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Spatial Indexing for Moving Geometry in Main Memory

JAKOB AASA & MARCUS LUNDBERG

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg

Abstract

Spatial indexes are data structures which store objects in the form of points or
geometry in two or more dimensions in such a way that subsets can be queried
with high performance. However, good query performance is no guarantee for a
corresponding update performance. There is currently little research of spatial
indexing for non-point geometry which receive frequent updates.

This thesis studies and compares different spatial indexes for this kind of data. The
evaluated data structures are the simple quadtree, the loose quadtree, the loose-linear
quadtree, and the R*-tree. A dynamic array is also implemented to represent a naive
approach.

Where applicable, we augment the spatial indexes with two update techniques:
bottom-up updating and update memo, to assess if these improve performance.
Evaluation is performed by a benchmark suite, where a scenario of objects sampled
from different data distributions is used to quantify query and update performance
of the spatial indexes. This evaluation is divided into two steps. First, parameters
specific to each data structure is chosen, with 10 million objects in the scenario.
Then, we compare the data structures, the update techniques, and the memory usage
of the selection.

We find that the loose quadtree performs best for all measured scenarios in both
updates and queries, while the R*-tree is worst, if not counting the query performance
of the dynamic array. Bottom-up updating and update memo yielded unsatisfactory
performance given the extra memory that is needed.

The contribution of this thesis is twofold. First, we perform a thorough performance
comparison for spatial indexes that support moving non-point geometry. To our
knowledge, there exist no such survey at the time of writing. Secondly, we present
novel query algorithms for the loose-linear quadtree which perform at least an order
of magnitude better than other existing approaches.

Keywords: Computer, science, computer science, engineering, spatial index, quadtree,
r-tree, main memory, thesis.
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1

Introduction

How to efficiently store and analyze data with spatial properties, such as position and
geometrical form, has been an important research area of computer science since the
1970s. This research has resulted in many new, purpose-built data structures. These
kinds of data structures are commonly referred to as spatial indexes. More recently,
the increase in spatial data gathering (positions of cars, phones, etc.) has made
spatial indexing a more relevant, and thriving, area of research than ever. While
older research on spatial index structures has focused on improving performance
for querying subsets of the stored data, how to efficiently modify this data’s spatial
properties, such as moving objects’ positions, has become increasingly important.

The field of spatial indexing mainly focuses two different kinds of data: static
geometry and moving point data. An example of static geometry — with a spatial
extent and that does not move — is to represent objects such as roads and buildings
in traditional geographic information systems. Moving point data, on the other hand,
has no spatial extent and is not static; examples being location data of cars and
phones. Due to modern tracking technology, spatial indexing of moving point data
has seen renewed interest in recent years [43, 50, 11, 46].

The focus on this thesis is on moving geometry, non-static data with spatial extent.
Such data is commonly used in n-body physics simulations and computer graphics
but can also be used to represent inaccuracy in location tracking of moving point
data.

Spatial indexing of moving geometry is a relatively unexplored field [41]; research
on the area has only been published in recent years [20, 41, 10]. The purpose of
this thesis is to compare different spatial indexes that can store moving geometry
data, and evaluate them for different parameters. Focus is on performance given
large amounts of objects, especially update performance. Query performance is also
considered because the main purpose of spatial indexes is to provide faster querying
than simply iterating through all objects. To our knowledge, there exist no published
literature that examines and compares spatial indexes for moving geometry.

This thesis also presents novel methods. An update-memo method for the loose
quadtree is developed, where garbage cleaning depends more on the dynamic data’s
distribution compared to existing methods. For the loose-linear quadtree, we describe
two algorithms that improve on the query algorithm introduced by Aboulnaga et al
[1], with orders of magnitude better query performance in our evaluation.

We implement and test versions of a list (based on the C++ std: :vector), pointer-

1



1. Introduction

based quadtree, loose quadtree, loose-linear quadtree, and R*-tree. Some of these are
also equipped with two update techniques: bottom-up updating and update memo.

The results show that the loose quadtree outperforms all other evaluated spatial
indexes by far. Bottom-up updating, with which some indexes are augmented, has
limited performance effects and large memory overhead. The other update technique,
update memo, also proves to performs poorly.

This thesis is done in collaboration with Carmenta.

The following section gives an example of an application where a spatial index can
be used. Section 1.2 narrows the scope and describes what the thesis cover in more
detail.

1.1 Example Application: Command and control
system

Consider an emergency services command-and-control center with a central server.
Such a center coordinates and dispatches proper resources to emergency situations.
The server tracks substantial amounts of live positional data from varying sources,
such as mobile phones, cars, weather phenomena, and so on. Positions for these are
updated up to once per second, for each non-static object. Due to inaccuracy from
GPS positioning or location estimation based on mobile towers, data represented
as points have a certain amount of uncertainty, these are therefore represented as
geometric objects with areas in the application.

Control operators’ use client workstations to interface with the command-and-control-
systems server. Each operator has a window on their screen of a map displaying
data from the server corresponding to its view area. It is important that the objects
shown on the operator’s screen are as current and relevant as possible, and that the
operator can pan and zoom around the map and quickly get a response from the
server with corresponding data.

The information an operator requests from the server is referred to as a window-query
operation: fetch all objects that intersect with a given axis-aligned rectangle — the
screen window in this case. In addition, for the server to provide updated answers to
window queries, it is important to return answers as quickly as possible.

1.2 Scope & Limitations

Spatial indexing is an old and well-established research area. This thesis covers a
niche of this area, which is explained below:

o Two-dimensional data. Implementations and evaluations are made for two
dimensions. It is common to examine spatial indexes for only two or three
dimensions [41, 6, 20], even if a spatial index supports any number of dimensions.

o Auzis-aligned rectangles. Only axis-aligned rectangles are indexed — they can
be used to approximate any shape. This is a common approach in the spatial
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indexing field [17].

o Window queries. The only query operation evaluated is window querying. No
other kind of query, such as nearest-neighbor queries, is considered.

e Main memory. Databases that use spatial indexing are often stored in secondary
memory such as hard drives, where writes and reads to and from disk (I/O
operations) are limiting performance factors [38]. Since the problem sizes this
thesis researches fits in main memory (RAM), all indexes are implemented for,
and evaluated in, main memory.

o Sequential access. This thesis only considers sequential operations. Concurrency
would complicate the evaluation process substantially: both sequential and
concurrent access must be measured by themselves, in order to draw any
conclusions of what factors affects the performance of the chosen spatial
indexes.

All chosen spatial indexes are implemented in C++ and compiled using the Visual
C++ 2019 compiler. Evaluation is performed on a workstation running Windows,
with an Intel Core i7-8700 processor and 64 GB of RAM. Results may differ for other
configurations.

1.3 Ethical considerations

The technologies and algorithms described in this thesis can be, like most other, used
for many different purposes. It is first when applied the usage can be deemed good
or evil.

The spatial indexing approaches described and implemented in this thesis might
be used to store confidential data. This thesis, and in general, the field itself, does
not discuss the security of the data stored. Security is something that has to be
considered in specific implementations, if the stake-holders of said implementations
deem it necessary. All data used for this thesis was randomly generated, and is
therefore not sensitive or confidential.

Real-time applications often rely on relevant data, and this is the area where spatial
indexing can make a difference. Some rely on tracking technology, which can be
used in both civil and military contexts. One possible usage where ethical concerns
would arise is surveillance. A nefarious state might use spatial indexing approaches
to track its own or other states’ citizens more efficiently than would otherwise be
possible. This is, however, only one minor component of all technology required for
this purpose. A positioning system is required to gather the data to begin with, for
example. On the other hand, rescue services could use the technology (see Section
1.1) to save lives.

Not considering the minor novel additions presented by this thesis, we only compare
existing methods that have already been published. The ethical implications of this
thesis are therefore limited.
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Related Work

Spatial indexing is an old and well-researched domain. In this chapter we give an
overview of published indexing approaches, grouped in different categories.

Most spatial-indexing approaches are derived from a few variants, quadtrees, kd-trees,
and r-tree, published in the 1970s and 1980s. These approaches laid the groundwork
for the research area of spatial indexes. These are described together with some of
their derivatives in Section 2.1, 2.2, and 2.3. For a more in-depth explanation of the
variants evaluated in this thesis, see Chapter 3.

2.1 Quadtrees

One of the earliest spatial indexing structures is the quadtree, proposed in 1974 by
Finkel et al. [13]. Originally a tree data structure designed for an arbitrary number
of dimensions, it is nowadays associated with a two-dimensional version where each
node has four children', each representing a quarter of the node’s space. Finkel et
al’s original version is referred to as a point quadtree in other literature [40, 14, 16].
In their version, each node throughout the tree represents a data point.

A drawback of Finkel et al’s approach is that the areas spanned by a node’s children
are dependent on how the point, which defines the node, is placed. The Point-Region
quadtree [35], introduced a few years later, instead place all data in the leaves and
split each node into equal-sized rectangular sub-nodes. The partitioning of space into
equal-sized sub-nodes at each level proved to be a popular approach. For handling
non-point data, the MX-CIF quadtree [23] stores objects as deep in the tree as
possible, so that a node is minimally enclosing them.

A version of the quadtree in three dimensions is the octree [31], where each node has
eight children. Octree variants are particularly popular for accelerating intersection
testing in the domain of computer graphics [41].

In 2000, Ulrich [47] introduced a version of the octree called loose octree, where a
node’s volume is expanded by a factor; this allows objects to be stored deeper in
the tree. A constant-time algorithm for finding the minimally enclosing node for an
object in loose quadtrees was developed by Samet et al. [41].

A common representation of a quadtree to use explicit node objects, where every node
keeps a pointer to each of its four children. Gargantini [15] proposed an alternative

'In a general k-dimensional tree, each node has 2% children.



2. Related Work

representation, the linear quadtree, where a unique identifier for each quadtree node
is calculated based upon its placement and depth in the tree. This identifier is then
used to directly access the node — no traversal in the quadtree is needed if one
knows beforehand which node to access. There exist several query algorithms for
linear quadtrees, of which Aboulnaga and Samet’s [1] is the most recent. In contrast
to an earlier algorithm presented by Aref and Samet [4], spatial objects are permitted
to overlap each others.

2.2 kd-trees

Another early take on spatial indexing is the k-dimensional tree (kd-tree), introduced
by Bentley in 1975 [7]. The kd-tree is a generalization of the binary search tree for
k-dimensional data, where every level of the tree orders children on the next level
by a given dimension. Extensions of this method include the K-D-B-tree [39], and
Bkd-tree [36].

2.3 R-trees

Introduced in 1984 by Guttman [17], the R-tree is a very influential spatial index [30].
Variants that extend and improve the R-tree include R*-tree (1987) [42], R*-tree
(1990) [6], Hilbert R-tree (1993) [21], and many more [29].

R-trees is a height-balanced tree where all data is stored in the leaves. Each node keeps
a minimum bounding box around its children. This yields good query performance —
if the tree is constructed well.

2.4 Storage-specific approaches

One aspect that affects the performance of a spatial index is memory access, whether
from cache, main, or secondary memory. Therefore, some research has focused on
improving this aspect.

2.4.1 Secondary storage

Due to the limited availability of RAM in early computing, almost all spatial indexes
at the time were designed to be stored on a secondary storage such as hard drives.
An effect of this is that the bottleneck becomes reading and writing to the storage
medium (I/O operations) [38].

Biveinis et al. [8] proposes buffering operations in main memory to reduce disk 1/0.

2.4.2 Main memory

Main memory is much faster to access, compared with secondary storage. Since it
became workable for some applications to store all objects in main memory, some
research has focused on main memory structures. While main memory is much faster

6



2. Related Work

than secondary storage, reading and writing to it is still much slower than when the
data resides in cache. Cache-conscious approaches include MR-tree [25] and CR-tree
[24]; cache-oblivious include Packed-Memory Quadtree [46].

2.4.3 Bulk loading

If the data is known in advance before insertion into the index, it can be bulk-loaded.
There are approaches that utilize this to improve performance. Two examples of this
is Packed R-tree [22] and Packed Memory Quadtrees [46].

2.5 Update techniques

This section describes approaches used to facilitate a higher updating performance
than is usually reached with traditional spatial indexes.

2.5.1 Bottom-up updates

One method to improve update performance for spatial indexes is bottom-up updating,
which uses a secondary index (often a hash-map) to directly access the current position
of an object in the main index instead of traversing the index. It was originally
proposed by Lee et al. [26], with application to R-trees. Sidlauskas et al [44] further
developed the idea. They also provided a bottom-up version of a uniform grid index.

2.5.2 Update Memos

Another method for updating is the update memo technique, introduced by Silva
et al. [45], where the newest version of a moved object can co-exist with older
versions, which a garbage cleaner regularly removes. Silva et al. used the technique
to augment the R-tree, resulting in a new variant called the RUM-tree. Update
memo was combined with bottom-up updates in the RUM+-tree [49]. The technique
is also applied to loose octrees by Deng et al. [10].

2.5.3 Throwaway index structures

Spatial indexes such as MOVIES [11] and TwinGrid [43] are designed on the assump-
tions that given enough updates, it is computationally faster to construct a new
index rather than updating an old one. Therefore, they quickly construct short-lived
indexes which are replaced by newer ones regularly. The defining limitation of this
approach is that the constructed index quickly becomes irrelevant, since it is a
snapshot of each object’s position when it was constructed.

2.6 Distributed spatial indexing

Due to limits in computation performance of a single machine, some research has
dealt with spatial indexing for distributed systems [27]. It is worth noting that the
main performance limitation on distributed systems is network communication [2].
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An example of a distributed spatial index is SIFT [20]. SIFT’s basic data structure
is a quadtree, but it also separates data according to workload-independent data
parameters, so that work is more evenly split between different machines. Computer
nodes in the system are also assigned specific parts of the quadtree.

Another distributed spatial index is HQ-Index [19], which is a point-based quad-tree
adopted for the Hadoop framework.

Then there is ToSS [2], which uses Voronoi diagrams to partition the index into
several nodes.? Queries are then sent to a local node, which queries its neighboring
nodes in case the query overlaps with those. Updates are performed by constructing
new indexes and throwing away the old ones.

2.7 Surveys

There have been several attempts at surveying and summarizing the research field of
spatial indexing. Gaede et al. [14] published a survey in 1998, covering the years
1966-1996. Three different versions of a survey, “Spatio-temporal access methods”,
consider the years 1980-2003 [32], 2003-2010 [33], and 2010-2017 [27]. Another survey,
which also discusses access methods in other domains, was published by Markov et
al. [30] in 2008.

2A Voronoi diagram separates regions of space by a set of points. A point’s associated region is
the space that lies closer to it than any other point, according to some distance metric.
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Theory

This chapter provides an overview of spatial index structures deemed relevant to this
thesis as well as techniques for improving update performance.

The term spatial index is generally defined as a data structure that organizes a set of
multi-dimensional geometry [3, 37]. As the name suggests, spatial indexing differs
from other indexing approaches in that it uses the spatial features of the indexed
objects to speed up certain kinds of queries. Examples of such queries are fetching
all objects within a certain area and finding which objects are closest to a specific
object.

Other terms used for the spatial index in the literature include spatial data structure
[3], multi-dimensional index [39], and Space Access Method (SAM)! [6, 48, 38]. From
here on, we will refer to these methods collectively as spatial indexes.

3.1 Domain

This section aims to describe the domain that this thesis covers: how objects are
represented, and how a spatial index operates on this representation.

All objects are represented as axis-aligned rectangles. Rectangles provide good
approximations of other data: points can be represented as small squares centered
on point coordinates and other geometry can be enclosed by minimum bounding
rectangles (MBR).

We define an object o to contain two points, {x,,v.} € R? and {z;, y,} € R? which
span an area, {Z, Ya, To, yp} € R* (see Figure 3.1), and a unique identifier, id € N.
The object is then 0 € N x R* = Q.

A spatial index containing rectangles can be viewed as a member of the power-set of
rectangles, P(Q). Operations on this structure include:

o intersects: P(0) x R* — P(0)

o insert: P(0) x O — {true, false}

o delete: P(0) x O — {true, false}

o update: P(Q) x O x O — {true, false}

Given a query rectangle and a spatial index, the function intersects seeks to return

Methods that only support points are often called Point Access Methods (PAM) [48, 30].



3. Theory

Figure 3.1: A rectangle area spanned by points a and b.

all rectangles in this index that intersect the query rectangle. For example, the query
rectangle could be an area explicitly chosen by a user or a window query where an
entire screen defines the search rectangle. Functions insert and delete take a rectangle
as input and either adds it to the given spatial structure or removes it. With update,
the index will receive a new position for a rectangle. Depending on whether the
index keeps track of all current positions of objects or not, the function is optionally
supplied with the old position of the rectangle. This function can, but does not
necessarily have to, be implemented in terms of the insert and delete operations. The
return value {true, false} indicates whether executing the function was successful
or not.

3.2 Spatial indexes

Over the years many methods have been developed in the spatial indexing field.
These can be divided into two main areas: space partitioning and data partitioning
[44, 38, 34]. Space partitioning means that the available space is partitioned such
that no consideration of the data distribution is taken; for example, a tree can be
defined where nodes at each level divide the available space equally.

The other approach, data partitioning, explicitly divides according to how the data
is distributed. An example of data partitioning is a bounding hierarchy tree, such
as the R-tree [17]. In bounding hierarchy trees, internal (non-leaf) nodes define
bounding spaces that minimally enclose their child nodes’ bounding spaces, and leaf
nodes minimally enclose their associated geometric data. Much research in this area
has focused on 3D variants, called Bounding Volume Hierarchies (BVHs), where the
bounding spaces are boxes, spheres; or some other volume. BVHs are popular in the
field of computer graphics [3].

A downside to data partitioning structures is that updates often are computationally
expensive, since modifications of single entries can affect large parts of, or the
whole hierarchy to the root (for example if minimum bounding spaces need to be
recalculated).

10
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(a) A 2D map representation. (b) Tree representation.

Figure 3.2: Depiction of a point quadtree with point A as root node. Since point
B lies north-west of A and was inserted before point D, it is represented by the first
node in A. Point C is north-east, so it is represented by the second node.

3.2.1 Quadtrees

The original quadtree from 1974, called a point quadtree, subdivides space into parts
based on where a point is placed. For k-dimensional data, the quadtree has 2*
child nodes for each parent node, where a child represents a part of k-dimensional
space relative to its parent node and coordinate system axes. While the original
definition concerns k-dimensional data, a more common definition of a quadtree is
the two-dimensional version, where nodes represent rectangular subdivisions of 2D
space. For example, in two dimensions, a node p with point coordinate {z,,y,} can
place another point ¢ : {z4,y,} in a child based on some predicates:

North-west node, if z, <z, Ay, > ),

South-west node, if x, <z, Ay, < T,
chooseChild(p, ¢) = o p M a b
North-east node, if x4 > x, Ay, > ),

South-east node, if z, >z, Ay, <z,

Figure 3.2 shows a visual representation of such placement.

Instead of letting the points’ placements define the subdivisions’ extent and form,
quadtrees can also divide the space into four equally sized parts on each level in
the tree. In the first case, the layout of the quadtree is dependent on the order of
insertion, whereas in the second case this does not matter. Compare Figure 3.2 and
Figure 3.3 for visual examples. Whereas nodes in the point quadtree represent points
directly, nodes in this other kind just represent an area of space; instead, data is
assigned to nodes during insertion.

The type of quadtrees which equally divide space usually has a property called the
bucket size. It decides how much data a leaf node may be assigned before it splits
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(a) A 2D map representation. (b) Tree representation.

Figure 3.3: A depiction of a quadtree that partitions space equally for each level
in the tree. Bucket size is one. Objects are placed in nodes which minimally bound
them.

and creates children?. The bucket size regulates the depth of the tree: the larger the
bucket size, the shallower the tree.

Some quadtrees, such as the one in Figure 3.3, allow for geometric data that are
not points. Geometric data complicates insertion since data can no longer always
be inserted on either side of a line, but instead might overlap one or several nodes.
Three main approaches address this: the first is to split the geometry into several
parts so that it fits into leaves [3]. The second is to maintain several references to the
same object [38]. Finally, the third is to place the object in a node with minimum
bounding area [41], meaning that objects can be assigned to internal nodes. The first
two approaches need to keep track of each version or reference of an object when it is
to be updated or removed, which can become computationally expensive. Therefore,
the last approach is most relevant to this thesis; an example of it can be seen in
Figure 3.3. Henceforth, the term quadtree refers to this variant.

An update operation in the quadtree consists of two parts: deletion and insertion.
Both operations traverse the tree to find the node, in which either the old object
resides or where the new should be inserted. For a given object, such an algorithm
begins by setting the current node to be the root node, and then checks whether any
child would enclose the object. If such a node exists, it is set as the current node.
This process repeats until no child of the current node encloses the object or the
current node is a leaf.

Some literature considers the quadtree to be a space partitioning method [38], because
it equally divides the available space into four equal parts at each level, even if there
is only data in, for example, two of those parts. However, when a leaf node contains

2«The bucket spills over.”
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(a) First order (b) Second order

Figure 3.4: Two different resolutions of a Morton order curve.

too many entries, it subdivides into smaller parts. The tree will therefore be deeper
where the data is highly concentrated. It adapts to the data distribution, which
aligns with data partitioning.

3.2.2 Linear quadtrees

A straightforward way to implement a quadtree is to define a node class, construct
object instances and keep pointers between these to describe their parent-child rela-
tionships. This is referred to as a pointer-based or explicit representation. Gargantini
[15] presents another quadtree representation, which is pointer-free or implicit: the
linear quadtree. The idea is to define a unique identifier for each node, and then use
this identifier as key in a mapping data structure, referring to a collection of objects
associated with the node.

A linear quadtree uses a Morton order curve to linearize the search space, that is,
to reduce the problem from two or more dimensions to one. A Morton order (also
known as Z-order) curve is a path visiting every point in a discrete space exactly
once in a certain order, which decides a unique value given to each point, its Morton
value. Two versions of this curve, with different resolutions, can be seen in Figure
3.4. For a two-dimensional curve, each point’s Morton value can be calculated by
interleaving the bits of a point’s x and y coordinates:

Definition 1 (Morton value). Let z,, be the n-th bit in number « of size k bits, where
0 < n < k. Let a 2D point-coordinate consist of two k-bit numbers = : x;_1, ..., zg
and ¥ : Yr_1,...,40. LThe Morton value of this coordinate is defined as the 2k-bit
number: Y 1, Tk—1, Yk—2, Th—2, -, Yo, L0-

The Morton value of a node’s lower-left corner and its depth can be combined to
form its identifier. This identifier is called a Morton block [1]. Tt is a (2n +1)-bit long
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Figure 3.5: An example of a point acting as lower-left corner for two different
nodes: the dotted and the dashed square, respectively.

integer, where the corner’s Morton value uses the 2n upper bits (n bits each for x and
y), and the lower [ bits are used for the depth. An example of this coordinate-sharing
can be seen in Figure 3.5.

Now that each node has a unique identifier, it can be used as a key in a key-value
mapping data structure that supports multiple keys, where each entry value stores an
object contained in the node. The mapping data structure is traditionally a B-tree
since spatial indexes often are used in GIS databases, which commonly use B-trees
for indexing general data. The B-tree is a data structure that generalizes the binary
search tree in that a node may contain more than two children.

Aboulnaga and Aref [1] proposes a query algorithm which uses the property that
keys in a B-tree are sorted. Given a search area and the area of the root node
(extent of the world), this algorithm recursively calculates the Morton block for each
intersecting node, searches for the nodes in the B-tree, and then performs intersection
tests between the search area and the located rectangles.

If a node is entirely enclosed, by transitivity the query area also encloses all nodes
inside this node, and these are fetched directly from the B-tree without further
recursion. This relies on a specific property of Morton order curves: given a Morton
block M,,.q4., one can calculate the block M,,., of the top-right corner of a node.
All existing nodes physically enclosed by the node represented by M,,.q. Will have
Morton blocks M, such that M, < M < M,,q.; since all keys are sorted in the
B-tree, all nodes enclosed by M,,.q4. are easily retrieved. See Algorithm 1 for a more
detailed description of this query algorithm.

Compared with an explicit representation, the linear quadtree does not require
that every node has a parent®. This contrasts with a pointer-based representation,
where pointers indicate clear relationships. A linear quadtree, on the other hand,
could consist of a root node and a small node 30 levels down, with no parent-child

30f course, the root node has no parent in either explicit or implicit representation.
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Algorithm 1 A window query algorithm for linear quadtrees. The algorithm takes
as input a query area and a node. The first call uses the root node as input. Nodes
are represented by their lower-left corner coordinate and width.

procedure WINDOWQUERY (area, node)
M,,0qe + Calculated Morton block of node;
if area fully encloses node then
M e < Morton block of upper-right corner of node;
Fetch all rectangles from B-tree with key M, s.t. M0 < M < M,00;
for each fetched rectangle do
Add to result set;

else

Fetch all rectangles from B-tree with Morton block M = M,,.q4e;
for each fetched rectangle do

Add to result set if rectangle intersects with area;
Calculate child nodes;
for each child node do

if child node intersects area then

WINDOWQUERY (area, child node);

chain in between. Executing Algorithm 1 may therefore result in many unnecessary
calculations and B-tree searches for nodes that do not exist. It must search the
B-tree for any intersecting node that may or may not exist; however, in an explicit
representation a query would stop where the tree ends — at the leaf nodes.

3.2.3 Loose quadtrees

The loose quadtree, proposed by Ulrich [47], is a modification of the quadtree where
nodes’ areas are expanded so that they overlap with their neighbors. Given a node
with width w, the area is expanded by a constant factor p; the expanded width w, is
then w, = (1 + p) x w. An object with a width greater than w, which previously
would have to be placed higher up in the tree, but smaller than w,, can now be
contained in the expanded node. Just as in a standard quadtree, an object is assigned
to the node that minimally encloses it; however, the center point of the object must
still be within the original, unexpanded node area.

A query performs intersection tests with all objects contained by any node it visits.
For example, if a small object is placed in the root node due to crossing a boundary
between the children of the root node, all queries will perform intersection testing
against this object, even though this object may not be anywhere near the query area.
By loosening the area of each node, objects are stored deeper in the tree and the
amount of unnecessary intersection tests is reduced; see Figure 3.6 for an example.
This is the main benefit of using loose quadtrees compared with regular quadtrees,
according to Ulrich.

While having a deeper tree improves query performance, loosening the quadtree
also has downsides. With loosened areas, more nodes will overlap with the search
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Figure 3.6: A loose quadtree in two dimensions. The lower-right node’s expanded
area is represented by the thick dotted line. The striped circle is represented by its
bounding rectangle, which crosses the boundary of two quadtree nodes. Since the
circle’s center point lies inside the lower-right node and the rectangle is enclosed by
the same node’s expanded area, the circle is assigned to this node.

area, meaning that more paths may need to be traversed. It is also the case that
unexpanded node areas that previously were fully contained by a query may not be
so when loosened, with the consequence that nodes further down may have to be
visited.

Loosened node areas also affect update performance. As the expansion factor
increases (which yields larger expanded node areas), there will be fewer potential
nodes where an object would minimally fit. Ulrich [47] shows that for an expansion
factor of 1, there are at most two nodes that minimally enclose an object*. Samet et
al. [41] generalizes this to any factor greater than or equal to 0.5.

Samet et al. provide an algorithm that calculates all possible minimally enDclosing
nodes for a given object based on the object’s position, width, and the expansion
factor of the loose quadtree®. The algorithm is based on the assumption that the
root node has a width of 29 6. ¢ > 0. Since the width is halved at each level, all
nodes in the tree will have widths that are powers of two: 2, k < g.

The minimally enclosing node for a given object is decided by first calculating all
possible minimally enclosing nodes for an object, and then iterating through these
nodes, starting with the smallest, until a node fully encloses the object, in which case

4Compared to Ulrich’s loose quadtree, in a regular quadtree, any node with width larger than
or equal to the width of an object can be a minimally enclosing node; the reason for this is that an
object may cross any boundary between nodes, and therefore be assigned to the first node enclosing
this boundary, which may be much larger than the object.

SWith an expansion factor greater than or equal to 0.5, there are at most two possible node
that enclose an object and the algorithm runs in constant time.

5The reasoning behind choosing this width is explained in detail by Samet et al. [41].
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the algorithm has found the minimally enclosing node. This algorithm can be used
both for inserting a new object and for finding an already existing object that will
be deleted. See Algorithm 2 for a step-by-step process, a slightly simplified version
of the one described by Samet et al [41].

Algorithm 2 An algorithm for deciding which node a rectangle minimally fits in.
The “inside” call determines whether the rectangle is inside the given node or not.
See Samet et al. [41] for more detail.

procedure FINDNODE(rectangle)
p < expansion factor
if rectangle.x > rectangle.y then
r < rectangle.x/2
else
r < rectangle.y /2
start < logy (M(37)); > M(z) = 2% such that 2¥-1 < o < 2%
end <+ logQ(M(%)) -1
for ¢ < start to end do
w < 27 % M(7); > w is the width of the node at the current level
Tiower—ieft < (rectangle.center.x / w) * w > Integer divisions
Yiower—left <— (rectangle.center.y / w) % w
if rectangle.inside(w, Zjower—iefts Yiower—ieft) then
exit loop

return NODE(UJ, xlowerflefty yloweTfleft);

3.2.3.1 Loose-linear quadtrees

Combining linear and loose quadtrees results in what we call a loose-linear quadtree.
Assume expansion factor p > 0.5 so any object has at most two possible locations in
a quadtree. Linear quadtrees allows fast insertion of objects to a given node using
the B-tree, which supports a much higher branching factor compared to a quadtree
and therefore a much shorter traversal through the data structure [41]. Combining
a linear quadtree with looseness and the constant time lookup algorithm makes it
possible to calculate which node an object belongs to, calculate the Morton block
value of this node, and then quickly access the node in the B-tree.

3.2.4 R-trees

Another approach that has been the inspiration for many spatial indexing structures
is the R-tree [17], which is widely used in databases [28]. Originally an extension of
B-trees [5], it was introduced by Guttman in 1984.

The R-tree is a hierarchical tree where each node has a set of entries, F, where
m < |E| < M. m and M are two fixed values for the minimum and maximum
amount of entries in a node, respectively. It is also a strictly height-balanced tree,
such that all leaf nodes are on the same level (the same path length from the root).
Data entries are contained in leaf nodes and represent geometrical objects and their
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Figure 3.7: A 2D R-tree. Here every node contains at least two, and at most three,
entries. The leaf nodes contain entries R8-R19, which represent minimum bounding
boxes around geometry not visible in this image. Overlap between entries in the
same node is clearly visualized in this image, where R1 and R2 are sharing large
areas. The same is true for R3 and R4, which both completely enclose R9 and R10,
leading to a traversal down both R3 and R4 when searching for these. The image is
in the public domain.

minimum bounding rectangles (MBRs). For internal nodes, an entry contains a child
node as well as an MBR enclosing the child node’s entries. An example of a 2D
version of the R-tree can be seen in Figure 3.7.

Data entries are inserted by starting at the root and recursively inserting into
whichever node needs the least expansion of its MBR, until a leaf node is found.
If the node contains more than M entries after insertion, it is split into two new
nodes according to a chosen split algorithm”. This is done recursively until each node
contains equal or less than M entries. Afterwards, affected MBRs are recursively
recalculated so they contain their corresponding entry.

To remove a data entry, its entry is first located in the tree and then removed from
the leaf node. If there are more than m entries left in the node, the MBRs are
recalculated up the tree. If there are fewer than m entries left in the node, the
remaining entries are put on a separate stack and the node is removed. This is then
done recursively until each node has at least m entries. Afterwards, entries in the
stack are reinserted from the top of the tree, each inserted into its corresponding
level so that the tree is still height-balanced.
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Updates in the R-tree consists of a removal operation on the old entry and an
insertion operation of the new entry.

Two factors negatively impact R-tree query performance: node overlap and MBR
stretch. It is common in R-trees that MBRs of entries that are on the same level in
the tree overlap, which means that more branches may have to be traversed by the
query algorithm [6]. The MBRs also tend to be more stretched in one dimension
in some cases, which means that entries whose MBRs lie far apart still belong to
the same node. Both these issues are addressed by the R*-tree, described in Section
3.2.5.

3.2.5 R*-trees

In 1990, Beckman et al. presented a modified version of R-tree which they dubbed
R*-tree [6]. They found that in order to improve the R-tree’s query performance,
several factors need to be considered:

1. Overlap of nodes should be minimized. Overlapping negatively affects query
performance since several subtrees needs to be traversed where there is overlap.

2. Entries in a node should be close to each other, so if the query area intersects
with a node, there is a high probability that its entries also intersects with the
query area. This is the same as minimizing node area.

3. Queries often have a shape that is close to a square, so node MBR/’s should
have a similar shape. If nodes have MBR’s that are shaped as thin, elongated
stripes, more nodes need to be visited during a query.

An example of the differences between R-tree and R* for a dataset can be seen in
Figure 3.8.

The original R-tree was only optimized to reduce node area during insertions and
splitting. R*-tree tries to reduce enlargement during insertion when choosing internal
nodes (factor 2), but minimizes overlap when choosing leaf node (factor 1)

During splits, which is the operation that perhaps affect the tree the most, Guttman’s
R-tree tries to reduce the total amount of area by calculating which pair of rectangles
results in the largest area, creates two new nodes and places one in each. The rest of
the entries are placed in these nodes according to one of two proposed algorithms,
which differ according to their runtime complexity.

R*-tree splits are performed differently compared to R-trees. When splitting an
overfull node, a split axis is chosen first. This is done by calculating sums of margins®
for different combinations of entries for each axis and choosing the axis which has the
lowest total sum. This favors choosing an axis that results in a split into two nodes
that are as square-shaped as possible (factor 3). From these different possibilities, it

"Guttman [17] describes two algorithms to partition the set of entries into two nodes, a linear
cost split and a quadratic cost split, which refer to the running complexity with respect to maximum
number of entries for a node (M).

8Both images were made by Wikimedia user Chije under Creative Commons Attribution-Share
Alike 3.0 Unported license (link).

9The margin of a rectangle is the sum of all sides.
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a) R*-tree b) R-tree with Guttman’s quadratic
(a) q
split

Figure 3.8: Comparison of two R-tree versions. The data is zip codes in Germany.®

chooses the one with least overlap (factor 1). If there are several possibilities with
the same overlap, the one with combined minimum area is used (factor 2).

In R*-trees, forced reinsertion is used. Beckman et al. found that re-inserting a
portion of the objects after the index had been constructed resulted in better query
performance. Therefore, if a node becomes overfull during ordinary insertions in
R*-tree, it does not split. Instead, a percentage of the entries are re-inserted from the
top. Forced re-insertion is not done except for when inserting an entry or updating
an old one, since it has a slight performance penalty.

3.3 Update techniques

Some of the spatial indexes discussed in this chapter have variants that focus on
improving update performance. Two approaches are relevant to this thesis: bottom-up
updating and update memo.

3.3.1 Bottom-up updating

Bottom-up updating is a category of methods which are based on the idea of
maintaining a mapping between a specific object and the node it is associated with
in the spatial index. When updating an object in the index, the object’s current
node is accessed directly by using this mapping. Originally proposed for R-trees by
Lee et al. [26], it is called bottom-up updating because updating begins from the
leaf — the bottom — where the object resides.

A traditional update first locates the old entry in the tree by search traversal, which
begins at the tree’s root, deletes the old entry and then inserts the new entry from
the top [17, 23]. The efficiency issues with this top-down method are three-fold:
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1. It is likely that delete and insert search paths will overlap to some extent [26].
This path will then be traversed twice.

2. The search starts from the root, but objects in structures such as R-trees are
always stored at the leaf nodes [26], leading to logarithmic access time for the
object that will be deleted.

3. The MBRs of R-tree nodes may overlap, which means that the search to find
the old object might traverse several paths even if it only searches for a specific
entry [45].

Bottom-up updating uses a secondary index — a key-value mapping where the key
is a unique object identifier and the value is a pointer to the current node or cell
where the object resides. Both Lee et al. [26] and Sidlauskas et al. [44] implement
the secondary index as hash table, but any mapping data structure can be used. The
update algorithm consists of two parts, deletion and insertion: first, find the position
of the old object using the secondary index and delete the object from the pointed
node.

The second part, insertion, varies by implementation. Lee et al’s [26] algorithm looks
for an appropriate sibling node in which to insert the updated object. A different
insertion method for R-trees, presented by Sidlauskas et al. [44], ascends the tree
until it encounters a node with an MBR that encloses the new position of the object,
and then traverses down from that node in top-down fashion until it reaches a leaf.

Some problems with bottom-up updates are discussed by Silva et al. [45]. Specifically,
the performance gain compared to a top-down approach diminishes when objects
move far, leading to searches for nodes far away in the tree. Also, a secondary index
with one record for every object contained in the primary spatial index yields a large
memory overhead.

13 ptr T

Figure 3.9: An example of bottom-up updating where a key-value mapping is used
to directly access objects. Here the object identifier 13 is mapped to a node in a
quadtree.

3.3.2 Update memo

In R-tree variants, deletions are considered more expensive than insertions. An
insertion must only traverse one path in the tree to choose an appropriate leaf node;
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deleting an object, on the other hand, requires searching for it, which means that
several paths might be explored since entries can overlap. Deletion also leads to
underfull nodes, which are deleted and restructured, further increasing execution
time.

In 2009, Silva et al. [45] proposed the RUM-tree, R-tree with Update Memo. The
goal with update memo is to avoid deletions when updating existing objects by
simply inserting the updated objects. An effect of this is that multiple versions
of the same object may be present in the spatial index at the same time. By not
deleting an object’s old entry before inserting the new one, the structure must keep
track of which entries are obsolete and which are current. This is accomplished
by using a secondary index, which keeps track of the objects that have multiple
entries, and which entry is the current one. To separate entries of the same object, a
stamp counter is maintained: a number that is incremented with each modification
(insertion, deletion, update) to the spatial index. When inserting an object, the
current stamp counter value is assigned to the new entry in the index. The secondary
index is therefore a mapping, with an object’s identifier as key:

obj — {stamp value of latest entry, number of obsolete entries}

To update an object, a new entry is either added to the secondary index, if none
already exists!?, or has its amount of obsolete entries in the secondary index incre-
mented. The new entry is marked as the current one by setting the current value of
the stamp counter in the object in the secondary index. It is then inserted like an
ordinary insertion. Since the stamp counter is always increasing, an older entry will
always have a lesser stamp value than the one saved in the secondary index.

Queries on the spatial index yields obsolete as well as current objects. This means
that the stamp value of each object must be checked: if it is less than the latest stamp
value in the secondary index’s entry, the object is obsolete and can be discarded.

Obsolete objects are deleted eventually, with a collection of methods called garbage
cleaning. The common idea of garbage cleaning methods is to access objects in
the spatial index, compare their stamp values with their respective entries in the
secondary index, and remove those that are obsolete. Silva et al [45] propose two
relevant garbage-cleaning methods: token-cleaning and clean-upon-touch.

The token-cleaning method relies upon using foken objects. A token is an object
assigned a collection of nodes that it will clean; if only one token exists, this collection
will be all nodes that can contain objects in the tree (leaf-nodes in R-trees, any node
in quadtrees). Every I updates to the tree, one node in each token’s collection is
cleaned of obsolete objects. This is performed by iterating through all tokens and
clean the nodes each has currently selected. When the node has been cleaned, another
node in each token’s collection is chosen for the next cleaning call; this selection
is done in round-robin order. The token-cleaning method requires a parameter: a
cleaning interval I, which defines how often this process should execute.

Token-cleaning can be combined with the clean-upon-touch method, where the idea
is that each accessed node during insertion or update is cleaned of obsolete entries.

10 An object has no entry in the secondary index if it has no obsolete entries in the spatial index.
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Clean-upon-touch is extra useful when the data resides on secondary memory (disk),
as the accessed data has been fetched to main memory, so cleaning it will not incur
additional I/O system calls.

Some positive effects of using update memo include:

« Deletion of an object consists of incrementing the stamp counter value!!, setting
it as the new stamp value in the update memo entry of the object, and then
incrementing the number of obsolete entries by one. No traversal to search
and delete the old object is necessary; instead, deletion is handled by delayed
garbage cleaning.

¢ An update operation is in theory almost as quick as an insertion operation
since the cost of deletion is postponed.

However, there is an issue with using update memo on dynamic spatial indexes
that perform splits and merges on their nodes. When increasing the ratio of data
that is obsolete, more of the index depends on the obsolete objects for its structure.
This means that unnecessary merging and splitting may occur, which degrades
performance. One such example is an R-tree leaf node with maximum number of
entries where almost all are obsolete, and a new object is inserted. Even though
it would fit in the node in a regular R-tree, in the RUM-tree, a splitting operation
would commence.

Other versions of update memo structures include the RUM+-tree [49], which is an
improvement upon the RUM-tree; and G-ML-Octree [10], a loose octree with update
memo.

It is possible to combine bottom-up updating with update memo, which is the idea
behind the RUM+-tree. When used together, bottom-up is used to directly access the
node where the object currently resides, to check whether the object’s new position
belongs to the same node. If it does, the object’s data is updated in-place; if it does
not, update memo is used to insert the new object.

HThis value is typically stored as a 64 bit unsigned integer, which would require 264 updates to
overflow. This limit will in practice never be reached.
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Method

The goal of this thesis is to compare different spatial indexes that maintain moving
geometry data, with focus on update performance for many dynamic objects. This
chapter describes which spatial indexes were chosen and why (Section 4.1), as well
as implementation details (Section 4.2). We also describe the test suite (Section 4.3)
and evaluation process (Section 4.4).

4.1 Evaluated spatial indexing structures

The following spatial indexes are chosen for evaluation:

List. A simple and easy to implement structure for managing a collection of
data, in this case rectangles. A query must iterate through the whole list to
find all intersecting objects, an ©(n) operation. Updating an object’s position
would have the same complexity, but we choose to use a bottom-up approach
for updates; which has ©(1) complexity. We choose the list to establish an
upper-bound for query performance; if a data structure performs as well as —
or worse than — the list, there is no reason for using it over the list.

Simple quadtree. A quadtree where every node maintains explicit pointers
to other nodes and there is no regard to cache efficiency. This means that
nodes are heap-allocated by themselves and may not reside close in memory.
The quadtree is interesting from a comparison point of view, as both loose and
loose-linear quadtrees are more complex in their construction; if performance
is similar, it is preferable to use a simple implementation.

Loose Quadtree. Compared to the simple quadtree, every node’s area is
expanded by a factor. This version will also consider cache efficiency by storing
nodes together in memory. We choose the loose quadtree because it is an
established method for indexing moving spatial geometry. It may yield better
update performance than a regular quadtree since there is a larger probability
that objects will be enclosed by the expanded node areas.

Loose-linear quadtree. Since it is possible to calculate which node a rectangle
belongs to in ©(1) time with a loose quadtree, and to quickly index a specified
node in a linear quadtree, the combination of these should perform well.

R*-tree. A different approach than the others and a true data-partitioning
structure, the R*-tree is a interesting candidate and widely used in GIS settings.
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Carmenta supplied an implementation which we extended.

The last three candidates: loose quadtree, loose-linear quadtree, and R*-tree, all
have variants implemented with bottom-up updating and update memo, and both
methods combined.

4.2 Implementation

All chosen spatial-indexing structures are implemented in C++ 17.

For implementing the list, we use a dynamic array from the C++ standard library:
std: :vector. A mapping data structure, std: :unordered_map, maintains a map-
ping directly between rectangle object identifiers and their current index in the array;
this map is used when updating the rectangles’ positions.

4.2.1 Update techniques

All implementations of bottom-up updating and update memo described in this
chapter are approximately the same. Differences to the implementation described in
this section are discussed in the respective implementation sections for each spatial
index.

To implement bottom-up updates, the spatial index is extended with a key-value
mapping (implemented with std: :unordered_map): the bottom-up index. For each
tracked rectangle, the bottom-up index has an entry where the rectangle’s identifier
is used as key, and the value is either a pointer or an index value to the node that
contains the rectangle.

All bottom-up implementations use so-called in-place updating, which means that
when the node containing the old object is accessed, the algorithm checks whether
the new object belongs to the same node. If it does, the object is updated in-place,
without any more node traversal. Otherwise, the algorithm performs regular insertion
top-down.

4.2.2 A simple quadtree

This section describes an implementation of a regular, pointer-based, quadtree. The
class definition can be seen in Listing 1. It maintains a pointer to the root node, the
maximum number of rectangles in a leaf node (bucket size), and the maximum depth
of the tree. Maximum tree depth is needed to catch edge cases of the data distribution;
for example, many small overlapping objects may result in an unnecessary deep tree.

In this implementation, any node, leaf and internal, can contain rectangles. A
rectangle’s size, position, and the tree’s bucket size decide which node it is placed in.
During insertion, beginning at the root node, the rectangle is checked against each
child of the current node and the one that it is fully enclosed by is set as the next
current node. This procedure repeats until no child fully enclose the rectangle, or it
reaches a leaf node, in which case the object is assigned to the current node. In the

26



4. Method

class QuadTree {
QuadNode * root;
const size_t max_bucket_size;
const size_t max_recur_depth;

bool insert(Rectangle r);

bool remove(Rectangle r);

bool update(Rectangle r_old, Rectangle r_new);

std: :vector<Rectangle> intersects(Rectangle query_area);

3

Listing 1: Class definition for a simple quadtree.

class QuadNode {
const Rectangle area;
bool leaf;
const uint8_t level;
std::vector<Rectangle> rectangles;

QuadNode * parent;
QuadNode * topLeft;
QuadNode * topRight;
QuadNode * bottomLeft;
QuadNode * bottomRight;

3

Listing 2: The class definition for a node in the simple quadtree.

case where it is a leaf node, the number of rectangles associated with the node is
compared with the bucket size; if there are more, the node is split and the rectangles
are assigned to the appropriate child (or stays in the node, if no child enclose the
rectangle).

The node class for the quadtree is specified in Listing 2. Each node contains several
variables: the node’s spanning area, whether it is a leaf or not, on which level in the
tree it exists, a vector containing the rectangles associated with it, and pointers to
its child nodes and parent node. The pointer to the parent is kept to ease merging of
nodes; when a leaf node becomes empty, a procedure is called on its parent, which
checks whether n < k/2, where n is the number of rectangles in the children and &
is the number of empty slots in the parent. If that is the case, the child nodes are
removed, their rectangles moved to the parent, and the parent becomes a leaf.

The level variable in the QuadNode class is used to prevent an overfull leaf node
from splitting, if its depth is the maximum depth of the tree (defined in Listing 1).

The variable also identifies the root node, which has a depth of zero.
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4.2.3 Improving the quadtree

One straight-forward approach to improve the simple implementation is make it more
cache-friendly. To improve cache efficiency, data used frequently together should be
physically close in memory, and, if possible, fit in a cache line. Sibling nodes are often
accessed together during operations, for example when choosing traversal directions
during insertion, so a more cache friendly approach is to group them together as one
object. Then it is also possible to maintain shared data without duplicating it for
each node object. This representation, called a chunk, can be seen in Listing 3.

class QuadNode {
uint32_t children_index; // The chunk with the node's children
I

class ChunkIndex {

uint32_t index : 30;

uint32_t offset : 2; // Specifies child node
};

template <typename T> // float or double
class Chunk {
uint8_t depth; // Depth where the nodes reside
T x1, y1, x2, y2; // Area enclosing the nodes
ChunkIndex parent_index; // Index to their parent's position
QuadNode [4] nodes; // The four nodes
I

Listing 3: Chunk and node representation. The ChunkIndex class has bit fields,
which in this case will limit memory usage to 32-bits for each instance, where the
index field occupies 30 bits and offset two bits. The 32-bit field in the Node class
references a whole chunk, so only 30 bits are used, but 32 bits must be occupied.

The chunks of a quadtree are kept in a vector addressable by an unsigned 30-bit
integer!, leaving two bits for indexing a specific node in the chunk (four nodes). This
means that an unsigned 32-bit integer (ChunkIndex datatype; Listing 3) can be used
to index any node in the tree: 30 bits for the chunk the node belongs to, and two
bits for the specific node. For this thesis, it will be enough to use 32 bits to index
the vector, as it can fit about four billion nodes, or one billion chunks.

With this indexing method, the number of bytes a chunk will occupy in memory is

IThe vector’s length must be less than or equal to the maximum value of the 30-bit unsigned
integer.
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(field_name : number of bytes):

depth: 1
parent_index : 4
nodes : 4 x4 =16
area : 4 X size(T)
—
21 + 4 x size(T) bytes

If Tis a float (size(T) = 4), the chunk occupies 37 bytes, and 53 bytes if it is a
double (size(T) = 8). Both these sizes are below 64, the most common cache line
size, so if the data is aligned? to 64 bytes, each cache line will fit one chunk.

Each node’s vector of rectangles is not stored in the Node or Chunk classes; instead,
a vector of vectors is maintained in the main loose-quadtree class that contains these
vectors. The position of a node’s vector in it is the same as the node’s ChunkIndex
index in the vector of chunks.

The motivation behind using a representation like Chunk is that the comparison
between quadtrees and R-trees becomes more representative. In R-trees, entries
in the same node are frequently used together, and only need to be fetched from
memory once, while the simple quadtree’s pointer-representation allocate each child
of a parent by themselves, even though they almost always are accessed together.
Thus, by putting these nodes together, the memory layout becomes more like that of
an R-tree, which means that the comparison results between them depend less upon
the implementation, and more on how the data structures function.

4.2.4 Loose quadtree

The explicit loose quadtree is based on the improvements described in Section 4.2.3.
Just like the simple quadtree (Listing 1), the loose quadtree uses a bucket size and a
maximum depth.

An object is inserted by traversing to nodes that enclose its center point and whose
expanded areas fully enclose it, starting at the root. Traversing then stops when
none of the current node’s children enclose the object. This is also the procedure
when an object is deleted from the tree, for finding the node where it is currently
placed.

The merging process for the loose quadtree is the same as the naive quadtree: remove
four leaf nodes if n < k/2, where n is the number of rectangles in the children and &
is the number of empty slots in the parent.

4.2.4.1 Update techniques

Bottom-up updating is implemented as described in Section 4.2.1. The loose quadtree
uses in-place updating for both the bottom-up and top-down variants.

2The Chunk class is padded at the end using alignas so that it occupies 64 bytes.
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Update memo was originally proposed for, and applied to, R-trees, where only leaf
nodes contain the indexed objects. Our version of the loose quadtree, however, may
assign objects to any node in the tree, leaf or otherwise, which complicates the
adaptation of update memo techniques.

We adapt token-cleaning to the loose quadtree by letting all nodes, not just the
leaf nodes, be assigned to tokens. While the token-cleaning concept allows for an
arbitrary number of tokens, we only implement one special case: each chunk (a
parent’s nodes) is assigned its own token. Implementing more general assignment of
nodes makes sense when one can assume how the data distribution changes over time
(one can predict which nodes will receive many updates), but as no such assumptions
are made, this is not implemented.

Clean-upon-touch is also non-trivial to translate to the loose quadtree, for the same
reason as above. The options are to either clean the nodes assigned the old and new
entries only, or all nodes accessed during traversal. For R-trees the choice is trivial
because internal nodes never contain any objects, and the only leaf nodes accessed
are the ones that contain the old and new entries. We implement the former for
the loose quadtree: if an object remains in the same node during an update, this
node is cleaned; if the object is inserted elsewhere, the new node is cleaned, but no
nodes along the way. Cleaning all nodes along the way during traversal would slow
down updates significantly; nodes closer to the root are also accessed more frequently,
meaning that they will be cleaned unnecessarily often.

We propose a complementary update-memo technique, called clean-chunk, where
cleaning is dependent on the number of insertions to each chunk. If a tree’s bucket
size is x, cleaning proceeds when x/4 objects have been inserted to any node of a
chunk. One of the four children is cleaned, in round-robin order. We also combine
clean-chunk with traditional token-cleaning; for this no additional logic is needed,
as they are separate methods that work on their own. The result should be that
clean-chunk keep often used nodes from overfilling with old entries, while token
cleaning regularly removes old entries from less used nodes.

4.2.5 Loose-linear quadtree

The implementation of the loose-linear quadtree is based on the find-node algorithm
(Algorithm 2, Section 3.2.3) by Samet et al. [41] and the query algorithm (Algorithm
1, Section 3.2.2) by Aboulnaga and Aref. [1]. Updating is implemented as two calls
to Algorithm 2, one for finding the node for removal, and one for insertion. For the

B-tree we use a third-party library: “cpp-btree”s.

In the bottom-up variant, the direct mapping replaces Algorithm 2 for the deletion
part of updating.

For the loose-linear quadtree, it is not possible in practice to implement token-cleaning
or clean-upon-touch as they are described by Silva et al. [45]. For a quadtree with
explicit representation, there exist a multitude of intuitive approaches for deciding
how the nodes should be partitioned to tokens. The loose-linear quadtree, however,

3https://code.google.com /archive/p/cpp-btree/
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has no parent-child relationships, which makes it difficult to identify an appropriate
partitioning scheme. Therefore, the cleaning procedure in the loose-linear quadtree
is implemented as a simple iteration through all nodes in the B-tree, where nodes
with obsolete entries are deleted.

Implementing clean-upon-touch is problematic, since an existing node is almost never
accessed during insertion or updating (except if deleting the old rectangle’s node),
which is the whole point of clean-upon-touch.

4.2.5.1 Query algorithms

We implement several different query algorithms, all based upon Algorithm 1. These
variants exist to address several problems with the original algorithm:

1. The algorithm is recursive, but the only stopping condition for the recursion is
when a node is fully enclosed by the query area; this may not happen for many
recursions if the borders of the node and query are very close.

2. Recursion will continue from an intersecting node even if no sub-nodes exist in
the B-tree.

3. Recursion will continue from an intersecting node even if the smallest rectangle
in the tree cannot possibly be contained by any sub-nodes (i.e., the recursion
reaches the currently smallest node size in the tree).

4. If the largest rectangle is enclosed by a node on tree depth z, the algorithm
will still search the B-tree for all nodes from root to depth z even though no
such nodes exist in the B-tree.

5. In a case where there exist very small and very large rectangles, but no
rectangles of sizes in between, there will be several levels in the tree for which
no nodes exist in the B-tree. The algorithm will still search for these nodes.

To mitigate problems 2-5, two extended algorithms are proposed: WINDOWQUERY-
RooT and WINDOWQUERYOFFSET. Both address problems 2, 3, and 5 the same
way but differ in their approach to problem 4. Unfortunately the first problem is
inherent to the algorithm since it is recursive and can therefore not be fixed, but its
effects can be limited by solving problems 2, 3, and 5: solving problems 2 and 3 will
limit the number of recursions and while solving problem 5 does not limit recursion,
it potentially speeds it up by not searching the B-tree on certain levels.

The second problem can be fixed by making use of the property that all possible
sub-nodes enclosed by node M, will have Morton block values between M,, 4.
and M.z, which can be calculated from the top-right corner of M,,,q.. The B-tree
maintains its keys in sorted order, which means that it is possible to check what
the next Morton block after M,,q4. is in the B-tree; if it is larger than M,,q., no
sub-nodes fully enclosed by M,,4. exist in the B-tree. This means that it is not
necessary to traverse further down this path.

Problem 3 is solved by maintaining the currently smallest node’s size in the tree.
The query algorithm then stops recursion at this level. A similar solution is applied
to problem 5, where an array of numbers is used to maintain the number of nodes
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Figure 4.1: Depiction of the partitioning step of the WINDOWQUERYOFFSET
algorithm. A query area (solid line) is partitioned into node areas (dashed lines) of
the same size that the largest object in the tree is assigned to. Each partitioned area
is then used as initial input to the recursive query algorithm.

that exist on a certain level. The level is used as index in the array. If the number
for a certain level is zero, meaning that there are no nodes at this level, no search in
the B-tree is performed.

The problem where our extended algorithms differ concerns the fact that the original
algorithm searches the B-tree for all intersecting nodes from the root, even if the
largest object is contained by a node many levels below. Both solutions maintain the
depth of the currently largest node. From this information, the simplest approach is
to continue the recursion as usual, but not search the B-tree until reaching the depth
of the largest node. This is the approach of WINDOWQUERYROOT. In contrast,
WINDOWQUERYOFFSET begins recursion at this depth. This is done by splitting the
query area into node areas of the size that contains this object, and then executing
the regular query algorithm (with the other extensions) with each area as initial
input. An example of this can be seen in Figure 4.1. An advantage of using this
method instead of WINDOWQUERYROOT is that recursion will skip initial levels
that contain no data. However, WINDOWQUERYROOT can take full advantage of
another effect that WINDOWQUERYOFFSET can not: larger query areas may fully
enclose nodes that are larger than the currently largest in the B-tree, which means
that the other branch (enclose-branch) of Algorithm 1 is executed. This results in
the algorithm fetching all sub-nodes without any further recursion or intersection
testing.

In addition to the two proposed query algorithms, we implement the original algorithm
from Aboulnaga and Aref [1], here called WINDOWQUERYPAPER. Only one small
alteration is done on this algorithm compared to the original: the recursion stops when
the maximum depth of the tree is reached. We also implement another algorithm,
WINDOWQUERYNAIVE, which simply fetches all nodes stored in the B-tree and
performs intersection testing on all associated objects.
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4.2.6 R*-tree

The R*-tree implementation is based on an incomplete library supplied by Carmenta
which only has support for insertions and queries. We extend the library with
deletion as described in the original R-tree paper [17]. Updates are also implemented
as described?, with the addition of in-place updating, that is, if the new entry fits in
the same node as the old entry, it is updated without further recursion. Insertion is
also as described, but with the minor difference that node splits are done directly
when a node becomes overfull; not when inserting an element to an already full node.
We expect this to have little, if any, impact on performance.

In the implementation, three main classes are defined:

o The Tree class (see Listing 4), which contains a pointer to the root node as
well as the re-insertion handler. This class also represents the public interface.

o The Node class (see Listing 5), which contains a bounded amount of entries, at
least m and less than M. The node class contains most of the program logic.

o The Entry class (see Listing 6), which contains either a pointer to a node class,
or data (in our case an object identifier). It also contains the MBR for the
contained node or data.

template<class CT, class D, int NC>
class RStarTree
{
RStarNode * rootNode_;
RSReInsertHandler riHandler_;
}

Listing 4: Definition of an R*-tree class.

The R*-tree uses three C++ template parameters. CT is the datatype used for
the values representing an MBR,; intuitive types for CT are float and double. D
represents the type of data payload, which in this thesis is an object identifier
(unsigned int). NC is the branching factor of each node in the tree, that is, how
many entries each node may contain at most (M).

The RSReInsertHandler helper class consists of a vector of Booleans corresponding
to each depth level in the tree, and a stack of entries. The vector is used by the
nodes to track whether a re-insertion or a split should occur when a node becomes
overfull. Entries that need to be re-inserted are pushed on the stack and popped
when re-inserted.

4R* does not modify these operations.
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template<class CT, class D, int NC>
class RStarNode

{
RStarTree<CT, D, NC>* tree_;
const unsigned int level_;
std: :array<RStarEntry, NC> entries_;
unsigned int numEntries_;
}

Listing 5: Definition of an R*-tree node class.

For a node to be able to push entries on to the re-insertion stack, it maintains a
pointer to the main tree. In order to know which nodes are leaf nodes, a depth level
value is needed. Since the array of entries is pre-allocated, an unsigned integer with
the amount of actual entries is kept.

Each node contains a set of RStarEntry objects. These contain a pointer to another
node (or nullptr), and the data payload of type D. Only leaf nodes contain data
payload.

template<class CT, class D, int NC>
class RStarEntry

{
RStarNode * node;
D data;
RSRect<CT> mbr;

+

Listing 6: Definition of an R*-tree entry class.

Traversal through the tree is recursive. Each node in the tree manipulates itself or
its entries.

Insertion of a new rectangle starts with the RStarTree class invoking the function
insert

RStarNode * insert(const D& data, const RSRect& mbr)

on the root node. It, in turn, uses the algorithm chooseSubtree [6] to calculate which
of the child nodes the rectangle should be placed in. This is repeated until a leaf
node is found. If the resulting node overflows (i.e., reaches M entries), 30% of the
data entries in the node are placed in the re-insertion handler according to the close
re-insert [6] and re-insertion for the leaf level is disabled.

The re-insertion handler reinserts each of its entries in the tree after the insertion
algorithm has finished by calling insert as before. For the first node at a given
level that becomes overfull®, its entries are re-inserted and re-insertion for its level of
the tree is disabled. If a node becomes overfull and re-insertion is disabled for its

5Re-insertion implies that a node at the leaf level has already become overfull, and therefore
re-insertion at the leaf level is already disabled.
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level of the tree, it is split using the split algorithm [6]. A pointer to the new node is
returned to the previous call of insert which places it as an entry. In the case that
the root node is split, a new root node is created, containing the previous root node
and its sibling as entries.

Deletion uses a recursive strategy similar to insert. The remove function
remove _code remove(const D& data, const RSRect& mbr)

in the RSNode class is used. A recursive depth-first search for the correct entry is
started at the root node. If an entry’s MBR encloses the MBR of the object, remove
is called on the contained node. In a leaf node, each entry is checked to see if it
contains the data to be removed. The search stops when the correct object is found
or if it is not found.

When removing an object in an R*-tree, there are three possible results a delete call
to a node might return. In our implementation, these three cases are implemented
using an enumeration type, called (remove_code), which contains a value for each of
these cases:

« Not found: The object to remove was not found in this sub-tree.

o Condense: The object was removed in this sub-tree and the entry’s MBR
should be recalculated.

« Eliminate: The object was removed, resulting in the node becoming underfull.
The node’s remaining entries are placed in the re-insert handler and the node
can be removed by its parent.

If a condense value is returned from a child node, the MBR of the child node’s
entry is recalculated. The current node then returns a condense value, propogating
upwards. If an eliminate value is returned from a child node, the child node is
removed. If the current node becomes underfull, remaining entries are placed in the
re-insertion handler and an elimination value is returned to the parent, otherwise a
condense value is returned. After a deletion, the re-insertion of entries is done as in
the insertion procedure.

A window query recursively traverses down all intersecting entries, starting at the
root node. For each entry, a containment test is first performed; if the query fully
encloses the entry’s MBR, all entries in its sub-tree can be added without any further
checking. Otherwise, the algorithm checks whether the entry’s MBR intersects with
the query area or not. If it does, the algorithm traverses to the entry’s child node.
The function takes a pointer to a vector of results as an argument, and intersecting
entries in the leaf nodes are appended to this vector.

Updating is done by first removing the object’s old entry from the index and then
inserting the new entry.

4.2.6.1 Bottom-up updates

For bottom-up updates to work, each RSNode is extended with a pointer to its parent.
When the object has been found using the bottom-up index, the bounds of the node
are checked to determine if the updated entry still fits within — if so, the entry is
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simply updated, leaving the node and parents untouched. If the updated entry does
not fit, the original entry is removed from the bottom up using pointers to the parent
nodes.

4.2.6.2 Update memo

For token-cleaning, each node one level above the leaf nodes receives their own token,
which maintains an index value: the next entry in the node to clean. All tokens are
stored in a vector. Each token consists of a pointer to its corresponding node and
the index value. Every I updates, this vector is traversed; for each token, the index
value is used to access and clean the corresponding leaf node. The index value is
then incremented.

When cleaning the leaf nodes, it is possible for them to become underfull which
necessitates removal from the parent node, which, in turn, may also become underfull;
therefore, each non-leaf node, except the root node, must also maintain a pointer to
their parent. The cleaning procedure can then recursively travel up towards the root
node to either condense or further eliminate nodes.

Particular care needs to be taken to not add new tokens when cleaning up in a token,
since appending tokens to the vector might invalidate the iterator used to traverse
it. This is solved by temporarily storing the new tokens in a separate vector until
the cleaning procedure has finished and then append the temporary vector to the
token vector. If a token’s node is removed when cleaning, it can be removed from
the vector without invalidating the iterator.

To add clean-upon-touch, the insert function is modified so it also returns a Boolean
value. When accessing the leaf node where the object is inserted, a cleaning procedure
begins. The Boolean return value signals the parent node during the recursion
upwards whether it should remove its child node or not.

4.3 Test environment

To evaluate the spatial indexes, a test environment is needed. This environment
consists of several important parts: which physical machines are used, which data
scenario to test, and how the benchmarks are executed.

The tests are run on the following hardware and software:
» Intel Core i7-8700 @ 3.2GHz.
« 64 GB DDR4 RAM in dual channel, 2666 MT/s.
o Windows 10, build 17763.

e Compiled using Visual C++ 2019 compiler with precise floating point and O2
optimization flags.

The performance of the chosen spatial indexes are affected by how the data is
distributed; we have therefore specified a scenario: a collection of n object gener-
ator specifications {Dy, ..., D,,_1}, which decide how objects are generated. Each
specification D consists of the following data:
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o Weight specifying the percentage of all objects that will be sampled from D.

o Two distributions for deciding objects’ center positions in x and y axis. If these
are uniform distributions, minimum and maximum values are specified; if they
are normal distributions, means and variances are used instead.

e Two normal distributions for deciding objects’ widths and heights in x and y
axis.

A fixed speed for each rectangle in the set.

The scenario consists of several of these distributions to simulate objects of varied
sizes, with different velocities, and placement in the world. An example of it can
be seen in Figure 4.2. Visible in the figure are several hotspots: many objects that
lie close together. It also has several sparse uniform distributions with different
velocities.

Since the scenario includes all kinds of different data, it represents, in some fashion,
general usage of a spatial index. Different specific data distributions will affect the
performances of the spatial indexes; it is therefore difficult to draw general conclusions
of which generally performs best. This scenario is a good candidate, however, since
it contains all kinds of data. Measurements on this scenario is therefore viewed as
an appropriate basis to draw conclusions on overall performance.

e -

Figure 4.2: The chosen scenario with 15’000 objects. It is made up of densely
packed normal distributions of smaller objects; a few larger objects; some middle-sized.
Velocities of the objects vary.

We fix the world size to a square of size 10° x 10° for the specified scenario. If an
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object tries to move outside this world, it is bounced against the edge.

Query and update performances are measured using a benchmarking suite. When
updating objects, a random object identifier is selected, and the corresponding
object’s location is updated by randomly generating a direction and calculating the
new position based on the objects velocity — this results in something similar to
Brownian motion. This update is then sent to the spatial index. We measure the
time it takes for the index to perform this update.

For measuring queries, we generate a collection of query rectangles® which are
uniformly distributed over the data. Query performance is measured as the time it
takes for the index to return results from all queries.

4.4 Evaluation

The evaluation of the spatial indexes is performed in two steps:

1. Each spatial index is evaluated by itself in order to choose the best index-specific
parameters values.

2. The spatial indexes, equipped with the chosen parameters, are compared to
each other’s across varying problem sizes.

3. Update variants are evaluated.

To choose the best index-specific parameters, query and update performances are
measured.

For the specific case of selecting a clean interval for token-cleaning in update memo,
three measurements are performed. The overall objective is to choose an interval
which maximizes update performance while still retaining good update performance.
First, for a collection of different intervals, a garbage ratio is measured, which is
defined as the number of obsolete entries in a spatial index divided by the current,
non-obsolete ones. This yields a value quantifying how much of the index is made up
of obsolete entries. Then we measure how queries perform on static spatial indexes
with different garbage ratios. Lastly, the intervals are used for update performance
estimation, which we cross-reference with the query performance and garbage ratio
results to choose a fitting cleaning interval.

6Visual inspection showed that 200 query rectangles resulted in good coverage of each scenario.
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Results

In this chapter, we present and analyze the results of our evaluation process. The
first step is to choose index-specific parameter values, which is done in Section 5.1.
Update memo parameter selection and analysis is presented separately in Section 5.2.
The next step is to compare the spatial indexes with the chosen parameter values.
The spatial indexes’” memory usage is also analyzed. This is done in Section 5.3.1.

5.1 Selecting index-dependent parameters

Each spatial index has unique parameters that need to be chosen in order to perform
the final comparison evaluation:

« Simple quadtree: Bucket size.
» Loose quadtree: Bucket size, expansion factor.
¢ Loose-linear quadtree: Expansion factor.

o R*-tree: Maximum number of entries per node.

5.1.1 Quadtree variants

In this section we choose parameters for the simple, loose, and loose-linear quadtrees.

For evaluating the bucket size, the following values are used: 1, 16, 32, 64, 128, 256,
512, 1024. The expansion factor is evaluated in steps of 0.1: 0.1, 0.2, ... 1.0, with one
exception: 0.999. This value performed best for Samet et al. [41], for the loose-linear
quadtree. It is therefore included in the evaluation.

The B-tree, which is used by the loose-linear quadtree, has a node size of 512. While
256 is the default value in the library, 512 performed better in a quick evaluation.

First, we evaluate the loose quadtree with values for the parameters expansion factor
and bucket size on the dataset described in Section 4.4. Figure 5.1 shows the query
performance results and Figure 5.2 shows the update results. An expansion factor of
zero results in poor query performance, while a bucket size of one results in both
poor query and update performance. With a bucket size of one, only one object may
be assigned to a leaf node before it must split; this means that the tree grows deeper
than if a larger bucket size is used. A deeper tree means that both query and update
algorithms must traverse more nodes, where many of the nodes contains either very
few or no entries. When the expansion factor is zero, query performance is affected
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Figure 5.1: This graph shows the average query performance for the loose quadtree,
given different bucket sizes and expansion factors. The evaluation was performed
with 10 million objects.

because many entries crossing boundaries between nodes high up in the tree will be
stored there. With only a small expansion factor, many of those objects will instead
be stored deep in the tree, so the query algorithm does not need to test those.

Apart from a bucket size of one and an expansion factor of zero, the rest of the tested
parameter values performs similarly. For the rest of the evaluations, we select an
expansion factor of 0.4 and bucket size of 256 for the loose quadtree.

It is interesting to note that the parameters are important in different cases. On large
objects, choosing an expansion factor has significant impact on final performance,
while the bucket size does not matter very much. For smaller objects, the inverse is
true. These results are in Figure A.1 and Figure A.2. When objects are very small,
almost point-like, their center points tend to move outside the unexpanded area as
they move. In this case the expansion factor does not matter, as objects must have
their center points inside the unexpanded area, even if the expanded area encloses
the full object. It is also likely that the depth of the tree is limited by the bucket
size which results in the unexpanded area being very large compared to the objects.
Updates will then be much more likely to still be contained by the unexpanded area,
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Figure 5.2: This graph shows the average update performance for the loose quadtree,
given different bucket sizes and expansion factors. The evaluation was performed
with 10 million objects.
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Simple quadtree parameter evaluation
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Figure 5.3: How the bucket size property affects update and query performance
for the simple quadtree. The evaluation was performed with 10 million objects.

compared to moving into the unexpanded area. Larger objects, on the other hand,
have a higher probability to be enclosed by a node’s expanded area and still have
their center points be inside the unexpanded area. In this case the expansion factor
has a larger impact and the bucket size a smaller impact on performance.

The simple quadtree’s performance for different bucket sizes is seen in Figure 5.3. For
this variant, just like the loose quadtree, a bucket size of one degrades performance
substantially. For querying, the best-found bucket size is 1024, while update performs
best with 256. Given that the focus of this thesis is more on update performance,
256 is picked as parameter value for continued evaluation.

As seen in Figure 5.3, the update performance at first improves as the bucket size
grows, until a certain threshold: 256, the performance then starts to degrade. There
is a trade-off between the performance overhead of traversing through the tree and
iterating through a node’s vector of objects to find the correct one. As the bucket
size becomes larger, searching through a node’s vector of objects takes longer time,
but fewer nodes need to be traversed as the tree’s depth is limited.

Next, we choose an expansion factor for the loose-linear quadtree. See Figure 5.4 for
the evaluation results. Selection is more difficult here than for the other quadtrees,
because querying and updates yield very different results. Update performance
generally improves when the expansion factor is larger; however, query performance
becomes worse and worse. Update result only varies in a few hundred nanoseconds,
but queries perform five times worse with 0.9 in expansion factor, compared to
0.1. This means that larger consideration must be put into query performance
effects when choosing an expansion factor, compared to other spatial indexes. From
Figure 5.4 we deduce two values, where the subsequent value substantially worsens
query performance: 0.3 and 0.7. Both are good picks, but 0.7 yields better update
performance, so it is selected as the expansion factor for the rest of the evaluation.
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Loose-linear quadtree parameter evaluation

- 5000

—

@)

)

)

=

=)
1

5 - 4000 —.

o S
= - 3000 2
< 1450 -
. - 2000 £
= <}
1400 - 1000

Expansion factor

Figure 5.4: A depiction of the loose-linear quadtree’s performance with different
expansion factors. The evaluation was performed with 10 million objects.

5.1.2 Query algorithm for loose-linear quadtree

Several different algorithms (see Section 4.2.5) have been implemented for the loose-
linear quadtree; these are evaluated in this section. Figure 5.5 shows the results.

The algorithm with worst performance is WINDOWQUERYPAPER, the algorithm
proposed by Aboulnaga and Aref. An improved algorithm, WINDOWQUERYROOT,
which starts the search from the root node, has two orders of magnitude, or 97.8%,
better performance than WINDOWQUERYPAPER and performs the best. This result
is expected, with the limitations discussed in Section 4.2.5 in mind. The authors that
introduced the algorithm designed it for accessing data in databases; the limiting
factor then is the number of I/O operations required for the operation. Under such a
scenario the algorithm might perform better, but for main memory usage it is useless.
Even WINDOWQUERYNAIVE, which simply iterates through all key-value pairs in
the B-tree, performs better for all problem sizes measured in Figure 5.5.

The performance of WINDOWQUERYNAIVE degrades linearly as more objects are
stored. This makes sense since, as already mentioned, the algorithm iterates through
all values.

Both WINDOWQUERYROOT and WINDOWQUERYOFFSET show similar performance
in this evaluation. In WINDOWQUERYOFFSET, the search space is partitioned
into nodes of the same size as the largest current node in the index!, and then
executes a recursive query for each. When the largest node in the tree is small
compared to the search area, the partitioning will result in many starting nodes.

IThe loose-linear quadtree does not contain any empty nodes.
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Figure 5.5: Performance comparison of different loose-linear quadtree query algo-
rithms plotted for varying problem sizes. The algorithms WINDOWQUERYROOT and
WINDOWQUERYOFFSET has similar performance so the line of WINDOWQUERY-
RoOT is barely visible.

Since there exist objects in our scenario that are large, the starting areas defined
by WINDOWQUERYOFFSET will also be large, and therefore there will be fewer
starting nodes. Therefore, the algorithm will start at nodes close to the root, which
WINDOWQUERYROOT does. This explains why their performances are so similar.
WINDOWQUERYROOT, however, performs better when there only are small objects
in the tree, since WINDOWQUERYOFFSET will start recursion at many smaller
nodes. The first is therefore a better choice when the data size distribution cannot
be assumed. It will be used for the remainder of the evaluation.

5.1.3 R* variants

The R*-tree has three parameters: minimum node-count factor, re-insertion percent-
age, and maximum number of entries per node. Two of these, re-insertion percentage
and minimum node count factor, are set to values recommended by Beckmann et al.,
30% and 0.4 respectively [6]. In this section, an appropriate value for the maximum
number of entries is chosen.

As seen in Figure 5.6, increasing the maximum number of entries per node does
not affect update performance significantly, except for values 10 and below. A low
maximum number of entries will result in nodes underflowing or overflowing very
easily, which results in very expensive operations of re-inserting many entries to
maintain the tree.

The query performance, on the other hand, slightly degrades in performance as the
number of entries increase. These results are quite volatile, however. More entries per
node mean more intersection tests at each node; on the other hand, fewer nodes need
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R*-tree parameter evaluation
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Figure 5.6: A depiction of update and query performance for the R*-tree with
different maximum number of entries per node. The evaluation was performed with
10 million objects.

to be traversed, but it seems that this overhead is negligible compared to intersection
testing entries.

A reason for the volatility is that slight changes in the maximum number of entries
per node could lead to widely different R*-trees. Nodes throughout the tree will split
at different times, and this may result in query areas traversing either more or fewer
subtrees which affects performance.

With both update and query performance in mind, a maximum amount of 42 entries
is chosen for the rest of the evaluation. It is one of the best performing parameter
values for updates, while query performance is still good.

5.2 Update memo parameters

Update memo has been implemented for the following spatial indexes: loose quadtree,
loose-linear quadtree, and R*-tree. We optimize the cleaning interval parameter for
the variants of update memo that use it. This is performed by cross-referencing the
impact that garbage ratio has on query performance (Section 5.2.1), the relation
between cleaning interval and garbage ratio (Section 5.2.2), and finally the impact
that cleaning interval has on update performance (Section 5.2.3). It is necessary to
choose a good cleaning interval for both query and update performance. Another
choice that must be made is which update-memo technique to use for the loose
quadtree: token-cleaning with clean-chunk or just token-cleaning (Section 5.2.4).
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Garbage ratio impact on query performance
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Figure 5.7: How different garbage ratios affects query performance. These bench-
marks were run with 10 million objects. Normalized query performance, with no
garbage as the baseline compared to the garbage ratio of three spatial indexes. Lower
value is better.

5.2.1 Garbage ratio

The garbage ratio is defined as the number of obsolete objects in the spatial index
divided by the current objects. It is a measure of how many of the objects stored in
the index are obsolete.

To measure query performance when using update memo techniques, we fix the
garbage ratio. This shows how the number of obsolete objects affects query per-
formance. To fix a certain garbage ratio, we insert objects into each spatial index,
disable all cleaning and perform a set number of updates. Since cleaning is disabled,
the number of updates is equal to the number of obsolete entries.

The results for different garbage ratios are seen in Figure 5.7. The huge performance
impact when increasing garbage ratio from 0% to just 1% can be explained by
the secondary update-memo index. At 0%, there are no stale entries in the index,
and therefore the secondary index will be empty. Our assumption is that the
implementation of std::unordered_map does not compute any hash when the map
is empty, which results in very little performance impact. The minor increase in
performance at 6% is probably due to the mapping structure rehashing for the
increase in entries, thus decreasing average bucket sizes.

The loose-linear quadtree is not nearly as affected, compared to the other indexes,
because it is much slower overall (see Figure A.4), and the performance impact of
lookups to the secondary update-memo index is therefore much smaller.

Given the results, it seems reasonable to aim for a garbage ratio between 0-20%.
Of course, this depends on how update performance is affected when the cleaning
interval is set to achieve that garbage ratio.
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Figure 5.8: The effect of different cleaning intervals on the garbage ratio for the
loose quadtree and R*-tree. In the loose quadtree evaluation, “Combined” refers to
the case when we use token-cleaning and clean-chunk together. Clean-upon-touch is
disabled.

5.2.2 Cleaning interval garbage ratio

The next step is to see how the different cleaning intervals affect the garbage ratio.
We define the cleaning interval as number of updates divided by the total number of
objects in the index. For example, a cleaning interval of 0.5 means that a cleaning
operation is performed when the number of updates equals a multiple of half the
number of objects in the index. Results of the evaluation are seen in Figure 5.8.
Note that due to differences in implementation, to achieve similar garbage ratios,
the cleaning interval value is an order of magnitude lower for the R*-tree than the
loose quadtree.

Clean-chunk combined with token cleaning keeps the garbage ratio much lower than
when token-cleaning is used by itself, since clean-chunk will clean extra nodes with
no regard to which cleaning interval is used. When only the cleaning interval is used,
for loose quadtree and R* respectively, there is a clear linear relationship between
the cleaning interval and garbage ratio — when the tree is cleaned less frequently,
there exists more obsolete objects.

For all cleaning intervals evaluated in Figure 5.8 with clean-upon-touch enabled,
the garbage ratio is 0.13% for the loose quadtree and 0.13 - 0.39% for the R*-tree.
Choosing a cleaning interval for this case is therefore not necessary.

5.2.3 Cleaning interval update performance

To measure update performance, we ran several benchmarks for cleaning intervals
that kept the garbage ratio contained somewhere below 20%. The results are seen in
Figure 5.9.

In Figure 5.9a, token-cleaning by itself and token-cleaning + clean-chunk are measured
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Figure 5.9: Different cleaning intervals affect update performances for the loose
quadtree and R*-tree. Since there are fewer tokens in the R*-tree, it must be cleaned
more frequently to be on par with the loose quadtree. Therefore, lower cleaning

intervals are evaluated for the R*-tree.
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for update performance. Both methods perform roughly the same; but just using
token-cleaning is slightly better.

For the R*-tree, the best interval is 0.003. Lower intervals clean the tree too often,
severely degrading performance. Cleaning less frequently also negatively affects
update performance. One reason is that a large amount of obsolete entries means
nodes are more likely to become full and split during updating. Another reason is
that when cleaning finally is performed, many nodes will become underfull instead
due to containing to many obsolete entries which will result in many re-insertions.

5.2.4 Selecting cleaning intervals

For the loose quadtree, the combination of token-cleaning and clean-chunk has the
benefit of a much lower garbage ratio, while still yielding good update performance.
Since performance mostly stops improving with a cleaning interval over 0.05, which
correlates to a garbage ratio of about 6%, the combination of both methods, with a
cleaning interval of 0.05, is chosen for the rest of the evaluation.

The R*-tree had best update performance with a cleaning interval of 0.003. From
Figure 5.8, we can deduce that this leads to a garbage ratio of 5%. Figure 5.7 shows
that this leads to a limited degradation in query performance, and therefore seems
like a good pick for cleaning interval.

5.3 Index comparison

In this section, each spatial index is equipped with the parameter values chosen in
the previous section, for an index to index comparison.

5.3.1 Memory requirement

This section analyzes how much memory each spatial index requires, for different
numbers of objects. These are measured on a 64-bit machine?.

Figure 5.10 shows how much memory each selected spatial index uses, given a fixed
number of objects to store. The R*-tree has the most memory overhead, this is
because each node allocates memory for the maximum amount of entries, even if
they on average contain less.

The loose-linear quadtree has similar memory usage as the list; both are worse than
the simple and loose quadtrees. One might think that the list would have the lowest
memory overhead, but this implementation uses a secondary map index to directly
access objects that are to be updated, which essentially doubles memory usage.

In Figure 5.11, the additional memory performance of the different update techniques
is shown.

Bottom-up updating adds a sizeable increase for all indexes, since a secondary index
containing references to all objects must be stored. Note the lower increase in memory

232-bit versions will show different memory usage due to pointer size, but still show same trend
and relative performance for the data structures.
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Memory usage of different spatial indexes
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Figure 5.10: This graph shows the memory usage of the chosen spatial indexes for
different amounts of stored objects. Bottom-up updating or update memo is not
used.

usage for the loose quadtree when adding bottom up, and the higher amount for the
loose-linear, compared to R*-tree. The data structure std: :unordered_map keeps
key-value pairs as the internal data storage. In R*-tree, while the object identifier is
still four bytes, the pointer to the corresponding node is eight bytes. Due to padding
of the resulting pair, a combined 16 bytes must be allocated, instead of what might
be the expected 12 bytes. For the loose quadtree, the object identifier is four bytes
as well as the chunk identifier, which results in a combined eight bytes — half the
amount of the implementation in R*. In the case of the Loose-linear bottom-up, the
Morton encoding is used as the value, which itself takes 16 bytes due to padding,
the resulting pair is then 24 bytes in size.

Update memo adds a different amount of memory usage for each index, due to the
differences in implementation. In general, this is lower than the additional memory
that bottom-up allocates.

5.3.2 Effect of quadtree implementation

Even though the simple quadtree and loose quadtree with expansion factor zero
function the same in their update and query algorithms, their query performances
differ due to the different node management. Recall that the simple quadtree
allocates each node by itself and keeps pointers between nodes to indicate parent-child
relationships, and that the loose quadtree uses the chunk representation described in
Section 4.2.3.

The query performance gap between the two variants is seen in Figure 5.12. Also
included is the loose quadtree with the expansion factor that was selected in Section
5.1.1. As seen in the figure, the node management is responsible for approximately
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Memory usage effects from update methods
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Figure 5.11: The additional memory overhead of different update techniques. Loose
quadtree uses Token cleaning and clean chunk for Update memo (see Section 4.2.1).
10 million objects. The black line indicates the memory usage of the stored objects,
i.e., the minimum amount of memory that needs to be allocated.

half the performance improvement; the other half is due the expanded node areas.

Figure A.3 displays the update effects of the same variants that are evaluated in
Figure 5.12. It shows that update performance effects are negligible in this case,
probably because fewer nodes must be traversed compared to the query algorithm.

5.3.3 Queries

The results from evaluating the query-performance for the chosen spatial indexes
are seen in Figure 5.13. They are measured with respect to how many objects are
indexed on the interval 2-100 million. It should be noted that the query rectangles
have the same size, and so the amount of entries returned from each query has a
linear relationship with the amount of objects.

As can be seen, the loose quadtree widely outperforms the others. In the case when
100 million objects are indexed, it performs 69% better than the simple quadtree,
81% better than the R*-tree, and 85% better than the list implementation. The
simple quadtree, in turn, outperforms the R*-tree by 28%.

The results for the loose-linear quadtree are not included in Figure 5.13 since they
are much worse than the others. A version of the figure with it included is shown
in Figure A.4. For 50 million objects, the loose quadtree performs 99.9% better
than the loose-linear quadtree. This result is based on the improved algorithm
developed in this thesis; the original algorithm proposed by Aboulnaga et al. [1]
would do even worse. This large gap is due to the problem with the query algorithm
discussed in Section 4.2.5. It is also the case that objects generally are placed deeper
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Comparison between quadtree implementations
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Figure 5.12: This graph shows the query performance effect of node management
in the quadtree implementations, and the effect that looseness has on the quadtree’s
performance.

in the loose-linear quadtree than in the loose quadtree. The number of paths that
must be explored by the query algorithm increase substantially at each level, so
the loose-linear quadtree’s algorithm will traverse many more nodes than the loose
quadtree’s.

We believe there are several reasons why the loose quadtree outperforms its peers.
Two effects of looseness described in Section 3.2.3: that objects can be stored deeper
in the tree, and that node overlap makes it necessary to traverse more paths, gives a
hint.

Objects stored deeper in the tree means that query performance will improve, because
less intersections tests need to be performed with objects outside the query area.
In the simple quadtree, objects are stored closer to the root, and will therefore be
tested by queries, even though they are not close to the query area.

The negative effect from node overlap is also probably not that significant, as the
bucket size limits the depth of the tree. In short, the positive factor still affects to
some degree, for larger objects, and the negative factor is minimized since the bucket
size limits tree depth.

Another reason why the loose quadtree performs better could be cache efficiency.
The simple quadtree does not consider cache performance at all.

We expected the R*-tree to perform well in the query tests, as it is designed to
optimize querying. However, the R*-tree was originally designed to minimize I/0O
operations to secondary memory, which is not applicable here. The reason behind
lack in performance for these datasets could be that overlaps between objects are
permitted, and happen often, huge rectangles can cover several thousand smaller
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Query comparison for selected spatial indexes
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Figure 5.13: Query results for the selected spatial indexes with different number
of objects indexed.

ones. It might also be that the maximum amount of entries should be lower or higher
for different number of objects.

5.3.4 Updates

This section is divided into three parts. First, we evaluate how bottom-up updating
affects the spatial indexes. Secondly, update-memo techniques are evaluated. Finally,
a comparison between the chosen spatial indexes without these augmentations is
performed.

5.3.4.1 Bottom-up updating

The effect of bottom-up updating is seen in Figure 5.14. For both the loose quadtree
and loose-linear quadtree, the technique has almost no effect on update performance.
The former has a limited depth because of the bucket size, so relatively few nodes
need to be traversed. The latter already has a quick update algorithm which requires
no tree traversal.

However, bottom-up updating makes a difference for the R*-tree. One reason for
this is probably that all objects reside in the leaf nodes, so the number of nodes that
have to be traversed is always the height of the tree when accessing the object to
be moved; the loose quadtree, on the other hand, only has to traverse to leaf nodes
in the worst case. Another reason is when there are several nodes overlapping the
location of the old entry, the removal algorithm will need to search through all of
these to find the entry.

These results mean that bottom-up updating is not worthwhile for the loose and
loose-linear quadtrees, especially when considering the extra memory overhead. For
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Update performance for bottom-up
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Figure 5.14: A graph showing how bottom-up updating affects the update perfor-
mance. The evaluation was performed with 10 million objects.

the R*-tree, the technique can be worthwhile, if memory usage is of lesser concern.
It is also a viable alternative to update memo, which will be discussed shortly.

5.3.4.2 Update memo

In Figure 5.15, the effects of update memo are shown. For both the loose quadtree
and the R*-tree with bottom-up enabled, update memo performs worse; the overhead
is too large for update memo to be a viable alternative. For the regular R*-tree,
however, update-memo performs better, but not as well as just bottom-up without
update-memo. This means that update-memo does not triumph for any spatial index
in this evaluation.

The figure also shows the update performance with clean-upon-touch enabled. It
performs worse with all three variants, probably because at least one node is cleaned
every update operation, and all the entries in the node needs to be checked against
the update-memo index. This adds a constant overhead to update performance.
Clean-upon-touch manages to keep the spatial indexes very clean, however (see
Section 5.2.2). The technique could therefore be feasible if query performance is
more important than update performance, but then one might as well not use update
memo at all since it was meant to improve update performance.

5.3.4.3 General update performance

The general update performances of the chosen spatial indexes are shown in Figure
5.16. Of all evaluated structures, the R*-tree has the worst performance, which is to
be expected. The reasons for this are that updating is an expensive operation for
these kinds of data structures: MBRs of entries must be re-calculated from the leaf
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Update performance from update memo methods
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Figure 5.15: This graph shows how update memo-techniques affect update per-
formances for the loose quadtree and R*-tree. “Regular” has no update-memo
augmentation. “Update memo” uses the best update-memo technique without clean-
upon-touch: token-cleaning + clean-chunk for the loose quadtree, and token-cleaning
for the R*-tree. Both use the optimal parameter values derived in Section 5.2.
Lastly, “Clean-upon-touch” are the same variants as “Update memo”, but with
clean-upon-touch enabled. The evaluation was performed with 10 million objects.
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node that was modified and upwards. Splits and re-insertion when nodes become
overfull or underfull are also expensive.

The rest of the spatial indexes perform much better, with loose-linear being slower
than the loose and simple quadtrees, which in turn are slower than the list. This is
expected as the list directly access the objects that will be updated.

One might think that the update algorithm of the loose-linear quadtree would perform
better than the loose quadtree’s, but it does not. An explanation for this could
be because of the effect that the bucket size has. The loose and simple quadtrees’
heights are limited by the bucket size, which limits the number of nodes that have to
be traversed to find the object’s old entry. The overhead of calculating which node
an object resides in — which the loose-linear quadtree’s update algorithm does — is
likely higher than traversing a few nodes.
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Conclusion

6.1 Discussion

The aim of this thesis was to compare some spatial indexes with each other under
a specified scenario, and with certain update techniques. For query and update
performances the loose quadtree clearly outperforms the other indexes, as can be
seen in Figures 5.13 and 5.16.

For each of the indexes there were several parameters that affected performance.
When choosing each, the other parameters in some cases had to remain static, and
therefore be assumed. Update memo, for example, was tested using parameters
chosen for the traditional update approach. Testing each combination of parameters
would not be feasible.

Results shown depends on the data used in this thesis, other scenarios may yield
other results. Since performance is so data dependent, indexes must be compared
for their intended use case. We chose what we believe is an interesting scenario,
described in Section 4.3. It should give a good indication as to what the general
performance of each index is. We believe that most of the common pitfalls for
spatial index approaches can be found in this scenario, thus high performance is only
achieved in it when the index performs well in most situations.

The bottom-up update method has minor effects for all indexes, except the R*-
tree. Using bottom-up also leads to significant memory overhead since for each
object there is an entry in the bottom-up index. However, the technique is easy to
implement. With minor benefits and large memory usage, the bottom-up method
seems unnecessary in general.

Update memo improved update performance for the R*-tree but worsened for all
quadtree variants. The biggest shortcoming, however, was query performance, which
degraded significantly. It was also complicated to implement and added several more
parameters and choices to account for.

Update memo makes more sense when the index is stored on secondary memory,
where /O performance is the biggest bottleneck. Designed for R-trees, both papers
that developed the method evaluated the number of I/O accesses [45, 49]. Postponing
deletion to be performed in batches reduces I/O accesses for a node, as it is accessed
once and all obsolete objects are removed, compared to accessing it every time an
object should be deleted. Clean-upon-touch also makes sense from this perspective:
when a node has already been accessed, cleaning it of old entries is cheap. On
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main-memory systems, however, where the latency for fetching data is lower, the
extra operations and accesses to the secondary index reduces performance.

6.2 Conclusion

Much of previous research has focused on data that are either static geometry or
moving-point data. The purpose of this thesis was to examine the field of spatial
indexing for moving geometry.

Several spatial indexes were chosen and evaluated with respect to memory usage,
query and update performance. These indexes are: list, simple quadtree, loose
quadtree, loose-linear quadtree, and R*-tree. We also implemented two update
techniques, bottom-up and update memo for applicable indexes. All implementations
were made in C++ and a scenario consisting of several data distributions was specified
and used for evaluation.

The results show that the loose quadtree outperforms all other indexes in both query
and update tests. We find that update memo and bottom-up works well for R*-tree
but perform either poorer or makes no difference for the other indexes.

6.2.1 Future Work

For the loose quadtree there are many aspects that can be examined in future works.
Optimizing the merging of quadtree nodes, which was not a focus of this thesis, is one
aspect that could improve performance further. There is a performance gap between
the loose-linear quadtree and the loose quadtree. Updates were not as good as we
hoped, and query performance was abysmal for the loose-linear version. Further
research on improving the algorithms used in the loose-linear quadtree is warranted.
It is also the case that update memo has not been used for linear quadtrees previously,
so there are no update memo methods adapted for it.

When performing background research, many methods were deemed interesting but
incomplete for our purpose. Some of these focus on query performance but lack
any discussion about update methods and performance. These methods could be
interesting to investigate further, and there is potential to produce original ideas to
solve the problems.

Some encountered structures are aimed at indexing with the aid of a GPU. While
this thesis focus is on CPU implementations, a comparison with GPU alternatives
could be interesting, and to our knowledge no such survey exists at the time of
writing.

One of few grid approaches that handles non-point spatial data by default is BLOCK
[34], where a hierarchical grid is maintained, and queries are split into parts that
query the different levels. While query performance was good, there was no discussion
about how updating the structure would work. If one could introduce an update
algorithm that does not compromise query results significantly, the resulting spatial
index could become an interesting alternative to R-trees [17] and the loose quadtree
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[47]. Extending other newer grid methods like PGrid [50] and QGrid [9] to support
non-point data could also yield interesting results.

Hema and Easwarakumar [18] proposes a unique approach, where a rectangle is
divided into line segments in two dimensions which are then kept in two segment
trees, one for each dimension. The segment tree is called a BITS-tree [12]. The
papers, however, lack any discussion about update methods. No performance analysis
at all is provided, meaning that the impact of this approach is unknown. A rigorous
analysis of the BITS-tree [18], evaluation of query performance, and proposing new
update techniques could make an entire thesis by itself.

59



6. Conclusion

60



1]

2]
[3]

[4]

[5]

[6]

[10]

[11]

[12]

Bibliography

Ashraf Aboulnaga and Walid G Aref. Window query processing in linear
quadtrees. Distributed and Parallel Databases, 10(2):111-126, 2001.

Afsin Akdogan. Partitioning, indexing and querying spatial data on cloud, 2016.

Tomas Akenine-Moller, Eric Haines, and Naty Hoffman. Real-time rendering.
AK Peters/CRC Press, 2018.

Walid G Aref and Hanan Samet. Efficient window block retrieval in quadtree-
based spatial databases. Geolnformatica, 1(1):59-91, 1997.

R. Bayer and E. M. McCreight. Organization and maintenance of large ordered
indexes. Acta Informatica, 1(3):173-189, Sep 1972.

Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger.
The R*-tree: an efficient and robust access method for points and rectangles.
In Aem Sigmod Record, volume 19, pages 322-331. Acm, 1990.

Jon Louis Bentley. Multidimensional binary search trees used for associative
searching. Communications of the ACM, 18(9):509-517, 1975.

Laurynas Biveinis, Simonas Saltenis, and Christian S. Jensen. Main-memory
operation buffering for efficient r-tree update. In Proceedings of the 33rd In-
ternational Conference on Very Large Data Bases, VLDB ’07, pages 591-602.
VLDB Endowment, 2007.

Kun-Lun Chen, Yan-Ru Liu, and Qing-Xu Deng. Indexing Moving Objects
Using Query Oriented Parallel Grids. In Proceedings of the 2nd International
Conference on Computer Science and Application Engineering, CSAE 18, page
1-5. Association for Computing Machinery, 2018.

Ze Deng, Lizhe Wang, Wei Han, Rajiv Ranjan, and Albert Zomaya. G-ML-
Octree: An Update-Efficient Index Structure for Simulating 3D Moving Ob-
jects Across GPUs. IEEFE Transactions on Parallel and Distributed Systems,
29(5):1075-1088, 2018.

Jens Dittrich, Lukas Blunschi, and Marcos Antonio Vaz Salles. Indexing Moving
Objects Using Short-Lived Throwaway Indexes. In Advances in Spatial and
Temporal Databases, pages 189-207, Berlin, Heidelberg, 2009. Springer Berlin
Heidelberg.

KS Easwarakumar and T Hema. Bits-tree-an efficient data structure for segment
storage and query processing. arXiv preprint arXiv:1501.05485, 2015.

61



Bibliography

[13] Raphael A. Finkel and Jon Louis Bentley. Quad trees - a data structure for
retrieval on composite keys. Acta informatica, 4(1):1-9, 1974.

[14] Volker Gaede and Oliver Giinther. Multidimensional access methods. ACM
Comput. Surv., 30(2):170-231, June 1998.

[15] Irene Gargantini. An effective way to represent quadtrees. Communications of
the ACM, 25(12):905-910, 1982.

[16] T. M. Ghanem, , M. F. Mokbel, W. G. Aref, and J. S. Vitter. Bulk operations
for space-partitioning trees. In Proceedings. 20th International Conference on
Data Engineering, pages 29—40, April 2004.

[17] Antonin Guttman. R-trees: A dynamic index structure for spatial searching,
volume 14. ACM, 1984.

[18] T. Hema and K. S. Easwarakumar. On higher dimensional window query:
Revisited using bits-tree. In Proceedings of the International Conference on
Informatics and Analytics, ICIA-16, pages 91:1-91:6, New York, NY, USA, 2016.
ACM.

. Hu, L. Luo, an . Yin. Xg-index: 1stributed spatial index for clou

19] Y. Hu, L. L d L. Yin. Xqg-index: A distributed ial index for cloud
storage platforms. In 2018 7th International Conference on Agro-geoinformatics
(Agro-geoinformatics), pages 1-6, Aug 2018.

[20] Anand Padmanabha Iyer and Ion Stoica. A scalable distributed spatial index
for the internet-of-things. In Proceedings of the 2017 Symposium on Cloud
Computing, pages 548-560. ACM, 2017.

[21] Ibrahim Kamel and Christos Faloutsos. Hilbert R-tree: An improved R-tree
using fractals. Technical report, 1993.

[22] Ibrahim Kamel and Christos Faloutsos. On packing r-trees. In Proceedings of
the second international conference on Information and knowledge management,
CIKMO93, page 490-499. Association for Computing Machinery, 1993.

[23] G. Kedem. The Quad-CIF Tree: A Data Structure for Hierarchical On-Line
Algorithms. In 19th Design Automation Conference, pages 352-357, June 1982.

[24] Kihong Kim, Sang K. Cha, and Keunjoo Kwon. Optimizing Multidimensional
Index Trees for Main Memory Access. SIGMOD Rec., 30(2):139-150, May 2001.

[25] Kyung-Chang Kim and Suk-Woo Yun. Mr-tree: A cache-conscious main memory
spatial index structure for mobile gis. In Web and Wireless Geographical
Information Systems, pages 167-180, Berlin, Heidelberg, 2005. Springer Berlin
Heidelberg.

[26] Mong Li Lee, Wynne Hsu, Christian S Jensen, Bin Cui, and Keng Lik Teo.
Supporting frequent updates in R-trees: A bottom-up approach. In Proceedings
2003 VLDB Conference, pages 608-619. Elsevier, 2003.

[27] Ahmed R. Mahmood, Sri Punni, and Walid G. Aref. Spatio-temporal access
methods: a survey (2010 - 2017). Geolnformatica, Oct 2018.

62



Bibliography

[28] Yannis Manolopoulos, Alexandros Nanopoulos, Apostolos N Papadopoulos, and

[29]

[30]
[31]
[32]
[33]

[34]

[35]

[36]

[42]

Yannis Theodoridis. R-trees have grown everywhere. Technical report, Technical
Report available at http://www. rtreeportal. org, 2003.

Yannis Manolopoulos, Alexandros Nanopoulos, Apostolos N Papadopoulos, and
Yannis Theodoridis. R-trees: Theory and Applications. Springer Science &
Business Media, 2010.

Krassimir Markov, Krassimira Ivanova, Ilia Mitov, and Stefan Karastanev.
Advance of the access methods. 2008.

Donald Meagher. Geometric modeling using octree encoding. Computer graphics
and image processing, 19(2):129-147, 1982.

Mohamed F. Mokbel, Thanaa M. Ghanem, and Walid G. Aref. Spatio-temporal
access methods. IEEE Data Eng. Bull., 26(2):40-49, 2003.

Long-Van Nguyen-Dinh, Walid G Aref, and Mohamed Mokbel. Spatio-temporal
access methods: Part 2 (2003-2010). 2010.

Matthaios Olma, Farhan Tauheed, Thomas Heinis, and Anastasia Ailamaki.
BLOCK: Efficient Execution of Spatial Range Queries in Main-Memory. In
Proceedings of the 29th International Conference on Scientific and Statistical
Database Management, SSDBM 17, page 1-12. Association for Computing
Machinery, 2017.

Jack A Orenstein. Multidimensional tries used for associative searching. Infor-
mation Processing Letters, 14(4):150-157, 1982.

Octavian Procopiuc, Pankaj K. Agarwal, Lars Arge, and Jeffrey Scott Vitter.
Bkd-Tree: A Dynamic Scalable kd-Tree. In Advances in Spatial and Temporal
Databases, pages 4665, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

Raghu Ramakrishnan and Johannes Gehrke. Database management systems.
McGraw Hill, 2000.

P. Rigaux, M. Scholl, and A. Voisard. Spatial Databases with Application to
GIS. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2002.

John T. Robinson. The K-D-B-tree: A Search Structure for Large Multidimen-
sional Dynamic Indexes. In Proceedings of the 1981 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’81, pages 10-18, New York, NY,
USA, 1981. ACM.

Hanan Samet. The Quadtree and Related Hierarchical Data Structures. ACM
Comput. Surv., 16(2):187-260, June 1984.

Hanan Samet, Jagan Sankaranarayanan, and Michael Auerbach. Indexing meth-
ods for moving object databases: Games and other applications. In Proceedings
of the 2013 ACM SIGMOD International Conference on Management of Data,
SIGMOD 13, pages 169-180, New York, NY, USA, 2013. ACM.

Timos Sellis, Nick Roussopoulos, and Christos Faloutsos. The R+-tree: A
Dynamic Index for Multi-Dimensional Objects. Technical report, 1987.

63



Bibliography

[43]

[44]

[49]

64

Darius Sidlauskas, Kenneth A. Ross, Christian S. Jensen, and Simonas Saltenis.
Thread-Level Parallel Indexing of Update Intensive Moving-Object Workloads. In
Advances in Spatial and Temporal Databases, pages 186-204, Berlin, Heidelberg,
2011. Springer Berlin Heidelberg.

Darius Sidlauskas, Simonas Saltenis, Christian W Christiansen, Jan M Johansen,
and Donatas Saulys. Trees or grids?: indexing moving objects in main memory.
In Proceedings of the 17th ACM SIGSPATIAL international conference on
Advances in Geographic Information Systems, pages 236-245. ACM, 2009.

Yasin N Silva, Xiaopeng Xiong, and Walid G Aref. The RUM-tree: supporting
frequent updates in r-trees using memos. The VLDB Journal—The International
Journal on Very Large Data Bases, 18(3):719-738, 2009.

Julio Toss, Cicero AL Pahins, Bruno Raffin, and Jodo LD Comba. Packed-
memory quadtree: a cache-oblivious data structure for visual exploration of
streaming spatiotemporal big data. Computers & Graphics, 76:117-128, 2018.

Thatcher Ulrich. Loose octrees. Game Programming Gems, 1:434-442, 2000.

Tilmann Zéaschke, Christoph Zimmerli, and Moira C. Norrie. The PH-tree: A
Space-efficient Storage Structure and Multi-dimensional Index. In Proceedings
of the 2014 ACM SIGMOD International Conference on Management of Data,
SIGMOD 14, pages 397-408, New York, NY, USA, 2014. ACM.

Yuean Zhu, Shan Wang, Xuan Zhou, and Yansong Zhang. Rum--tree: A
new multidimensional index supporting frequent updates. In Web-Age Infor-
mation Management, pages 235—240, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg.

Darius Sidlauskas, Simonas Saltenis, and Christian S. Jensen. Parallel main-
memory indexing for moving-object query and update workloads. In Proceedings
of the 2012 ACM SIGMOD International Conference on Management of Data,
SIGMOD/PODS ’12, page 37-48. Association for Computing Machinery, 2012.



Appendix 1

Loose quadtree query performance [us]
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Figure A.1: Query performance of the loose quadtree for different expanson factors
and bucket sizes, on a scenario with uniformly distributed, large objects. The
evaluation was performed with 10 million objects.
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Loose quadtree query performance [us]
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Figure A.2: Query performance of the loose quadtree for different expanson factors
and bucket sizes, on a scenario with uniformly distributed, small objects. The
evaluation was performed with 10 million objects.
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Update comparison for selected spatial indexes

1200 A

"Z 1000 1

)

E

£ 800 1

<

e

>

| —— Loose quadtree (exp = 0.4)
600 —— Loose quadtree (exp = 0)
= Simple quadtree

VOSILIPSIEY SOFRIEOTRIESTE
Number of objects [million]

Figure A.3: This graph shows how update performance is affected by using either
the simple quadtree or the loose quadtree, with another node management method.
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Figure A.4: Query comparison between selected spatial indexes, with the loose-
linear quadtree included.
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Update comparison for selected spatial indexes
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Figure A.5: This graph is a closer look at update performances without the R*-tree.

v



