
DF

Optimised reverse
parking of a semi-trailer truck
Path and trajectory planning for parking in reverse with a semi-
trailer truck using graph search and model predictive control

Master’s thesis in Systems, Control and Mechatronics

JENS REHN
MARTIN THANDER

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2020

Master’s thesis 2020

Optimised reverse parking
of a semi-trailer truck

Path and trajectory planning for parking in reverse with a
semi-trailer truck using graph search and model predictive control

Jens Rehn
Martin Thander

DF

Department of Electrical Engineering
Division of Signals and Systems

Chalmers University of Technology
Gothenburg, Sweden 2020

Optimised reverse parking of a semi-trailer truck
Path and trajectory planning for parking in reverse with a semi-trailer truck using
graph search and model predictive control
Jens Rehn
Martin Thander

© Jens Rehn, Martin Thander, 2020.

Supervisor: Karin Brötjefors, Aptiv Contract Services Sweden AB
Examiner: Nikolce Murgovski, Department of Electrical Engineering

Master’s Thesis 2020
Department of Electrical Engineering
Division of Signals and Systems
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Timelapse of simulation of the trajectory planner.

iv

Optimised reverse parking of a semi-trailer truck
Path and trajectory planning for parking in reverse with a semi-trailer truck using
graph search and model predictive control
Jens Rehn
Martin Thander
Department of Electrical Engineering
Chalmers University of Technology

Abstract
The field of autonomous vehicles is rapidly growing and is currently being extensively
researched. One part of driving autonomously is to plan paths and trajectories.
Paths contain the position and possibly orientation of a body, while the trajectory
contains more detailed knowledge over time. This can include, but is not limited
to, acceleration, velocity and steering angle. Both the path and trajectory should
avoid any kind of collision.

The aim of this project is to develop an algorithm to successfully park a semi-trailer
truck in reverse. Two types of path planning algorithms have been investigated, the
first is graph search based, while the latter utilises model predictive control. These
path planners provide the trajectory planner with a reference curve, which it is to
follow. The trajectory planner is also implemented using model predictive control.

All implementations are able to solve the designed scenario. Both path planners are
able to find a point of which the reversing should begin at. The trajectory planner
is then able to use this reference curve to reach the provided end destination, while
avoiding collision and obeying the constraints given. The trajectory is optimised
with regard to time consumption and comfort, by minimising jerk and steering rate,
while deviating as little as possible to the desired target pose.

Keywords: Trajectory planning, Path planning, Model predictive control, Graph
search, A∗, Theta∗, Articulate vehicles, Non-holonomic vehicles.

v

Acknowledgements
We want to show our gratitude towards our examiner Nikolce Murgovski and su-
pervisor Karin Brötjefors. They have guided us through our thesis by providing
continuous support and assistance. We would also like to thank Aptiv Contract
Services Sweden AB for giving us this opportunity and great hospitality during the
entire project.

Jens Rehn & Martin Thander
Gothenburg, May 2020

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Background . 1
1.2 Aim . 2
1.3 Scope and limitations . 3
1.4 Specification of issue under investigation 4
1.5 Thesis outline . 5

2 Theory 7
2.1 Path planning . 7
2.2 Trajectory planning . 7
2.3 Graph search . 8

2.3.1 Graph search as a path planner 8
2.3.1.1 Heuristics . 10
2.3.1.2 A∗ algorithm . 11
2.3.1.3 Theta∗ algorithm . 11

2.4 Model predictive control . 12
2.4.1 A problem formulation . 13
2.4.2 Discretisation of optimisation problem 14
2.4.3 Minimum time control . 15

2.5 Interior point optimiser . 16
2.6 Dynamic model . 18

2.6.1 Detailed model . 18
2.6.2 Simplified model . 20

3 Graph search path planner 25
3.1 Graph design . 25
3.2 Parent tracking . 27

3.2.1 Angular bins . 27
3.3 Node prioritisation . 28

3.3.1 Cost function . 28
3.3.2 Heuristics . 28

3.4 Finding neighbours . 29

ix

Contents

3.4.1 Arc of sight . 29
3.4.2 Neighbours in proximity of the goal node 32

3.5 Inheriting parenthood . 33

4 Model predictive control 35
4.1 Interpretation of obstacles . 35
4.2 Path planner . 37

4.2.1 Obstacle avoidance . 37
4.2.2 Final state . 38
4.2.3 Optimisation problem . 38
4.2.4 Post processing . 40

4.3 Trajectory planner . 40
4.3.1 Obstacle avoidance . 40
4.3.2 Reference path . 41
4.3.3 Final state . 41
4.3.4 Optimisation problem . 43

5 Results 45
5.1 Path planners . 45

5.1.1 Graph search path planner . 46
5.1.2 MPC path planner . 48

5.2 Trajectory planner . 52

6 Analysis 59
6.1 Path planners . 59

6.1.1 Graph search path planner . 59
6.1.2 MPC path planner . 60

6.2 Trajectory planner . 61
6.3 Conclusion . 62

7 Discussion 65
7.1 Future work . 66

A Alternative scenario A I

B Alternative scenario B V

x

List of Figures

1.1 Simplified flow of information for an autonomous vehicle. 3
1.2 Simplified flow of information, where the vehicle behaviour is being

simulated. 4
1.3 Illustration of the start and end position in the given environment and

an example solution for truck and trailer in red and pink respectively. 5

2.1 Illustration of an 8 point grid based graph. 9
2.2 Comparison between A∗ and Theta∗ 12
2.3 Illustration of a model of an articulated vehicle. 18
2.4 Illustration of a truck with marked measurements and position of

states in the vehicle frame. 19
2.5 Illustration of a simplified model for an articulated vehicle. 21

3.1 Illustration of how points are interpolated to the closest grid point . . 26
3.2 Target heading is set to 0, and the number of bins is 4. 27
3.3 Illustration of arc calculation . 30
3.4 Neighbours found by the graph search algorithm, where turning an-

gles are limited to π
4 . 31

3.5 Illustration of how neighbours are found when the distance to the
goal node is less than one turning radius 33

3.6 Visualisation of how AoS is determined. Here, the parent node does
not have a valid path, while the current node does. 34

4.1 Definition of an object when interpreted as a rotated rectangle. 36
4.2 The grey area is the safety margin of width m, the black area is the

obstacle. The black line symbolises the side of the semi trailer truck
that cuts through the safety margin. The red dots are the point from
which the distance to the object is measured from. 37

4.3 Illustration of how the target position is soft constrained and takes
the intended movement direction into account. The circles describe
the target set of the horizon and the line connecting them is tangent
to the reference path at r(κ+ kH |κ). 43

5.1 Two alternative scenarios to evaluate the path planning algorithms
(a) Scenario A requires a rotation of π before parking (b) In scenario
B the final orientation should be the same as the starting one. 46

xi

List of Figures

5.2 Results generated by the graph search algorithm for the main scenario 46
5.3 Results generated by the graph search algorithm for alternative sce-

nario A . 47
5.4 Results generated by the graph search algorithm for alternative sce-

nario B. 48
5.5 This path is the result of an A∗ search. 50
5.6 The solution to the optimisation problem (4.9) when using every 4th

sample of an A∗ search as an initial guess. 51
5.7 The solution to the optimisation problem (4.9) when using an A∗

search as initial guess but keeping all samples as initial guess. 51
5.8 In these two plots the MPC path planner is tested on the alternative

scenario A (a) MPC path planner with all samples from the A∗ search.
(b) MPC path planner with every 4th sample from the A∗ search. . . 52

5.9 These trajectories were the result from the trajectory planner when
the reference path, (rx(t|τ), ry(t|τ)), was generated using a) Graph
search b) MPC. 55

5.10 Predictions of the horizon τk. The truck plans to let (x1(τk+tH |τ), y1(τk|τk+
th)) be as close to (rx(τk+tH |τ), ry(τk|τk+th)) as possible and (x2(τk+
tH |τ), y2(τk|τk+th)) to be in a direction tangent to the reverence path.
The reference path was generated using a) Graph search b) MPC. . . 56

5.11 These plots show the speed and control inputs along the parking
situation. The reference path was generated using a-c) Graph search
d-f) MPC. 57

5.12 Each time step is adjusted by optimising the variable z(k|κ). These
plots show the implication of the time consumption after optimising
these variables. This is the result of the MPC trajectory planner
using the path generated from a) Graph search b) MPC as a reference. 58

A.1 Generated trajectory for scenario A with reference from a) Graph
search b) MPC . I

A.2 Predicted states for scenario A with reference from a) Graph search
b) MPC . II

A.3 Final control signals for scenario A with reference from a-c) Graph
search d-f) MPC . III

A.4 Time control for scenario A with reference from a) Graph search b)
MPC . IV

B.1 Generated trajectory for scenario B with reference from a) Graph
search b) MPC . V

B.2 Predicted states for scenario B with reference from a) Graph search
b) MPC . VI

B.3 Final control signals for scenario B with reference from a-c) Graph
search d-f) MPC . VII

B.4 Time control for scenario B with reference from a) Graph search b)
MPC . VIII

xii

List of Tables

I List of weightings in the objective function in (4.19) 49
II List of parameters used in the optimisation problem 49
III List of weightings in the objective function in (4.19) 53
IV List of parameters used in the optimisation problem 54

xiii

List of Tables

xiv

1
Introduction

Productivity and efficiency are two key components for successful companies. In
order to improve these factors, automation is frequently used. It removes the human
error and can in some cases use optimised strategies that are hard for humans
to perceive. In the case of trucks, it can be efficient driving on roads, which is
automated by cruise controllers, or it can also be in the form of parking. Today
there exists automated parking assistance for cars, that either instructs the driver
or has control over the steering of the car. The next step, automated valet parking
is under development, which means the driver is able to leave the vehicle during the
parking process. The same concept does, to the best of the authors’ knowledge, not
exist for reversing semi-trailer trucks.

In order to develop such features, one would need sufficient knowledge of the sur-
rounding environment. This knowledge is usually gained by adding sensors to the
truck and the trailer, but there are also possible solutions involving GPS or being
provided the information by the area itself. Two of the most common sensors for
this purpose on consumer vehicles are cameras and radars. In some cases, more ad-
vanced technology is used, such as Li-DAR, which grants more accurate knowledge,
at the expense of an increased financial cost. So far, the amount of sensors installed
on trailers is sparse.

1.1 Background
In order for autonomous vehicles to become a reality, there need to exist reliant
solutions for navigation. This includes both planning of trajectories and execution
of them. The amount of features available for commercial vehicles in this field is
sparse. A type of commercial vehicle which usually lacks these features, is the semi-
trailer truck. One reason could be the fact that it usually consists of multiple parts
which are then connected, namely the truck and trailer. This means that both parts
need to be compatible if sensors were to be installed on them. One truck might be
used for several trailers and it would have to be consistent with all of them.

Semi-trailer trucks are mainly used to transport goods over long distances. By
making this process autonomous, a driver would no longer be necessary. When
arriving at a destination, the parking situation is normally done in reverse in order

1

1. Introduction

to connect the trailer with the loading dock. While reversing, the vision of the target
destination is limited. The driver has to plan ahead and make sure that nothing
enters an area, which the individual has no vision of, since it is obstructed by the
vehicle and the connected trailer. This introduces a safety risk, as the driver has to
assume that the situation remains the same.

In order for the autonomous parking to be performed safely, collisions need to be
avoided and a certain distance to obstacles need to be kept to give a sense of security.
The solution has to be reliable and trustworthy in order to be a worthy replacement
of drivers with years of experience. By having knowledge of the vehicle dynamics
and the surrounding, one is able to first plan a path to the goal destination, refine
it into a trajectory and then begin the execution of the process.

Path planning is a widely spread method in robotics and navigation. By assuming
simplified dynamics one achieves a collision free path containing information regard-
ing position and possibly orientation from a start position to a target position. The
amount of information contained in the computed path depends on the implemen-
tation of the algorithm. This varies with the type of problem but is usually tied to
requirements and some optimisation criteria [1].

There are ways to include simplified dynamics in the search process, but it usually
needs to be refined in someway to yield a more realistic trajectory, where a trajectory
contains more extensive information than a path, such as velocity and acceleration.
In some cases, as in [2], a path planner in the form of a graph search is used to
obtain a reference curve, which is then used in a model predictive control (MPC)
framework to compute a trajectory. MPC is commonly used to solve constrained
optimisation problems. It utilises a dynamic model to describe the system, which is
to be controlled under the set of constraints given [3]. These properties make MPC
suitable for path and trajectory planning, where constraints will be the vehicle state
and dynamics, control inputs, and the boundaries set by the environment.

Trajectory planning is a more extensive description of how the movement should
be executed. It contains further information about the motion, such as velocity,
acceleration and jerk. The advantage of trajectory planning is that the resulting
trajectory usually resembles reality more than the output of a path planner does [4].
When planning trajectories for autonomous vehicles there are several parameters
to keep in mind. Avoiding collision with objects can only actively be done if their
motion can be predicted with enough confidence. This includes both stationary and
moving obstacles.

1.2 Aim
The task at hand is a reverse parking scenario for an articulated vehicle, which in
this case is a truck with an attached trailer. The aim is to solve the problem by first
finding a path between two given points in a known environment. Once the path has
been planned, a trajectory should be found using the path as a reference curve. The
trajectory should take a known motion model in regard and follow the dynamics of

2

1. Introduction

said model. The reference curve should contain information regarding positions and
moving direction, where the direction is either forward or backwards, in order to
indicate reversing. The resulting path will be subjectively compared to what seems
like reasonable behaviour for the given scenario and how well the trajectory planner
follows it. The trajectory planner will mainly be evaluated based on how well it
avoids obstacles and its ability to reach the target state.

1.3 Scope and limitations
This project assumes that vital steps before trajectory planning have been done,
yielding a map over the surrounding area without ambiguity, noise or moving obsta-
cles. It is also assumed that the map perfectly describes occupied and unoccupied
space together with a target position and desired orientation. Obstacles are lim-
ited to static rectangular shapes, but can have any orientation in the environment.
In Fig. 1.1-1.2 a simplified overview of the navigation process for an autonomous
vehicle and the scope of the project is given.

Mapping of
environment

Path Planning
Trajectory
Planning

Subordinate
Controller

Estimation of
states

Information about
obstacles

Position and speed of
truck, angle of trailer
etc.

Reference
path

Requested,
acceleration and
steering angle

System

Sensors

Actuations

Request new path

Fig. 1.1. Simplified flow of information for an autonomous vehicle.

3

1. Introduction

Mapping of
environment

Path Planning
Trajectory
Planning

Information about
obstacles

Position and speed of
truck, angle of trailer
etc.

Reference
path

Requested,
acceleration and
steering angle

Inside the scope
of project

Outside the scope
of project

Simulation

Request new path

Fig. 1.2. Simplified flow of information, where the vehicle behaviour is being sim-
ulated.

The path planning part will assume simplified vehicle dimensions, and the trajectory
planning will not include setting control signals of the vehicle but rather references
on states which is later passed on to a low level controller. The results of the planners
will only be verified by simulation, no physical testing will be done. If the trajectory
planner fails to follow the reference given by the path planner, the solution fails. A
request for a new reference could be made, but it is outside the scope of this project.

All code implementations are done in Matlab™ and CasADi, with no limitation
on available toolboxes.

1.4 Specification of issue under investigation
The task which is to be solved is designed as a parking scenario for an articulated
vehicle. An articulated vehicle is a vehicle with one or more pivot joints. It starts
by facing forward and needs to round a corner before reversing into the designated
parking space. The reversing will be through a narrow corridor, which resembles a
parking spot for a trailer. The reasoning behind this design is to evaluate several
challenges which are present in reversing scenarios. Obstacles may have any rotation
and need to be handled accordingly, the parking spot may have a limited width,
requiring high precision in order to avoid collision. With these aspects in mind, the
following situation is setup, seen in Fig. 1.3.

4

1. Introduction

Fig. 1.3. Illustration of the start and end position in the given environment and
an example solution for truck and trailer in red and pink respectively.

All obstacles are static and the positions of them are known at all times. The
possible positions for the vehicle will be bounded by the extreme values of the map,
resulting in a rectangular box. In addition to the environment, the initial and final
positions are given as input to the path planner. If a specific orientation is wanted
in the end state, this will be added as an additional input. The task is to first find
a reference curve to the final position using a path planning algorithm, and then
plan a trajectory from the start position to the end position. The trajectory should
contain information such as, pose, steering angle, acceleration, and velocity for each
computed stage.

1.5 Thesis outline
Following the introduction is a summarised description of the different subjects
covered in this report. It starts out by defining the differences between path planning
and trajectory planning and continues on describing graph search, model predictive
control and more. All this is in Section 2. Thereafter the different approaches and
chosen methods follow in Section 3-4. The results, analysis, and conclusions drawn
are covered in Section 5-6. Lastly, a discussion about the entire project, the choice
of methods, and its limitations, is found in Section 7.

5

1. Introduction

6

2
Theory

This chapter introduces theory needed for implementation and provides understand-
ing of the design process of the algorithms.

2.1 Path planning
Path planning is the process of finding the way between two points, with respect
to positioning and orientation of a body [1]. No regard is taken to the velocity of
said body [5]. The goal of a path planning algorithm is to find an optimal path
based on some condition, usually the shortest path [6]. It could also include keeping
a safe distance to objects, as in [7], to avoid collision. One of the downsides to
path planning algorithms is potential incompatibility with dynamics and vehicle
kinematics [8]. In some cases, these are taken in regard when planning the path [1],
this comes at a cost of more complex problems and higher computational effort. For
ground based vehicles, a restriction might simply be that moving laterally might be
impossible without also moving longitudinally. These kind of vehicles are usually
categorised as non-holonomic.

2.2 Trajectory planning
Trajectory planning is generally more extensive than path planning, since all infor-
mation in a path is contained in a trajectory. In addition to the pose of the vehicle,
the trajectory also contains the state of the body over a given period of time. This
can include velocity, acceleration and other relevant parameters for guiding a vehicle
[9]. In addition to containing all this information, the trajectory can be optimised
in regard to chosen parameters, such as travel time, comfort or keeping a minimum
distance to certain objects. These objects can be both stationary or moving, de-
pending on the application [10]. In this project, the planner will have full knowledge
of the dynamic model and the environment. It will be given a reference curve from
the path planner and should find an optimal trajectory based on these parameters.

Trajectory planning can also include the creation of reference outputs to a lower
level motion controller. These reference outputs can be requested set-points or
states, such as, velocity, acceleration, or steering angle etc. [10].

7

2. Theory

2.3 Graph search
Starting from the initial node in a graph, neighbouring nodes are gradually added
to a queue of nodes to expand, which is hereafter referred to as the open list. Once
a node has been fully expanded, it will be added to the closed list, since there is no
information to be added. The closed list is used to keep track of nodes which are
no longer necessary to visit [11].

The criteria of what considers a neighbouring node varies from different search
algorithms and graph structures. The connection between two nodes is usually
called an edge. When a neighbour is connected to the current node, the current
node will be the parent of that neighbour. By iteratively checking parenthood from
the goal node, one will find the computed path starting from the initial node to the
final one.

Once the goal destination has been found, the cheapest path to reach it, in regard
to some measurement, is returned. The cost of reaching a node n from another node
m is calculated as follows

cost(n) = cost(m) + C(n,m), (2.1)

where C is the cost function, and the cost of each node is the accumulated cost from
the start node.

2.3.1 Graph search as a path planner
One common method to plan paths is to apply a search algorithm on a grid based
graph to find a valid, and often the shortest, path. The graph will contain infor-
mation of position and occupancy, where occupancy describes objects. An occupied
grid point is represented by the value 1 and a free point will have the value 0. The
node connection will depend on if there is a valid traversable path between them in
the environment described by the graph. This enables the applied search algorithm
to take objects in regard and actively avoid them since an occupied grid point is
untraversable [12]. Doing so would lead to illegal paths and would be a poor estima-
tion of a reference curve to the trajectory planner. In addition to avoiding collision
the chosen graph search algorithm might need to take dynamics of the vehicle in
regard [13]. Too sharp turns will be impossible for some, since long vehicles will in
general have a larger turning radius, potentially resulting in corners being cut or
the estimated path being too narrow.

The downside to grid based graphs is the angular limitations created by the en-
vironment. An 8 point grid based graph has angular connections of π

4 multiples,
where the 8 indicates how many nodes are considered to be adjacent to the current
node. This means that any path generated by the search algorithm is restricted
by this movement, unless neighbours are found in another way or the path is post

8

2. Theory

processed to achieve smoother paths [14]. An example of how an 8 point grid can
be structured is shown in Fig 2.1.

Fig. 2.1. Illustration of an 8 point grid based graph.

Since most graph search algorithms use a point mass to represent the vehicle while
performing the search, generation of paths close to obstacles is a common issue. One
simple way to take on this problem is to pad all obstacles, making them larger in the
search process than they actually are [1]. The resulting path could still have sharp
turns, but now corners of the path can be cut without risking collision, assuming each
object was padded sufficiently. Another common approach is to apply configuration
space, which is when the objects are padded by half the width of the robot. This is
however less suitable for oblong or asymmetrical vehicles, as the width varies [15].
In the case where one might need to pad more than half the width of the vehicle in
order to achieve wide enough turns, it could result in removing narrow paths that
would otherwise lead to shorter paths, or being unable to find the goal node, since
it may have been padded shut.

This can be handled by allowing the graph to contain information about possible
orientations in the corresponding positions [16]. Doing so would result in a three
dimensional graph, where different rotations in each position affect how the objects
are interpreted.

There already exists several search algorithms for graphs, such as A∗ and its deriva-
tives. Theta∗ is one of the algorithms that are based on A∗ and has the advantage of
creating even shorter paths. It does so by not restricting the path to the edges of the
graph and can instead have any angle between two nodes [17]. Both A∗ and Theta∗
algorithm are not guaranteed to find the optimal trajectory, as they tend to get

9

2. Theory

stuck in a local optima. However, they will find the shortest path given consistent
heuristics in a grid based graph. This path is usually not suitable for non-holonomic
vehicles, as their dynamics are limited. This results is in need of post processing
or modification before a generated trajectory resembles the motion of a vehicle. By
including turning radius of the vehicle in the graph search, one might avoid finding
infeasible trajectories due to the kinematics. This will reduce the amount of post
processing needed in order to obtain a feasible trajectory [18].

Depending on how many parameters are taken in regard when planning the path, the
computation time for a graph search can become high [17]. In situations where the
environment might change as time passes, due to moving objects or new information
being obtained this trait might hinder performance substantially, as the path would
need recalculation continuously.

Previous approaches to finding paths better suitable for non-holonomic include set-
ting a restriction on the angular rate as in [19], which affects how far the planned
path need to be from objects. Since the resulting path will be in the shape of an
arc, it would intersect with the corner of the object if the vehicle is too close to
the edge when beginning to turn. This can be counteracted with the configuration
space approach described in the third paragraph.

2.3.1.1 Heuristics

In graph search theory, a heuristic is an estimate of the distance from the current
node to the goal node. This information is used in order to enable prioritisation of
nodes that are more likely to be part of the optimal path, which means the search
is directed towards the goal. This approach is known as an informed search. In
order to achieve an informed search the heuristic has to underestimate or perfectly
estimate the distance to the goal node. If the heuristics overestimate the cost, it will
mislead the search and might increase the total search time compared to randomly
expanding in all directions. A heuristic which never overestimates the step cost
between two nodes is denoted as consistent [11]. A consistent heuristic h(ni) is
defined as

h(ni) ≤ d(ni, nj) + h(nj) ∀(ni, nj), (2.2)

where d is the length of the edge between the two nodes ni and nj. This results
in nodes being expanded in a prioritised order based on the current estimate on
the remaining distance to the goal node. By performing an informed search with
a consistent heuristic, one also achieves the optimal solution. If the heuristic only
underestimates the distance left to the goal node, it is instead referred to as admis-
sible. A consistent heuristic is always admissible, but the opposite is not necessarily
true. If the heuristic is admissible but not consistent, finding the optimal solution
can only be ensured if nodes are allowed to be visited multiple times. This means
that when a node is rediscovered with a lower cost than was previously estimated,
it is removed from the closed list and reevaluated with the new information [11].

10

2. Theory

2.3.1.2 A∗ algorithm

A∗ is a graph search algorithm commonly used in path planning; it is a best first
search using a graph with known weights [20], which means it prioritises nodes with
the highest potential by using heuristics. In a grid based graph, the heuristics are
usually described by the remaining distance to the goal node. This is usually the
euclidean, diagonal or manhattan distance, depending on the graph structure [21].
The cost of each node is based on the travelled distance it took to get there from
the initial start position [22]. This cost is used in combination with the heuristics to
determine in which direction to expand the search [7]. Given a consistent heuristic,
A∗ is guaranteed to find the optimal path in a graph without evaluating each node
more than once [23]. When applying A∗ to an 8 point graph its search direction is
limited to multiples of π

4 , as connections are only made to the 8 adjacent points,
hence the name. This results in A∗ finding the shortest path in the grid, but this
is not necessarily the shortest path available, as there may be shorter connections
that are not multiples of π

4 [24]. These sharp turn angles are not suitable for non-
holonomic vehicles, as their dynamics are restricted.

There are versions of A∗ which handle vehicle dynamics, such as Hybrid A∗ used
in [6]. Here, the heading, in addition to position is used to project possible motion
primitives in order to find new nodes. The motion primitives are based on the
vehicle dynamics and the starting heading is given as input. This means that for
each node, the heading is tracked in order to obtain a curved path instead of the
previous limit of π

4 turns.

2.3.1.3 Theta∗ algorithm

Theta∗ is an expanded version of A∗, where inheriting parenthood is allowed. When
visibility between the current node and a neighbour is evaluated, visibility between
the neighbour and the parent of the current node is also determined. If the current
node is visible from the parent, the parenthood is assigned to the parent node instead
of the current node. This changes the restricted movement in A∗ where it only checks
adjacent neighbours resulting in movement of π

4 multiples. This makes Theta∗ an
any-angle search algorithm as long as no constraints are set on changes of heading
in an 8 point grid based graph. It also enables finding shorter paths, since nodes
can be skipped if the cost is deemed to be smaller as seen in Fig. 2.2 [17][25].

11

2. Theory

Fig. 2.2. Comparison between A∗ and Theta∗

One algorithm to determine visibility between two points in a grid based graph with
obstructions present is Bresenham’s line algorithm [26]. It is commonly used in
computer graphics to draw approximations of straight lines between two points. By
usage of integer addition, subtraction and bit shifting it is computationally efficient,
and suitable for this purpose, since the graph information is contained in the index
of each point. Estimating a straight line between two points will return all the
occupancy information needed to determine line of sight.

2.4 Model predictive control
Model predictive control is an optimal control strategy, similar to Linear Quadratic
(LQ) control, but instead has a finite horizon. It can also handle non-linear time
invariant systems as well as constraints on states and control signals as opposed to
an LQ controller. It does so by solving an optimisation problem at each time step
and outputting the optimal control signals for the specific objective [27]. A generic
optimisation problem will be presented in Section 2.4.1-2.4.3.

Although, before proceeding, the notation of states and variables will be established.
The sampling variable is denoted t and can take values between 0 and T . Each
prediction horizon (as far in the future the controller predicts the states at each
time step) is denoted τ and is of length tH . The individual horizons τ can take
discrete values between [0, T − tH], i.e. τ ∈ {0,∆t, 2∆t, ..., T − tH}.

With these variables, the predicted state x at some time t, and the actual state at
the same time t, can be distinguished. A state x, that is predicted in the horizon

12

2. Theory

τ , and represents the state at time t ∈ [τ, τ + tH], is denoted x(t|τ). When the
problem is discretised, the same state at the same point in time is denoted x(k|κ)
where k ∈ {κ, κ+ 1, ..., κ+ kH} and κ ∈ {0, 1, ..., K − kH}.

2.4.1 A problem formulation
Given a state xf ∈ Xf as a target final state, the purpose of this controller is to keep
the states x(t) as close as possible to some reference xr(t). It should do so while
minimising usage of control inputs and time control, i.e the time it takes to complete
the scenario. Let ẋ = f(x,u, t) be the model of the system to be controlled, where
x(t) is the states, u(t) control signals and t time. The acceptable states are those
in the set X , and valid control signals are in U . The optimisation problem is to
minimise the integral of some objective function J(x,u) under the constraints on
states and control signals defined by the sets X ,U . To relax the problem, a set of
acceptable final states Xf can be defined in which the final state x(T |τf) has to be
a member of, where τf indicates the final horizon. This final state can be associated
with its own cost Jf (x) that penalises the difference between the state x(T |τf) and
the target final state xf (T |τf). The objective function is sometimes referred to as
the cost function and is used to penalise certain states and/or control signals.

The time control can be minimised in two ways. Either as a running cost, minimising∫
t dt, or as a final cost, minimising tH(τ). In this project the time control will be

minimised by considering it as a running cost. How this is implemented is described
in 2.4.3. Since the goal is also to minimise the use of control signals while keeping
the states as close to the target states as possible, the objective function can be
stated as

∫ τ+tH

τ
J(x,u, t)dt+ Jf

(
x(T |τf)

)
=
∫ τ+tH

τ
‖u(t|τ)‖2

Q + ‖x(t|τ)− xr(t|τ)‖2
R +Rtt dt+ ‖x(T |τf)− xf‖2

Rf
,

(2.3)

with some weightings Q,R,Rt. The notation ‖x‖R is short for

‖x‖2
R = xTRx. (2.4)

The complete optimisation problem which is to be solved at each time step is for-
mulated as

min
x,u

∫ τ+tH

τ
J
(
x(t|τ),u(t|τ), t

)
dt+ Jf

(
x(t|τ)

)
(2.5a)

s.t. ẋ(t|τ) = f(x(t|τ),u(t|τ), t) (2.5b)
g(x(t|τ),u(t|τ), t) ≤ 0 (2.5c)
x(t|τ) ∈ X (τ) (2.5d)

13

2. Theory

x(τ + tH |τ) ∈ Xf (τ) (2.5e)
x(τ |τ) = x0(τ) (2.5f)
u(t|τ) ∈ U(τ). (2.5g)

The constraints are imposed for all t ∈ [τ, τ + tH] and τ ∈ [0, τf].

Assuming that the constraints and vehicle dynamics reflect the system accurately,
in addition to the weightings of the objective function being tuned accordingly, the
solution to this problem will have the desired behaviour.

2.4.2 Discretisation of optimisation problem
The optimisation problem is often translated from continuous to a discrete. I.e.
instead of a differential equation ẋ = f(x(t|τ),u(t|τ), t), a difference equation
x(k + 1) = f̃(x(k|κ),u(k|κ), k) is constructed by approximating the integral of the
differential equation between two time steps. For the approximation to be reliable,
it has to capture the dynamics of the system. The more non-linear the system is and
the faster the dynamics are, the more emphasis is put on the integration method.
One simple integration method is the euler forward integration which looks like

x(k + 1) = x(k) + ∆t · f(x(tk),u(tk), tk), (2.6)

where tk = t(k).

For this approximation to capture the dynamics of the system used in this project,
a short sample time needs to be used. This in turn makes the optimisation problem
more computationally complex, since the number of constraints scales with the num-
ber of time steps of each horizon. In order to lower the number of time steps needed,
a more accurate integration method can be used. The euler forward approximation
is also called the first order explicit Runge-Kutta method. With a higher order,
the accuracy increases and larger time steps can be used while still capturing the
dynamics. The disadvantage is that the computational complexity increases with an
increased order of integration. The fourth order Runge-Kutta method (RK4) is, in
this project, regarded as a good trade off between accuracy and the computational
effort it comes with. It is defined as

x(k + 1) = x(k) + ∆t
4∑
i=1

µiλi, (2.7)

14

2. Theory

where
λ1 = f(x(tk),u(tk), tk)

λ2 = f(λ1
∆t
2 + x(tk),u(tk + ∆t

2), tk)

λ3 = f(λ2
∆t
2 + x(tk),u(tk + ∆t

2), tk)

λ4 = f(λ3∆t+ x(tk),u(tk + ∆t), tk)

(2.8)

and
µ1 = 1

6 , µ2 = 1
3 , µ3 = 1

3 , µ4 = 1
6 . (2.9)

If constant control signals from tk up to, but not including, tk + ∆t, are assumed,
the coefficients λ2−4 are instead

λ2 = f(λ1
∆t
2 + x(tk),u(tk), tk)

λ3 = f(λ2
∆t
2 + x(tk),u(tk), tk)

λ4 = f(λ3∆t+ x(tk),u(tk), tk)

(2.10)

The objective function J(·) in (2.3) is discretised in the same way into J̃(·)

2.4.3 Minimum time control
In order to minimise the time control, the problem can no longer be expressed as a
function of time. When it is discretised, the sample time will be fixed and, therefore,
also the time it takes to complete the scenario. In [28, 29], a state z(t) is introduced,
referred to as lethargy, which is effectively the inverse speed. In [28] they also make
a variable shift from a temporal dependency to a spatial one. In this project, it has
the effect of sampling in discrete space intervals along some virtual path. The new
spatial variable is denoted ζ(t) and is defined from the chain rule as

ẋ = d

dt
x(t) = d

dζ

dζ

dt
x
(
ζ(t)

)
= d

dζ
x
(
ζ(t)

)
︸ ︷︷ ︸

x′

dζ

dt︸︷︷︸
1/z(ζ(t))

= f
(
x
(
ζ(t)

)
,u
(
ζ(t)

)
, ζ(t)

)
,

(2.11)

where x′ is the differentiated state x(ζ(t)) with respect to ζ. The variable z(ζ) is the
inverse speed and will together with the sample length ∆ζ control the time between
two samples. From now on, the dependency of t will be omitted. By solving for x′,
the expression for the differentiated states is

x′ = z(ζ)f(x(ζ),u(ζ), ζ). (2.12)

15

2. Theory

The implication of this variable shift is easiest seen when discretising the function
as in (2.7)-(2.9). By defining λi for i ∈ [1, 4] as before the discretisation becomes

x(k + 1) = f̃(x(k),u(k), z(k), k) = x(k) + ∆ζ
4∑
i=1

µiz(k)λi, (2.13)

where
λ1 = f(x(ζk),u(ζk), ζk)

λ2 = f(z(k)λ1
∆ζ
2 + x(ζk),u(ζk), ζk)

λ3 = f(z(k)λ2
∆ζ
2 + x(ζk),u(ζk), ζk)

λ4 = f(z(k)λ3∆ζ + x(ζk),u(ζk), ζk)

(2.14)

and
µ1 = 1

6 , µ2 = 1
3 , µ3 = 1

3 , µ4 = 1
6 . (2.15)

The product z(k)∆ζ has the unit seconds and therefore controls the sample time.
By including z(k) in the objective function of the problem, the problem also includes
minimisation of the lethargy and hence the time it takes to complete each horizon.
The variable z(k) can also be bounded between a lower and upper value to limit the
time between two samples.

The complete discretised problem is formulated as

min
x,u,z

κ+kH∑
κ

J̃(x(k),u(k), z(k), k|κ)

s.t. x(k + 1|κ) = f̃(x(k),u(k), z(k), k|κ)
x(k|κ) ∈ X
x(κ+ kH |κ) ∈ Xf
u(k|κ) ∈ U
z(k|κ) ∈ Z

(2.16)

where Z is the set of acceptable values of z(k|κ).

The optimisation problem is then passed on to a numerical solver, one such solver
is the Interior point optimiser (Ipopt).

2.5 Interior point optimiser
When solving large optimisation problems, analytic solutions are intractable. In-
stead a numeric solver can be used. The open-source Ipopt is a solver for non-linear

16

2. Theory

and non-convex optimisation problems and suitable for this project. It solves prob-
lems in the form of

w = [xTκ ,uTκ ,xTκ+1, . . . ,xTκ+kH−1,uTκ+kH−1,xTκ+kH
,uTκ+kH

,xTκ+kH+1]T (2.17)

min
x∈Rn

κ+kH∑
κ

J̃(w)

s.t. gL ≤ g(w) ≤ gU

wL ≤ w ≤ wU ,

(2.18)

where w ∈ RnxkH+nukH is the optimisation variables, g(w) the general constraints,
gL, gU the corresponding upper and lower bound, wL,wU the box constraints for the
optimisation variables and J̃(w) the objective function. κ is the index of the first
variable of the current horizon and kH is the length of each horizon.

General constraints are those that can not be contained by upper and lower bounds.
They are instead expressed as a function g(w). The function is in turn bounded by
predefined limits. E.g. the euclidean distance between a state (x, y) and a point
(px, py), can not be constrained by two bounds. The constraints are formulated as

dmin ≤
∥∥∥∥∥
[
xκ
yκ

]
−
[
px
py

]∥∥∥∥∥ ≤ ∞
dmin ≤

∥∥∥∥∥
[
xκ+1
yκ+1

]
−
[
px
py

]∥∥∥∥∥ ≤ ∞
...

dmin︸ ︷︷ ︸
gL

≤
∥∥∥∥∥
[
xκ+kH

yκ+kH

]
−
[
px
py

]∥∥∥∥∥︸ ︷︷ ︸
g(w)

≤ ∞︸︷︷︸
gU

(2.19)

The Ipopt finds a solution to the problem in (2.18) by executing a line search
algorithm from a user-provided initial starting point w0 ∈ Rnx . If one is not provided
or an infeasible starting point is given, it is set to zero or moved to satisfy all
constraints, depending on if zero is within the constraints or not.

If the problem is non-convex, the solution and its feasibility depend on the starting
point. E.g. if the shortest path between two points is to be found, and there is an
alternative to pass an obstacle either on the left or right. The initial guess of the
optimal path, which is either to take left or right, limits the solution to that choice,
even if that path is longer. For that reason, the initial guess needs to be as good
as possible to ensure an acceptable solution. Also, the Ipopt does not guarantee a
global optimal solution for a non-convex problem formulation, only a local optimum,
at best, can be guaranteed [30].

17

2. Theory

2.6 Dynamic model
In this project, two different dynamic models will be investigated for the two different
MPC planners. One detailed model and one simplified. They are all expressed in
the time domain and are transformed as described by the sections 2.4.2 and 2.4.3.

2.6.1 Detailed model
A defining difference between a truck and a semi-trailer truck is that the latter has a
pivot point. Therefore, the model needs to reflect those dynamics. The model used
is a single track model with an articulate point, and based on [31]. An illustration
of the model and its components can be seen in Fig. 2.3.

Fig. 2.3. Illustration of a model of an articulated vehicle.

The states of the model are the position of the center of the rear axle of the truck and
trailer, (x1, y1) and (x2, y2), including the heading of the front part of the vehicle θ1
and the relative heading ϕ1. An illustration of a truck and the location of the states
corresponding to the positions are shown in Fig. 2.4. The distance a1 is defined as
negative since the articulation point is in front of the rear axle of the truck.

18

2. Theory

Fig. 2.4. Illustration of a truck with marked measurements and position of states
in the vehicle frame.

In [31], the velocity of the front wheels is considered as a control input, which results
in a jerky driving behaviour. By setting the velocity v as a state, and instead control
the acceleration, the velocity is smoothly increased over time, giving a more realistic
driving behavior. The other control signal is kept as the steering angle uα. The
model is also completed with two states in order to penalise steering rate and jerk,
namely ϑα̇ = u̇α, ϑjerk = u̇acc. The model parameters are the distances a1, b1, b2 and
are designed in order to describe a common truck-trailer configuration. The model
equations are

ẋ(t) = f
(
x(t),u(t)

)
=

v1(t) cos θ1(t)
v1(t) sin θ1(t)

v2(t) cos
(
θ1(t)− ϕ1(t)

)
v2(t) sin

(
θ1(t)− ϕ1(t)

)
sinϕ1(t)

b2+a1 cosϕ1(t)v1(t) + b2
b2+a1 cosϕ1(t) ϕ̇1(t)

ω1(t)− ω2(t)
uacc(t)
üα(t)
üacc(t)

(2.20a)

x(t) =

x1(t)
y1(t)
x2(t)
y2(t)
θ1(t)
ϕ1(t)
v(t)
ϑα̇(t)
ϑjerk(t)

(2.20b)

u(t) =
[
uα(t)
uacc

]
, (2.20c)

where

19

2. Theory

v1(t)
ω1(t)
v2(t)
ω2(t)

 =

v(t) cosuα(t)
1
b1
v(t) sin uα(t)(

cosϕ1(t) cosuα(t) + a1
b1

sinϕ1(t) sin uα(t)
)
v(t)

1
b2

(
sinϕ1(t) cosuα(t)− a1

b1
cosϕ1(t) sin uα(t)

)
v(t)

 . (2.21)

The position of the rear axle (x2, y2) is fully defined by the angles ϕ1, θ1 and does
not need a state of its own. This means that the model is over defined. By removing
this state one obtains the following model:

f
(
x(t),u(t)

)
=

v1(t) cos θ1(t)
v1(t) sin θ1(t)

sinϕ1
b2+a1 cosϕ1(t)v1(t) + b2

b2+a1 cosϕ1(t) ϕ̇1(t)
ω1(t)− ω2(t)

uacc(t)
ϑα̇(t)
ϑjerk(t)

, (2.22)

where

 v1(t)
ω1(t)
ω2(t)

 =

v(t) cosuα(t)
1
b1
v(t) sin uα(t)

1
b2

(
sinϕ1(t) cosuα(t)− a1

b1
cosϕ1(t) sin uα(t)

)
v(t)

 . (2.23)

The position of the rear axle is calculated as

x2(t) = x1(t)− a1 cos
(
θ1(t)

)
− b2 cos

(
θ1(t)− ϕ1(t)

)
y2(t) = y1(t)− a1 sin

(
θ1(t)

)
− b2 sin

(
θ1(t)− ϕ1(t)

) (2.24)

The constraints on steering angle, acceleration and trailer angle are

uα,min ≤ uα(t) ≤ uα,max

uacc,min ≤ uv(t) ≤ uacc,max

ϕmin ≤ ϕ(t) ≤ ϕmax.

(2.25)

2.6.2 Simplified model
The simplified model is based on the detailed one but does not include an articulation
point and instead of acceleration, the speed is chosen as the input. It also includes

20

2. Theory

an extra state ϑv(t) = uv(t) cosuα(t) and its derivative ϑacc(t) = d
dt

(
ϑv(t)

)
in order

to be able to penalise longitudinal acceleration. The model then becomes

ẋ(t) = f
(
x(t),u(t)

)
=

uv(t) cosuα(t) cos θ1(t)
uv(t) cosuα(t) sin θ1(t)

1
b1
uv(t) sin uα(t)

d
dt

(
uv(t) cosuα(t)

)
ϑ̇v(t)

 (2.26a)

x(t) =

x1(t)
y1(t)
θ1(t)
ϑv(t)
ϑacc

 (2.26b)

u(t) =
[
uv(t)
uα(t)

]
. (2.26c)

However, by substituting the control signals as in Fig. 2.5, the model can be further
simplified to speed up calculations. The new control signals u(t) becomes

u(t) =
[
u1(t)
u2(t)

]
=
[
uv cosuα(t)
uv sin uα(t)

]
. (2.27)

Fig. 2.5. Illustration of a simplified model for an articulated vehicle.

21

2. Theory

The model is then

f(x(t),u(t)) =

u1(t) cos θ1(t)
u1(t) sin θ1(t)

1
b1
u2(t)
u̇1(t)
ϑ̇v(t)

 (2.28)

with the states as in (2.26b) and control signals in (2.27). The steering angle and
speed can be retrieved as

α(t) = arctan
(
u2(t)
u1(t)

)

v(t) = u1(t)
cosα(t)

(2.29)

Since the the steering angle and velocity have been substituted, the constraints for
these become more elaborate. One way of implying a constraint on the steering
angle, is to constrain the ratio between u2 and u1. This can be seen by first dividing
u2 with u1 which will result in the expression

u2(t)
u1(t) =

sin
(
uα(t)

)
cos

(
uα(t)

) = tan
(
uα(t)

)
. (2.30)

If the ratio is constrained by the tangent value of uα,min and uα,max, the expression
becomes

tan(uαmin) ≤u2(t)
u1(t) ≤ tan(uαmax). (2.31)

The constraint is now non-convex and is advantageously simplified to decrease com-
putational effort. It can be solved by multiplying both sides with u1. On the other
hand, since u1 can take negative values it causes the constraint to become condition-
ally dependent on the sign of u1. However, since |uα,min| = |uα,max| this problem can
be avoided by taking the absolute value of u1. This forms the steering constraint as

|u1(t)| tan(uαmin) ≤ u2(t) ≤ |u1(t)| tan(uαmax). (2.32)

The maximum values of u1 is constrained as

u1,min ≤ u1(t) ≤ u1,max, (2.33)

22

2. Theory

where |u1,min| < |u1,max|. In that way, together with minimising the time con-
sumption, driving forward is promoted, yielding a more natural path with shorter
reversing distance. The maximum and minimum value of the control signal u2 is
implicitly constrained with the combination of the equations (2.32) and (2.33).

23

2. Theory

24

3
Graph search path planner

During this project, a graph search path planning algorithm was developed. Since
the turning radius of a semi-trailer truck is restricted, it is important that the
reference curve keeps these parameters in regard in order to avoid collision. The
aim is to develop an algorithm which computes a path that allows sneaking of
curves and resembles the curvature of a turning truck. The developed algorithm is
mainly based on Theta∗ described in 2.3.1.3, with additional logic to handle vehicle
dynamics. The main difference here is how neighbours are found in the graph by
the algorithm, with restrictions based on the dynamics of a truck in order to find
paths which are closer to reality than what Theta∗ normally returns. This means
that not all paths are guaranteed to be the shortest possible, since there might be
constraints on how fast the heading can change, or how sharp turns are allowed to
be.

The designed algorithm utilises a third dimension in order to keep track of possible
headings in each node. The third dimension is divided into angular bins, which are
then split into equally large parts, giving a range of possible angles for each bin.
When a node is reached with a certain heading, it is assigned to the corresponding
bin for that angle. A condition is set on the goal node in order to achieve a solution
which fulfills the target heading. This means that the algorithm can find a solution
with a mix of forward and backward movements.

3.1 Graph design
In this project, the graph was designed as a grid based graph. The indices of the
graph describes the position in the world frame, where a resolution is set to determine
the scale. The value of each index describes the occupancy status, as described in
Section 2.3. The corresponding position [x, y]T is calculated from the given index
[ix, iy]T as follows

[
x
y

]
= gres

[
ix
iy

]
(3.1)

where gres is the metric distance between two contiguous points. This means the
size of the graph (Nx, Ny) will be computed by

25

3. Graph search path planner

Nx = xmax − xmin

gres
+ 1

Ny = ymax − ymin

gres
+ 1

(3.2)

where the max and min values describe the graph boundaries in x and y directions.
Once the initial graph has been constructed, obstacles are added. The parameters
of each obstacle are described by[

xj yj wj hj αj
]T

(3.3)

where xj and yj is the position of the center of the object j, wj and hj are the
width and height respectively and αj is the rotation of the object. In addition to
these parameters, a padding can be set to further increase the size of objects, this
forces the graph search to take wider turns since the objects appear larger. The
padded area is not necessarily restricted in the trajectory planning, and can be
tuned separately if needed. Any point of the graph inside the boundary described
by each obstacle and the additional padding is set to 1. This representation allows
for fast computation and easy access to information. An example of how positions
are evaluated is seen in Fig. 3.1. Each position is interpolated to the closest grid
point and the occupancy status is checked to determine if this point is in an occupied
space or not.

Fig. 3.1. Illustration of how points are interpolated to the closest grid point

Since the graph is grid based and the resolution is not infinitely high, there might
be cases where a collision check fails to see obstacles. A common occurrence of

26

3. Graph search path planner

this is when the path traverses a corner of an obstacle, which is in between points
in the graph. The interpolation will fail to find this corner and thus consider this
to be a valid path. This is another benefit of the padding, since the path will
overlap with the padding, but not the obstacle itself, assuming the padding is large
enough. Making obstacles appear larger is especially important when they can
assume any rotation, since the edges are no longer lined up with the grid. Increasing
the resolution enough to make this negligible would increase the computational
effort immensely. Instead, a higher amount of padding could be used to handle the
resolution problems that come with rotated obstacles.

3.2 Parent tracking
With the addition of the third dimension mention in Section 3, the parenthood of
each node must also contain which bin of the parent it originates from. This results
in each bin of each node being able to have a unique parent with a corresponding
bin of that parent. This allows each node to be evaluated separately for each bin.
This is valuable as the cost differs greatly between different bins. The result is an
algorithm which tries multiple approaches in order to reach the target node. The
computational complexity is increased, but the gain in flexibility allows for more
complex scenarios.

3.2.1 Angular bins
The bins are designed to be around the target heading, where each bin has a uniform
size based on the set number of bins. The goal node has a target bin, which is
determined by the target heading. This enforces a specific range of allowed angles
based on the size of each bin. An illustration of how the bins can be divided is found
in Fig. 3.2.

Fig. 3.2. Target heading is set to 0, and the number of bins is 4.

27

3. Graph search path planner

Calculation of which bin to assign is done as follows

binsize = 2π
nbins

(3.4)

bin(θcurrent) = (b
2π + θcurrent − θgoal + binsize

2
binsize

c % nbins) (3.5)

θcurrent ∈ [−π, π], θgoal ∈ [−π, π] (3.6)

The addition of 2π is there to enable handling of negative angles, and the modulo
operator is there to restrict the bin number from overflowing. The first bin is
centered around the target heading, and then incremented counter clockwise. The
size of each bin is uniform and based on the desired amount of bins described by
the parameter nbins. This parameter decides the resolution of the third dimension,
indicating how many angles are possible in each position. Each bin will contain the
lowest cost for the angular range of that slot. The number of possible bins decides
the accuracy of the found solution, with a larger number giving a higher accuracy,
due to the target bin being smaller with an increasing number of bins. More bins
does, however, increase the computational complexity. Increasing the number of
bins does not ensure a higher possibility of finding the target node, since there is a
limit on the precision based on the available turn angles in the algorithm.

3.3 Node prioritisation
The neighbours found in each iteration are put in a priority queue based on the
cost of reaching that node and an estimation of the remaining distance given by the
heuristics. The aim is to prioritise the node which is most likely to reach the goal
node in the desired bin.

3.3.1 Cost function
In order to prioritise the paths that are most likely to end up with the desired
heading, the cost function includes a cost for headings differing from the target
heading in addition to the euclidean distance d(ni, yj) between the two nodes ni,mj,
where i and j denote which bin are currently being evaluated for each node. These
are not necessarily the same, but can be if the turning angle is small. The cost of
traversing node ni to mj is then calculated as

C(ni,mj) = |θni
− θgoal|+ d(ni,mj) (3.7)

The cost array also includes a third dimension, since each node has a different cost
for every bin, due to the cost depending on the difference in heading.

3.3.2 Heuristics
The chosen heuristics is the euclidean distance, this to assure that the cost of reach-
ing the goal node is always underestimated. This is always a consistent heuristic,
since the true cost can never be lower than the euclidean distance between two

28

3. Graph search path planner

nodes. By using a consistent heuristic, the computed path will be optimal, but not
necessarily the global optima. Given the restrictions of the algorithm, the optima
might not be found in the search made by the algorithm, as some options are never
found in the way the search is performed. Since the main focus of this project is to
find a feasible path, this is considered to be a reasonable trade off.

3.4 Finding neighbours
To enable finding paths including both driving forward and reversing, neighbours
are sought after in both directions for each node. The aim is to find a combination of
these two directions in order to find the shortest path which fulfills the requirements
set on the target heading. This results in up to twice as many neighbours in each
search, as the search space is equally large in both directions. Since each neighbour
is evaluated, this greatly increases the time for the algorithm to find a path to the
goal. The back draft of increased computational complexity comes with the benefit
of enabling conditions to be set on the final orientation.

In order to find paths which resemble the dynamics of the vehicle, neighbours are
found using turning arcs with a predetermined turning radius. The visibility is
determined by evaluating the resulting arc between two points and is hereafter
denoted as arc of sight (AoS).

3.4.1 Arc of sight
The AoS is evaluated by projecting an arc based on a given turning angle α. A
visualisation of the arc is illustrated in Fig. 3.3.

29

3. Graph search path planner

Fig. 3.3. Illustration of arc calculation

Here α is the turning angle, β is the angle between the two points seen from the
center of the circle and θ is the initial heading. The turning radius is denoted by
rc and d is the euclidean distance between the two points. The turning radius is
calculated by assuming a constant turning angle, yielding a circular motion. The
center of rotation is by definition perpendicular to the current position [x0 y0]T .
By using the distance d between two positions, and knowing that the angle between
them is the steering angle α, the distance to the center of rotation can be calculated
using the following equations.

β = 2α

rc = d

2 sinα
(3.8)

Since the movement is perpendicular to the center of the circle, the change in heading
is equal to β. The new position [x1 y1]T and new heading θ1 is calculated by.

x1 = x0 + d cos (θ + α)
y1 = y0 + d sin (θ + α)
θ1 = θ + β

(3.9)

30

3. Graph search path planner

By lowering the resolution and limiting the amount of turning angles available,
the process is sped up significantly. By default, only full turns of π

4 are allowed.
If the algorithm fails to find the goal node, the available turns are scaled up to
handle more complex situations. The full turn results in a heading change of π

2 ,
but since the algorithm allows inheriting parenthood from the parent of the parent
node, more angles can be achieved. This proved to be useful in order to handle
scenarios of rotated obstacles, since the required heading might not be a multiple of
π
2 . Due to the available turning angles being restricted, more nodes are sought after
in the current heading, as well as in the opposite direction up to a distance equal to
the turning radius multiplied by

√
2. The position of these nodes are found using

Bresenham’s line algorithm. This is illustrated below in Fig. 3.4.

Fig. 3.4. Neighbours found by the graph search algorithm, where turning angles
are limited to π

4 .

To see if the selected target node is in sight of the parent of the current node the
angle α and euclidean distance d is used to calculate the arc parameters as seen in
(3.8). The points p on the arc are obtained by creating a spectrum of angles and
computing the points as follows

31

3. Graph search path planner

[
crx
cry

]
=
[
x0
y0

]
+
[
rc sin(θ − π

2)
rc cos(θ − π

2)

]
[
prx
pry

]
=
[
crx + rc cos (θ + π

2 − γ)
cry + rc sin (θ + π

2 − γ)

]
∀γ ∈ [0, β][

clx
cly

]
=
[
x0
y0

]
+
[
rc sin(θ + π

2)
rc cos(θ + π

2)

]
[
plx
ply

]
=
[
clx + rc cos (θ − π

2 + γ)
cly + rc sin (θ − π

2 + γ)

]
∀γ ∈ [0, β]

(3.10)

for a right turn and left turn respectively. Here l indicates left turn and r a right
turn. The location of the respective circle centers are described by c and γ is a vector
of angles with a resolution high enough to ensure that no collisions are missed. Each
point along the arc is compared to the obstacles in the environment. If any point
on the arc has a value of 1 in the graph, the neighbour is out of sight.

3.4.2 Neighbours in proximity of the goal node
When the distance to the goal node is lower than the predetermined turning radius,
full steps can no longer be taken while assuring the goal node is found. Instead of
just searching the full turns and straight ahead, all neighbours within the boundary
described by these are identified. This is done by creating a cone defined by the
possible maximum turning angles of the vehicle. This angle is set to ±π

4 , giving
a triangular grid of reachable points, which are then interpolated to nodes in the
graph, resulting in a set of neighbours. The triangular grid is calculated by the
points between the three corners consisting of current position [x0 y0]T and the two
points [xn yn]T that can be reached by making a turn to the left or right. The two
points are calculated as follows

[
xn
yn

]
=
[
x0
y0

]
+
[√

2Tr cos (θ ± π
4)√

2Tr sin (θ ± π
4)

]
, n ∈ 1, 2 (3.11)

where Tr is the turning radius and θ is the current heading, which determine the
size of the cone. The grid is then filtered by removing the neighbours requiring
turning angles higher than the maximum. This is done by checking the distance to
the circle center described in Section 3.4.1, if this distance is lower than the circle
radius, the point is within the circle. If a point is within the circle, it means that it
is not possible to reach it from the current node. The resulting neighbours resemble
a bell shape and can be seen in Fig 3.5

32

3. Graph search path planner

Fig. 3.5. Illustration of how neighbours are found when the distance to the goal
node is less than one turning radius

Here, some neighbours are not considered to be visible as they are inside the obstacles
or padding, this is determined by checking the occupancy value of each node. Any
neighbour which is unreachable based on the vehicle dynamics has been removed
before line of sight is determined.

3.5 Inheriting parenthood
Once the neighbours are identified, they are put in the open list and the AoS is
evaluated from the current node and the parent of the current node. In this algo-
rithm, the parenthood can not be inherited if the turn is too sharp. If the distance
between the parent and the neighbour is below or equal to the turning radius, the
lateral movement will be limited by the set dynamics. The lateral distance will at
maximum be equal to the covered longitudinal distance in the vehicle coordinate
system, assuming a π

4 turn. An illustration of the AoS can be seen in Fig. 3.6 where
the visibility check is shown.

33

3. Graph search path planner

Fig. 3.6. Visualisation of how AoS is determined. Here, the parent node does not
have a valid path, while the current node does.

The search direction from the current node is backwards, and the parent is searching
forwards. Since the vision of the parent is obstructed by the obstacle the parenthood
can not be inherited by the neighbour. Instead the parenthood is assigned to the
current node as there is a valid path to it. The search direction is determined by
the heading of the parent node and current node. The only valid search direction
for the current node is backwards, as making a π turn is unwanted and unnecessary.
The heading at the neighbour after assignment of parent will depend on the type
of movement made to reach it. If it was reached by reversing, the heading will
be opposite of the movement direction to represent the direction of the front of the
truck. This means that in order to continue in this direction from the node, it has to
keep reversing. Since the search method in both directions is equal, this has no effect
on the neighbours found, but it will affect how the MPC trajectory planner follows
the resulting reference path as the driving direction is saved in each position. The
driving direction is represented by a boolean along the points on the curve, where
true indicates reversing.

34

4
Model predictive control

MPC is a framework used to optimise controlling of systems, where a traditional LQ
controller is not general enough. With MPC, there is a great freedom in designing
the objective function and constraints in order to accurately describe the system.
The challenge lies in the design of these.

When using MPC to plan a trajectory, metrics such as acceleration and jerk is often
penalised by including it in the objective function. Objects, however, are handled
differently in various implementations. In this project, obstacles are considered as
constraints as opposed to maximising the distance to them.

MPC will be used in two different contexts. Both to create a reference path and
also to follow a reference path. The first will be a single horizon MPC, while the
other has a receding horizon.

In order to decrease the computational effort in the trajectory planning phase, the
horizon needs to be as short as possible. Too short, and the problem might become
infeasible, too long and the solver will be too slow. However, time complexity will
not be investigated in this project, but a reasonable horizon will nevertheless be
used.

In this section the approach of using MPC as a path planner will be discussed in
Section 4.2 and how it is later passed on and used in Section 4.3.

4.1 Interpretation of obstacles
Objects can be interpreted in many different ways but will in this project be approx-
imated as one or more rectangles. Each with a center, width, height and rotation.
For them to be included in the MPC formulation, they need a mathematical defini-
tion. The shortest distance dij(k|κ), between a point pi on the truck, and a rotated
rectangle with index j is expressed as

35

4. Model predictive control

dij(k|κ) =
∥∥∥∥∥ max

(
abs

(
RT

[
xi(k|κ)− xj
yi(k|κ)− yj

])
−
[
wj/2
hj/2

]
,

[
0
0

])∥∥∥∥∥ ,
where, R =

[
cos(αj) − sin(αj)
sin(αj) cos(αj)

]
.

(4.1)

The angle α is a counter clock-wise rotation measured from the x-axis and w, h is
the width and height of the rotated rectangle. The reason for the abs(·) and max(·)
operators is due to the fact that only the absolute distances to the objects are of
interest.

Fig. 4.1. Definition of an object when interpreted as a rotated rectangle.

The distance dij−dmin between points along the center line of the semi-trailer truck
and an obstacle is depicted in Fig. 4.1. The safety margin of size dmin is used since
the points along the truck only approximates its shape. If the safety margin is too
narrow, some parts of the truck may be inside the obstacle even though the points
are not.

The problem arises when two points are on opposite sides of a corner. In Fig. 4.2
this situation is illustrated, where the points are red and denoted pi. The black line
symbolises one of the sides of the semi-trailer truck and the red line is going through
the center of the vehicle. The line is at a π

4 angle which is the worst case scenario
and needs the largest margin. From this, the relation between the minimum margin
m and distance between points ∆p can be established as

36

4. Model predictive control

m = 1
2wveh cos

(π
4
)

+ 1
2∆p cos

(π
4
)

(4.2)

⇒ m = 1
2
√

2
(wveh + ∆p) (4.3)

This calculation assumes that the edge of the safety margin surrounding the obstacle
is square. That means for small enough ∆p, the needed margin m is actually larger
than what (4.3) suggests. This has to be taken into consideration when designing
the appropriate safety margin.

Fig. 4.2. The grey area is the safety margin of width m, the black area is the
obstacle. The black line symbolises the side of the semi trailer truck that cuts
through the safety margin. The red dots are the point from which the distance to
the object is measured from.

4.2 Path planner
The advantage of solving an optimisation problem in an MPC fashion when creating
a reference path, is that it is possible to force it to obey specific dynamics. In this
case, it will be the simplified model described in Section 2.6.2 with one variable z(κ)
controlling the lethargy over the whole horizon.

4.2.1 Obstacle avoidance
Since the reference path needs to avoid obstacles, points along the center line of
the simplified model are constrained to always have a minimum distance to the
obstacles. The distance between object j and a point i on the vehicle, denoted
dij(k|κ), are calculated as in Section 4.1 and constrained as

37

4. Model predictive control

dij(k|κ) ≥ dmin, (4.4)

where dmin is calculated using (4.3).

4.2.2 Final state
To make sure that the vehicle ends up in the correct position and orientation, the
last state is constrained. However, the orientation θ1 is not invariant to multiples
of 2π. That is, if the final orientation is set to an incorrect angle, e.g. θf + 2π rad
instead of θf , the path will make a 2π turn before ending up in the end position.
The correct angle is dependant on the path it chooses to take. If the vehicle has
to turn counter clock wise on its way to goal, the state θ1 is decreasing and the
target orientation must be matched, e.g. −3π/4 rad instead of 5π/4 rad. To solve
this problem, the orientation is instead constrained by considering the position of
the vehicle (x1, y1) together with the position of the rear axle of the vehicle (x2, y2).
This constraint is formulated as

x1(κ+ kH |κ) = x1f

y1(κ+ kH |κ) = y1f

x2(κ+ kH |κ) = x1f − b1 · cos θf
y2(κ+ kH |κ) = y1f − b1 · sin θf ,

(4.5)

where θf is the target orientation and x1f , y1f is the target position. The position
(x2, y2) is in turn calculated as

[
x2(κ+ kH |κ)
y2(κ+ kH |κ)

]
=
[
x1(κ+ kH |κ)
y1(κ+ kH |κ)

]
− b1 ·

 cos
(
θ(κ+ kH |κ)

)
sin

(
θ(κ+ kH |κ)

) . (4.6)

These two equations together form the complete constraint as

x1(κ+ kH |κ) = x1f

y1(κ+ kH |κ) = y1f

x1(κ+ kH |κ)− b1 cos
(
θ(κ+ kH |κ)

)
= x1f − b1 cos θf

y1(κ+ kH |κ)− b1 sin
(
θ(κ+ kH |κ)

)
= y1f − b1 sin θf ,

(4.7)

4.2.3 Optimisation problem
The objective function will be designed such that the solution to the optimisation
problem follows the intended behaviour. In this case, acceleration is considered
unwanted together with time consumption. By reducing these, the path will include
as few changes of driving direction as possible as well as the fastest path. It will

38

4. Model predictive control

still be possible to find paths of three- or more point turns and paths of mainly
reversing, they will just not be favored. J̃(·) is therefore defined as

J̃(x(k|κ),u(k|κ)) = w1
(
ϑacc(k|κ)

)2
+ w2

(
z(κ)

)2

∀ k ∈ [κ, κ+ kH]
(4.8)

The complete optimisation problem with the constraints (2.32)-(2.33), (4.4), (4.7)
and the objective function (4.8) is then formulated as

min
x,u

τ+tH∑
τ

J̃
(
x(k|κ),u(k|κ), z(κ)

)
dt (4.9a)

s.t. x(k + 1|κ) = f̃(x(k|κ),u(k|κ), z(κ), k) (4.9b)
dij(k|κ) ≥ dmin (4.9c)
x1(κ+ kH |κ) = x1f (4.9d)
y1(κ+ kH |κ) = y1f (4.9e)
x1(κ+ kH |κ)− cos

(
θ(κ+ kH |κ)

)
= x1f − cos θf (4.9f)

y1(κ+ kH |κ)− sin
(
θ(κ+ kH |κ)

)
= y1f − sin θf (4.9g)

|u1(k|κ)| tan(uαmin) ≤ u2(k|κ) ≤ |u1(k|κ)| tan(uαmax) (4.9h)
u1,min ≤ u1(k|κ) ≤ u1,max. (4.9i)

This optimisation problem is passed on to the numerical solver Ipopt. As explained
previously in Section 2.5, the solver needs a feasible initial guess of variables. The
most important variables are the positions. A random guess, or even a straight
line between the start and end, is deemed insufficient. By measuring the euclidean
distance, no regard is taken to objects. This means, that there is still no estimate of
what the true distance might be and no conclusion of the amount of needed samples
can be drawn.

Therefore, the result of an A∗ graph search from start to end is used. With enough
padding it is hypothesised that it will provide a feasible starting point for the po-
sitions. By performing an initial search, an estimate of the distance is made. This
estimate can be used in order to determine the amount of sample points needed to
solve the task. The A∗ algorithm will also find the shortest path, when there are
several options.

There are however other variables to initialise, e.g. θ1. It is set to a gradient
transition from θ0 to θf across the horizon, either clock-wise or counter clock-wise,
whichever is closest. The control signals u1, u2 are initialised to zero.

39

4. Model predictive control

4.2.4 Post processing
The sampling interval of the MPC path planner does not necessarily have to be
the same as the one used in the trajectory planner. As the trajectory planner
needs higher precision when calculating the distance to objects, it requires a denser
sampling interval. To ensure complete freedom in the choice of sampling interval for
the trajectory planner, the path created by this path planner has to be upsampled.

It is possible to use a simple interpolation algorithm to post process, such as linear
or spline. However, these do not take the motion model into account. In order to
interpolate with the dynamics in regard, the states are simulated with the control
signals calculated by the path planner. By providing the trajectory planner with a
densely sampled reference curve, it is given complete freedom of choosing its own
sampling interval.

4.3 Trajectory planner
The trajectory planner uses the path from one of the two previous generated paths
as reference. The reference can be considered in two different ways. Both minimising
the distance to it but also using it as a reference on how to position the truck at
the end of the horizon. The latter is needed to force reversing even though there is
a possibility to reach the target state by driving forward.

However, the reference curve that comes from the two path planners is densely
sampled and needs to be split into parts of equal length ∆ζ. This parameter is
tuneable and, together with the horizon length ζH , adjust how many samples each
horizon contains. Denser sampling leads to better obstacle avoidance but also results
in longer computation time. The task of the trajectory planner is to continuously
set control signals based on the current state and predictions. In order for it to work
well, the model needs to accurately describe the motion of the vehicle and for an
implementation on a real semi-trailer truck, the model presented in Section 2.6.1,
is not accurate enough. However, for the purpose of this project, i.e. to plan a
trajectory that includes reversing, it is sufficient if the model produces reasonable
simulations. If it was to be deployed in a real truck, the model can be extended to
include slipping, motor specification etc.

4.3.1 Obstacle avoidance
The obstacles are considered in the same way as in the MPC path planner, namely

dij(k|κ) ≥ dmin. (4.10)

where dij is the distance between object i and point j on the vehicle.

40

4. Model predictive control

4.3.2 Reference path
For the MPC to make use of the provided reference curve, the distance between a
point on the vehicle and the reference curve can be penalised. Since neither of the
algorithms that create the reference path take a trailer into account, using the point
on the rear axle of the truck (x1, y1) would make the trailer cut turns. Instead, the
axle of the trailer, (x2, y2), is considered best suited to be as close to the reference
path as possible. This distance is expressed as

d(k|κ) =
∥∥∥∥∥
[
x2(k|κ)
y2(k|κ)

]
− r(k|κ)

∥∥∥∥∥ =
√(

x2(k|κ)− rx(k|κ)
)2

+
(
y2(k|κ)− ry(k|κ)

)2
,

(4.11)

where
r(k|κ) =

[
rx(k|κ)
ry(k|κ)

]
. (4.12)

Since the solver needs to differentiate the expression d(k|κ), there can not be a
square root expression of a variable. That will make the derivative undefined
where the distance between the position

(
x2(k|κ), y2(k|κ)

)
and the reference path(

rx(k|κ), ry(k|κ)
)
equals zero. Therefore, the square distance is added to the cost

function as

d(k|κ)2 =
∥∥∥∥∥
[
x2(k|κ)
y2(k|κ)

]
− r(k|κ)

∥∥∥∥∥
2

=
(
x2(k|κ)− rx(k|κ)

)2
+
(
y2(k|κ)− ry(k|κ)

)2
.

(4.13)

4.3.3 Final state
To make sure that the vehicle ends up where it should, the position at the end of
the horizon needs to be constrained to the reference curve. If not, the solution that
minimises the objective function could be to not move at all. However, the reference
curve might be too close to an obstructed area which would make for an infeasible
solution. This suggests that flexibility is needed, which is solved by introducing soft
constraints. For the same reason as before, the square distance is constrained as

∥∥∥∥∥
[
x2(κ+ kH |κ)
y2(κ+ kH |κ)

]
− r(κ+ kH |κ)

∥∥∥∥∥
2

≤ δr(κ)2 (4.14)

where δr(κ) is the soft constraint variable and is only a function of κ since there is
only one per horizon. The variable itself will also be constrained as

0 ≤ δr(κ) ≤ δr,max (4.15)

41

4. Model predictive control

to guarantee a minimum distance to the target position. It will later be added to
the objective function to minimises the deviation. To further guide the vehicle in
each horizon, the angle of the truck and trailer is soft constrained as

∥∥∥∥∥
[
x1(κ+ kH |κ)
y1(κ+ kH |κ)

]
−
[
px(κ+ kH |κ)
py(κ+ kH |κ)

]∥∥∥∥∥
2

≤ δf (κ)2

0 ≤ δf (κ) ≤ δf,max.

(4.16)

This makes it cheaper to align with the reference curve at the end of each horizon but
leaves the possibility of having different trailer angles. The reason why the position
of the front is constrained instead of the angle of the truck and trailer is for the
same reason as for the MPC path planner, to get rid of the ambiguity of angles of
multiples of 2π. The position

(
px(κ+kH |κ), py(κ+kH |κ)

)
is the calculated position

of the front given that the trailer angle ϕ = 0 and truck tangent to the reference
curve. They are calculated as

px(κ+ kH |κ) = rx(κ+ kH |κ)± a1 + b2

∆ζ
(
rx(κ+ kH |κ)− rx(κ+ kH − 1|κ)

)
py(κ+ kH |κ) = ry(κ+ kH |κ)± a1 + b2

∆ζ
(
ry(κ+ kH |κ)− ry(κ+ kH − 1|κ)

) (4.17)

where ± depends on if the vehicle is to reverse or not. The information of reversing
is encoded in the reference curve. This is visualised in Fig. 4.3. In the right plot,
the truck is instructed to reverse at the end of horizon and therefore flips the target
heading π by changing the sign to negative in Equation (4.17). At the last horizon,
the target state xf that includes position and orientation is given by the problem
as opposed to the reference path which is true for all other horizons.

42

4. Model predictive control

Fig. 4.3. Illustration of how the target position is soft constrained and takes the
intended movement direction into account. The circles describe the target set of the
horizon and the line connecting them is tangent to the reference path at r(κ+kH |κ).

4.3.4 Optimisation problem
Together with penalising deviation from the reference path and the soft constraint
variables δr, δf , the acceleration, steering rate, jerk and lethargy are also penalised
in the objective function ∑κ+kH

κ

(
J̃(x,u, r, z)

)
+ Jf (δr, δf), where J̃f (δr, δf) is the

target cost. These are formulated as

J̃(x(k|κ),u(k|κ), r(k|κ), z(k|κ)) = w1
(∥∥∥∥∥
[
x2(k|κ)
y2(k|κ)

]
− r(k|κ)

∥∥∥∥∥
2)

+ ...

+ w2 (uacc(k|κ))2 + w3 (ϑα̇(k|κ))2 ...

+ w4 (ϑjerk(k|κ))2 + w5z(k|κ)
J̃f (δr, δf) = w6δr(κ) + w7δf (κ)

∀ k ∈ [κ, κ+ kH]

(4.18)

where wi are weightings of the different terms and tuned to achieve the desired
behaviour.

The complete optimisation problem with the constraints (2.25) and objective func-

43

4. Model predictive control

tion (4.18) looks as follows

min
x,u,z

κ+kH∑
k=κ

J̃(x(k|κ),u(k|κ), r(k|κ), z(k|κ))
+ J̃f (δr, δf) (4.19a)

s.t. x(k + 1|κ) = f̃(x(k|κ),u(k|κ), z(k|κ), k) (4.19b)
dij(k|κ) ≥ dmin (4.19c)
uα,min ≤ uα(k|κ) ≤ uα,max (4.19d)
uacc,min ≤ uv(k|κ) ≤ uacc,max (4.19e)
ϕmin ≤ ϕ(k|κ) ≤ ϕmax (4.19f)∥∥∥∥∥
[
x2(κ+ kH |κ)
y2(κ+ kH |κ)

]
− r(κ+ kH |κ)

∥∥∥∥∥
2

≤ δr(κ)2 (4.19g)∥∥∥∥∥
[
x1(κ+ kH |κ)
y1(κ+ kH |κ)

]
−
[
px(κ+ kH |κ)
py(κ+ kH |κ)

]∥∥∥∥∥
2

≤ δf (κ)2 (4.19h)

0 ≤ δr(κ) ≤ δr,max (4.19i)
0 ≤ δf (κ) ≤ δf,max (4.19j)
zmin ≤ z(k|κ) ≤ zmax. (4.19k)

The same solver as in the MPC path planner is used for this problem, namely the
Ipopt. This means that it is also sensitive to the initial guesses. However, since
the path provided by either path planner is designed with the vehicle dynamics in
regard, it is assumed to be a good initial guess. After each horizon is solved, its
solution is provided as the initial guess to the next one.

44

5
Results

In this section the performance of the algorithms will be evaluated separately and
a short explanation of the behaviour will be given.

5.1 Path planners
Each path planner was designed to provide a reference curve between two given
points. The curve contains information about position and driving direction, either
moving forward or reversing. The position at each point along the curve indicates
where the rear axle of the trailer is supposed to be, the position of the truck is
estimated by the trajectory planner using the vehicle dynamics.

The driving direction is represented by a boolean and the position is given as eu-
clidean coordinates. An expected orientation can be extrapolated by using the
tangent between two adjacent points on the curve.

Each reference curve of the respective algorithms will be evaluated separately and
used as input to the trajectory planner. In the illustrations shown below for each
algorithm the colour of the curve visualises intended moving direction. Burgundy
represents driving forward and teal indicates reversing.

In addition to the main scenario presented in Section 1.4, the separate algorithms
is tested on two other scenarios in order to further investigate their strengths and
shortcomings. These two scenarios are presented in Fig. 5.1.

45

5. Results

Fig. 5.1. Two alternative scenarios to evaluate the path planning algorithms
(a) Scenario A requires a rotation of π before parking (b) In scenario B the final
orientation should be the same as the starting one.

5.1.1 Graph search path planner
The path computed by the graph search algorithm is visualised using points and
curves drawn between them. Points represent the nodes chosen by the algorithm
which return the cheapest path. The connections consist of arcs, which are computed
using the equations shown in Section 3.4.1. The start node is marked in purple and
the final node is green, any node in between these will be blue. The turning radius
Tr was set to 6 m for all the scenarios. This is considered close to the actual turning
radius of a truck.

The designed graph search algorithm was applied on the scenario described in Sec-
tion 1.4 to achieve the following reference curve illustrated in Fig. 5.2

Fig. 5.2. Results generated by the graph search algorithm for the main scenario

46

5. Results

The algorithm manages to find a suitable point to begin the reversing. The padding
is set to 2 m giving a very narrow path to the final position. This helps the path
planner to keep the path centered between obstacles.

For the alternative scenarios, the following reference curves were computed. Scenario
A can be seen in Fig. 5.3 and scenario B is found in Fig. 5.4.

Fig. 5.3. Results generated by the graph search algorithm for alternative scenario
A

The reason it chooses to reverse this early in the path, is because it produces the
shortest path, while minimising the cost of having a differing heading. For scenario
B, the following reference curve was obtained

47

5. Results

Fig. 5.4. Results generated by the graph search algorithm for alternative scenario
B.

In this situation, the issue of the graph search not taking the vehicle size in regard
can be seen. Here, the truck will probably end up inside an obstacle, since the rear
axle of the trailer is supposed to match the position given by reference curve.

5.1.2 MPC path planner
The weightings in the objective function (4.8) are listed in Table I and kept the same
for all investigated scenarios. They, together with the parameters, were designed to
give the desired behaviour.

The number of points along the center of the truck were kept as low as possible, any
less and the minimum safety margin needed would not leave room for the truck in
the parking space.

The velocity limits are designed such that, together with the minimisation of lethargy,
promotes driving forward. This turned out to be important in order to get reason-
able result. The absolute value of these does not matter, only their relation. The
constraint on the steering were designed to match what the trajectory planner is
able to follow.

48

5. Results

table I
List of weightings in the objective function in (4.19)

Weight Magnitude Description
w1 103 Acceleration
w2 1 Time

table II
List of parameters used in the optimisation problem

Parameter Size, unit Description

N/A 5
Number of points along the
center of truck to measure
distance to objects from

u1,max 18 km/h Maximum speed allowed
u1,min −1.8 km/h Minimum speed allowed
uα,max 5π/18 Maximum steering angle allowed
uα,min -5π/18 Minimum steering angle allowed

dmin or m 2.4 m
Minimum distance to keep to
obstacles, also described as
padding

zmin 0.1 Minimum value of z(κ)
zmax 10 Maximum value of z(κ)

Since the MPC path planner is in need of an initial guess of the states in order
to generate a path quickly, but more importantly, to ensure that the problem is
feasible. The path from an A∗ search provided this for the states corresponding to
the position and is plotted in Fig. 5.5.

49

5. Results

Fig. 5.5. This path is the result of an A∗ search.

The spacing between two points in the graph in Fig. 5.5 is about 1 m which is a
rather high resolution. Since the integrator used, RK4, is fairly exact it can be
reduced and still capture the dynamics. It turned out that every 4th sample is
enough. This decrease in number of sampling points reduced the time it took to
complete the entire problem. The resulting path is plotted in Fig. 5.6.

The solution of the MPC is displayed in orange dots and the upsampled path in
burgundy and teal depending on the intended direction of movement. It can be seen
that the generated path cuts through the safety margin. This is due to the absence
of a constraint on the distance to objects between two samples.

50

5. Results

Fig. 5.6. The solution to the optimisation problem (4.9) when using every 4th

sample of an A∗ search as an initial guess.

If the number of points was not decreased the resulting path would be as in Fig. 5.7.
The path cuts signifacantly less through the safety margin with the cost of longer
computation time.

Fig. 5.7. The solution to the optimisation problem (4.9) when using an A∗ search
as initial guess but keeping all samples as initial guess.

When applying the algorithm on the two other scenarios presented in Fig. 5.8, the
importance of tuning becomes apparent. In Fig. 5.8(a), it is clear that the planner
does not choose to reverse as one would expect. It chooses to reverse early on, even

51

5. Results

though the objective function is designed to favor forward motion. It is however able
to suggest a path that seems to work as a reference for the trajectory planner. On
the other hand, the resulting path for scenario B, see Fig 5.8(b), is good in terms of
reversing distance and seems to suit the trajectory planner.

Fig. 5.8. In these two plots the MPC path planner is tested on the alternative
scenario A (a) MPC path planner with all samples from the A∗ search. (b) MPC
path planner with every 4th sample from the A∗ search.

5.2 Trajectory planner
The trajectory planner is given the output of one of the path planner as input, and
attempts to follow it under the constraints of the vehicle dynamics. The input of
each algorithm is evaluated jointly and presented side by side. Both of the simula-
tions will have the same objective function with the weights listed in Table III and
miscellaneous parameters listed in Table IV.

The weightings have been tuned by looking at their effect on the resulting trajec-
tory. The weight that penalise a deviation from the reference has been set to zero
since that gave the best results. By not including it in the objective function, the
trajectory planner is free to find an even more optimal path than what is given from
the path planners. Including it would be of interest if the path has more information
than the trajectory planner has access to, which is not the case here. The reference
is still used to determine the pose of the semi-trailer truck at the end of each horizon.

The penalty of acceleration is also removed since, in respect to comfort, jerk is more
important to minimise.

52

5. Results

table III
List of weightings in the objective function in (4.19)

Weight Magnitude Description

w1 0 Deviation from
reference

w2 0 Acceleration
w3 1 · 10−3 Steering rate
w4 1 · 10−2 Jerk
w5 1 · 10−2 Time
w6 5 · 10−2 Target rear
w7 5 · 10−2 Target front

The miscellaneous parameters are partly designed to produce a reasonable be-
haviour, but also feasible solutions. The horizon ζH is set to 25 m which is a bit
longer than needed in order to get a smooth trajectory, often 15 m was sufficient. The
number of points along the truck, together with the number of obstacles, affected
the computation time the most. It was however needed to have a large number of
points approximating the shape of the semi-trailer truck, in order to be able to lower
the safety margin dmin. A too large margin would not leave enough space for the
truck to enter the parking space. The other values were tuned in order to get the
desired behaviour.

53

5. Results

table IV
List of parameters used in the optimisation problem

Parameter Size, unit Description

ζH 25 m Length of reference within
horizon

N/A 10
Number of points along the
center of semi-trailer truck to
measure distance to objects from

∆ζ 2 m Distance between two reference
points

vmax 7 km/h Maximum speed allowed
vmin −5 km/h Minimum speed allowed
uα,max 2π/9 rad Maximum steering angle allowed
uα,min 2π/9 rad Minimum steering angle allowed
uacc,max 1 m/s2 Maximum acceleration allowed
uacc,min −2 m/s2 Minimum acceleration allowed
ϕmax π/3 rad Maximum trailer angle allowed
ϕmin π/3 rad Minimum trailer angle allowed

dmin or m 2.05 m
Minimum distance to keep to
obstacles, also described as
padding

δr,max 10 m Maximum deviation from target
rear position

δf,max 10 m Maximum deviation from target
front position

zmin 0 Minimum value of z(k|κ)
zmax 2 Maximum value of z(k|κ)

The following three figures, Fig. 5.9-5.11, show the results of using the paths from
Fig. 5.2 and 5.6 as reference. In Fig. 5.9, the trajectory of the semi-trailer truck is
plotted. As can be seen, both references are good enough for the trajectory planner
to be able to successfully follow and enter the parking spot in reverse. The left plot
is the result of using graph search as a path planner and the right an MPC.

The results are very similar, but it is clear that the path from the MPC path planner
coincides better with the trajectory of the trailer. That shows that the model and
parameters used in the MPC are more similar to the model used in the trajectory
planner. It can also be seen that the suggested reversing points from both path
planners are not what the trajectory planner deems as best. The graph search also
underestimates the space needed in order to not collide with the obstacles. The
trajectory planner needs to drive further before reversing than what is suggested.
The MPC path planner on the other hand, with its sense of size of the truck, does
not suffer from this problem.

54

5. Results

Fig. 5.9. These trajectories were the result from the trajectory planner when the
reference path, (rx(t|τ), ry(t|τ)), was generated using a) Graph search b) MPC.

In Fig. 5.10 it is shown how the algorithm plans to position the semi-trailer truck at
the end of the horizon. The trajectory traces out both the movement of the center of
the front axle (x1(t|τ), y1(t|τ)) as well as the position of the trailer (x2(t|τ), y2(t|τ)).
It is able to do so since the reference path includes information about reversing. As
described in Section 4.3.3, the target position at the end of the horizon is tangent
to the last reference point, i.e. r(κ+ kH |κ), and rotated π radians if that point is a
reversing point.

55

5. Results

Fig. 5.10. Predictions of the horizon τk. The truck plans to let (x1(τk +
tH |τ), y1(τk|τk + th)) be as close to (rx(τk + tH |τ), ry(τk|τk + th)) as possible and
(x2(τk + tH |τ), y2(τk|τk + th)) to be in a direction tangent to the reverence path. The
reference path was generated using a) Graph search b) MPC.

The velocity, acceleration and steering angle are plotted over time in Fig. 5.11.
The semi-trailer truck is, as expected, driving as fast as possible since it tries to
complete the parking situation in as little time as possible. The downside to this
is that the acceleration has high spikes. However, it successfully minimises the jerk
by smoothing the intermittent accelerations and brakes to achieve higher comfort.
The same is true for the steering, which, when possible, gradually changes in order
to have a low steering rate.

56

5. Results

Fig. 5.11. These plots show the speed and control inputs along the parking situa-
tion. The reference path was generated using a-c) Graph search d-f) MPC.

In Fig. 5.12 the result of the variable z(k) is illustrated by showing its product with
the sampling interval ∆ζ. This evaluates the sample time at each stage. Most of the
samples are shortened to the minimum value of z(k) which means that the lethargy
is low. This also shows the total amount of time it takes to complete the scenario
which, for the graph search path is 51.14 s, and for the MPC path planner, 50.50 s.

Overall there is only a small difference between the resulting trajectory on the two
different path planners. Much is due to the fact that the reference path only is used
to suggest reversing point and does not restrict the way to that point. The difference
is however much larger when looking at the scenarios A and B, which can be seen
in Appendix A-B.

57

5. Results

Fig. 5.12. Each time step is adjusted by optimising the variable z(k|κ). These plots
show the implication of the time consumption after optimising these variables. This
is the result of the MPC trajectory planner using the path generated from a) Graph
search b) MPC as a reference.

58

6
Analysis

All designed algorithms manage to solve the main task with realistic results. Once
presented with alternative scenarios, some of them show design flaws. This part
aims to break down the specific choices leading to these flaws and how they could
potentially be improved or counteracted.

6.1 Path planners
Both path planners achieve similar results for the main task. When applied to the
alternative scenarios, the results start to differ. This is partly due to the design
choices made and the fundamental structure of the algorithms.

The path planners mainly focus on finding a feasible solution to the problem. Merely
minimising distance is not a good measurement for what resembles a good path.
The same argument can be made for minimising turn angles over the entire process.
Therefore, the performance needs to be based on what effect it will have on the
trajectory planning.

6.1.1 Graph search path planner
Using graph search for path planning works well if a constant movement towards the
target destination can be made. Since a node in a 2D graph can only be traversed
once, problems requiring the same node to be visited multiple times can not be
solved.

An issue appeared where the algorithm had a lower cost driving straight towards
the goal, rather than reversing. Since the change of direction led to a longer path,
the cost was never lower than diving straight in towards the goal. The problem
was solved by using angular bins. Straight forward and reversing were thus handled
separately, due to the angular difference. The different alternatives allowed the goal
node to be approached in multiple ways based on the number of bins. Another
way to handle this could be to add check points that need to be visited before
reaching the target destination, once a check point has been reached, the closed list is
cleared so everything can be evaluated again. This would increase the computational
complexity and requires knowledge of where the check points should be placed.

59

6. Analysis

Another issue is the design of the cost function. Its focus lies on minimising the
distance travelled which is not the desired behaviour. By constructing a cost function
that reinforces the wanted behaviour, one would probably achieve better solutions
and avoid the issues seen in the scenario A and B.

The computed path for scenario A is a result of minimising driving distance. By
changing driving direction early in the process the total distance driven is reduced.
Reversing might not necessarily be a downside for autonomous vehicles, as they will
probably have equal knowledge of the surrounding in both directions. This does also
depend on the dynamics of the vehicle, since semi-trailer trucks are a more stable
system when driven forward. If reversing for longer distances is to be avoided, a
penalty could be added to the cost function. This way, the algorithm would aim to
drive forward for as long as possible.

Scenario B is the result of the graph search not having the size of the vehicle in
regard. The suggested three point turn is not in line with the oblong shape of a semi-
trailer truck. An attempt to handle this was made, but was deemed insufficient to
stay. The proposed solution was to see if there was enough space in front of each node
when evaluating the visibility of it. This created more problems and the algorithm
instead failed to find a solution. Another suggestion is to also introduce padding to
the graph boundary, which would solve the situation presented in Scenario B, but
the problem itself would still be present.

Graph search is a suitable tool for complex environments consisting of a multitude
of obstacles. Since these are just binary values, the amount does not affect the
performance of the algorithm. They can be of complex non-convex shape and the
computational effort would still be the same, the padding process would however be
more time consuming than using approximated rectangles. One way to make the
padding easier, would be if the center of a non-convex object and all points relative
to this point are known. One could simply add a small distance to each point to use
as padding. This knowledge, is however, not trivial to obtain or approximate.

In this project, the knowledge of the entire environment and its obstacles is kept in
the memory at all times, this can become an issue as the graph grows larger. For
very large graphs, there should be some filter to keep the memory usage down. By
removing useless knowledge or keeping some parts of the graph unknown and let
them be discovered over time, this would probably be solved.

6.1.2 MPC path planner
The MPC performs well as a path planner. It produces reasonable results for all
tested scenarios partly due to its ability to factor the shape of the vehicle in the
planning but also because of its reasonable motion model. The computation time
does however scale badly with the number of obstacles and length of path. For each
new obstacle, two more non-convex constraints are added. Also, for every ∆ζ-step
the number of object related constraints as well as modelling and control signal
constraints are increased. All of which are non-convex, yielding a slow optimisation.

60

6. Analysis

The number of ∆ζ-steps scales linearly with the length of the path and can not be
lowered more than about 1

4 of the original number of samples. Below that point
the vehicle will cut through the safety margin too much between two samples. The
number of obstacles could probably be lowered by only considering the ones of
interest. How to decide which to include is however not trivial since only those
objects that are not affecting the solution can be removed. For a large parking lot,
one might be able to remove those objects that are not in line of sight of the points
in the A∗ solution. In some configuration of obstacles that would mean a significant
reduction in the number of obstacles. Although in the case of the scenarios presented
in this project, there would not be any difference.

One drawback of using MPC to solve the problem of path planning is that the solver
needs an initial guess of the solution. It was solved by considering the positions
(x1(k), y1(k)) to be the solution of the A∗ algorithm, u1(k) = 0, u2(k) = 0, and θ1(k)
a gradient transition from θ0 to θf for all k. The latter may seem unnecessary, but
proved to be essential for yielding a feasible solution. The formulation did however
cause an issue when the starting angle and target angle were equal (Scenario B).
The solver was not able to find a feasible solution.

To remedy the situation a small noise of magnitude 0.1° centered around zero was
introduced. At first, the small difference in starting point of the solver resulted
in different solutions with similar cost. To remove the stochastic behaviour, the
weighting of acceleration was increased which probably joined some of the local
minimums, yielding the same solution each time the path planner was run. There
is however a chance that for some scenarios, that have not been investigated in this
project, need an even higher noise in order to return a feasible solution, which in
turn may lead to a stochastic behaviour. Although, if the objective function is well
defined, all solutions should be acceptable and traceable for the trajectory planner.

6.2 Trajectory planner
The result of the trajectory planner looks promising. It performs well on the refer-
ence from both types of path planners. It is however a bit constrained in the way
that the position at each horizon must end up within a specific area that is decided
by the path planner and the parameters δr, δf . This in turn affects where the truck
starts to reverse from. It can be seen in the plots in Fig. 5.9 that the reversing point
suggested by both of the path planners is changed by the trajectory planner.

The suggested reversing point of the MPC path planner is affected by both its model
and its objective function. As it is now, the path planner favors a short distance of
reversing. Although, even if the objective function was better tuned, the reversing
points would not coincide in other scenarios, since the models of the path planner
and trajectory planner differs. The same is true for the path planned using graph
search. Since its model does not have the same physical behaviour as the one used
in the trajectory planner, it will at some point suggest a bad reversing point. This
is clearly shown in the path from scenario A and B.

61

6. Analysis

If the reference path is bad enough to yield issues with feasibility for the trajectory
planner, there is still a possibility to remedy the situation by increasing the param-
eters δr, δf . This results in a less constrained final state. There is also a possibility
to remove these two states completely from the problem formulation and only con-
sidering minimising the distance to the target state. This is the same as setting
δr,max, δf,max to infinity. This does, however, introduce more tuning to force the final
state to be reasonably close to the target state.

Another solution to the infeasibility is to increase the horizon. The longer the
horizon, the more time the truck has to position itself at the final state. The
downside to increasing the horizon is that it increases the number of samples used
within each horizon, yielding a longer computation time. The variable z(k) also
has the possibility to extend the duration of each sample and in turn, extend the
horizon in time. By increasing the maximum size of z(k), the truck can in theory
take as long time as it wants. There is however a significant downside to allowing
a too large z(k). Increasing the time between two samples hinders the ability to
correctly avoid obstacles, since the distance to obstacles is only taken into account
at each sample. This means that the more sparse sampling, the greater the risk of
collision. The maximum time between two samples therefore needs to be designed
with great caution.

By carefully testing different weightings it was concluded that the trajectory plan-
ner was better off not minimising the distance to the reference path. The usage
of simplified models in both path planners is argued to be the reason. By only
considering the last position on the reference path as the target position, the tra-
jectory planner is free to find a trajectory that better follows the dynamics of the
vehicle. This means that the target state that is defined from the reference path
needs to contain appropriate information. The information should include the best
orientation at that point in order to successfully arrive at the positions that are not
yet visible to the trajectory planner. Since this type of information is included in
the reference paths, the trajectory planner is able to know that it needs to reverse
without knowing where it should end up later.

6.3 Conclusion
The designed solutions are deemed to be viable for the presented scenario. The task
is solved with a satisfactory result while avoiding collision.

The two path planners are both suitable for solving the issue, but have their own
individual strengths. The graph search is more suitable for complex environments
with a multitude of obstacles, while this would increase the computational effort
of the MPC path planner. The MPC path planner is better at taking the vehicle
dynamics in regard. Since the graph search estimates the vehicle as a point mass,
it can potentially create paths which lead to dead ends as seen in Fig. 5.4.

Obstacle avoidance is of great importance for both path and trajectory planning.
By using a discrete trajectory planner, objects are not taken in regard between

62

6. Analysis

samples. This means that obstacle avoidance can not be guaranteed. The larger the
time between two samples, which is affected by z(k), the more likely a collision will
be.

Both planners generate smooth curves which to some extent resemble what the
trajectory planner deems to be optimal. This means that any given point along
the reference curve is a good enough estimate of where the vehicle should be. I.e,
instead of strictly following the reference curve, it is sufficient to provide an end
pose for each horizon. This gives the trajectory planner more freedom in order to
reach the desired pose.

63

6. Analysis

64

7
Discussion

In this project, the trajectory planner penalises deviation from an end pose at each
horizon, rather than minimising the distance to a given reference curve. This ap-
proach is suitable if the path planner has equal or less knowledge than the trajectory
planner. One example where minimising the distance to the reference curve is of
interest is when the trajectory planner is unable to compare all obstacles simulta-
neously. Assuming the path planner has knowledge of all objects when planning,
it is considered to have more knowledge about the environment than the trajectory
planner has.

If the trajectory planner does not minimise the distance to the reference path and
does not take all objects into account, there might arise a situation where it plans
to cut a corner where an object, which it not yet can see, is, in order to save time.
This might lead to an infeasible solution or, even worse, a collision. By penalising
the deviation from the reference curve, the trajectory planner would not be able to
plan trajectories deviating too much from the reference curve, and hence indirectly
avoid obstacles.

The obstacles in the environment are estimated using rectangles, which is an approx-
imation that has a lot of downsides. For complex objects, with non-convex shapes, a
multitude of rectangles might be needed in order to describe them accurately. This
leads to an immense increase in computational effort for the algorithms using MPC.
However, its effect on the graph search is negligible as stated in Section 6.1.1. If
instead an attempt of using fewer rectangles with the cost of worse approximation
is made, it would either fail to cover the entire object or remove useful space. This
could at worst lead to collision, or simply removing the only possible solution by
obstructing space needed to solve the task at hand. On the other hand, in this
specific case of a parking lot for semi-trailer trucks, rotated rectangles turns out to
be very suitable approximations of shape.

For the designed algorithm to be truly useful, there are a few things that need to
be further evaluated. As of now, the algorithm assumes perfect knowledge of the
surroundings. By simply adding sensors to the vehicle, one would not obtain the
information about the environment used in this project. A radar or camera would
not provide any data of what is behind corners, since this is obstructed by the object.
To accurately describe the entire surroundings is a complex process, which needs to

65

7. Discussion

be solved in order for this implementation to work.

The computation time for both path planners is sub optimal for real time implemen-
tation. The graph search could potentially utilise a lookup table for the heuristics to
avoid computing these for each node. This would also allow more advanced heuris-
tics to more accurately estimate the remaining cost. An example is the Reeds-Shepp
curves commonly used for vehicles which are able to move both backwards and for-
wards.

An improvement of the cost function could also reduce the computational effort of
the graph search. By accurately describing the remaining cost to the goal node,
irrelevant nodes could be filtered out and neglected completely. Issues occurred
where nodes close to the goal node always had a low cost, even though the assigned
heading was too far from the desired one. The attempt of penalising the heading
was insufficient to completely remove this behaviour.

The MPC could run faster by only handling the objects in the vicinity of the truck.
This reduction in computational effort could potentially allow larger environments.
In this project, all obstacles were of relevance during the entire process and were few
enough for it to not have a large enough impact to make a difference. Some logic
to categorize objects as relevant would probably be the best way to solve this. It is,
however, critical to not disregard objects of relevance for safety reasons. Although,
together with penalising the distance to the reference curve, the solution could still
be feasible and collision free. This in turn puts more emphasis on the model of the
path planners since they would restrict the freedom of the trajectory planner.

7.1 Future work
There are two main issues that needs to be addressed for this type of application
to be a reality. These are guaranteed collision avoidance and minimal computation
time.

The presented implementation of trajectory planner assures that no obstacle will be
hit at a stage, but is unable to ensure that no collision occurs between two stages.
However, based on the sampling interval and maximum velocity one should be able
to calculate their link to the safety margin and points on the vehicle such that no
collision can occur. Too sparse sampling, would lead to a wider safety margin, which
might obstruct the intended goal position.

Instead of increasing the sampling interval and reducing the spacing between points
on the truck, one should investigate the possibility to check for collision between
two stages. This way, one could ensure a collision free trajectory. Currently, there is
enough confidence that the solution is collision free, but it can never be guaranteed.

The computation time can be lowered in many different ways. First of all by imple-
menting the algorithms in a different language, e.g. C/C++. Secondly, by making
the MPC problem formulation more convex or entirely convex. From our investi-

66

7. Discussion

gation, it does not seem to be possible to represent the semi-trailer truck dynamics
entirely convex although there most certainly is a possibility to simplify the model
further. The benefits of having a convex model are many and would remove some
issues encountered during project. E.g. different, or even infeasible, solutions de-
pending on initial guess to the Ipopt.

67

7. Discussion

68

Bibliography

[1] G. Klančar, A. Zdešar, S. Blažič, and I. Škrjanc, Chapter 4 - Path Planning,
G. Klančar, A. Zdešar, S. Blažič, and I. Škrjanc, Eds. Butterworth-
Heinemann, 2017. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/B9780128042045000044

[2] M. Nolte, M. Rose, T. Stolte, and M. Maurer, “Model predictive control based
trajectory generation for autonomous vehicles — an architectural approach,”
in 2017 IEEE Intelligent Vehicles Symposium (IV), June 2017, pp. 798–805.

[3] P. Zhang, “Chapter 19 - industrial control system simulation routines,”
in Advanced Industrial Control Technology, P. Zhang, Ed. Oxford:
William Andrew Publishing, 2010, pp. 781 – 810. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/B9781437778076100191

[4] K. A. Abdel-Malek and J. S. Arora, Chapter 4 - Recursive Dynamics,
K. A. Abdel-Malek and J. S. Arora, Eds. Boston: Academic Press,
2013. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
B9780124051904000040

[5] G. Sasi Kumar, B. Shravan, H. Gole, P. Barve, and L. Ravikumar, “Path
planning algorithms: A comparative study,” 12 2011.

[6] J. Petereit, T. Emter, C. Frey, T. Kopfstedt, and A. Beutel, “Application of
hybrid a* to an autonomous mobile robot for path planning in unstructured
outdoor environments,” 01 2012.

[7] Y. Singh, S. Sharma, R. Sutton, D. Hatton, and A. Khan, “A constrained a*
approach towards optimal path planning for an unmanned surface vehicle in
a maritime environment containing dynamic obstacles and ocean currents,”
Ocean Engineering, vol. 169, pp. 187 – 201, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0029801818311193

[8] G. Klančar, A. Zdešar, S. Blažič, and I. Škrjanc, Chapter 7 -
Autonomous Guided Vehicles, G. Klančar, A. Zdešar, S. Blažič, and
I. Škrjanc, Eds. Butterworth-Heinemann, 2017. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/B9780128042045000044

69

http://www.sciencedirect.com/science/article/pii/B9780128042045000044
http://www.sciencedirect.com/science/article/pii/B9780128042045000044
http://www.sciencedirect.com/science/article/pii/B9781437778076100191
http://www.sciencedirect.com/science/article/pii/B9780124051904000040
http://www.sciencedirect.com/science/article/pii/B9780124051904000040
http://www.sciencedirect.com/science/article/pii/S0029801818311193
http://www.sciencedirect.com/science/article/pii/B9780128042045000044
http://www.sciencedirect.com/science/article/pii/B9780128042045000044

Bibliography

[9] H. Febbo, P. Jayakumar, J. L. Stein, and T. Ersal, “Real-time trajectory plan-
ning for automated vehicle safety and performance in dynamic environments,”
2020.

[10] L. Sciavicco and B. Siciliano, Trajectory Planning. London: Springer
London, 2000, pp. 185–212. [Online]. Available: https://doi.org/10.1007/
978-1-4471-0449-0_5

[11] S. Edelkamp and S. Schrödl, Heuristic Search - Theory and Applications., 01
2012.

[12] X. Li, C. Claramunt, and C. Ray, “A grid graph-based model for the analysis
of 2d indoor spaces,” Computers, Environment and Urban Systems, vol. 34, pp.
532–540, 11 2010.

[13] J.-W. Choi, “An efficient heuristic estimate for non-holonomic motion plan-
ning,” 2012.

[14] D. Ferguson and A. Stentz, “Field d*: An interpolation-based path planner and
replanner,” vol. 28, pp. 239–253, 01 2005.

[15] Lozano-Perez, “Spatial planning: A configuration space approach,” vol. C-32,
pp. 108–120, 2 1983.

[16] D. Chibisov, E. Mayr, and S. Pankratov, “Spatial planning and geometric op-
timization: Combining configuration space and energy methods,” 09 2004, pp.
156–168.

[17] K. Daniel, A. Nash, S. Koenig, and A. Felner, “Theta*: Any-angle path plan-
ning on grids,” J. Artif. Intell. Res. (JAIR), vol. 39, 01 2014.

[18] L. De Filippis and G. Guglieri, Advanced Graph Search Algorithms for Path
Planning of Flight Vehicles, 02 2012.

[19] H. Kim, D. Kim, J.-U. Shin, H. Kim, and H. Myung, “Angular
rate-constrained path planning algorithm for unmanned surface vehicles,”
Ocean Engineering, vol. 84, pp. 37 – 44, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0029801814001292

[20] P. Yap, “Grid-based path-finding,” 09 2003.

[21] G. Mathew, “Direction based heuristic for pathfinding in video games,” Procedia
Computer Science, vol. 47, pp. 262–271, 12 2015.

[22] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Transactions on Systems Science
and Cybernetics, vol. 4, no. 2, pp. 100–107, July 1968.

[23] A. Felner, U. Zahavi, R. Holte, J. Schaeffer, N. Sturtevant, and
Z. Zhang, “Inconsistent heuristics in theory and practice,” Artificial

70

https://doi.org/10.1007/978-1-4471-0449-0_5
https://doi.org/10.1007/978-1-4471-0449-0_5
http://www.sciencedirect.com/science/article/pii/S0029801814001292

Bibliography

Intelligence, vol. 175, no. 9, pp. 1570 – 1603, 2011. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0004370211000221

[24] A. Nash and S. Koenig, “Any-angle path planning,” AI Magazine,
vol. 34, no. 4, pp. 85–107, Sep. 2013. [Online]. Available: https:
//aaai.org/ojs/index.php/aimagazine/article/view/2512

[25] A. Nash, S. Koenig, and C. Tovey, “Lazy theta*: Any-angle path planning and
path length analysis in 3d.” vol. 1, 01 2010.

[26] L. Di Jasio, 12.2.13 Bresenham Algorithm. Elsevier, 2012. [On-
line]. Available: https://app.knovel.com/hotlink/khtml/id:kt00B7BV5J/
programming-16-bit-pic/bresenham-algorithm

[27] N. R. Ruchika, “Model predictive control: History and development,” Inter-
national Journal of Engineering Trends and Technology (IJETT), vol. 4, pp.
2600–2602, 1 2013.

[28] N. Murgovski, G. R. de Campos, and J. Sjöberg, “Convex modeling of conflict
resolution at traffic intersections,” in 2015 54th IEEE Conference on Decision
and Control (CDC), 2015, pp. 4708–4713.

[29] J. Karlsson, N. Murgovski, and J. Sjöberg, “Computationally efficient au-
tonomous overtaking on highways,” IEEE Transactions on Intelligent Trans-
portation Systems, pp. 1–15, 2019.

[30] A. Wächter, “Short tutorial: Getting started with ipopt in 90 minutes,”
in Combinatorial Scientific Computing, ser. Dagstuhl Seminar Proceedings,
U. Naumann, O. Schenk, H. D. Simon, and S. Toledo, Eds., no. 09061.
Dagstuhl, Germany: Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
Germany, 2009. [Online]. Available: http://drops.dagstuhl.de/opus/volltexte/
2009/2089

[31] U. Larsson, C. Zell, K. Hyyppa, and A. Wernersson, “Navigating an articulated
vehicle and reversing with a trailer,” in Proceedings of the 1994 IEEE Inter-
national Conference on Robotics and Automation, May 1994, pp. 2398–2404
vol.3.

71

http://www.sciencedirect.com/science/article/pii/S0004370211000221
https://aaai.org/ojs/index.php/aimagazine/article/view/2512
https://aaai.org/ojs/index.php/aimagazine/article/view/2512
https://app.knovel.com/hotlink/khtml/id:kt00B7BV5J/programming-16-bit-pic/bresenham-algorithm
https://app.knovel.com/hotlink/khtml/id:kt00B7BV5J/programming-16-bit-pic/bresenham-algorithm
http://drops.dagstuhl.de/opus/volltexte/2009/2089
http://drops.dagstuhl.de/opus/volltexte/2009/2089

Bibliography

72

A
Alternative scenario A

Fig. A.1. Generated trajectory for scenario A with reference from a) Graph search
b) MPC

I

A. Alternative scenario A

Fig. A.2. Predicted states for scenario A with reference from a) Graph search b)
MPC

II

A. Alternative scenario A

Fig. A.3. Final control signals for scenario A with reference from a-c) Graph search
d-f) MPC

III

A. Alternative scenario A

Fig. A.4. Time control for scenario A with reference from a) Graph search b) MPC

IV

B
Alternative scenario B

Fig. B.1. Generated trajectory for scenario B with reference from a) Graph search
b) MPC

V

B. Alternative scenario B

Fig. B.2. Predicted states for scenario B with reference from a) Graph search b)
MPC

VI

B. Alternative scenario B

Fig. B.3. Final control signals for scenario B with reference from a-c) Graph search
d-f) MPC

VII

B. Alternative scenario B

Fig. B.4. Time control for scenario B with reference from a) Graph search b) MPC

VIII

	List of Figures
	List of Tables
	Introduction
	Background
	Aim
	Scope and limitations
	Specification of issue under investigation
	Thesis outline

	Theory
	Path planning
	Trajectory planning
	Graph search
	Graph search as a path planner
	Heuristics
	A* algorithm
	Theta* algorithm

	Model predictive control
	A problem formulation
	Discretisation of optimisation problem
	Minimum time control

	Interior point optimiser
	Dynamic model
	Detailed model
	Simplified model

	Graph search path planner
	Graph design
	Parent tracking
	Angular bins

	Node prioritisation
	Cost function
	Heuristics

	Finding neighbours
	Arc of sight
	Neighbours in proximity of the goal node

	Inheriting parenthood

	Model predictive control
	Interpretation of obstacles
	Path planner
	Obstacle avoidance
	Final state
	Optimisation problem
	Post processing

	Trajectory planner
	Obstacle avoidance
	Reference path
	Final state
	Optimisation problem

	Results
	Path planners
	Graph search path planner
	MPC path planner

	Trajectory planner

	Analysis
	Path planners
	Graph search path planner
	MPC path planner

	Trajectory planner
	Conclusion

	Discussion
	Future work

	Alternative scenario A
	Alternative scenario B

