
DF

p

M

TpM

p

M

TpM

Gauge equivariant convolutional neural
networks
Master’s thesis in Physics and Astronomy

OSCAR CARLSSON

Department of Mathematics
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2020

Master’s thesis 2020:57118

Gauge equivariant convolutional neural networks

OSCAR CARLSSON

DF

Department of Mathematical Sciences
Division of Algebra and Geometry

Chalmers University of Technology
Gothenburg, Sweden 2020

Gauge equivariant convolutional neural networks
OSCAR CARLSSON

© OSCAR CARLSSON, 2020.

Supervisor: Daniel Persson, Department of Mathematical Sciences, Algebra and
Geometry
Industrial supervisor: Christoffer Petersson
Examiner: Robert Berman, Department of Mathematical Sciences, Algebra and
Geometry

Master’s Thesis 2020:57118
Department of Mathematical Sciences
Division of Algebra and Geometry
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Invariance of a tangent vector to a manifold under change of coordinates in
the tangent space. See Chapter 3 for more details.

Typeset in LATEX, template by David Frisk
Printed by Chalmers Reproservice
Gothenburg, Sweden 2020

iv

Gauge equivariant convolutional neural networks
OSCAR CARLSSON
Department of Mathematical Sciences
Chalmers University of Technology

Abstract
In this thesis we present a review of the current theory of group and gauge equiv-
ariant convolutional neural networks on homogeneous spaces and general smooth
manifolds, with focus on the latter, formulated from a mathematical viewpoint. We
also provide a new interpretation of layers in neural networks as maps between asso-
ciated bundles. Furthermore we discuss the implementation of simple convolutional
neural networks invariant under 90◦ rotations and reflections, build such networks,
and test them to show the effect of the invariant construction. This testing shows
that the addition of the group invariant structure allows the network to efficiently
classify transformed data while only training on untransformed data.

Keywords: Convolutional neural networks, machine learning, manifolds, group,
gauge, Python, Tensorflow, Keras.

v

Acknowledgements
Firstly, I would like to express my gratitude to my supervisor Daniel Persson for the
support given during the work on this thesis as well as introducing me to this area
combining mathematics, physics, and coding.
Secondly, I would like to direct thanks to Jan Gerken, Christoffer Petersson,

Fredrik Ohlsson, and Jimmy Aronsson for the many interesting and enlightening
discussions we have had.
Furthermore, I’m deeply grateful for the interest my family have expressed as well

as the help they have given, be it feedback on language or allowing me to pester
them with discussions.
Lastly, a big thanks to all my friends for providing support, knowingly or not,

and willingness to discuss things, both large and small, and helping me to grow as
a person.
Also, none of this work, or my academic career thus far, would be possible without

the privilege of free higher education for Swedish citizens and the economic support
by the Swedish Board of Student Finance.

Oscar Carlsson, Gothenburg, June 2020

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Background and context . 1
1.2 Thesis goal and main results . 4
1.3 Thesis outline . 4

2 Introduction to fully connected and convolutional neural networks 7
2.1 A neural network: definition and training 7
2.2 Fully connected networks . 9
2.3 Convolutional neural networks . 9

2.3.1 Translation equivariance of convolutional layers 11
2.3.2 Why convolutional neural networks? 12
2.3.3 Equivariance of convolutions under rotations 13

3 Gauge equivariant networks 17
3.1 Geometric deep learning . 17
3.2 Introductory discussion of gauge equivariance 19
3.3 The associated bundle . 19
3.4 The invariant/equivariant layer . 21
3.5 Gauge equivariant convolution . 22
3.6 Discussion on the gauge equivariant convolution 26

3.6.1 Comparison to the flat case 26
3.6.2 Comparison to differential forms 27

4 Applications to group equivariant CNNs 29
4.1 Group equivariant networks on homogeneous spaces 29
4.2 General implementation idea . 31
4.3 A D4 invariant network by Cohen et. al. 32

4.3.1 Testing and results . 32
4.3.2 Discussion of testing results 35

4.4 Discussion on discrete group in- and equivariance 39
4.5 A C6 equivariant network by Hoogeboom et. al. 39

5 Summary, conclusion and outlook 43

ix

Contents

A Theoretical background I
A.1 Topology . I
A.2 Manifolds . III
A.3 Group theory and representations . V

A.3.1 Group theory . V
A.3.2 Representations . VIII

A.4 Fibre bundles . IX
A.4.1 Principal G-bundle . X
A.4.2 Associated bundle . XIII
A.4.3 Vector bundles and associated vector bundles XIV

A.5 Integration on manifolds . XVIII
A.5.1 Differential forms . XVIII
A.5.2 Bases . XX
A.5.3 Integration of differential forms XXIII
A.5.4 Riemannian manifolds . XXV

A.6 Connections on manifolds . XXVI

B Code samples of group invariant networks XXXI

C Result tables XXXVII

D List of definitions XLIII

Bibliography XLV
Bibliography: articles and texts . XLV
Bibliography: figures . XLVIII

x

List of Figures

1.1 Invariance . 2
1.2 Equivariance . 2
1.3 Principle of covariance . 4

2.1 Schematic sketch of a simple neural network 9
2.2 Schematic image of a typical CNN . 10
2.3 Loss of locality due to flattening . 13

3.1 Tangent vector moving on sphere . 18
3.2 Change of gauge . 19

4.1 Function transformation on a group 30
4.2 Transforming feature map . 32
4.3 Example of continuous rotation of MNIST 34
4.4 Rotation and mirroring invariance . 40
4.5 C4 invariance of network . 41
4.6 MNIST in square and hexagonal grid 41

xi

List of Figures

xii

List of Tables

4.1 Result under transformation of C4 . 36
4.2 Result under transformation of D4 36
4.3 Effects of network size and padding 37

C.1 Result under transformation of C4; smaller network, valid padding . . XXXVIII
C.2 Result under transformation of D4; smaller network, valid padding . . XXXVIII
C.3 Result under transformation of SO(2); smaller network, valid padding XXXIX
C.4 Result under transformation of O(2); smaller network, valid padding . XXXIX
C.5 Result under transformation of C4; smaller network, same padding . . XL
C.6 Result under transformation of D4; smaller network, same padding . . XL
C.7 Result under transformation of C4; larger network, valid padding . . . XLI
C.8 Result under transformation of D4; larger network, valid padding . . XLI
C.9 Result under transformation of C4; larger network, same padding . . XLII
C.10 Result under transformation of D4; larger network, same padding . . XLII

xiii

List of Tables

xiv

1
Introduction

In this chapter we present a historical background, some context on current research,
and how this ties in to the topics covered in this thesis. Furthermore we state the
goals and main result presented, and end on a short description of the outline of the
thesis.

1.1 Background and context
Understanding of the human brain and its efficiency has long been a goal in some ar-
eas of science and technology, and consciousness has been an ever persistent question
for philosophers.
On the 1st of October 1950 an article by Alan Turing called “Computing Machinery

and Intelligence”[1] was published in which he asks the monumental question “Can
machines think?”. This paper was foundational for the developments of what we
call computers today and the question is still just as relevant. Already the following
year the first machine that could update its parameters on its own, SNARC, was
constructed by Marvin Minsky and Dean Edmonds [2]. Since then, the advancement
of self learning machines has followed the development of computers, and today the
amount of resources and time spent on research and development in this field is
bigger than ever.
Artificial intelligence (AI) and machine learning (ML) is nowadays used in almost

everything that uses a computer; from analysing data from CERN [3], analysing
building energy consumption [4], and learning to play games, e.g. Go [5], to recog-
nising and classifying objects in images.
One of the areas most covered in media have been the advancement of self driving

vehicles. Since these vehicles need to build a model of their surroundings from data
— be it radar, ordinary images, or other sources — and it would be impossible
to cover every possible case if coding it by hand, machine learning is a very good
option.
In order to fully construct a local map a self driving car needs to be able to

recognise objects — “It is a/an <insert object>!” — and isolate where they are in
images from a background — “It is there!”. In the machine learning language one
calls the task of recognising objects classifying and the task to isolate objects from
a background is called segmentation. Immediately one comes to two closely related
conclusions illustrated in Figure 1.1 and 1.2: if I want to recognise, e.g., a “5” then
it should not matter where in the image the “5” is, and if I want to isolate where
the “5” is from the background then if the “5” moves, i.e. translates, my choice of

1

1. Introduction

Figure 1.1: This is an example of invariance: it is a “5” no matter where it is.

Figure 1.2: This is an example of equivariance: the selection of the “5” moves
with it. Another way to think about this is that it does not matter if we find the
“5” first and then move it, or if we first move the “5” and then find it.

“It is there!” should move with it. These two properties are very central and are
called invariance — when it doesn’t matter where the “5” is, it is still a “5” — and
equivariance — when we want to know where it is and this needs to follow the “5”.
Both of these properties are very appreciated in a self driving car: one would not

want a traffic sign to turn into a tree just because it is not in its usual place, and
the car should be able to follow a pedestrian over a crossing without losing track of
them.
All of this is already in heavy usage, primarily due to convolutional neural net-

works (CNN) [6] which have the equivariance property built into their construction
and can also be made invariant as well. Another common type of network are
fully connected networks [7] — also called feedforward neural networks — and these
can be trained somewhat to be invariant but this requires them to train on every
possible object position beforehand which CNNs do not; this is called data augmen-
tation. Mathematical details about CNNs and follu connected networks are covered
in Chapter 2.
The careful reader might now want to ask: “Moving around the “5” is all well and

good, but what about rotation? It’s still a “5” even if it’s rotated.”. This is indeed
very true, and the set of all translations and rotations in the plane together form a
symmetry group of the plane and by the reasoning above we would like to achieve
networks both invariant and equivariant under these symmetries.
Such networks have been designed in several different ways, one approach is using

Gaussian kernels and complex convolutions as presented by Worrall et al. [8], and
another approach, taken by Cohen et al. in a paper from 2016 [9], uses the 90◦
rotational symmetry of a square grid to create networks invariant under rotations of
90◦. The second approach will be the basis for the experimental part of this thesis.

2

1. Introduction

All of this is thus far concerning only flat “ordinary” images, but there also exists
a plethora of non-flat data that this equivariance and invariance framework would
be very useful for. A clear example is an image from a fisheye camera used in
autonomous cars in order to increase the angular awareness of the car. In extreme
cases a single camera can take images covering a bit more than a hemisphere. Of
course we would like our networks to be able to identify and track objects if they
move around and as such we need invariance and equivariance with respect to the
symmetry of the hemisphere: rotating around an axis down its centre. But if the
car would be tilted for some reason this should not change how the network operates
so what we really need is equivariance and invariance of networks operating on fully
spherical data.
This enters into an area called geometric deep learning, which covers all cases where

the data is not defined on a nice flat grid, i.e. non-Euclidean data. LeCun et al.
published a paper in 2017 [10] in which they give an overview on applicable theory
for non-Euclidean data, e.g. data defined on graphs and on arbitrary surfaces, as
well as some possible methods for implementations.
Thus far we have only discussed scenarios where the image content is moving

around in the image and this is an active transformation — we actively move the
object — but if we were to describe the object in a coordinate system we could just
as well have transformed the coordinate system instead of moving the object, and
in the end we would have the same coordinate representation of the object; that
would be a passive transformation. This shift of philosophy, from active to passive
transformations, allows for further generalisations.
When one talks about a global coordinate system one could just as well use a

coordinate system in each point with the condition that all coordinate systems are
the same. Then a global coordinate transformation would be the action of the
transformation on each individual coordinate system such that they all transform
together. Taking the viewpoint of a coordinate system in each point gives the
question: would they all need to be the same coordinate system? The answer to
this is no. On a general curved manifold one cannot assign a global coordinate
system and hence one must use local coordinates.
In physics one heavily relies on the assumption that whatever coordinate system

one chooses the laws of physics should work the same. For example, if two people are
standing at different positions and setting up the same experiment only rotated in
relation to each other they should get the same result. This is exactly the same as if
one would use two different coordinate systems in two different points to describe an
image; it looks different from each coordinate system, but the content is the same.
The next logical step is to ask if it then would be possible to change the coordinates

locally, and by the reasoning above this is a very reasonable thing to strive after. In
the physics example: if you rotate your experiment where you are it should not affect
the result. In physics this principle has a special name: The principle of covariance,
and is one of the most fundamental building blocks when constructing theories.
This is illustrated in Figure 1.3. The principal of covariance is also one of the
assumptions made by Einstein when developing the theory of general relativity and
gives the possibility to always choose a locally flat coordinate system, which in turn
gives rise to the fundamental and well known principle of equivalence. Furthermore,

3

1. Introduction

in physics one calls the local change of coordinates as change of gauge — this refers
to much more than just local coordinate changes in physics but that usage will
suffice for us — and hence a network that would be equivariant to local coordinate
changes would be a gauge equivariant network.

v

Figure 1.3: A schematic illustration of the Principle of covariance. The vector v
looks different when described in the left (red) basis or the right (blue) basis, but
it’s still the same vector.

1.2 Thesis goal and main results
The goal of this thesis will be to study the theory of gauge equivariant convolutions
on general smooth manifolds presented by Cheng et al. in a paper from 2019 [11],
filling in the details and presenting this in a coherent way to ease future formulations
of the theory in the language of differential forms.
This thesis also aims at presenting the theory for the case of networks equivariant

and invariant under discrete group transformations such as those used by Cohen et.
al. in [9].
As one of its main results, this thesis introduces a new way to view layers in

a neural networks as part of a map between associated bundles. In this setting
equivariance of the layer becomes equivalent to the map between the associated
bundles being well defined on the equivalence classes. Furthermore we present a
detailed description of the convolution proposed by Cheng et al. [11] and make
some notes on its similarities to the theory used for homogeneous spaces in [9, 12].
On the experimental side we present a working example of a rotation invariant

network used for classifying MNIST digits [13] by using code published by Cohen
et al. on their GitHub [14, 15]. Furthermore, we do thorough tests on this to show
the impact of the rotation invariance.

1.3 Thesis outline
The thesis has the following structure. In Chapter 2 we present neural networks,
specifically CNNs, in a mathematical way and proceed to show equivariance of
the standard convolutional layer with respect to translation as well as derive some
constraints that the kernel will need to obey for the convolution to be equivariant
also under rotations.
Chapter 3 will continue with introducing data on more general surfaces and presents

a new viewpoint on layers in a neural network as maps between associated bundles
where well definedness will require that the feature data transforms in an equivariant

4

1. Introduction

way. Furthermore, in this chapter we also present the theory of Cheng et al. [11]
where we fill in mathematical details not presented in their paper.
In Chapter 4 we will present the theory of Cohen et al. for the case of networks

equivariant and invariant under discrete rotations and mirrorings of the plane. In
addition we also present several tests of such networks to show the effect of this
additional structure.
The thesis ends with Chapter 5 in which the results are discussed and future

research directions and outlooks are presented and discussed.
The thesis contains several appendices with important content.
In Appendix A we present all underlying mathematical structure that the thorough

reader that is not well versed in manifolds, differential geometry, and fibre bundles
might find useful.
In Appendix B we present the code we used to run the tests, which results are

presented in Chapter 4.3.1.
Appendix C contains tables of testing results that were not necessary in the main

result and discussion to show the observed effects.
Appendix D lists all used definitions to help the reader find the appropriate defi-

nitions.

5

1. Introduction

6

2
Introduction to fully connected

and convolutional neural networks

In this chapter we aim to give a more technical introduction to fully connected
and convolutional neural networks in the setting when the task is classification, as
well as the concept of equivariance. For a general review of machine learning the
interested reader can check out [16]. The definitions presented in this chapter are
heavily inspired by that review.

2.1 A neural network: definition and training
A neural network N designed for a classification task takes some input data x and
usually outputs an array of length C, where C denotes the number of different types
of objects the network should classify. Each position in the array corresponds to a
type of object and the network’s output at each position is its confidence that the
input is of that type. Hence the output array must sum to 1. Each instance of a
network has some set of parameters θ that can be adjusted to change the network’s
action on the input data. This leads us to make the following definition.

Definition 2.1.1 (Neural network and terminology) A neural network N is a
map N : Θ×I → ON ⊂ RC where Θ is the parameter space, I is the space of inputs,
such that the output N(θ, x) = Nθ(x) in the output space ON satisfies∑

k

(Nθ(x))k = 1 (2.1)

where (Nθ(x))k denotes the kth element of the output. This must hold for all inputs
x ∈ I and parameter choice θ ∈ Θ. Neural networks often have a layered structure
so that the network can be decomposed into a sequence of maps between spaces

I
L
θ0
0−−→ V1

L
θ1
1−−→ · · ·

L
θn−2
n−2−−−→ Vn−1

L
θn−1
n−1−−−→ ON (2.2)

such that
Nθ(x) = [©i=0...nL

θi
i](x) = [Lθnn ◦ L

θn−1
n−1 ◦ · · · ◦ Lθ0

0](x). (2.3)

We will denote the intermediary space Vi as the feature space at level i and we will
call the map Li as the layer at level i. The number of channels at level i of a network
is the dimensionality of the feature space Vi.

7

2. Introduction to fully connected and convolutional neural networks

Remark 2.1.2 This terminology differs from the terminology normally used in ma-
chine learning. The normal nomenclature would be to call the intermediate spaces
Vi layers. The choice to depart from the standard terminology is done to facilitate
the discussion of the maps which this thesis is mostly focussed on.

The goal of the network is to learn dependencies in the data such that it can
perform good predictions and this is usually done by training the network. There
are several different ways to train networks, but for classification tasks the most
used is supervised learning in which each data point x in the data set I must have a
label y containing the ground truth of what x is. The set of all ground truths will be
denoted T . Then one puts the data through the network and compares the output
of the network with the ground truth. The comparison is done by a loss function:

Definition 2.1.3 (Loss function) A loss function (alt. cost function) for a net-
work N is a smooth map C : ON ×T → R which acts on the pairs (Nθ(xi), yi) where
yi is the ground truth corresponding to the data point xi.

Example 2.1.4 Two examples of cost functions:
i) The method of least squares regression uses a cost function which just takes

the square of the difference of the output to the ground truth

R2 = C(fθ(I), T) =
∑

i∈1,...,|I|
(fθ(xi)− yi)2. (2.4)

ii) A common loss function for classifying tasks is categorical cross entropy defined
as

C(Nθ(xi), yi) =
∑

j=1,...,C
(yi)j log(Nθ(xi)j) (2.5)

where C denotes the number of classes.

Intuitively one can see C(N(·, x), y) as a map from the parameter space Θ to R by

θ 7→ [C(N(·, x), y)](θ) = C(N(θ, x), y) ∈ R. (2.6)

This allows for the interpretation that to minimise the loss of the network for pairs
of input data and ground truth, one needs to find the minima of the surface created
by the map C(N(·, x), y) : Θ → R. As such this can be done by gradient descent,
but finding the minima θ̂ for a single pair (x, y) does not imply that the same θ̂
minimises the loss also for (x′, y′), and indeed this is not the case. If one would find
a parameter set θ̂ that minimises the loss for a very specific set of data points — the
extreme would be fitting to just one data point (x, y) — this parameter set would
probably perform very poorly outside of this data set; this is called overfitting. The
goal then becomes to find the parameter set θ̂ that minimises the loss for the training
data but also generalises to data the network has not yet seen. This is called the
bias-variance tradeoff and is an important subject, unfortunately this thesis will
not focus more on training or the bias-variance tradeoff but the interested reader is
encouraged to read [16] which gives a good overview of the topic.

8

2. Introduction to fully connected and convolutional neural networks

Figure 2.1: Schematic sketch of a simple neural network. The rings are called
nodes. We will call each vertical stack of nodes a feature vector since they are an
element of a feature space. The collection of arrows between feature vectors are
called layers; this figure thus depicts two layers. Image source: [28]; used under
licence CC BY-SA 3.0.

2.2 Fully connected networks
A common type of neural network is the fully connected neural network, also called
feed forward neural network, and although this thesis will not focus on these we will
still present rudimentary definitions for the sake of orientation. A schematic figure
of a fully connected network can be found in Figure 2.1.

Definition 2.2.1 (Fully connected network) A fully connected network Nθ is a
sequence of vector spaces Vi with dim Vi = ni, i.e ni channels, and maps Lθii : Vi →
Vi+1

I = V0
L
θ0
0−−→ V1

L
θ1
1−−→ · · ·

L
θn−1
n−1−−−→ Vn = ON . (2.7)

A vector in V0 is an input feature vector, and vectors in Vn are output feature vectors.

Definition 2.2.2 (Fully connected layer) A layer Lθii : Vi → Vi+1 in an fully
connected network acts on a vector x ∈ Vi by

Lθii = Wix+ bi (2.8)

where Wi is a ni+1×ni matrix, the elements of which are called weights of the layer
and bi is a vector in Vi+1 called the bias. The weights Wi and biases bi for a layer
together make up the parameters for the layer θi.

2.3 Convolutional neural networks
We will talk about convolutional neural networks (CNNs) in terms of their appli-
cation to image analysis. Since the data in the case of images is inherently two-
dimensional we would like to get a feature vector, which contains numerical values
for each feature we’re looking for, at each point in the image. This concept is

9

2. Introduction to fully connected and convolutional neural networks

Figure 2.2: A schematic image of a typical CNN. Where an input image is con-
volved over to create the feature map. Note that this image use a different termi-
nology: what in this image is called “feature maps” is what we call a single feature
map. Image source: [29]; used under licence CC BY-SA 4.0.

encapsulated in feature maps. A schematic description of a CNN can be seen in
Figure 2.2.

Definition 2.3.1 (Feature map) A feature map is a compactly supported map
f : R2 → V where V is a feature vector space. We will sometimes refer to the
feature maps in terms of their target space. We denote the set of feature maps
between R2 and the feature vector space V as Γ(R2, V) = C∞c (R2, V).

Definition 2.3.2 (Image) An image is a compactly supported map I : R2 → Rn

where n = 1 for greyscale data and n = 3 for RGB data. That is, an image is a
feature map where V is either R or R3.

Remark 2.3.3 Note that in applications the numerical values for each component
is restricted to some range; e.g. 8-bit precision where each component takes an
integer value between 0 and 255.

Since we will use convolutions to map one feature map Vi into the next Vi+1 we need
a kernel.

Definition 2.3.4 (Kernel) A kernel is a compactly supported map k : R2 →
Rm×n.

Since we will perform convolutions on a discretised grid (the pixels of the image)
we will “discretise” the image and kernel so that they are defined on Z2. This dis-
cretisation is only done when one thinks about the images and kernels as continuous
functions, in application the image is never continuous (due to discrete light mea-
surements) and therefore would not need to be “discretised”. When one talks about
kernel size one refers to the support of the kernel, which in applications is usually
only non-zero on a subgrid of Z2 between 1× 1 and 7× 7.
Letting Γ(A,B) denote the set of smooth maps between A and B, we can now

define the convolutional layer

Definition 2.3.5 (Convolutional layer) A continuous convolutional layer Li is
a map between feature map spaces Γ(R2, Vi) and Γ(R2, Vi+1) and maps a feature

10

2. Introduction to fully connected and convolutional neural networks

map fi to fi+1 pointwise as

fi+1(x) = Li(fi)(x) = [ki ? fi](x) =
∫
y∈R2

ki(y − x)fi(y)dy (2.9)

where the kernel maps
ki : R2 → Rni+1×ni . (2.10)

The discretised version of the convolution uses feature maps and kernels defined on
Z2 and takes pointwise the form

fi+1(x) = Li(fi)(x) = [ki ? fi](x) =
∑
y∈Z2

ki(y − x)fi(y) (2.11)

where the kernel maps
ki : Z2 → Rni+1×ni . (2.12)

Remark 2.3.6 The convolution defined here is actually a correlation and the con-
volution is really

[ki ? fi](x) =
∫
y∈R2

ki(x− y)fi(y)dy. (2.13)

In machine learning the terminology is used interchangeably.

Remark 2.3.7 The Definition 2.3.5 is the mathematical definition for the contin-
uous and discrete case. For convolutional layers in neural networks there are more
parameters one has to give a convolutional layer when defining it in code: stride
and kernel size. Above we mentioned that the kernel size is the support of the ker-
nel, and stride refers to the sum in the convolution going over a subgrid to Z2. A
(m,n)-strided convolution would be

[ki ? fi](x) =
∑

y∈{(a,b) | a=mz, b=nz′ for z,z′∈Z2}
ki(y − x)fi(y). (2.14)

2.3.1 Translation equivariance of convolutional layers
We now go on to discussing equivariance of the “ordinary” convolutional layer, firstly
from a more abstract point of view. If the reader would like some rudimentary
definitions in group theory, such can be found in Appendix A. A simple definition
of equivariance is as follows.

Definition 2.3.8 (Equivariance) Let G be a group acting on a vector space V
through a representation ρ : G→ GL(V) and on V ′ through η : G→ GL(V ′). Then
a map ψ : V → V ′ is called G-equivariant if

ψ(ρ(g)v) = η(g)ψ(v). (2.15)

This is diagrammatically represented as this diagram commuting:

V V ′

V V ′

ψ

ρ(G) η(G)

ψ

11

2. Introduction to fully connected and convolutional neural networks

In the case of ordinary convolutions, the group is the translation group acting on
Γ(Z2, Vi). It acts on the feature maps as left translation ly[fi](x) = fi(x− y).

Lemma 2.3.9 (Translation equivariance) A convolutional layer

Li : Γ(Z2, Vi)→ Γ(Z2, Vi+1) (2.16)

is translation equivariant. 2

Proof We first apply the convolution to the translated feature map and use the
definitions

Li(lyfi)(x) = [ki ? lyfi](x) =
∑
z∈Z2

ki(z − x)(lyfi)(z)

=
∑
z∈Z2

ki(z − x)fi(z − y).
(2.17)

Next we shift our summation variable z′ = z − y∑
z∈Z2

ki(z−x)fi(z−y) =
∑
z′∈Z2

ki(z′+y−x)fi(z′) =
∑
z′∈Z2

ki(z′− (x−y))fi(z′) (2.18)

and finally proceed with using the definition of the convolution to arrive at the
wanted result∑

z′∈Z2

ki(z′ − (x− y))fi(z′) = Li(fi)(x− y) = ly[Li(fi)](x). (2.19)

Hence
Li(lyfi) = ly[Lifi]

and translation equivariance is proven. �

For convolutional layers this means that if the input image is translated by some
vector then the output image would be the same as if the convolution was done first
and then translation was applied.

2.3.2 Why convolutional neural networks?
Convolutional networks are really efficient when it comes to image analysis, and the
main reasons for this is weight sharing and locality.

Weight sharing

Say that we would like to analyse an n × n greyscale image with a fully connected
network and have an m-dimensional feature vector after the first layer. The input
feature vector would have n2 dimensions (n2 nodes) and since every node in one
feature vector is connected to every node in the next feature vector, this becomes
n2m parameters in the first layer.
Compare this to a convolutional neural network for the same image where in the

layer we define a kernel k0 : Z2 → Rm×1 which assigns a m× 1 matrix to each point

12

2. Introduction to fully connected and convolutional neural networks

in Z2; the 1 comes from the fact that the image is greyscale and thus has a one-
dimensional feature vector at each point. If the kernel is of size 3×3, i.e. is non-zero
on a 3 by 3 grid, then we have 3 · 3 ·m parameters, and since this kernel is slid over
the image these parameters are used for the whole image, and thus shared. This
amounts to an immense reduction in parameters which is a big gain in efficiency.

Locality

If we were to analyse an image using a fully connected network then we would have
to flatten the image; that is, convert from a 2D image to a 1D array. In doing so,
some pixels that were spatially adjacent in the original image would end up not
spatially adjacent in the flattened version. See Figure 2.3 where a subimage of a
MNIST [13] digit is flattened.
Spatial locality is an important feature of reality, and we often recognise things by

how they are put together, which can’t be done if the image is flattened.

(a)

(b)

Figure 2.3: The left image is a subimage of an image from the MNIST dataset
and is flattened to obtain the array on the right, and in doing this loses locality. For
example, the white pixels at (a), and (b) were adjacent in the original image but
not in the flattened version.

2.3.3 Equivariance of convolutions under rotations
Convolutional layers are equivariant under translation, which is a symmetry of the
plane, but rotations are also in the symmetry group of the plane. Can we make nor-
mal convolution equivariant under rotations? The motivation for this was discussed
in Section 1.

13

2. Introduction to fully connected and convolutional neural networks

Let us, for the sake of using continuous rotations, go back to the continuous case
where feature maps are functions from R2 to some Vi and the kernels are defined
on R2. The more general case of an arbitrary homogeneous base space is discussed
in [12]. To make clear what we are working with we refine the definition of feature
map:

Definition 2.3.10 (Feature map of type ρ) A feature map of type ρ is a feature
map which has the following transformation property under the action of an element
g of some group G

fi(x) g−→ lg[fi](x) = ρi(g)fi(g−1x). (2.20)

Remark 2.3.11 The type of data determines which transformation is appropriate
to choose for ρ. For example, if f would be a RGB image, then if we rotate the
image we would not want the channels to mix and as a consequence we need to
choose ρ as the direct sum of three one-dimensional trivial representations. That is,
f consists of three separate scalar fields fi=1,2,3 which each transform as

fi(x) g−→ lg[fi](x) = fi(g−1x). (2.21)

If the data was a vector field, e.g. wind data, then the components of the vector
fi(x) would transform under g and the standard choice of ρ for G being the group
of rotations in the plane, SO(2), would be the canonical representation of SO(2)
acting on fi(x). If fi would be a two-dimensional vector field this representation
could be

R(θ) =
(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)
. (2.22)

Remark 2.3.12 Feature maps transforming in this way, as well as compatible ker-
nels, have been studied by Cohen et al. under the name of steerable CNNs [17].

Suppose we have representations ρi, and ρi+1 so that the group of rotations acts
through these on the feature vector spaces Vi and Vi+1. Equivariance with respect
to rotations would then be

lg[Li(f)](x) = ρi+1(g)Li(fi)(g−1x) = Li(ρi(g)fi)(g−1x) = Li(lg[fi])(x) (2.23)

for some element g of the rotation group.

Lemma 2.3.13 (Equivariance of convolutions w.r.t. rotations) The convolu-
tion

fi+1(x) = Li(fi)(x) = [ki ? fi](x) =
∫
y∈R2

ki(y − x)fi(y)dy (2.24)

between a feature map of type ρi and one of type ρi+1 is equivariant iff the kernel
satisfies

ki(z) = ρi+1(g)ki(g−1z)ρi(g−1). (2.25)
2

14

2. Introduction to fully connected and convolutional neural networks

Proof We start by transforming the input feature map and using the definition of
the convolution

Li(lg[fi])(x) = [ki ? lg[fi]](x) =
∫
R2
ki(z − x)lg[fi](z)dz (2.26)

followed up by the definition of the group action on the feature map f∫
R2
ki(z − x)lg[fi](z)dz =

∫
R2
ki(z − x)ρi(g)fi(g−1z)dz. (2.27)

Performing a change of coordinates z′ = g−1z and using that g is a rotation of the
plane and hence has determinant 1 we get∫

R2
ki(z − x)ρi(g)fi(g−1z)dz =

∫
R2
ki(gz − x)ρi(g)fi(z)dz. (2.28)

From the other side we first apply the definition of the group action

lg[Li(fi)](x) = ρi+1(g)Li(fi)(g−1x) = ρi+1(g)[ki ? fi](g−1x) (2.29)
followed with the definition of the convolution

ρi+1(g)[ki ? fi](g−1x) = ρi+1(g)
∫
R2
ki(z − g−1x)fi(z)dz. (2.30)

We use that g is independent of the integration to move this inside the integral and
thus obtaining

ρi+1(g)
∫
R2
ki(z − g−1x)fi(z)dz =

∫
R2
ρi+1(g)ki(z − g−1x)fi(z)dz. (2.31)

The equality chain ending in (2.28) together with the chain ending in (2.31) we
see that requiring equivariance gives the following criteria on the kernel

ki(gz − x)ρi(g) = ρi+1(g)ki(z − g−1x). (2.32)
If the kernel ki satisfies this criteria then we can follow the steps above and see that
equivariance is indeed fulfilled

Li(lg[fi])(x) = [ki ? lg[fi]](x) =

=
∫
R2
ki(gz − x)ρi(g)fi(z)dz

=
∫
R2
ρi+1(g)ki(z − g−1x)fi(z)dz

= ρi+1(g)Li(fi)(g−1x)
= lg[Li(fi)](x).

(2.33)

Hence, requiring the convolution to be rotation equivariant and z−g−1x = g−1(gz−
x) together with (2.32) puts the following constraint on the kernel ki : R2 →
Rni+1×ni :

ki(z) = ρi+1(g)ki(g−1z)ρi(g−1), (2.34)
and that property in turn gives equivariance. Which was what we wanted to show.�

Remark 2.3.14 In the case that the feature maps we transform are scalars, i.e.
ρ = 1, the criteria on the kernel would be

ki(z) = ki(g−1z) (2.35)
and thus the kernel would have to be invariant under rotations.

15

2. Introduction to fully connected and convolutional neural networks

16

3
Gauge equivariant networks

In this chapter we build up the theory needed to describe the gauge equivariant con-
volutions. We will start from the basic convolutional layer on flat data, equivariant
only to translation and work up from there. We will assume a passing familiarity
with topology, manifolds and fibre bundles; more specifically principal bundles, asso-
ciated bundles, and frame bundles. If the reader feels unfamiliar with these subjects
the relevant parts of the supporting theory can be found in Appendix A.

3.1 Geometric deep learning
Thus far in this thesis we have only discussed data on flat manifolds — e.g. a
normal image, or a vector field on a flat space — but there are data we would like
to analyse that do not live on an inherently flat space. An example would be the
spherical images obtained from fisheye cameras used in autonomous cars.
So, what happens when one goes from a flat space to something curved? The short

story it is that locally one can do the same things as in a flat space, but globally —
on the entire space — one cannot. For example, it is impossible to create a global
basis on the sphere, a fact sometimes known as the hairy ball theorem. Instead of
viewing data as a function from the base space to some data space that is the same
for every point in the base space one needs to view data as sections of fibre bundles.

Definition 3.1.1 (Bundle and fibre bundle) A bundle over a manifold M is a
triple (E, π,M) consisting of a total space E, a projection E

π−→ M , and the base
space M . The so called fibre over a point p, denoted Ep, is the set of all elements
in E that are projected to p by π:

Ep = π−1(p) = {e ∈ E | π(e) = p}. (3.1)

The bundle is a fibre bundle if all fibres are isomorphic to some “typical” fibre F ,
i.e.

Ep ' F for all p ∈M. (3.2)
In the case where F is a vector space the construction is called a vector bundle. A
fibre bundle with typical fibre F is denoted (E, π,M, F).

More definitions relating to fibre bundles can be found in appendix A.4.

Remark 3.1.2 Note that for a fibre bundle (E, π,M, F), even though Ep ' F for
every point in M , each Ep is still a different space, and a priori we cannot compare
elements in fibres over different points.

17

3. Gauge equivariant networks

The data, that previously was a function f : M → V for some feature space V , will
now be a section of a fibre bundle.

Definition 3.1.3 (Section) A section σ of a bundle (E, π,M) is a map σ : M → E
such that

π ◦ σ = idM . (3.3)

Remark 3.1.4 A section of a fibre bundle thus assigns to each point p ∈ M an
element in the fibre above p.

Example 3.1.5 Let f be a feature map on a flat space f : M = R2 → Rk which
assigns a k-dimensional feature vector to each point in M , then we could view this
as a section of the vector bundle (E = Rk, π,R2,Rk) where the total space consists
of elements e ∈ Rk for each point in M .

Example 3.1.6 An important example of a vector bundle is the tangent bundle
TM to M . At each point the vector space is the tangent space TpM to M at p, and
if M is a d-dimensional smooth manifold then TpM ' Rd.

On a flat space the concepts of function and section coincide since it is possible
to join the fibres together in a canonical way, and it is therefore possible to move
objects between the fibres without extra structure; the space is flat. For a general
smooth curved manifold moving an object in a fibre around is no longer doable
since the outcome will depend on the path chosen; this is the reason for why one
needs to use fibre bundles and sections instead of functions. One can add additional

Figure 3.1: A tangent vector the sphere’s north pole is moved along two different
paths, and the result differs since the sphere is curved. Image source: [30], image in
the public domain.

structure, a connection, that allows for transporting objects between fibres locally
in a unique way by following specific set of paths called geodesics and this in turn
allows for local comparison of objects in fibres.
All this means that everything that previously was done globally, e.g. convolution

and coordinate changes (e.g. rotation), must now be done pointwise, and there need
not be anything that links what is done in one point to the neighbouring points.

18

3. Gauge equivariant networks

For more comments on networks on manifolds the reader is recommended to
read [10].

3.2 Introductory discussion of gauge equivariance
To get a geometrical intuition of what we mean when we talk about gauge equivari-
ance and changing gauge we will start by considering the following:
Let M be a d-dimensional smooth manifold and σ be a section of the tangent

bundle to M ; hence σ(p) is a tangent vector to M at p ∈ M . A (local) change
of gauge at p then amounts to changing the basis in the tangent space TpM at p
which can be realised as the action of GL(d,R) on the tangent space. This does
not change the tangent vector σ(p) although the components of σ(p) looks different
when expressed in the bases corresponding to the different gauges. See Figure 3.2
and 1.3 for the combined intuition. Note that the change of coordinates for TpM is
the same for all of TpM but might vary between different points p, p′ ∈M .

p

M

TpM p

M

TpM

Figure 3.2: The manifold M has a different choice of gauge — local coordinates
on M — at p in the left and the right figure leading to a different choice of basis in
the corresponding tangent space TpM .

Hence, for a convolution to be gauge equivariant we need that the action of the
layer commutes with change of gauge, i.e. change of coordinates in the tangent
space. To proceed we introduce the associated bundle.

3.3 The associated bundle
The associated bundle will contain the information of the structure group of M and
will keep the invariance of the vectors by setting up equivalence classes.

Definition 3.3.1 (Associated bundle) Let
i. M be a d-dimensional smooth manifold,
ii. V be a vector space,
iii. LM be the (principal) frame bundle to M .

Since LM is a principal G = GL(d,R)-bundle we must define the action of G on V .
We define this in the following way:

v 7→ g . v = ρ(g)v. (3.4)

19

3. Gauge equivariant networks

Next we define an equivalence relation on LM × V as

[e, v] ∼ρ [e′, v′] iff ∃g ∈ G :

 e′ = e / g

v′ = g−1 . v = ρ(g−1)v.
(3.5)

The total space of the associated bundle will then be

LMV = (LM × V)/∼ρ (3.6)

with the projection πV : LMV →M defined by

πV ([e, v]) = π(e) (3.7)

where π : LM →M is the projection of the frame bundle.

The first thing to check is if the projection πV is well defined, and it is:

πV ([e, v]) = πV ([e / g, g−1 . v]) = π(e / g) = π(e) (3.8)

since the action of G doesn’t change the fibres of the frame bundle: e / g ∈ LpM iff
e ∈ LpM .

Lemma 3.3.2 The above constructed associated bundle is a fibre bundle with typical
fibre V . 2

Proof To prove that the associated bundle is a fibre bundle we must show that
π−1
F (p) = Vp ' V for each p ∈M .
First, define a function φ : LMV → LM which acts by

φ([e, v]) = {e′ | e′ = e / g, g ∈ G} = LpM ⊂ LM (3.9)

since G acts transitively on LpM . This construction is necessary for φ to be well
defined on equivalence classes of LMV .
With this we get πV = π◦φ since πV ([e, v]) = π(e) and (π◦φ)([e, v])) = π(LpM) =

π(e) for e ∈ LpM . Hence we have π−1
V = φ−1 ◦ π−1. By the definition of π we get

that π−1(p) = LpM and

φ−1(LpM) = {[e, v] | φ([e, v]) ∈ LpM} = {[e, v] | e ∈ LpM, v ∈ V }
= {[e0, v

′] | v′ ∈ V } ' V
(3.10)

where we used the transitive action of G on LpM to choose a class representative
that has a fixed frame e0 as first component.
This shows that π−1

V (p) ' V for all p ∈ M and hence is LMV a fibre bundle with
typical fibre V . �

Remark 3.3.3 Letting V be the space of tangent vectors we retain the geometrical
intuition presented in Figure 3.2.

20

3. Gauge equivariant networks

A feature map at level i in a GCNN will be a section of an associated bundle with
a specific representation ρi acting on a vector space Vi in which the feature vectors
will live. The representation ρi will change depending on what type of data one
uses; for example, if the input data to a GCNN, level i = 0, is an image then we
would not want the intensity or the RGB channels to mix if we rotate the tangent
plane, hence we would choose ρ0 = 1 for such data, but if the input was something
like a vector field, say wind directions on the Earth, a different ρ0 would be chosen.

3.4 The invariant/equivariant layer
At the end of the last section we mentioned that the feature maps will be sections
of a suitable associated bundle, depending on the level the feature map is in and
what type of data it represents. This allows for the viewpoint that the layers are
maps between associated bundles, which has some interesting consequences.

Proposition 3.4.1 Let LMVi and LMVi+1 be two associated bundles under the same
group G and let φi : LMVi → LMVi+1 be a map between those bundles with the action

φi([e, v]) = [e, Li(v)]

where Li is a map between Vi and Vi+1 that is transforming the feature vector v.
Then, φi is well defined on the equivalence classes of the associated bundle LMVi

iff Li is equivariant under the action of G

Li(g−1 . v) = g−1 . Li(v) (3.11)
2

Proof Requiring that φi be well defined on equivalence classes gives the following

φi([e, v]) = { well defined } = φi([e, v] / g) = φi([e / g, g−1 . v]). (3.12)

Employing the definition of the action of φi we get

φi([e / g, g−1 . v]) = [e / g, Li(g−1 . v)]. (3.13)

Using the fact that g−1 . g . u = u for u ∈ Vi or Vi+1

[e / g, Li(g−1 . v)] = [e / g, g−1 . g . Li(g−1 . v)] (3.14)

which, when using the definition of the action of G on the equivalence classes of the
associated bundle, becomes

[e / g, g−1 . g . Li(g−1 . v)] = [e, g . Li(g−1 . v)] / g. (3.15)

Since the equivalence classes are preserved under the action of G we arrive at

[e, g . Li(g−1 . v)] / g = [e, g . Li(g−1 . v)]. (3.16)

21

3. Gauge equivariant networks

But since we require φi to be well defined on equivalence classes we also have

φi([e, v]) = [e, Li(v)]. (3.17)

Putting (3.16) and (3.17) together one obtains

φi([e, v]) = [e, Li(v)] = [e, g . Li(g−1 . v)] = φi([e, v] / g) (3.18)

and hence

Li(v) = g . Li(g−1 . v) ⇐⇒ g−1 . Li(v) = Li(g−1 . v). (3.19)

That is, requiring φi to be well defined on equivalence classes of the associated
bundle requires the map Li, that transforms the feature vector, to be equivariant:

Li(g−1 . v) = g−1 . Li(v). (3.20)

Checking that Li is equivariant under G implies that φi is well defined is a short
calculation, presented here with no further comment since every relevant step was
mentioned above.

φi([e, v]) = [e, Li(v)]
= [e, Li(v)] / g
= [e / g, g−1 . Li(v)] = {equivariance assumption}
= [e / g, Li(g−1 . v)]
= φi([e / g, g−1 . v])
= φi([e, v] / g).

(3.21)

Therefore, the action of φi is well defined iff Li is equivariant under the action of G;
which was what we wanted to show. �

Remark 3.4.2 Recalling that Li(v) ∈ Vi+1 for v ∈ Vi and that different Vk:s trans-
form under different ρ:s the equivariance becomes

Li(ρi(g−1)v) = ρi+1(g−1)Li(v) (3.22)

which is exactly on the form presented in equation (2.15).

3.5 Gauge equivariant convolution
Now we got an idea of what the feature maps are and what gauge equivariance is,
so now we discuss the aspects of gauge equivariant convolution.
One important reason for the adoption of convolutions for normal CNNs was weight

sharing: the fact that moving one kernel over the image massively reduces the
number of parameters one has to use. We would like to build something similar into
the gauge equivariant convolution, but since the action of changing gauge around a
point p ∈M is the same as changing basis in the tangent space TpM we need to let

22

3. Gauge equivariant networks

everything in the convolution be based on the point p or the tangent space TpM in
order to obtain the feature vector at p.
In the case when M is flat, e.g. M = Rd, we have “normal convolution”

[k ? f](x) =
∫
Rd
k(x, y)f(y)dy. (3.23)

where one can see sections of a vector bundle f over M as functions f : M → V
instead of mapping into the separate fibres Vp. An intuition for the kernel k :
M×M → hom(V, V ′) is that k(x, y) represents the kernel centred at x and evaluated
in y so that we get the correct value of k to transform f at y.
Now we are transitioning to considering a general curved manifold, and before

we can present a definition of a gauge equivariant convolution we need a couple of
definitions.

Definition 3.5.1 (Feature map on manifold) A feature map fi on the manifold
M at level i of a network is a section of the vector bundle Ei π−→ M with typical
fibre Vi on which the action of GL(d) is defined through a representation ρi:

fi(p) 7→ h . fi(p) = ρi(h)fi(p). (3.24)

Sometimes fi(p) is also denoted (fi)p to signify that this is a vector at the base point
p ∈M .

Definition 3.5.2 (Metric) A metric at a point p of a d-dimensional manifold M ,
denoted gp, is a linear and symmetric map

gp : TpM × TpM → R. (3.25)

The metric can be expressed in components

(gp)ij = gp(ei, ej) (3.26)

where {ei}i=1,...,d is a basis for TpM induced by a local chart. This way the metric
have a matrix representation and the determinant of the metric is denoted

det(gp) = |gp|. (3.27)

Remark 3.5.3 In appendix A.5.4 there is a more explicit definition of metric.

Definition 3.5.4 (Kernel on manifold) The kernel between level i and i+ 1 in
a network on a manifold M is a map

ki : M × TM → hom(Vi, Vi+1) (3.28)

where TM denotes the tangent bundle to M . And specifically at a point p ∈M we
have

ki(p) : TpM → hom((Vi)p, (Vi+1)p) (3.29)

where (Vi)p is the fibre over p of the vector bundle Ei. Since Ei is a vector bundle
(Vi)p ' Vi.

23

3. Gauge equivariant networks

Lastly we need a way to move vectors fi(p) between fibres. This can be done via
parallel transport and the exponential map:

Definition 3.5.5 (Exponential map) Let (Up, ψ) be a chart on the manifold M
centred around p. Then the exponential map expp : TpM →M takes a tangent vector
v ∈ TpM and parallel transports the point p along the unique geodesic γ : I → M ,
such that γ(0) = x and (ψ ◦ γ)′(0) = v, to the point γ(1).

Remark 3.5.6 This exponential map is used to transport vectors in the following
way. Let f(expp v) be a vector at the point obtained by moving p along the curve γ
with tangent vector γ′(0) = v in some chart, then we write

f

∣∣∣∣
expp v

(p) (3.30)

to denote that the feature map f is evaluated in the point f(expx v) and then parallel
transported back to p along the appropriate geodesic γ. See section A.6 for more
details on geodesics and parallel transport.

With these definitions we can now state the gauge equivariant convolution as
proposed by Cheng at. al. [11]:

Definition 3.5.7 (Equivariant convolution on manifold) Let (Up, ψ) be a chart
on M centred around p ∈M such that it induces a basis e on TpM . Then the gauge
equivariant convolution of a feature map fi on M is

Li(fi)(p) = [ki ? fi](p) =
∫
Bp,R

ki(p, v)fi
∣∣∣∣
expp v

(p)
√
|gp|dv, (3.31)

where
Bp,R = {v ∈ TpM | gp(v, v) < R} (3.32)

is a ball in the tangent space TpM .

Remark 3.5.8 Note that the chart (Up, ψ) is necessary since to compute the de-
terminant of the metric one needs it components, which only exist in relation to an
induced basis. Also the parallel transport of the feature map needs the chart for
numerical calculation.

Proposition 3.5.9 Given a chart (Up, ψ) on M centred around p ∈M such that it
induces a basis ep on TpM , then the map φi : LMVi → LMVi+1 acting as

φi([ep, fi(p)]) = [ep, Li(fi)(p)] (3.33)

where Li is the gauge equivariant convolution, is well defined iff the kernel ki satisfies

ki(p, v) = ρi+1(h)ki(p, v)ρi(h−1) (3.34)

for h ∈ GL(d). 2

Remark 3.5.10 By proposition 3.4.1 that φi is well defined is equivalent with Li
being equivariant under the action of G = GL(d) which is the group that acts on
elements of the associated bundles LMVi and LMVi+1 .

24

3. Gauge equivariant networks

Lemma 3.5.11 (Invariant measure) The construction
√
|gp|dv is invariant un-

der the action of h ∈ GL(d). 2

Proof Choose a chart (Up, ψ), then the metric can be expressed in components by
evaluating it on the basis vectors of a frame e ∈ LM at p as

(gp)ij = gp(ei, ej). (3.35)

The basis vectors of the frame e change as

ei
h−→ ρ(h−1)miem (3.36)

by the action of h ∈ GL(d) on the principal frame bundle LM . Hence we get that
the components of the metric changes as

gp(ei, ej) h−→ gp(ρ(h−1)miem, ρ(h−1)kjek) = ρ(h−1)miρ(h−1)kjgp(em, ek)
= ρ(h−1)miρ(h−1)kj(gp)mk.

(3.37)

Writing this in terms of matrices we get the following transformation

gp
h−→ ρ((h−1)T)gpρ(h−1). (3.38)

Hence
√
|gp| transforms as

√
|gp|

h−→ det(ρ(h−1))
√
|gp|. (3.39)

The action of GL(d), a change of gauge, is a general change of coordinates in the
tangent space and since a tangent vector transforms under h as

v
h−→ ρ(h)v (3.40)

we get that the integration measure changes

dv
h−→ det(ρ(h))dv. (3.41)

Note that h is the same and constant for the whole tangent space.
Taking this together with the square root of the metric we see that they indeed

form an invariant integration measure under action of GL(d):√
|gx|dv

h−→ det(ρ(h−1))
√
|gx| det(ρ(h))dv =

√
|gx|dv. (3.42)

Which was what we wanted. �

Proof (Proof of proposition 3.5.9) Let (Up, ψ) be a chart centred at p ∈M .
Letting lh denote the action of h ∈ GL(d), and fi the feature map at level i in the
network, the equivariance of Li would be

Li(lh[fi])(p) = [ki ? lh[fi]](p) = lh[ki ? fi](p) = lh[Li(fi)](p). (3.43)

25

3. Gauge equivariant networks

To obtain the wanted result we work from both directions. From the left hand side

[ki ? lh[fi]](p) =
∫
Bp,R

ki(p, v)lh
[
fi

∣∣∣∣
expp v

]
(p)
√
|gp|dv

=
∫
Bp,R

ki(p, v)ρi(h)fi
∣∣∣∣
expp v

(p)
√
|gp|dv,

(3.44)

and from the right hand side

lh[ki ? fi](p) = lh

[∫
Bp,R

ki(p, v)fi
∣∣∣∣
expp v

(p)
√
|gp|dv

]

= ρi+1(h)
∫
Bp,R

ki(p, v)fi
∣∣∣∣
expp v

(p)
√
|gp|dv.

(3.45)

since we know that the output is a vector in the fibre (Vi+1)p at the point p and
hence transforms according to (3.24). Taking (3.44) and (3.45) together we get:

ρi+1(h)ki(p, v) = ki(p, v)ρi(h) ⇐⇒ ki(p, v) = ρi+1(h)ki(p, v)ρi(h−1). (3.46)

Hence the convolution is equivariant iff ki satisfies this criteria, and therefore the
map φi is well defined by proposition 3.4.1. Which is what we wanted. �

Remark 3.5.12 Note that the transformation of h happens in the tangent space
at p, at other points p′ one might use a different group element h′.

3.6 Discussion on the gauge equivariant convolu-
tion

In this section we present some discussion on the gauge equivariant convolution
and how these relate to the flat case discussed in Chapter 2, as well as the case of
integration of differential forms on manifolds.

3.6.1 Comparison to the flat case
The gauge equivariant convolution presented in the previous section was on the form

Li(fi)(p) = [ki ? fi](p) =
∫
Bp,R

ki(p, v)fi
∣∣∣∣
expp v

(p)
√
|gp|dv, (3.47)

with the criteria on the kernel

ki(p, v) = ρi+1(h)ki(p, v)ρi(h−1). (3.48)

Comparing this with the criteria obtained for rotations on the plane seen in equa-
tion (2.25):

ki(z) = ρi+1(g)ki(g−1z)ρi(g−1). (3.49)
covered in section 2.3.3, there are obvious similarities.

26

3. Gauge equivariant networks

In the general case of the gauge equivariant convolution, local transformations at a
point p does not move the point, and since z in (3.49) refers to the point the feature
map is evaluated at, the local transformation would be z = g−1z. Using this, the
criteria would be

ki(z) = ρi+1(g)ki(z)ρi(g−1). (3.50)

which is truly on the same form as the kernel criteria for the gauge equivariant
convolution. As such it is reasonable to say that the gauge equivariant convolution
is a pointwise equivariant convolution.

3.6.2 Comparison to differential forms
In the area of differential geometry one has differential forms ω ∈ Ωk(M) defined on
a d-dimensional manifold M such that ω : M → Altk(TM) and

ω(p) ∈ Altk(TpM) (3.51)

where Altk(TpM) = {η | η : TpM × · · · × TpM → R} is the vector space of k-
alternating maps on TpM . This allows for a unique definition of the integral of a
differential form on a manifold ∫

M
: Ωd(M)→ R. (3.52)

This theory is very well known and it would simplify future development being able
to formulate the gauge equivariant convolutions in the language of differential forms.
When performing an integral of a differential form ω ∈ Ωd(M) on a d-dimensional

manifoldM one has to use a chart (U, φ) to relate the abstract integral to something
we know how to compute, i.e. integrals on Rd. The integral then takes the form∫

U
ω =

∫
φ(U)

(φ−1)∗ω (3.53)

which is an integral on Rd since φ(U) ⊂ Rd, by the virtue of being a chart, and
since φ−1 : Rd → M , (φ−1)∗ is a pullback and we have (φ−1)∗ω ∈ Ωd(Rd). This can
then be translated into an ordinary integral on Rd by using the basis induced by the
chart. A change of local chart then amounts to the ordinary change of coordinates
in integrals on Rd. That this is well defined hinges on the fact that the alternating
maps are scalar valued and hence it is possible to uniquely transport the values at
different points and add them; this is essentially what the integral of the differential
form does: it puts a locally flat coordinate system on the manifold and uses this to
add values at different points.
For a vector bundle valued differential form this is no longer unique and if one

specifies a way to deal with this there is also the problem that the result of the
integration will be dependent on which local trivialisation one chooses, e.g. how the
geometrical vectors that live on the manifold are expressed in a basis for the vector
space fibre. As the gauge equivariant convolution is formulated here this issue is not
yet addressed and this will require further investigation. This is not touched upon
in [11] where Cheng et al. introduces this convolution.

27

3. Gauge equivariant networks

28

4
Applications to group equivariant

CNNs

The second half of this thesis will contain details about ways to implement this
framework for CNNs in the case where we have a global symmetry of the plane.
In this chapter we will start with a brief review of the theory of the group equiv-

ariant convolutional neural network and will follow up with some implementations.
In the implementation part this chapter will cover the two types of group invariant
networks that we have implemented — invariant since they deal with classification
tasks. These are a network invariant under the group D4 of 90◦ rotations of the
plane and reflections [9], and a network invariant under the six-fold symmetry of a
hexagonal grid [18]. In these networks the symmetry group acts on the plane by
global change of basis. The code produced by the authors of the cited papers can
be found in their respective GitHub [14, 19].

4.1 Group equivariant networks on homogeneous
spaces

In this section we will present the closely related theory of the group equivariant
convolutional neural networks also presented in [9, 12].
On a homogeneous space the manifold can be written as a quotient spaceM = G/H.

Using this as our base space we can immediately construct an H-principal bundle
by defining a projection π : G→ G/H which maps an element g ∈ G to a represen-
tative in its left coset g 7→ π(g) = [g] ∈ gH. The typical fibre of the bundle is then
H.
With this construction we see that functions on the base manifold instead can be

seen as functions on the quotient space G/H.
In this section we will use the notation that Cohen et al.[9] used to denote the

transformation of a scalar feature map via the group element g as

[lgf](x) = [f ◦ g−1](x) = f(g−1x). (4.1)

Note that this is Definition 2.3.10 in the case when ρ = 1, which corresponds exactly
to f being a scalar.
In the example case of g being an element of the group of translations in the plane

(i.e. SE(2)/SO(2)) we have that g−1x = x− g. As we will see the feature maps are
easily thought of as functions on the group G after a group convolution and for this
we can just replace x in f with an element of the group.

29

4. Applications to group equivariant CNNs

Figure 4.1: A visualisation of how a feature map defined on a group transforms.
In practice the feature map has three arguments: the coordinates in R2 (the pixel
numbers) and a group coordinate. Rotating the feature map both rotates the plane
coordinates as well as changing the group coordinate. This figure is from [31]; used
with permission.

Example 4.1.1 Let G = SE(2) be the space of 2-dimensional translations and
rotations in the plane. Let H = SO(2) ⊂ G denote the rotations in the plane. Then
we have that R2 ' SE(2)/SO(2) is our base manifold, with the structure group
H = SO(2).
To visualise G in this case, one can imagine the plane with a circle attached to

each point. And since SO(2) ' S1 one can interpret functions on G as functions on
S1 oR2.
If we were to do a global change of basis, by rotation, on a function f defined

locally on G ' HoG/H we would both rotate the G/H argument, e.g. an ordinary
rotation of a function defined on R2, as well as incrementing the H argument to
keep track of this transformation. See Figure 4.1 — Figure 1 from [31] — for a
visual description of this where the rotations are only the four 90◦ rotations, which
is a symmetry of a square grid.

Cohen presents a generalised convolution of a feature map defined on Z2 by con-
sidering shifts by elements in the group G and not just translations in the plane:

[K ? f](g) =
∑
y∈Z2

K(y−1g)f(y) (4.2)

where we interpret y as an element in the group of translations in the plane. Com-
paring this to the case of normal convolution on Z2:

[K ? f](x) =
∑
y∈Z2

K(x− y)f(y), (4.3)

the similarities are clear.
The generalised convolution turns the input feature map into a feature map on

the group and therefore allows for the transformation behaviour discussed above.
For all further convolutions to be defined we must also have the kernels defined as
functions on the group which yields the following shape for the future convolutions

[K ? f](g) =
∑
h∈G

K(g−1h)f(h). (4.4)

30

4. Applications to group equivariant CNNs

By the group action of the feature map presented in Equation (4.1) we can derive
the equivariance of the convolution

[K ? la[f]](g) =
∑
h∈G

K(h−1g)f(a−1h) = { h′ = a−1h}

=
∑
h′∈G

K(h′−1a−1g)f(h′)

=
∑
h′∈G

K(h′−1(a−1g))f(h′)

= [K ? f](a−1g)
= la[K ? f](g).

(4.5)

4.2 General implementation idea
The general implementation idea for the group equivariant networks comes from the
discussion of functions on groups in Section 4.1. The plan goes roughly as follows,
and the details depend on which framework the implementation is done in:
Given an input image that we would like to convolve over in an equivariant way,

under some group H, we first transform each filter with each element of the group
H and perform the convolution with respect to all the transformed filters. The
transformed channels then form “group channels”, i.e. the H coordinate in the
discussion in Section 4.1, and a transformation of the input image under H will
result in a permutation of the data in the group channels. Note that the set of
group channels are equivariant under rotations if one includes the permutation of the
channels in the action of rotating an image. In implementations these group channels
are then carried to the end of the network and to receive an equivariant result without
group channels one must pool over this group coordinate in a permutation invariant
way. See Figure 4.2 which depicts this by using an image from MNIST before and
after equivariant convolution. If one wants to achieve an invariant network one
would then apply some H-invariant function on the equivariant feature map, e.g.
taking the max or average of all pixels. This is often useful for classifying tasks,
which are the ones these implementations deal with.
Since the number of feature maps increase by |H| in the intermediate layers, due

to the group channels, the number of parameters in the kernels will increase, and a
way to counteract this is to reduce the number of kernels. This is done in the tests
presented later.

Remark 4.2.1 Note that this way of transforming filters imposes shape restrictions
on the filters since to achieve exact transformations without interpolations one must
map each element of the filters to another place in the filter. For exact rotational
equivariance of images on a square grid one must thus use the group of 90◦ rotations
and reflections and only use square filters.

Another way to implement this is to transform the input feature map instead of the
filters. This has the advantage that it only needs to be done once in the beginning
but with the downside that your dataset becomes as many times larger as you have
elements in H. For more details, see the discussion in [20].

31

4. Applications to group equivariant CNNs

r r

Ψ

Ψ

max

max

Ψ0 Ψ1 Ψ2 Ψ3

Figure 4.2: Extracted data from a network which uses H = C4 ≤ D4 = G. The
input images, related by a 90◦ rotation are convolved with a single filter transformed
for each of the four elements of C4, creating four “group channels”. The result is
the group feature map displayed in the middle. It’s easy to see that the group
channels for one image is related to those of the other by a rotation and a shift of
the group channels. To obtain the equivariant feature map these are combined in
a permutation invariant way, in this case by taking the max for each pixel. This is
called pooling over the group. The colourmap assigns darker colour to larger output.

4.3 A D4 invariant network by Cohen et.al.
As mentioned previously, the python package used for this network is primarily
collected from Cohen’s GitHub [14]. Code from Bas Veeling’s GitHub was also
used [15] which includes a Keras [21] implementation of the group convolutional
layers for Tensorflow [22] that Cohen uploaded to their GitHub. The reader who
would like to download the code files and run the experiments themselves should be
aware that some tinkering is required to get things to work.
In Appendix B we present some examples of convolutional neural networks written

in Python that uses all features that Cohen published on their GitHub; these are
also the networks used in the tests presented below.

4.3.1 Testing and results
We test the performance of the example networks presented in Appendix B. The
smaller network structure is

i. 2 convolutional layers with relu as activation function
ii. max pooling with pooling size 2× 2
iii. batch normalisation
iv. 1 convolutional layer with relu activation
v. pooling over the network group (for the normal CNN this is an identity layer)
vi. global average pooling
vii. softmax

and the larger network has the following structure
i. 2 convolutional layers with relu as activation function
ii. max pooling with pooling size 2× 2

32

4. Applications to group equivariant CNNs

iii. batch normalisation
iv. 5 convolutional layers with relu as activation function
v. pooling over the network group (for the normal CNN this is an identity layer)
vi. global average pooling
vii. softmax

Note that after the group pooling layer we have obtained an equivariant result,
as in the right side of Figure 4.2, and it is the global average pooling that makes
the network invariant under the group. Thus the invariance is obtained using the
equivariant structure, hence we might be a bit sloppy and refer to these as equivariant
network when they actually are invariant under the group.
Both of these network structures were tested by testing all possible combinations

of the following:
i. Network invariance (i.e. which group the network is constructed to be invariant

under among Z2, C4, and D4). For Z2 this is just an ordinary CNN where the
group pooling layer in the minimal example has been replaced by an identity
layer.

ii. Which group we transform data by, either C4 or D4. We need not trans-
form the data by Z2 since convolutional networks already exhibit the wanted
equivariance/invariance towards translation.

iii. Whether or not the training data is transformed by the chosen group.
iv. Whether or not the testing data is transformed by the chosen group.

For every combination the corresponding network was trained on the MNIST dataset
[13] consisting of 60 000 images of handwritten digits over five epochs. Each trained
model was then evaluated on 10 000 MNIST images it had not seen before. The
accuracy of the combination is taken as the mean of ten runs.
The observed spread in the network accuracy has several sources. Firstly, all the

layers are initiated with random weights, and secondly, the MNIST data is loaded
from scratch for each iteration and if data is transformed each image is individually
rotated and/or mirrored in a random manner.
The transformation of the images are done by the following functions where we

with the word “exact” mean a map that maps pixels one-to-one.
i. For the 90◦ rotations we used numpy.rot90 which does not use any interpola-

tion in the rotation; i.e. the rotation is exact
ii. For the mirroring we used numpy.flip which also is an exact operation
iii. For the continuous rotations we used scipy.ndimage.rotate which relies on

the standard representation of 2d rotations

R(θ) =
(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)
(4.6)

and hence will not map pixels one-to-one, as can be seen in Figure 4.3
Since the networks built to be invariant under G = C4 and D4 transform their

filters during convolution they will essentially have |G| times more channels in their
feature maps. This means, since the pooling over the group channels does not
happen until the end, they need more parameters in the intermediate layers and to
keep the networks at the approximate same number of parameters we reduce the

33

4. Applications to group equivariant CNNs

(a) Normal MNIST image. (b) MNIST image rotated by θ = 42◦.

Figure 4.3: Example of the continuous rotation. It is clear that the rotation is not
exact, i.e. this is not a bijective map between pixels.

number of filters used in the invariant networks roughly by
√
|G|. This results in

the smaller network structure having the following number of trainable parameters

i. Normal CNN: 1940 parameters
ii. C4CNN: 2755 parameters
iii. D4CNN: 2841 parameters.

(4.7)

For the larger network we instead get

i. Normal CNN: 5580 parameters
ii. C4CNN: 6355 parameters
iii. D4CNN: 5433 parameters.

(4.8)

We also ran the tests on the network using “valid” padding — i.e. not adding zeros
to the edge of the image and therefore the image spatial size diminishes for each
convolution — and “same” padding which adds zeros to make sure that the spatial
image size remains the same.

Table layout

The data presented in the tables are, as mentioned previously, the average accuracy
over 10 runs of training the network for 5 epochs for each combination of structural
parameters; i.e. which group the network is invariant under and how the data is
transformed. Denoted in the subscript is the standard deviation for those 10 runs.
Each table corresponds to a specific group chosen to act, or not act, on the training

and testing data, while each subtable shows the results for a network designed to
be invariant under the action of some group: Z2, C4, or D4.
For each data class (training and testing) N indicates that that data was not

transformed under the group while T indicates that is was. Since we are interested in
the networks capabilities to use the invariant structure obtained from the equivariant
layers to recognise transformed data, even if the training data wasn’t transformed,

34

4. Applications to group equivariant CNNs

the most interesting elements in the tables below are: Train (N) and Test (T),
denoted as NT.
Since these tests were run on the minimal example network they are not opti-

mised for neither accuracy nor loss, but this is purely to demonstrate the effect of
invariance, which is clearly seen.
In Table 4.1 we present the accuracy data for the smaller network with “valid”

padding where the data transformation group is C4, and in Table 4.2 one can see
the same networks when the data transformation is D4.
In Table 4.3 we compare the effect of the size of the network, and how the padding

impacts the results.
For the sake of space we will only present a representative subset of the data which

allows for relevant discussion in the main text. All obtained test data can be seen
in Appendix C.

4.3.2 Discussion of testing results
Here we present discussion on some aspects seen in the testing data. In this section
we will denote the group structure of the network as G and the group transforming
the data as H. When referring to smaller networks in this section we refer to the
networks with parameter numbers listed in 4.7, and with larger networks we refer to
4.8. The network structure for these are specified at the beginning of section 4.3.1.

Effect of parameter and filter number

The reduction of the number of filters to keep the number of parameters roughly the
same put the C4 network at 5 filters in the intermediary layers and the D4 network
at 3 filters. Even though the group invariant networks had more parameters they
achieved a lower accuracy when testing on untransformed data, which is interesting.
Our guess is that when dealing with this low number of filters, each filter is worth
more than parameters since the filters determine the amounts of features the network
can learn. This effect would be more pronounced when training such a small network
since each filter is proportionally a large part of the networks learn ability.
The observed data, presented in the right hand columns in the subtables of Ta-

ble 4.3, does not conclusively support or conflict with this hypothesis since the
accuracy for the large D4 network is lower than the observed accuracy for the large
ordinary CNN: 0.884 against 0.961 with both a standard deviation between 0.03
to 0.04. The large D4 network has both fewer parameters and fewer filters than
the large ordinary CNN. Note that the large ordinary CNN (with same padding)
also produced the result 0.855σ=0.258, which indicates that to get a good answer to
this one would need to do more than ten runs for the average, and that the group
invariant network is of the same approximate learn ability.
For the smaller networks the D4 network has fewer filters but more parameters

compared to the smaller ordinary CNN and the observed accuracy for theD4 network
is 0.578 compared to 0.809 for the ordinary CNN. This difference in accuracy is
larger than the accuracy difference for the lager networks, which indicates that
effect of a single filter and/or parameter diminishes as their number go up; which
is reasonable. Hence it seems like adding the invariant structure to a CNN while

35

4. Applications to group equivariant CNNs

T
able

4.1:
T
he

results
for

the
three

types
ofC

N
N
s
w
ith

the
sm

aller
network

structure
and

w
ith

“valid”
padding:

ordinary,
C

4
invariant,and

D
4
invariant.

T
he

data,training
and

testing,iseithertransform
ed

(T
)ornot(N

)under
C

4 .
N
ote

thatthe
difference

between
the

accuracy
for

N
N

(Train:
N
,Test:

N
)
and

N
T

is
basically

none
once

the
group

the
network

is
invariant

under
is

a
subgroup

to
the

data
transform

ation
group.

(a)
O
rdinary

C
N
N

Test
N

T

Train

N
0.877

σ=
0
.014

0.343
σ=

0
.017

T
0.571

σ=
0
.044

0.571
σ=

0
.020

(b)
C

4
invariant

C
N
NTest

N
T

Train

N
0.721

σ=
0
.044

0.704
σ=

0
.028

T
0.707

σ=
0
.066

0.704
σ=

0
.045

(c)
D

4
invariant

C
N
NTest

N
T

Train

N
0.685

σ=
0
.055

0.687
σ=

0
.059

T
0.696

σ=
0
.027

0.679
σ=

0
.052

T
able

4.2:
T
he

results
for

the
three

types
ofC

N
N
s
w
ith

the
sm

aller
network

structure
and

w
ith

“valid”
padding:

ordinary,
C

4
invariant,and

D
4
invariant.

T
he

data,training
and

testing,iseithertransform
ed

(T
)ornot(N

)under
D

4 .
N
ote

thatthe
difference

between
the

accuracy
for

N
N

(Train:
N
,Test:

N
)
and

N
T

decreases
the

closer
the

group
the

network
was

designed
to

be
invariant

under
is

to
the

data
transform

ation
group.

(a)
O
rdinary

C
N
N

Test
N

T

Train

N
0.871

σ=
0
.017

0.279
σ=

0
.013

T
0.530

σ=
0
.051

0.544
σ=

0
.046

(b)
C

4
invariant

C
N
NTest

N
T

Train

N
0.695

σ=
0
.023

0.582
σ=

0
.029

T
0.636

σ=
0
.028

0.679
σ=

0
.046

(c)
D

4
invariant

C
N
NTest

N
T

Train

N
0.686

σ=
0
.048

0.680
σ=

0
.039

T
0.654

σ=
0
.028

0.681
σ=

0
.034

36

4. Applications to group equivariant CNNs

Table 4.3: In this table we show the effects of network size and padding for an
ordinary CNN and a CNN invariant under D4. For all accuracies in this table we
use untransformed test data and untransformed training data. For more data see
Appendix C.

(a) Ordinary CNN
Padding

valid same

Si
ze Small 0.877σ=0.014 0.809σ=0.073

Large 0.778σ=0.091 0.961σ=0.030

(b) Network invariant under D4.
Padding

valid same

Si
ze Small 0.685σ=0.055 0.578σ=0.059

Large 0.922σ=0.074 0.884σ=0.037

keeping the number of parameters roughly the same is more efficient the larger the
network is. Although this would need further investigation to produce conclusive
results.

Effect of network size and padding

In Table 4.3 we present data to test the effects of changing the network size and
whether padding is used. If padding is not used (“valid” padding) then the spatial
size of the images will reduce for each convolutional layer, and for larger networks
this risks losing data for the network to calculate gradients on. This effect is actually
most noticeable in the standard deviation of the observed accuracies; e.g. for the
large network (7 convolutional layers) and “valid” padding we observe a higher
uncertainty in the obtained accuracy. This comes from that the network essentially
only trains in the first epoch and thus becomes much more susceptible to the random
initialisation of the filters.
More data can be seen in Appendix C.

Expected accuracy of ordinary CNN for rotated data

The fact that the ordinary CNN had an accuracy of 0.343σ=0.017 when testing on
rotated images, see Table 4.1a, is not really surprising. Since the MNIST dataset
contains handwritten digits: 0,1,2,3,4,5,6,7,8,9 and some of them look roughly the
same a 180◦ rotation (0,1,8) we would expect to see a higher accuracy than 0.25. In
fact, if we would assume that the network learnt to recognise each normally oriented
digit with 100% accuracy we would expect the following accuracy for the rotated
data

0.7︸︷︷︸
for 2,3,4,5,6,7,9

· 0.25︸ ︷︷ ︸
one orientation

+ 0.3︸︷︷︸
for 0,1,8

· 0.5︸︷︷︸
two orientations

= 0.325 (4.9)

and we expect to see some variance on this. Hence the result of 0.343 is not very
surprising.

Data augmentation or group invariance?

This discussion is somewhat covered in [20]. If wanting a classification network to be
invariant under a group G then one could take the path of augmenting the training
data set by transforming each image in the data set by every element of G, which

37

4. Applications to group equivariant CNNs

would make the augmented data set take |G| times more memory space. To allow
for the network to properly learn the transformed data one would probably need
more filters as well, hence this approach is very memory intensive.

A more memory efficient approach would be to transform each image by every
element in G just as it enters the network and then combine the results at the end
of the network, or one could transform the filters by every element in G. Either
way, this is more computationally heavy since every convolution will either operate
on |G| times more data or use |G| times more filters for each input image.

The exact usage of the network will help dictate which is the more reasonable
approach, but as mentioned before these transformations impose restrictions on
either the image shape or the filter shape: if one transforms the images the image
shape must be invariant under G, and the same goes if one wants to transform the
filters.

Effect of group invariance and choice of group

The effect of the invariant structure is clearly seen in Tables 4.1 and 4.2. Note that
the difference between training and testing on untransformed (NN) and training on
untransformed data whilst testing on transformed (NT) is bigger the smaller the
network invariance group G is. This can be seen by comparing NT for the three
subtables in Table 4.2. This is also under the condition that G is a subgroup of H.
As long asG ≥ H the size ofG does not matter, which can be seen in Table 4.1 where
both the C4 invariant network and the D4 invariant network are largely unaffected
by transformations by C4 since C4 < D4.

The intuition for this is that the invariant network sets up an equivalence class
where two images are counted as identical if they differ by an element of the group
that the network is constructed under. Hence, for a network constructed under a
discrete rotation group, this effectively reduces to possible angles a picture can be
rotated by to the angle difference of the elements in the rotation group. This is
easily visible if for a trained model you rotate a single image by every angle since
the resulting graph becomes periodic with a period of 360/4 = 90◦, see Figure 4.4.
This is also a clear indication that increasing the degree of the discrete rotation
invariance increases the general rotation invariance, and in the limit the network
would be completely rotation invariant. Unfortunately the method with discrete ro-
tation invariance is probably not very suitable for such generalisation and the easier
direction would probably be to use the Gaussian filters and complex convolution
presented by Worrall et al. [8].

Another example of invariance of these networks can be seen in Figure 4.5 in which
the raw output of a C4 invariant network for a single image, rotated all four ways,
is displayed.

38

4. Applications to group equivariant CNNs

4.4 Discussion on discrete group in- and equivari-
ance

The approach of achieving in- and equivariance by transforming the kernels exactly
has some severe limitations because this requires the sampling of the image to also
be exact under this group. In the case of a flat image a sampling amounts to tiling
the plane and there are only three regular tilings of the plane: the square tiling
(normal square image pixels), triangle tiling, and hexagonal tiling. If one wants to
only use regular tilings to sample the image then the largest symmetry on can use
is D6.
There are ways around this if one loosens on the criteria that the transformation

of the kernels need to be exact (i.e. a bijective mapping between elements of the
kernel) and instead uses Gaussian kernels. This allows for more general rotations
with a high, but not exact, degree of in-/equivariance by simply rotating the angle
component of the kernel, see [23, 24].

4.5 A C6 equivariant network by Hoogeboom et.
al.

Since the network performs better on transformed data the larger the group it is
constructed to be invariant under is it is useful to look at ways to use a larger group.
This is what Hoogeboom et. al. did in their paper “HexaConv” [18] in which they
sample images to a hexagonal grid in order to let the network to be invariant under
D6. The general idea of the implementation is still the same: transform each filter
for each element in the group, perform the convolution with the transformed filters,
and at the end pool over the group channels.
We will not go into further detail here about the implementation of the hexagonal

grid but will refer to their paper for that. An example of the hexagonal sampling
can be seen in Figure 4.6.
Cohen et al. used the hexagonal structure presented in [18] to create a CNN

operating on spherical data by approximating the sphere with a triangulated icosa-
hedron [25]. This approach with a local symmetric triangulation — i.e. that the
triangulation locally maps to itself under e.g. rotations — seems to indicate a pos-
sible method to perform these convolutions on an arbitrary manifold, but even if a
locally symmetrical triangulation is possible one would need to have some kind of
transition criteria between different local triangulations so this approach might in
reality be quite restricted. This will require further research.

39

4. Applications to group equivariant CNNs

0 90 180 270 359 90 180 270 3590
0.2
0.4
0.6
0.8

1

Rotation (angle)

(a) Network invariant under Z2.

0 90 180 270 359 90 180 270 3590
0.2
0.4
0.6
0.8

1

Rotation (angle)

(b) Network invariant under C4.

0 90 180 270 359 90 180 270 3590
0.2
0.4
0.6
0.8

1

Rotation (angle)

(c) Network invariant under D4.

Figure 4.4: Each figure corresponds to a trained model designed to be invariant
under some group. What is plotted is the norm of the model output for a single
input image. The input image is transformed, on the left side of each figure, by just
rotating the image by the noted angle (x-axis), and on the right side the image is first
mirrored horizontally or vertically (randomly chosen) and then rotated by the noted
angle. The network designed to be invariant only under Z2 is clearly unpredictable
when the input is rotated, as is expected. The networks designed to be invariant
under C4 and D4 show the expected property that the invariance quotient away all
rotation angles outside of 0-90◦. On the side corresponding to mirrored the image
both the C4 and D4 show the same periodic behaviour, which is expected, but the
C4 network show a different profile compared to just the rotated image, while the
D4 network keeps the same profile, albeit mirrored due to the mirrored image.

40

4. Applications to group equivariant CNNs

0

1

0

1

0

1

“0” “1” “2” “3” “4” “5” “6” “7” “8” “9”
0

1

Class

Figure 4.5: The output of a C4 invariant network for a single image rotated through
all 90◦ rotations. On the y-axis for each graph is displayed the probability the
network assigns the digit to be a specific class.

Figure 4.6: A sample of the MNIST data set displayed on the left in the ordi-
nary square pixel sampling and on the right sampled in a hexagonal grid. The
visualisation of the hexagonal sampling is done using a plotting function written by
Hoogeboom [18], and even though the hexagonal sampling uses regular hexagons
this plotting function displays them a bit elongated. Hence the number looks a bit
stretched vertically.

41

4. Applications to group equivariant CNNs

42

5
Summary, conclusion and outlook

This thesis has presented existing theory of Cheng et al. [11] — in which they
presented a gauge equivariant convolution — and made their implied details explicit,
as well as added the new interpretation of layers in a neural network as parts of a
map defined on equivalence classes of associated bundles; equivariance of the neural
layer is then equivalent to the map between associated bundles being well defined.
We have also presented the theory for the group equivariant networks used in [9],

written a small example of a convolutional neural network using this structure to
classify MNIST digits invariant under 90◦ rotation, and tested this network to show
the effect of adding the equivariant structure to the convolutional layers.
In testing this structure we observe that the group invariant networks are able

to efficiently use the group invariance in order to generalise training done on un-
transformed data to transformed data. Compared to an ordinary CNN the group
invariant networks, when modified so that their parameter numbers where roughly
the same, had the same approximate accuracy when testing on both untransformed
data and transformed data while the ordinary CNN performed much worse on trans-
formed data. So in conclusion, the group invariant networks perform as well as their
ordinary counterpart whilst also being able to recognise transformed data without
needing to train on it.
This can be applied, and in some extent have been applied, to classification of

objects in for example satellite images, medical images, and weather patterns. It
would be interesting to see if something could be obtained by letting a network
with a group structure act on the cosmic microwave background radiation (CMB)
in order to detect patterns.
Going forward, an interesting application in physics could be to apply this ap-

proach to other gauge symmetries other than the local change of geometric coordi-
nates. For example, in constructing the standard model one builds the most general
theory that is invariant under the currently observed symmetry group SU(3) ⊗
SU(2) ⊗ U(1) under some additional constraints, e.g. anomaly cancellation. The
best possible scenario would then be if one could construct a network that could
learn symmetries of a dataset. If so one could apply this to analyse data from CERN
using this framework to look for new symmetries in the data which might help with
building new models or finding new angles to attack the standard model.
It would also be interesting to see developments — interpretational, mathematical,

and implementations — of geometry that changes between layers.

43

5. Summary, conclusion and outlook

44

A
Theoretical background

In this appendix we present relevant theory that readily found in textbooks on each
subject but consolidated here for convenience.

A.1 Topology
We start with introducing the most basic structure one can place on a set: a topology.
Intuitively when we define a topology on a set we just say which subset that are
open, and this will allow us to expand the definition of continuity to work on general
spaces. Let’s start by defining a topology.

Definition A.1.1 (Topology) Let X be a set and P(X) the powerset — the set
of all subsets — of X. A topology on X, denoted TX , is a subset TX ⊆ P(X) which
satisfies the following conditions:

i. ∅ ∈ TX and X ∈ TX ;
ii. for I a finite index set and Ui ∈ TX i ∈ I then ⋂i∈I Ui ∈ TX ;
iii. for I an arbitrary index set and Ui ∈ TX i ∈ I then ⋃i∈I Ui ∈ Tx.

I.e. a topology is a subset of the powerset which is closed under finite intersections
and arbitrary unions.

With topology defined we define a subset U ⊆ X as open if U ∈ TX .

Definition A.1.2 (Topological space) A topological space is simply a setX along
with its topology TX and is formally denoted (X, TX). For the sake of convenience
we will often just say that X is a topological space and leave TX implicit.

Before we can continue to the definition of a continuous function we need the concept
of preimage, which is a generalisation of the inverse of a function.

Definition A.1.3 (Preimage) Let f : X → Y be a map between the sets X and
Y . The preimage is then defined as

preimf : Y → X (A.1.1)
y 7→ preimf (y) := {x ∈ X | f(x) = y}. (A.1.2)

When each y ∈ Y has a unique preimage then preimf = f−1. For convenience we
will often just write f−1 and use this to refer to preimf even when f might not have
an inverse.

Now we have the tools to define continuity and the structure preserving maps for
topological spaces: homeomorphisms.

I

A. Theoretical background

Definition A.1.4 (Continuous function) A function f : (X, TX) → (Y, TY) be-
tween two topological spaces is continuous if

∀V ∈ TY : preimf (V) ∈ TX . (A.1.3)

I.e. a function is continuous if the open sets in the target space are mapped to by
open sets in the domain.

Definition A.1.5 (Homeomorphism) A homeomorphism is a continuous func-
tion with continuous inverse.

If you have previously only seen the definition of continuity from analysis using
ε − δ this might seem weird since the continuity of a function now depends on the
topology on the target and domain.

Example A.1.6 Let X = {1, 2, 3} and Y = {1, 2, 3} with the topologies:

TX = {∅, {1, 2, 3}, {1, 2}} and TY = P(Y). (A.1.4)

Furthermore, let f : X → Y by the action x 7→ f(x) = x, and g = f−1 : Y → X.
Then g is continuous since all sets in TX exist in TY . While g is continuous, f is
not, since for example preimf ({2} ∈ TY) = {2} 6∈ TX .

Definition A.1.7 (Countable basis) A topological space X has a countable basis
for its topology if there exists open sets

{Ui ∈ TX |i ∈ N} (A.1.5)

such that every open set U ⊆ X can be written as

U =
⋃
i∈I
Ui. (A.1.6)

Definition A.1.8 (Open cover) An open cover of a topological space X is the
set {Uα ∈ TX |α ∈ I} such that ⋃

α∈I
Uα = X. (A.1.7)

Definition A.1.9 (Quotient topology) Let X be a topological space and ∼ an
equivalence relation. Then we denote an equivalence class as

[x]∼ = {y ∈ X|x ∼ y} (A.1.8)

and the set of equivalence classes as

X/∼= {[x]∼|x ∈ X}. (A.1.9)

Let Π be the quotient map as Π : X → X/∼ by x 7→ [x]∼. Then the quotient
topology is

{V ⊆ X/∼ |Π−1(V) is open in X}. (A.1.10)

II

A. Theoretical background

A.2 Manifolds
The general spaces we will be working with are based on manifolds, or more specif-
ically topological manifolds, but before we can define manifolds we need to define
atlases and locally Euclidean.

Definition A.2.1 (Locally Euclidean) A topological spaceX is locally Euclidean
of dimension d if every point p ∈ X has a neighbourhood U such that there is a
homeomorphism φ from U to an open set φ(U) ⊆ Rd. We say that such a space X
is locally homeomorphic to Rd.

Now we can present the definition of a manifold.

Definition A.2.2 (Topological manifold) A topological manifold M of dimen-
sion d is a topological Hausdorff space that has a countable basis for its topology
and is locally homeomorphic to Rd.

Definition A.2.3 (Chart and atlas) A chart on an d-dimensional manifoldM is
a pair (U, φ) where U is an open set (i.e. in the topology TM) and φ : U → φ(U) ⊆ Rd

is a homeomorphism. A collection of charts A = {(Uα, φα)|α ∈ I} is called an atlas
if {Uα} covers M .

Now we want to add differentiable structure to the manifold. To do this we introduce
chart transition maps.

Definition A.2.4 (Chart transition map) Let M be a topological manifold of
dimension d with atlas A = {(Ui, φi)} and let p ∈M be a point. Choose two charts
(Ui, φi) and (Uj, φj) such that p ∈ Ui∩Uj. Then φj ◦φ−1

i : φi(Ui∩Uj)→ φj(Ui∩Uj)
is a chart transition map.

Since each φi maps locally from M to Rn chart transition maps are functions from
open sets in Rn to open sets in Rn and as such they can be smooth. An atlas where
all transition functions are smooth is called a smooth atlas.

Ui ∩ Uj ⊆M

φi(Ui ∩ Uj) ⊆ Rd φj(Ui ∩ Uj) ⊆ Rd

φi

φj

φj◦φ−1
i

Two smooth atlases A and B are said to be equivalent if A∪B also is a smooth atlas.
They are also sometimes referred to as being smoothly compatible. This results in a
natural definition of an equivalence class of smooth atlases and an equivalence class
under this relation is called a smooth structure.

Definition A.2.5 (Smooth manifold) A smooth manifold is a topological man-
ifold with a smooth structure.

Since we aren’t able to differentiate on manifolds we will always use this structure
of studying charts maps from the manifold to Rd. To make this explicit we have the
following definition.

III

A. Theoretical background

Definition A.2.6 (Smooth map between manifolds) . LetM1 andM2 be smooth
manifolds and let f : M1 → M2 be a continuous map. f is called smooth at a
point p ∈ M1 if there exists charts (U1, φ1) ∈ A1 and (U2, φ2) ∈ A2 such that
p ∈ U1 ∩ f−1(U2) and

φ2 ◦ f ◦ φ−1
1 : φ1(f−1(U2))→ φ2(U2). (A.2.1)

If f is smooth for all p ∈M1 then f is a smooth map.

U1 ⊆M1 U2 ⊆M2

φ1(U1) ⊆ Rd φ2(U2) ⊆ Rd

f

φ1 φ2

φ2◦f◦φ−1
1

The next definition for the part on manifolds is the structure preserving maps for
manifolds: diffeomorphisms.

Definition A.2.7 (Diffeomorphism) Let M1 and M2 be smooth manifolds, then
a map f : M1 →M2 is a diffeomorphism if it is smooth and has a smooth inverse.

Next we define the maximal atlas:

Definition A.2.8 (Maximal atlas) A maximal atlas on a manifoldM is the atlas
given by

AM = {(U, φ : U → U ′)|U ⊆M is open, U ′ ⊆ Rn is open, φ is a diffeomorphism}.

A crucial point will be the tangent space to a manifold, and later the tangent bundle.
To begin we define a smooth curve.

Definition A.2.9 (Smooth curve) A curve γ on a smooth manifold M is a map
from an open subset I ⊆ R to M and is smooth at p ∈ M if there exists a chart
(Ui, φi) such that p ∈ Ui and φi ◦ γ : R→ Rd is smooth. A smooth curve is a curve
that is smooth at each point.

I ⊆ R M

Rd

γ

φ◦γ φ

Definition A.2.10 (Equivalence of curves) Let γ1 and γ2 be two curves such
that γ1(0) = γ2(0) = p ∈ U ⊂M with (U, φ) being a chart on M , then γ1 ∼ γ2 iff

d

dt
(φ ◦ γ1)(t)|t=0 = d

dt
(φ ◦ γ2)(t)|t=0. (A.2.2)

Definition A.2.11 (Tangent space) The tangent space ofM at p ∈M is denoted
TpM and is the set of all equivalence classes of curves γ : I ⊆ R → M such that
γ(0) = p.

IV

A. Theoretical background

The chart (U, φ) induces a map Ψφ : TpM → Rd by mapping

[γ] 7→ d

dt
(φ ◦ γ)(t)|t=0. (A.2.3)

This map is a linear isomorphism between TpM and Rd and can be identified with
the directional derivative Dpφ : TpM → Rd. This has an inverse map Dφ(p)=xφ

−1 :
Rd → TpM and act on basis vectors ei of Rd through

(Dxf)(ei) = d

dt
f(x+ tei)|t=0 = ∂f(x)

∂xi
(A.2.4)

or in other words
ei 7→

∂

∂xi
(A.2.5)

and since TpM is isomorphic to Rd we have that ∂/∂xi span the tangent space at p
or with more precise notation (

∂

∂x1

)
p

· · ·
(

∂

∂xn

)
p

(A.2.6)

span TpM .

A.3 Group theory and representations
We will in this section present relevant background within group theory and repre-
sentations.

A.3.1 Group theory
We start by stating the definition of a group, which can be found almost everywhere
and also here for completeness.

Definition A.3.1 (Group) A group is a set G together with a binary operator
ϕ : G×G→ G sometimes denoted as (G,ϕ) which satisfies a the following:

i. It exists an element e ∈ G called the identity such that ϕ(e, g) = ϕ(g, e) = g
for all g ∈ G.

ii. For each element g ∈ G there exists g−1 ∈ G called the inverse of g such that
ϕ(g, g−1) = ϕ(g−1, g) = e.

iii. The set G is closed under the action of ϕ, i.e. for all g, h ∈ G : ϕ(g, h) ∈ G.
iv. The operator ϕ is associative, i.e. ϕ(ϕ(a, b), c) = ϕ(a, ϕ(b, c)).

Normally one does not write the operator but rather ϕ(g, h) = gh.

Definition A.3.2 (Subgroup) Given a group G, a subgroup (H,ϕ) consists of a
subset H ⊆ G which is a group under ϕ. This is shorthanded as H ≤ G.

Definition A.3.3 (Left/Right coset) Given a group G, an element g ∈ G, and
a subgroup H ≤ G, then we define the

• left coset as gH = {gh|h ∈ H}

V

A. Theoretical background

• right coset as Hg = {hg|h ∈ H}.

Since H is a subgroup e ∈ H and thus g ∈ gH for all g ∈ G. We call g the
representative of the coset gH. The same argument goes for right cosets. We can
also define a so called section s : G/H → G, more on this in the section on manifolds,
see Section A.4, such that s(H) = e and that π ◦ s = id

G/H .

Definition A.3.4 (Normal subgroup) A subgroup H ≤ G is called normal if
gH = Hg for all g ∈ G.

Definition A.3.5 (Quotient group) The quotient group G/H is defined as the
set of all cosets, i.e.

G/H = {gH|g ∈ G}. (A.3.1)

The group G with a subgroup H ≤ G comes with a natural (surjective) projection
map π : G→ G/H which acts as π(g) = gH.

Theorem A.3.6 (Independence of representative) An element gH of the coset
group G/H is independent of its representative; i.e. for p, q ∈ gH it holds that
gH = pH = qH. 2

Proof Let G/H 3 gH be a coset for some g ∈ G and let g′ ∈ gH. Then since
g′ ∈ gH it exists an h ∈ H such that g′ = gh. Since H is a subgroup h−1 ∈ H and
thus we get gH = (g′h−1)H = g′(h−1H) = g′H where we used the associativity of
the group operator in the second equality. �

Theorem A.3.7 (Coset partition of G) Let G be a group and H ≤ G a sub-
group, then the elements of G/H are disjoint and

∪
A∈G/H A = G. (A.3.2)

2

Proof Let G be a group, H ≤ G subgroup, and let C1 = g1H and C2 = g2H
be different cosets; i.e. neither C1 \ C2 nor C2 \ C1 are the empty set. Then let
g ∈ C1 ∩ C2 and therefore there exists h1, h2 ∈ H such that g = g1h1 = g2h2 since
g is in both C1 and C2. Since H is a subgroup there exists inverses of h1 and h2
in H which gives g1 = g2h2h

−1
1 = g2h

′ with h′ ∈ H. Putting this together we get
C1 = g1H = (g2h

′)H = g2H = C2. Thus if C1∩C2 6= ∅ then C1 = C2. For the cover
part we have that g ∈ gH and G/H = {gH|g ∈ G} and the result follows. �

Definition A.3.8 (Action of a group on a set) Let G be a group and X be a
set. We say that G acts on X if there exists a map Ψ : G×X → X.

Definition A.3.9 (Transitive group action) Given a group G, and a setX then
G is said to act transitively on X if for each x, y ∈ X there exists a g ∈ G such that
Ψ(g, x) = y.

A special case of this is when X is the quotient group G/H: G acts transitively on

VI

A. Theoretical background

G/H since if gH and pH are two different cosets then the group element pg−1 maps
gH onto pH. In this case we write the transitivity condition as ∀x, y ∈ X ∃g ∈ G :
gx = y since the group action ϕ for G can be used as Ψ on elements of X as well.
We will now introduce a definition which can come in useful when we will talk

about fibre bundles.

Definition A.3.10 (Twist map) Given a group G, a subgroup H ≤ G, their
quotient group G/H, and a section s : G/H → G we define h : G/H × G → H as
h(x, g) = (s(gx))−1gs(x), or we can also define h(x, g) as the element of H which
satisfies gs(x) = s(gx)h(x, g).

The map h encapsulates the “twisty-ness” of the section, so that when we define a
section we can determine the map h such that Definition A.3.10 is satisfied.
A further fundamental object that is required for the discussion of principal and

associated bundles is Lie groups. There is a lot of theory developed for Lie groups
and we will only present that which is absolutely necessary for the theory needed
for this thesis.

Definition A.3.11 (Lie group) A Lie group is a group (G, φ) such that G is a
finite-dimensional smooth manifold and the group multiplication φ : G×G→ G as
well as group inversion •−1 : G→ G (by g 7→ g−1) are smooth functions.

Definition A.3.12 (Left and right action) Let (G, φ) be a Lie group and M a
smooth manifold. The left action of G on M is a map

. : G×M →M (A.3.3)
that satisfies

i. for all p ∈M we have e . p = p, where e is the identity of G
ii. for all p ∈M and g1, g2 ∈ G we have g1 . (g2 . p) = (g1g2) . p.

The right action of a Lie group (H,ψ) on a smooth manifold M is similarly a map
/ : M ×H →M that satisfies

i. p / e = p for all p ∈M
ii. for all h1, h2 ∈ H and p ∈M we have (p / h1) / h2 = p / (h1h2)

Definition A.3.13 (Equivariance of Lie groups) Let (G, φ) and (H,ψ) be two
Lie groups, ρ : G → H a homomorphism between them, and M,N be two smooth
manifolds with f : M → N a smooth map between them. Furthermore, let G,H
act on M,N from the left

. : G×M →M

.′ : H ×N → N.
(A.3.4)

Then the map f is called ρ-equivariant if
f(g . m) = ρ(g) .′ f(m) (A.3.5)

i.e. the diagram commutes

G×M H ×N

M N

ρ×f

. .′

f

VII

A. Theoretical background

Some final definitions regarding Lie groups.

Definition A.3.14 (Orbit and stabiliser) Let . : G ×M → M be a left action
of a Lie group G on a smooth manifold M . Then we define the following.

i. The orbit of a point p ∈M is the set Op = {a ∈M | ∃g ∈ G : g . p = a}
ii. Define the equivalence relation such that two points are equivalent p ∼O q iff

p ∈ Oq, i.e. ∃g ∈ G : p = g . q

iii. The stabiliser for a point p ∈M is the set Sp = {g ∈ G | g . p = p}

Proof (Equivalence relation) It is very straight forward to show that the
proposed relation is indeed an equivalence relation:

i. Reflexivity: e ∈ G
ii. Symmetric: p ∼ q means ∃g ∈ G : p = g . q but that gives g−1 . p = q

iii. Transitive: The group acts transitively on itself which gives the transitivity of
∼O. �

Definition A.3.15 (Orbit space) Let M , G, and . be as in previous definition.
Then the space M/∼O=: M/G is called the orbit space of M under G.

Definition A.3.16 (Stabiliser) Given M,G and . as above, then the stabiliser of
a point p ∈M is Sp = {g ∈ G | g . p = p}.

Definition A.3.17 (Free action) A left action of G on M is free if Sp = {e} for
all p ∈M .

A.3.2 Representations

One can study aspects of a group by letting it act on other spaces.

Definition A.3.18 (Representation) Let G be a group and V a vector space
(over R) then ρ : G → GL(V) is a representation of G on V if for all g, h ∈ G we
have that ρ(gh) = ρ(g)ρ(h). Here GL(V) is the general linear group on V (i.e. has
as elements all bijectively linear maps from V to V) . The kernel of a representation
is its preimage of the identity, i.e. Ker ρ = {g ∈ G|ρ(g) = idV }.

With this definition we can explicitly extend the definition of the action of a group
G on a vector space where Ψ : G × X → X now acts as Ψ(g, x) = ρ(g)x for a
representation ρ : G→ GL(X).
In this thesis we will only work with vector spaces V of finite dimension n, and in

that case GL(V) is the set of n× n invertible matrices with respect to some chosen
basis on V .

Definition A.3.19 (Faithful) A representation ρ : G → GL(V) is faithful if it is
injective, i.e. every distinct element g ∈ G is mapped to a distinct linear map ρ(g).

VIII

A. Theoretical background

A.4 Fibre bundles
If one tries to define global functions on a general curved manifold one will encounter
problems. To generalise the function concept we need the formalism of fibre bundles.
The theory presented here is heavily based upon that presented in [26, 27]

Definition A.4.1 (Bundle) A triple (E, π,M), sometimes denotedE π−→M , where
E is a topological space called the total space, M is a topological space called the
base space, and π : E → M is a continuous and surjective projection map, is called
a (fibred) bundle.

We will in general let the base space be a smooth manifold.

Definition A.4.2 (Fibre at a point) Let E π−→ M be a bundle and a point p ∈
M , then preimπ({p}) is the fibre at p.

Definition A.4.3 (Fibre bundle) The bundle (E, π,M) is called a fibre bundle
if there exists a canonical fibre F such that the fibre Fp over each point p ∈ M is
homeomorphic to this fibre. As a tuple the bundle is denoted (E, π,M, F).

A fibre bundle can also be defined in terms of local trivialisations.

Definition A.4.4 (Local trivialisation) A local trivialisation is a pair (Ui, ϕi)
where Ui is an open set in the base space M and ϕi is a map

ϕi : preimπ(Ui)→ Ui × F
x 7→ (π(x), fi(x))

(A.4.1)

where fi : preimπ(p)→ F is a homeomorphism since Fp = preimπ(p) ∼ F .

Definition A.4.5 (Fibre bundle by trivialisations) A bundle (E, π,M) is called
a fibre bundle if there for each point p ∈M is an open neighbourhood Up such that
there exists a homeomorphism ϕp : π−1(Up) → Up × F , i.e. (Up, ϕp) is a local
trivialisation.

The local trivialisations will, by the definition above, map the fibre Fp at a point
p ∈ B to {p} × F .

Definition A.4.6 (Transition function) Given a fibre bundle (E, π,M) with fi-
bre F and two local trivialisations (Ui, ϕi) and (Uj, ϕj) such that p ∈ Ui∩Uj we can
define a transition function between these trivialisations through

Ψij = ϕi ◦ ϕ−1
j : Uj × F → Ui × F (A.4.2)

(p, v) 7→ (p, fi(f−1
j (v))). (A.4.3)

Often when we use the word transition function we are referring to the function
fi ◦ f−1

j : F → F which determines how the fibre “changes” when we change local
trivialisations. Note that since fi is a homeomorphism then fi ◦ f−1

j is a homeomor-
phism as well.

Sometimes the bundle (E, π,M, F) is denoted diagrammatically as

IX

A. Theoretical background

F E

M

π

An important concept will be bundle morphisms and isomorphisms.

Definition A.4.7 (Bundle morphism) Let E π−→ M and E ′ π′−→ M ′ be two bun-
dles and u : E → E ′, v : M → M ′ be maps between their total spaces and base
spaces respectively. Then the pair (u, v) is called a bundle morphism if

π′ ◦ u = v ◦ π. (A.4.4)

I.e. the diagram commutes.
E E ′

M M ′

u

π π′

v

Definition A.4.8 (Bundle isomorphism) Two bundles E pi−→ M , E ′ π′−→ M ′ are
isomorphic as bundles if there exists two bundle morphisms (u, v) and (f, g) such
that the diagram commutes:

E E ′

M M ′

u

π π′
f

v

g

Since the commuting requires f ◦ u = idE and g ◦ v = idM one denotes (f, g) =
(u−1, v−1).

A fibre bundle (E, π,M) with typical fibre F is said to be trivial if it is isomorphic
as bundles to the product bundle (M × F, π′,M) where π′(p, f) = p.
On general manifolds one cannot talk about functions any more but rather the

generalised concept of sections.

Definition A.4.9 (Section) A section is a continuous map s : M → E that satis-
fies π ◦ s = idM .

There can be different structures added on top of the bundle formalism to give
different types of bundles with different properties as is discussed in the following
sections.

A.4.1 Principal G-bundle
Definition A.4.10 (Principal G-bundle) A bundle (E, π,M) is a principal G-
bundle if it satisfies the following conditions:

1. The total space E is equipped with a right action of G, sometimes denoted /G

X

A. Theoretical background

2. The action /G on E is free
3. (E, π,M) is isomorphic as a bundle to (E, π′, E/G) where π′(x) = [x]. I.e.

each element of E is projected down to a representative of its orbit.
A principal bundle is sometimes graphically denoted as

E E M
/G

π

The group G is sometimes referred to a the structure group of the bundle.

Remark A.4.11 This is a fibre bundle with typical fibre G. This can be seen by
π′−1([x]) = {y ∈ E | π(y) = [x]} = {y ∈ E | ∃g ∈ G : y = x / g} = Ox and Ox ' G
since the action of G was free. Hence this is a fibre bundle with typical fibre G.
This also shows that the action of G preserves the fibres.

Definition A.4.12 (Principal bundle map) Let (E, π,M) and (E ′, π′,M ′) be
two principal bundles the groups G and G′, with possibly different right actions
/, /′. If we have a Lie group homomorphism ρ : G → G′, then the pair of maps
(u, v) is called a principal bundle map if the following criteria are satisfied

i. v ◦ π = π′ ◦ u
ii. u(p/g) = u(p)/′ρ(g) (this is the equivariance property from Definition A.3.13.)

Graphically, this is the same as saying that the following diagram commutes

E E ′

E E ′

M M ′

u

/G

u

π

/′G′

π

v

Example A.4.13 (The frame bundle) Let M be a d-dimensional smooth man-
ifold and denote the tangent space at p ∈M as TpM . Then TpM ' Rd and we call
the set of all possible bases for TpM as

LpM = {(e1, . . . , ed) | (e1, . . . , ed)is a basis forTpM} ' GL(d,R), (A.4.5)

which one can see as all possible bases for Rd. We then define the frame bundle as

LM =
⊔
p∈M

LpM. (A.4.6)

To make this into a principal bundle we need to first equip LM with an atlas
inherited from M such that π : LM →M is continuous, where π is defined through

LM 3 (e1, . . . , ed) 7→ π(e1, . . . , ed) = p (A.4.7)

since there is a unique p ∈M such that (e1, . . . , ed) ∈ LpM . This makes LM π−→M
into a smooth bundle.
Next we need to equip LM with a right action of some Lie group G. The natural

choice for this is G = GL(d,R) since from the construction of LM we already have
a copy of GL(d,R) at each point in M . We define this action by

(e1, . . . , ed) / g := (gµ1eµ, . . . , g
µ
deµ) (A.4.8)

XI

A. Theoretical background

where we write the components of g ∈ GL(d,R) as gmn.
Is this a free action? Yes. This is easily seen by considering that

(e1, . . . , ed) / g = (gµ1eµ, . . . , g
µ
deµ) = (e1, . . . , ed) (A.4.9)

requires that gmn = δmn which corresponds to the identity in GL(d,R).
Left is now only to check whether (LM, π,M) is isomorphic as a bundle to the

bundle with the quotient space as base space: (LM, π′, LM/GL(d,R)). To do this
we start by picking a frame e ∈ LM . (I.e. e ∈ LpM for some p ∈ M .) Since the
action of GL(d,R) on LM is free we have that the orbit of the frame e is the whole
of GL(d,R). Hence the quotient space LM/GL(d,R) consists of a single frame,
e.g. equivalence class, for each point in M . Associating that equivalence class with
that point we get that M ' LM/GL(d,R). In the diagram below we now choose
u = idLM , and thus (LM, π,M) is isomorphic to (LM, π′, LM/GL(d,R)), the frame
bundle is a principal bundle, and we’re done.

LM LM

M LM/GL(d,R)

u

π π′

v

Definition A.4.14 (Extension and restriction of principal bundles) Let P π−→
M and P ′

π′−→ M be principal bundles under G and a closed subgroup H ≤ G. If
there exists a bundle map (u, v) such that the following holds
(i) v ◦ π = π′ ◦ u (bundle map)
(ii) u(p / h) = u(p) /′ h for all h ∈ H ≤ G and p ∈ P .

Then P
π−→ M is called a G-extension of the H-principal bundle P ′ π′−→ M and

P ′
π′−→M is called the H-restriction of the G-principal bundle P π−→M . The criteria

above can be represented diagrammatically as the following diagram commuting
when we only let G act using elements in H.

P P ′

P P ′

M M

u

/G

u

π

/′H

π′

v

Theorem A.4.15 (Extension and restriction) Let H ≤ G be a closed subgroup
of the Lie group G. Then the following holds:
(i) Any H-principal bundle can be extended into a G-principal bundle
(ii) A G-principal bundle can be restricted to a H-principal bundle iff

• the bundle P/H π′−→M has a global section. 2

XII

A. Theoretical background

A.4.2 Associated bundle
We now give the definition on how to construct a bundle associated to a principal
G-bundle.

Definition A.4.16 (Associated bundle) Given a G-principal bundle

P P M
/G

π

and a smooth manifold F on which a left G-action . : G × F → F is defined
we define the associated bundle PF

πF−→ M (associated to the principal bundle) by
several steps:

i. First define an equivalence relation on the product space P × F by

(p, f) ∼G (p′, f ′) iff ∃g ∈ G : p′ = p / g and f ′ = g−1 . f. (A.4.10)

We then define the total space to be the quotient space PF = (P × F)/∼G.
ii. Define the projection πF by πF ([p, f]) = π(p).

Then Pf
πF−→ M is a fibre bundle with principal fibre F associated to the principal

G-bundle.

Remark A.4.17 It’s easy to check that the definition of the projection πF is well
defined: πF ([p, f]) = πF ([p′ . g, g−1 / f]) = π(p′ . g) = π(p) since the right action of
G preserves the fibres.

Proof (Associated bundle is a fibre bundle) To show that PF
πF−→ is a fi-

bre bundle with typical fibre F we need to show

π−1
F (p) = Fp ' F (A.4.11)

for all points p ∈M .
Since P π−→ M is a (principal) fibre bundle, it has a typical fibre which we call

K. We will, for clarity, denote a local element e ∈ P as e = (p, ẽ) ∈ {p} ×Kp, the
p is normally left implicit. We can do this since every fibre bundle over a smooth
manifold is locally trivial.
We begin by constructing an auxiliary function φe0 : PF → P such that πF =

π ◦ φe0 . φe0 is defined by that it maps all elements of an equivalence class [e, f] =
[(p, ẽ), f] ∈ PF to a specific element e0 in the total space P such that e0 = (p, ẽ0)
with ẽ0 ∈ Kp. That is φe0([(p, ẽ), f]) = (p, ẽ0) ∈ P . This works because ẽ ∈ Kp and
the action of G is free and preserves the fibre of the principal bundle P π−→ M , i.e.
given ẽ ∈ Kp we have that ẽ . g ∈ Kp for all g ∈ G.
This φe0 satisfies πF = π ◦φe0 since πF ([(p, ẽ), f]) = π((p, ẽ)) = p by definition and

π(φe0([(p, ẽ), f])) = π((p, ẽ0)) = p.
Hence we get that π−1

F = (π ◦ φe0)−1 = φ−1
e0 ◦ π

−1. Letting this operate on p ∈ M
we get that π−1(p) = {p} ×Kp; now φ−1

e0 ({p} ×Kp) is the set

φ−1
e0 ({p} ×Kp) =

= {[(p, ẽ), f] ∈ PF | φe0([(p, ẽ), f]) ∈ {p} ×Kp}
= {[(p, ẽ), f] | ẽ ∈ Kp, f ∈ F}

(A.4.12)

XIII

A. Theoretical background

since φe0([e, f]) = φe0([(p, ẽ), f]) = (p, ẽ0). Now, since the action of G on the fibre
Kp is free and preserves Kp we can choose an e′ = (p, ẽ′) ∈ P and there will always
exists a g ∈ G such that [e, f] = [(p, ẽ), f] ∼G [(p, ẽ′), f ′] = [e′, f ′] for some f ′ ∈ F .
Hence

{[(p, ẽ), f] | ẽ ∈ Kp, f ∈ F} ' {[(p, ẽ′), f ′] | ẽ′ ∈ Kp is fixed and f ′ ∈ F} ' F.
(A.4.13)

�

Hence we have shown π−1
F (p) = Fp ' F for all p ∈ M and therefore is PF

πF−→ M a
fibre bundle.

Definition A.4.18 (Associated bundle map) Given two associated bundles, PF
πF−→

M, P ′F
π′F−→ M ′, that share the same fibre but are associated to different principal

bundles, a principal bundle map is a pair (ũ, ṽ) such that they are constructed from
a principal bundle maps (u, v) (see Definition A.4.12) between the two underlying
principal bundles as

ũ([e, f])) = [u(e), f]
ṽ(m) = v(m).

(A.4.14)

I.e. the following diagrams commutes

PF P ′F

M M ′

ũ

πF π′F

ṽ

and

E E ′

E E ′

M M ′

u

/G

u

π

/′G′

π

v

A.4.3 Vector bundles and associated vector bundles
This is one of the most central bundle types to describe convolutional neural net-
works since the feature maps can be thought of as “vector fields” on the data man-
ifold, usually Z2.

Definition A.4.19 (Vector bundle) A vector bundle is a fibre bundle (E, π,M)
with canonical fibre V such that the fibre Vp at a point p ∈ M is isomorphic to V ,
where V is a vector space. Usually this is Km, and, in our case, we will use Rm.

Definition A.4.20 (Tangent bundle) For a smooth d-dimensional manifold M
we define the tangent bundle as the fibre bundle which has at p ∈ M the tangent
space at p as fibre. Since, for a d-dimensional manifold, TpM ' Rd we have that
the tangent bundle is a vector bundle with Rd as typical fibre.

Since vector spaces can be made into smooth manifolds we will construct associated
vector bundles, with a real n-dimensional vector space V as a fibre, to the (principal)
frame bundle to a d-dimensional smooth manifoldM . This will give our vectors their

XIV

A. Theoretical background

geometric transformation behaviour. Diagrammatically we construct the commuting
diagram

LM LMV

LM LMV

M

u

/G

u

π

/′G

π′

where LMV = (LM × V)/∼G consisting of equivalence classes [e, v], and G =
GL(d,R). When V = Rd ' TpM this can intuitively be seen as a local frame e and
a vector v expressed in that frame.
The equivalence relation is

[e, v] ∼G [e, v] / g = [e / g, g−1 . v] (A.4.15)

where we in the example of frame bundles defined the G action as

e / g = (e1, . . . , ed) / g = (gµ1eµ, . . . , g
µ
deµ). (A.4.16)

We define the left action of G on V component wise as

(g . v)ν = ρ(g)νµvµ (A.4.17)

where we have used the representation ρ : G → GL(n.R) that takes an element of
G = GL(d,R) and maps it to a n× n matrix. This representation must satisfy the
equivariance condition from the commuting diagram

u(x / g) = u(x) /′ ρ(g). (A.4.18)

We can now see that this associated vector bundle LMV
πV−→ M with canonical

fibre V is isomorphic to the vector bundle E π−→M with canonical fibre V . To do this
we need an invertible map u : LMV → E such that the following diagram commutes

LMV E

M M

πV

u

π

idV

This is satisfied with the map

u : LMV → E

[e, v] 7→ vµe′µ ∈ V.
(A.4.19)

Here we have different cases: when n = dimV < d = dimM , when n = d, and when
n > d.

XV

A. Theoretical background

n = d:

This is the simplest case where we can choose the basis vectors e′µ of V as

e′µ = eµ (A.4.20)

where eµ is the frame of TpM used in the equivalence class. In this we can also use
the identity map on GL(d,R) as the representation.
With this defined we see that expressing a vector at p ∈ M in a local frame now

is invariant under the G-action:

u([e, v]) = vµeµ
/g−→ ((g−1)µν ṽν)gαµ ẽα = δαν v

νeα = ṽν ẽν = u([ẽ, ṽ]) (A.4.21)

which is what we would expect of a vector.

n < d:

In this case the frame e of the tangent space has more basis vectors than V has
dimensions. We thus construct the map

u : LMV → E

[e, v] 7→ vµe′µ
(A.4.22)

where

e′µ = α(eµ) for µ = 1, . . . , n < d and α : Rd → Rn by α(x1, . . . , xd) = (x1, . . . , xn).
(A.4.23)

I.e. we only keep the first n vectors of the frame e and project these onto Rn.
Using a representation ρ of G = GL(d,R) that extracts the first n × n block

results in problems for general g ∈ GL(d,R). For example, with g, h ∈ GL(d,R)
and g′, h′ ∈ GL(n,R):

g =
g′ ga

gb g′′

 and h =
h′ ha

hb h′′

we get

ρ(gh) = g′h′ + gahb but ρ(g)ρ(h) = g′h′. (A.4.24)

Hence this only works if we restrict the group of the principal bundle to those
g ∈ GL(d,R) on the form

g =
g′ 0

0 1

 .
XVI

A. Theoretical background

Using this restriction we can check whether the map u is well defined.

u([e, v]) = u([e / g, g−1 . v])

=
n∑
ν=1

n∑
σ=1

α(e / g)νρ(g−1)νσvσ = {α(e / g)ν = ρ(g)µνe′µ}

=
n∑
µ=1

n∑
ν=1

n∑
σ=1

ρ(g)µνe′µρ(g−1)νσvσ

=
n∑
µ=1

n∑
σ=1

δµσe
′
µv

σ = vσe′σ

= u([e, v]).

(A.4.25)

Thus, to make an associated vector bundle isomorphic to a vector bundle which
typical fibre has lower dimensionality than the base manifold we can restrict the
structure group of TpM .

n > d:

In this case the tangent vectors in the frame e of TpM are to few to span V . Thus
we define the map u as

u : LMV → E

[e, v] 7→ vµe′µ.
(A.4.26)

The basis e′µ of V is

e′µ =

β(eµ), for µ = 1, . . . , d
ξi, for i = d+ 1, . . . , n

(A.4.27)

where β : Rd → Rn by β(x1, . . . , xd) = (x1, . . . , xd, 0, . . . , 0) and ξi is the i:th stan-
dard basis vector of Rn.
The representation of GL(d,R) here is simply

ρ(g) =
g 0

0 1

 .
Now we just have to check that the map u is well defined under the group action.

u([e, v]) = u([e / g, g−1 . v])

=
n∑
σ=1

n∑
ν=1

β(e / g)σρ(g−1)σνvν = {β(e / g)σ = ρ(g)µσe′µ}

=
n∑
µ=1

n∑
σ=1

n∑
ν=1

ρ(g)µσe′µρ(g−1)σνvν

=
n∑
µ=1

n∑
ν=1

δµν e
′
µv

ν = vνe′ν

= u([e, v]).

(A.4.28)

XVII

A. Theoretical background

By these constructions we now see that the associated vector bundle LMV
πV−→M

can be made ismorphic to the vector bundle E π−→M that has the typical fibre V .
To summarise, the local vector v is invariant under g action but its components vi

transform equivariantly.
Since the frame bundle captures the local GL(d,R) symmetry of the tangent space

to M we associate bundles to the frame bundle to make sure that they contain the
information of this local geometrical symmetry.

Example A.4.21 (Associated tangent bundle) One example of an associated
vector bundle is the associated tangent bundle to the frame bundle where we let the
smooth manifold F = Rd ' TpM for a d-dimensional smooth manifold M .
The total space is then denoted LMRd = (LM × Rd)/GL(d,R), and it otherwise

technically developed as stated in the text above.
This fibre bundle is isomorphic to the tangent bundle as commented on above for

general n-dimensional vector spaces V .

Definition A.4.22 (Tensor bundle) The (p, q)-tensor bundle is a vector bundle
where the canonical fibre is the vector space of multilinear maps

T : V ⊗ · · · ⊗ V︸ ︷︷ ︸
p copies

⊗V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
q copies

→ R (A.4.29)

where V is a vector space and V ∗ is its dual.
Normally the vector space V is taken to be the tangent space to the base manifold

M , but one can generalise this to

T : V1 ⊗ · · · ⊗ Vp ⊗ U∗1 ⊗ · · · ⊗ U∗q → R (A.4.30)

where the Vi:s and Ui:s are potentially different, but this is unusual.

A.5 Integration on manifolds
In this section we introduce the structure necessary to perform integrals on mani-
folds. We start with introducing scalar valued differential forms on flat spaces, i.e.
Rd, and manifolds of dimension d, and their integration.

A.5.1 Differential forms
Definition A.5.1 (Alternating map) Let V be a vector space, then a multilinear
map η : V ⊗ · · · ⊗ V︸ ︷︷ ︸

k copies

→ R is called alternating if

η(v1, · · · , vi, · · · , vj, · · · , vk) = 0 (A.5.1)

for vi = vj. The space of alternating maps η : V ⊗k → R is denoted Altk(V).

We will usually work with the vector space V ' Rd.

XVIII

A. Theoretical background

Definition A.5.2 (Smooth differential form) A differential k-form on a subset
U ⊆ Rm is a smooth map

ω : U → Altk(Rd). (A.5.2)
The space of differential k-forms on U is denoted Ωk(U).

Note that intuitively a differential form ω is a parametrisation of alternating since for
x ∈ U we have ω(x) ∈ Altk(Rd). For ease of notation we will denote the differential
form ω evaluated at the base point x as ωx ∈ Altk(Rd).

Remark A.5.3 Note that Alt0(Rd) = R and as such we get that Ω0(U) is the space
of smooth functions from U to R.

Definition A.5.4 (Directional derivative) Let ω : U → Altk(Rd) be a differen-
tial form and ei the i:th basis vector of Rd then we define the directional derivative
of a differential form Dω at the base point x and in the direction ei as

(Dω)x(ei) = Dxω(ei) = d

dt
ωx+tei

∣∣∣∣
t=0

= ∂ωx
∂xi

. (A.5.3)

Remark A.5.5 In that case that φ ∈ Ω0(U) we have that φx ∈ R and that

(Dφ)x(ei) = ∂φx
∂xi

(A.5.4)

is simply the partial derivative of φ in the direction of ei. For a general vector
u = uiei ∈ U we get

(Dφ)x(u) = ∂φx
∂xi

ui. (A.5.5)

That was the case for φ : U → R and we can extend this to the case for φ : U ⊆
Rm → Rp by letting

Dxφ(ei) = (Dxφ
1(ei), . . . , Dxφ

p(ei)) (A.5.6)

where φi is the i:th component of φ.

Definition A.5.6 (Exterior derivative) The exterior differential d is a linear op-
erator

d : Ωk(U)→ Ωk+1(U) (A.5.7)
defined at x ∈ U by the action on ω ∈ Ωk(U)

(dω)x(ξ1, . . . , ξk+1) =
k+1∑
l=1

(−1)l−1[Dxω(ξl)](ξ1, . . . , ξ̂l, . . . , ξk+1) (A.5.8)

where ξ̂l means that ξl is removed.

Definition A.5.7 (Pullback) Let φ : U ⊆ Rm → V ⊆ Rp be a smooth map.
Then for Ωk(U) = {ω | ω : U → Altk(Rm)} and Ωk(V) = {ω | ω : V → Altk(Rp)}
we define the pullback

φ∗ : Ωk(V)→ Ωk(U) (A.5.9)
such that for ω ∈ Ωk(V), x ∈ U and ξ1, . . . , ξk ∈ Rm

(φ∗ω)x(ξ1, . . . , ξk) = ωφ(x)(Dxφ(ξ1), . . . , Dxφ(ξk)). (A.5.10)

XIX

A. Theoretical background

Remark A.5.8 Note that since φ : Rm → Rp we have for ξi ∈ Rm that Dxφ(ξi) ∈
Rp.

Now, let M be a smooth manifold and (U, φ) a chart containing the point p ∈M .

Definition A.5.9 (Differential form on manifold) A differential k-form ω on a
smooth manifold M is a family ω = {ωp}p∈M of alternating k-forms on the tangent
space TpM such that

ωp ∈ Altk(TpM). (A.5.11)

Since (U, φ) is a chart we have φ : U → V ⊆ Rd as a homeomorphism. Therefore
we can construct the pullback (φ−1)∗ : Ωk(U) → Ωk(V) which takes forms on the
manifold and returns forms on Rd. φ−1 is called a local parametrisation of the
manifold around the point p ∈M .
Note that for x ∈ V = φ(U) ⊆ Rd

Dx(φ−1) : Rd → Tφ−1(x)M ' Rd (A.5.12)

is an isomorphism for a manifold M of dimension d. This induces an isomorphism

Altk(Dx(φ−1)) : Altk(T(φ−1)(x)M)→ Altk(Rd). (A.5.13)

Let V = φ(U) be a subset of Rd, we then define the map

(φ−1)∗(ω) : V → Altk(Rd) (A.5.14)

by specifying its value at x ∈ V as

(φ−1)∗(ω)x = Altk(Dx(φ−1))(ωφ−1(x)) (A.5.15)

where ω is a differential form on M . Since ω is a differential k-form on M we
have for p = φ−1(x) that ωp = ωφ−1(x) ∈ Altk(TpM) = Altk(Tφ−1(x)M). Therefore
Altk(Dx(φ−1))(ωφ−1(x)) ∈ Altk(Rd). Hence we can view (φ−1)∗(ω) as an element of
Ωk(V) since (φ−1)∗(ω)x ∈ Altk(Rd).

Definition A.5.10 (Smooth differential form on manifold) A k-form
ω = {ωp}p∈M is smooth if (φ−1)∗(ω) is smooth for all local parametrisations φ−1.
The space of such forms is denoted Ωk(M).

A.5.2 Bases
To be able to talk about bases we first need to introduce the exterior product, and
for that we need one introductory concept.

Definition A.5.11 ((p, q)-shuffles) A (p, q)-shuffle is a permutation σ ∈ S(p+q)
such that

σ(1) < σ(2) < · · · < σ(p)
σ(p+ 1) < · · · < σ(p+ q).

(A.5.16)

These σ are called “ordered” permutations, and the set of all such σ is denoted
S(p, q).

XX

A. Theoretical background

p

M

TpMU

φ φ−1

Rd

x = φ(p)

Altk(TpM) = Altk(Tφ−1(x)M)

Altk(Rd)

(φ−1)∗ φ∗

Definition A.5.12 (Exterior product) Let ω1 ∈ Altp(V) and ω2 ∈ Altq(V) then
for vectors ξ1, . . . , ξp+q ∈ V we define

(ω1 ∧ ω2)(ξ1, . . . , ξp+q) =
∑

σ∈S(p,q)
sign(σ)ω1(ξσ(1), . . . , ξσ(p))ω2(ξσ(p+1), . . . , ξσ(p+q))

(A.5.17)
where sign(σ) is the sign of the permutation = (−1)#number of transpositions in σ.

Now we present some useful lemmas regarding the exterior product.

Lemma A.5.13 If ω1 ∈ Altk(V) and ω2 ∈ Altp(V) then ω1 ∧ ω2 ∈ Altk+p(V). 2

Lemma A.5.14 (Properties of the exterior product) These are some proper-
ties of the exterior product.

• (ω1 + ω′1) ∧ ω2 = ω1 ∧ ω2 + ω′1 ∧ ω2
• (λω1) ∧ ω2 = λ(ω1 ∧ ω2) = ω1 ∧ (λω2)
• ω1 ∧ (ω2 + ω′2) = ω1 ∧ ω2 + ω1 ∧ ω′2
• ω1 ∧ (ω2 ∧ ω3) = (ω1 ∧ ω2) ∧ ω3 2

Lemma A.5.15 For ω1 ∈ Altp(V) and ω2 ∈ Altq(V) we have ω1∧ω2 = (−1)pqω2∧
ω1. 2

Now we can talk about bases. Let {ei}i∈I be a basis for Rd, and {εj}j∈J be a basis
for the dual space, (Rd)∗ = Alt1(Rd), such that

εi(ej) = δij =

1, if i = j

0, otherwise.

Since εi ∈ Alt1(Rd) we for viei = v ∈ Rd get that εi(v) = εi(vjej) = {εi is linear} =
vjεi(ej) = vjδij = vi, i.e. εi “picks out” the i:th coordinate of v.

XXI

A. Theoretical background

Example A.5.16 Since Ω0(U ⊆ Rk) ' R we can define xi : U → R ' Ω0(U) to be
the i:th projection. Then dxi ∈ Ω1(U) is the constant map

dxi : x 7→ εi (A.5.18)

and we can consider dxi = εi. This is since for v ∈ Rk

(dxi)x(v) = Dxx
i(v) = d

dt
xi(x+ tvjej)

∣∣∣∣
t=0

= vj
∂xi

∂xj
= εj(v)δij = εi(v). (A.5.19)

The next element we introduce for ease of notation: is multiindeces.

Definition A.5.17 (Multiindex) An (ordered) multiindex I is a tuple I = (i1, . . . , ip)
that satisfies

1 ≤ i1 < i2 < · · · < ip ≤ n. (A.5.20)

We also define, for multiindeces, the notation

εI = εi1 ∧ εi2 ∧ · · · ∧ εip (A.5.21)

and
eJ = (ej1 , ej2 , . . . , ejp). (A.5.22)

By this notation we have

εI(eJ) = (εi1 ∧ · · · ∧ εip)(ej1 , . . . , ejp) = εi1(ej1)εi2(ej2) · · · εip(ejp) = δi1j1 · · · δ
ip
jp = δIJ
(A.5.23)

The arbitrary limit of n for the components of the multiindex comes from the fact
that if dim(V) = n then any set of vectors {v1, . . . , vk} containing more than n
vectors will be linearly dependent and hence εI(v1, . . . , vk) = 0.

Theorem A.5.18 (Basis for Altk(V)) The space Altk(V) has

εI , I = (i1, . . . , ik) (A.5.24)

as a basis. 2

Hence, since ω ∈ Ωk(V ⊆ Rd) has ωx ∈ Altk(Rd) we can write

ωx = fI(x)εI (using summation convention) (A.5.25)

where the components fI are functions fI : V → R.
We can now look again at Example A.5.16 and conclude that we can use dxi:s to

build a basis for Altk(V) and as such we write ωx = fI(x)dxI . This is the what we
are going to use going forward. To perform integrals we need to transfer differential
forms from the manifold to differential forms on Rd using the pullback (φ−1)∗ above.
To do this we have the following lemma.

Lemma A.5.19 (Properties of the pullback) Let φ∗ be a pullback as defined in
definition A.5.7 and ω ∈ Ωk(V) then

• φ∗(fω)x = (f ◦ φ)(x)(φ∗ω)x

XXII

A. Theoretical background

• Let η, ζ be differential forms such that η∧ζ ∈ Ωk(V) then φ∗(η∧ζ) = φ∗η∧φ∗ζ
• d(φ∗ω) = φ∗dω
• Let η, ζ ∈ Ωk(V) then φ∗(η + ζ) = φ∗η + φ∗ζ 2

Example A.5.20 Let εi be a basis vector of Alt1(V) and φ : U → V giving rise to
a pullback φ∗ : Ω1(V)→ Ω1(U). Then we for u ∈ U get

(φ∗εi)x(u) = εiφ(x)(Dxφ(u)) = εi
(
∂φk(x)
∂xj

ujek

)
= ∂φk(x)

∂xj
ujεi(ek) =

= ∂φi(x)
∂xj

uj = ∂φi(x)
∂xj

(dxj)x(u) = (dφi)x(u)
(A.5.26)

and hence φ∗εi = dφi. With, from example A.5.16, that dxi = εi we see φ∗εi =
φ∗dxi = d(φ∗xi) = dφi. And since φ∗xi = (x ◦ φ)i = φi is the i:th component of φ
this makes sense: the pullback of the coordinate xi gives the coordinates in terms
of the pullback φi.

Let now ω ∈ Ωk(M) be a differential form on the d-dimensional manifold M . Then
at a point p ∈M we can write

ωp = fI(p)εI (A.5.27)
where fI(p) is, for now, a section of the bundle (E, π,M) with typical fibre R
and εI is a basis for Altk(TpM). With (U, φ) a local chart containing p ∈ M and
g = φ−1 : Rd → U a local parametrisation such that p = g(x), we can pull ω back
to being a form on Rd by

(g∗ω)x = (fI ◦ g)(x)g∗εI = fI(g(x))∂g
i(x)
∂xj

dxj (A.5.28)

where we are using that we locally can see the target of g as a surface embedded in
Rm.

A.5.3 Integration of differential forms
Before we can define integrals of differential forms on manifolds we need to talk
about orientations.

Definition A.5.21 (Orientation and orientation form) A smooth n-dimensio-
nal manifold is called oriented if there exists ω ∈ Ωn(M) such that ωp 6= 0 for all
p ∈M . Such an ω is called an orientation form. Two orientation forms η, ζ are said
to be equivalent iff there exists a f ∈ Ω0(M) = C∞(M,R) such that f(p) > 0 and
ηp = f(p)ζp for all p ∈M .

Definition A.5.22 (Oriented basis) Given a orientation form ω on M a basis
a1, . . . , ad of TpM is positively (negatively) oriented if ω(a1, . . . , ad) is positive (neg-
ative).

Definition A.5.23 (Orientation preserving map) Let φ : M1 → M2 be a dif-
feomorphism between two d-dimensional manifolds. Let ω1,2 be orientation forms
on M1,2. The pullback

φ∗ω2 ∈ Ωd(M1) (A.5.29)

XXIII

A. Theoretical background

is then an orientation form on M1 and φ is called orientation preserving if φ∗ω2
determines the same orientation as ω1.

We will define integration on manifolds by pulling back to Rd where we know how
to integrate. Thus we need an orientation on Rd.

Definition A.5.24 (Standard orientation of Rd) The orientation form

dx1 ∧ dx2 ∧ · · · ∧ dxd (A.5.30)

is called the standard orientation of Rd and is the one that is used if nothing else is
specified.

Definition A.5.25 (Oriented charts and atlas) Around any point p in a smooth
oriented manifoldM we can find a chart (U, φ) such that φ is a orientation preserving
diffeomorphism when U has the orientation ofM and φ(U) ⊆ Rn has the orientation
of Rd. This is called an oriented chart. An atlas consisting of only oriented charts
is called an oriented atlas.

Definition A.5.26 (Integration of forms on Rn) Let V ⊂ R be a bounded sub-
set, ω ∈ Ωd(Rd), and {dx1, . . . , dxd} be a basis for Ω1(Rd). Then ω can be written

ωx = f(x)dx1 ∧ · · · ∧ dxd (A.5.31)

for some f ∈ C∞(Rd,R). Then we define the integral∫
V
ω =

∫
V
fdx1 ∧ · · · ∧ dxd :=

∫
V
f(x1, . . . , xd)dx1dx2 · · · dxd (A.5.32)

where the final integral is the well known Lebesgue integral. This definition relies
on that ω is expressed in the orientation form of Rd.

In this type of notation the usual change of variables in integrals looks like this: Let
U, V ⊆ Rd be open sets and φ : U → V be a diffeomorphism such that y = φ(x) ∈ V .
Then the change of variables looks like∫

V=φ(U)
f(y)dy =

∫
U
f(y(x))|Dxφ|dx (A.5.33)

where |Dxφ| is the (Jacobi) determinant of the matrix with components ∂φi

∂xj
.

Definition A.5.27 (Support of differential form) The support of a differential
k-form ω ∈ Ωk(M) is the set

suppM ω = {p ∈M | ωp 6= 0}. (A.5.34)

If this set is compact then ω is said to have compact support. The space of differential
k-forms with compact support is denoted Ωk

c (M).

Lemma A.5.28 Let φ : U → V be a diffeomorphism between open subsets of Rd.
Assume that |Dxφ| = δ is a constant for all x ∈ U . Then for ω ∈ Ωn

c (V) one has∫
V=φ(U)

= δ
∫
U
φ∗ω. (A.5.35)

2

XXIV

A. Theoretical background

The formalism thus far has revolved around compactly supported differential forms.
To extend this to differential forms defined on all of M we need a partition of unity.

Definition A.5.29 (Partition of unity) Let {Ui}i∈I be an open cover of the man-
ifold M . A partition of unity subordinate to this cover is a collection of smooth
functions {ρi : M → R} that satisfies

i. 0 ≤ ρi(p) ≤ 1 for all i ∈ I and p ∈M
ii. suppM ρi ⊂ Ui
iii. for each point p ∈M there exists a neighbourhood U where only finitely many

ρi are non-zero
iv. ∑i∈I ρi(p) = 1 for all p ∈M .

Theorem A.5.30 (Existence of partition of unity) Let M be a smooth mani-
fold and {Ui}i∈I be any open cover. Then there exists a partition of unity subordinate
to this cover. 2

Proposition A.5.31 For any smooth oriented d-dimensional manifold M there ex-
ists a unique linear map ∫

M
: Ωd

c(M)→ R (A.5.36)

that has the property that if ω ∈ Ωd(M) and suppM ω ⊂ U where (U, φ) is a smooth
oriented chart, then ∫

M
ω =

∫
U
ω =

∫
φ(U)

(φ−1)∗ω (A.5.37)
2

A.5.4 Riemannian manifolds
For the case when we move onto the gauge symmetries of the manifold it will be
relevant to have some theory on Riemannian manifolds.

Definition A.5.32 (Riemannian structure (Metric)) ARiemannian structure
(in physics often called a metric) on a smooth manifold M is a family of inner prod-
ucts

〈, 〉p on TpM for all p ∈M (A.5.38)

satisfying the condition that for any local parametrisation f : V →M where V ⊆ Rd

and any pair of vectors v1, v2 ∈ Rd the map

x 7→ g(x) = 〈Dxf(v1), Dxf(v2)〉f(x) (A.5.39)

is a smooth function of x. The pair (M, g) is called a Riemannian manifold.

Note that since Dxf : Rd → TpM the metric is a map

〈, 〉p : TpM × TpM → R. (A.5.40)

It is also linear and symmetric.

XXV

A. Theoretical background

Remark A.5.33 Due to the nature of the directional derivative Dxf it is enough
to ensure that the smoothness is satisfied for

gij(x) := 〈Dxf(ei), Dxf(ej)〉f(x) (A.5.41)

where {ei} is the standard basis for Rd.

Definition A.5.34 (Isometry) Suppose (M, gM), and (N, gN) are two Rieman-
nian manifolds. A smooth map φ : M → N is called an isometry if it is a diffeo-
morphism such that

φ∗gN = gM (A.5.42)
where gN,M is the Riemannian structure onM,N . Manifolds which are related by an
isometry are said to be isometric. Furthermore, φ is called a local isometry between
M and N is every point p ∈M has a neighbourhood U such that φ

∣∣∣
U

: U → V ⊂ N

is an isometry.

Definition A.5.35 (Orthonormal frame) Let (M, g) be a d-dimensional Rie-
mannian manifold. A local frame (e1, . . . , ed) for M defined on an open subset
U ⊂ M is orthonormal if (e1|p, . . . , ed|p) is an orthonormal basis for TpM , i.e.
〈ei, ej〉 = δij

Proposition A.5.36 For all points p ∈M there is a neighbourhood with a smooth
orthonormal frame. 2

Proposition A.5.37 Let (M, g) be an oriented Riemannian manifold. Then M
has a uniquely determined orientation form volM such that

volM(e1, . . . , ed) = 1 (A.5.43)

for every positively oriented orthonormal basis e1, . . . , ed of TpM . 2

Proposition A.5.38 In local chart coordinates x1, . . . , xd for an orientation pre-
serving local parametrisation f : V → U ⊂M we get that the pullback of the volume
form volM is

(f ∗(volM))x =
√

det gij(x)dx1 ∧ · · · ∧ dxd (A.5.44)
2

A.6 Connections on manifolds
In this section we introduce the concept of connections, geodesics, and parallel
transport.

Definition A.6.1 (Connection on vector bundle) Let E π−→ M be a smooth
vector bundle over a smooth manifold M . Denoting the spaces of smooth sections
of the vector bundle as Γ(E). A connection on this bundle is an R-linear map

∇ : Γ(E)→ Γ(E ⊗ T ∗M) (A.6.1)

XXVI

A. Theoretical background

where T ∗M denotes the cotangent bundle. This map must satisfy the Leibniz rule

∇(σf) = (∇σ)f + σ ⊗ df (A.6.2)

where f ∈ Ω0(M) is a function on M and σ ∈ Γ(E) is a smooth section.

Since the result is a section in Γ(E⊗T ∗M) one can feed this a tangent vector (field)
v in order to define a covariant derivative along this vector (field). This results in
the map

∇v : Γ(E)→ Γ(E) (A.6.3)
by

∇vσ = (∇σ)(v). (A.6.4)
The covariant derivative then satisfies the following

i. ∇v(σ1 + σ2) = ∇vσ1 +∇vσ2
ii. ∇v+uσ = ∇vσ +∇uσ
iii. ∇v(fσ) = f∇vσ + σ ⊗ df(v) = f∇vσ + v(f)σ
iv. ∇fvσ = f∇vσ

for f ∈ Ω0(M) and σ ∈ Γ(E).

Example A.6.2 Let vp = vµp (∂µ)p be a tangent vector field at p ∈M and σ ∈ Γ(E).
Since σ ∈ Γ(E), that means that at every point p onM we can decompose the vector
σ(p) = σ(p)νeν where eν is a basis for the typical fibre at p. We can then see σ as
coordinate functions σν ∈ Ω0(M) combined with the basis which is given by a section
eν ∈ Γ(E). We can now talk about taking the covariant derivative of σ with respect
to the tangent vector field v:

∇v(σ) = ∇vµ∂µ(σνeν). (A.6.5)

We start by using rule iv which gives

∇vµ∂µ(σνeν) = vµ∇∂µ(σνeν). (A.6.6)

Then, since σν are functions we use rule iii to obtain

vµ∇∂µ(σνeν) = vµ(σν∇∂µ(eν) + ∂µ(σν)eν). (A.6.7)

Since ∇∂µ(eν) ∈ Γ(E) we can decompose this as we did with σ above. This yields
∇∂µ(eν) = (∇∂µ(eν))αeα. Often (∇∂µ(eν))α is denoted by the symbol Γαµν called the
Christoffel symbols, which are not to be confused with the space of smooth sections.
With this symbol we get

∇v(σ) = ∇vµ∂µ(σνeν) = vµ(σνΓαµνeα + ∂µ(σν)eν). (A.6.8)

Relabelling a dummy index we obtain

∇v(σ) = vµ(σνΓαµν + ∂µ(σα))eα. (A.6.9)

Choosing the tangent vector field just be the basis vector field ∂µ we get the, in
general relativity, well known expression

∇µ(σ) := ∇∂µ(σ) = (∂µ(σα) + σνΓαµν)eα. (A.6.10)

XXVII

A. Theoretical background

Note that to compute this one needs expressions for

Γαµν = (∇∂µ(eν))α; (A.6.11)

roughly speaking, one needs to specify how the basis vectors change between points
on the manifold.

Example A.6.3 In the case where the manifold is flat one can choose

Γαµν = (∇∂µ(eν))α = 0, (A.6.12)

i.e. one has constant basis vectors. Then we can compute the covariant derivative
of a vector field σ with respect to another vector field v:

∇v(σ) = ∇vµ∂µ(σνeν) = vµ(σν∇∂µ(eν) + ∂µ(σν)eν), (A.6.13)

and since ∇∂µ(eν) = 0 we have

∇v(σ) = vµ∂µ(σν)eν . (A.6.14)

We can now express the components of the vector field as

vµ = dxµ(v) (A.6.15)

and thus arrive at
∇v(σ) = vµ∂µ(σν)eν = dσ(v). (A.6.16)

Hence, for a flat space we have

∇v(σ) = dσ(v) (A.6.17)

and the covariant derivative is just the external derivative known from the study
of differential forms, which just returns the derivative of a function along a vector;
here v.

We can now turn to geodesics which roughly are the straightest possible curves one
can move along on a manifold.

Definition A.6.4 (Geodesic) A geodesic through a point p ∈ M , where M is a
smooth manifold with connection∇ on the tangent bundle TM , is a curve γ : I →M
such that

i) γ(0) = p
ii) ∇γ̇(t)γ̇(t) = 0 for all t ∈ I.

We can also talk about sections parallel to a curve.

Definition A.6.5 (Section parallel to curve) Let E π−→ M be a smooth vector
bundle over a smooth manifold M with a connection ∇, and γ : I → M a smooth
curve in the manifold. Then a section σ ∈ Γ(E) is parallel to the curve γ if

∇γ̇(t)σ(γ(t)) = 0 (A.6.18)

for all t ∈ I.

XXVIII

A. Theoretical background

This section is unique and it’s possible to generate this parallel section σ given
a curve γ such that γ(0) = p and a starting vector σp ∈ Vp by solving the ODE
obtained from

∇γ̇(t)σ(γ(t)) = 0 (A.6.19)

with the initial condition
σ(γ(0)) = σ(p) = σp. (A.6.20)

With a local chart (U, φ) around p = γ(0) ∈ M containing the endpoint γ(1) such
that (φ ◦ γ)(t) = x(t) we have that the tangent vector takes the form

γ̇(t) = dxi

dt

(
∂

∂xi

)
γ(t)

and with the shortcut in notation

∇(∂

∂xi

)
γ(t)

= ∇i (A.6.21)

we can rewrite equation (A.6.18) as

dxi

dt
∇i(σ(x(t))) = 0 (A.6.22)

which gives a way to calculate the parallel sections in a given coordinate system x.

XXIX

A. Theoretical background

XXX

B
Code samples of group invariant

networks

In this appendix we present the networks used in the tests presented in Chapter 4.3.1.
The networks uses code published by Cohen et al. accompanying their article [9].
We have tested two different sizes of networks: one with three convolutional layers

and one with seven convolutional layers, combined with invariance under different
groups: Z2, C4, and D4 where the Z2 invariant network is just an ordinary CNN
with a global average at the end.

1 import tensorflow as tf
2 from tensorflow import keras
3 from keras_gcnn . layers . convolutional import GConv2D # Import the

group convolution by Cohen et al.
4 from keras_gcnn . layers . normalization import GBatchNorm # Import

BatchNormalisation written to work with group
5 # equi -/ invariant networks
6 from keras_gcnn . layers . pooling import GroupPool # Import the

pooling over the group channels
7 import numpy as np
8

9

10 def equivariantNetwork (group , padding =’valid ’, large=False):
11 # Define the layers that all the networks will use.
12 softmax = tf.keras. layers . Activation (’softmax ’)
13 maxPooling = tf.keras. layers . MaxPooling2D (pool_size =(2, 2))
14 globalAvgPooling = tf.keras. layers . GlobalAveragePooling2D ()
15

16 if not large: # The smaller network structure (3 conv layers)
17

18 # Define the activation layers used after each convolution
19 relu1 = tf.keras. layers . Activation (’relu ’)
20 relu2 = tf.keras. layers . Activation (’relu ’)
21 relu3 = tf.keras. layers . Activation (’relu ’)
22

23 if group == ’Z2’: # This is just an ordinary CNN
24

25 # Define the convolution layers
26 conv1 = tf.keras. layers . Conv2D (10, 3, padding = padding)
27 conv2 = tf.keras. layers . Conv2D (10, 3, padding = padding)
28 conv3 = tf.keras. layers . Conv2D (10, 3, padding = padding)
29

30 # Define the normalisation and group pooling
31 norm = tf.keras. layers . BatchNormalization ()

XXXI

B. Code samples of group invariant networks

32 gPooling = tf.keras. layers . Lambda (lambda x: x) #
identity layer since no group action when only Z2

33

34 elif group is ’C4’: # Network invariant under C4
35

36 # Define the convolutional layers . Note that the number
of filters has been reduced to keep the number of

37 # parameters roughly the same as for the ordinary CNN
38 conv1 = GConv2D (round (10 / 2), 3, ’Z2’, group ,

input_shape =(28 , 28, 1), padding = padding)
39 conv2 = GConv2D (round (10 / 2), 3, group , group , padding

= padding)
40 conv3 = GConv2D (10, 3, group , group , padding = padding)
41

42 # Define the normalisation and group pooling
43 norm = GBatchNorm (group)
44 gPooling = GroupPool (group)
45

46 else: # Network invariant under D4
47

48 # Define the convolutional layers . Note that the number
of filters has been reduced to keep the number of

49 # parameters roughly the same as for the ordinary CNN
50 conv1 = GConv2D (round (10 / 3), 3, ’Z2’, group ,

input_shape =(28 , 28, 1), padding = padding)
51 conv2 = GConv2D (round (10 / 3), 3, group , group , padding

= padding)
52 conv3 = GConv2D (10, 3, group , group , padding = padding)
53

54 # Define the normalisation and group pooling
55 norm = GBatchNorm (group)
56 gPooling = GroupPool (group)
57

58 # Use Keras functional API to construct the network with
the layers defined above

59 inputs = keras.Input(shape =(28 , 28, 1))
60

61 x = conv1(inputs)
62 x = relu1(x)
63 x = conv2(x)
64 x = relu2(x)
65 x = maxPooling (x)
66 x = norm(x, training =False)
67 x = conv3(x)
68 x = relu3(x)
69 x = gPooling (x)
70 x = globalAvgPooling (x)
71 outputs = softmax (x)
72

73 else: # The larger network structure with 7 convolutional
layers

74

75 # Define the activation layers used after each convolution
76 relu1 = tf.keras. layers . Activation (’relu ’)
77 relu2 = tf.keras. layers . Activation (’relu ’)
78 relu3 = tf.keras. layers . Activation (’relu ’)

XXXII

B. Code samples of group invariant networks

79 relu4 = tf.keras. layers . Activation (’relu ’)
80 relu5 = tf.keras. layers . Activation (’relu ’)
81 relu6 = tf.keras. layers . Activation (’relu ’)
82 relu7 = tf.keras. layers . Activation (’relu ’)
83

84 if group == ’Z2’: # This is just an ordinary CNN
85

86 # Define the convolution layers
87 conv1 = tf.keras. layers . Conv2D (10, 3, padding = padding)
88 conv2 = tf.keras. layers . Conv2D (10, 3, padding = padding)
89 conv3 = tf.keras. layers . Conv2D (10, 3, padding = padding)
90 conv4 = tf.keras. layers . Conv2D (10, 3, padding = padding)
91 conv5 = tf.keras. layers . Conv2D (10, 3, padding = padding)
92 conv6 = tf.keras. layers . Conv2D (10, 3, padding = padding)
93 conv7 = tf.keras. layers . Conv2D (10, 3, padding = padding)
94

95 # Define the normalisation and group pooling
96 norm = tf.keras. layers . BatchNormalization ()
97 gPooling = tf.keras. layers . Lambda (lambda x: x) #

identity layer since no group action when only Z2
98

99 elif group is ’C4’: # Network invariant under C4
100

101 # Define the convolutional layers . Note that the number
of filters has been reduced to keep the number of

102 # parameters roughly the same as for the ordinary CNN
103 conv1 = GConv2D (round (10 / 2), 3, ’Z2’, group ,

input_shape =(28 , 28, 1), padding = padding)
104 conv2 = GConv2D (round (10 / 2), 3, group , group , padding

= padding)
105 conv3 = GConv2D (round (10 / 2), 3, group , group , padding

= padding)
106 conv4 = GConv2D (round (10 / 2), 3, group , group , padding

= padding)
107 conv5 = GConv2D (round (10 / 2), 3, group , group , padding

= padding)
108 conv6 = GConv2D (round (10 / 2), 3, group , group , padding

= padding)
109 conv7 = GConv2D (10, 3, group , group , padding = padding)
110

111 # Define the normalisation and group pooling
112 norm = GBatchNorm (group)
113 gPooling = GroupPool (group)
114

115 else: # Network invariant under D4
116

117 # Define the convolutional layers . Note that the number
of filters has been reduced to keep the number of

118 # parameters roughly the same as for the ordinary CNN
119 conv1 = GConv2D (int(np.floor (10 / np.sqrt (8))), 3, ’Z2’

, group , input_shape =(28 , 28, 1), padding = padding)
120 conv2 = GConv2D (int(np.floor (10 / np.sqrt (8))), 3,

group , group , padding = padding)
121 conv3 = GConv2D (int(np.floor (10 / np.sqrt (8))), 3,

group , group , padding = padding)
122 conv4 = GConv2D (int(np.floor (10 / np.sqrt (8))), 3,

XXXIII

B. Code samples of group invariant networks

group , group , padding = padding)
123 conv5 = GConv2D (int(np.floor (10 / np.sqrt (8))), 3,

group , group , padding = padding)
124 conv6 = GConv2D (int(np.floor (10 / np.sqrt (8))), 3,

group , group , padding = padding)
125 conv7 = GConv2D (10, 3, group , group , padding = padding)
126

127 # Define the normalisation and group pooling
128 norm = GBatchNorm (group)
129 gPooling = GroupPool (group)
130

131 # Use Keras functional API to construct the network with
the layers defined above

132 inputs = keras.Input(shape =(28 , 28, 1))
133

134 x = conv1(inputs)
135 x = relu1(x)
136 x = conv2(x)
137 x = relu2(x)
138 x = maxPooling (x)
139 x = norm(x, training =False)
140 x = conv3(x)
141 x = relu3(x)
142 x = conv4(x)
143 x = relu4(x)
144 x = conv5(x)
145 x = relu5(x)
146 x = conv6(x)
147 x = relu6(x)
148 x = conv7(x)
149 x = relu7(x)
150 x = gPooling (x)
151 x = globalAvgPooling (x)
152 outputs = softmax (x)
153

154 # Finally actually create the model
155 model = keras.Model(inputs =inputs , outputs = outputs)
156

157 return model # Return the constructed model

These models can then be tested on the MNIST dataset.
1 import tensorflow as tf
2 from tensorflow import keras
3 import numpy as np
4 import matplotlib . pyplot as plt
5

6 # Importing the MNIST data set
7 mnist = keras. datasets .mnist
8

9 (train_images , train_labels), (test_images , test_labels) = mnist.
load_data ()

10

11 train_labels = keras.utils. to_categorical (train_labels)
12 test_labels = keras.utils. to_categorical (test_labels)
13

14 train_images = train_images . reshape (len(train_images), 28, 28, 1)

XXXIV

B. Code samples of group invariant networks

15 test_images = test_images . reshape (len(test_images), 28, 28, 1)
16

17 train_images = train_images /255.0
18 test_images = test_images /255.0
19

20 # Define the network to be used
21 group = ’C4’
22 model = equivariantNetwork (group=group)
23 model. summary ()
24

25 model. compile (optimizer =’adam ’,loss=’categorical_crossentropy ’,
metrics =[’accuracy ’]) # Final set up of model

26

27 model.fit(train_images [:], train_labels [:], epochs =5, validation_data
=(test_images , test_labels)) # Train the model

28

29 test_loss , test_acc = model. evaluate (test_images , test_labels) #
Evaluate after training

To finally be tested to check for invariance.
1 # Test of invariance (due to the rotation invariant global average

pool) by manually rotating a single image
2

3 tmp = test_images [0:4 ,: ,: ,:]
4 tmp [1]= np.rot90(tmp [0],k=1)
5 tmp [2]= np.rot90(tmp [0],k=2)
6 tmp [3]= np.rot90(tmp [0],k=3)
7

8 images = np.array(model(tmp).numpy ()) # Feed the rotated images
through the model

9

10 # Plot the result from the model for the differently rotated images
, if network is invariant these should be the same

11 input_shape = np.shape(images)
12 numChan = 1
13 numImgs = len(images)
14 fig , axes = plt. subplots (nrows=numImgs , ncols= numChan)
15

16 for ax , ind in zip(axes. flatten (), range(numChan * numImgs)):
17 image = images [ind , :]
18 ax.plot(image)
19 ax. set_ylabel (’Image nr. ’ + str(ind))
20

21 plt.show(block=True)

XXXV

B. Code samples of group invariant networks

XXXVI

C
Result tables

In this appendix we present more data obtained through the network tests. Each
accuracy is determined as the mean of 10 runs and in each run the network is trained
for 5 epochs. As a subscript to each accuracy is the standard deviation for that run
of 10 iterations. No table is presented on this page due to space limitations. Also
due to space limitations there will not be any further text in this appendix apart
from table captions.

XXXVII

C. Result tables

T
able

C
.1:

T
he

resultsforthe
three

typesofC
N
N
sw

ith
the

sm
aller

structure
and

valid
padding:ordinary,

C
4 invariant,and

D
4

invariant.
T
he

data,training
and

testing,is
either

transform
ed

(T
)
or

not
(N

)
under

C
4 .

(a)
O
rdinary

C
N
N

Test
N

T

Train

N
0.877

σ=
0
.014

0.343
σ=

0
.017

T
0.571

σ=
0
.044

0.571
σ=

0
.020

(b)
C

4
invariant

C
N
NTest

N
T

Train

N
0.721

σ=
0
.044

0.704
σ=

0
.028

T
0.707

σ=
0
.066

0.704
σ=

0
.045

(c)
D

4
invariant

C
N
NTest

N
T

Train

N
0.685

σ=
0
.055

0.687
σ=

0
.059

T
0.696

σ=
0
.027

0.679
σ=

0
.052

T
able

C
.2:

T
he

resultsforthe
three

typesofC
N
N
sw

ith
the

sm
aller

structure
and

valid
padding:ordinary,

C
4 invariant,and

D
4

invariant.
T
he

data,training
and

testing,is
either

transform
ed

(T
)
or

not
(N

)
under

D
4 .

(a)
O
rdinary

C
N
N

Test
N

T

Train

N
0.871

σ=
0
.017

0.279
σ=

0
.013

T
0.530

σ=
0
.051

0.544
σ=

0
.046

(b)
C

4
invariant

C
N
NTest

N
T

Train

N
0.695

σ=
0
.023

0.582
σ=

0
.029

T
0.636

σ=
0
.028

0.679
σ=

0
.046

(c)
D

4
invariant

C
N
NTest

N
T

Train

N
0.686

σ=
0
.048

0.680
σ=

0
.039

T
0.654

σ=
0
.028

0.681
σ=

0
.034

XXXVIII

C. Result tables

T
ab

le
C
.3
:
T
he

re
su
lts

fo
rt

he
th
re
e
ty
pe

so
fC

N
N
sw

ith
th
e
sm

al
le
r
st
ru
ct
ur
e
an

d
va
lid

pa
dd

in
g:

or
di
na

ry
,C

4
in
va
ria

nt
,a

nd
D

4
in
va
ria

nt
.
T
he

da
ta
,t
ra
in
in
g
an

d
te
st
in
g,

is
ei
th
er

tr
an

sfo
rm

ed
(T

)
or

no
t
(N

)
un

de
r
S
O

(2
).

(a
)
O
rd
in
ar
y
C
N
N

Te
st

N
T

Train

N
0.

85
5 σ

=
0.

04
1

0.
28

0 σ
=

0.
01

3
T

0.
47

6 σ
=

0.
07

6
0.

48
5 σ

=
0.

02
3

(b
)
C

4
in
va
ria

nt
C
N
N Te

st
N

T

Train

N
0.

71
6 σ

=
0.

01
8

0.
54

8 σ
=

0.
02

2
T

0.
63

3 σ
=

0.
04

7
0.

63
3 σ

=
0.

02
9

(c
)
D

4
in
va
ria

nt
C
N
N Te

st
N

T

Train

N
0.

69
5 σ

=
0.

02
8

0.
56

7 σ
=

0.
02

7
T

0.
67

2 σ
=

0.
04

3
0.

61
0 σ

=
0.

03
9

T
ab

le
C
.4
:
T
he

re
su
lts

fo
rt

he
th
re
e
ty
pe

so
fC

N
N
sw

ith
th
e
sm

al
le
r
st
ru
ct
ur
e
an

d
va
lid

pa
dd

in
g:

or
di
na

ry
,C

4
in
va
ria

nt
,a

nd
D

4
in
va
ria

nt
.
T
he

da
ta
,t
ra
in
in
g
an

d
te
st
in
g,

is
ei
th
er

tr
an

sfo
rm

ed
(T

)
or

no
t
(N

)
un

de
r
O

(2
).

(a
)
O
rd
in
ar
y
C
N
N

Te
st

N
T

Train

N
0.

86
9 σ

=
0.

03
1

0.
25

4 σ
=

0.
01

5
T

0.
48

4 σ
=

0.
03

3
0.

48
6 σ

=
0.

01
8

(b
)
C

4
in
va
ria

nt
C
N
N Te

st
N

T

Train

N
0.

70
5 σ

=
0.

05
8

0.
52

6 σ
=

0.
02

0
T

0.
62

9 σ
=

0.
04

8
0.

58
5 σ

=
0.

02
8

(c
)
D

4
in
va
ria

nt
C
N
N Te

st
N

T

Train

N
0.

67
2 σ

=
0.

04
2

0.
57

7 σ
=

0.
01

8
T

0.
63

2 σ
=

0.
03

3
0.

62
5 σ

=
0.

03
2

XXXIX

C. Result tables

T
able

C
.5:

T
he

resultsforthe
three

typesofC
N
N
sw

ith
the

sm
aller

structure
and

sam
e
padding:ordinary,

C
4 invariant,and

D
4

invariant.
T
he

data,training
and

testing,is
either

transform
ed

(T
)
or

not
(N

)
under

C
4 .

(a)
O
rdinary

C
N
N

Test
N

T

Train

N
0.81

σ=
0
.073

0.361
σ=

0
.025

T
0.491

σ=
0
.035

0.491
σ=

0
.023

(b)
C

4
invariant

C
N
NTest

N
T

Train

N
0.592

σ=
0
.033

0.59
σ=

0
.031

T
0.569

σ=
0
.03

0.542
σ=

0
.033

(c)
D

4
invariant

C
N
NTest

N
T

Train

N
0.578

σ=
0
.059

0.567
σ=

0
.083

T
0.559

σ=
0
.051

0.534
σ=

0
.036

T
able

C
.6:

T
he

resultsforthe
three

typesofC
N
N
sw

ith
the

sm
aller

structure
and

sam
e
padding:ordinary,

C
4 invariant,and

D
4

invariant.
T
he

data,training
and

testing,is
either

transform
ed

(T
)
or

not
(N

)
under

D
4 .

(a)
O
rdinary

C
N
N

Test
N

T

Train

N
0.797

σ=
0
.029

0.293
σ=

0
.02

T
0.454

σ=
0
.038

0.461
σ=

0
.035

(b)
C

4
invariant

C
N
NTest

N
T

Train

N
0.587

σ=
0
.038

0.44
σ=

0
.033

T
0.522

σ=
0
.054

0.553
σ=

0
.036

(c)
D

4
invariant

C
N
NTest

N
T

Train

N
0.535

σ=
0
.05

0.529
σ=

0
.049

T
0.532

σ=
0
.048

0.549
σ=

0
.053

XL

C. Result tables

T
ab

le
C
.7
:
T
he

re
su
lts

fo
r
th
e
th
re
e
ty
pe

s
of

C
N
N
s
w
ith

th
e
la
rg
er

st
ru
ct
ur
e
an

d
va
lid

pa
dd

in
g:

or
di
na

ry
,C

4
in
va
ria

nt
,a

nd
D

4
in
va
ria

nt
.
T
he

da
ta
,t
ra
in
in
g
an

d
te
st
in
g,

is
ei
th
er

tr
an

sfo
rm

ed
(T

)
or

no
t
(N

)
un

de
r
C

4.

(a
)
O
rd
in
ar
y
C
N
N

Te
st

N
T

Train

N
0.

77
8 σ

=
0.

09
1

0.
37

8 σ
=

0.
04

8
T

0.
76

8 σ
=

0.
09

0.
74

5 σ
=

0.
13

8

(b
)
C

4
in
va
ria

nt
C
N
N Te

st
N

T

Train

N
0.

84
2 σ

=
0.

08
9

0.
87

2 σ
=

0.
12

5
T

0.
87

9 σ
=

0.
13

0.
95

8 σ
=

0.
03

6

(c
)
D

4
in
va
ria

nt
C
N
N Te

st
N

T

Train

N
0.

92
2 σ

=
0.

07
5

0.
94

5 σ
=

0.
02

8
T

0.
94

5 σ
=

0.
02

6
0.

93
8 σ

=
0.

03
6

T
ab

le
C
.8
:
T
he

re
su
lts

fo
r
th
e
th
re
e
ty
pe

s
of

C
N
N
s
w
ith

th
e
la
rg
er

st
ru
ct
ur
e
an

d
va
lid

pa
dd

in
g:

or
di
na

ry
,C

4
in
va
ria

nt
,a

nd
D

4
in
va
ria

nt
.
T
he

da
ta
,t
ra
in
in
g
an

d
te
st
in
g,

is
ei
th
er

tr
an

sfo
rm

ed
(T

)
or

no
t
(N

)
un

de
r
D

4.

(a
)
O
rd
in
ar
y
C
N
N

Te
st

N
T

Train

N
0.

74
8 σ

=
0.

13
5

0.
27

1 σ
=

0.
03

8
T

0.
68

3 σ
=

0.
05

1
0.

69
8 σ

=
0.

14
3

(b
)
C

4
in
va
ria

nt
C
N
N Te

st
N

T

Train

N
0.

91
σ

=
0.

09
4

0.
59

1 σ
=

0.
06

1
T

0.
86

3 σ
=

0.
05

9
0.

90
2 σ

=
0.

04
3

(c
)
D

4
in
va
ria

nt
C
N
N Te

st
N

T

Train

N
0.

95
σ

=
0.

02
9

0.
94

9 σ
=

0.
03

T
0.

91
9 σ

=
0.

04
7

0.
93

9 σ
=

0.
03

7

XLI

C. Result tables

T
able

C
.9:

T
he

results
for

the
three

types
ofC

N
N
s
w
ith

the
larger

structure
and

sam
e
padding:

ordinary,
C

4
invariant,and

D
4

invariant.
T
he

data,training
and

testing,is
either

transform
ed

(T
)
or

not
(N

)
under

C
4 .

(a)
O
rdinary

C
N
N

Test
N

T

Train

N
0.961

σ=
0
.03

0.414
σ=

0
.013

T
0.847

σ=
0
.025

0.84
σ=

0
.022

(b)
C

4
invariant

C
N
NTest

N
T

Train

N
0.926

σ=
0
.017

0.937
σ=

0
.011

T
0.944

σ=
0
.008

0.937
σ=

0
.017

(c)
D

4
invariant

C
N
NTest

N
T

Train

N
0.884

σ=
0
.037

0.883
σ=

0
.03

T
0.887

σ=
0
.026

0.891
σ=

0
.028

T
able

C
.10:

T
he

resultsforthe
three

typesofC
N
N
sw

ith
the

larger
structure

and
sam

e
padding:ordinary,

C
4 invariant,and

D
4

invariant.
T
he

data,training
and

testing,is
either

transform
ed

(T
)
or

not
(N

)
under

D
4 .

(a)
O
rdinary

C
N
N

Test
N

T

Train

N
0.855

σ=
0
.258

0.331
σ=

0
.015

T
0.75

σ=
0
.027

0.779
σ=

0
.024

(b)
C

4
invariant

C
N
NTest

N
T

Train

N
0.932

σ=
0
.022

0.621
σ=

0
.027

T
0.854

σ=
0
.026

0.894
σ=

0
.016

(c)
D

4
invariant

C
N
NTest

N
T

Train

N
0.89

σ=
0
.03

0.893
σ=

0
.026

T
0.909

σ=
0
.016

0.811
σ=

0
.241

XLII

D
List of definitions

Definition 2.1.1 Neural network and terminology 7
Definition 2.1.3 Loss function . 8
Definition 2.2.1 Fully connected network 9
Definition 2.2.2 Fully connected layer . 9
Definition 2.3.1 Feature map . 10
Definition 2.3.2 Image . 10
Definition 2.3.4 Kernel . 10
Definition 2.3.5 Convolutional layer . 10
Definition 2.3.8 Equivariance . 11
Definition 2.3.10 Feature map of type ρ . 14
Definition 3.1.1 Bundle and fibre bundle 17
Definition 3.1.3 Section . 18
Definition 3.3.1 Associated bundle . 19
Definition 3.5.1 Feature map on manifold 23
Definition 3.5.2 Metric . 23
Definition 3.5.4 Kernel on manifold . 23
Definition 3.5.5 Exponential map . 24
Definition 3.5.7 Equivariant convolution on manifold 24
Definition A.1.1 Topology . I
Definition A.1.2 Topological space . I
Definition A.1.3 Preimage . I
Definition A.1.4 Continuous function . II
Definition A.1.5 Homeomorphism . II
Definition A.1.7 Countable basis . II
Definition A.1.8 Open cover . II
Definition A.1.9 Quotient topology . II
Definition A.2.1 Locally Euclidean . III
Definition A.2.2 Topological manifold . III
Definition A.2.3 Chart and atlas . III
Definition A.2.4 Chart transition map . III
Definition A.2.5 Smooth manifold . III
Definition A.2.6 Smooth map between manifolds IV
Definition A.2.7 Diffeomorphism . IV
Definition A.2.8 Maximal atlas . IV
Definition A.2.9 Smooth curve . IV
Definition A.2.10 Equivalence of curves . IV
Definition A.2.11 Tangent space . IV

XLIII

D. List of definitions

Definition A.3.1 Group . V
Definition A.3.2 Subgroup . V
Definition A.3.3 Left/Right coset . V
Definition A.3.4 Normal subgroup . VI
Definition A.3.5 Quotient group . VI
Definition A.3.8 Action of a group on a set VI
Definition A.3.9 Transitive group action VI
Definition A.3.10 Twist map . VII
Definition A.3.11 Lie group . VII
Definition A.3.12 Left and right action . VII
Definition A.3.13 Equivariance of Lie groups VII
Definition A.3.14 Orbit and stabiliser . VIII
Definition A.3.15 Orbit space . VIII
Definition A.3.16 Stabiliser . VIII
Definition A.3.17 Free action . VIII
Definition A.3.18 Representation . VIII
Definition A.3.19 Faithful . VIII
Definition A.4.1 Bundle . IX
Definition A.4.2 Fibre at a point . IX
Definition A.4.3 Fibre bundle . IX
Definition A.4.4 Local trivialisation . IX
Definition A.4.5 Fibre bundle by trivialisations IX
Definition A.4.6 Transition function . IX
Definition A.4.7 Bundle morphism . X
Definition A.4.8 Bundle isomorphism . X
Definition A.4.9 Section . X
Definition A.4.10 Principal G-bundle . X
Definition A.4.12 Principal bundle map . XI
Definition A.4.14 Extension and restriction of principal bundles XII
Definition A.4.16 Associated bundle . XIII
Definition A.4.18 Associated bundle map XIV
Definition A.4.19 Vector bundle . XIV
Definition A.4.20 Tangent bundle . XIV
Definition A.4.22 Tensor bundle . XVIII
Definition A.5.1 Alternating map . XVIII
Definition A.5.2 Smooth differential form XIX
Definition A.5.4 Directional derivative . XIX
Definition A.5.6 Exterior derivative . XIX
Definition A.5.7 Pullback . XIX
Definition A.5.9 Differential form on manifold XX
Definition A.5.10 Smooth differential form on manifold XX
Definition A.5.11 (p, q)-shuffles . XX
Definition A.5.12 Exterior product . XXI
Definition A.5.17 Multiindex . XXII
Definition A.5.21 Orientation and orientation form XXIII
Definition A.5.22 Oriented basis . XXIII

XLIV

D. List of definitions

Definition A.5.23 Orientation preserving map XXIII
Definition A.5.24 Standard orientation of Rd XXIV
Definition A.5.25 Oriented charts and atlas XXIV
Definition A.5.26 Integration of forms on Rn XXIV
Definition A.5.27 Support of differential form XXIV
Definition A.5.29 Partition of unity . XXV
Definition A.5.32 Riemannian structure (Metric) XXV
Definition A.5.34 Isometry . XXVI
Definition A.5.35 Orthonormal frame . XXVI
Definition A.6.1 Connection on vector bundle XXVI
Definition A.6.4 Geodesic . XXVIII
Definition A.6.5 Section parallel to curve XXVIII

XLV

D. List of definitions

XLVI

Bibliography

[1] A. M. Turing, “Computing Machinery and Intelligence”, Mind LIX, 433 (1950),
https://academic.oup.com/mind/article/LIX/236/433/986238 (visited
on 04/20/2020).

[2] Machine, Learning, 1951, https://www.the-scientist.com/foundations/
machine--learning--1951-65792 (visited on 05/29/2020).

[3] K. Albertsson et al., “Machine Learning in High Energy Physics Community
White Paper”, (2019), arXiv:1807.02876.

[4] S. Seyedzadeh, F. P. Rahimian, I. Glesk, and M. Roper, “Machine learning
for estimation of building energy consumption and performance: a review”,
Visualization in Engineering 6, 5 (2018), https://doi.org/10.1186/s40327-
018-0064-7 (visited on 05/26/2020).

[5] D. Silver et al., “Mastering the game of Go with deep neural networks and
tree search”, Nature 529, 484 (2016), https://www.nature.com/articles/
nature16961 (visited on 05/26/2020).

[6] Convolutional neural network, inWikipedia, Page Version ID: 961118375 (June 6,
2020), https://en.wikipedia.org/w/index.php?title=Convolutional_
neural_network&oldid=961118375 (visited on 06/07/2020).

[7] Feedforward neural network, inWikipedia, Page Version ID: 960861503 (June 5,
2020), https://en.wikipedia.org/w/index.php?title=Feedforward_
neural_network&oldid=960861503 (visited on 06/07/2020).

[8] D. E. Worrall, S. J. Garbin, D. Turmukhambetov, and G. J. Brostow, “Har-
monic Networks: Deep Translation and Rotation Equivariance”, (2017), arXiv:1612.
04642.

[9] T. S. Cohen and M. Welling, “Group Equivariant Convolutional Networks”,
(2016), arXiv:1602.07576.

[10] Y. LeCun, M. M. Bronstein, J. Bruna, A. Szlam, and P. Vandergheynst, “Ge-
ometric deep learning: going beyond Euclidean data”, IEEE Signal Processing
Magazine 34, 18 (2017), arXiv:1611.08097.

[11] M. C. N. Cheng et al., “Covariance in Physics and Convolutional Neural Net-
works”, (2019), arXiv:1906.02481.

[12] T. Cohen, M. Geiger, and M. Weiler, “A General Theory of Equivariant CNNs
on Homogeneous Spaces”, (2020), arXiv:1811.02017.

XLVII

https://doi.org/10.1093/mind/LIX.236.433
https://academic.oup.com/mind/article/LIX/236/433/986238
https://www.the-scientist.com/foundations/machine--learning--1951-65792
https://www.the-scientist.com/foundations/machine--learning--1951-65792
https://arxiv.org/abs/1807.02876
https://doi.org/10.1186/s40327-018-0064-7
https://doi.org/10.1186/s40327-018-0064-7
https://doi.org/10.1186/s40327-018-0064-7
https://doi.org/10.1038/nature16961
https://www.nature.com/articles/nature16961
https://www.nature.com/articles/nature16961
https://en.wikipedia.org/w/index.php?title=Convolutional_neural_network&oldid=961118375
https://en.wikipedia.org/w/index.php?title=Convolutional_neural_network&oldid=961118375
https://en.wikipedia.org/w/index.php?title=Convolutional_neural_network&oldid=961118375
https://en.wikipedia.org/w/index.php?title=Feedforward_neural_network&oldid=960861503
https://en.wikipedia.org/w/index.php?title=Feedforward_neural_network&oldid=960861503
https://en.wikipedia.org/w/index.php?title=Feedforward_neural_network&oldid=960861503
https://arxiv.org/abs/1612.04642
https://arxiv.org/abs/1612.04642
https://arxiv.org/abs/1602.07576
https://doi.org/10.1109/MSP.2017.2693418
https://doi.org/10.1109/MSP.2017.2693418
https://arxiv.org/abs/1611.08097
https://arxiv.org/abs/1906.02481
https://arxiv.org/abs/1811.02017

Bibliography

[13] K. Team, Keras documentation: MNIST digits classification dataset, https:
//keras.io/api/datasets/mnist/ (visited on 05/27/2020).

[14] T. S. Cohen, GrouPy, https://github.com/tscohen/GrouPy (visited on
12/11/2019).

[15] B. Veeling, Keras GCNN, Apr. 14, 2020, https://github.com/basveeling/
keras-gcnn (visited on 05/03/2020).

[16] P. Mehta et al., “A high-bias, low-variance introduction to Machine Learning
for physicists”, Physics Reports 810, 1 (2019), arXiv:1803.08823.

[17] T. S. Cohen and M. Welling, “Steerable CNNs”, (2016), arXiv:1612.08498.
[18] E. Hoogeboom, J. W. T. Peters, T. S. Cohen, and M. Welling, “HexaConv”,

(2018), arXiv:1803.02108.
[19] ehoogeboom, Ehoogeboom/hexaconv, Oct. 22, 2019, https://github.com/

ehoogeboom/hexaconv (visited on 11/08/2019).
[20] S. Dieleman, J. De Fauw, and K. Kavukcuoglu, “Exploiting Cyclic Symmetry

in Convolutional Neural Networks”, (2016), arXiv:1602.02660.
[21] Keras: the Python deep learning API, https://keras.io/ (visited on 05/26/2020).
[22] TensorFlow, https://www.tensorflow.org/ (visited on 05/26/2020).
[23] D. Worrall, Harmonic Convolutions, May 17, 2020, https://github.com/

deworrall92/harmonicConvolutions (visited on 05/18/2020).
[24] M. Weiler and G. Cesa, “General E(2)-Equivariant Steerable CNNs”, (2019),

arXiv:1911.08251.
[25] T. Cohen, M. Weiler, B. Kicanaoglu, and M. Welling, “Gauge Equivariant

Convolutional Networks and the Icosahedral CNN”, ArXiv abs/1902.04615
(2019), arXiv:1902.04615.

[26] A. Marsh, “Gauge Theories and Fiber Bundles: Definitions, Pictures, and Re-
sults”, (2019), arXiv:1607.03089.

[27] Lecture series on “The Geometric anatomy of Theoretical Physics”, in col-
lab. with F. P. Schuller, Friedrich-Alexander-Universität Erlangen-Nürnberg,
Institut für Theoretische Physik, 2013–2014, https://mathswithphysics.
blogspot.com/2016/07/frederic- schullers- lectures- on- quantum.
html.

XLVIII

https://keras.io/api/datasets/mnist/
https://keras.io/api/datasets/mnist/
https://github.com/tscohen/GrouPy
https://github.com/basveeling/keras-gcnn
https://github.com/basveeling/keras-gcnn
https://doi.org/10.1016/j.physrep.2019.03.001
https://arxiv.org/abs/1803.08823
https://arxiv.org/abs/1612.08498
https://arxiv.org/abs/1803.02108
https://github.com/ehoogeboom/hexaconv
https://github.com/ehoogeboom/hexaconv
https://arxiv.org/abs/1602.02660
https://keras.io/
https://www.tensorflow.org/
https://github.com/deworrall92/harmonicConvolutions
https://github.com/deworrall92/harmonicConvolutions
https://arxiv.org/abs/1911.08251
https://arxiv.org/abs/1902.04615
https://arxiv.org/abs/1607.03089
https://mathswithphysics.blogspot.com/2016/07/frederic-schullers-lectures-on-quantum.html
https://mathswithphysics.blogspot.com/2016/07/frederic-schullers-lectures-on-quantum.html
https://mathswithphysics.blogspot.com/2016/07/frederic-schullers-lectures-on-quantum.html

Figure Sources

[28] Glosser, Artificial neural network, https://commons.wikimedia.org/w/
index.php?curid=24913461 (visited on 05/29/2020).

[29] Aphex34, Convolutional neural network, https://commons.wikimedia.org/
w/index.php?curid=45679374 (visited on 05/29/2020).

[30] Fjung, Parallel transport on a sphere, https://commons.wikimedia.org/
wiki/File:Connection-on-sphere.png (visited on 05/29/2020).

[31] T. S. Cohen and M. Welling, Figure 1 from “group equivariant convolutional
networks”, June 3, 2016, arXiv:1602.07576, http://arxiv.org/abs/1602.
07576 (visited on 11/07/2019).

XLIX

https://commons.wikimedia.org/w/index.php?curid=24913461
https://commons.wikimedia.org/w/index.php?curid=24913461
https://commons.wikimedia.org/w/index.php?curid=45679374
https://commons.wikimedia.org/w/index.php?curid=45679374
https://commons.wikimedia.org/wiki/File:Connection-on-sphere.png
https://commons.wikimedia.org/wiki/File:Connection-on-sphere.png
https://arxiv.org/abs/1602.07576
http://arxiv.org/abs/1602.07576
http://arxiv.org/abs/1602.07576

	List of Figures
	List of Tables
	Introduction
	Background and context
	Thesis goal and main results
	Thesis outline

	Introduction to fully connected and convolutional neural networks
	A neural network: definition and training
	Fully connected networks
	Convolutional neural networks
	Translation equivariance of convolutional layers
	Why convolutional neural networks?
	Equivariance of convolutions under rotations

	Gauge equivariant networks
	Geometric deep learning
	Introductory discussion of gauge equivariance
	The associated bundle
	The invariant/equivariant layer
	Gauge equivariant convolution
	Discussion on the gauge equivariant convolution
	Comparison to the flat case
	Comparison to differential forms

	Applications to group equivariant CNNs
	Group equivariant networks on homogeneous spaces
	General implementation idea
	A D4 invariant network by Cohen et. al.
	Testing and results
	Discussion of testing results

	Discussion on discrete group in- and equivariance
	A C6 equivariant network by Hoogeboom et. al.

	Summary, conclusion and outlook
	Theoretical background
	Topology
	Manifolds
	Group theory and representations
	Group theory
	Representations

	Fibre bundles
	Principal G -bundle
	Associated bundle
	Vector bundles and associated vector bundles

	Integration on manifolds
	Differential forms
	Bases
	Integration of differential forms
	Riemannian manifolds

	Connections on manifolds

	Code samples of group invariant networks
	Result tables
	List of definitions
	Bibliography
	Bibliography: articles and texts
	Bibliography: figures

