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Optical response of nanoalloy hydrogen sensors from first-principles
Victor Rosendal
Department of Physics
Chalmers University of Technology

Abstract
Hydrogen shows promise as a replacement for conventional fossil fuels. However,
its high flammability and gas permeability pose high demands on sensors, which
must respond quickly and accurately. Nanoscaling improves the kinetics and allows
for optical hydrogen sensing. A nanoscaled metallic sensor typically shows a well-
defined extinction peak in the optical regime and one proposed sensing technique is
to detect the shift in said peak due to hydrogenation.
The aim of this thesis is to, from first-principles, study the optical response of PdAu
nanodisks as a function of hydrogenation. PdAu:H was mainly treated as a random
alloy but thermodynamic structures were also investigated. Cluster expansions were
used in combination with Monte Carlo simulations to generate thermodynamically
representative PdAu:H structures. The dielectric functions for the random and the
thermodynamic structures were calculated by applying static and time-dependent
density functional theory. Optical extinction spectra of PdAu:H nanodisks were ob-
tained via electromagnetic finite-difference time-domain simulations using the pre-
viously calculated dielectric functions.
The extinction peak of nanodisks with a diameter of 100 nm and height 20 nm
showed a redshift due to hydrogenation over the entire range of gold concentrations
of 0 to 42% considered here, and the redshift is approximately linear with respect to
hydrogen. Even though there is non-trivial ordering in the thermodynamic PdAu:H
structures, no clear difference between the random and thermodynamic case was
observed in the optical response.

Keywords: hydrogen, sensing, palladium, gold, nanodisk, extinction, spectra, plas-
monics, TDDFT, DFT.
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1
Introduction

A hydrogen economy could play an important role in achieving a low carbon society.
The idea behind a hydrogen economy is to use hydrogen gas as an energy carrier
instead of gasoline, diesel or any other fossil fuel. Hydrogen gas is advantageous
compared to the latter, since a reaction between gas and oxygen only produces
water. In other words, hydrogen gas has the possibility of being an energy carrier
with zero green house gas emission.
The hydrogen economy does, however, come with some flaws and drawbacks. Most
of these problems stem from the intrinsic properties of the gas itself, mainly the fact
that hydrogen is a colourless, odourless, highly permeable and highly flammable gas.
A combination of these properties is unwanted since the high permeability of the
gas leads to a high risk of leakage. Once the flammable gas is leaked it is difficult
to detect. To be able to safely use hydrogen as fuel in any application there is
therefore a vital need for sensors that are reliable, fast, and accurate. This need for
viable hydrogen sensors can be seen in the growing number of publications related
to hydrogen sensors that are published every year. While there are several possible
sensing techniques, electrical and optical sensors are the most common [1]. An
electrical hydrogen sensor typically measures the resistivity of a metal as a function
of the absorbed hydrogen content. This change in resistivity originates from the fact
that the electrons scatter with the absorbed hydrogen and therefore the resistivity is
increased with an increase in hydrogen content. In the case of an optical sensor, the
hydrogen content affects the optical properties such as absorption and scattering
spectra of the metal (in other words its colour). The main advantage of optical
sensors over electrical ones is the that the readout can be done remotely and that
there is no risk of creating sparks that can be caused by an electrical current.
To fulfil the requirements of a fast and responsive hydrogen sensor, one often uses
palladium as the active part of the sensor. Palladium has a strong affinity to hydro-
gen and causes the surrounding hydrogen molecules to dissociate, with little to no
activation barrier. The hydrogen atoms are absorbed and diffuse into the palladium
lattice [2]. The individual hydrogen atoms then reside at octahedral interstitial sites
of the palladium face-centred cubic (FCC) lattice, see Figure 1.1.
While pure palladium is a good catalyst, like many other single metal systems it has
a major disadvantage when it comes to hydrogen sensing: When one increases the
surrounding hydrogen pressure the hydrogen content in the metal slowly increases
until a critical point is reached. Further increasing the hydrogen pressure rapidly
increases the hydrogen concentration. This phenomena is known as the plateau and
occurs at the hydride formation pressure [3]. As a result the output from the single
metallic sensor is nonlinear and therefore not ideal. Above the so called critical
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1. Introduction

temperature the plateau vanishes, making it possible to get a continuous readout
from the sensor.
It has been demonstrated that alloying palladium with other metals can reduce the
critical temperature to below room temperature, thereby removing the plateau of
the sensor in working conditions [4]. This behaviour has been used by researchers
to create plateau free optical hydrogen sensors based on palladium alloys. Zhao et
al. showed that by using a thin film of palladium-gold alloy the response time of
the hydrogen sensor was further improved [5].

(a) Side view of PdAu:H (b) Another view of PdAu:H

A B

C

Figure 1.1: Illustration of the PdAu FCC lattice with hydrogen in octahedral
interstitial positions. Hydrogen is represented by a small white sphere, while palla-
dium and gold are blue and golden coloured, respectively. There is one interstitial
lattice point per metal atom. Removing a hydrogen atom creates a vacancy. The
palladium at A and hydrogen at B form a nearest neighbour pair between two so
called sublattices. A second nearest neighbour between the two sublattices would
be between palladium at A and hydrogen at C.

There has been a great interest in nanosizing optical sensors recently due to the spe-
cial properties that emerge when the particle size is comparable to or smaller than
the wavelength of the light. These metallic nanosized particles have sharp absorption
and scattering peaks due to localised surface plasmon resonances (LSPRs). LSPR
is not only sensitive to the dielectric properties of the material and the environment
but it is also highly sensitive to particle geometry and size [6]. Sensors based on
LSPR typically measure a difference in resonance peak position, width or height due
to a change in the environment or in the particle itself. It is therefore possible to
alter the shape and size of a nanoparticle with a given active sensing material to
tailor the optical spectrum. In other words, LSPR sensors have additional tunable
properties compared to surface or bulk sensors. These types of optical sensors are
advantageous in hydrogen sensing since the particles are on the nanoscale and there-
fore the diffusion time is reduced. Low diffusion times are essential since they reduce
the possibility that the response time is limited by diffusion. Previous research has
shown that LSPR-based hydrogen sensors of nanoparticles made of palladium-gold
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1. Introduction

alloy are viable and meet targets of the automotive industry [7].
This thesis aims at calculating the optical response of palladium-gold hydrogen sen-
sors from first principles. This will be done for a range of palladium-gold concentra-
tions and for different shapes and sizes of the sensor. Experimental measurements of
optical hydrogen sensors typically result in an optical spectrum containing the plas-
monic peak that is used for sensing. The measured optical spectrum is a convolution
of the dielectric properties and the shape of the system. First principles calculations
are therefore extremely valuable since one can disconnect the underlying material
properties from the shape of the particle that results in the observable spectrum.
Another advantage these simulations are that it is possible to control all parameters
and thereby sample the whole parameter space.
The thesis is structured in the following way: first chapter describes how represen-
tative structures of palladium-gold-hydride can be constructed, here both random
structures and thermodynamically representative structures will be treated. In the
following chapter the ground state electronic properties of these structures will be
presented and discussed. The dielectric response of said systems will then be inves-
tigated in subsequent chapter. In the end the optical response will be calculated
and studied for different sizes and shapes of nanosensors. This is done by using a
electromagnetic simulation software. This software expect the materials to be de-
scribed on a specific form, the transformation from raw data to this form will be
treated in chapter 5.

3
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2
Atomic structure of PdAu:H

This chapter introduces the cluster expansion (CE) technique and presents the re-
sults from CE-based Monte Carlo (MC) simulations of PdAu:H. This is needed to
obtain thermodynamically representative structures. Random structures will also
be generated. Random and thermodynamic structures will also be converted into
smaller special structures that incorporate the ordering of the larger cells. CE were
constructed and MC simulations were carried out using the icet and mchammer
packages [8]. In Figure 2.1 the power of CEs is illustrated. By training the CEs on
known target configurations one can predict quantities of any other configuration.
This prediction is computationally highly efficient, which enables sampling by MC
simulations.

. . . CE Any other
configuration

Figure 2.1: Usage of CEs in this thesis. Structures are decomposed into clusters,
i.e. pairs, triplets and so on. By having access to the value of a quantity (in this
case energies from density functional theory (DFT)) for many structures a CEs can
be constructed and used to predict the energy of any configuration. This is done by
finding the energy contribution for every type of cluster and then these values can
be used to predict the energy of a new, arbitrary, configuration. This is possible
since any other configuration can be seen as a combination of clusters.

2.1 Theory of cluster expansions
A CE is a function that maps the microscopic configuration of a structure to a
property. It is a powerful tool that allows one to evaluate the quantity, typically
an energy, of a system by viewing the system as a set of clusters or bonds that
contribute to the total value of the quantity. In this section, the quantity is an
energy and it is assumed that the system is an alloy where each lattice point can
be occupied by either atom A or B. Strictly speaking the PdAu:H alloy studied
contains two sublattices, one for palladium/gold and one for hydrogen/vacancy, see
Figure 1.1. Nevertheless, the fundamentals are the same.

5



2. Atomic structure of PdAu:H

The simplest kind of CEs is an expansion that only takes nearest neighbour pairs
into account. By assigning values to the atoms σA = +1 and σB = −1, one can
evaluate the product of these values for all pairs in the cell (while avoiding double
counting the pairs). If it is known how much each A-A (and B-B) and A-B pairs
contribute one can evaluate the total energy as:

E = J0 + J1
∑
i

σi + J2
∑
〈ij〉

σiσj,

where J0 is a constant offset, J1 can be seen as the contribution from the different
atoms to the total energy and J2 is the energy due to the different types of pairs.
This is the famous Ising model. Here 〈ij〉 denotes that i and j should be nearest
neighbours. All of the chemistry is hidden in the unknown parameters Jn and this
is the strength (and possible weakness) of CEs. For the expansion to be predictive,
the parameters must be known and of good accuracy. Clearly if there is a significant
long-range interaction, this simple nearest-neighbour model will not be very useful.
The Ising model above is a limited case of the general CE. Without any more detailed
theory the CE is defined as [8]:

E(σ) = E0 +
∑
α

〈Πα′〉αmαJα = ω(σ) · J , (2.1)

where σ is a vector over all lattice points with elements +1 or −1 (in the simple
binary case) depending on what element is occupying the lattice point. The sum
is over all symmetry inequivalent clusters α (e.g., singlet, pairs, triplets etc.) and
〈...〉α denotes averaging over all clusters, α′, symmetrically equivalent to α. The
multiplicity of the cluster α is denoted mα. In the binary case, Πα′ is the product
σ0σ1...σN−1, where N is the number of points in the cluster, i.e., 1 for a singlet,
2 for pairs and so on. It should be noted that this infinite expansion, that in
principle is exact, must be truncated for practical applications. This truncation can
be motivated by the fact that very long-range interactions should be negligible.
The energy E(σ) can be evaluated, typically using DFT, for a set of configurations.
The unknown interaction vector J can then be evaluated by solving the matrix
equation:

E = ΠJ,

where E contains the target energy for each configuration and each row in the
matrix Π contains the so-called cluster vector, Πi = ω(σ), for each structure. If
the parameters J are known the entire expansion is determined and the energy for
any configuration can be evaluated.
Since the energy is expressed as a function of only the occupation, this method
is extremely efficient, which makes MC simulations feasible using DFT data as
input. Without a CE each MC step would require a new DFT calculation, but
this method allows one to quickly approximate the energy within tolerable errors
for any sampled configuration. MC simulations are useful if it is of interest to
study the thermodynamically representative structures, compared to totally random
structures, see the following section.
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2. Atomic structure of PdAu:H

2.2 Special structures
Combining CEs and MC simulations makes it possible to iterate through different,
energetically favourable, configurations of the alloy. By averaging the cluster vector,
ω(σ), over many iterations the cluster vector will converge to some thermodynamic
average. This cluster vector encodes the structural correlation present in the system.
In this thesis random alloys will also be investigated. The naive approach is to
randomly occupy each lattice point with either palladium or gold (and hydrogen or
vacancy) up to some defined concentration. This is, however, not efficient since it
would require very large unit cells, for which DFT are computationally extremely
expensive. It is however possible to create a cluster vector that represents a random
alloy.
By defining a so-called cluster space it is then possible to convert the cluster vector,
either from MC simulation or randomized structures, to a smaller unit cell [9, 10].
The cluster space is a set of all the available clusters. One typically limits the cluster
space by setting a cutoff on the distances between points in pairs and triplets and
so on. The cutoffs were set to 1.35a and 1.05a for pairs and triplets, respectively,
where a is the lattice parameter. In the random case, the resulting smaller cell is a
so-called special quasi-random structure (SQS) and it approximates the correlation
of a completely random alloy. Similarly a smaller unit cell can be generated from
the MC cluster vector that approximately incorporates the correlations from said
cluster vector, in this thesis such constructions will be referred to as special ordered
structures (SOSs).

2.3 Short-range order in PdAu:H

To generate thermodynamically representative structures (that subsequently were
turned into SOSs), MC simulations were carried out. The energy was evaluated
using a CE1, as described above.
For every gold concentration a random palladium-gold FCC lattice was constructed.
Then each of these structures was (partially) filled with hydrogen at the interstitial
points of the FCC lattice, see Figure 1.1. Then a canonical ensemble MC simulation
at 300 K was carried out using the PdAu:H CE where only the hydrogen atoms are
allowed to change position in the lattice. In other words it is assumed that the
palladium-gold lattice is frozen at 300 K. The canonical MC simulation was run for
Natoms = 1728 steps repeated Nruns = 50 times. Here, Natoms is the number of sites
in the supercell. Each Natoms steps the current cluster vector of the structure was
added to a total cluster vector and in the end this sum was divided by Nruns. In
other words by doing this, one obtains an average representation of the structure
described by the resulting average cluster vector. This average cluster vector was
then transformed into a SOS of 12 metal atoms, as described in section 2.2.
The short-range order (SRO) parameter, α, describes how probable it is to find Pd-
H and Au-V pairs relative to all other possible pairs. The SRO parameter evaluates

1In this thesis an already existing CE was used.
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2. Atomic structure of PdAu:H

this probability relative to the concentrations, as seen below [11].

α = 1− Pd-H + Au-V
Pd-H + Au-V + Pd-V + Au-H

1
cHcPd + cVcAu

.

Here, ci is the concentration of species i and a vacancy is denoted V. Note that
the Pd-Au and H-V lattices are separate sublattices that fulfil 1 = cPd + cAu and
1 = cH+cV, respectively. The SRO parameter for the average structure generated by
MC simulations is presented in Figure 2.2, which shows both the nearest neighbour
(NN) and second nearest neighbour (2nd NN) version of the SRO parameter. The
formula is equivalent, but the difference lies in which cluster (bond) is being counted.
From the figure it can be seen that there is some ordering since the SRO parameter is
non-zero for the cases with gold. Furthermore, in the NN regime the SRO parameter
is negative which indicates that palladium-hydrogen (as well as gold-vacancy) pairs
are preferable. By contrast, in the 2nd NN regime palladium-vacancy (and gold-
hydrogen) pairs are favourable.

Figure 2.2: Short range order of the PdAu:H alloy. The most blue line correspond
to Pd:H and higher gold concentration is represented by a more golden colour. In
the upper figure the nearest neighbour SRO parameter is shown and in the lower
figure the second nearest neighbour SRO parameter is presented. The negative sign
of the NN SRO indicates that Pd-H and Au-V pairs are more common than Pd-V
and Au-H, at very short distances. Looking at second NN it is clear, by the positive
sign, that Pd-V and Au-H pairs are more probable.

2.4 Summary
Below the main results from the first part of the thesis are summarised.

8



2. Atomic structure of PdAu:H

• SOSs and SQSs were generated. These smaller, 12 and 24 atom, cells approx-
imates the correlations of larger cells. SQSs represent the random alloy case
and SOSs represent thermodynamically representative structures.

• SRO parameter shows that PdAu:H can not accurately be described as a
random alloy. Furthermore in the NN regime Pd-H and Au-V bonds are most
common, while in second NN regime Pd-V and Au-H pairs are more prevalent.
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3
Electronic properties of PdAu:H

In this chapter the electronic properties of the special structures generated in the
previous chapter will be studied. This is done in the DFT formalism. An introduc-
tion to DFT can be found in section 3.1. The special structures were relaxed using
VASP [12] and subsequently the ground state electronic properties were calculated
using GPAW [13–15]. The results can be found in section 3.2.

3.1 Introduction to density functional theory
In this section the most important theorems of DFT will be presented and discussed.
The theorems by Hohenberg and Kohn will be introduced in the first subsection and
in the second subsection the so-called Kohn-Sham ansatz will be presented.
In summary, Hohenberg and Kohn showed that the ground state properties of a
many-body electron system only depend on the electron density. This is crucial
since the number of spatial coordinates is reduced from 3N to 3, where N is the
number of electrons. The theorems by Hohenberg and Kohn do not solve the many-
body electron problem but provide a useful reformulation of the problem.
Kohn and Sham proposed a method for solving this reformulated problem. Instead
of solving the interacting many-body Schrödinger equation they assumed that one
can instead solve a set of fictitious non-interacting Schrödinger-like equations that
result in the same particle density.
All of the DFT calculations, in this thesis, are done within the Born-Oppenheimer
approximation [16]. In summary the approximation separates the quantum me-

Vext(r) n0(r)

Ψ({r}) Ψ0({r})

HK

(a) Hohenberg-Kohn

VKS(r) n0(r)

ϕi(r)

HK

(b) Kohn-Sham

Figure 3.1: Hohenberg and Kohn showed that the electron density contains all
ground state information. Kohn and Sham made DFT practical by replacing the
interacting system as a non-interacting system in some potential, VKS(r).
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3. Electronic properties of PdAu:H

chanical system of the cores and the electrons into two separate systems, that are
independent of each other. Of course the position of the cores affects the electrons,
but the dynamics of the cores does not affect the electronic system. Without being
rigorous, the motivation behind this approximation is that the mass of the core is
much larger than the electron mass, so one can assume that the electrons immedi-
ately are adjusted to the new position of the cores.

3.1.1 Hohenberg-Kohn theorems
The Hohenberg-Kohn theorems show that the energy of an electronic system can be
expressed as a functional of the ground state electron density. In other words, the
theorems translate the initial problem from a many-body wave function with 3N
spatial coordinates to a density of 3 spatial coordinates. Below the two Hohenberg-
Kohn theorems are stated. They are directly cited from Electronic Structure: Basic
Theory and Practical Methods [16].
Theorem 1 For any system of interacting particles in an external potential Vext(r),
the potential Vext(r) is determined uniquely, except for a constant, by the ground state
particle density n0(r).
Corollary 1 Since the Hamiltonian is thus fully determined, except for a constant
shift of the energy, it follows that the many-body wave functions for all states (ground
and excited) are determined. Therefore all properties of the system are completely
determined given only the ground state density n0(r).
Theorem 2 A universal functional for the energy E[n] in terms of the density n(r)
can be defined, valid for any external potential Vext(r). For any particular Vext(r),
the exact ground state energy of the system is the global minimum value of this
functional, and the density n(r) that minimises the functional is the exact ground
state density n0(r).
Corollary 2 The functional E[n] alone is sufficient to determine the exact ground
state energy and density. In general, excited states of the electrons must be deter-
mined by other means.
This results in a translation from the many-body Schrödinger equation (in the Born-
Oppenheimer approximation), see equation (3.1), to the functional form of the same
problem,

EΨ({r}) =
[
T̂e + V̂e-e + V̂ext

]
Ψ({r}), (3.1)

where T̂e is the kinetic operator, V̂e-e the electron-electron interaction, and V̂ext is an
externally applied potential. Often the external potential is simply the electron-ion
interaction. The new form can be expressed as:

E[n] = Te[n] + Ee-e[n] +
∫
d3rVext(r)n(r)

n(r) = |Ψ({r})|2,

where the same naming convention has been used. By minimising this equation
with respect to the electron density, the ground state energy is found and hence all
other ground state properties. It should be noted that the functional Te[n] as well
as Ee-e[n] are in fact unknown, which is where the Kohn-Sham ansatz proves useful.
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3. Electronic properties of PdAu:H

3.1.2 Kohn-Sham ansatz
In short, the Kohn-Sham ansatz is an approach that replaces the initial interacting
many-body system with a non-interacting system. The assumption is that the initial
electron density is equal to the density of this new non-interacting system. This new
system can be expressed by independent equations where most electron-electron
interactions are summed up into one exchange-correlation functional with respect
to the density. One wishes that this interaction term, which must be approximated,
has a small contribution to the total energy.
The total energy can be written as:

EKS[n] = Ts[n] +
∫
d3rVext(r)n(r) + EH[n] + Exc[n]

n(r) =
∑
i

|ψi(r)|2,

where Ts[n] is the non-interacting particle kinetic energy, EH[n] is the classical
density-density Coulomb interaction. The independent particle wave functions are
denoted ψi(r). The difference between the real, unknown, kinetic and density-
density interaction and their fictitious counterparts is expressed in the exchange-
correlation term:

Exc[n] =
〈
T̂
〉
− Ts[n] +

〈
V̂e-e

〉
− EH[n].

This term is now the difficult part. There are various approximation to this term,
such as the local density approximation and generalised gradient approximation.
The single-particle Schrödinger-like equation, proposed by Kohn and Sham, is shown
below:

εiψi(r) =
[
T̂s + V̂H + V̂ext + V̂xc

]
ψi(r) =

[
T̂s + V̂KS

]
ψi(r)

where the introduced potentials are functional derivatives:

V̂H = δEH

δn(r)

V̂xc = δExc

δn(r) .

In practice, one solves these equations by making an initial guess of the Kohn-
Sham (KS) orbitals, ψi(r), which defines the particle density. Using this guess one
evaluates the potentials. With the potentials the Hamiltonian is known and all of
the orbitals can be calculated. One then uses these orbitals and repeats the process
until the difference in particle densities, between two consecutive iterations, is below
a judiciously chosen threshold.

3.2 Ground state density functional theory re-
sults

Ground state DFT was used to calculate the energies and wave functions of the
non-interacting KS particles for various structures. By doing this one can visualise
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3. Electronic properties of PdAu:H

the band structure and density of states (DOS) for the non-interacting system for all
structures. This gives valuable information about what effect hydrogen has on the
electronic properties of palladium-gold alloy and therefore on the optical properties.
The density of state and band structures will be presented in subsections 3.2.3 and
3.2.2, respectively. The expansion of the Pd lattice due to gold and hydrogen will
be presented in the following subsection.

3.2.1 Lattice expansion of the PdAu:H alloy

The SQSs (and SOSs) were relaxed using VASP with the vdW-DF-CX functional
[17, 18]. The functional vdW-DF-CX was used due to its accurate prediction of
lattice parameters [19]. The relaxation is crucial for the later calculations to be
representative.
In Figure 3.2 the lattice parameter is shown for different gold concentrations as a
function of hydrogen content. As expected hydrogen placed at interstitials of the
palladium FCC lattice strains the lattice; gold has a similar effect. The lattice
expansion was approximately 5 % for a fully hydrogenated structure compared to
a non-hydrogenated structure. Experimentally measured expansions typically show
the trend (a3

H − a3
0)/a3

0 = 0.2c for Pd1−cHc [20]. The equivalent value predicted here
was (a3

H − a3
0)/a3

0 ≈ 0.15 for the fully hydrogenated structure.

Figure 3.2: Lattice parameters for different gold and hydrogen content of the
PdAu:H SQSs. The original FCC palladium lattice is expanded due to the intro-
duction of gold and hydrogen. Fits are included that will be used in chapter 6 where
the optical response of nanodisks will be studied.
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3. Electronic properties of PdAu:H

Figure 3.3: Unfolded band structures for some of the PdAu:H SQSs. The energies
are relative to the Fermi level, Ef , and the high symmetry points of the k-space
are marked on the x-axis. The band structures are unfolded onto the first Brillouin
zone of the primitive Pd cell. A bigger overlap is visualised by sharp lines and
the blurred lines indicates less overlap between the primitive and supercell band
structures. Higher concentrations of H and Au results in the band close to the
Fermi level being occupied and hence being pushed down below the Fermi level.

3.2.2 Band structure of PdAu:H
In the ground state DFT calculations the GLLB-SC functional [21] was used along
with a plane wave basis set in GPAW. The motivation for using the GLLB-SC
functional is that it captures the d-band behaviour well, which is crucial for the
dielectric function and hence the optical spectrum. The d-band prediction is im-
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Figure 3.4: DOS for SQSs with up to 25 % gold and hydrogen concentrations from
0 % to 100 % in steps of 4 %. The figure shows that an increase in hydrogen concen-
tration pushes the band below the Fermi level. An increase in gold concentration
results in an earlier and more distinct effect. For all gold concentrations the effect
of hydrogen concentration on the DOSs shift is weekly non-linear.

Figure 3.5: DOS as a function of gold concentrations from 0 % to 42 % with steps
of 8 % for three different hydrogen concentrations. An increase in the number of gold
atoms results in the d-band edge being pushed down below the Fermi level. Adding
more hydrogen atoms further enhances the effect, as seen in previous figures.
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Figure 3.6: Shift in d-band edge with hydrogen for various gold concentrations for
SQSs of the PdAu alloy. Interestingly the DOSs shift for Pd0.6H0.4 and Pd0.58Au0.42
relative to Pd is on the same order of magnitude.

portant since interband transitions give rise to peaks in the imaginary part of the
dielectric function.
The resulting unfolded band structures for the SQSs for a few selected gold and
hydrogen concentrations are plotted in Figure 3.3. Unfolding the band structure
allows for easier comparison between the different supercells. In short unfolding
means that the first Brillouin zone for the supercell is mapped onto the bigger first
Brillouin zone of a primitive cell that is the reference system. Here the unfolding
is done from PdAu:H to the primitive cell of Pd. The transparency of the lines
is proportional to how well the states of the supercell contribute to the states of
the primitive cell. As expected with higher Au concentration there is less overlap
between the supercell and the primitive Pd cell. Furthermore it can be clearly seen
that with more hydrogen the d-like states in the vicinity of the Fermi level, Ef , is
pushed below the Fermi level, i.e. adding hydrogen results in filling of the bands
close to the Fermi level. Increasing the gold concentration has a similar effect of
pushing down the band below the Fermi level.

3.2.3 Electronic density of states of the alloy
In Figure 3.4 the DOS for SQSs with Au concentrations up to 25 % is presented. Each
subfigure shows the DOSs for a Au concentration with H concentrations ranging from
0 % to 100 %, with steps of circa 4 %. It can be seen that increasing the hydrogen
concentration results in the d-band being increasingly occupied and slowly being
pushed below the Fermi level. This trend is shifted to smaller H concentrations
with an increase in gold concentration.
The DOSs for fixed hydrogen concentrations is presented in each subfigure of figure
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3. Electronic properties of PdAu:H

3.5. This is done to visualise the effect of an increase in gold concentration on the
DOSs shift. Gold concentrations from 0 % to 42 % are shown with steps of 8 %. As
shown in the previous figure, an increase in gold concentration pushes the d-band
further down below the Fermi level.
In Figure 3.6 the position of the d-band edge relative to the Fermi level is visualised
as a function of hydrogen content. Here the definition of the edge is arbitrarily set
to a value that result in a point in the middle of the d-band edge. This was done
to further highlight the fact that introduction of hydrogen in PdAu alloys pushes
down the d-band relative to the Fermi level. Furthermore, adding hydrogen to pure
palladium results in filling of the d-band. Adding gold to palladium shifts this effect
to smaller hydrogen concentrations.
The interpretation is the following: the d-band in pure palladium is not fully occu-
pied, i.e. the d-band crosses the Fermi level. On the other extreme is gold. The
d-band edge of gold is circa 2 eV below the Fermi level. Alloying Pd with Au then
pushes down the d-band due to the larger number of valence electrons from gold.
Introducing hydrogen in Pd (and PdAu alloys) pushes down the d-band similarly.

3.3 Summary
The key points from this chapter are presented below.

• The PdAu:H SQSs and SOSs were relaxed with DFT and a reasonable agree-
ment with experimental lattice parameters was found.

• Alloying palladium with hydrogen shifts the d-band below the Fermi level.
This effect is enhanced when alloying with gold.
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4
Dielectric response of PdAu:H

In this chapter the dielectric response of the alloy will be analysed. This is done by
using time-dependent density functional theory (TDDFT) and the ground state DFT
calculations discussed in the previous chapter. More specifically, linear response
TDDFT will applied using the software GPAW [15]. A short introduction to the
theory will first be presented followed by a convergence study. In section 4.3 the
calculated dielectric functions (DFs) will be shown and analysed.

4.1 Introduction to time-dependent DFT
For studying excitations in systems, such as optical absorption, one must go further
than the traditional ground state density functional theory. This stem from the
discrepancy between the KS eigenstates and the real electronic eigenstates. In other
words, a possible optical excitation energy is not equal to the difference in the highest
occupied KS orbital and the lowest unoccupied KS orbital.
To calculate the dielectric response the TDDFT formalism has been used. The
Runge-Gross theorem is essential in TDDFT [22]. It is similar to the Hohenberg-
Kohn theorems since it allows one to study a time-dependent Schrödinger equation
by moving into the density picture. The theorem states that the density deter-
mines the external potential, similarly to the static counterpart. Hence all other
observables can be expressed by this time-dependent density.
Here, KS orbitals are also introduced to turn the complex many-body system into
a more approachable set of non-interacting systems that result in the same density.

4.1.1 Linear response and dielectric function
This subsection aims to shed light at how the response of a quantum mechanical
many-body system can be calculated using TDDFT. First the density response will
be shown in the linear response limit. Then the DF will be expressed from this
density response. In this section it is assumed that the system is probed by a
weak time-dependent potential, δVext(r, t), on top of the original external potential
(typically originating from the ions in the system).
In linear response theory the deviation from the initial ground state density is:

δn(r, ω) =
∫
d3r′χ(r, r′, ω)δVext(r′, ω), (4.1)

where χ(r, r′, ω) is the density-density linear response function in frequency domain.
It essentially explains how the density in point r is affected by a perturbation in r′.
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4. Dielectric response of PdAu:H

The density can also be expressed in the KS response function:

δn(r, ω) =
∫
d3r′χKS(r, r′, ω)δVKS(r′, ω) (4.2)

δVKS(r, ω) = δVext(r′, ω) +
∫
d3r′

1
|r− r′|

δn(r′, ω) +
∫
d3r′fxc(r, r′, ω)δn(r′, ω),

where δVKS(r, ω) is the variation in the dynamic KS potential due to the weak
perturbation. Here, the exchange-correlation kernel, fxc(r, r′, ω), is introduced:

fxc(r, r′, ω) = F
[
δVxc[n](r, t)
δn(r′, t′)

∣∣∣∣
n=nGS

]
,

where F denotes the Fourier transform. Under the assumption that the KS system
results in the same response as the real many-body system, i.e. the assumption that
equation (4.1) is equal to equation (4.2), one can derive the Dyson-like equation
that couples the two density response functions:

χ(r, r′, ω) = χKS(r, r′, ω) +
∫
d3r′′

∫
d3r′′′χKS(r, r′′, ω)K(r′′, r′′′, ω)χ(r′′′, r′, ω),

where K(r′′, r′′′, ω) is the sum of the Hartree and exchange-correlation kernels. This
equation can be written, by introducing abbreviations for the integrals, in the more
compact form:

χ = (1− χKS ? K)−1 ? χKS.

This expression shows that the density response of the full interacting many-body
system can be calculated from the ground state KS density response. Note, that
this is true as long as the kernel K is known, which in general is not the case.
The KS response in reciprocal space takes the form [23,24]:

χKS
G,G′ = lim

η→0+

1
V

∑
n,n′,k

fn′k+q − fnk

εn′k+q − εnk − ω − iη

· 〈ψn′k+q| ei(q+G)·r |ψnk〉 〈ψnk| ei(q+G′)·r′ |ψn′k+q〉 ,

where fi denotes the occupation number of orbital i, εi the energy of the orbital, ψi
the wave function of the orbital. The indices n and k represents the band number
and the k-point of the state. Incoming photon wave vector is denoted q. A term
in the sum is small if the two states have the same occupation number or if the
overlap between the two orbitals is low. For an excitation to occur the difference
in energy between the two states must be on the same magnitude as the incoming
photon energy, ω.
In this thesis the many-body response will be approximated using the random phase
approximation (RPA). This is done with the motivation that the difference in re-
sponse between RPA and higher order kernels (such as the adiabatic local density
approximation) is small for metals [25]. RPA treats the difficult dynamic exchange-
correlation part in the kernel by neglecting said effects. In other words, the exchange-
correlation kernel is fxc = 0 and hence the complete kernel, K, can be written in
the form [26]:

KRPA
G,G′(q) = 4π

|q + G|2
δGG′ + �

�fxc
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4. Dielectric response of PdAu:H

With this approximation and the information of the ground state KS system the
response of the many-body system can be evaluated. The true response can be seen
as the combination of the non-interacting response and some additional corrections
described by the kernel.
The density response is useful since it contains information about the (microscopic)
DF. Using the RPA mentioned above the DF takes the form [22]:

εRPA
G,G′(q, ω) = δGG′ − 4π

|q + G|2
χKS

G,G′(q, ω)

Everything in the equation above is known from the KS system. The macroscopic
DF, i.e. the quantity that relates the external field with the induced field in the
solid, can be written:

εM(q̂, ω) = lim
q→0

1
ε−1

0,0(q, ω)
.

Here also the optical limit is taken (q → 0). The imaginary part of this quantity
corresponds to the optical absorption in a solid. Therefore, by evaluating this quan-
tity for the solid under investigation one can get information about optical processes
in the material.

4.2 Convergence of TDDFT parameters
To achieve accurate and physically sound optical spectra the needed DFs need to
be independent of the specific values of computational parameters. In other words,
the DF should be converged with respect to parameters such as broadening param-
eter, number of bands, cutoff energy in response calculation, and k-space density.
Increasing the number of grid points and bands will obviously improve the accuracy
but also increase the computational cost. Therefore a trade-off between accuracy
and cost most be achieved. This section aims at finding reasonable values to the
parameters listed above.
The cutoff energy, Ec, defines the size of the plane wave basis set used in the TDDFT
calculation. It determines the size of the dielectric matrix εG,G′ . A higher cutoff
energy results in a bigger dielectric matrix.
In the ground state DFT calculation both the number of bands, Nbands = NbNelectrons/2,
and the number of k-points in each Cartesian direction, Nk, are crucial parameters.
Here, Nelectrons denotes the number of valence electrons and Nb is a scalar sampled
between 1.4 and 2.4 in this study. Higher k-point density results in improved accu-
racy in the energy states while an increased number of bands allows for higher energy
excitations. Increasing the number of k-points ad infinitum will not be valuable.
In Figure 4.1 the DF of Pd12H is presented for a few different values on the pa-
rameters discussed above. From the figure it can be seen that the cutoff energy
has little to no effect on the DF. A larger broadening parameter, η, smears out the
details of the peak, both making the peak lower and wider, which is expected from
a broadening parameter. In other words, increasing η results in earlier convergence
but the accuracy of the DF is reduced. As expected, more bands above the Fermi
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4. Dielectric response of PdAu:H

level leads to additional higher energy excitations. Note, however, that as a result
of the Kramer-Kronig relation the number of bands does affect the lower energies in
the real part of the DF. This is significant since according to Mie theory in the elec-
trostatic approximation the absorption of a metallic sphere is high when Re{ε} ≈ 2.
This could result in a shift of the absorption peak of up to 0.5 eV, as indicated by
the dashed line in the second column of the third row in Figure 4.1. A too low
k-point density results in a noisy DF. For this system 11 points, in each direction,
appear to be enough for a converged DF.

3.0 3.5 4.0 4.5 5.0 5.5
Energy, eV

3

4

5

6

7

Im
{ε

(ω
)}

Ec = 10 eV
Ec = 20 eV
Ec = 30 eV

Ec = 40 eV
Ec = 50 eV

3.50 3.75 4.00 4.25 4.50 4.75 5.00
Energy, eV

−5

−4

−3

R
e{
ε(
ω

)}

3.0 3.5 4.0 4.5 5.0 5.5
Energy, eV

3

4

5

6

7

Im
{ε

(ω
)}

η = 0.005 eV
η = 0.01 eV

η = 0.02 eV
η = 0.04 eV

3.50 3.75 4.00 4.25 4.50 4.75 5.00
Energy, eV

−5

−4

−3

R
e{
ε(
ω

)}

15 20 25 30 35
Energy, eV

0

1

2

3

Im
{ε

(ω
)}

Nb = 1.4
Nb = 1.6

Nb = 1.8
Nb = 2.0

Nb = 2.2
Nb = 2.4

4.0 4.5 5.0 5.5 6.0 6.5 7.0
Energy, eV

−5

−4

−3

−2

−1

R
e{
ε(
ω

)}

2 3 4 5 6 7
Energy, eV

2

4

6

8

Im
{ε

(ω
)}

Nk = 5
Nk = 7

Nk = 11
Nk = 15

2 3 4 5 6 7 8
Energy, eV

−8

−6

−4

−2

0

R
e{
ε(
ω

)}

Figure 4.1: Convergence of DF with computational parameters. Imaginary (left)
and real part (right) of the DF. The studied system is Pd12H. It can be seen in
the first row that the cut off energy in the TDDFT calculation is not so important.
The broadening parameter, η, has a slightly bigger impact but at 0.01 eV the DFs
seem to converge. The number of bands, parametrized by Nb, affects the higher end
of the imaginary part of the DF. Note however that the real part is dependent on
the number of bands at low energies, even down to 4 eV and lower. The number
of gridpoints in k-space affects both the imaginary and real part of the DF. At 11
points on each x,y and z axis most of the noise is removed from the DFs.
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The most crucial parameters used in the ground state and time-dependent DFT
calculations are shown in Table 4.1.

Parameter Nk Nb Ec η

Value 11 1.8 40 eV 0.01 eV

Table 4.1: The most crucial parameters that were used in the ground state and
time-dependent DFT calculations. The number of bands and k-points affect the
ground state calculation while the cut off energy and broadening parameter are
introduced in the response calculation.

4.3 Dielectric response of PdAu:H
In this section the DF for the PdAu:H alloy is presented for various gold and hydro-
gen concentrations. This is done using the formalism described above.
A typical set of DFs with varying hydrogen content is presented in Figure 4.2.
Here, only Pd0.75Au0.25:H is shown but similar trends were observed for other gold
concentrations. It can be difficult to interpret these plots, but it is apparent that
hydrogen pushes the real part of the DF to lower energies. This trend seems to
be (approximately) monotonic. The imaginary part decreases at lower energies
due to hydrogenation, this typically affects the shape of the extinction peak of a
nanoparticle.

Figure 4.2: DFs for Pd0.75Au0.25:H with various hydrogen concentrations. Higher
hydrogen content is denoted with a more red line and the numbers in the legend
correspond to hydrogen content. The imaginary part increases due to hydrogenation
at around 8 eV while it decreases in the visible regime circa 2 eV. The real part is
pushed to lower energies due to hydrogenation. Similar trends were found for other
gold concentrations.

In Figure 4.3 the loss function, − Im{1/ε}, for Pd1−xAuxHy SQSs are shown. The
loss function is used here since it conveniently “hides” the divergent Drude peak
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at low energies, which otherwise dominates the picture. Typically a higher loss
function results in higher probability of exciting plasmons in bulk materials. From
the figure it can be seen that the peak is shifted to lower energies with higher
hydrogen content. When gold is introduced the peaks are flattened, but the peaks
are still being red-shifted with increasing hydrogen content.

Figure 4.3: Loss functions of SQS PdAu:H alloys. The different subplots represents
different gold contents and a more red coloured line corresponds to a higher hydrogen
concentration.

In Figure 4.4 the loss function for SQS Pd0.75Au0.25:H is shown together with its SOS
counterpart. Note that these SOSs have 12 metal atoms, compared to the SQSs that
are constructed with 24 metal atoms. The trends are similar in the two cases in the
sense that the peak is red-shifted with hydrogen. The similarity between SQSs and
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Figure 4.4: A comparison between the loss functions for SQS and SOS cases of
Pd0.75Au0.25:H. A more red coloured line correspond to higher hydrogen concentra-
tion. The red-shift is similar for the two cases.

SOSs indicates that the response is not strongly affected by microscopical ordering
of the alloys.
The figures above show the loss function from 0 to 9 eV. In applications the inter-
esting interval is near the visible regime, i.e. about 1.5 to 3 eV. The loss functions
in this regime are shown in Figure 4.5. Interestingly, the loss functions for Pd:H and
Pd0.75Au0.25:H are quite similar as a function of hydrogenation. This is promising in
so far as it could result in similar optical response for palladium and palladium-gold
alloys. Of course the relation between the loss function and the optical spectra is
not trivial, but this at least makes it reasonable to expect a monotonic response
with hydrogenation for both Pd and Pd0.75Au0.25.

Figure 4.5: Visible regime of the SQS loss functions. Here the energy is converted
to wavelength. Only two gold concentrations are shown, but interestingly the dif-
ference between the two cases is quite small in this regime. An almost monotonic
change due to hydrogenation is seen.
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In Figure 4.6 constant-energy slices of the real part of the DF for Pd:H are presented
as a function of hydrogen content. Electrostatic Mie resonances occur at energies
that correspond to specific values of the real part of the DF. The specific resonance
criteria can be altered by varying shape (and size) of the nanostructure. In the figure
this would result in a vertical shift of the dashed line. It can be seen that in the short
wavelength regime the real part is almost constant with respect to hydrogen, this
would result in a very small shift in optical resonance peak due to hydrogenation.
By contrast, in the long wavelength regime the response should be substantially
larger. This also opens up the possibility of altering the magnitude of the response
by changing particle shape and size. This phenomena is shown in Figure 6.13. In the
figure the sensitivities are shown as a function of initial absorption peak position,
which was altered by changing the shape of the nanostructure. The sensitivity is
defined as the ratio between the peak shift and the hydrogen concentration.

Figure 4.6: Slices of the real part of the DF for Pd:H with varying hydrogen
content. From the figure it can be seen the (optical) resonance peak might shift in
different ways depending on what regime one is probing. The dashed line represents
a hypothetical resonance criteria, that may be changed by varying the shape of the
nanostructure. If the UV-regime is probed it is likely that the shift is small, if at all
existing, while in the IR-region a small change in concentration results in a much
larger shift.
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4.4 Summary
The main results from this chapter are:

• DFs for SQSs and SOSs were calculated within the linear response TDDFT
formalism.

• The loss function of PdAu alloys red-shifts with hydrogenation. The loss
function curve flattens with increasing gold conent. The red-shift is monotonic.

• In the visible regime the response due to hydrogenation is similar for Pd and
Pd0.75Au0.25.

• The real part of the DF behaves differently during hydrogenation in different
regimes of the visible regime. This should lead to different responses depend-
ing on which energy regime is probed, where the latter is determined by the
geometry of the nanostructure.
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5
Lorentzian representation of

dielectric functions

The DF from TDDFT must be transformed to a form that is suitable for electro-
magnetic simulations. In this thesis, such simulations have been carried out using
the meep package [27], which requires a representation of the DF via Lorentzian
oscillators. The transformation of the DF into a series of Lorentzians is the focus
of this chapter. In the first section the fitting method is presented and then some
fitting examples are shown in the subsequent section.
A visual summary of the fitting method is shown in Figure 5.1. The principal idea
is that an initial basis set of Lorentzians is created. Then a regularisation algorithm
is used to select the most important Lorentzians from this set. A final fine tuning of
the parameters that enter said Lorentzians is carried out by using a non-linear least
squares method. Ideally the resulting set of Lorentzians is small and approximates
the raw data well.

Figure 5.1: Overview of fitting method. Grey circles denotes the initial basis set
of Lorentzian functions. Green circles on top of grey circles represent the func-
tions selected by orthogonal matching pursuit (OMP) or least absolute shrinkage
and selection operator (LASSO). The grey arrows indicate the fine tuning of the
parameters γn and ωn, this is done by a non-linear least squares method. The final
Lorentzians are the hollow green circles.
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5.1 Fitting method
The electromagnetic simulation software meep expects the DF of dispersive materi-
als to be represented as a sum of Lorentzians. Therefore the DFs from the TDDFT
calculations, here referred to as the raw data εr(ω), must be fitted to this form. The
requested function is of the form:

ε(ω) = ε∞ +
N∑
n=1

xnω
2
n

ω2
n − ω2 − iωγn

= ε∞ +
N∑
n=1

xnLn(ω) =

= ε∞ + x · Re{L(ω)}+ ix · Im{L(ω)},

where ε∞ is the instantaneous response. The parameters xn, ωn and γn represent
strength, resonance frequency, and broadening of oscillator n. By separating the
real and imaginary part, the fitting problem takes the form:Re{εr} − ε∞ ≈ x · Re{L(ω)}

Im{εr} ≈ x · Im{L(ω)}

Since the raw data is discretised with respect to frequency the problem can be seen
as a standard matrix equation, b ≈ Ax. Here, b is a vector containing the real part
of the DF concatenated with the imaginary part. The functions Ln(ω) are stored
as rows in A, where each row correspond to one of the sampled frequencies. Note
here that the upper/lower half of the matrix correspond to the real/imaginary part
of the functions Ln(ω).
By making a two-dimensional grid of Lorentzians, Ln(ω), with different resonance
frequencies and broadening values it is straightforward to solve this problem. The
result is the optimal strengths for these oscillators. For this method to work as
intended the number of oscillators would have to be large, i.e. the grid should
be densely sampled. This is, however, impractical since each additional oscillator
increases the computational cost of the electromagnetic simulation.
We are thus faced with the task of solving an underdetermined problem where the
number of samples is smaller than the number of variables. As a reference, the
number of sampled frequencies is roughly 100 while the number of Lorentzians is
on the order of 10,000. We seek a so-called sparse solution to the underdetermined
linear equation at hand and thereby obtain a good representation of the data with as
few Lorentzians as possible. This task can be achieved using different regularisation
techniques.
OMP is the algorithm of choice in this thesis. The algorithm finds solutions to
problems of the type:

xsparse = arg min
x
‖b−Ax‖2

2 subject to ‖x‖0 ≤ Nreq,

where Nreq is the hyperparameter that specifies how sparse the solution should
be [28]. In other words, if the user specifies Nreq = 5 the final fit will contain 5
Lorentzian oscillators. A big advantage of OMP compared to other regularisation
techniques, such as LASSO and elastic-net, is the fact that the hyperparameter itself
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is intuitive. In practice OMP was applied by using the tool hiphive [29] that in
turn calls functions from scikit-learn1.
For reference, the LASSO objective function is the following:

xsparse = arg min
x
‖b−Ax‖2

2 + α‖x‖1.

LASSO thus solves the least squares problem while penalising solutions that are
larger in magnitude. Here the hyperparameter is α and if set to zero one recovers
the ordinary least-squares problem.
The sparse solution xsparse yields the optimal strengths for the defined grid of oscil-
lators. To further improve the values of the resonance frequencies and broadening
of the resulting, OMP selected, oscillators a non-linear least-squares method2 was
applied. This can be seen as a fine tuning of the parameters.
From the perspective of computational cost, it is tempting to force the number of os-
cillators to be low. However, from a physical perspective this can be contraindicated
since valuable information is lost. To deal with this issue the Bayesian information
criterion (BIC) and the Akaike information criterion (AIC) were used. These mea-
sures allow one to strike a balance between fitting error and the number of variables
in the model [30].

BIC = Ns ln (MSE) +Np ln (Ns) + c

AIC = Ns ln (MSE) + 2Np + c

Here, Ns is the number of samples, i.e. the number of frequencies in the problem at
hand, Np is the number of parameters, and MSE is the mean-square error of the fit.
The value c is a constant for a data set and a fitting model, i.e. the quantities can
only be compared relative to each other for the same data set and fitting model.
In Figure 5.2 the BIC and AIC values are shown for the OMP and adaptive-LASSO
fitting methods. Adaptive-LASSO is similar to LASSO but weights are included
in the penalisation. Here both OMP and adaptive-LASSO were paired with non-
linear least squares optimisation. As seen in the figures, the minimum BIC values
correspond to a reasonable trade off between error and number of oscillators.
A further motivation, in addition than computational cost, for decreasing the num-
ber of oscillators is overfitting. An increase in the number of oscillators might
decrease the fit error but rather than capturing further physical features this will
reproduce features in the DFs that are due to numerical convergence. Including too
many oscillators will then lead to artefacts in the resulting optical spectra as seen in
Figure 5.3, which shows the absorption and scattering spectra for a sphere of radius
50 nm revealing small oscillations due to the overfitting of the dielectric function.
To summarise: OMP in combination with non-linear least-squares optimisation
was used, where the hyperparameter Nreq, which determines the number of oscilla-
tors, was selected by minimising the BIC.

1https://scikit-learn.org/stable/
2https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_

squares.html
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5. Lorentzian representation of dielectric functions

Figure 5.2: Proof of concept of the fitting methods in combination with information
criteria. In the upper figure BIC and AIC are shown as a function of the number of
oscillators. minima are marked with black circles. Both OMP and adaptive-LASSO
show good results. OMP was chosen in this thesis since it is easier to use.

Figure 5.3: Optical spectra for a gold sphere with radius 50 nm. A comparison
is done between two different fits and also between Mie theory and data generated
with finite-difference time-domain (FDTD) simulations. Too many Lorentzians in
the fit introduce small oscillations in the resulting spectra. In general the agreement
between Mie theory and simulation is good, although the height of the peak differ
slightly.
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5.2 Examples of Lorentzian fits
This section presents typical fits obtained using the methods mentioned above.
In Figure 5.4 the calculated DF for Pd0.75Au0.25:H is shown together with two differ-
ent fits. The difference between the two fits is the maximum number of oscillators
allowed. The fits are very good, even with fewer than 6 oscillators for the lower
hydrogen concentrations. At higher concentrations of hydrogen the sharp details
cannot described with only 6 oscillators. It should be kept in mind that in prac-
tice the very high hydrogen concentrations are not as interesting as the mid to low
concentration regime.

Figure 5.4: Typical fitting scenarios of some DFs. It is clear that for hydrogen
concentrations up to 75 % only 6 oscillators are needed. Overall the fitting methods
are working as expected.

Even though the fits with a maximum of 6 oscillators are not optimal in the high
hydrogen content regime, the fits are overall good. This is especially true if one
compares with experimentally obtained DFs, where different measuring techniques
can result in a very wide range of values. Such a comparison is done in Figure 5.5.
The experimental gold DFs were measured by Olmon et al. [31] and Rakic et al.
[32]. The figure illustrates that even if the fits would be non-ideal the difference in
experimental data is often much larger than the errors introduced in these types of
fits.
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(a) Experimental data and resulting fits. (b) Classical overfitting problem.

Figure 5.5: To the left: The imaginary part of the DF for gold from experimental
measurements by Olmon et al. and Rakic et al. Included in the plot are the fits
generated using the presented method. To the right: The imaginary part of the
dielectric function for gold with two different fits. Small oscillations can be seen if
too many oscillators are included.

5.3 Summary
The most important results from this chapter are:

• A fitting method was developed that converts the TDDFT dielectric function
to the Lorentzian form expected by meep.

• In short the method relies on regression with regularisation for selecting the
most suitable Lorentzians from a large initial basis set. Then a fine tuning
of the parameters γn and ωn and the strengths of the oscillators is performed
by a non-linear least squares method. This whole procedure is done using a
variable number of oscillators, i.e. the hyperparameter Nreq was varied. Then
the value that minimises BIC was chosen for that DF.

• This was successfully done for all DFs from the TDDFT calculations.
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6
Optical response of PdAu:H

nanodisks

The optical response of a nanoparticle is a convolution of the properties the under-
lying material and the geometry and shape of the particle. The material property
relevant here is the DF, a bulk property, which in this thesis was obtained through
TDDFT calculations.
In this thesis the optical response will be calculated using the FDTD electromagnetic
software meep [27]. By defining a region described by the DF for a specific PdAu:H
alloy, one can calculate the optical extinction spectra for that geometry with that
bulk property. Doing this for all hydrogen concentrations one obtains the optical
spectra as a function of hydrogenation. This chapter hence bridges the gap between
the DF and a measurable optical quantity.
In this chapter the sensor is always, unless specified otherwise, a truncated cone
with angle θ = 60°, see Figure 6.1. The sensor is placed on top of a silica substrate
modelled with a constant refractive index n = 1.47813.
The basic theory is described in the first section. This is followed by a short conver-
gence study and the subsequent sections present the ultimate results of this thesis.

6.1 Finite-difference time-domain method
In classical electromagnetism Maxwell’s equations describe the interaction between
the electric and magnetic fields. Furthermore the equations describe the interaction
between these fields and matter itself. The macroscopic Maxwell’s equations can be
written as:

∇ ·D = ρf

∇ ·B = 0

∇× E = −∂B
∂t

∇×H = Jf + ∂D
∂t

,

where E, H, and Jf are the electric field, magnetic field, and the free current density,
respectively. The displacement field and magnetic flux density are denoted D = εE
and B = µH. In the macroscopic Maxwell’s equations only the free charge density,
ρf , is considered.
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6. Optical response of PdAu:H nanodisks

By solving these equations for a given system, including the material and a source,
one can gain knowledge about how much of the electromagnetic power from the
source is absorbed or scattered in the material. There are different ways of solving
these equations, and in this thesis the FDTD method will be used to solve Maxwell’s
equations in time domain. This is profitable since FDTD makes it possible to study
a broad frequency response with only one simulation.
In FDTD the derivatives, spatial and temporal, in Maxwell’s equations are approx-
imated with finite differences. In other words, the space and time coordinates are
discretised and then the simulation is propagated by taking small steps in time. The
size of the timestep and the grid cell must satisfy the Courant condition [33]. The
Courant condition can be expressed as ∆t/∆x < n/

√
D, where ∆t and ∆x are the

timestep and the dimension of the spatial grid cell, n is the smallest refractive index
and D is the dimension of the system.
The goal is to calculate the absorption and scattering from the disk-and-substrate
system and the essential steps are described here. The software stores the time-
dependent fields through defined flux surfaces and then evaluates the Fourier trans-
form of these fields. One can then calculate the (transmitted) power through a
surface as:

P (ω) = Re
{
n̂ ·
∫
d2xE∗ω(x)×Hω(x)

}
.

By doing this calculation on all sides surrounding the system and taking the sum of
all sides one obtains the total absorbed power (here directions are very important).
Normalising this quantity with the incoming intensity yields the absorption cross
section σabs. The intensity is the radiated power divided by the area of the flux
region above the disk,

σabs = P (ω)
I(ω) .

The scattering cross section, σscat, can be calculated in a similar fashion but now the
incident fields must be subtracted before calculating the power through the different
surfaces. Also a sign change is needed since absorption corresponds to the power
into the volume while scattering is defined via the flux out of the volume. The
dimensionless absorption and scattering efficiencies are evaluated as:

Qabs = σabs
A
,

where A is the area of the disk as seen from the point-of-view of the source.
In practice a reference calculation is first done with only the silica substrate. The
intensity from the source is stored as well as the incident fields. As mentioned before
the intensity is needed for normalisation in the expression of the cross sections and
the incident fields must be subtracted when the scattered power is calculated.
In Figure 6.1 the computational cell is shown. The source is a Gaussian-pulse source
with a defined width and centre frequency and is coloured red in the figure. The
electric and magnetic fluxes are calculated through a flux region, which is the blue
coloured box in the figure. To simulate an infinite system perfectly matched layers
(PMLs) are placed around the system. PMLs are designed to absorb all incoming
radiation without reflecting any power back into the cell.
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(a) FDTD cell

DPML
Dair

Dflux

(b) Disk geometry

r

θ h

Figure 6.1: Illustration of the computational FDTD cell and the sensor. In the
figure to left the green area represents the PML and the red line shows the location
of the Gaussian source. The blue line indicates the flux region, i.e. the surface
through which the electromagnetic flux is calculated. There must be enough vacuum
in between the flux region and the source, which essentially puts a limit on Dair.
The sensor is placed on top of the silica substrate shown as the black region in the
figure. The sensor to the right illustrates the definitions of height, radius, and angle.
When calculating the geometrical cross-section A the (larger) radius of the base is
used.

6.2 Convergence and performance of MEEP
This section is aimed to present and motivate the parameters used in the electro-
magnetic FDTD simulation. Computational cost and scaling of the software will
also be presented. The purpose of the study is to obtain estimates of parameter
values that balance cost vs accuracy.
In Figure 6.2 the effect of three important FDTD parameters on the computed
optical spectra is shown. Here, the studied system is the truncated cone on a
silica substrate. The vacuum and PML thickness as well as the resolution of the
computational cell are being varied and then height, position, and full width at half
maximum (FWHM) of the absorption and scattering peak are examined. This was
done for three different systems: pure gold, pure palladium and the alloy Pd90Au10.1
From the figure it can be seen that the thickness of the PML layer and the amount
of vacuum surrounding the disk is crucial. However, the spectra are barely affected
by these parameters as long as they are kept above roughly 100 nm.
The spatial (and thereby the temporal) resolution is more intricate. Here the change
in the spectra is much slower, but at a resolution of roughly 500 µm−1 the height,

1These DFs can be found in the alloy DF database: https://sharc.materialsmodeling.org/
alloy_dielectric_functions/
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6. Optical response of PdAu:H nanodisks

position, and FWHM of the peak are converged. Even if there is a small change
between 500 µm−1 and 600 µm−1 for a specific material, the changes are of similar
magnitude for the different materials. It should be noted that the height of the
scattering peak for Au (line without dots in top right figure) does not exhibit the
same trend as for the other materials. In other words, the spectra are converged,
relative to each other, with a resolution of 500 µm−1 with the exception of possibly
the height of the scattering peak.

Figure 6.2: Height, position and FWHM of the absorption and scattering peaks.
The lines with dots correspond to absorption values. As a summary: the spectra are
converged, relative to each other, if one uses vacuum and PML thickness of 100 nm
and a resolution of 500 µm−1.

A keen eye probably notices that the peak position is not the same if one compares
the calculation series with varying PML thickness (and vacuum thickness) and the
series with varying resolution. The reason for this is that the resolution used in
the thickness series was set to 160 µm−1. The difference is still surprisingly large,
and the reason for the large discrepancy is connected to how the spatial grid is
discretised. This is illustrated further in Figure 6.3. For simplicity only the peak
position is shown, but the same trends can be seen in peak height and FWHM.
A periodicity of 100 µm−1 can be seen here and if one looks at the heights of the
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peaks a periodicity of 50 µm−1 can also be seen (not shown here). The fact is that
the discretisation of the cell is dependent on resolution and for different values the
discretisation algorithm results in different geometries of the nanodisk. For example,
when increasing the resolution from 140 µm−1 to 150 µm−1 the resulting nanodisk
has a drastically different height and therefore the optical peaks are shifted. By
increasing the resolution a lot the difference between these geometries decreases.

Figure 6.3: Finely sampling different resolutions show that the resulting discretised
cell generates different “versions” of the nanodisk. Here two different versions are
detected that have a slightly different optical peak position. Increasing the resolution
results in a smaller difference between the geometries, as expected.

Increasing the resolution and thickness parameters ad infinitum is not practical due
to the increased computational cost. This is illustrated in Figure 6.4 where the wall
time divided by the simulation time is shown for different values of resolution and
vacuum thickness. The ratios are also normalised with the number of oscillators
in the Lorentzian fit of the DF for every material. As expected the cost scales,
roughly, by the fourth power with respect to resolution and linearly with respect
to vacuum thickness. Note that increasing the resolution increases both the spatial
and temporal resolution, hence the expected fourth power instead of third power.
Ideally the speedup of the wall time scales linearly with the number of cores. This
would require the software to be fully parallelizable which is not realistic. In Fig-
ure 6.5 the speedup for the meep software is shown. The speedup is defined as
t1/tN , where ti is the wall time when i cores are used. All of these timings were
done under the same conditions, with only the number of cores varying. At roughly
16 cores the gain of using additional cores is minimal. In the bottom subfigure the
actual wall time normalized with the simulation time in meep units, m.u., is also
shown.
Given the result of the convergence, cost, and scaling study the parameters for the
production runs were chosen. They are presented in Table 6.1.
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Figure 6.4: Wall time, in seconds, divided by the simulation time, in meep units.
This ratio is normalised to the number of oscillators in the DF. The cost scales,
roughly, as a fourth power with respect to resolution and linearly with vacuum
thickness.

Figure 6.5: Upper figure shows the speedup of the meep simulations with respect
to number of cores. These times were produced under strong scaling conditions. In
the bottom figure the wall time in seconds is divided by the meep simulation time.
For reference the simulation time in meep units for these calculations were circa
15 m.u., which roughly results in 60 s/m.u.× 15 m.u. = 15 min with 16 cores.

Table 6.1: Parameters for meep production runs.

Parameter Vacuum thickness PML thickness Resolution Number of cores
Value 100 nm 100 nm 500 µm−1 16
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6.3 Absorption or scattering

Depending on application, it can be desirable to achieve a higher absorption than
scattering efficiency, or vice versa. This choice is mainly informed by the mea-
surement setup and the purpose of the device. To decide the size of the truncated
nanocone, absorption and scattering spectra were studied as a function of height and
diameter of the disk as shown in Figure 6.6. The peak efficiencies are red-shifted
with increasing disk size. Increasing the size of the disk results in a higher scattering
efficiency, while the absorption efficiency exhibits a maximum at a height of 20 nm.
From this point onward the disk height was set to 20 nm, unless specified otherwise,
since this results in maximum absorption efficiency. Another benefit of using the
specified size is that the peak position is on the order of 2.7 eV ≈ 460 nm, which is
in the blue region of the optical spectrum. Later in this chapter it will be shown
that introduction of hydrogen red-shifts the peak and therefore it is crucial that the
non-hydrogenated case is not too far to the red end of the spectra, if the readout
should be close to the visible range.

(a) Efficiencies for different sizes. (b) Peak efficiencies and positions.

Figure 6.6: Variation of optical spectra with height and diameter of the truncated
cone. Here the aspect ratio (AR) is fixed atD/h = 5 and the material is Pd0.83Au0.17.
A clear red-shift in peak position can be seen with larger disk size. The peak
scattering efficiency increases monotonically with size, while the absorption peak is
maximal at a height of 20 nm.
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6.4 Response due to lattice expansion
Since the size of the disk affects the optical spectra, as seen in the previous section,
it is to be expected that additional strain, here due to the sorption of hydrogen,
affects the optical spectra. The expansion due to hydrogenation can be modelled by
simply scaling the length unit in meep, assuming the expansion to be isotropic.
This effect is illustrated in Figure 6.7. Here, the optical spectra from nanodisks of
Pd0.83Au0.17 and Pd0.83Au0.17H0.67 are shown. The solid lines represents the physi-
cally sensible case where the lattice is allowed to expand, according to the data from
Figure 3.2. Included is also a hypothetical case where the lattice is not allowed to
expand, i.e. no size change is included, shown by the red dashed lines. The grey
shaded area represents the change in the optical spectra due to the expansion of
the lattice. It is small, but definitely noticeable, compared to the response due to
change in dielectric properties. For comparison, the expansion was roughly 3 % in
each direction. From this point onward, the expansion due to hydrogen is included
in all FDTD calculations.

Figure 6.7: Impact of lattice expansion due to hydrogen on the optical spectra.
The dashed lines correspond to the response where the expansion is neglected, i.e. a
hypothetical non-physical case. The grey area is the change due to expansion. For
reference the lattice parameter expansion was roughly 3 %.

6.5 Total response due to hydrogenation
In this section the optical spectra of nanodisks with varying hydrogen and gold
content will be presented. Some spectra will be shown and then the peak position
will be studied further, since this is a descriptor that is most commonly measured
experimentally.
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In Figure 6.8 the extinction spectra for different gold and hydrogen concentrations of
PdAu:H are shown. The truncated cone is 100 nm in diameter and 20 nm in height,
with an angle of θ = 60°. For low hydrogen content the extinction peak is broad and
centred at approximately 2.6 eV. Adding hydrogen shifts the peak to lower energies.
This trend is true for all gold concentrations for this geometry and size. Higher gold
content reduces the extinction efficiency for low hydrogen content, while additional
hydrogen creates a sharp and intense extinction peak.

Figure 6.8: Spectra for the truncated cone geometry with diameter 100 nm and
height 20 nm. The maximum number of oscillators allowed was 6. Redder lines
correspond to higher hydrogen concentration. Here, only every second hydrogen
concentration is plotted.

As an alternative representation, heat maps of the absorption spectra are shown for
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two different gold concentrations in Figure 6.9. Here, the black domains are the
peak positions for each hydrogen concentration. The red-shift of the peak position
is clear and the two concentrations show, roughly, the same red-shift rate.

Figure 6.9: Heat map of the absorption efficiency for different hydrogen concentra-
tions. The peak absorption energies are marked with black. The red-shift in peak
position can be seen and the two gold concentrations show similar red-shift trends.

To further investigate the red-shift of the peak efficiency said quantity will now be
studied furthered. In Figure 6.10 two heat maps of the peak absorption position
is shown. The only difference between the two figures is the maximum number of
oscillators in the Lorentzian fit. Qualitatively the trends are the same and overall the
trends are quantitatively the same, except for a few outliers. Introducing hydrogen
red-shifts the absorption peak from 2.6 eV to 1.6 eV.
In Figure 6.11 the absorption peak wavelength is presented as a function of hydrogen
concentration. These data were obtained using the truncated cone geometry with
a diameter of 100 nm, a height of 20 nm, and an angle of θ = 60°. A clear linear
trend can be seen for most of the gold concentrations. At very high gold content
larger deviations from the linear trend are observed. Experimentally a linear red-
shift due to hydrogenation of PdAu-alloys has been measured for these types of
geometries [34].
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(a) Maximum 6 oscillators. (b) Maximum 10 oscillators.

Figure 6.10: Heat map of peak absorption energy, ωmax, as a function of gold and
hydrogen concentration. In the figure to the left/right the FDTD simulations were
performed using a maximum of 6/10 oscillators. Both data sets show a red-shift due
to hydrogenation and introduction of gold does affect this trend significantly.

Figure 6.11: Absorption peak position as a function of hydrogen content. The
red-shift is linear with respect to hydrogen concentration, for all of the sampled
gold concentrations. Higher gold content lead to larger deviation from the linear
trend.

6.6 Response of disks with different aspect ratios

The figures in the previous section showed an (approximately) linear trend in the
red-shift due to hydrogenation. Interestingly this applies for all gold concentrations
whereas the DFs in chapter 4 show much more variation than just a constant red-
shift.
By changing the AR, where AR = D/h, of the sensor different energies of the DFs
can be probed. In Figure 6.12 the AR is varied as the absorption peak position is
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examined. A larger diameter results in a red-shift of the responses, which is expected.
Interestingly at very small ARs the response is almost zero, if not negative. This
suggests that altering the shape results in different slopes and thereby sensitivities.
One can anticipate that it also is possible to drastically change the shape so that
the response is outside of this energy interval, as a result of which new trends could
emerge. Experimentally it has been observed that while the response is linear, the
slope varies depending on the initial non-hydrogenated wavelength [34]. In other
words, these results are in agreement with experimental results.

Figure 6.12: Here the absorption peak position is plotted against hydrogen concen-
tration. This is done for two gold concentrations and for different ARs AR = D/h
of the disk. The two alloys studied here were Pd and Pd0.75Au0.25. A clear red-shift
can be seen for higher ARs, while the trend due to hydrogenation is the same, i.e.
linear. Smaller ARs result in smaller responses and eventually the response might
be a blue-shift due to hydrogenation.

To further investigate how sensitive the peak position is to hydrogen concentration
for these types of Pd (and PdAu) disks the predicted sensitivities are presented
and compared to experimental data. This is done in Figure 6.13. All of the values
from this thesis are presented as the average of Pd and Pd0.75Au0.25. On the y-
axis is essentially the slope from the previous figure and the x-axis is the peak
position for the pure Pd (and PdAu) system. Two predicted values are included,
one where the full hydrogen range is included and one which the range is limited.
The experimental data is taken from a paper by Nugroho et al. [34] As a reminder:
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the initial peak position is altered by changing the AR of the disks (this was also
the case in the experimental study). Qualitatively the trends are similar. Initially
a higher sensitivity is achieved by red-shifting the peak, but at some critical value
there is no further gain in sensitivity. In the experimental paper the authors argue
that this is not a plateau and that further red-shifting the initial peak will increase
the sensitivity. This is motivated by looking at nanoparticles with a very different
shape, which indeed lead to a red-shift in initial peak and a higher sensitivity (not
presented here).

Figure 6.13: Calculated sensitivities from the FDTD simulations compared to ex-
perimental data. The experimental data is taken from Nugroho et al. The sensitivity
is a measure of how much the peak shifts with hydrogen concentration, and it is the
slope in Figure 6.12. Two fits are included, one where the slope is evaluated through
out the full concentration range and one with a smaller interval. Red-shifting the
initial non-hydrogenated response leads to larger sensitivity initially but eventually
the sensitivity seems to plateau.

6.7 Impact of microscopical configuration
In previous sections only the SQS versions of PdAu:H were studied. Here the op-
tical spectra of SOSs and SQSs will be compared. In other words, the effect of
microscopical configuration on the optical spectra will be investigated.
In Figure 6.14 the optical spectra of Pd0.83Au0.17 and Pd0.83Au0.17H0.67 are shown.
Here, the sensor is a truncated disk with diameter 100 nm and height 20 nm. Both
the SQS and SOS versions of said materials are presented. There are small differences
between the SQS and SOS cases. However, it should be noted that the unit cells
of the SQSs and SOSs are of different sizes, containing 24 and 12 metal atoms
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respectively. The difference is, probably, smaller than the accuracy of the Lorentzian
fit and hence it is difficult to tell whether or not the microscopic ordering affects the
optical properties.

Figure 6.14: Optical spectra of SQS and SOS versions of Pd0.83Au0.17 and
Pd0.83Au0.17H0.67. The differences are most likely smaller than the accuracy of the
Lorentzian fitting.

To get a wider picture of the influence of microscopical ordering one can visualise
the absorption peak position as a function of hydrogen content for the SQS and SOS
cases. This is done in Figure 6.15. The shift in wavelength follows roughly the same
trend. In this energy regime and for this shape and size of the sensor a distinct
difference between the ordered and random case cannot be detected.

Figure 6.15: Red-shift of the absorption peak for ordered (SOS) and random
(SQS) structures. Only one gold concentration is available, but for this case there is
no detectable difference between thermodynamically representative and disordered
structures.
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6.8 Summary
The following list summarises the main results from the electromagnetic simulations:

• Truncated cones of PdAu with a diameter of 100 nm and height 20 nm show
a linear red-shift in peak absorption wavelength as a function of hydrogena-
tion. This was true for all studied gold concentrations. The response for this
geometry was in the visible regime.

• It was shown that the lattice expansion due to hydrogenation is detectable in
the optical spectra, but the change in the DF dominates the red-shift.

• Varying the AR results in a shift of the response. Furthermore a low AR result
in essentially non-existing response due to hydrogenation. This was the case
for sensors made of Pd and Pd0.75Au0.25.

• No significant difference between the optical response from SQSs and SOSs
can be detected. In other words, the difference in the ordering of a random
PdAu:H alloy and a thermodynamically representative structure of PdAu:H is
not noticeable in the optical spectra, at least under the conditions considered
here.
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7
Discussion and conclusion

The goal of thesis was to predict the optical response of PdAu:H alloys, and hence
the capabilities of PdAu:H sensors from first-principles. This was successfully done
for various sizes of truncated cones on the nanoscale. First the PdAu:H alloy itself
was studied by combining CEs and MC simulations. Then smaller unit cells, were
constructed from both the MC generated alloys and random alloys. The electronic
properties of these special structures were calculated using static DFT and then
the dielectric response was evaluated using TDDFT. Finally the optical response
of nanodisks, with the dielectric properties described by the dielectric response cal-
culated with TDDFT, were investigated. This was done with the electromagnetic
simulation software meep. The software required the DFs to be expressed as a set
of Lorentzians. Therefore, an efficient Lorentzian fitting method was developed.
The rest of this chapter summarises the main results from each chapter. Here
some additional conclusions will be drawn by combining the results from different
chapters, to explain some of the relations and connections between the chapters.

7.1 Ordering of PdAu:H alloy and its effect on
spectra

In chapter 2 it was shown that in a randomised PdAu lattice introduced hydrogen
atoms are more likely to be found near palladium than near gold in the nearest
neighbour regime. In other words the nearest neighbour Pd-H bonds are more
common than Au-H bonds. Interestingly if one examines second nearest neighbour
pairs the opposite is true, i.e. Au-H and Pd-V pairs are the most common. The
difference is clear when one studies the short range order parameter.
However, whether this affects the sensing capabilities of a PdAu nanodisk is not
obvious. It was shown in chapter 4 and chapter 6 that the dielectric properties and
optical spectra does not seem to be heavily affected. Here one should be careful since
the SOSs and SQSs were differently sized, 12 and 24 atoms respectively, which could
play a role in how representative the final dielectric functions in the two cases are.
It is also worthwhile mentioning that if there is a small difference in the dielectric
function, the Lorentzian fitting might not capture it. It is likely that the difference is
in fact negligible, which would allow future research of optical properties for PdAu:H
to neglect the ordering and simply assume that the alloy is a random alloy.
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7. Discussion and conclusion

7.2 Electronic structure and dielectric response
for PdAu:H

The electronic properties of PdAu:H alloys were investigated in chapter 3. There
it was shown, by studying the band structure and DOS, that hydrogenation of
PdAu pushes down the band in vicinity to the Fermi level and eventually the whole
band is occupied. Introducing more gold in the PdAu alloy results in the same
phenomena. For reference gold has a totally filled d-band circa 2 eV below the
Fermi level and palladium has a band intercepting the Fermi level. This can be
interpreted in the following way: introducing hydrogen in palladium generates more
gold-like properties in the palladium. Interestingly, this is also true for PdAu alloys,
at least when the gold concentrations below circa 42 %.
This seems to be true also for the DF of PdAu:H. In the visible limit the loss function,
− Im{1/ε}, behaves similarly for the various gold concentrations. The details in the
function is red-shifted in a monotonous fashion when hydrogen is added. Typically
gold shows a peak in the imaginary part of the dielectric function at circa 2 eV due
to interband transitions. This is similar to the broad feature in loss function for
PdAu:H at circa 3 eV. Hence the interpretation that Pd:H shows resemblance to
gold is somewhat reasonable when looking at the dielectric properties.

7.3 Optical response due to hydrogenation
In the end it is the change in optical spectra and the shift in the extinction peak due
to hydrogenation that determines how well a plasmonic sensor functions. This was
studied in chapter 6. In summary, truncated cones of PdAu with diameter 100 nm
and height 20 nm showed a linear red-shift in peak position due to hydrogenation.
The slope was approximately ∆λmax/∆cH = 200 nm, where ∆cH = H/(Pd + Au).
This relation was found for all gold concentrations, although at higher gold and
hydrogen concentrations the peak positions fluctuated more.
However, changing the aspect ratio AR = D/h of the disk results in a change in
the magnitude of the response and in the initial peak position. In other words
changing the AR results in different sensitivity of the device. It should be noted the
that the response was typically linear, but non-linearities could emerge for certain
shapes. It was found that the sensitivity increased with a larger AR, but eventually
the sensitivity plateaued. This is in agreement with experimental work done by
Nugroho et al. In their work the sensitivity increased with AR until a plateau was
hit. In the article they claim that this is not a plateau, with the motivation that
for nanorings the sensitivity further increased. However, this was not investigated
in this thesis.
In general the extinction peak for PdAu:H disks with AR = 5 and low hydrogen
content were typically broader and centred around 2.6 eV. A higher hydrogen content
red-shift the peaks, as explained above, but additionally the width of the peaks get
smaller for more hydrogen rich structures. This property could be used in sensing
applications. The decrease in the width is likely due to the decrease in the imaginary
part of the DF with hydrogen, since this results in a sharper peak.
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