLAB contributes to this thesis with data expertise,
knowledge about their current methodology and input on what they want from the
new methodology.
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1. Introduction

The purpose of this thesis is to explore, investigate and evaluate nonlinear method-
ology on dose-response data. Both methodology for dimensionality reduction and
classification of compounds in clinical classes, based on therapeutic findings and us-
age, are investigated. The most promising nonlinear methods are implemented and
evaluated to see qualitatively and quantitatively if the dose-response data contains
nonlinearities and if the methods can extract patterns and clusters which the linear
methods are unable to detect.

The first phase of this thesis consists of getting up to date with the current method-
ology at IRLAB. The linear dimensionality reduction methods used in previous work
[1] are implemented to have as a benchmark for further exploration. Nonlinear meth-
ods for dimensionality reduction are then investigated. Then the most promising
are considered for visual evaluation to help to answer if the nonlinear methods can
detect patterns and clusters which the linear methods are unable to detect. The re-
sults of nonlinear methods differ only slightly from the results of the linear methods.
Therefore, nonlinear methods do not detect any distinctly new patterns or clusters.
However, some results could be built upon in further work.

Regarding classification methods, one linear method and two nonlinear methods
are investigated and implemented. Results from the linear method are compared to
results from the nonlinear methods to evaluate if there are nonlinearities in the dose-
response data. Classifiers are evaluated quantitatively by considering performance
metrics and qualitatively by consulting people with expertise in the data. The qual-
itative evaluation is performed by training classifiers on data with verified clinical
classes and using the classifiers to predict compounds with unverified clinical classes.
Results are qualitatively evaluated to see if they correspond to the intuition of IR-
LAB and tentative clinical classes since this can create insights and value. Results
from the best performing classifier are promising, where predictions of 70.6% of the
compounds are consistent with well-known effects. Moreover, predictions of 11.8%
of the compound are considered to be possible foundations of future innovation.

This thesis is structured as follows. Chapter 2 and 3 presents theory of methods
used for dimensionality reduction and classification, respectively. In Chapter 4, in-
formation on data used in this thesis is provided. Chapter 5 presents the current
methodology and implementation of this and nonlinear methodology, both for di-
mensionality reduction and classification. Results are presented and commented in
Chapter 6 and finally, conclusions and possible future work are presented in Chapter
7. In the Appendix, additional results are presented.
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2
Dimensionality Reduction

In this chapter, the algorithms used for dimensionality reduction in this thesis are
described. First, the linear dimensionality reduction method partial least squares
regression that is part of currently used methodology is presented in Section 2.1.
Further, the nonlinear dimensionality reduction methods, kernel partial least squares
and t-distributed stochastic neighborhood embedding, are presented in Sections 2.2
and 2.3.

2.1 Partial Least Squares Regression

Partial least squares (PLS) regression is a linear multivariate model used to relate
two data matrices to each other [5]. The model is useful for analyzing data with
many, noisy and collinear variables in both matrices [6]. As an example, PLS can
be used when measuring different types of properties on the same substances or
compounds in clinical research. PLS is a regression extension of principal component
analysis (PCA). Section 2.1.1 below presents an overview of the PLS problem and a
famous algorithm for solving it. Additionally, it is explained how PLS can be used
for dimensionality reduction and visualization purposes in Section 2.1.2.

2.1.1 Partial Least Squares and the NIPALS algorithm

Consider a setting with n ≥ 1 input and output data pairs (xi,yi)n
i=1. The input

data matrix X of dimension n × K and an output data matrix Y of dimension
n×M have observations of different variables as coordinates xi ∈ RK and yi ∈ RM

in the rows, respectively. In the full partial least squares (PLS) problem, orthogonal
matrices P and C of dimensions K ×K and M ×K, where K,M ≥ 1, are sought
such that the transformed data matrices T and U, both of dimension n×K, given

3



2. Dimensionality Reduction

by

T = XP

U = YC,

satisfy

1. the coordinates, i.e. columns, of T are uncorrelated,

2. the first coordinate of T has largest variance among the coordinates and the
succeeding variances are non-increasing,

3. every coordinate has roughly maximal variance, and

4. the sample covariance between coordinate l of T and coordinate l of U is
roughly maximal for every l = 1, ..., K.

Conditions 1 and 2 are precise. Conditions 3 and 4 can in general not be satisfied
simultaneously, which is why they are notated by roughly. The precise optimization
problem, explaining how conditions 3 and 4 are optimized, can be found in [7, p. 81].
It is not very intuitive and the interested reader is referred to this book. Removing
condition 4 and using condition 1–3 for X only gives the principal component de-
composition of X, that is used in PCA. The matrices P and C are called loadings
and the matrices T and U are called scores.

Since P and C are orthogonal it equivalently holds that

X = TPT

Y = UCT .

It is not usual to transform the K-dimensional data in X into the K-dimensional
transformed data in T, but rather to a lower L-dimensional subspace, where L < K.
The reason can be for dimensionality reduction purposes. Moreover, it can be since
essentially all information is captured in the L-dimensional subspace, and that the
contribution in the remaining subspace of dimension K −L is mainly noise. In this
case, the problem is to find matrices P,C,E,F of dimensions K×L, M ×L, n×K

4



2. Dimensionality Reduction

and n×M such that

X = TPT + E

Y = UCT + F,

and conditions 1–4 above hold. The matrices E and F are error terms representing
the deviation of the original K-dimensional data from the L-dimensional represen-
tation [6].

A famous algorithm for solving the PLS problem is the Nonlinear Iterative Partial
Least Squares (NIPALS) algorithm [8, 9, 10]. Since PLS is not specified with full
precision in this thesis, the NIPALS algorithm for PLS (NIPALS-PLS) is not derived.
One benefit with NIPALS is that the dimensions l = 1, . . . , L, are computed one
at a time, and a decision on the number of dimensions to use can be done without
computing all dimensions. To perform the NIPALS-PLS algorithm, one starts for
l = 1 by randomly initializing ul ∈ Rn and iteratively computing the steps

1. wl = XT ul

2. tl = Xwl, tl ← tl/‖tl‖

3. cl = YT tl

4. ul = Ycl, ul ← ul/‖ul‖,

until convergence of tl. After convergence, the X and Y matrices are deflated,
meaning that

X← X− tltT
l X and Y← Y − tltT

l Y.

The steps 1-4 and the deflation of matrices are repeated for l = 2, . . . , L. This gives
(tl)L

l=1, (ul)L
l=1 and (cl)L

l=1. The score matrices T and U and the loading matrix
C are constructed by by having (tl)L

l=1, (ul)L
l=1 and (cl)L

l=1 as columns. Moreover,
the K × L weight matrix W is constructed by having (wl)L

l=1 as columns. The
loading matrix P is finally given by P = XT T(TT T)−1. Since TT T is diagonal this
is equivalent to the columns of P satisfying pl = XT tl/(tT

l tl). When using PLS
for dimensionality reduction purposes, the columns tl, ul, pl, cl and wl are often
referred to as the lth principal component scores, loadings respectively weights.

5



2. Dimensionality Reduction

2.1.2 Principal Components for Visualization

When using PLS for dimensionality reduction purposes, plots of loadings, scores
and weights from the PLS problem can be considered to potentially gain insight in
the data. Usually the first couple of columns, corresponding to the first couple of
principal components, of the transformed data is used since they capture most of
the variance. These kinds of principal component plots can then be considered to
gain insight into how variables and observations affect each other.

Plots of different principal component scores can be used to gain insight into how
different observations relate. To plot scores in two dimensions, the values of tl are
plotted against corresponding values of tj of another principal component j 6= l

where j, l ∈ [1, L]. Grouped observations then have similar properties and observa-
tions close to the origin have average properties in the principal component space.
Scores T and U of both data matrices X and Y can be plotted simultaneously to
see how the data matrices relate to each other.

Plots of principal component loadings can be used to gain insight into how variables
affect each other. In a loading plot of two dimensions, the values of pl are plotted
against corresponding values of pj of another principal component j 6= l, j, l ∈ [1, L].
If different variables correlate strongly, they have similar principal component values,
i.e. they are located very close to each other. The distance to the origin of a loading
plot also holds information. Variables further away from the origin have a more
substantial impact on the principal components, and vice versa [6]. Figure 2.1
shows an illustrative example of a two dimensional plot of loadings and scores for
one data matrix X, corresponding to PCA.

In addition to studying the loadings to gain insight into how variables affect each
other, the weights C and W can be considered. The transformed X weights
W∗ = W(PT W)−1 are sometimes used instead of W [6], which is the approach
of [1]. Similar as for the loadings, the weight vectors corresponding to different
principal components can be plotted against each other. These kinds of weight
plots can be used to gain insight into which variables contribute to forming the
relationship between X and Y. Figure 2.2 shows an illustrative example of a PLS
weight plot.

6



2. Dimensionality Reduction

Figure 2.1: Illustrative example of a PCA plot. The circle in the plot is only to
help the reader with a consistent distance to the origin.
Suppose a data table X where different variables, in this case flavors, have been
measured for different observations, in this case fruits. The loadings of different
variables are represented as arrows, where loadings that are pointing in similar
directions, in this case ’Sweet’ and ’Cocoa’, are similar and positively correlated.
However, the loading of ’Cocoa’ is closer to the origin than the loading of ’Sweet’,
which reflects that ’Cocoa’ is not as highly described by the two first principal
components as ’Sweet’ is. ’Sour’ has its loading in the opposite direction of ’Sweet’,
indicating a negative correlation. The loading of ’Bitter’ is orthogonal to the loadings
of both ’Sweet’ and ’Sour’ which means they are not correlated at all to ’Bitter’.
Scores of observations are represented as blue dots. According to the first two
principal components, Lemon is mostly sour, slightly bitter, but almost no sweet at
all. Banana, on the other hand, is mostly sweet according to the first two principal
components.

7



2. Dimensionality Reduction

Figure 2.2: Illustrative PLS plot of weights w∗ and c in blue dots and red stars,
respectively. Suppose two data matrices of measurements of different properties on
different juice brands. Let the X matrix contain explanatory variables such as the
level of sweetening, bitterness, pulp and vitamin C of the juice brands. Suppose
also that several persons (p1,...,p10) have rated the juice brands depending on their
preference, stored in the Y data matrix. From this, the relationship between the
data matrices can be modeled using PLS and potentially, the organizations behind
the juice brands can examine what kind of characteristics that potential customers
enjoy. In the plot, there are more persons located close to sweetening and pulp
compared to the number of persons close to bitterness. Hence, the plot illustrates
that more persons seem to fancy sweet juice with pulp in it and fewer persons seem
to fancy bitter juice. Moreover, the level of vitamin C is not very well represented
by the first two principal components. This fact can be interpreted as that the level
of vitamin C only explains a small amount of the preference of persons, which seems
reasonable since it does not affect the taste or other criteria that could influence the
preference.

2.2 Kernel Partial Least Squares

Partial least squares is a linear method. One way to obtain a nonlinear counterpart,
suggested by [8], is to introduce a nonlinear map ϕ : RK → V that maps data into
some vector space V and solves the linear PLS problem for the transformed data.
Note that the dimension of V depends on the choice of ϕ(·). Consider the original
input data X with n components xi ∈ RK , i = 1, ..., n. The transformed data is
then saved in a matrix Φ = ϕ(X) having rows corresponding to ϕ(xi). The PLS
problem for the transformed data is given by

8



2. Dimensionality Reduction

Φ = TPT + E

Y = UCT + F.

The steps 1-4 of the NIPALS-PLS algorithm in Section 2.1.1 can now be modified
to use the transformed data Φ. Then, the algorithm do not use the weights wl and
starts for l = 1 by randomly initializing ul ∈ Rn and iteratively computing the steps

1. tl = ΦΦT ul, tl ← tl/‖tl‖

2. cl = YT tl

3. ul = Ycl, ul ← ul/‖ul‖,

until convergence of tl. After convergence the matrices are deflated according to

ΦΦT ← (Φ− tltT
l Φ)(Φ− tltT

l Φ)T and Y← Y − tltT
l Y.

The steps 1-3 and the deflation of matrices are repeated for l = 2, . . . , L. This ap-
proach can be computationally expensive in practice. Especially when the map ϕ(·)
transforms data into a vector space being very high, or even infinitely, dimensional.
Fortunately there is a trick called the kernel trick to avoid this problem. The same
trick is used for support vector classification and regression, see e.g. [11].

Before we proceed we notice that

(ΦΦT )i,j = 〈ϕ(xi), ϕ(xj)〉V , (2.1)

where 〈·, ·〉V is the inner product on the vector space V .
A function K : RK × RK → R is called positive semidefinite if for all functions
f : RK → R satisfying that

∫
RK f(x)2 dx <∞ it holds that

∫
RK

∫
RK

f(x)K(x, y)f(y) dx dy ≥ 0.

Mercer’s Theorem [12] states for all positive semidefinite kernels K : RK ×RK → R
there exists a so called Reproducing Kernel Hilbert space, denoted V , and a function
ϕ : RK → V such that K(x, y) = 〈ϕ(x), ϕ(y)〉V . This fact is used together with (2.1)
to present the NIPALS algorithm for kernel PLS.

9



2. Dimensionality Reduction

Consider a positive semidefinite kernel K : RK × RK → R and define the Gram
matrix K = (K(xi,xj))K

i,j=1. Inspired by (2.1) and Mercer’s Theorem, ΦΦT is
replaced by K in the NIPALS-PLS algorithm. The NIPALS algorithm for kernel
PLS is then to start for l = 1 by randomly initializing ul ∈ Rn and iteratively
computing the steps

1. tl = Kul, tl ← tl/‖tl‖

2. cl = YT tl

3. ul = Ycl, ul ← ul/‖ul‖

until convergence of tl. Finally, matrices are deflated by

K← (I− tltT
l )K(I− tltT

l )T and Y← Y − tltT
l Y,

where I is an n× n identity matrix. The steps 1-3 and the deflation of matrices are
repeated for l = 2, . . . , L. By using the kernel matrix K in the NIPALS algorithm
for kernel PLS above, the algorithm avoids using the nonlinear map in the first step.
This corresponds to the kernel trick. In this way, even if the implicitly given space
V is very high dimensional, even infinitely dimensional, the NIPALS algorithm has
not higher computational cost than the linear setting.

2.2.1 Kernel functions

As briefly described in the section above, expressing a nonlinear map as a kernel
function allows the kernel PLS regression to use the kernel matrix in the iterations.
The theory of the kernel functions used for kernel PLS in this thesis is presented
below.

Radial Basis Kernel

The radial basis function (RBF) kernel is a kernel that is in the form of a radial
basis defined as

KRBF(xi,xj) = exp(−γ‖xi − xj‖2), (2.2)

where γ is the width parameter. The nonlinear function ϕ(·) implied by the RBF
Kernel and Mercer’s Theorem is in fact mapping into the infinitely dimensional
space [11]. Hence, the kernel trick is useful to reduce computational complexity.
The RBF kernel represents the similarity of vectors as a decaying function of the
distance between the vectors. This means that the closer vectors are to each other,

10



2. Dimensionality Reduction

the larger the RBF kernel value. The width of RBF kernel values are determined
by the width parameter γ > 0. Geometrically, a smaller value of γ corresponds to a
wider and lower RBF kernel and a larger value corresponds to a more narrow and
higher RBF kernel.

Polynomial Kernel

Polynomial kernels can be defined in various ways but all consist of polynomial
kernel functions. In this thesis, polynomial kernels of the form

KPoly(xi,xj) = (xT
i xj + b)a (2.3)

of different orders a and parameters b are used. It should be noted that in the case
of a = 1 and b = 0, the polynomial kernel function in (2.3) becomes the linear kernel
function K(xi,xj) = xT

i xj, which is equivalent to linear PLS. A particular case of
polynomial kernels is the quadratic kernels, i.e. kernels where a = 2.

2.3 T-distributed Stochastic Neighbor Embedding

T-distributed stochastic neighbor embedding (t-SNE) is a technique used to visualize
high-dimensional data in a lower-dimensional space, usually of two or three dimen-
sions. According to [13], t-SNE is capable of capturing much of the local structure
of high-dimensional data very well, while also revealing global structure such as the
presence of clusters at several scales.

In the t-SNE method, a probabilistic structure is assumed with conditional proba-
bilities pj|i in the high-dimensional space. These conditional probabilities represent
that a data point xi would pick xj as its neighbor if neighbors were picked in pro-
portion to the probability density under a Gaussian kernel centered on xi. The
conditional probabilities are given by

pj|i = exp(−‖xi − xj‖2/2σ2
i )∑

k 6=i exp(−‖xi − xk‖2/2σ2
i ) , (2.4)

where σi is the variance of the Gaussian kernel centered on xi. Only pairwise
similarities are of interest, so pi|i is set to zero. Now, let Pi represent the conditional
probability distribution over all other data points given a data point xi. Then, the
perplexity parameter needed for the t-SNE algorithm is defined as

Perplexity(Pi) = 2H(Pi), (2.5)

11



2. Dimensionality Reduction

where H(Pi) = −∑j pj|ilog2pj|i is the Shannon entropy of Pi measured in bits. If
the variance σi is known, the conditional probabilities (2.4) can be computed and so
also the perplexity. However, the case in the t-SNE method is that the perplexity
is specified by the user. Since this is the case, t-SNE performs a binary search for
the values of σi to use in the conditional probabilities (2.4) [13].

In the t-SNE method, the joint probability density of the Gaussian distribution
centered on xi is used to measure the similarity of the point xi to all other points
xj in the high-dimensional space [13]. The joint probabilities are given by

pij = pi|j + pj|i

2n , (2.6)

where n is the dimension of the high-dimensional space and pj|i is given by (2.4).

Furthermore, a probabilistic structure is assumed in the lower-dimensional space. In
the regular SNE method, Gaussian distributions are used in both the high- and low-
dimensional spaces, which results in that points tend to get too crowded in the low-
dimensional space. Using a Student t-distribution with one degree of freedom, which
is more heavy-tailed than the Gaussian distribution, results in that the distances
between points in the lower-dimensional space increase. Therefore, SNE is extended
to t-SNE by employing a Student t-distribution with one degree of freedom in the
lower-dimensional space [13].

Let yi and yj be the low-dimensional points corresponding to xi and xj, respectively.
The joint probability densities qij under the Student t-distribution with one degree
of freedom are used to measure similarities in the lower-dimensional space. The
joint probabilities are given by

qij = (1 + ‖yi − yj‖2)−1∑
k

∑
l 6=k(1 + ‖yk − yl‖2)−1 . (2.7)

Using the probabilistic structures in the low- and high-dimensional spaces, t-SNE
seeks to model each high-dimensional data point as a point in the lower-dimensional
space in a way such that similar objects have a high probability of being visualized
close to each other. In the t-SNE method, a lower-dimensional representation is
constructed that minimizes the mismatch between the two sets of joint probabilities,
pij and qij, in (2.6) and (2.7). More precisely, t-SNE seeks to minimize the sum of
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2. Dimensionality Reduction

Kullback-Leibler divergences [13]. The corresponding cost-function is

C =
∑

i

∑
j

pijlog
pij

qij

, (2.8)

where pii, qii and log(pii/qii) are set to zero. The cost function in (2.8) is minimized
by a gradient descent method using

δC

δyi

= 4
∑

j

(pij − qij)(yi − yj)(1 + ‖yi − yj‖2)−1. (2.9)

For a derivation of (2.9), see [13].

The perplexity parameter (2.5) is related to the number of nearest neighbors, which
means that it determines how to balance attention between local and global features
of data in the t-SNE algorithm. A higher perplexity value corresponds to more
attention to global features, while a lower value corresponds to more attention to
local features. Hence, a too high perplexity value might not reflect variations within
clusters, while a too low perplexity value might not show any distinct clusters of the
data points on a global level. The perplexity value should be adjusted when data
points are added since a higher number of data points require a higher perplexity
value. Typical values of the perplexity are between 5 and 50 and t-SNE is fairly
robust to changes in perplexity [13]. Nevertheless, when using t-SNE in practice,
users would still have to interactively choose perplexity value by visually comparing
results under multiple parameter settings [14]. This process often requires knowledge
and understanding of the t-SNE algorithm, which could lead to non-expert users
misinterpreting data [15].

Finally, it should be noted that the objective function of t-SNE is non-convex and
minimized using a gradient descent optimization that is initiated randomly. There-
fore, different runs may result in different solutions [13].
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3
Classification

In this chapter, the algorithms and concepts used for classification in this thesis are
described. The linear method multinomial logistic regression is presented in Section
3.1, followed by the nonlinear methods random forest and multi-layer perceptron
networks in Sections 3.2 and 3.3. A technique for handling imbalanced data sets is
presented in Section 3.4 and finally concepts for evaluation of classifiers are presented
in Section 3.5.

The main idea behind classification problems is to, given input data, find the class
giving the highest expected probability score. A classifier is trained to distinguish
classes from each other and can be applied to predict class given input data.

3.1 Multinomial Logistic Regression

Logitstic regression is a linear method that can be used for classification. In this
thesis, multinomial logistic regression for multilabel classification, also called softmax
regression, using cross-entropy loss is used. The objective of multinomial logistic
regression is to construct a linear predictor function that constructs a score from
the explanatory variables of a given observation.

Assume there are n data points, each consisting of a set of M variables xi = x1,i,...,
xM,i, i = 1, .., n. Further, assume that a data point can take one class cj ∈ C,
j = 1, ..., K, where C is the set of the K = |C| possible classes. The linear predictor
function, for each class cj ∈ C, is then defined as

f(j, i) = wj · xi + bj, (3.1)

where wj = w1,j,..., wM,j are vectors of regression weights/coefficients and bj are
real valued regression bias/interception terms.
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3. Classification

The target, or true class, y in multinomial logistic regression is a variable ranging
over more than two different classes cj ∈ C. The method calculates the probabilities
of y being in each potential class, given an input x. To compute the probabilities,
the softmax function is used. Suppose z = [z1, z2, ..., zk] is a vector of dimension k,
then the softmax function of this vector is defined as the vector

softmax(z) =
[

ez1∑k
i=1 e

zi
,

ez2∑k
i=1 e

zi
, ...,

ezk∑k
i=1 e

zi

]
. (3.2)

In multinomial logistic regression, the input to the softmax is the linear predictor
function (3.1) for each class. Note that weights and biases are different for each
of the K classes. The probability that an input observation x has the true class y
being cj ∈ C, j = 1, .., K, is then given by

P (x has true label cj) = ewj ·x+bj∑K
k=1 e

wk·x+bk
. (3.3)

The cross-entropy loss, also called logistic loss, function used in multinomial logistic
regression, with true class y and predicted class ŷ, is

LCE(ŷ, y) = −
K∑

j=1
1{y = cj} log ewj ·x+bj∑K

k=1 e
wk·x+bk

, (3.4)

which is how much the predicted ŷ differs from the true y, for one single example x
[16]. In the cross-entropy loss function (3.4), 1{·} is 1 if the expression between the
brackets is true and 0 otherwise. The objective of multinomial logistic regression
is to minimize this loss as a function of weights and biases, which means to find
a set of weights and biases that makes the loss as small as possible. There are
different solvers available to solve this minimization problem. One such solver is the
Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm, that is
a quasi-Newton optimization method for real-valued and multivariate functions [17].
From the minimization problem, the multinomial logistic regression method outputs
a set of weights wj and a bias bj for each class cj ∈ C which can be used for prediction
of class for unseen observations. The predicted class is the class giving the highest
prediction probability (3.3).

To avoid overfitting training data and gain better performance on unseen data,
regularization can be used. Regularization adds a penalty that increases with model
complexity to the loss function. In this thesis, L2-regularization is used. Assume
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the weights w0, ..., wM in the predictor function, then the L2 penalty has the form
λ
∑M

i=1 w
2
i , where λ is the penalty parameter. Hence, using λ = 0 corresponds to no

penalty at all. Further, it is important to use an appropriate value of the penalty
parameter λ since a too small value might result in overfitting and a too large value
might result in underfitting.

3.2 Random Forest

Multinomial logistic regression is, as mentioned in the section above, a linear method
for classification. Consequently, it can not capture nonlinearities in given data and
is not advantageous when having nonlinear relationships. Random forest is, in con-
trast, a nonlinear method that can be used for supervised classification. It is an
ensemble method, meaning that it uses multiple learning algorithms, usually re-
sulting in better performance and prediction ability. More specifically, the random
forest method is an ensemble method consisting of several decision trees [18].

A decision tree can be used for supervised classification and consists of a tree-like
structure where each leaf node holds a class label. An observation is classified by
starting at the root node of the tree. A feature, i.e. variable, specified by the node
is considered. Depending on the value, a new node is selected at the next level in
the tree. This process continues recursively for the subtree rooted at the new node
until a leaf node is reached.

When training a decision tree classifier, all features of the training data are consid-
ered at each level in the tree, and different binary partitions, so-called splits, are
tried. The best split is selected based on a cost function, where the split having
the lowest cost is selected. From each branch in this split, a new split is decided
based on the cost function. In this way, the tree is built. One commonly used cost
function, which is also used in this thesis, is the gini impurity. The gini impurity
measures the probability of misclassification for a randomly picked observation in
the data set that is randomly classified according to the class distribution in the
data set. For a classification problem of K classes, the gini impurity at a node j is
defined as

GINI(j) =
K∑

i=1
P (i|j)

∑
l 6=i

P (l|j) =
K∑

i=1
P (i|j)(1− P (i|j)),

where P (i|j) is the probability of an item being classified with label i at node j.
When selecting a good split at a node, the gini impurity is calculated for each branch
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and results are weighted according to the number of elements in each branch. The
split with the lowest branch weighted gini impurity is selected. If this split gives
a lower branch weighted gini impurity than the current node, the current node is
split. Different criteria can be incorporated to decide when to stop splitting a tree.
One criterion could be to decide a minimum number of samples that are required
to split a node. Another is to decide the maximum depth of a tree. If the tree at a
point during training reaches the criterion decided, then the nodes are not further
split.

To predict the decision tree response y of an input observation x, pass x down
the decision tree until it reaches a leaf node. Let k denote the leaf node and let
yk1 , ..., ykn denote response values of the training data in node k. The prediction
function of the input observation x is then

h(x) = argmax
y∈C

n∑
i=1

1{yki
= y}, (3.5)

where C is the set of available classes and 1{·} is 1 if the condition inside the
paranthesis holds and 0 otherwise.

Returning to ensemble methods, they usually result in better predictive performance
than by using a single decision tree. In decision tree ensemble methods, the whole
original data set can be used for each tree, or the data set can be split into subsets.
Choosing subsets randomly with replacement is called bagging or bootstrap aggre-
gation. The random forest method is an extension to bagging where in addition to
taking the random subsets of data, also taking a random selection of features rather
than using all features when deciding the best splits and growing trees. The optimal
parameters to use in a random forest, such as the number of trees and how many
features to consider for each split, is dependent on the data and application area.
To decide on optimal parameters, one technique is to optimize on some performance
measurement during cross-validation which is described in Sections 3.5.1 and 3.5.3.

Suppose an input observation x and the corresponding response class y. Then the
goal of the random forest method is to find a prediction function f(x) for predicting
y. The prediction function of random forest is constructed by combining a number
of multiple decision trees, h1(x),..., hJ(x). The decision trees are predicted inde-
pendently and the prediction function is the most frequently predicted class of all
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decision trees [18],

f(x) = argmax
y∈C

J∑
j=1

1{y = hj(x)},

where 1{·} is 1 if the condition inside the parenthesis holds and 0 otherwise.

3.3 Multi-layer Perceptron

Multi-layer perceptron (MLP) networks are a class of feedforward artificial neural
networks that can detect nonlinear relationships in data and be used for classification
purposes [16]. A MLP network consists of multiple layers, where the first layer is
the input layer, then there are one or several hidden layers and finally, there is an
output layer.

Suppose a MLP network of L hidden layers. The state of neuron i in a layer
l = 0, ..., L + 1 in the network is denoted by x

(l)
i , where l = 0 corresponds to

the input layer, which is simply the input data vector, and l = L+ 1 corresponds to
the output layer. Each hidden layer and the output layer has a connection weight
w

(l)
ji , l = 1, .., L+1, from the previous layer and a bias θ(l)

j , where i are indices of the
previous layer and j are indices of the current layer. The states of hidden neurons,
x

(l)
j , l = 1, ..., L, are calculated from the neurons x(l−1)

i at the previous layer as

x
(l)
j = g

(
ni∑

i=1
w

(l)
ji x

(l−1)
i − θ(l)

j

)
,

where ni is the number of neurons of layer l − 1 and g(·) is the activation function.
Common choices of the activation function are the logistic sigmoid function
σ(x) = 1/(1+exp(−x)), the hyperbolic tan function tanh(x), and the rectified linear
unit function ReLu(x) = max(0, x).

In the case of multilabel classification, it is common to calculate the output,
ŷ = x

(L+1)
j , of a MLP network using the softmax function (3.2), as

ŷ = x
(L+1)
j = softmax

(
ni∑

i=1
w

(L+1)
ji x

(L)
i − θ

(L+1)
j

)
.

Let C be the set ofK = |C| number of classes available. The objective when training
a MLP network is to minimize a loss function. One common such function is the
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cross-entropy loss function [16], defined as

LCE(ŷ, y) = −
K∑

j=1
1{y = cj} logP (y = cj|x),

where y is the true class, ŷ is the predicted class and 1{y = k} is 1 for y = k and 0
otherwise. Using the softmax function, and defining zj := ∑ni

i=1 w
(L+1)
ji x

(L)
i − θ(L+1)

j ,
the cross-entropy loss can be expressed as

LCE(ŷ, y) = −
K∑

j=1
1{y = cj} log ezj∑K

k=1 e
zk
.

To minimize the loss, there are different optimization solvers. One solver is the
Adam solver, proposed by [19]. It is a commonly used optimizer and it is based on
stochastic gradient descent.

3.4 Synthetic Minority Over-sampling Technique

A class imbalanced data set is a data set with one or some classes containing signif-
icantly fewer or more observations. There exist various approaches to adjust a data
set to a set where the number of observations is more equally distributed between
the classes.

Previous research [20] has discussed sampling with replacement, but argues that
this approach does not significantly increase the recognition of minority classes.
With this background, the synthetic minority over-sampling technique (SMOTE),
proposed by [21], is used in this thesis. The SMOTE technique performs over-
sampling by creating ’synthetic’ examples rather than by sampling with replacement.

Using SMOTE, the user can decide if over-sampling should be performed on the
minority class, a number of minority classes, or on all classes. For each data sample
of the selected class or classes, the technique creates synthetic samples along the line
segments connecting the samples with their k nearest neighbors. Depending on the
number of over-samples required, all or only some randomly chosen of the k nearest
neighbors are considered. Consider a vector from a sample to one of its nearest
neighbors multiplied by a random number between 0 and 1. This multiplied vector
is added to the original sample to create a synthetic sample. For more information
on the over-sampling procedure in SMOTE, see [21].
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3.5 Classifier evaluation

When training a classifier model, it is of high importance to design the classifier in a
way so that it can be generalized and used on data it has not seen before. A classifier
that can classify the data it has been trained on very well but performs poorly
on unseen data is probably having problems with overfitting. When performing
classification experiments, a common approach is to divide the data set into different
subsets for different usage. Usually, the data is divided into one set used for training,
one set for validation and one set used for testing.

3.5.1 K-fold Cross-Validation

During model development and when tuning model and regularization/tuning pa-
rameters, some classifiers might perform better on some specific held out data but
perform worse on other held out data. Such behavior could result in unfair perfor-
mance measures. To avoid this, the k-fold cross-validation technique can be used.
In this technique, instead of splitting training and validation data into two parts,
one for training and one for validation, data are divided into k parts, often of equal
size. One set at a time is then used as validation data on a model trained with the
other k − 1 parts of the data. Performance metrics, see Section 3.5.3, can then be
averaged over the k trials [22].

3.5.2 Confusion Matrix

Results from a classifier can be visually presented as a confusion matrix. Let C
be the set of K = |C| number of classes available. In the classification problem,
the confusion matrix is a K ×K matrix where rows correspond to true labels and
columns correspond to predicted labels. Each element mij, i = 1, ..., K, j = 1, ..., K,
in a confusion matrix is the number of samples from class ci being predicted to class
cj. Hence, a perfect classifier would only have non-zero elements on the diagonal of
the confusion matrix. The structure of a confusion matrix can be seen in Table 3.1
for a classifier of three classes.

20



3. Classification

Predicted label
Class 1 Class 2 Class 3

True label
Class 1 m11 m12 m13
Class 2 m21 m22 m23
Class 3 m31 m32 m33

Figure 3.1: Structure of a confusion matrix for a multilabel classification problem
of K = 3 classes. Each element mij, i = 1, 2, 3, j = 1, 2, 3, is the number of samples
from a true class ci being predicted to class cj.

3.5.3 Performance Metrics

To measure the performance of different trained classifiers, the classification perfor-
mance metrics accuracy, precision, recall and F1 -score can be used. In this section,
these performance metrics are presented for a multilabel setting. Let C be the set of
K = |C| number of classes available. The formulas are presented using the confusion
matrix definition from the Section above, where mij is the number of samples from
class ci ∈ C being predicted to class cj ∈ C.

First, accuracy is the number of correct predictions out of the total number of
predictions, defined as

Accuracy =
∑K

i=1 mii∑K
i=1

∑K
j=1 mij

,

for a multilabel classifier. However, accuracy alone does not cover the robustness
of a classifier when having a class-imbalanced data set, where there is a significant
disparity between the number of samples in each class. Since this is the case in this
thesis, additional classification metrics are needed.

For a class ci ∈ C, precision is the proportion of all observations predicted to this
class that are truly in this class, defined as

Precisioni = mii∑
j∈C mji

.

For a class ci ∈ C, recall is the proportion of all observations truly belonging to this
class that are also being correctly classified to this class, defined as

Recalli = mii∑
j∈C mij

.
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Depending on the classification problem and the application of it, precision and
recall can be considered of higher or lower importance. Precision and recall scores
are sometimes summarized into one single F1-score. In the multilabel setting, there
is one F1-score for each class ci ∈ C defined as

F1i = 2 · Precisioni · Recalli
Precisioni + Recalli

,

which is the harmonic mean of the precision and recall scores [23].

So for multilabel classifiers, precision, recall and F1-score can be calculated for
each class. However, there exist various definitions of how to summarize scores for
multilabel classifiers. Since there is an imbalanced data set used for classification
in this thesis, the average weighted macro summarized score is used, where the
scores of different classes are weighted according to the number of observations in
the corresponding class [24]. For the F1-score, if there are K classes, each with
ni, i = 1, .., K, number of observations, and F1-scores F1i, i = 1, .., K, then the
average weighted macro F1-score is defined as

F1weighted
macro =

∑K
i=1 ni · F1i∑K

i=1 ni

.

It should be noted that much information gets lost when generalizing the preci-
sion and recall scores to a F1-score and that even more information gets lost when
generalizing further to an average weighted macro F1-score. Therefore it is of im-
portance to consider all scores during the development of classifiers to have more
robust evaluation.
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Data

In this chapter, information on the data used in this thesis is presented. First, the
overall structure of the dose-response data is presented. Second, specific information
on the two data sets used in this thesis is presented, including information on clinical
classes and the number of observations and variables.

4.1 Structure and Experiments

The dose-response data in this thesis is from experiments on rats performed further
back by IRLAB. In total, data from experiments on 3730 rats is used. In these
experiments, rats are given different chemical compounds in various doses, given by
the Y data matrix. For more information on the compounds, see [1]. How rats
respond to different doses of compounds are measured as biological response profiles
and saved as a data matrix X. More information on the data matrices is given
below.

X Data

The X data matrix of biological response profiles contain both behavioral and neu-
rochemical variables. Behavioral variables are, for instance, the average speed of
a rat and the time spent in the central part of the cage. During one hour, time
series of positions of the rats are measured. Afterward, 11 different main behavioral
variables, such as average speed, are calculated based on the time series. The main
variables are calculated from the time series at seven sampling frequencies from 0.25
to 25 Hz and pooled into 15 minute periods, giving 308 behavioral variables in total
for each rat. Neurochemical variables are levels of different chemical substances in
the brain. They are measured in the different brain regions striatum, cortex, and
limbic. The measurements of neurochemical variables are done by killing the rats
and dissecting brains immediately after measuring behavioral variables [1].
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Y Data

All X variables are obtained from experiments and measured for rats that are given
different compounds in various doses, given by the Y matrix. The Y matrix contains
compound dose vectors from experiments. For each compound in one experiment,
there are between three and four dose-levels examined and each dose-level is exam-
ined on four different rats. The dose-levels are given as milligrams or micro-moles
per kilogram of the rat’s weight. For different compounds, different dose-levels are
relevant and therefore, the dose-levels vary between different compounds.

The Y variables are formed as a sparse matrix of ’dummy variables’, where one col-
umn corresponds to one compound. Variable values in a column are numbers from
1 to 4 representing specific dose-levels, in ascending order, of the column compound.
By using the dose-response data, it is possible to relate the biological response pro-
files of different compounds. For more information on the experiments and different
compounds, see [1].

4.2 Data Sets

There are two data sets used in this thesis, one for dimensionality reduction and
another for classification. The compounds in the data sets belong to different clinical
classes, based on therapeutic findings and usage. These clinical classes are defined
slightly different for the two data sets and more details are given below.

Data for Dimensionality Reduction

The data set used for dimensionality reduction consists of 850 observations of 55
different compounds where 228 behavioral variables and 20 neurochemical variables
are considered. This data set contains both X and Y data matrices. The clinical
classes in this data set are antidepressants (AD), drugs for attention deficit hyperac-
tivity disorder (ADHD), cognitive/drugs for dementia (cogn), drugs for Parkinson,
antipsychotics (AP) and drugs of abuse. There are also some compounds without
clinical class, and these are denoted by other.

Data for Classification

The data set used for classification consists of 2880 observations where 20 neuro-
chemical variables and 308 behavioral variables are considered. This data set con-
tains only a X data matrix, but no Y data matrix. Hence, dose-levels are not taken

24



4. Data

into account when developing classifiers. The class labels used for classifiers are the
clinical classes based on therapeutic usage and previous research. The distribution
of the these classes in the classification data set can be seen in Figure 4.1.
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Figure 4.1: Distribution of clinical classes in the data set used for classification.

Classes with a too small number of observations are kept out from classification.
These classes are compounds inhibiting anxiety (anx), stimulant, drugs for hyper-
tonia, motion sickness and muscle relaxant. The class of epilepsy drugs (epilepsia)
is kept out from classification since no such class is present in the data set used for
dimensionality reduction.

The observations with label experimental do not have any verified clinical class.
Therefore, these observations are only used for prediction and not for training, val-
idation nor testing of classifiers.
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Methods

In this chapter, the methods of this thesis are presented. First, the current method-
ology at IRLAB is presented in Section 5.1. Second, the pre-processing procedures
used in this thesis are presented in Section 5.2. Finally, information on the imple-
mentations of methods used for dimensionality reduction and classification in this
thesis is presented in Sections 5.3 and 5.4, respectively.

5.1 Current Methodology at IRLAB

The purpose of using PLS is often to use it to obtain a model for prediction where
the model can predict Y from X, see Section 2.1.1. However, this is not the case in
this thesis. Instead, PLS is used to model the relationship between dose-response
data obtained for each compound, since this is the approach described in [1]. In this
section, the current visualization methodology at IRLAB is described followed by
data pre-processing procedures.

5.1.1 Dimensionality Reduction Visualization

The weights w∗ and c for X respectively Y variables are plotted for the principal
components from linear PLS, see [1], to compare results visually. An example of such
a weight plot can be found in Figure 2.2 in Section 2.1.2. Visualizations are made
easier to interpret, especially to people with limited knowledge of compounds, by
putting all compounds into different clinical classes, based on therapeutic findings
and usage, where each class is represented by a specific color.

5.1.2 Pre-processing of Data in Current Methodology

The software used for linear PLS regressions by IRLAB is called SIMCA, see [6], and
it performs some pre-processing, so-called auto-scaling, on data before regression.
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The first step of auto-scaling is to replace zeros in the X data, to later be able to
transform it logarithmically. If a zero is encountered, it is replaced by half of the
smallest value of that variable among all observations. This means that all zeros are
replaced by half of the smallest value in its column.

Moreover, PLS performs better if the data is fairly symmetrically distributed [6].
Therefore, if the data has an asymmetric distribution, the data is usually logarith-
mically transformed before analysis [6]. The next step in auto-scaling is therefore to
logarithmically transform the X data with base 10. The logarithmic transformation
is followed by mean-centering of both X and Y matrices, which is to subtract the
average value of each variable from the data.

Further, variables are scaled, meaning that each coordinate axis in the variable space
is regulated according to some criteria. Since a variable with a wide numerical range
has a higher variance, and principal components seek to maximize the variance, it is
more likely for high variance variables to be expressed in a model. This fact results
in a model that will not reflect low variance variables as much as high variance
variables, why it is important to scale variables. The next step after mean-centering
is therefore to perform unit variance (UV) scaling of both data matrices X and Y.
UV-scaling means that the variables, stored in the columns of the data matrices, are
divided by the standard deviation of the corresponding variable. In this way, each
variable has equal unit variance, corresponding to variables being equally important
a priori. In cases when there is no a priori knowledge about the data, it is essential
not to perform scaling subjectively, resulting in a modification of the model that is
adjusted towards some expected or wanted result. Therefore it is crucial to perform
scaling objectively and UV-scaling is, in general, an objective approach [6].

Lastly, block scaling is performed on the X variables. Block scaling is a technique
that can be used when there are different types of variables in a data matrix, for
instance corresponding to that they have different origins. In the data of this the-
sis, the different types of variables are neurochemical and behavioral variables, see
Chapter 4. If it is a considerable difference in the number of variables of different
types in the data, then different types of variables will affect the model to a variously
large extent. However, if the intention is that the different types of variables should
be equally reflected in the model, the variables can be divided into different blocks
based on the variable type. The variables in different blocks are then multiplied by
different relevant factors. In this thesis, the variables are divided by the square root
of the number of variables in its block.

27



5. Methods

5.2 Pre-processing of Data

In this thesis raw data was provided. Therefore, the same pre-processing steps as in
the auto-scaling process in SIMCA, see Section 5.1.2 above, are performed in Python
when replicating the linear PLS results of IRLAB. Since the replicated linear PLS
results act as a benchmark for parts of the explorative work, the pre-processing
steps described in Section 5.1.2 are also performed before applying the non-linear
dimensionality reduction methods and classification methods of this thesis.

5.3 Dimensionality Reduction

Different methods for dimensionality reduction are investigated in the scope of this
thesis and some of the most promising ones are implemented and finally evaluated
visually. The evaluation of different methods is qualitative and consists of visually
comparing results with each other and against results from linear PLS, which is the
method used in the current methodology, see Section 5.1. Visualizations are also
evaluated by consulting IRLAB and the intuition they possess.

In the upcoming Sections 5.3.1, 5.3.2 and 5.3.3 it is described how different methods
for dimensionality reduction are implemented in this thesis. Afterwards, in Section
5.3.4, follows a remark on other methods for dimensionality reduction and finally,
in Section 5.3.5, it is described how results from dimensionality reduction methods
are visualized in this thesis.

5.3.1 Implementation of Partial Least Squares

A NIPALS-PLS regression, see Section 2.1.1, is implemented using the Python li-
brary python-nipals [25]. In this package, missing data is handled as in the R
package nipals [26]. The handling of missing values in the NIPALS-PLS algorithm
is based on the idea that single elements in the loading and score vectors correspond-
ing to missing values in the original data should be skipped in calculations. More
precisely, suppose a certain variable value xik of observation, i.e. row, i = 1, ..., n
of variable, i.e. column, k = 1, ..., K in X is missing. Then the corresponding
score elements tih, h = 1, ..., K, should be skipped in the calculation of the loadings
phk. In the same way, if a certain variable value xik is missing, the corresponding
loading elements pkh must be skipped when calculating the score values tih. In the
NIPALS-PLS regression algorithm, see Section 2.1.1, this idea is implemented by
making sure that all normalizations of score vectors t and u and loading vectors w
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and c are done in a manner such that numbers corresponding to missing values in
X respectively Y are not included. The algorithm saves positions of missing values
in the X and Y matrices and replaces them with zeros. After calculating scores
and loadings, but before normalizing, the values in the score and loading matrices
corresponding to missing values in X and Y are replaced by zeros.

5.3.2 Implementation of Kernel Partial Least Squares

Kernel PLS is implemented in this thesis using the python-nipals package as a
basis. In this package, normalizations are performed on the loadings w and c. To
be able to add a kernel, normalizations are applied on the scores t and u instead, as
in Section 2.1.1. Apart from changing the normalization, the only other adjustment
of python-nipals to perform kernel PLS is to add the calculation of the kernel
matrix K from the X data, see Section 2.2. The kernel functions used in this thesis
are radial basis functions (2.2) with width parameters in the range γ ∈ [0.5, 2].
Polynomial kernels with kernel functions of the form (2.3) are also used. Parameters
considered are combinations of a = 1, 2, 3, 4 and b = 0, 1, 2, 3, 4, 5, 10, 50, 100.

Due to the use of the kernel matrix, it is not possible to handle missing values in
the implementation of kernel PLS, as in the implementation of linear PLS described
in Section 5.3.1. This fact is a result of that the kernel NIPALS-PLS algorithm,
see Section 2.2, does not calculate t scores directly from the X matrix, as in the
NIPALS-PLS algorithm, see Section 2.1.1. Instead, the kernel NIPALS-PLS algo-
rithm calculates t scores from the kernel matrix K. Hence, it is not possible to make
sure that all normalizations of t vectors are done in a manner such that numbers cor-
responding to missing values in X are not included, as in the implementation of the
NIPALS-PLS algorithm, described in Section 5.3.1. Therefore, the somewhat more
naive approach to replace missing values with zeros is used when using kernel PLS
in this thesis. The replacement with zeros is implemented after the pre-processing
steps. In the pre-processing steps, the missing values are excluded from calculations
of mean values and variances of variable columns. Since pre-processing includes
mean-centering, replacing missing values with zeros corresponds to replacing miss-
ing values with the mean value of its variable among all observations that do not
have missing values.
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5.3.3 Implementation of T-distributed Stochastic Neighbor
Embedding

To implement t-SNE, the Python library sklearn.manifold.TSNE [27] is used. In
the implementation, various values of the perplexity parameter are used in a range
from 5 to 50 and embeddings are fit during 1500 iterations. For each run, the
embedding is set to a random initial state and a learning rate of 200 is used. Just as
for kernel PLS, missing data is replaced with zeros when using t-SNE in this thesis.

5.3.4 Remark on Methods for Dimensionality Reduction

Except from the methods described in the subsections above, some other non-linear
methods for dimensionality reduction were tested. These methods are Isometric Em-
bedding [28], Locally Linear Embedding [29], Multi-dimensional Scaling [30], Spectral
Embedding [31] and Uniform Manifold Approximation and Projection [32]. How-
ever, the experiments performed using these methods gave poor results or results
very similar to linear PLS. Therefore, these methods are not further evaluated in
the scope of this thesis.

5.3.5 Visualization of Observations

The current methodology at IRLAB consists of visualizing w∗ and c weights from
linear PLS, as mentioned in Section 5.1.1. In a plane of two principal components,
this yields one point per compound from c and one point per variable from w∗. All
the methods for dimensionality reduction in this thesis do not result in corresponding
results for variable positions. Therefore, visualizations in this thesis only consider
positions of compounds and observations where the observations are the rats given
different compounds. Also, the methods in this thesis do not give one point per
compound in the same manner as in the linear PLS. Therefore, a technique for
summarization of observations of the same compound is developed. The output from
the methods gives one score point per single observation. All points of observations
corresponding to the same compound are summarized by an average and a weighted
average where the weights are the compound dose of an observation. The averages
are visualized as points colored according to the clinical class of the corresponding
compounds. From these points, there are grey arrows to the weighted average.
Results visualized using this technique are presented in Section 6.1.
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5.4 Classification

In this section, it is described how the different methods for classification, see Chap-
ter 3, are investigated in the scope of this thesis. First, Section 5.4.1 explains how
data is treated along with information on the training process and how evaluation is
performed. Finally, the implementations of all classifiers, using the scikit-learn
library [33] in Python, are described in more detail in Sections 5.4.2, 5.4.3 and 5.4.4.

5.4.1 Classifier training and evaluation

Before applying classification methods, the data with selected and known clinical
classes, described in Chapter 4, are divided into two sets. One set is used for training
and validation and the other set is used for testing. The two sets are obtained using
stratified sampling, which means that the proportion of classes in the two sets are as
similar as possible to the distribution of classes in the original data set. To obtain
this, two observations of each compound are in the test set while the others are in
the training and validation set. The two observations picked to be in the test set are
selected so that lower and higher dose levels are distributed as equally as possible
between the test set and the set for training and validation. From this, 12.8% of the
observations are in the test data set and 87.2% are in the data set used for training
and validation. The distribution of different classes in the test data set and in the
training and validation data set can be seen in Figure 5.1.
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Figure 5.1: Distribution of clinical classes in the test data set and in the training
and validation data set used for classification. The test data set can be seen as
lighter colors on top of the stacks, and the training and validation data set can be
seen as brighter colors in the bottom of the stacks.
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All classifiers are developed using the training and validation set and, in the very end,
evaluated on the test set. Classification methods considered are multinomial logistic
regression, random forest and multi-layer perceptron networks. Each method is
trained both on the initial training and validation data set and on a SMOTE data set,
which gives six different classifiers to evaluate. When evaluating the training process
of classifiers, k-fold cross-validation is used, see Section 3.5.1. More specifically, the
data set used for training and validation is divided into k = 5 parts using stratified
sampling and performance metrics are calculated for each of the k trials and the
average of these trials is considered for evaluation. The best suitable parameters
for each of the classification methods are obtained by searching through different
sets of parameters to find the ones giving the highest average weighted macro F1-
score from the k-fold cross-validation, see Sections 3.5.1 and 3.5.3. The F1-score is
used since precision and recall are considered to be equally important in the scope
of this thesis. The average weighted macro F1-score is chosen to incorporate the
performance of the smaller classes to a larger extent even though the data set is
class imbalanced.

The confusion matrices and classification metrics of the different classifiers are con-
sidered to evaluate classifier performance. Also, qualitative evaluation is performed
by consulting IRLAB and the expertise they possess. The data of experiments
on compounds classified as experimental compounds that do not have any verified
clinical class are predicted by the classifiers. From this, the probabilities of each
observation being in the different classes are obtained. Then the probabilities are
averaged over dose-levels, mostly containing 4 observations. The averages are pre-
sented as histograms where there is one histogram of each experiment having stacks
for each dose-level and class. These results are evaluated by comparing them with
tentative clinical classes from IRLAB and by consulting people with expertise.

5.4.2 Implementation of Multinomial Logistic Regression

To implement multinomial logistic regression, the method
sklearn.linear_model.LogisticRegression [34] is used with the multi-class
parameter set to ’multinomial’. Further, L2-regularization is used with the param-
eter set to the scikit-learn default value of 1. When the gain from updating the
model weights falls below a tolerance of 1 · 10−4, training is stopped.
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5.4.3 Implementation of Random Forest

The method sklearn.ensemble.RandomForestClassifier [35] is used to imple-
ment random forest. The gini impurity is used to find the best splits in each deci-
sion tree, see Section 3.2. Different combinations of parameters are tried and the
combination giving the highest average weighted macro F1-score is chosen. For the
optimal minimum samples required to split a node, values tried are in the range
[2, 10]. For the number of decision trees used in the ensemble, values in the range
[10, 200] are tried. The number of features to consider at each branch split is varied
between half of the square root of the total number of variables up to the total
number of variables.

5.4.4 Implementation of Multi-layer Perceptron

For the multi-layer perceptron, sklearn.neural_network.MLPClassifier [36] is
used. Networks of one and two hidden layers with between 50 and 350 neurons
are tested and the network giving the highest average weighted macro F1-score is
used in further evaluation. The classifier is fit using the ReLu-activation function
and a constant learning rate of 0.001 is used. Further, L2-regularization is used
and the penalty parameter is set to the scikit-learn default value of 0.0001. The
maximum number of iterations allowed is set to 500 and when the gain from updating
the model weights falls below a tolerance of 1 · 10−4, training is stopped.
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6
Results

In order to evaluate the methods described in Chapters 2 and 3, this chapter presents
some visual results and performance metrics from the explorative work described in
Chapter 5. Visual results from dimensionality reduction methods are presented in
Section 6.1 and results from classification methods are presented in Section 6.2.

6.1 Dimensionality Reduction

Results from dimensionality reduction methods are visually presented in the fol-
lowing Sections. Results from the linear PLS, acting as a benchmark for further
analysis, are presented in Section 6.1.1. In the following Sections 6.1.2 and 6.1.3, re-
sults from the nonlinear methods kernel PLS and t-SNE are presented and compared
to each other and to the results from linear PLS. Finally, the results are qualitatively
evaluated, partly based on the expertise of IRLAB in Section 6.1.4.

It should be noted that the scales of the axes in a dimensionality reduction visual-
ization are only relevant for comparison within the plot and not between plots.

6.1.1 Partial Least Squares

The result from using linear PLS shows a clustering pattern consistent with results
from the SIMCA software used by IRLAB, i.e. shows the same patterns and clusters.
The result is shown in a c weight plot in Figure 6.1. Figure 6.2 shows the result from
the same linear PLS implementation using the technique for summarizing scores,
described in Section 5.3.5.
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Figure 6.1: Linear PLS c weights of the first and second principal components.
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Figure 6.2: Plot of the first and second principal component scores, t1 and t2, for
the linear PLS method. Colored dots are the average of all observations, i.e. scores,
for one compound. From each dot, there is a grey arrow to a weighted average where
weights are the compound dose-level of an observation.
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6.1.2 Kernel Partial Least Squares

In this section, results from the implementation of kernel PLS are visualized for
some of the most interesting kernel functions.

For RBF kernels (2.2), results for the width parameter γ between approximately 0.8
and 1.3 give very similar results. Having the width parameter γ lower and higher
than these values result in similar, but not as distinct, clustering patterns and are
therefore considered less informative. These results can be found in Appendix A.1.
The result with parameter γ = 1 can be seen in Figure 6.3. In this figure, the
antipsychotic (AP) compounds are somewhat more densely clustered compared to
the linear PLS in Figure 6.2. However, compounds in other classes are a bit more
spread out compared to linear PLS. Compared to linear PLS, it can also be seen
that the drugs of abuse are less densely clustered and more spread out among the
other classes.
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Figure 6.3: Principal component scores, t1 and t2, of RBF Kernel PLS with
width γ = 1. Colored dots are the average of all observations, i.e. scores, for one
compound. From each dot, there is a grey arrow to a weighted average where weights
are the compound dose-level of an observation.
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For polynomial kernel PLS with kernel functions given by (2.3), mainly the special
case of quadratic kernels, a = 2, shows interesting results. Higher a values seem to
generate poor plots, meaning they do not show any patterns or clusters among the
compounds. Polynomial kernels with a = 1 do not provide additional information
to the linear PLS for any value of b. Results supporting these statements can be
found in Appendix A.2.

For the quadratic kernel with b = 0.5, the antipsychotic (AP) compounds are dis-
tinctly spread out while it does not give much information about compounds in the
other classes, see Figure 6.4. Quadratic kernels with even smaller b values show sim-
ilar behavior, but a bit shifted, not providing any additional information. Increasing
the b value shows a more and more similar behavior as the linear PLS. The result
for the polynomial kernel with a = 2 and b = 4 in Figure 6.5, shows a behavior
similar to the linear PLS in Figure 6.2. Increasing the b value further shows a more
and more similar behavior as the linear PLS.
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Figure 6.4: Principal component scores, t1 and t2, of polynomial Kernel PLS with
a = 2 and b = 0.5. Colored dots are the average of all observations, i.e. scores, for
one compound. From each dot, there is a grey arrow to a weighted average where
weights are the compound dose-level of an observation.
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Figure 6.5: Principal component scores, t1 and t2, of polynomial Kernel PLS with
a = 2 and b = 4. Colored dots are the average of all observations, i.e. scores, for
one compound. From each dot, there is a grey arrow to a weighted average where
weights are the compound dose-level of an observation.

6.1.3 T-distributed Stochastic Neighbor Embedding

In this section, results from the implementation of t-SNE using some different val-
ues of the perplexity parameter are presented. The results in Figure 6.6 are two
embeddings yielded with the perplexity parameter set to 5. Both these embeddings
are presented to illustrate that different runs of t-SNE with the same perplexity
value result in different solutions, see Section 2.3. The global location of clusters
differs quite much between these embeddings, while they show a similar behavior
within clusters on a more local level. As an example, most of the compounds in
the Parkinson’s class are clustered together in the two embeddings but in different
areas of the plots. This behavior might be due to the low perplexity value of 5 that,
according to theory, gives more attention to local features, see Section 2.3.
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(a) First t-SNE run with perplexity 5.
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(b) Second t-SNE run with perplexity 5.

Figure 6.6: Two dimensional embeddings from two runs of t-SNE with perplexity
5. Colored dots are the average of all observations for one compound. From each
dot, there is a grey arrow to a weighted average where weights are the compound
dose-level of an observation.
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A result from t-SNE with a perplexity value of 50 can be seen in Figure 6.7. Com-
pared to the results in Figure 6.6 for smaller perplexity value, this result is more
similar to the linear PLS, which might be due to the fact that higher perplexity
values give more attention to global features, see Section 2.3.
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Figure 6.7: Two dimensional embedding from t-SNE with perplexity 50. Colored
dots are the average of all observations for one compound. From each dot, there is
a grey arrow to a weighted average where weights are the compound dose-level of
an observation.

6.1.4 Qualitative Evaluation
Qualitatively, IRLAB considers some results to be promising for further exploration
even though the results do not show any very informative or new patterns or clusters.
The t-SNE results, in particular the result in Figure 6.6b, show behavior that could
be interesting as a springboard for further methodology development and analysis.
This behavior is that the antipsychotic and antidepressant compounds are quite
distinctly spread out and that the overlap is consistent with the intuition of the
compounds included. However, the result from the other run with the same per-
plexity value, in Figure 6.6a, are somewhat different. These observations illustrate
that different runs of the t-SNE algorithm with the same perplexity parameter can
show different results, as described in Section 2.3. Therefore, a possible methodol-
ogy approach could be to run t-SNE with the same perplexity value several times
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and evaluate if patterns and clusters that seem to be recurring in different runs can
be found.

Concerning kernel PLS, the RBF kernel in Figure 6.3 does not give very distinct
information on antipsychotic compounds but more distinct information of the other
compounds. On the other hand, the polynomial kernel in Figure 6.4 show more
distinct information on antipsychotic compounds, but not the behavior of other
compounds. Therefore, one idea to create insight from kernel PLS could be to
consider them complementary.

6.2 Classification

In this section, results from investigating the classification methods of Chapter 3
are presented, commented on and evaluated. First, in Section 6.2.1, the parameter
values showing best performance for the different methods are presented. Further, in
Sections 6.2.2 and 6.2.3, performance metrics from cross-validation on the training
data set and confusion matrices of the test data set are presented for each method
using the parameter values giving best performance. Finally, in Section 6.2.4, some
selected and interesting results from the experimental data set are presented and
qualitatively evaluated for the method showing best performance.

6.2.1 Parameter Values

For the random forest classifier, the combination of parameter values giving the
highest average weighted macro F1-score is 3 for the minimum number of samples
required to split a node and 40 for the number of decision trees used in the ensemble.
Further, the maximum features to consider for each split set to the square root of
the total number of variables gives the highest average weighted macro F1-score.
The depths of individual decision trees in the forest are in the range [16, 21].

For the multi-layer perceptron, a network with 2 hidden layers, each having 250
neurons, gives the highest average weighted macro F1-score. The maximum number
of iterations is never reached. These parameters are used in the following results.
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6.2.2 Performance Metrics from K-fold cross-validation

In this section, performance metrics from using the parameter values of the previous
section are presented for the different classification methods.

Multinomial
logistic regression

SMOTE Multinomial
logistic regression

Clinical class Precision Recall F1-score Precision Recall F1-score
AD 0.5164 0.6977 0.5814 0.6578 0.4294 0.4908
ADHD 0.3048 0.1792 0.2243 0.1902 0.3433 0.2408
AP 0.3330 0.2037 0.2507 0.3461 0.5216 0.4133
AP2 0.5777 0.6220 0.5877 0.6030 0.4395 0.4975
abuse 0.4111 0.1424 0.1842 0.3442 0.4333 0.3624
dementia 0.2610 0.2449 0.2481 0.2309 0.4272 0.2919
parkinson 0.3966 0.3487 0.3322 0.3398 0.3407 0.3255
macro average 0.4001 0.3484 0.3441 0.3874 0.4193 0.3746
macro weighted average 0.4551 0.4816 0.4435 0.4875 0.4215 0.4211

Table 6.1: Classification metrics of multinomial logistic regression averaged over
k-fold cross-validation, k = 5. Using the original data set for training and validation
(left) and the SMOTE data set for training and validation (right).

Random forest SMOTE Random forest

Clinical class Precision Recall F1-score Precision Recall F1-score
AD 0.5084 0.7585 0.6045 0.5321 0.6710 0.5886
ADHD 0.4590 0.1133 0.1689 0.2943 0.1775 0.2123
AP 0.5333 0.1642 0.2277 0.3558 0.2458 0.2873
AP2 0.5863 0.6425 0.6026 0.5872 0.6425 0.6079
abuse 0.6087 0.4697 0.4971 0.5048 0.3606 0.3671
dementia 0.4128 0.1838 0.2422 0.3174 0.2824 0.2885
parkinson 0.3956 0.2877 0.3172 0.3991 0.2641 0.3080
macro average 0.5006 0.3743 0.3800 0.4272 0.3777 0.3800
macro weighted avgerage 0.5079 0.5029 0.4628 0.4740 0.4854 0.4632

Table 6.2: Classification metrics of random forest averaged over k-fold cross-
validation, k = 5. Using the original data set for training and validation (left)
and the SMOTE data set for training and validation (right).
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Multi-layer
perceptron

SMOTE Multi-layer
perceptron

Clinical class Precision Recall F1-score Precision Recall F1-score
AD 0.6000 0.5928 0.5715 0.5928 0.5780 0.5666
ADHD 0.2630 0.2683 0.2409 0.2874 0.2692 0.2611
AP 0.4064 0.4184 0.4049 0.3960 0.4289 0.4073
AP2 0.6331 0.6137 0.6180 0.6166 0.5846 0.5966
abuse 0.5542 0.4833 0.5017 0.5151 0.5197 0.5065
dementia 0.3847 0.4265 0.3869 0.3767 0.4162 0.3664
parkinson 0.5237 0.3638 0.3477 0.5261 0.3872 0.3734
macro average 0.4807 0.4524 0.4388 0.4730 0.4548 0.4397
macro weighted average 0.5347 0.5068 0.4937 0.5265 0.5000 0.4905

Table 6.3: Classification metrics of a multi-layer perceptron with 2 hidden layers,
250 neurons each, averaged over k-fold cross-validation, k = 5. Using the original
data set for training and validation (left) and the SMOTE data set for training and
validation (right).

The results presented in the tables above are performance metrics averaged over
k = 5 cross-validation rounds for the training and validation data set, see Section
3.5.1. The different performance metrics are presented and defined in Section 3.5.3.
For all metrics, a higher value corresponds to better performance. A perfect classifier
that predicts all observations correctly would have all values of precision, recall and
F1-scores equal to 1.

From the tables above, it can be seen that the average weighted macro F1-score is
highest for the multi-layer perceptron network without SMOTE data. Moreover, the
random forest classifiers in Table 6.2 give higher average weighted macro F1-scores
than the multinomial logistic regression classifiers in Table 6.1. For the random forest
classifiers, the average weighted macro F1-score is slightly higher for the classifier
trained with SMOTE data than the classifier trained on original data. For the
multinomial logistic regression and multi-layer perceptron networks, using SMOTE
data does not improve the average weighted macro F1-score.
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6.2.3 Confusion matrices from Classification of Test Data

In this section, confusion matrices are presented for predictions of the test set for
all classifiers from the Section above.

(a) Multinomial logistic regression. (b) SMOTE Multinomial logistic regres-
sion.

Figure 6.8: Confusion matrix of the test set classified by a multinomial logis-
tic regression trained on the original training set (left) respectively trained on the
SMOTE training set (right).

(a) Random forest. (b) SMOTE Random forest.
Figure 6.9: Confusion matrix of the test set classified by a random forest trained
on the original training set (left) respectively trained on the SMOTE training set
(right).
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(a) Multi-layer perceptron. (b) SMOTE Multi-layer perceptron.

Figure 6.10: Confusion matrix of test set classified by a multi-layer perceptron
with 2 hidden layers, 250 neurons each, trained on the original training set (left)
respectively trained on the SMOTE training set (right).

From the confusion matrix of the test data in Figure 6.10a above, it is indicated
that the multi-layer perceptron classifier without SMOTE performs well. Compared
to the same classification method trained on SMOTE data, see Figure 6.10b, it
is not very clear which one performs better. The classifier trained with SMOTE
data is somewhat better at correctly classifying classes AP2 and dementia, while
the classifier trained on original data is better at correctly classifying AD and AP.
However, the difference is not very high.

For the random forest classifiers, see Figure 6.9, there are small differences when
comparing the classifier trained on original data to the classifier trained on SMOTE
data. By comparing the random forest classifiers to the multi-layer perceptron
classifiers, the random forest classifiers seem to be more likely to classify different
classes as AD falsely. The number of correctly classified experiments in the AD class
is slightly higher for the random forest classifiers, while the numbers of correctly
classified experiments in most of the other classes are higher for the multi-layer
perceptron classifiers.

Finally, the multinomial logistic regression classifiers in Figure 6.8 show a smaller
amount of correctly classified experiments. Just as for the other classifiers, several
experiments are falsely classified as AD. One could argue that this is due to the
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high amount of samples of this class in the training set. When performing SMOTE,
the multinomial logistic regression classifier does not classify as many experiments
falsely as AD, which supports this argument. Another argument for the reason of
falsely classified experiments as AD is that it is due to that AD compounds often
have lower effects than compounds in the other clinical classes. Since there is no
class for control groups, i.e. experiments with compounds that show no effect, it
could be that compounds giving small or no effect at all are falsely classified as AD.

Overall, results from the classification methods indicate that the multi-layer per-
ceptron classifier trained without SMOTE data performs better than the other clas-
sifiers. It also has the highest average weighted macro F1-score. Therefore, the
results from classifying experimental data, in the section below, will be presented
using this classifier.

6.2.4 Qualitative Evaluation of Experimental Data

The experiments with label experimental, i.e. data without verified clinical class, are
predicted using a multi-layer perceptron classifier trained on the original training
set since this classifier gives the highest macro weighted average F1-score. The
results are compared to tentative clinical classes and previous research. Note that
evaluation is performed by consulting people with expert knowledge at IRLAB, and
therefore, it is partly based on their expertise and intuition.

The classifications are evaluated and considered by IRLAB to be of one of three
groups. First, one group contains classifications showing well-known effects which
are consistent with tentative clinical classes and the intuition of IRLAB. Second,
another group contains classifications showing potentially unknown effects which
are interesting or surprising results that could, in some cases, be a springboard
for further analysis and innovation. Finally, the last group contains classifications
showing wrong effects, which are results utterly different from the intuition of IRLAB
and tentative clinical classes.

Out of the experimental compounds classified, IRLAB has previous knowledge and
intuition of possible clinical classes for 85 of them. Of the predictions of these com-
pounds using the multi-layer perceptron classifier, IRLAB considers classifications
of 70.6% of the compounds to show well-known effects, 11.8% to show potentially
unknown effects, and 17.6% to show wrong effects. In the following, some examples
of classifications in the three groups are presented.
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Well-known effects

The compound JNJ37822681 is classified as AP2, see Figure 6.11, which is consistent
with known characteristics [1].

Figure 6.11: Average prediction probabilities of compound JNJ37822681, clinical
tentative class AP2. Classification considered showing well-known effects.

The compound Lamotrigin is classified as AD, see Figure 6.12, which is consistent
with known characteristics even though it has a completely different mechanism of
action compared to multiple compounds of class AD in the training data set.

Figure 6.12: Average prediction probabilities of compound Lamotrigin, clinical
tentative class epilepsia. Classification considered showing well-known effects.
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In the data set for classification, there are two experiments performed for the com-
pound Bifeprunox. The classifier results on these two can be seen in Figure 6.13 and
the majority classification is AP2. For lower dose-levels, there are some experiments
classified as AD as well. These results are consistent with the experience of IRLAB,
which is that Bifeprunox belongs to a class of compounds with biphasic effect, i.e.
having two phases, of antidepressant and antipsychotic effects.

(a) Experiment 1.

(b) Experiment 2.

Figure 6.13: Average prediction probabilities of compound Bifeprunox, clinical
tentative class AP2. Classification considered showing well-known effects.
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Potentially unknown effects

The compound dov21947 is classified as an antidepressant (AD) and a compound
for treating ADHD in different ratios in two different experiments, see Figure 6.14.
Based on its pharmacological mode of action, it was developed as an AD compound
[37], but has substantial effects on the dopamine-system. This fact makes ADHD
classification an interesting and reasonable possibility since classical ADHD drugs
typically increase dopamine levels.

(a) Experiment 1.

(b) Experiment 2.

Figure 6.14: Average prediction probabilities of compound dov21947, clinical ten-
tative class AD. Classification considered showing potentially unknown effects.
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The compound Fipamezole is classified as a drug for Parkinson’s, see Figure 6.15,
which is consistent with previous studies where Fipamezole has been suggested as
a possible treatment of Parkinson’s [38]. Nevertheless, Fipamezole is an entirely
different kind of Parkinson’s drug, compared to the Parkinson’s drugs in the training
data, in the way that it addresses other symptoms of Parkinson’s disease. The fact
that the classifier still predicts it as Parkinson’s is an interesting observation.

Figure 6.15: Average prediction probabilities of compound Fipamezole, no clinical
tentative class. Classification considered showing potentially unknown effects.

The compound sk609 is classified as AD, see Figure 6.16. It is a dopamine receptor
agonist, meaning that it mimics the actions of dopamine to relieve symptoms related
to low levels of dopamine. Therefore, it is used to treat Parkinson’s disease, among
other conditions, which is probably the reason behind some of the observations
of sk609 being classified as Parkinson. The compound sk609 is also an inhibitor of
noradrenaline transporters, which is a common characteristic of AD drugs [39]. This
characteristic seems to be captured by the classifier.

Figure 6.16: Average prediction probabilities of compound sk609, clinical tentative
class parkinson. Classification considered showing potentially unknown effects.
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Wrong effects

Two experiments are performed on the compound mCPP, and both are mainly pre-
dicted as AD, see Figure 6.17. The compound is often used abusively and together
with other compounds. However, the effects are not typical for drugs of abuse
since the compound gives mostly unpleasant effects and anxiety when taken alone.
Moreover, mCPP has some mechanisms of action related to serotonin, which is a
neurotransmitter often considered as a contributor to feelings of happiness or well-
being. This mechanism is partly overlapping with the mechanisms of AD. Also,
mCPP is a metabolite to AD compounds [40], which could explain the classifica-
tion. The results of mCPP highlight an overall, more general, limitation of using
classifiers. This limitation is a consequence of that classifiers can not classify better
than how the classes available are defined.

(a) Experiment 1.

(b) Experiment 2.

Figure 6.17: Average prediction probabilities of compound mCPP, clinical tenta-
tive class abuse. Considered showing Wrong effects.

The experiment of the compound MK801 is predicted as atypical antipsychotic
(AP2) for the highest dose-level, see Figure 6.18. However, this compound is used for
modeling psychosis [41], which is basically the opposite of antipsychotics. The AP2
classification could be due to the compound having neurochemical effects similar to
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antipsychotics and to the highest dose-level being very high, or even too high, so the
behavioral variables are reduced. If this is the case, the antipsychotic prediction is
not very surprising. The lowest dose-level has clear effects and the predicted class
is AD, which is reasonable since it has a similar mechanism as norketamine which
has been reported to have antidepressant effects [42].

Figure 6.18: Average prediction probabilities of compound MK801, no clinical
tentative class. Considered showing wrong effects.

The compound Gaboxadol is predicted as AP2, see Figure 6.19, but is not known to
have antipsychotic effects. The prediction being AP2 might be due to that Gabox-
adol is similar to antipsychotics in that it can reduce dopamine transmission, but
with a different mechanism [43]. For lower dose-levels, Gaboxadol is tentatively
known as a compound for sleep [44], which means that it is calming and makes the
user drowsy. In the smallest dose-level, the average prediction probability is highest
for the AD class, which could be due to a small increase in behavior. Nevertheless,
the clinical effects of Gaboxadol are not verified, making it difficult to draw any
conclusions.

Figure 6.19: Average prediction probabilities of compound Gaboxadol, clinical
tentative class sleep. Considered showing wrong effects.
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7
Conclusions & Future Work

The main topic of this thesis is to investigate if there are any nonlinearities in
the dose-response data as well as evaluating if different methods for dimensionality
reduction and classification can capture information of these nonlinearities or provide
other insights. In this chapter, the conclusions of this thesis are presented, followed
by possible improvements and suggestions for future work.

7.1 Conclusions
The results from nonlinear methods for dimensionality reduction in this thesis do
not show any results of very high interest. The patterns and clusters found using
nonlinear methods are overall similar to the ones from the linear method. Some
patterns are slightly different but do not detect any distinct new patterns, compared
to the linear method. Since evaluation methods are only qualitative, it is hard to
draw any general conclusions. Nevertheless, some methods show an indication of
being promising for future methodology development. However, more work needs
to be done in order to be able to create potential insights and value.

Results from classification indicate that there are nonlinearities in the dose-response
data since nonlinear methods seem to capture the structure of the data better than
the linear method and give better classification performance. The classifiers are
overall promising to use for further analysis and innovation, especially the multi-
layer perceptron networks. Compared to methods for dimensionality reduction, the
classifier approach can reveal how different dose-levels effect dose-response, which
can create additional insights. The classifications of experimental compounds using
the multi-layer perceptron network show results where the predictions of 70.6% of
the compounds are consistent with tentative clinical classes and previous research.
Also, predictions of 11.8% of the compounds are extra interesting in the sense that
they show potentially unknown effects and could be the basis of further innovation.
Therefore, the classifiers can create insight and potentially high value.
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7.2 Future work

As for most exploratory projects, there is more work that can be done on the subject
of this thesis project. Additional methods could be explored and finely tuned to see
if more interesting results can be found. Also, the methods investigated in the scope
of this thesis could be investigated further by exploring different parameter settings
and using different data sets. For classifications purposes, it would be of particular
interest to study different network architectures of a multi-layer perceptron network
since the results from this method are most promising. Moreover, the pre-processing
of data before applying any methods in this thesis is only performed in one way, and
other ways of doing it and of handling missing values could be a subject of further
investigation.

Concerning the methods for dimensionality reduction, methods are only investigated
on one data set and it would be interesting to investigate these methods on other
data sets as well. For example, it could be investigated how well methods perform
on more ’zoomed in’ data sets, of some specific domain of compounds as well as by
using only behavioral or neurochemical variables, as in [1].

Concerning future investigation of classifiers, it could be of interest to use a smaller or
larger number of clinical classes to see how it affects the results. Moreover, dividing
data into clinical classes could be done on a more precise level, such as dividing
the Parkinson’s compounds into different classes based on what kind of symptoms
they treat. Another idea for future work when investigating some specific questions
could be to use training data that only contains relevant data. The data used for
classification in this thesis is raw, meaning it might contain dose-levels that are, in
fact, irrelevant as well as poorly executed experiments. Excluding such observations
could be of interest for future work. It would also be of interest to investigate
classifiers on mechanical classes that are based on which target protein, such as a
receptor, transporter or enzyme, is affected in the body. Further, the handling of
class imbalanced data sets can be done in different ways. In the scope of this thesis,
SMOTE is investigated. Other approaches to handle imbalanced data sets could be
a subject for future work.

The classifiers in this thesis all have a high tendency to predict observations into
the majority class, antidepressants (AD). Also, due to the nature of classifiers, each
observation is forced to have one of the defined clinical classes when performing
classification, while the case might be that the observation is not of any available
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class. Therefore, it could be of use to add an additional inactive class to the group of
classes used for classification. Training data of the inactive class could, for instance,
be data from experiments performed on rats not given any compound at all, i.e.
from control groups. The intuition of IRLAB suggests that some observations using
compounds that should not have a very high active effect at all are classified as AD,
and an additional inactive class might solve this problem.

A suggestion for evaluation of the robustness of classifiers as well as of methods
for dimensionality reduction is to use multiple experiments of the same compound
at the same dose-levels. Suppose training a classifier with a data set including at
least one of the experiments with identical compound and dose-level setting, and
then see if the other experiments with identical compound and dose-level setting are
predicted similarly. If not, this could be a sign of a weak classifier or just a poorly
performed experiment.

Observations of the same compound are of different dose-levels, but these dose-levels
are not taken into account when performing classification in this thesis. However,
low doses might not give as high effect as higher doses, or low and high doses might
not show the same behavior at all. A suggestion for future work is, therefore, to
include dose-levels in the classification methodology. One idea is to examine different
dose-levels by training a classifier on higher doses and see if a lower dose is predicted
in the same way. Then there might be possible to examine if lower doses could be
sufficient for treatment.
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Figure A.1: Principal components of RBF Kernel PLS with width γ = 0.1. Colored
dots are the average of all observations for one compound. From each dot, there is
a grey arrow to a weighted average where weights are the compound dose-level of
an observation.
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Figure A.2: Principal components of RBF Kernel PLS with width γ = 0.5. Colored
dots are the average of all observations for one compound. From each dot, there is
a grey arrow to a weighted average where weights are the compound dose-level of
an observation.
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Figure A.3: Principal components of RBF Kernel PLS with width γ = 0.8. Colored
dots are the average of all observations for one compound. From each dot, there is
a grey arrow to a weighted average where weights are the compound dose-level of
an observation.
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Figure A.4: Principal components of RBF Kernel PLS with width γ = 1.5. Colored
dots are the average of all observations for one compound. From each dot, there is
a grey arrow to a weighted average where weights are the compound dose-level of
an observation.
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Figure A.5: Principal components of RBF Kernel PLS with width γ = 2. Colored
dots are the average of all observations for one compound. From each dot, there is
a grey arrow to a weighted average where weights are the compound dose-level of
an observation.
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Figure A.6: Principal components of polynomial Kernel PLS, a = 1 and b = 2.
Colored dots are the average of all observations for one compound. From each
dot, there is a grey arrow to a weighted average where weights are the compound
dose-level of an observation.
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Figure A.7: Principal components of polynomial Kernel PLS, a = 1 and b = 10.
Colored dots are the average of all observations for one compound. From each
dot, there is a grey arrow to a weighted average where weights are the compound
dose-level of an observation.
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Figure A.8: Principal components of polynomial Kernel PLS, a = 3 and b = 1.
Colored dots are the average of all observations for one compound. From each
dot, there is a grey arrow to a weighted average where weights are the compound
dose-level of an observation.
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Figure A.9: Principal components of polynomial Kernel PLS, a = 4 and b = 1.
Colored dots are the average of all observations for one compound. From each
dot, there is a grey arrow to a weighted average where weights are the compound
dose-level of an observation.
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