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Abstract
Modern vehicles are equipped with numerous sensors for providing feedback to the
control unit. These measurements hold a substantial amount of information about
the driver’s action, environmental and traffic conditions.

In this thesis, we investigate using various machine leaning techniques to analyze
driving data for discovering repetitive patterns when facing similar traffic situations.
To this end, we first use unsupervised learning and data mining techniques to find
driving patterns and to develop a labeling scheme. This last point consist of finding
patterns in individual signals which are then combined to find patterns describing
more complex behaviors. The discovered patterns and labels are used in the second
part of the thesis to develop a classifier for recognizing the current driving situation.
The classifier is designed such that it can be implemented in an Electric Control
Unit of a production vehicle.

After the analysis, we were able to discover intelligible driving scenarios and we
focused on some of them to label our data. We used this labeling to train and
compare four different neural network architectures commonly used in time series
classification. The models are trained by simulating an online situation where data
comes in a form of data stream.

The results show that online classification is feasible. Implementing the classifier
in the vehicle software could be beneficial for aiding the control unit in deciding
gear shifts, energy recuperation and propulsion system. This may lead to a more
efficient vehicle and a better driving experience.

Keywords: pattern discovery, machine learning, clustering, data mining,
classification, neural networks, time series data, traffic scenarios, vehicle control.
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1
Introduction

In this chapter we describe the problem formulation, provide some background to the
motivation of our project and establish a connection to the corresponding research
area. In addition, we motivate the purpose, goal and delimitation of the work to be
performed. Finally, we present an outline of the thesis.

1.1 Background

This thesis is carried out at the Propulsion Software Development department at
Volvo Cars AB. One of the main responsibilities of this group is developing software
for controlling and managing the power distribution in vehicles. The focus of this
thesis will be on, but not limited to, the hybrid electric vehicle (HEV) which uses an
electric motor and an internal combustion engine for propulsion. The two systems
are more favorably used in different traffic situations. The electrical propulsion
system is better used when cruising at low speed in cities and suburban areas,
but can also generate a substantial amount of torque at an instant which can be
exploited for quick acceleration. Propulsion via the internal combustion engine is
advantageous in situations where the vehicle is maintaining a relatively constant
high speed such as driving on the highway. Hence, we conclude that the optimal
utilization of the propulsion systems is dependent on the traffic scenario.

The vehicle control unit is a micro-processor in the vehicle which, among other
tasks, supervises the energy and torque distribution based on driver inputs such
as braking and accelerating. It would be valuable to implement a subroutine in
the software which classifies the current driving situation based on measurements
collected from the most recent driving. Such a subroutine would aid the vehicle in
controlling the propulsion system, gear shifting and power generation which could
potentially reduce fuel consumption and battery drain.

The purpose of this thesis is to develop a method for traffic scenario discovery
used for labeling and subsequently an online classification of the driving scenario.

The development of the algorithms will be based on driving information collected
as time series by sensors in the vehicle. The data contains driver inputs and envi-
ronmental conditions and it is described in detail in the next section. To analyze
the time series and develop the methods used for achieving the thesis goals, various
machine learning and data manipulation techniques will be utilized. In particular,
methods suited for time series data will be explored.
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1. Introduction

1.2 Data Description
Table 1.1 shows the two types of features we work with in this thesis. The first type is
defined as driving maneuvers and they are obtained from the data collection system
in the car and recorded as a set of time series with a sampling frequency of 100 Hz.
As its name suggests, these features are dependent on the driving behavior. The
second type is classified as environmental factors which, contrary to the previously
mentioned feature, are not dependent of the driver conduct and can be available a
few seconds ahead of their occurrence.

The data set is composed by 22 driving logs of a route from Volvo Torslanda
to Kungälv and back. This route is composed of a section inside the city center,
where the speed limit is up to 50 km/h and a highway section where the speed limit
reaches 100 km/h. In Figure 1.1 the signals recorded by the sensors in the vehicle
are shown and in Figure 1.2 the route is shown.

Feature type Name

Driving maneuvers

Vehicle speed [km/h]
Accelerator pedal position [%]
Brake pedal pressed [1/0]
Steering angle [rad]
Driver power demand [kW]

Environmental factors Speed limit [km/h]
GPS data [m×m]

Table 1.1: Features obtained from the on board data collection system in the test
vehicle.

Figure 1.1: Example of the signals available for finding scenarios. The sample
corresponds to 10 minutes of data gathering.
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1. Introduction

Figure 1.2: The route driven in the 22 driving logs.

1.3 Purpose
There are two main goals in this master thesis:

1. Discovering and labeling common driving scenarios.

2. Train a model for classifying the current driving situation.

The first goal will consist of two parts: first we discover patterns in individual
signals which secondly, are combined to describe and discover more complex driver
behaviors which will be the basis for labeling the data. The second goal is achieved
by training a classifier on the labels obtained in the first part of the thesis. The
classifier will be trained by simulating an online situation where information of the
driving situation comes to the classifier as stream of data.

1.4 Delimitation
The analysis and the developed algorithms in this project are based on data collected
when driving the route from Volvo Torslanda to Kungälv and back. No other drive
cycle was analyzed which may have an effect on the performance of the model. The

3



1. Introduction

data is only collected by one driver, which must be taken into consideration while
assessing the robustness of the model.

1.5 Outline
This thesis contains five chapters. This first chapter we have formulated the problem,
motivated the thesis objectives and described the project delimitation.

In the second chapter the theory necessary to achieve the thesis goals and obtain
the desired results is introduced.

In the third chapter the methods and algorithms we implemented and developed
to address the pattern discovery problem are described. This section also contains
the results obtained from employing the methods on the driving data.

In the fourth chapter some of the patterns found are used for labeling the data.
This labeling is then used for training four different neural network architectures.
The training is performed in a manner that simulates online classification to facilitate
the implementation in the vehicle software.

In the fifth chapter we discuss the results, lay out the implication of our work for
future research and discuss the main points that can be learned from the research
we have conducted.

4



2
Theory

In this chapter we introduce the theoretical and mathematical framework of the thesis.
We explain the necessary statistical concepts for developing the methods used for
attaining the thesis goals.

2.1 Time Series
The data collected by the control unit consists of the signals described in the previous
chapter. The mathematical framework for analyzing such data is called time series
analysis. Hence, we will dedicate this chapter to develop and describe common tools
used for time series analysis and suitable machine learning techniques for clustering
and mining temporal data.

2.1.1 Definition

A one-dimensional time series {T (t)}tNt=t1 is a sequence of N consecutive observations
at time points t1, . . . , tN . A multivariate time series is a collection of one-dimensional
time series {[T1(t), . . . , Tp(t)]}tNt=t1 at time points t1, . . . , tN . Again, N is referred to
the number of observations and p is said to be the number of dimensions (or features)
of the multivariate time series. The time points t1, . . . , tN do not necessarily need
to be equidistant but since the data in this thesis are collected with a constant
sampling frequency, we continue by assuming they are.

2.1.2 Change Point Segmentation

Segmentation refers to slicing the time series into several parts according to a specific
criteria. One way to segment a time series is to cut it at points where there is a
sudden change and is called change point detection. This particular algorithm finds
an optimal segmentation of the time series, where the deviation of each segment
from the desired estimate is minimized. The statistical estimate of interest could be
for example, the mean, the standard deviation or the linear approximation of the
segment. In steps, the algorithm finds a change point in the following way [1]:

1. partition the time series into two parts by splitting it at index k,

2. calculate an estimate for the desired statistic in each segment,

5



2. Theory

3. find the sum J(k) of the point-wise deviations from the segment statistic esti-
mate in terms of mean squared error (MSE),

4. vary the index k and redo steps 2 and 3 until J(k) attains a minimum.

If we take the statistical measure to be the mean, the equation for J(k) is given by

J(k) =
k−1∑
i=1

yi − 1
k − 1

k−1∑
j=1

yj

2

+
N∑
i′=k

yi′ − 1
N − k + 1

N∑
j′=k

yj′

2

=

= (k − 1)var([y1, . . . , yk−1]) + (N − k + 1)var([yk, . . . , yN ]).
(2.1)

where var([ym, . . . , yn]) means the biased estimate of the sample variance of the slice
of the time series y from index m to index n. Extending the above algorithm to
finding more change points is just a matter of creating more partitions and finding
their corresponding optimal indices. When generalizing the above method to other
statistics, first note that the expression for J(k) in equation (2.1) is of the form

J(k) =
k−1∑
i=1

∆(yi;χ([y1, . . . , yk−1])) +
N∑
i′=k

∆(yi′ ;χ([yk, . . . , yN ])) (2.2)

where ∆ is a measure of the deviation from the segment statistic estimate χ. One
statistic that will be interesting in a later part is the linear fit of each segment. The
formula for J(k) analogous to equation (2.1), in the case of the linear approximation
can be given in terms of the segment deviations ∆ and yields

n∑
i=m

∆(yi;χ([ym, . . . , yn])) = (n−m+ 1)var([ym, . . . , yn]) +

+

(∑n
i=m (yi −

∑n
i=m yi) (n+m

2 )
)2

(n−m+ 1)var([m, . . . , n]) .

(2.3)

2.1.3 Filtering
The presence of noise in a signal can complicate the analysis of the time series, so it
may be beneficial reducing that noise as much as possible. One method of removing
noise is by filtering the signal. There are many types of filters but arguably the
simplest is the moving average filter.

This method uses a sliding window to smooth each signal value with the average
of the neighboring values within the window size. For a window size of nW the
filtered signal ỹ from the original signal y is given by

ỹ(k) = 1
nW

(y(k) + y(k − 1) + · · ·+ y(k − nW + 2) + y(k − nW + 1)). (2.4)

There are numerous ways of filtering data and we will not cover all here. For our
intents and purposes the moving average filtering method is sufficient.

6



2. Theory

2.2 Data Representation

In order to facilitate the search of hidden patterns in the data, some methods for data
transformation and dimensionality reduction will be revised in this section. Even
though SAX is not implemented for the final results of the thesis, the technique is
significant for the development of the pattern discovery algorithm in a later section.

2.2.1 Piecewise Aggregate Approximation (PAA)
Despite its simpleness, the PAA method is one of the most common procedures to
reduce a time series T (t) = t1, ..., tn into a lower dimensional vector C̄ = c̄1, ..., c̄w.
The main procedure is to divide the data into w equal sub-sequences and replace it
with the mean value c̄i in each section [2]. Then, c̄i can be calculated as:

c̄i = w

n

n
w
i∑

j= n
w

(i−1)+1
tj. (2.5)

2.2.2 Symbolic Aggregate Approximation (SAX)
SAX is a method for discretizing a real-valued time-series by transforming the data
into a vector of symbols [3]. After normalizing the time series and applying PAA
dimensionality reduction on the signal, the values c̄ are then grouped into βa−1
breakpoints. Assuming that the data after normalization follows a Gaussian distri-
bution, the position of the breakpoints is calculated such that the area under the
signal between βi−1 and βi, i = 1, ..., a − 1 is equal to 1/a, where a is equal to the
number of symbols used for the data transformation. A symbol is then assigned
for each interval [βi−1, βi), meaning that each symbol has the same probability to
appear. An example of SAX transformation can be observed in Figure 2.1, where a
time series of length N = 1500 is transformed into a string of length w = 150 using
a = 4 symbols. The SAX sequence of the signal is then “bddcaaabbcccccd”.

SAX representation
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Figure 2.1: SAX representation of a time series of length N = 1500. the data is
reduced to a vector of w = 150 and it is represented using 4 symbols.
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2.3 Clustering
Clustering is the process of grouping similar observations. The similarity (or dis-
similarity) of data points can be measured in various ways, e. g. their Euclidean
distance, correlation or some other special measure that is suitable for the problem
at hand. In this section we will describe the method for data clustering utilized for
solving parts of the problems introduced in this thesis.

2.3.1 Similarity Measure
In order to compare the similarity between two objects, a distance measure must
be defined. This is the main basis for distance-based clustering algorithms and it is
also dependable of the type of analyzed data, for example, continuous or categorical.
When measuring the similarity between two time series sub-sequences, we can find
some issues such as difference in speed or length. Dynamic Time Warping is a
suitable measure for this type of problem since it finds the alignment between the
data points that minimizes the distance between the two signals.

Let X = [x1, . . . , xn] and Y = [y1, . . . , ym] define two sub-sequences of length n
and m respectively. A matrix D of size [n × m] is constructed and each element
contains the pairwise distance between the elements of the series D(i, j) = d(xi, yj).
In this case, d(xi, yj) is the Euclidean distance between the points xi and yj [4]. Let
W = {w1, w2, ..., wK}, where wk = (i, j), represents the set of elements of the matrix
defining the alignment of the elements xi, yj, and max(m,n) ≤ K < m + n − 1.
Then, the DTW distance DDTW can be described as an optimization problem:

DDTW = min
W

K∑
k=1

D(wk) (2.6)

Subject to the following constraints:

• Boundary conditions: w1 = (1, 1) and wK = (m,n)

• Continuity: if wi = (a, b), then wi−1 = (a′, b′),
where a− a′ ≤ 1 and b− b′ ≤ 1

• Monotonicity: if wi = (a, b), then wi−1 = (a′, b′),
where a− a′ ≥ 0 and b− b′ ≥ 0

An example of the alignment of two time series can be observed in Figure 2.2.
The plot in the center shows the optimal warping path obeying the constraints and
achieving the alignment of the signals.

2.3.2 Types of Clustering
Using different criteria and initializations during clustering can lead to different re-
sults [5]. Clustering procedures are commonly divided in two types: partitional and
hierarchical clustering. In the first type, the algorithm looks for an optimal partition
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Figure 2.2: Alignment of the time seriesX and Y . The grid in the center represents
the distance matrix between each of the data points. The black line is the optimal
warping path that achieve the alignment of the signals by minimizing the distance.

of the data set into a specific number of groups by emphasizing certain character-
istics such as density. In the second type, the algorithms prioritize clustering data
according to their proximity. For hierarchical clustering, merging and splitting of
clusters can be visualized using a dendrogram, which is a diagram in the shape of a
tree. The node root represents the trivial clustering of putting the whole data set
in the same cluster and the number of groups get increased as we go further down
the tree. The last level of the dendrogram is called the leafs which is the other
trivial extreme - each data observation is put in a separate cluster. By cutting the
dendrogram at a specific level in the tree one decides the number of clusters for
grouping the data. Hierarchical clustering algorithms are at the same time divided
in two types. One of the them is known as agglomerative if the clustering is initial-
ized with each observation in its own cluster and then the clusters are merged until
satisfying some stopping criteria. Agglomerative methods are therefore also called
bottom-up methods. The other type of hierarchical clustering algorithms is called
divisible methods and here the algorithm initializes with all the data in the same
cluster and progressively split clusters until terminating. Divisible methods are also
called top-down methods.

In the thesis we have chosen to use Ward’s minimum variance method [6] as the
linking criteria when clustering the time series sub-sequences. This procedure is
used for agglomerative clustering where the merging cost between two clusters, A
and B, is defined as the increase of the within sum of squares given by

∆(A,B) =
∑

i∈A∪B
(xi − x̄A∪B)2 −

∑
i∈A

(xi − x̄A)−
∑
i∈B

(xi − x̄B)

= nAnB
nA + nB

(x̄A − x̄B)2,
(2.7)

where nj is the number of points in cluster j and x̄j is the mean of the observations
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in cluster j. The method stops merging clusters when it finds the minimum increase
of the total within cluster sum of squares.

2.3.3 Evaluation

There are several methods for evaluating the clustering goodness-of-fit and analyzing
the optimal number of clusters in a data set. A popular clustering evaluation method
is the within sum of squares method [7] (also called “Elbow plot”), where the cluster
within sum of squares (WSS) are plotted versus the number of clusters. The optimal
number of clusters amounts to the number corresponding to the largest bend in the
plot. The within sum of squares is defined in the following way for a data set of N
observations and K clusters:

WSS =
N∑
i=1

K∑
k=1

zik(xi − x̄k)2, x̄k = 1
nk

N∑
i=1

zikxi, (2.8)

where xi is the ith data observation, x̄k is the mean of cluster k, nk is the number
of observations in cluster k and zik is an indicator function, defined as

zik =
{

1 if xi ∈ cluster k,
0 if xi /∈ cluster k. (2.9)

There are clustering procedures where the WSS cannot be calculated as in Equation
(2.8) due to the type data points used in the clustering, as for example, when
clustering time series whose similarities are given by the DTW similarity matrix. In
these occasions only the distance (or dissimilarity) matrix is available for calculating
the WSS, which is done in the following fashion:

WSS =
K∑
k=1

(GᵀDG)kk
2nk

. (2.10)

In the above equation (2.10), G is a matrix whose elements are (G)ij = zij, D is
the element-wise squared distance matrix meaning, that if D̃ is the original distance
matrix, then (D)ij = (D̃)2

ij.
We see that from the definition in Equation (2.8), WSS is minimal for the case

K = N and maximal when K = 1. The largest bend in the graph is hard to define
mathematically and usually requires visual inspection to determine. The rationale
is that if there is a number K∗ corresponding to a large bend in the graph, you gain
a lot in terms of WSS up until K∗ and gain notably less if the number of clusters
is chosen higher than K∗. In Figure 2.3 we show an example of a WSS plot for an
artificial data set where the known number of clusters is five.
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Figure 2.3: An example of a WSS plot for an artificial data set where the known
optimal number of clusters is five, which corresponds well to the largest bend in the
graph.

2.4 Pattern Discovery
In [8], Tanaka, Iwamoto and Uehara developed a method for the discovery of frequent
patterns in multidimensional time series data. These sub-sequences of time series
are called motifs and in this paper, they are able to recognize them even though
they have different lengths. In order to work with multidimensional time series, they
proposed to apply dimensionality reduction to obtain a one-dimensional time series.
This reduction consists on the first principal component, since it is assumed that
it keeps the most important information of the data. The dimensionality reduction
is not implemented in the thesis, however, it is required a one-dimensional signal
before the pattern discovery procedure.

After obtaining the one-dimensional data transformation, the number of points
in the time series is reduced using PAA representation described in Section 2.2.1.
This is performed by dividing the time series into sub-sequences of length N

w
, where

N is the original dimension of the time series and w the length after the reduction.
The obtained vector C̄ = c̄1, ..., c̄w is normalized and then transformed into SAX
symbols. An example of a SAX string sequence can be observed in step i). This
representation of the time series reduces the complexity of comparing continuous
sequences of data by focusing mainly on the data trend. A window of size Tmin is
shifted around the SAX sequence and a Behavior Symbol (BS) is assigned to each
unique combination. In step i a window size of Tmin = 3 is defined and the ‘aaa’ SAX
string is named Behavior Symbol A. The obtained BSs from the SAX sequence are
listed in step ii. The collection of elements in the last column is called a BS sequence
and it has a length of w−Tmin + 1. The number of consecutive BSs are later stored
in the BS length vector, as it can be observed step iii. The compressed sequence of
BS symbols with no consecutive repetitions is called a modified BS sequence C̃. An
analysis window of length wBS is then shifted around C̃ with the purpose of finding
BS patterns of length wBS. Each of these are potential motifs of the time series. In
order to choose the ones that better represent the data, a cost function based on
the Minimum Description Length (MDL) principle is calculated. In general terms,
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this rule is commonly used for model selection and statistical inference and it is
based on the construction of a model that summarizes the data optimally regarding
compression. Every BS pattern of length wBS is then used to segment the modified
BS sequence C̃, as it is done in step iv. The MDL cost function is calculated for each
BS pattern and it is based on the cost of segmenting the sequence, its description
length and the repetitions in the original time series. The pattern with the minimum
cost function is then selected as the motif that better describes the data. We do
not go into further detail about the MDL principle here since it is not implemented
during the pattern discovery procedure in the thesis.

i) SAX sequence example, Tmin = 3. The string ’aaa’ defines the Behaviour
Symbol A.

A︷ ︸︸ ︷
a a aa a a a︸ ︷︷ ︸

A

b c c a a b c c c c d

ii) BSs obtained from SAX sequence. The last column is called BS sequence and
it has a length of w − Tmin + 1.

SAX sequence BS
a a a A
a a a A
a a b B
a b c C
b c c D
c c a E
c a a F
a a b B
a b c C
b c c D
c c c G
c c c G
c c d H

iii) Modified BS sequence C̃. Consecutive repeated BSs are removed and the num-
ber of repetitions is saved in a vector.

BSs A B C D E F B C D G H
Length 2 1 1 1 1 1 1 1 1 2 1

iv) Obtained segments around the ’BCD’ pattern. In this example wBS = 3.

A B C D E F B C D G H
2 1 1 1 1 1 1 1 1 2 1
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2.5 Classification Model
For the second part of this thesis a classifier model will be implemented in order
to classify the current traffic scenario from the labels obtained in the first part.
At this point the problem has been reduced to a time series classification problem,
where each time point is associated to a label corresponding to a particular traffic
scenario. In the next section we will discuss neural network classifiers and several
popular neural network models for time series classification.

Classification is a part of supervised machine learning where each data point or
observation x is associated to one unique output y meaning there is a surjective
mapping

x 7→ y (2.11)

between each observation and each output. Outputs are sometimes called labels,
classes or targets and the terms will be used interchangeably here. Classification is
the task of estimating the mapping (2.11). The estimate of the output y is given
by ŷ = f(x) where f is the classification model. In machine learning, the model is
fitted to the data by training the model on the data set which means that the model
is shown observations, maps them to an output estimate ŷ and the parameters of
the classifier are updated according to some loss function, `(ŷ,y), of the estimated
output ŷ and the actual output y. The model is trained until ` is minimized. Usually
when training a classifier some data is held out and thus not trained on, in order to
validate the true performance of the classifier after training is done. This prevents
the classifier from learning structures in the data that comes from random noise and
thereby gives a more robust model.

2.5.1 Metrics
A metric is defined as a measure of performance and in our context, it is used for
estimating the classification performance. These measurements can help to evaluate
different characteristics of a model after the training is done. Another common use
of metrics is for model selection. When comparing the performances of the trained
models in this thesis, we use threshold types of discriminator metrics to evaluate
the classification of the test data. An imbalance of the number of observations in
each class can cause a poor performance when classifying members of the minority
classes. This is the reason why we need to evaluate our models with a metric that
takes this issue into account and better reflect the model performance than just
accuracy. In the list below, some of the common metrics are defined. For a simpler
interpretation, we make use of the confusion matrix, shown in Table 2.1. The rows
in the table represent the actual class labels while the columns correspond to the
classification results. True positive (TP) and true negative (TN) predictions in a
binary classification are observations that were correctly positively and negatively
classified, respectively, while false positive (FP) and false negative (FN) predictions
represent the elements identified as positive and negative, respectively, when the real
labels are actually the opposite [9]. To clarify, let us use a simple example of cancer
detection where the label 0 represents that the patient is healthy and 1 represents
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the opposite. In this example a true positive or true negative classification means
correctly classifying that a person is sick or not sick, respectively. The false positive
classification means in this case that we classify a healthy person as sick and the
false negative classification means that the illness was not detected and the patient
is classified as healthy. This example makes it clear that it is important to keep track
of these measures, since a classifier can still perform quite well while still having a
high false negative rate. For example, in the context of cancer detection a high false
negative rate is completely unacceptable.

Predicted
Yes No

A
ct
ua

l Yes TP FN

No FP TN

Table 2.1: A binary classification confusion matrix.

Below four commonly used metrics are defined:

• Accuracy
Measure based on the total number of instances correctly identified. Correct
classes are treated equally, so this type of metric can be used to measure
performance for data sets with a balanced number of classes. Numerically, it
can be calculated as

TP + TN
TP + TN + FP + FN . (2.12)

• Precision
Probability of the patterns correctly predicted as positive when they were
actually positive. A common example of requiring a high precision rate over
recall is in the identification of spam mails. Important mail correctly identified
as suspicious (false positive) can go to the junk folder and be erased. This
metric can be calculated as

TP
TP + FP . (2.13)

• Recall
Fraction of positive patterns correctly identified as positive. A common exam-
ple of a high recall requirement is in the detection of deceases, since it is aimed
for reducing the number of false negative results. False negative represents the
number of sick people that are diagnosed as healthy, so there is a risk that
they will receive no treatment. Recall is defined as follows

TP
TP + FN . (2.14)
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• F1-score
It is defined as the harmonic mean of precision and recall. It is used as a trade-
off for measuring performance of classification where the imbalance problem
is present. When using the F1-score false positive and false negative results
are equally penalized. Mathematically, it can be described as

F1-score = 2× recall× precision
recall + precision . (2.15)

2.6 Artificial Neural Network
Artificial neural networks (ANNs) are inspired by the biological neural networks
such as those in the nervous system in animals [10]. ANNs have proven to perform
well in many areas of machine learning and in particular supervised learning. The
canonical example of a neural network is the Multi-Layer Perceptron (MLP). The
basic structure of an MLP is layers of neurons in sequence where each neuron in a
layer is connected to each neuron in the next one. The connections in a neural net-
work are referred to as weights. The MLP is a type of feed-forward neural network,
which means that there are no cycles in the neural weight connections, i.e., a neuron
only connects to neurons in the next layer and never to a neuron in a previous layer
or itself. The first layer is called the input layer since the data observations x are
fed through this layer and the last one is called the output layer, where each neuron
represents an element in the estimate ŷ. The layers in between the input and the
output are called hidden layers and they are hidden in the sense that the input and
output of those layers are never seen or interpreted in the training phase. These lay-
ers only exists to enable the non-linearity of the mapping ŷ = f(x). In fact, an MLP
with one hidden layer with a finite number of neurons is a “universal approximator”,
meaning that it can approximate any continuous function on compact subsets of Rn

under some weak assumptions on the activation functions of the neurons [11]. The
activation function g is the non-linear transformation of data that passes through
the neuron and it is usually a “squashing function” such as the sigmoid function
σ(x) or tanh(x) given by

σ(x) = 1
1 + exp(−x) (2.16)

tanh(x) = 2σ(2x)− 1 = exp(x)− exp(−x)
exp(x) + exp(−x) . (2.17)

These activation functions are mostly used in shallow networks, i. e., networks
with only a few hidden layers. For deep neural networks, there is another popu-
lar activation function which is called the Rectified Linear Unit (ReLU) activation
function [12] given by

g(x) = max(0, x) =
{

0 if x < 0
x if x ≥ 0. (2.18)

The reason for the popularity of ReLU activation functions in deep neural networks is
due to their tendency of reducing a common problem in the training phase called the
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vanishing gradient problem [13] which we will not go into detail about. However, the
vanishing gradient problem is a larger concern for deep neural networks and causes
the network to stop learning which, of course, is undesirable. We will use ReLU
activation functions in the neural network implementations in this thesis so it is still
of interest to mention them here. The last activation function commonly used in
classification is called the softmax function which is defined as

softmax(z)i = exp(zi)∑K
j exp(zj)

, z ∈ RK . (2.19)

Note that

softmax(z)i ∈ (0, 1), ∀i ∈ {1, . . . , K}, (2.20)

meaning that the output of the softmax function can be interpreted as a probability
over K classes, which makes it useful for classification.

The mappings given by the connections in the MLP is calculated as a weighted
sum of the inputs from the previous layer, which is why the connections are referred
to as “weights”. Let h(i)

j be the jth neuron in the ith layer in the network, where
j ∈ {1, . . . , li} (li being the number of neurons in layer i). Then its mapping is
given by

h
(i)
j = g

l(i−1)∑
k

w
(i)
jkh

(i−1)
k − θ(i)

j

 , j = 1, . . . , li, (2.21)

where g is the activation function (usually sigmoid for MLPs), w(i)
jk is the weight

connecting neuron k in layer i− 1 with neuron j in layer i and θ(i)
j is called the bias

of neuron j in layer i. Naturally, h(0)
j = xj and h

(L−1)
j = ŷj for a network with L

layers. For an output layer with softmax activation and L number of layers, ŷj is
given by the following equation

ŷj = softmax(b(L−1))j =
exp

(
b

(L−1)
j

)
∑K
k exp

(
b

(L−1)
k

) , (2.22)

where b(L−1) is a vector with components given by

b
(L−1)
j =

l(L−2)∑
k

w
(L−1)
jk h

(L−2)
k − θ(L−1)

j , j = 1, . . . , K. (2.23)

Hence, ŷ = [ŷ1, . . . , ŷK ] is a collection of probabilities over the K classes. The final
prediction for a particular class ĉ ∈ {1, . . . , K} is then obtained by finding the index
of the maximum probability in ŷ:

ĉ = arg max ŷ. (2.24)

In Figure 2.4 a simple architecture of an MLP with two hidden layers is shown. This
represents the mapping ŷ = f(x).
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Figure 2.4: The architecture of an MLP with two hidden layers.

A feed-forward neural network is trained by updating the weights and biases in the
network to minimize the loss of the output. Specifically, the weights and biases
are updated by means of stochastic gradient descent on a loss-function utilizing the
chain-rule. The loss implicitly depends on the weights and biases in the network
due to the connections between neurons. The update rule (gradient descent) can be
stated as

w̃ = w− η∂`(ŷ,y; w,Θ)
∂w

, (2.25)

Θ̃ = Θ− η∂`(ŷ,y; w,Θ)
∂Θ , (2.26)

where w and Θ are the weights and biases in the network while w̃ and Θ̃ are their
respective updates. Here η is a parameter called the learning rate which corresponds
to the step length in the gradient descent algorithm and hence the rate at which the
network “learns”.

2.6.1 Loss function

As briefly mentioned before, a loss function (also known as a cost function) measures
the error of the estimated targets ŷ in relation to the true targets y. One simple loss
function is the squared error loss function given by `(ŷ,y) = 1

2(y− ŷ)2. One realizes
easily that `(ŷ,y) takes its minimum value ` = 0 at ŷ = y, which means that as
the loss function is minimized, the estimate ŷ becomes closer to y. This property
is desirable for any loss function since the estimated targets ŷ should get closer to
the real classes y as the training progresses. The squared error loss function has the
advantage of having nice mathematical properties such as smoothness and symmetry.
One of the most widely used loss functions in classification is the categorical cross-
entropy given by

CE(ŷ,y) = −
K∑
i=1

ωiyi log(ŷi), (2.27)
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where K is the number of classes, yi ∈ {0, 1} is the one-hot encoding of the class
labels given by

yi =
{

1 if input x has label i,
0 otherwise, (2.28)

and ŷi is the estimated probability of the input x belonging to class i. To deal with
an imbalance in the number of observations in each class, weights ωi ∈ [0, 1] are
introduced. These weights are inversely proportional to the frequency of the classes,
meaning that misclassification of the least frequent class is penalized the most. The
class imbalance problem arises when some classes dominate others in terms of their
sample proportions. Then the classifier is more likely to assign the most frequent
classes since they are the most probable guess. In the worst case, the classifier does
not predict anything other than the most common class because it may still achieve
a high accuracy thus rendering the model useless.

Another way to address the class imbalance problem is by implementing the focal
loss function given by

FL(ŷ,y) = −α
K∑
i=1

yi(1− ŷi)γ log(ŷi), (2.29)

where γ ≥ 0 is called the focusing parameter and its recommended values are
γ ∈ [0, 5] according to [14]. The parameter α is introduced for numerical sta-
bility when implementing the function in software. The advantage of the focal loss
is the effect achieved with the so called modulating factor given by (1− ŷi)γ. This
coefficient helps to regulate the contribution of the samples that are easily correctly
identified. A sample is “easy” to classify if the estimated probability ŷi is close to
one when the the sample belongs to class i. On the other hand, when the sample
is misclassified and ŷi is close to zero, the modulating factor is close to one and
the loss function reduces to the categorical cross-entropy function. High expected
probabilities have a low modulating factor, reducing the penalization.

Using some of the loss functions introduced in this section, situations may arise
where expressions amount to 0 log 0 which, strictly mathematically speaking, is not
defined. In these cases 0 log 0 is replaced with zero since

lim
x→0

x log x = 0. (2.30)

2.6.2 Recurrent Neural Network (RNN)
An RNN is a network with connections like in the MLP but also including adjacent
edges, known as recurrent edges, representing time steps [15]. This property make
them suitable for processing sequential data, enabling its use for the time series
classification (TSC) task. At time t, the nodes with recurrent edges receive the
current input xt and also previous ones from hidden layers at previous times ht−1,
as it can be observed in Figure 2.5. This means that the output at one point can be
affected by consecutive previous samples. The hidden state ht at time t is given by

ht = g (Wihxt +Whhht−1 − θh) , (2.31)
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where g represents the activation function, Wih the conventional weights connecting
the inputs and Whh the recurrent connections between the hidden layers. As in the
MLP, the function also includes a bias parameter and in this case is represented
by θh. A general architecture of an RNN can be observed in Figure 2.6, where the
important characteristic is the recurrent connection for the hidden state.

. . . ht−1 ht ht+1 . . .

xt−1 xt xt+1

Figure 2.5: Unfolded representation of an RNN, showing the recurrent edge con-
nections and its dependence of previous time steps.

Output

State/Hidden

Input

Weights U

Weights V

Weights W
(delayed)

Figure 2.6: General architecture of an RNN. The hidden layer contains the infor-
mation of sequential data.

2.6.3 Long Short-Term Memory (LSTM) network
LSTM networks are a type of gated RNNs introduced in 1997 [16]. LSTM networks
have the benefit of being able to retain longer sequential patterns and remember its
past hidden states. This happen in part due to having a memory cell connection
resulting in a longer short term memory than a regular RNN (hence its name). The
structure of a LSTM unit is similar to a RNN in the sense that previous predictions
are used as input to the network, but the LSTM has some additional structure,
in particular, the LSTM cell has three gates, the forget, input and output gates,
and a memory cell. Arguably the most important gate is the forget gate which
is controlling the connection of the memory cell to the output. The memory cell
contains information about previous predictions and their hidden states. The input
gate can be thought of as an ignoring gate or the attention of the unit, controlling
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which inputs are important for the current prediction. The output gate acts as a
filter where selection of which memories, previous predictions and new information
should be prioritized for a particular prediction. The inputs to a gate are the
previous predictions and new data after both have been transformed by a neural
network which is simultaneously being trained. The action of the gate is that an
element-wise vector multiplication (the Hadamard product) is performed between
the different inputs to the gate. The architecture of an LSTM is shown in Figure
2.7. In equations, the different calculations performed in the LSTM unit are given
by

it = g1 (Wixt + Uiht−1 + bi) , (2.32a)
ft = g1 (Wfxt + Ufht−1 + bf ) , (2.32b)
ot = g1 (Woxt + Uoht−1 + bo) , (2.32c)
ct = ft ◦ ct−1 + it ◦ g2 (Wgxg + Ught−1 + bg) , (2.32d)
ht = ot ◦ g2(ct), (2.32e)

where it, ft and ot are the activation vectors of the input, forget and output gates
at time step t. The input and recurrent weight matrices are denoted as Wr and Ur,
respectively. Additionally, br denotes the bias vectors. Here the subscript r is either
i, f , o or g representing the connections in the input, forget, output or memory cell
gates, respectively. The activation function is denoted by g1 and g2 where g1 is the
activation function for the recurrent steps and g2 is the activation function used
for updating the cell state or the memory state. The element-wise multiplication is
denoted by ◦. Lastly, ht represents the internal state of the LSTM unit and ct is
the memory cell state at time step t. Usually one initializes the states of the LSTM
unit at t = 0 as c0 = h0 = 0.

new feats.
input gate
forget gate

output gate

xt
ht−1 × + g2 × ht

×

M

ct−1

ct

LSTM

Figure 2.7: The architecture of an LSTM cell. The nodes marked with × represent
a gate with element-wise multiplication of the inputs and + represent element-wise
addition of the inputs. The box containing g2 represents applying some activation
function g2 to the incoming data and ct represent the internal state of the memory
cell M for input time t. The thick dashed arrows represent that before entering the
gate transformations according to Equations (2.32) have been applied.
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2.6.4 ResNet
The ResNet deep learning architecture for image classification was introduced in
the paper [17] and it has since been adapted for time series classification which
is described in [18, 19]. The ResNet, or residual neural network, is inspired by the
convolutional neural network (CNN) [20]. The main difference is that the ResNet has
“shortcut connections” where inputs can skip a layer in the network. The advantage
of this architecture is that this enables deeper networks, which evidence suggest
gives better classification results [21]. A CNN is a type of neural network adapted for
data in a grid-like form such as images or more importantly in our case, time series.
As the name suggests, the CNN involves performing convolutions of the inputs
in order to extract important features, which is what makes the architecture so
successful. The convolution, which is a mathematical operation, can be interpreted
as a weighted average where the weights are determined w(t). The operation, in the
general continuous case, is given by

(f ∗ w)(t) ≡
∫ +∞

−∞
f(τ)w(t− τ) dτ , (2.33)

where f and w are two, not necessarily continuous, real-valued functions. How-
ever, if we want to think of the convolution as a weighted average, w(t) must be a
valid probability density. For our intents and purposes, the discrete version of the
convolution operation of more interest and is given by

(f ∗ w)(t) ≡
+∞∑

τ=−∞
f(τ)w(t− τ). (2.34)

For the case of two-dimensional grid-like data with finite structure, the convolution
is given by

(I ∗ κ)(m,n) = (κ ∗ I)(m,n) =
∑
j

∑
k

I(m− j, n− k)κ(j, k), (2.35)

where we use the commutative property of the convolution operation. Here κ in
equation (2.35) is called the kernel or the filter, which contains the trainable weights
that are updated using backpropagation, similar to the MLP. The input data I
is in this case a two-dimensional array of data corresponding to, for example, an
image or a multidimensional time series. Data of this form is usually referred to
as tensors in the context of deep learning and CNNs. Truth be told, the actual
mathematical operation implemented in most neural network libraries is actually
called cross-correlation but still referred to as convolution [10]. When implementing
cross-correlation equation (2.35) changes slightly in the following fashion

(I ∗ κ)(m,n) = (κ ∗ I)(m,n) =
∑
j

∑
k

I(m+ j, n+ k)κ(j, k). (2.36)

Henceforth, we will follow the convention of referring to equation (2.36) as the
convolution operation. The kernel κ is an operation that locally extracts features
from the data such as edges in images and changes in time series. In order to extract
features across the entire input tensor I, the convolution operation is performed
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with a sliding window covering I. The size of this sliding window is called the
stride. The output of convolving one kernel on the entire tensor is called a feature
map and usually a convolutional layer outputs several of them each with their own
corresponding kernel. The size of the kernel and the number of feature maps are
tunable hyperparameters. After each convolution, the dimensions of the output will
decrease, as we see in Figure 2.8. This is called valid convolution. The size reduction
of performing the convolution may not be desirable and can be circumvented using
padding. This action is applied to the input tensor filling the outer borders of
the tensor with some value to get the same output size as the original input size.
There are different methods but usually one pads the input with zeros. In Figure
2.8 valid convolution is performed to exemplify the convolution operation in the
context of CNNs. The basic architecture of the ResNet applied to TSC is shown
in Figure 2.9. The ResNet architecture consists of blocks where each of them is
made up of convolutional and batch-normalization layers with activation functions
(usually ReLU) in series with a certain number of repetitions. Some claim that batch
normalization layers help mitigate the internal covariance shift in the network and
other say that it also smooths the optimization landscape of the loss function [22,23].

Each block can be bypassed through the short-cut connections. Depending on
the amount of data available, the number of blocks in the network can be very large
(100 to 1000 blocks) and that kind of depth is enabled by the shortcut connections.
The two last layers are the global average pooling (GAP) layer and the softmax
layer. The GAP layer calculates the averages of each feature map and returns it
to the softmax layer. Finally, the softmax layer outputs the probability over the
different classes. The ResNet is optimized by the usual back-propagation algorithm.

1 0 0 1 1

1 0 1 1 0 1

0 1 0 1 0 0

0 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 1 1

1 0

0 4 2 2

3 1 2 2

0 3 0 1

1 0 1 1

�

∗ =

1

1 0 1

0 1 0

� � ∗ �

0

1 × 1 + 0 × 0 + 0 × 1 + 0 × 0 + 1 × 1 + 1 × 0 + 1 × 1 + 0 × 0 + 1 × 1 = 4

Figure 2.8: Example of “valid” convolution with stride one. The output I ∗ κ is
called a feature map.
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x

+

f(x) + x

f(x)

More blocks

More layers

Conv.
BN + ReLU

Layer 1

...

Block 1

...

GAP

Softmax

Figure 2.9: The overall structure of the ResNet used for time-series classification.
ResNet is characterized by its “short-cut connections”, where inputs can bypass the
convolutional and batch-normalization/activation layers. The last layers are a GAP
layer and lastly a softmax layer.

2.6.5 Time Le-Net

LeNet is an architecture that has a powerful performance for image classification
and it was first implemented for document classification in 1998 [18]. The archi-
tecture can be observed in Figure 2.11 and it is a traditional CNN with a fully
connected layer that performs the task of matching the extracted features to the
corresponding class. Finally, the last layer has softmax activation that returns the
estimated probabilities for each of the classes. The initial layers are consists of two
sets of convolutions layers with ReLU activations, followed by a data downsampling
performed by the maxpooling operation. This architecture was first implemented
for time series classification in [24].

Maxpooling is a dimension reduction technique applied to the feature maps and it
is used to obtain the most essential attributes of the feature maps. The maxpooling
layer has some kernel-size and extracts the maximum value in the tensor over that
kernel. Similarly to the convolution operation, it has some certain stride which is a
hyperparameter chosen by the user. In Figure 2.10 the maxpooling is shown for a
two-dimensional tensor.
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Figure 2.10: The maxpooling operation with stride two on a two-dimensional
tensor.
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Figure 2.11: LeNet traditional architecture.
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3
Pattern Discovery

In this chapter we will describe the methods used for the pattern discovery. The
methods are mainly divided into two parts. The first part consists of presenting the
steps used for pattern discovery in individual signals and some generalizations of the
obtained results. In the second part the patterns found in the signals are combined
to describe more complex behaviors. Finally, the results from both parts are used to
label the data in meaningful classes.

3.1 Discovering Patterns in Individual Signals
The procedure of categorizing real-valued features will be discussed in this section.
This categorization is a necessary step in finding sensible and interpretable multi-
dimensional labels corresponding to traffic scenarios. We will refer to categories in
the individual signals as patterns. Steering angle and speed signals are the continu-
ous features selected for categorization, since they are important for describing the
vehicle state.

3.1.1 General Procedure
In order to find patterns in the individual signals we have developed the following
general method:

1. (optional) normalize signal using speed signal to convert time into distance,

2. find changes in the signal and extract sub-sequences of the time series where
the changes are found,

3. (optional) process the sub-sequences in some suitable way to prepare for clus-
tering,

4. cluster the sub-sequences to obtain groups of patterns.

The steps in the above procedure changes slightly depending on which signal that
is being analyzed. How this procedure can be applied to the speed and the steering
wheel angle will be explained in the subsequent sections.

3.1.2 Steering Angle
In this part the general procedure will be applied to the steering wheel angle signal.
Each step will be outlined and adapted to this specific signal.
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3.1.2.1 Converting time index into distance index

For analyzing and extracting patterns in the steering angle signal it may be advan-
tageous to index the signal with equidistant distance points instead of evenly spaced
time points. This is achieved by integrating the speed signal to obtain a mapping
from time to distance, t 7→ d(t). This mapping is defined as follows

d(t) =
∫ t

0
v(τ) dτ . (3.1)

Using the above mapping, the signal previously in time y(t) can be converted into
a signal in distance y(t) 7→ y(d) = y(d(t)).

3.1.2.2 Change detection and sub-sequence extraction

Following step 2 in the general procedure, a change detection method is employed in
order to extract sub-sequences of the time series. A suitable measure of change for
this signal is the first order derivative, meaning that if the derivative is above some
certain threshold, a change in the signal is detected. The physical interpretation is
that if the angular speed of the steering wheel exceeds some particular value, the
driver is performing some action that should be investigated. There is some ambi-
guity in finding an appropriate threshold for the change detection. Simply choosing
a threshold may introduce unwanted bias in the model and may not generalize well,
so finding that value automatically is desirable. To understand how this can be
done, one must first realize that the number of changes detected Nc is a function of
the threshold θ, i. e.,

Nc = Nc(θ), (3.2)

where Nc(0) = N , Nc(+∞) = 0 and N is the total number of data points in the
signal. Each series of consecutive data points where a change was detected is called
a sub-sequence. The number of sub-sequences Ns is also a function of the threshold,
with Ns(0) = 1 and Ns(+∞) = 0. We propose that the threshold should be chosen
so that it maximizes the number of sub-sequences found in the signal, that is,

θ∗ = arg max
θ∈[0,∞)

Ns(θ). (3.3)

This might sound a bit counter-intuitive but the rationale is that if the threshold is
chosen as θ∗ the most number of sub-sequences are explored which should give more
chances to find patterns in the signal.

3.1.2.3 Processing of sub-sequences

Step 3 is an optional processing step where sub-sequences found in the earlier steps
may be removed or merged to obtain more coherent and meaningful patterns in the
clustering procedure. For the steering wheel signal this step entails removing sub-
sequences with low signal amplitude and merging sub-sequences in close proximity.
When developing this method we found that the low signal amplitude threshold is
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preferably set as the standard deviation of the signal. This statistic for our purposes
can be thought of as a measure of the noise in the signal.

Another important step mentioned above is the process of merging sub-sequences
close in distance. This step should be automatic to the most possible extent. Our
suggestion to automate this step is the following procedure:

i) merge all patterns with an inter-sequence distance lower than some dmin,

ii) sort the inter-sequence distances between the sub-sequences di, i = 1, . . . , Ns−1,

iii) find the optimal merging distance d∗ threshold in the interval [dmin, dmax], where
dmax is the maximum accepted merging distance,

iv) merge sub-sequences with inter-sequence distance lower than or equal to d∗ with
its closest neighbor.

The optimizing criteria in step iii) for the merging distance is

d∗ = arg max
i∈{2,...,Ns}

(δi − δi−1)iα, where δi = f(di)− f(di−1), i = 2, . . . Ns. (3.4)

Also δ1 = 0, f(di) = ∑Ns
j=1 1(dj > di) (where 1(dj > di) is an indicator function) and

α is usually chosen between 0 to 4.

3.1.2.4 Outliers

Before proceeding with the clustering procedure, patterns with deviating character-
istics might affect the results. In order to detect these outliers, descriptive statistics
such as length, variance, amplitude and skewness (defined in equation (3.7)) of the
extracted sub-sequences are calculated and compared using boxplots. Outliers are
defined as observations found outside q1 − w(q3 − q1) and q3 + w(q3 − q1), where
q1 and q3 represent the first and third quartiles, respectively, and w specifies the
number of interquartile ranges (q3−q1) above and below q3 and q1 respectively. One
commonly standard value is w = 1.5. Patterns found as outliers more than once in
terms of length, variance, amplitude and skewness are not included in the clustering
procedure and instead they are labeled as “outliers”.

3.1.2.5 Sub-sequence clustering

The last step (4) is to cluster the found sub-sequences to obtain groups corresponding
to similar patterns in the signal. Since the extracted sub-sequences have arbitrary
lengths, the most suitable way to obtain a pairwise similarity measure is by using
DTW. After computing the distance matrix, hierarchical clustering using Ward’s
minimum variance method is implemented. The number of clusters is specified
using the WSS method explained before.
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Alternatively, statistical information such as the mean ȳs, the standard deviation
Ss, the skewness γs and the auto-correlation coefficient AC(`)

s defined as follows

ȳs = 1
ts+1 − ts

ts+1−1∑
i=ts

yi = 1
τ

ts+1−1∑
i=ts

yi, (3.5)

Ss =
 1
τ + 1

ts+1−1∑
i=ts

(yi − ȳs)2

 1
2

, (3.6)

γs =
1
τ

∑ts+1−1
i=ts (yi − ȳs)3

S3
s

, (3.7)

AC(`)
s =

1
τ

∑ts+1−`−1
i=ts (yi − ȳs)(yi+` − ȳs)

S2
s

, (3.8)

can be extracted from each sub-sequence and clustered to obtain groups of sub-
sequences (patterns). Hierarchical clustering does not have a major impact on the
performance, so instead Gaussian mixture model clustering was used to grouped
similar patterns. This method is appropriate for the task as it allows for a wider
variety in shapes and sizes of the clusters. The main advantage of this procedure
is that it has less computational complexity and thus has a shorter running time.
DTW has notoriously long computational time (O(N2), where N is the number of
data points in the longest time series) which is fortunately somewhat mitigated by
the sub-sequences generally being quite short with approximately 100 data points
on average. In the end we chose to use the DTW clustering procedure. It was found
to give a bit more robust results and the method is a bit easier to interpret.

3.1.3 Speed
In this part a description of the pattern finding procedure in section 3.1.1 is given
for the particular case of applying it to the speed signal. The word “pattern” may
be a bit of a misnomer in this case since we are looking for sections of the signal
with particular trends such as increasing or decreasing speed, i. e., changes in the
speed corresponding to different levels of acceleration.

One might wonder why those patterns would be interesting when there is already
a signal for acceleration given by the acceleration pedal position. One reason that
finding these patterns are still worthwhile is because one might think of scenarios
where speed is changing independently of the acceleration pedal signal. Likewise,
one can also think of scenarios where the speed is decreasing even though the driver
is not braking.

For this signal, only step 2 and 4 are necessary to obtain the patterns.

3.1.3.1 Change detection and sub-sequence extraction

In order to find changes in this signal, we propose using change point detection
as described in 2.1.2. The idea is to approximate the signal with linear segments.
The segmentation is performed so that the total root mean squared error (RMSE)
of all the linear segments is minimized. In this method one either predefines the
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number of change points (segments) to be detected or the maximum acceptable error
(measured in RMSE) of the approximation. We found that setting the number of
change points differently for each driving log so that there is some average intensity
of change points per minute worked well. In particular, an average rate of ten change
points per minute gave reasonable results.

3.1.3.2 Sub-sequence Clustering

The clustering procedure for this signal entails calculating the slopes of the linear
approximation segments, representing the acceleration, and then finding suitable
levels for categorizing the time series. A suitable clustering algorithm to this end is
the Gaussian mixture model.

3.1.4 Results

According to the WSS method for evaluating the clustering goodness-of-fit as de-
scribed in Section 2.3.3, a suitable number of clusters for grouping the sub-sequences
is three clusters, as can be seen in Figure 3.1. Figure 3.2 shows the grouping re-
sults from one of the driving logs. The sub-sequences plotted in blue, red and green
mostly correspond to roundabouts, turning right and turning left road patterns, re-
spectively. By using the criteria to identify patterns with deviating characteristics,
(section 3.1.2.4) 30 outliers were identified, corresponding to approximately one or
two patterns in each of the log files. The sub-sequences plotted in black are the
ones categorized as an outlier and they mostly correspond to a situation where the
vehicle is parking. Data points not grouped in any of the mentioned patterns will be
referred to as the “no turning” or “driving straight” situation. As its name suggests,
this pattern corresponds mostly when the vehicle is driving straight.
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Figure 3.1: Elbow method performed to identify a good fit for grouping the dif-
ferent shapes found in the steering wheel angle signal. The maximum bend in the
plot corresponds to three clusters.
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Figure 3.2: Patterns found after clustering procedure of steering wheel angle sub-
sequences. Blue, red and green sub-sequences mostly correspond to roundabouts,
right and left turns, respectively. Patterns in black correspond to parking maneuvers
and they were identified as outliers. Data points not in any of the previous patterns
are addressed as a “steady” behavior and correspond to the vehicle driving straight.

Figure 3.3: Some of the patterns in Figure 3.2 showed on a map.

It is also of interest to analyze the average shape of each of the discovered patterns.
The average shape of a particular group can be interpreted as its template and it
can help to understand the discovered driver behavior. In Figure 3.4 the templates
obtained from the steering wheel angle signal are shown. The templates in Figure
3.4a are found by first normalizing the signal values for each pattern so that they
lie within the interval [−1, 1]. The patterns are of different lengths so an additional
mapping of the sample points onto the interval [0, 100] is performed. Pattern tem-
plates in Figure 3.4b are obtained differently from the previously mentioned. This
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involves initially aligning the peak or valley in the center of the shapes and then
the feature average is calculated some distance around the center. This procedure
shows clearer results and it allows to see a symmetry in the driving behavior.
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(a) Pattern templates obtained by nor-
malizing the signal values of each pat-
tern and interpolating each pattern to
fit on the [0, 100] interval. The red line
corresponds to the mean of all patterns.
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(b) Peak-aligned pattern templates ob-
tained by normalizing the signal values
of each pattern and showing the pattern
on a symmetric interval where the peak
is set in the mid-point. The red line
corresponds to the mean of the aligned
patterns.

Figure 3.4: Templates of the obtained patterns in the steering wheel angle signal.

3.1.4.1 Verification of Steering Wheel Angle Patterns

The patterns in Figure 3.2 can be inspected in the driving route map data in order
to verify the performance of the pattern discovery algorithm for the steering wheel
angle signal. In Figure 3.3 some of the patterns are shown on the map.

Utilizing that all driving logs are recorded on the same route the verification of
the steering wheel angle patterns can be done using the GPS-data when it is avail-
able. The rationale is that since intersections (left/right turns and roundabouts) are
located at the same place in each driving log, patterns found by the algorithm close
to those geographical points should be explained by the type of junction found there.
So if a pattern is found close to a site known to have a roundabout, we would expect
a well performing algorithm to recognize it as a roundabout pattern. In Figure 3.5
the verification procedure is exemplified by plotting the patterns discovered on the
map. The total number of driving logs with GPS-data available were 14 of the total
22 logs. In the logs with GPS-data there is a total of 317 patterns and out of those
265 were close to a geographical ground truth site. 204 patterns agreed with the
ground truth site, i.e., the intersection pattern category as decided by the algorithm
agreed with the actual intersection type giving a total of 77 % agreement. In Table
3.1 the confusion matrix of the patterns discovered and the actual intersections are
shown.

One might wonder, if the ground truth is available in some cases, why do we not
just use that labeling instead? This question has a few different answers. First,
not all driving logs have the GPS data available and just using the ones that have
would resulted in a serious reduction of the available data. Secondly, what we set
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out to do in this thesis is to discover driving scenarios. Sure, if the goal of the thesis
was to find different types of junctions, then this is probably not the most efficient
or best procedure at all. What we have done here is that we found some different
ways of segmenting the time series given and then we let those segments structure
themselves according to similarities between segments. It just so happened that
clusters obtained corresponded mostly to different types of intersections but that
was never intended in the first place. Finally, there might be an underlying reason
for the grouping obtained that is not evident at present. Maybe there is some
perspective that we do not know from which it make sense that some left turns are
labeled as roundabouts and vice versa. This is always the problem with unsupervised
learning - it is not always evident for an outside observer why the results are what
they are.

Figure 3.5: The verification procedure of the steering wheel angle pattern dis-
covery. The ‘x’-markings indicate that the vehicle is moving from Volvo Torslanda
towards Kungälv and ‘o’-markings mean traveling in the opposite direction. The
rectangles mark geographical sites with known intersection types. The green and
red dashed rectangles indicate left and right turns (depending on travel direction)
and blue rectangles indicate roundabout sites. Likewise, markings that are red or
green signify that the algorithm recognized a left or right turn, respectively, and
blue markings denote finding a roundabout pattern.

3.1.4.2 Intersection behaviors

Now that a method for correctly identifying the different junctions have been devel-
oped, we can analyze common behaviors and actions at various types of intersections.
In order to draw reliable conclusions about the driver behavior in intersections we
do not use the labels from the pattern discovery algorithm since about 23 % of those
labels do not agree with the ground truth. Instead we relabel the patterns according
to the ground truth classification.
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Detected
Roundabout Left Right

Tr
ue

Roundabout 82 16 24
Left 19 52 1
Right 0 1 70

Total 122 72 71

Table 3.1: The confusion matrix of the actual intersections and the patterns the
algorithm found. The overall agreement is 77 %.

Studying the driver’s behavior and actions means analyzing the other features
when passing through the different intersections, such as power demand, acceleration
pedal position, speed and braking. This is achieved by aligning the peaks of each
steering wheel angle pattern, like it was done for obtaining the templates in Figure
3.4b. Then the feature behaviour is analyzed at a certain distance from the center
of the pattern.

In Figure 3.7 we see the driver behaviors while entering the different types of
junctions. The analyzed signals are the power demand, acceleration pedal position
and the vehicle speed. New pattern templates are created, as seen in Figure 3.7a,
where each corresponds to an actual intersection such as left/right turn and round-
about. To note is that the templates remain more or less unchanged as compared to
3.4b. However, we can see that there is more variance in the patterns corresponding
to roundabouts whereas the patterns corresponding to left and right turns have less
variation. When visually analyzing the different driver actions at the junctions, the
median feature value for each intersection type is plotted with a 50 % envelope. If
the medians are all contained in the envelope-overlap it indicates that the driver
behaviors are similar between the different junction types. One can observe that
most driver actions depend on the type of intersection and only the vehicle speed
seemed to be roughly the same for all junction types. In order to rigorously test
whether the behaviors are different in the various types of junctions, one can per-
form a statistical test, such as the Kruskal-Wallis test on the mean distributions for
each type of intersection shown in Figure 3.6. The Kruskal-Wallis test is a type of
non-parametric ANOVA (ANalysis Of Variance) test. The null-hypothesis H0 states
that the distribution of all k samples are equal and the alternative hypothesis H1
asserts that at least one of the samples dominate stochastically [25], which can be
formalized in the following way

H0 : M1 = M2 = · · · = Mk,

H1 : ∃ i, j ∈ {1, . . . , k} : Mi 6= Mj,
(3.9)

where Mi is the median of the ith sample distribution. In our case k = 3 repre-
senting the different types of intersections. The Kruskal-Wallis test does not tell
which sample distribution is stochastically dominant, only that there is at least one.
Fortunately, there is a post hoc test called Dunn’s test which is performed after the
Kruskal-Wallis test, to determine which samples have statistically significantly dif-
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ferent distributions [26]. In Table 3.2 the results from the statistical tests are shown.
As it was indicated before, there is no significant difference in driver actions when it
comes to vehicle speed. For the other features, a statistically significant difference in
behavior was found. In particular, there seems to be a significant difference between
the behaviors in roundabouts and left turns. It is also interesting to note that no
statistical difference between the roundabout and the right turn was observed. One
explanation for this is that a roundabout involves an initial right turn which may
be why these situations do not differ as much in terms of driver behavior.
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Figure 3.6: The mean distributions for each feature considered in each type of
intersection.

Feature K-W test
p-value

Sign. dev.
(Dunn’s test)

Power Demand 0.00153 RA, left
Left, right

Speed 0.354 NA
% Braking 0.0308 RA, left

Acc. ped. pos. <0.001 RA,left
Left, right

Table 3.2: The results for the different statistical tests performed on the distribu-
tions in Figure 3.6. The left column shows the different features considered. The
middle column shows the p-value when carrying out the Kruskal-Wallis test. The
right column shows which intersections deviate significantly in terms of the features
at the significance level p = .05.
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Pattern 3

(a) Steering wheel angle templates from
patterns agreeing with the ground truth
intersections. From left to right, the
plots correspond to the roundabout, left
turn and right turn intersections, re-
spectively.

(b) Median acceleration pattern profile.
The signal takes percentile values which
corresponds to how much the accelera-
tion pedal is pressed. We see that the
behaviors are similar when entering the
intersection and diverges after leaving
the intersection.

(c) Median power demand patterns pro-
file. The behaviors are similar before
entering the intersection and the behav-
iors diverges as the driver leaves the
roundabout.

(d) Median speed pattern profile. Here
all behaviors are contained within the
envelope overlap which indicates that
driver behaviors and actions do not de-
pend on the type of intersection when it
comes to vehicle speed.

Figure 3.7: In the upper left figure the pattern templates from the actual in-
tersection types are shown. In the upper right and the two bottom figures driver
behaviors at different distances in the intersections are shown. In particular, the
median power demand, acceleration pedal position and vehicle speed are displayed.
In addition the 50 % envelope is plotted in the corresponding color. The envelope
overlap is shown in a grayish transparent color. The gray dashed lines corresponds
to where the steering wheel angle template is situated. The colors blue, red and
green represent roundabout, left and right turn intersections, respectively.

3.2 Discovering Pattern Sequences
Now that the real valued features have been labeled as described above, the next
step is to combine these results to obtain multidimensional labels of the data. This
is done by combining patterns from the different features happening at the same
time to obtain more specific labels and by looking at repetitive groups of labels
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happening in sequence. In this section we will explain this approach in detail.

3.2.1 Finding Traffic Scenarios
Since the continuous features have now been labeled according to the type of pattern,
a unique Behavior Symbol (BS) can be assigned to each combination of labels in
the features, just like in step ii in section 2.4. From now on, this unique BS will
be called a traffic situation and some examples can be observed in Figures 3.8a,
3.8b and 3.8c. Consecutive BSs are identified to obtain the modified BS sequence
(step iii in section 2.4). Then, a suitable window size wBS is defined to find an
interpretative combination of BS patterns. The results of this procedure is what is
called a traffic scenario (Figure 3.8d). Instead of using the MDL principle criteria to
choose the optimal motif in the data, the cost function will be based on the number
of repetitions of the pattern and it is independent of its duration. In this case, we are
looking for the maximum cost function, that is, the most repeated traffic scenarios.

For the discovery of traffic scenarios, a window size from 1 to 3 has been chosen
and the 10 most repeated scenarios are analyzed. These scenarios are listed from 5
to 10 in Table A.1 in the Appendix, as well as some information about their duration
and number of repetitions in the data set. Even though we are analyzing a specific
route, the locations of the scenarios might change every time since they also depend
on the interaction of the vehicle with the current traffic.

(a) BS B:
Decelerating
and braking

(b) BS C:
Constant
speed and
braking.

(c) BS D:
Accelerat-
ing.

(d) Traffic scenario com-
posed by the consecutive
Behavior Symbols BCD.

Figure 3.8: Example of a traffic scenario obtained from sequential Behavior Sym-
bols.

3.2.2 Labeling Data
Our data set can be now labeled using the classes obtained from the steering wheel
angle signal and using the scenarios obtained from pattern sequences. The labeling
is interactive in the sense that suggestions for traffic scenarios are shown and then
the user chooses the ones that are suitable for labeling the data. In order to avoid
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labeling data points more than once, classes obtained from the steering wheel angle
signal are labeled first. Then, the unlabeled data are used in the pattern discovery
algorithm to obtain the most repeated combinations of BSs. After showing the
scenario with the maximum cost function, the user is able to save it or look at
the next one. After choosing a scenario, the data points in it are cancelled out for
the next run and the algorithm is repeated again to find the next most repeated
combination with the remaining unlabeled data.The algorithm stops after finding
the specified number of scenarios.

To be able to label additional data sets later on from other routes, the segmenta-
tion procedure described in Sections 3.1.2.1, 3.1.2.2 and 3.1.2.3 can be repeated to
obtain a segmentation of the steering angle signal. The already classified steering
wheel angle patterns from the Kungälv route can be then used as a set for train-
ing a 1-Nearest Neighbor (1-NN) classifier to predict labels in new segments using
the DTW distance. These labels are based on the proximity of the patterns in the
training data. Despite its simplicity, 1-NN is considered a powerful approach for
Time Series classification (TSC) [27]. The distribution of the descriptive statistics
(subsection 3.1.2.4) on the training set can be used to identify outliers by using the
same criteria.

3.2.3 Results
The scenarios obtained from the steering wheel angle signal (1-4) and the pattern
discovery algorithm (5-10) are listed in Table A.1 in the Appendix. A description
for each scenario and some information such as the number of repetitions and du-
ration proportion in the data set are also included. The most repeated scenario
is the called “steady” or “driving straight” and here the vehicle keeps a constant
speed without braking or turning. This state is commonly found when driving on
the highway and its duration can vary from five seconds to four minutes in the data
set. This duration is usually longer if the vehicle drives on the highway for a long
period of time. It is also identified as the scenario that represents 54 % of the data.
The second biggest class is the roundabout junction. This one is obtained from
analyzing the steering wheel angle signal and it is one of the three analyzed inter-
sections in a previous section. It covers approximately 5 % of the data and it has a
median duration of 23 seconds. Another of the scenarios found is the one referred to
as “waiting in traffic”. There, the vehicle initially decelerates while braking. Then
it stops for a few seconds and then accelerates again. This behavior is commonly
found when stopping at a traffic light or waiting in a queue. Its duration in our data
set seems to variate between nine second and almost two minutes.
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4
Classification of Driving Scenarios

In the previous chapter methods for pattern discovery were implemented to label
the driving data. In this chapter we will build classification models to predict the
current traffic scenario using the driving features. The section will cover different
methodologies and neural network architectures for reaching the goal.

4.1 Data Preparation
One of the goals of this thesis is to investigate the feasibility of an online driving
scenario classifier. To that end, an experimental setup simulating the online data
recording is needed. In an online classification situation data would arrive to the
classifier in a stream while driving along the route. At certain time intervals the
classifier would make a classification of the current driving situation by analyzing
the inputs from a few seconds ago to the current time.

This situation can be simulated using the driving data set by slicing it into chunks
of time length ts and classify the corresponding label at the end of each data block.
This means that if the original data x is a matrix of size p × N (p features and
N observations), the new data frame X will have N/tw ≡ n observations of time
sequences of length ts where tw is the window size of the stream of data chunks, i.e.,
the time interval between each time sequence. To put this into equations, we have

Xi = [x(i−1)×tw+1, . . . ,x(i−1)×tw+ts ], i = 1, . . . , n, (4.1)

where

xj =


xj1
xj2
...
xjp

 , j = 1, . . . , N. (4.2)

The corresponding new labels Y are given by

Yi = y(i−1)×tw+ts . (4.3)

Now the previous labeled data set (x,y) has been transformed into a set of labeled
time sequences (X,Y) suitable for training a classifier. In Figure 4.1 the process of
the data set preparation (X,Y) is described in a diagram. For the scenario classi-
fication, we will focus on training the model to identify the classes obtained from
the steering wheel angle signal, which corresponds to the three types of intersections
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Time Raw data x

Data
chunk 1

Seq. len. ts

Features

Labels y

Label 1

Time Raw data x

Data
chunk 2Features

Win. size tw
Labels y

Label 2

...

New data X Data
chunk 1 ,

Data
chunk 2 , . . . ,

Data
chunk n

New label Y Label 1 , Label 2 , . . . , Label n

Figure 4.1: A description of how data is prepared for the classification task.

listed in (3.2.3), the “outlier” label corresponding to driving slowly in a parking lot
and the remaining time points are labeled as “driving straight” or “steady state”.
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The features used to identify the labels are the five driving maneuvers mentioned
before. As it also mentioned, our data set is composed by 22 log files. The data
frame for the classification task is composed by N = 290, 196 time series data points
recorded with a frequency of 4 Hz. This data is split into 80 % for training, 10 %
for validation and 10 % for testing. When feeding the data into the classification
models, it is downsampled to 1 Hz and each input block of time series information
has a length of ts = 10, corresponding to 10 seconds of historical data. The window
size has been set to tw = 1, meaning that two consecutive inputs into the networks
have an overlap of 9 seconds.

As mentioned before, the labels in the data are dominated by one class, namely
the one where no turning is happening and the driver is driving straight. In Table
4.1 the count and proportion of the different classes in the training data is shown.

Label No turning RA Left Right Outlier Total
Count 50053 3193 1687 1988 1119 58040

% 86.239 5.501 2.907 3.425 1.928 100

Table 4.1: Breakdown of the data into the different classes. Note that the largest
class is dominating with approximately 86 %.

4.2 Model Architectures
In order to accomplish the classification task, four different network architectures
have been chosen due to their success in time series classification and we wish to
compare their performances on our problem. The architectures are t-leNet, ResNet,
LSTM and stacked LSTMs.

The t-LeNet architecture is proposed in [24]. It is composed by two convolution
layers with five and twenty filters respectively, each followed by a one-dimensional
max-pooling downsampling operation. The first one has a kernel size of [2× 1] and
the last max-pooling layer has a filter size of [4× 1]. For the fully connected layer,
500 neurons were used and this one is followed by a softmax layer. In the paper,
data augmentation techniques were applied to increase the size of the data set. This
part was omitted in our implementation.

The LSTM architecture is a recurrent neural network composed by one hidden
layer with 64 neurons and ReLU activation, followed by a fully connected layer with
softmax activation to obtain class probabilities for each outcome.

Stacked LSTMs, as its name suggests, is a deeper network with several stacked
hidden LSTM layers. Deeper designs promise to enhance the performance of the
network [28]. Its architecture is composed by 3 LSTM layers with 16 neurons each
followed by a fully connected layer with softmax activation.

The ResNet architecture consists of four blocks which each have three hidden
convolutional layers, as described in section 2.6.4. The three convolutional layers
have a kernel size of 8× 1, 5× 1 and 3× 1 respectively. The convolutional layers of
the first block outputs eight feature maps each while the last three blocks have con-
volutional layers with 16 filters. Table 4.2 shows the optimization hyperparameters
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for the the four implemented classification models.
ReduceLR is a reference to the function ReduceLROnPlateau from the Keras

library. The purpose of this function is to decrease the learning rate when the
specified metric has stopped improving after certain number of epochs [29]. This
practice helps reducing the risk of getting stuck in a local minimum. The function
has been set to have a patience of 10 epochs and if the metric does not improve, the
learning rate is decreased by some fraction. In order to deal with the large imbalance
of class sizes, the loss function used for most of the models is the focal loss with the
parameters α and γ specified in Table 4.2.

Model Optim. Loss γ α Decay LR Epochs Batch
t-LeNet Adam FL 1 0.25 ReduceLR 0.01 100 256
ResNet Nadam CE NA NA 0.004 0.002 100 128
LSTM Adam FL 1 0.25 ReduceLR 0.001 100 128
S-LSTM Adam FL 5 0.25 ReduceLR 0.001 100 128

Table 4.2: Optimization hyperparameters of the compared classification models.

4.3 Results
In this part of the thesis we summarize the results from the classification process.
In Figure 4.2 the training performance over time for each of the models can be
visualized. The solid line shows the training accuracy, while the dashed line shows
the accuracy obtained on the validation data. S-LSTM model seems to have a
gradual improvement of accuracy through every epoch and it also takes longer to
reach the stopping criteria than the rest of the models. t-LeNet seems to overfit
at an earlier stage than the other models and finally ResNet seems to reach its
maximum accuracy in the early stage of the training process.

Since the final layer in the model architectures has softmax activation, the output
of each model is the probability of belonging to any of the five classes. An example
of this result can be observed in the upper plot in Figure 4.3. Here a section of
the route is classified using the ResNet model and the probabilities for each class is
plotted with a different color for each time point. Finally, the labels are assigned by
choosing the class with the maximum probability, see equation (2.24), as it can be
observed in the lower plot.

The classification models are trained to identify five different classes: roundabout,
left turn, right turn, outliers and no turning/driving straight. The first three classes
correspond to different junctions, the fourth category is mostly found when driving
in parking lots and the last group is simply when the vehicle is driving straight.
Not knowing the current state of the vehicle can be represented by a “model” where
all the predictions are the driving straight class. This is the current situation in
the vehicle system since no traffic scenario detection is implemented. Let us call
this situation the “no model” classification and it is going to work as a baseline for
comparing the four architectures. The usefulness of a classifier is questionable if it
systematically fails to outperform the “no model” classification.
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Figure 4.2: Accuracy performance for each of the models during training. The
number of epochs before reaching the early stopping criteria is different for each
model. The solid line shows the training accuracy and the dashed line the accuracy
obtained using the validation data.

A general performance of the different classification models can be observed in
Table 4.4. For this comparison, the models outcome has been classified as inter-
section (positive case) and driving straight (negative case). As it was mentioned
before, most of the data points belong to the driving straight. Guessing that all of
the data belongs to this class (no model classification) achieves a test accuracy of
82 %. In order to make a fair measurement of the model’s performance, we can use
other evaluation metrics such as recall, precision and F1 score. The first one can
describe the model’s ability to detect intersections, while precision is a measurement
of

its ability to correctly identify junctions. A good classifier must have both prop-
erties, which is why F1 score is also considered for measuring performance.

In Table 4.3 we can observe the four possible outcomes that can be obtained from
the classification models. Identifying the current intersection (true positive) makes
possible to optimize some of the routines in the vehicle control system such as gear
shifting and changes in the propulsion system. Failing to detect to be in an intersec-
tion (false negative) leads to the current not optimal system which corresponds to
predicting that the vehicle is “driving straight” the whole time. However, predicting
to be in an intersection when it is not the case (false positive) can cause a pessimal
vehicle control system decision by making non-necessary changes. Favoring results
where FP is low implies that we should aim for a high precision rate in our models.

As it can be observed from Table 4.4, t-LeNet classification seems to outperform
the rest of the models in terms of precision, but its recall, similarly to the rest of
the models, is quite low. Together with Stacked LSTM, these models seem to have

43



4. Classification of Driving Scenarios

the largest trade-off between precision and recall, making them the most suitable
for identifying the driving situation.

Predicted
Yes No

A
ct
ua

l Yes Correctly identifying
an intersection (TP)

Failing to detect
an intersection (FN)

No Erroneously detecting
an intersection (FP)

Correctly identifying
driving straight (TN)

Table 4.3: Confusion matrix for intersection identification. The desired perfor-
mance is a high TP rate (green) and low FP rate (red).

Models Performance
Acc. Recall Precision F1 # Epochs # Params.

t-LeNet 0.9372 0.6829 0.9451 0.7929 71 13,665
ResNet 0.9177 0.6145 0.8818 0.7243 67 18,369
LSTM 0.9285 0.6668 0.9011 0.7665 79 18,245
S-LSTM 0.9364 0.6925 0.9281 0.7932 91 5,717
No Model 0.8202 0 NA NA NA NA

Table 4.4: General performance of the models for classifying steering wheel angle
patterns.

In terms of accuracy and precision, the models perform better than the baseline.
All models have a relatively low recall which indicates that there is a high rate of
FN predictions. This means that the models are struggling to detect intersections
in some of the cases. Table 4.5 and 4.6 shows the ability of each of the models to
identify individuals classes. By looking at the precision table, t-LeNet outperforms
the rest of the models in right turn and outlier identification, while ResNet is better
at identifying roundabouts. It is worth to mention that this class is one of the most
difficult to identify according to the patterns verification since this junction comes
in different shapes and sizes. Finally, Stacked LSTM obtained the highest rate for
left class identification.

To measure how well the models identify when the car is going straight, lets define
this class as the positive case, while the negative one is represented as the vehicle
driving in an intersection. Then, predicting to drive straight when it is not the
case (false positive) leads to decision making in accordance with the current control
system, but failing to detect going straight (false negative) can lead to non optimal
decisions. Therefore we can infer that the model should also aim for a high recall
for the driving straight prediction. If this is the case, then the “no model” classifier
is naturally the strongest, but it is also trivial. The next one best is t-LeNet, with
almost 99 % recall and the stacked LSTMs is a close third. Saying this, we can then
conclude that t-LeNet architecture has the better performance by having the best
identification of three out of five classes.
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Figure 4.3: Classification output obtained using ResNet model. The upper plot
shows the probability for each of the classes. The lower plot shows the signal colored
with the label with maximum probability.

Models Precision by class
Steady RA Left Right Outlier

t-LeNet 0.9335 0.5069 0.6147 0.8316 0.9204
ResNet 0.9305 0.6003 0.5721 0.5838 0.6611
LSTM 0.9310 0.2422 0.6705 0.7567 0.8449
S-LSTM 0.9336 0.2470 0.6931 0.7299 0.7857
No model 0.8202 NA NA NA NA

Table 4.5: Precision performance for identifying steering wheel angle classes using
each of the selected models.

Models Recall by class
Steady RA Left Right Outlier

t-LeNet 0.9893 0.4602 0.4076 0.5121 0.6448
ResNet 0.9864 0.5065 0.5129 0.2719 0.4974
LSTM 0.9838 0.4664 0.4773 0.4705 0.1967
S-LSTM 0.9870 0.4701 0.5020 0.4201 0.1985
No model 1 0 0 0 0

Table 4.6: Recall performance for identifying steering wheel angle classes using
each of the selected models.

Outlier precision has a general average of 80%, making it the easiest type of
scenario to predict (besides the “driving straight scenario”). It is followed by turning
right, with 72 %, then left turn with 63 % and finally roundabout with 40 %.
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In Figure 4.4, a small route section is shown and the classification made by each of
the models is marked with different colors. In this example, stacked LSTM seems to
disagree more with the rest of the classifiers about the intersections by making more
right turn predictions and alternating between the classes more frequently than the
rest. From this figure it can also be seen that there is a large agreement between
the algorithms for classifying the roundabout label for this specific section.

In order to prove the robustness of the models, we attempt to label a new route
section in Karlstad, which is completely unseen driving data from a different location
than the route in the training data. Since we do not have the labels available,
the performance comparison can only be made visually. In Figure 4.5 we see the
classification made by the four models. LSTM and ResNet seem to have a good
identification of the “driving straight” case. On the other hand, they also show
problems when it comes to differentiating between right turns and roundabouts.
t-Lenet and stacked LSTM models seem to more easily identify roundabouts and
right turns, but still they seem to have the problem of frequently switching between
different classes while driving in the intersection.
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Figure 4.4: Data classification of one section route of the test data using the four
classification models. Roundabout classifications are colored in blue, left turns in
red and right turns in green.
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Figure 4.5: Data classification of one hour route in Karlstad using the four net-
works. Roundabout classifications are colored in blue, left turns in red and right
turns in green.
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5
Conclusion

In this chapter we discuss the results in the previous part, the methodology used and
the implications of the work done in this thesis for future and related research.

5.1 Summary

In this section we will summarize the methodology used in this thesis and the results
that were produced.

5.1.1 Methodology

As have been mentioned before, this thesis consists of two main parts - discovery
and labeling of driving scenarios and classifying those scenarios in new driving data.
To this end, the first part of the thesis consisted of employing various unsupervised
learning and data mining techniques to obtain labels to train a classifier on. One
of our goals in the first part is to design an automated discovering process free of
preconceptions such as defining what constitutes a common driving scenario. In this
way one might find patterns that was not expected and truly discover something new
about the data. However, in this process we realized that some element of human
interaction in the labeling process is need if one wishes to obtain results that are
interpretable. Some time was spent in the early stages of this thesis to cluster entire
driving routes, just based on some information about each time segment in order to
achieve a labeling based on clustering classes of those segments. The problem with
this approach is that the groups of “driving scenarios” that are discovered through
this process is hard to interpret and verify.

This led us to the idea to first find patterns in individual signals which can be
thought of simple basic driving patterns and subsequently combine these patterns
to describe and discover more complex driving behaviors and patterns.

When common driver actions have been identified they are used to label the
data set so that similar situations can be classified in new unseen driving data.
This is achieved by training a classifier on the labeled data in such a way that
the feasibility of implementing the classifier as an online subroutine in the onboard
vehicle computer is retained. This led us to transform the data set as a collection
of time sequences with corresponding labels from the original data set which would
simulate an online classification situation. The choice classifier was different types
of artificial neural networks because empirical evidence suggests they are suitable
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for this kind of problem. In particular, four different architectures were investigated
and compared.

5.1.2 Results
The first part of the thesis where driving patterns and behaviors are discovered
yielded a labeling of the time series data and some statistical conclusions could be
drawn concerning the driver behavior in different types of intersections. In partic-
ular, ten different driving scenarios were identified which described roughly 80 %
of the data. From the driving patterns discovered in the steering wheel angle sig-
nal, three different types of intersections were found. A verification of this pattern
discovery method was performed using GPS data when available. This analysis
showed that the overall ground truth agreement for the pattern discovery algorithm
was 77 %. Other driving behaviors were analyzed in the intersection scenarios and
some statistical tests were performed to draw conclusions about driver actions. The
data suggests that there is a statistically significant difference between some behav-
iors in various intersection situations, in particular, we found that there is often a
significant difference in behaviors between roundabouts and left turn intersections.

After obtaining a labeling of the driving data, different architectures of ANNs
were trained in a situation simulating online classification of driving scenarios. The
ANNs were trained under similar conditions to get a fair comparison of their per-
formance. Since the data set is imbalanced with one class dominating the other,
we concluded that accuracy is not the best measure for model performance. To
measure the performance of the networks, recall, precision and F1 metrics were also
calculated. Each of them evaluate different characteristics of the classification mod-
els. For our purpose, we aim for precision over recall since we are looking for low
false positive cases for identifying intersections. t-LeNet outperforms the rest of the
models with a precision of approximately 95 % for identifying the intersections and
it is better at detecting three out of five of the classes. It is followed by the Stacked
LSTM model in terms of accuracy and precision. Recall rate is in general low for
the four compared models, which lead us to say that there is a high rate of cases
where the car fails to detect to be in an intersection.

From the individual label classification, it was observed that, as expected, steady
state is the easiest to identify. It is followed by the outlier class, right turn, left turn
and finally the roundabout. Each model has different abilities for identifying specific
scenarios. One example is the t-LeNet model which outperforms the rest for the
outlier identification, while ResNet has better abilities for identifying roundabouts.
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5.2 Discussion

In this section we will discuss the impacts of the limitations in this project and the
scientific contribution of our work.

5.2.1 Limitations

One of the major limitations in this project is that the labeling and pattern discovery
algorithms were developed on a data set consisting of one route driven by one driver.
This may potentially have an impact on the results and reliability of some the
conclusions drawn. However, we believe that the effect of this limitation should be
minimal for a few different reasons, namely, the route contains different road types,
such as highway, country side and city driving which should cover most common
scenarios. In addition, the data were collected in different driving conditions such
as heavy congestion on the route. A simple way to mitigate the limitation of having
only one driver is to have another one collecting data along the same route, however,
due to time constraints this was not possible during the course of this thesis but
may be explored at a later stage.

Another limitation is that we underestimated the amount of time the first part
(pattern discovery part) would take which resulted in some less time spent on the
last part of the thesis (classification part). We still think the time split between
the two different parts is reasonable since the performance on the classification task
will be negatively affected by an inadequate labeling. A more severe effect of the
allocation of time is that we initially planned to come up with a predictive model
for power demand, which then unfortunately had to be omitted. We will, however,
give some ideas and suggestions for such a model in the next section.

A minor limitation in the classification part is the computer hardware that was
used to train the neural networks. Usually one trains these models most efficiently
on GPUs (graphic processing units) for their superior memory bandwidth and ability
to parallelize computations. We did not have access to this hardware but we do not
think that this has had any effect on the conclusions and results obtained in this
thesis.

5.2.2 Contribution

The work done in our thesis has contributed in two main ways. Firstly, we have
developed a novel approach to discover and label driving behavior through the pro-
cess of first finding simple patterns in individual signals which are then combined
for discovering more complex driving patterns. Secondly, we have applied time se-
ries classification methods to obtain a traffic scenario classification algorithm. This
model could be implemented as an online subroutine in the vehicle software1.

1In the very last stages of working on this thesis we were able to implement the classifier as
a subroutine in the vehicle software with the help of our Volvo supervisor Chih Feng Lee. The
implemented model was the LSTM unit since it allows constraining the number of parameters
while not compromising performance.
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The first contribution is valuable since there is a large amount of unlabeled data
available and more are generated almost daily from the frequent software testing
done at the Propulsive Software Department. The methods developed can be useful
for discovering, labeling and analyzing more driving data in new routes.

The second contribution is potentially beneficial in several ways. To have an
online classifier in the vehicle could help the ECU make intelligent decisions about
power distribution, gear shifting and energy recuperation which could give a bet-
ter driving experience and make the vehicle more efficient. We believe that more
onboard prediction and classification software is the way forward when developing
modern vehicles. There is potentially a lot to gain from these systems and methods
in ways we might not see right now and that makes our work important. As this
area is relatively new, we hope that our findings and research may be of help and
maybe even inspire others to implement similar algorithms in the future.

5.3 Future work
In this section we will outline some ideas for continuing the work that has been done
in this project.

One obvious extension of the work we have done is to test the methods with
another driver on another route. We also need to implement the online classification
model in a vehicle and test it in an actual driving situation.

Another interesting area for further research is using our classification results for
power demand prediction. The assumption is that different driving scenarios have
particular associated power demands and thus knowing the current traffic situation
can be used to infer the near future driver power request. We have some suggestions
for how this can be done which we will briefly discuss here. In particular, during the
course of this thesis we have come up we two plausible models for power demand
prediction. The first model would be a forecasting model that takes the most recent
history of driving inputs, just like our classification model, and tries to predict the
power request the coming 5 seconds ahead. The other model would use the knowl-
edge of the current driving situation to predict the near future power demand. The
rationale is that each driving scenario has some average power demand associated
to it and one could then simply construct a power demand prediction model. This
can be achieved by weighting the power demand averages with the probabilities
for each traffic scenario as given by the softmax output layer in our classification
algorithms. Our idea is to compare the performance of these two approaches and
possibly combine them. It would have been interesting to see how that turned out
and it is an relevant problem that should be addressed in future work.
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A
Appendix 1

Scenario Description Information

1) Roundabout

The vehicle is in a round-
about intersection. The la-
bel is obtained considering
only the steering wheel sig-
nal.

Repetitions 166
% time spent 5.24%
Min. Time 6.5 s
Max. Time 417 s
Median Time 23 s

2) Left turn

The vehicle takes a left
turn. The label is ob-
tained by considering only
the steering wheel signal.

Repetitions 129
% time spent 2.91 %
Min. Time 2.5 s
Max. Time 93.25 s
Median Time 16.37 s
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A. Appendix 1

Scenario Description Information

3) Right turn

The vehicle takes a right
turn. The label is ob-
tained by considering only
the steering wheel signal.

Repetitions 172
% time spent 3.73%
Min. Time 5.25
Max. Time 284
Median Time 15.73

4) Outlier

Behaviour found when ar-
riving or leaving a park-
ing lot. It is characterized
by large turning maneuvers
and frequent braking.

Repetitions 30
% time spent 2.64%
Min. Time 12.25
Max. Time 323.5 s
Median Time 63.9 s

5) Straight

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (s)

-4

-2

0

2

4

6

8

S
te

e
ri
n

g
 W

h
e

e
l 
a

n
g

le
 (

ra
d

)

0

20

40

60

80

100

S
p

e
e

d
 (

k
m

/h
)

SteeringAngle

Speed

SpeedLim

The vehicle keep a constant
speed without braking or
turning. This happened
commonly when a vehicle
drives in a highway.

Repetitions 1503
% time spent 54%
Min. Time 5.25
Max. Time 228.75 s
Median Time 26.1 s
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Scenario Description Information

6) Increase in speed limit
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The driver accelerates as
they approach an increase
in speed limit

Repetitions 203
% time spent 3.14 %
Min. Time 1 s
Max. Time 35 s
Median Time 11.5 s

7) Congested

The vehicle keeps a con-
stant speed while also brak-
ing. This type of behaviour
is common when there is
traffic congestion and vehi-
cles are waiting in a queue.

Repetitions 124
% time spent 1.71%
Min. Time 2 s
Max. Time 112 s
Median Time 11.5 s

8)
Reducing speed by

braking

The vehicle decelerate and
then use the braking to re-
duce the speed even more.

Repetitions 241
% time spent 2.86%
Min. Time 1.5 s
Max. Time 28.25 s
Median Time 8.8 s
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Scenario Description Information

9) Waiting in traffic

The vehicle brakes and
decelerates until stopping.
After some seconds, it ac-
celerates. This type of be-
haviour is commonly ob-
served at traffic lights and
queues.

Repetitions 102
% time spent 4.81 %
Min. Time 9.75
Max. Time 113.75 s
Median Time 34.26 s

10) Decrease in speed limit
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The vehicle decelerates as
a response to a decrease in
speed limit

Repetitions 57
% time spent 0.82%
Min. Time 2.25 s
Max. Time 35 s
Median Time 10.5 s

Table A.1: List of scenarios obtained by using the steering angle signal (1-4) and
the pattern sequences discovery (5-10). In the last column information about the
scenario duration and the number of repetitions in our data set can be observed.
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