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Explainable AI for the Transformer Model Used on Chemical Language
An Analysis of Attention in the Transformer when Applied on Molecular Optimization
Caroline Bükk, Linda Hoang
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
One of the main challenges in drug discovery is to find new molecules with desirable
properties. In recent years, using deep learning models to change the properties
of a molecule has shown promising results. This task is done by letting the model
transform the original molecule, and is often referred to as molecular optimization.
A problem with using deep learning models is that it is difficult to understand what
the model bases its decisions on. In our project, understanding what the model basis
its decision on could be valuable feedback to drug designers and chemists. It could
both extend their understanding of suitable transformations in different scenarios
and provide insight in how the model could be improved.

In this thesis, we have focused on explaining the Transformer model, when used to
perform molecular optimization. As the molecules in this task are expressed in a
chemical language, this problem can be viewed as a machine translation problem.
The predicted molecule then corresponds to the translation of the input molecule
and the desirable property changes. To explain the model, we considered a set of
assumptions of what the model would focus on. The assumptions were inspired by
the chemists’ intuition regarding what should influence the transformation most.
The attention weights of the cross-attention layer were then analysed to test if these
assumptions were correct. In order to determine if a contribution to the transfor-
mation could be considered important, relative comparisons between different parts
of the input and output were used.

We found that in some regards, the chemists’ intuition agreed with our comparisons
of the attention weights. However, in some cases, the absolute value of the attention
weights on the important parts were still very low. For future work, we suggest
additional assumptions based on the chemists’ intuition and experiments to test
them. We also suggest to use the explainability technique, integrated gradient, that
could be applied similarly and used to verify our results.

Keywords: Explainable AI, attention weights, transformer, NLP, molecular opti-
mization, machine translation, machine learning
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Abbreviations
This is a list of abbreviation which are frequently used in the report.
ADMET - Absorption, Distribution, Metabolism, Excretion and Toxicity

MMP - Matched Molecular Pairs

NLP - Natural Language Processing

SMILES - Simplified Molecular-Input Line-Entry System

Notations
This is a list of notation which are frequently used in the report.

Core - The part of the molecule that remains constant during the

transformation.

Cross-attention - The attention between the encoder and decoder.

R-group - The part of the molecule that is added, removed or

transformed during the transformation.
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1
Introduction

In this chapter, we will first provide a background for the process of drug discovery,
molecular optimization and explainability methods, which all are central subjects
for our thesis. We will then describe our aim with the thesis and present our research
questions. Finally, we discuss the thesis limitations and provide an outline for the
rest of the report.

1.1 Drug discovery
In drug discovery, finding the right compounds to treat diseases is a complex and
lengthy process. Figure 1.1 shows a general overview of the drug discovery process.
Most new drugs today arise from discovery programs that begin with identifying a
biomolecular target that has a potential therapeutic value and then searching for
drug-like compounds which typically selectively bind to the molecular target and
interfere either with its activity as a receptor or enzyme. Molecular libraries are
screened and resulting lead compounds are optimized again in a cycle of feature
designs, synthesis, assaying of numerous analogues, and animal studies [6]. After
that, the human clinical period starts. This is the period where the complex differ-
ences between animals and humans are addressed. Finally, the differences between
humans are considered. This includes the field of pharmacognosy, which studies how
a person’s genes influence how they react to the drugs [1].

A lead compound is a chemical compound that has shown potential as a disease
therapy and could lead to the development of a new medicine [7]. When the lead
compound has been identified, the chemical structure is used as a starting point
to make a drug that has as many benefits and as few harms as possible. The lead
compound is optimized to improve potency and ADMET (Absorption, Distribution,
Metabolism, Excretion, and Toxicity) [8] properties, which describes the disposition
of a pharmaceutical compound within an organism, in other words “drug-like” prop-
erties [9]. The process requires iterative screening runs. With the expectation that

Figure 1.1: A general overview of the drug discovery process. The Figure is
inspired by [1].

1



1. Introduction

the properties of the new compounds will be improved, and favourable compounds
will go forward to in vitro (in test tube) and in vivo (in living organism) testing.
An example of some ADMET properties which are relevant for our thesis are logD,
solubility and clearance. They will be explained in more detail in Section 2.4.1.

1.2 Molecular optimization
In the lead discovery process, starting with a promising molecule and transforming it
to achieve a balance between different properties is a part of the optimization steps.
This is typically done using the chemists’ intuition for which transformations might
give the desired properties. In recent years, other approaches have been explored
for improving this process, such as using machine learning models [10, 11]. He et al.
[3] used the Transformer model to transform molecules to make them satisfy a set
of desirable properties. This task of transforming molecules using a deep learning
model is called molecular optimization [3]. In the article, He et al. [3] represented
the molecules in a string-based format called Simplified Molecular Input Line Entry
System (SMILES) [12], which is described in depth in Section 2.4.2. By using this
string-based format, the molecular optimization can be viewed as a classical machine
translation problem.

Figure 1.2: A comparison between machine translation and molecular optimiza-
tion, where a promising molecule “translates” to a predicted molecule. Specifically,
the input to the molecular optimization model are property changes: logD, solubility
and clearance, concatenated with the source molecule’s SMILES. The red marked
box in the generated molecule shows the part added to the molecule.

To train the model, source and target data are used. The source data consists of the
molecule before the transformation and a set of properties that the molecule should
fulfil after the transformation. The target is the transformed molecule which fulfils
the desirable properties. After training, the trained model is used for generating
new molecules with the desired properties. In Figure 1.2 the similarities between
the classical machine translation task and molecular optimization is visualized. For
the translation task, the language model is given an English sentence and outputs

2



1. Introduction

the translation in Chinese. For the molecular optimization task, the model is given
a promising molecule and three property constraints. The model then outputs a
transformed molecule which fulfils the property constraints.

The molecule can be divided into two parts: the core and the R-group. The core is
the part that remains constant throughout the transformation and the R-group is
the part that is added, removed or transformed in the transformation. As we are
only interested in the cases where a transformation occur, the R-group can exist in
three different ways: only in the source molecule, only in the predicted molecule and
in both the source and predicted molecule. Figure 1.2 is an example of a prediction
where the R-group only exists in the predicted molecule.

1.3 Explainability methods
Explainability methods is an umbrella term used to describe techniques which aim
to explain the underlying decision mechanisms in deep learning models. They are
often used to give further confidence in the model’s predictions. Explaining refers to
the ability of humans to understand the results of a solution generated by Artificial
Intelligence [13]. One example of these so-called explainability techniques is feature
importance. The main idea is to numerically describe how much different parts of
the input contributed to generating different parts of the output.

In the machine learning field, there have been techniques developed for explaining
natural language processing (NLP) [14]. NLP is the computerized approach to
analyse text, spoken or written by humans, for a range of tasks or applications [15].
Attention scores and first-derivative saliency are two widely used methods for feature
importance-based explanations within the field of NLP [14]. Text-based features
are more intuitive for humans to interpret, which may explain the widespread use
of attention-based approaches in the NLP domain. Nonetheless, these methods
have not been deeply explored for chemical languages. In this project, the aim is
to investigate attention scores as an explainability technique for the Transformer
model when applied to chemical language.

In the field of molecular optimization, explainability techniques could be used to
investigate what parts of the input that contribute to the transformation. Primarily,
it would be valuable feedback for drug designers and medicinal chemists to know
how the model designs the molecules the way it does and if it replicates the chemists’
intuition regarding transformation of molecules.

3



1. Introduction

1.4 Aim

The high-level-goal of the thesis is to investigate the application of explainability
techniques, in particular attention weights in a Transformer model used for chemical
language i.e., molecular optimization. Inspired by the chemists’ intuition, we set up
research questions regarding what part of the input that should affect the transfor-
mation in the generated molecule. By chemists’ intuition, we refer to chemists with
5-10 years of work experience in field of drug design. The research questions can be
divided into three main categories: property change, molecular structure and the
transformed part in the source molecule. For each category, we investigate the effect
on the transformation.

• Property change: The chemists’ intuition regarding the property change is
that it will be important for the transformation. As it is difficult to judge
how important something is by just looking at an isolated number, we will use
two comparisons. First, we will compare how much the other token categories
affect the transformation. Then, we will compare how much the property
tokens affect the transformation vs. how much it affects the reconstruction of
the core of the molecule.

• Molecular structure: The chemists’ intuition for the molecular structure is
that the input atoms’ contribution to generating the atoms in the generated
molecule varies according to their distance to it. The distance that we will
consider is the topological distance in the molecule. To define the topological
distance, we consider the molecule to be a graph. Each atom is a node and
each bond is an edge. The topological distance between two atoms is then the
graph distance between the atoms.

It is also believed that the importance of the atoms close to the transformation
will contribute more to the transformation when the transformation is small.
The reasoning behind this is that for small property changes, it will be easier
for the model to accomplish the change by only focusing on a small part.
However, for larger property changes, the model might need to focus more
on the entire structure. Due to time constraints, this was omitted from the
research questions and was not investigated in this thesis. However, a brief
discussion of how this could be done can be found in the future work section
in the conclusion, Chapter 5.

• Transformed part in source molecule: In the molecular pairs, where both
the source and generated molecule have an R-group, it might be reasonable to
think that the R-group in the source molecule will contribute more than the
average atom, to the transformation. The reasoning for this is that omitting
or changing a part in the source molecule will likely also change the properties
of the molecule, and will thereby need to coordinate with the generation of the
R-group. To determine the relative importance of the R-group in the source
molecule, we will compare its contribution to the R-group in the predicted
molecule with the contribution of the core atoms in the source molecule.

4



1. Introduction

1.4.1 Research questions
All of these hypotheses are specified in the following research questions.

1. Is the property change important for generating the transformation?

2. Is the transformation affected most by the atoms closest to its corresponding
part in the source molecule?

3. Is the transformed part in the source molecule important for generating the
transformation?

1.5 Limitations
For the Transformer model, the most commonly used explainability technique is
to look at the attention weights between the encoder and decoder, called cross-
attention [16]. However, the attention scores of other parts of the Transformer and
gradient based methods are also widely used explainability techniques. Due to time
constraints, we will only use attention and in particular the cross-attention weights
to answer our research questions. The cross-attention will be explained in Section
2.3.

Regarding the chemists’ intuition, only the intuition covered in the research ques-
tions will be investigated. However, approaches to investigate more assumptions
based on the chemists’ intuition will be described under future work in the conclu-
sion chapter.

1.6 Thesis outline
In this first chapter, we have given a brief introduction to the field of drug discovery
and some well known explainability methods. We have also defined our research
space and the limitations of the thesis. We will now provide a brief overview of the
rest of the thesis.

• In Chapter 2, we will give an introduction to optimization in drug discovery, an
in-depth background to molecular optimization, sequence-to-sequence models,
the Transformer model and attention as an explainability method.

• In Chapter 3, we will present our methodology for the data preparation, de-
scribe the implementation of the model and explain how the data retrieval for
the explainability analysis was performed.

• In Chapter 4, we will present our results and discuss its implications for the
research questions.

• In Chapter 5, the main conclusions are presented and some approaches for
future work are suggested.
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2
Theory

In this chapter, we have provided a background for all the topics this thesis will
address. We begin with describing lead optimization. Then, we introduce sequence-
to-sequence models with recurrent neural networks and today’s most common archi-
tecture for sequence-to-sequence problems, the Transformer model. We first describe
the architecture of the Transformer model in detail and then explain how the Trans-
former model is used to perform molecular optimization. In the last section we
present explainable AI for NLP, describe why models need to be explained, and how
attention can be used as an explainability technique.

2.1 Lead optimization
In the early stage of drug discovery, identifying compounds that show promise as
a treatment for a disease and can lead to the development of a new drug is the
main goal. These compounds are so-called lead compounds and are later tested in
further clinical phases. Figure 2.1 shows an overview of the drug discovery process.
One begins with the search of compounds that bind to a molecular target as a re-
ceptor or enzyme (target identification). Following that, screening processes such
as high throughput screening (HTS) is done, where the entire compound library is
screened directly against the drug target and generates hit compounds [1]. Then,
in the hit-to-lead phase, the hit compounds are evaluated and undergo limited op-
timization to identify promising lead compounds. The lead compounds are then
also optimized. This optimization process involves multiple rounds of synthesis and
characterization of potential drugs to develop a picture of how chemical structure
and activity relate to their target and metabolism interactions. E.g., leads are opti-

Figure 2.1: A more detailed overview of the drug discovery process. The Figure is
inspired by [1, 2].
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mized to fulfil desirable properties such as physicochemical properties and ADMET
(Absorption, Distribution, Metabolism, Excretion and Toxicity) properties. After
the lead optimization, the preclinical phase begins [1].

When trying to find a new drug, it is highly unlikely to randomly find a suitable
molecule as the drug-like molecule space exceeds 1023 molecules [17]. A common
approach is therefore to start with a promising molecule (like the lead compound)
that lacks some desirable properties. This molecule is then optimized through a
transformation, often using the chemists’ intuition for which transformation that
might achieve the desirable properties.

Recent development in machine learning has enabled deep learning models to be
trained for the specific task of transformation, without using the chemists’ intuition
[10, 11]. In a recent article by He et al. [3], a deep learning model which can be
trained to transform molecules so that they satisfy some desirable properties was
presented. This task is referred to as molecular optimization. The molecular opti-
mization problem is similar to a machine translation problem in NLP. A promising
molecule, represented as a string, is translated into a similar molecule with optimized
properties, much like how a sentence in English would be translated into a sentence
in Chinese see Figure 1.2. More specifically, the work by He et al. [3] showed poten-
tial for a model based on the Transformer to perform molecular optimization. The
Transformer is a neural network architecture used for sequence-to-sequence tasks in
NLP.

2.2 Sequence-to-sequence models
Sequence-to-sequence (seq2seq) learning takes in an input sequence of words and
generates an output sequence of words. There are different applications of this such
as language translation, text summarization, conversational bots and image caption-
ing. This also means that the length of the input sequence is not necessary equal
to the length of the output sequence, e.g., the input-to-output can be one-to-many
or many-to-one. Seq2seq models commonly uses recurrent neural network (RNN),
which are a variant of feedforward neural networks that can handle sequential data
and be trained to remember information from the past. At each time step t, the
RNN uses a so-called hidden states, ht. The network stores the state of information
of the previous input to help generate the next output of the sequence. It does this
by the recurrence formula (i.e., feedback loop):

ht = fW (ht−1, xt), (2.1)

where ht−1 is the previous hidden state, xt is the input vector at some time step,
fW is some function with parameter W, and ht is the new hidden state [18]. In
particular, the classical (“vanilla”) RNN model uses an activation function (e.g.,
tanh) for the hidden vector ht and then output yt

ht = tanh(Whhht−1 + Wxhxt) (2.2)
yt = Whyht. (2.3)
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Deep RNNs have multiple layers at each time-step and re-uses the same weight
matrix at every time-step. One problem RNN faces is short-term memory loss,
meaning the model is not able to memorize data for a long time and starts to
forget its previous input [18]. This is caused due to the vanishing gradient problem.
During backpropagation through time, at each step, the gradient is calculated. If
the gradient of the previous layer is small, then the gradient of the current layer will
be even smaller. Too small gradients will not update the weights, and therefore the
network will not learn. The vanishing gradient issue has been solved with other types
of RNNs: LSTM (Long Short-Term Memory) [19] and GRU (Gated Recurrent Units)
[20] networks, where LSTM is a generalization of GRU. These two networks have a
more complex hidden unit computation. They use memory cells to store activation
values (signals to activate the neuron) of previous words in long sequences. So-called
“gates” are used for controlling flow of information in a network. The gates learn
which input in the sequence that is important and store their information in the
memory unit.

In 2014 Cho et al. [21], presented the encoder-decoder architecture for seq2seqs
problems, where one RNN encodes a sequence of symbols into a fixed-length vec-
tor representation (i.e., context vector), and the other decodes the representation
into another sequence of symbols. The best model at the time was to combine
the encoder-decoder architecture with the attention mechanism [22]. The attention
mechanism is a part of a neural architecture that enables the model to dynami-
cally highlight relevant features of the input data. The core idea is to compute a
weight distribution on the input sequence and assigning higher values to more rel-
evant elements [23]. The currently most used architecture for seq2seq tasks is the
Transformer [16].

2.3 The Transformer model
The Transformer uses the encoder-decoder architecture and is based on the attention
mechanism [22], which emphasizes certain elements more than others. There are
three ways in which attention occurs in the model: self-attention in the encoder,
self-attention in the decoder and cross-attention between the encoder and decoder
[16]. See the red attention blocks in Figure 2.2.

Self-attention relates different positions of a single sequence in order to compute
a representation of the same sequence. As an example, let the following sentence
be the input sentence, which we want to translate: “The animal did not eat the
food because it was too full”. Does “it” refers to the food or to the animal? For a
human it might be easy to understand, but not for an algorithm. When the model is
processing the word “it”, self-attention allows it to associate “it” with “animal”. As
the model processes each word (each position in the input sequence), self-attention
allows it to look at other positions in the input sequence for information that can
help lead to a better encoding for this word.

Cross-attention relates two different sequences, and gives information from the input
sequence to the decoding layers, such that the decoder can predict the next sequence
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Figure 2.2: A visualization of the Transformer model architecture. The input and
output sequences are specifically for the molecular optimization task. Figure source
[3].

token. The next token is then added to the output sequence. In this project we
will only look at the cross-attention since it has a more direct relation to the output
sequence.

2.3.1 Input embedding
The first step in the encoder is to convert each word in the sentence to a word
embedding. An embedding layer is essentially a lookup table to find a learned vector
representation of each word. The next step is to combine the positional encoding
information with the embeddings.

2.3.1.1 Word embedding

Firstly, one represents each word of the input sentence as a one-hot encoding vector.
This is a vector with all elements set to zero, except for the element representing
the encoding word, which is one. The length of the vector is determined by the
size of the vocabulary. These one-hot encoding vectors are very sparse. By instead
multiplying the one-hot vectors with a learned weight matrix W, one obtains a real-
valued vector, a so-called word embedding. In the original Transformer article, an
embedding dimension of size 512 is chosen. The weight matrix has the shape [vo-
cabulary size, embedding dimension]. The Transformer uses a random initialization
of the weight matrix and updates these weights during training, i.e., learning its
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own word embeddings.

2.3.1.2 Positional embedding

Since the model does not use recurrence or convolution to learn the sequential infor-
mation, the model must get some information about the relative or absolute position
of tokens in the sequence. Therefore, positional encodings are added at the bottom
of the encoder and decoder stacks. There are many choices of positional encodings.
For example, the sine and cosine function of different frequencies can be used:

PE(pos,2i) = sin(pos/100002i/dmodel) (2.4)
PE(pos,2i+1) = cos(pos/100002i/dmodel), (2.5)

where pos is the position and i is the dimension [16]. These functions have linear
properties, which the model easily learns to attend to.

2.3.2 Scaled dot product attention
An attention head takes a sequence of vectors x = [x1, ..., xn] as input, where n is
the number of input tokens. Each vector xi is transformed into query, key, and value
vectors qi , ki , vi with separate linear transformations. Intuitively, one can think of
the query as a representation of what kind of information that one is looking for. The
key represent the relevance to the query, and the value represent the actual contents
of the input. The head computes the attention weights α between all word-pairs as
a softmax-normalized dot product between the query and key vectors, normalizing
the weights to a value between 0 and 1, where dk is the dimension of keys. The
output o of the attention head is a weighted sum of the value vectors.

αij = exp(qT
i kj/

√
dk)∑n

l=1 exp(qT
i kl/

√
dk

(2.6)

oi =
n∑

j=1
αijvj (2.7)

In practice, the attention function is computed on a set of queries, keys, and values
simultaneously, packed together into a matrix Q, K, and V.

Attention(Q, K, V ) = softmax(QKT

√
dk

)V, (2.8)

where the dot product of the queries with all keys are normalized with
√

dk [16].

In self-attention, keys, values, and queries are generated from the same sequence. In
cross-attention, the queries are generated by a different sequence than the key-value
pairs. The attention function corresponds to computing one head. To perform the
attention function in parallel, the model uses multiple heads. [16]
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2.3.3 Multi-head attention
Instead of performing single attention functions, the multi-head attention computes
attention to capture various aspects of the input. This allows the model to obtain
information from different sub-spaces. An example of what different heads can focus
on is shown in Figure 2.3.

When learning the various representations, each head is a unique linear projection of
the input representation as query, key, and value. The scaled dot product attention
is calculated h times in parallel and the outputs are concatenated. One linear
projection is applied by:

MultiHead(Q, K, V ) = Concat(head1, ..., headh)W O

headi = Attention(QW Q
i , KW K

i , V W V
i ).

(2.9)

The projections are parameter matrices W Q
i , W K

i and W V
i and W O

i . [16]

Figure 2.3: An example of how the transformer-based model BERT attention
heads focus on different parts, which corresponds to different linguistic phenomena.
The figures are inspired by [4].

2.3.4 Overall model architecture
Like sequence-to-sequence models, the Transformer uses an encoder-decoder archi-
tecture. Both encoder and decoder are stacked on top of each other, creating N
identical layers. Figure 2.2 describes the Transformer architecture for one encoder-
decoder layer. The encoder is composed of two sublayers. The first is a multi-head
self-attention mechanism and the second is a position-wise fully connected feed-
forward network. There is a residual connection around each two sublayers, followed
by normalization. The output of each sublayer is LayerNorm(x + Sublayer(x)),
where Sublayer(x) is the function implemented by the sublayer itself. The di-
mension of all sublayers in the original transformer model and embedding layers is
dmodel = 512. The decoder, in addition to the two sublayers in each encoder layer,
has a third sublayer, which performs multi-head attention over the output of the en-
coder stack. To prevent positions in the decoder from attending to future positions,
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the self-attention layer masks the future positions. This ensures that the prediction
for position i can only depend on the known outputs at positions less than i. [16]

2.4 Molecular optimization with the Transformer
Our thesis is based on the molecular optimization model from the article1 [3]. In
the article, the molecular optimization was performed with the original Transformer
model2 [16] described in Section 2.3. It was trained using a source molecule and a
set of desirable properties as input and a molecule with a small transformation that
fulfilled these properties as target. By only using closely related molecules, the aim
was to learn the model to choose the same kinds of transformation that a chemist
might suggest to improve the properties of the molecule.

How the model is used to perform molecular optimization will be explained in more
detail in Section 2.4.5. Before that, we will introduce some concepts to make this
explanation easier to understand.

2.4.1 Molecular properties
In the molecular optimization, three important drug properties were considered,
namely clearance (clint or clint), logD and solubility.

Clearance - Clearance or more specifically intrinsic clearance is the ability of the
liver to remove drugs independent of other physiological factors such as the liver
blood flow or drug binding in the blood. The intrinsic clearance is the proportionality
constant between rate of metabolism and the drug substrate concentration at the
enzyme site. In other words, it estimates the compound’s metabolic stability. [24]

LogD - LogD is a measure of lipophilicity of the molecule, in other words its poten-
tial to dissolve in lipids, fats and non-polar solvents. In drug discovery, it regulates
the movement across membranes. A high lipophilicity is more likely to penetrate
cell membrane, however, too high lipophilicity can be toxic. [25]

Solubility - The solubility is the ability for a drug to be dissolved in an aqueous
medium and affects the absorption (the process of a drug moving from its site of
delivery into the bloodstream) and bioavailability (the extent and rate at which the
active drug enters systemic circulation). [26]

Clearance and solubility were quantified as either high or low and the desirable
change was expressed as either low → high, high → low or no change. The logD is
represented as its numeric value, and the change is described as an interval of how
much it should increase or decrease.

These three property changes were tokenized to represent the first three tokens in
the input sequence, see the first (coloured) part of the input to the Transformer

1Git repository: https://github.com/MolecularAI/deep-molecular-optimization
2The model used is identical to the original Transformer model, except that the input and

output encoding dimensions were changed from 512 to 256, and label smoothing was changed from
0.1 to 0.
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model architecture in Figure 2.2.

2.4.2 SMILES
For the model to understand the molecules, they are written in Simplified Molecular
Input Line Entry System (SMILES) format [12]. SMILES is a chemical language
that builds on chemical formulas. All SMILES only represent a single chemical
structure, although a chemical structure can sometimes be written as many differ-
ent SMILES. Note that the SMILES string does not only include atom characters,
but also numbers representing start and end points of rings, brackets and other
characters.

2.4.3 MMPs, core and R-group

Figure 2.4: A matched molecular pair (MMP), containing source- and target
molecule, where the structure is similar (core) but having one part being trans-
formed, also known as the R-group. In this example, logD will decrease in value,
solubility will change from low->high, and clearance will go from high->low. Figure
source [3].

A matched molecular pair (MMP) is a pair of molecules that only differs by a minor
single point change [27]. Figure 2.4 shows a matched molecule pair, containing a
source and target molecule. The matched or constant part of the molecules is called
the core, and the transforming part is called the R-group. One remark is that there
is no requisite to have an R-group in both source and target molecules, i.e., the
R-group in either source or target molecule does not have to exist.

2.4.4 Data preparation for molecular optimization
The properties: logD, solubility and clearance were predicted for each molecule using
property prediction models, trained on AstraZeneca in-house experimental data [3].

The data used for training the model contained MMPs from the ChEMBL database
[28], which is a manually curated database of bioactive molecules with drug-like
properties. MMPs were extracted from the dataset, resulting in 9,927,876 MMPs
that meet a set of constraints [3]. From these, 2 % were randomly sampled to be in
the dataset. The dataset was first divided into training and validation set (90 %)
and test set (10 %). The training and validation set was then further divided into
training set (90 %) and validation set (10 %). This yielded a training set of 160,831
MMPs, a validation set of 17,871 MMPs and a test set of 19,856 MMPs.
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2.4.5 Model summary

Using a chemical language to represent the molecules allows the molecular opti-
mization problem to be viewed as a machine translation problem, where the source
molecule together with the desired property changes is translated into the target
molecule. The Transformer, which is the most commonly used model in machine
translation, was used to predict the transformed molecules.

Figure 2.5: An example of how the Transformer model performs molecular op-
timization. During training, the source and target molecules come from an MMP,
where the structures are similar to each other. The source molecule’s SMILES string
is concatenated with the property change between source and target molecules. The
output from the model is the predicted molecule’s SMILES string. Figure source
[3].

The training was performed using the desirable property changes concatenated with
the source molecule and used as input to the model. The output is a transformed
molecule which should fulfil the property constraints. This flow is visualized in
Figure 2.5.

The Transformer was trained for 60 epochs on 160,831 MMPs retrieved from ChEMBL
and their properties were computed by a property prediction model. In the test set,
about half of all predicted molecules satisfied all desired properties. Of this half,
about 90 % of the source and target molecules only differ by a single transformation
and no more than 1/3 of the molecules had changed.
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2.5 Explainable AI for NLP
Deep learning algorithms have achieved high accuracy in complex domains such
as natural language processing. These nested non-linear model structures can be
compared with black-boxes, which allows you to see the input and output, but
provide no information about what causes the models to arrive at their predictions
[29]. Explainable AI is a set of tools and framework to help understand and interpret
deep learning models. When a model is called explainable, it refers to the ability of
humans to understand the results of a solution generated by Artificial Intelligence
[13]. Explainability can focus both on which role different parts of the model play
in learning the specific tasks and the importance the different input features play in
the prediction.

2.5.1 Explainable AI in our project
In our specific case, the aim of the deep learning model is to ease the first steps of
drug discovery. In the decision process of whether the model’s molecule predictions
are worth further investigation, it is important to understand why the model pre-
dicted them. If the model seems to value the same parts of the input in accordance
with the chemists’ intuition, it could justify continued research of the predicted
molecules.

Moreover, the explainability of a well performing deep learning model could also be
used to widen the intuition within the field. In our case, the chemical intuition for
which transformations that are suitable in different scenarios could be altered by an
explanation of how the model works.

To analyse the attention weights of the Transformer is a commonly used explain-
ability technique within the field of NLP [30, 31]. Therefore, this seemed like a good
starting point when applying explainability techniques on molecular optimization.

2.5.2 Attention as explanation
To understand which part of the input that is most significant to ensure that a
prediction is made, it is common to attribute importance between different parts of
the input and output. For the Transformer model, the most commonly used method
for explanation is to look at the attention weights between the input and output
(the cross-attention). In Section 2.3.2-2.3.3 it is shown how the attention weights for
the Transformer were calculated. The cross-attention is the attention between the
encoder and the decoder layer, where queries come from the previous decoder layer
and the keys and values come from the encoder. The decoder then attends over all
positions in the input sequence and shows which input tokens are most relevant for
the predictions.

The attention mechanisms have seen widespread adoption in NLP models. In addi-
tion to improving predictive performance, it provides a distribution over attended-to
input units, which shows the relative importance of different parts of the inputs.
However, there is a debate in the NLP community whether attention can be used
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as an explainability method. Bastings et al. [32] argues that input saliency meth-
ods, e.g., gradient-based methods, are better suited than attention when the goal
is to find relevant input tokens to a prediction. Jain et al. [33] found that learned
attention weights are often not correlated with gradient-based measures of feature
importance, and that one can find different attention weights that results in the
same prediction. Wiegreffe et al. [34] challenges the underlying assumptions in the
work in [33], arguing that such a claim depends on one’s definition of explanation.
Further, Wiegreffe et al. [34] stated that further investigation is needed to take all
elements of the model into account. They instead proposed alternative tests which
resulted in meaningful interpretation of the attention mechanisms.

2.5.3 Visualization techniques
Another category within the explainable AI community is visualization techniques.
The most widely used technique is saliency visualization techniques. Note that this
meaning of saliency is for visualization purposes only, and should not get confused
with saliency methods mentioned in Section 2.5.2, which is a competing explanation
method to attention. There is not a general accepted agreement in the community
how to use the word saliency. In our thesis, attention is not a saliency method,
however attention heatmaps would be classified as a saliency visualization, based on
the survey article of explainable AI for NLP by Danilevsky et al. [14].

Figure 2.6: An attention heatmap of a translation from German to English. In
this example, the generation of the translation to English has some errors. Figure
source [5].

An example of saliency visualization is the saliency heatmap, also known as atten-
tion heatmap, which shows the input-output word alignment [22]. The heatmap
shows which part of the input sequence that has the model’s attention during the
translation, see Figure 2.6. Danilevsky et al. [14] observed a strong correspondence
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between feature importance-based explainability and saliency-based visualizations.
All papers presented in the survey article [14] used feature importance to generate
explanations and also chose saliency-based visualization techniques. The technique
is popular because they present visually intuitive explanations and can easily be
understood by different types of end users.

18



3
Methods

In our project, we have investigated attention as explainability technique on the
molecular optimization model described in Section 2.4. In this chapter, we will de-
scribe everything we needed to do to obtain our results. We will begin by describing
the data preparation, where we describe both how the data in the dataset were
created and how the attention weights in the cross-attention were extracted. When
all preparations have been described, we will provide a detailed explanation of all
experimental setups, used to answer our research questions.

3.1 Data preparation
Here, we will describe the necessary preparations regarding data extraction. First,
we will describe how the data in the dataset was chosen. We will then explain how
this dataset was divided into subdatasets. Finally, we describe how the attention
weights for each head in the cross-attention were extracted from the Transformer
model.

3.1.1 Dataset creation
In this project, we were given a fully trained model and a dataset containing the
source molecules and their corresponding desirable property changes. We used this
dataset and the model to generate new transformed molecules, i.e., model predic-
tions. For each source molecule in the dataset, ten transformed molecules were
generated.

In the investigation of our research questions, we were only interested in using
molecule pairs where the transformed molecules had the desirable properties and
the transformation were not larger than a third of the molecule. The specific con-
dition that the transformation should not be larger than a third of the molecule
was chosen, as the model was only trained on such molecule pairs. To obtain a
dataset with only the molecule pairs that we were interested in, we did a number of
filtrations. First, we checked if the property constraint were fulfilled. The molecule
pairs where the transformed molecule did not satisfy the property constraints were
filtered out. Secondly, we checked that the molecule pair contained only a single
and small transformation. We did this by comparing each molecular pair from the
remaining dataset with a reference dataset with correct MMP transformations. The
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reference dataset acted as a lookup table where you search for an MMP and retrieve
the transformation. If the MMP was included in the reference dataset, we retrieved
the transformation from the reference dataset. After this filtration, we obtained the
dataset that will hence forth be referred to as the full dataset, and different subsets
of it were used for the different experiments. (In Appendix A.1, Figure A.1 a sample
of the full dataset is shown.)

3.1.2 Datasets for the experiments

For the experiments, two different subsets of the full dataset were used. In the first
dataset, we randomly sampled 10 000 samples from the full dataset. This dataset
will hence forth be referred to as the general dataset. In the second dataset, we
filtered the full dataset to only contain samples that had an R-group in both the
source and generated molecule. After this filtration, we randomly sampled 10 000
samples. This dataset will hence forth be called the R-group dataset.

3.1.3 Extraction of attention weights

To obtain the cross-attention for each attention head, we first loaded the input
(source molecule concatenated with desired properties) and output (generated molecule)
into the model. Then, a forward pass for the data sample was made. The last layer
of the cross-attention for each head was then obtained for each data sample.

Each attention head has the dimension number of output tokens times the number
of input tokens. This means that their size varies depending on the input and
output. When examining the research questions, we considered each attention head
individually.

Figure 3.1 shows an example of an attention heatmap, for a transformation of the
source molecule’s SMILES ’Cc1nc(N)nc2c1c(-c1ccc3oc(N)nc3c1)nn2C(C)C’ into the
generated molecule’s SMILES ’CNc1nc2c(c(-c3ccc4oc(N)nc4c3)nn2C(C)C)c(C)n1’.
For a visualization of all eight heads, see Figure B.1 and B.2 in Appendix B. The
horizontal axis label shows each token of the three property changes concatenated
with the source molecule’s SMILES tokens. The vertical axis label shows each token
of the generated molecule’s SMILES tokens. The source and generated molecules
are drawn in Figure 3.1b. The red highlighted bar represents the R-group in the
generated molecule.

When we describe how we retrieved attention weights, we will often talk about the
attention weights between a certain input and output token. With this, we simply
mean the attention weights in the matrix that corresponds to the column of the
input token and the row of the output token.
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(a) An example of an attention heatmap with the input source molecule on the
horizontal axis and the output generated molecule on the vertical axis. The red
highlighted row is the R-group for the generated molecule. This example shows a
single transformation between hydrogen H to carbon C, which is a common trans-
formation in the dataset. In both axis labels there are two indexings. The index
closest to the token is the regular index from 0 to n, n being the length of the
molecule. The second index ’d_’ stands for the topological distance to the R-group.

(b) The source- and generated molecule converted to SMILES strings. In the gen-
erated molecule, there is a red highlighted carbon atom, which is the atom in the
R-group. The numbers in the molecules represent the atom indices of each respec-
tive molecule.

Figure 3.1: Attention heatmap (a) with input and output molecules, where the
molecular structure are drawn in (b).
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3.2 Experimental setup
In this section, we will provide a description for how all data used in the result section
was retrieved. We will begin with a general overview of how we mapped atoms to
their corresponding attention weights (Section 3.2.1). We will then move on to
briefly describe how attention weights for different token categories were extracted
(Section 3.2.2). After this, we will be ready to present a detailed description of
how the attention weights for each research question category: property change,
molecular structure and transformations groups are retrieved (Section 3.2.3-3.2.5).

3.2.1 Mapping of atom to attention weights
In Figure 3.2 the procedure for mapping atoms to attention weights are shown step-
by-step.

• Step 1: Match core atoms
The common core of atoms between the two molecules were found using an
open-source cheminformatics software called RDKit1 and an open-source MMP
database tool2. When using the core as input to the function GetSubstruct-
Matches() the core atom indices for both the source and generated molecules
were returned in two different lists. The core part itself is the same in both
the source and generated molecule, due to them being an MMP, however it
can have different atom indices in the two lists. The two lists are aligned with
each other, meaning that the same position in the two list corresponds to the
same atom, e.g., the first element in both lists represent the same core atom.3

• Step 2: Identify R-group
The R-group was found by first identifying all atoms in the molecules and then
removing the atom indices that are a part of the core. The atom indices were
found by first creating a molecule object from the SMILES string using the
function Chem.MolFromSmiles() with the SMILES string as input. The atom
indices were then retrieved by calling GetAtoms() on the molecule object.

• Step 3: Convert atom index to token index
The conversion from atom to token indices was made by using the fact that
all atom tokens (such as C and [Br]) contains one or more letters and all
other SMILES tokens (such as bonds and control tokens used to describe ring
structures) does not contain any letters at all. For each token in the SMILES
string that did not contain a letter, all atoms after this token had their index
increased by one. For each property token and start token the atom indices
were also increased by one.

1https://www.rdkit.org/
2https://github.com/rdkit/mmpdb
3In RDKit there is also a function called FindMCS(), which can be used to find the maximum

common substructure between two molecules. However, in some edge cases, this way of finding
the substructure was not a reliable alternative. Sometimes the wrong atom was said to be a part
of the common substructure. This approach was used in a first attempt, but was changed to the
approach described in Step 1 when we noticed that it did not always work.
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Figure 3.2: A step-by-step example for how the attention weights between X and
the R-group of the generated molecule are obtained. X corresponds to selected
tokens in each experiment. In the first step, the core of the source and generated
molecule are matched. This matching is then used in step two, where the R-group
in the generated molecule is identified. In order to be able to retrieve the right
attention weights, the atom indices are converted to token indices in step three. In
step four, the attention between X and each atom in the R-group in the generated
molecule is retrieved from an attention head.

• Step 4: Find attention between X and R-group gen
After the atom indices have been converted to token indices, the attention
weights between any tokens of interest can easily be retrieved by simply using
their indices in the attention head. In most of the experiments the attention
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between the atoms in the R-group in the generated molecule, highlighted in
Figure 3.2, and some part of the input were retrieved. Which attention weights
that are retrieved in each experiment will be explained in their corresponding
sections.

3.2.2 Overview of attention weights over input token cate-
gories

We first created an overview of the attention weights for different token categories.
All input tokens were divided into four different categories: start, property, SMILES
and end tokens. The start token is ˆ and the end-token $. They are used to inform
the model of the start and end of the SMILES string. For each token category,
two different attention weights were retrieved. The first measured the maximum
attention to all the tokens in the output, while the second measured the maximum
attention to each atom in the R-group in the generated molecule. As the point of
this experiment is to provide an overview, the general dataset was used.

The reasoning behind taking the maximum attention weight rather than the average
weight is mainly that it is of more interest to know whether some token had a large
impact in generating a part of the output rather than if many tokens had a small
impact in generating the output. Finding patterns for which tokens; that contribute
a lot to different parts of the output, will provide a clearer explanation for what
parts of the input that affect the output in a certain direction.

3.2.3 The effect of input property tokens on the transfor-
mation

To answer the research question regarding if the property constraints are important
for the transformation, the maximum attention weight between the property tokens
and each atom in the R-group was computed. The procedure is the same as described
in Section 3.2.1 and the last step in this description is visualized on the left side of
Figure 3.3. As the goal with this procedure is to determine if the property constraints
are important in general, the general dataset was used.

As references, we compared with both how much other parts contributed to the
transformation and how much the property tokens contributed to reconstructing the
core. In the comparison with how much other parts contributed to the transforma-
tion, the input token categories described in Section 3.2.2 were used. Specifically,
the attention weights between the input categories and the R-group atoms were
compared.

To measure how much the property tokens contributed to reconstructing the core,
the attention weights between the property tokens and the core in the generated
molecule were retrieved. This procedure was similar to the procedure described
above for the R-group. The only difference is that instead of the atoms in the R-
group, the attention weights between the property tokens and the core atoms were
obtained.
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Figure 3.3: Step four, for the retrieval of attention weights between the property
tokens and the R-group atoms.

3.2.4 Relationship between topological distance and atten-
tion weights

In this section, we will describe the method used to investigate how atoms, de-
pending on their placement in the source molecule, contribute to different part of
the generated molecule. In particular, we are interested in if atoms close to each
other in the source molecule will have higher attention weights between each other
than atoms that are further away. This was investigated for the core atoms in the
source molecule to the atoms in the R-group and core in the generated molecule
individually. Also for this investigation the general dataset was used.

This method can be divided in three main parts. First, we retrieved the attention
weights and the topological distances between all atoms of interest. This procedure
is described in detail in Section 3.2.4.1. We then looked at the distribution of the
maximum topological distance between any atoms in the R-group and core of the
generated molecule, respectively (Section 3.2.4.2). These distances were then used
to determine how many bins the atoms should be divided into in the next step. The
last step was to divide the atoms into a number of bins according to their distance
to the atom of interest, such that the atoms closest to the atom of interest were put
in the first bin and the atoms the furthest away in the last bin. This procedure is
described in Section 3.2.4.3.

3.2.4.1 Retrieval of attention weights and topological distances

The retrieval of attention weights and topological distances is illustrated step-by-
step in Figure 3.4. In the first step, the common core of the source and generated
molecule are matched to each other. Each atom in the core of the generated molecule
is mapped to its corresponding atom in the source molecule. In the second step,
this matching is used to identify the R-group in the generated molecule. The third
step was to compute the distance between each atom in the R-group and the atoms
in the core. This was done using the GetDistanceMatrix() in RDKit, which takes
a molecule in SMILES format as input and returns a distance matrix containing
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Figure 3.4: A step-by-step example for how the attention weights and topological
distances between the R-group of the generated molecule are obtained. In the first
step, the core of the source and generated molecule are matched. This matching is
then used in step two, where the R-group in the generated molecule is identified. In
the third step, the distance to the atoms in the R-group is computed for each core
atom. These distances are, in step four, mapped to the source molecule. In step five,
the attention weights between the R-group atoms in the generated molecule and the
core atoms in the source molecule are retrieved. In the last step, these attention
weights are saved together with their topological distance to the R-group atom.
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the distances between all atoms in the molecule. In the fourth step, the topological
distances were mapped to the corresponding atoms in the source molecule, giving
each core atom in the source molecule a distance to the R-group in the generated
molecule. After this conversion, the mapping between the R-group in the generated
molecule and the core in the source molecule allowed us to retrieve the attention
weights between them. The last step was to save these attention weights with its
corresponding topological distance to the R-group. For more details on step 1-2 and
the conversion from atom indices to token indices, see Section 3.2.1.

3.2.4.2 Size distribution of the R-group and core in the generated molecule

As the molecules differ in number of atoms and shapes, only considering the absolute
distances could be misleading. In smaller round molecules the distances between
the atoms will be shorter and the in larger and straighter molecules the distances
between the atoms will in general be longer, see Figure 3.5. In a larger and straighter
molecule, it might be reasonable to consider a larger absolute distance as a short
distances, than what could be in a smaller and rounder molecule.

Figure 3.5: An example of two molecules that differ in number of
atoms and shape. The SMILES string for the molecule to left is
Cc1cc(C2CCCCC2)n(O)c(=O)c1 and the SMILES string for molecule to the right is
Cc1ccc(CCCCCCC(=O)N2CCCC2)cc1. The numbers are the topological distances
from atom zero. Atom zero was chosen, so that the topological distance to the
atom the furthest away from it would be the maximum topological distance in the
molecule.

To take the size and shape of the molecules into account, we divided the distances
into different bins according to how large the distance was compared to the other
distances for that specific atom. To determine how many bins should be used, the
distribution of the sizes of both the R-group and the core were used. Here we
have defined the size as the maximal topological distance between any atoms in
the specified subpart of the molecule, i.e., the size of the R-group is the maximal
topological distance between any two atoms in the generated molecule that both
belongs to the R-group.

A core atom in the source molecule with a high attention weight to an atom in
the R-group in the generated molecule might contribute to generating the entire
R-group, rather than just that specific atom. If this atom is close to some atoms in
the R-group, but further away from the atom that it has a large attention weight to,
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the result might therefore be misleading. This problem is a significant bigger issue
if the size of the R-group is large in relation to the size of the core and increases
with the number of bins.

The sizes of the R-group and the core were computed for all generated molecules in
the general dataset. The generated molecules without any R-group were omitted in
the size distribution result for the R-group, but not for the core.

A decision to only use two bins was decided after assessing the difference between
the size distribution of the core and R-group of the generated molecule. The relative
size of the R-group was determined to be too large to justify using more than two
bins.

3.2.4.3 Dividing atoms into bins

For each atom in the R-group of the generated molecule, the topological distances to
the core atoms were computed. The core atoms were then divided into two different
bins, such that the half of the atoms with the shortest topological distance were put
in the first bin and the other half of the atoms were put in the second bin. If the
number of atoms in the core was odd, one more atom was put in the second bin.

The attention weight was then retrieved by matching the core in the generated
molecule to the source molecule, as described in Section 3.2.4.1. For each atom in
the R-group and bin, the maximal attention weight was retrieved and saved. All
the saved attention weights were then visualized, in Figure 4.5, as a box plot for
each bin. The same method was also used when measuring the attention weights
between the core in the source and generated molecules. In this case, everything
done for the R-group in the generated molecule was instead done for the core in the
generated molecule.

3.2.5 The effect of the R-group of the source molecule on
the transformation

The attention weight retrieval is already described in general terms in Section 3.2.1.
In this experiment, the fourth step was to retrieve the attention weights between
the R-group atoms of the source molecule and the R-group atoms in the generated
molecule. Which attention weights this corresponds to is visualized on the left side
of Figure 3.6. For each R-group atom of the generated molecule, both the average
and maximum attention were saved.

In the right part of Figure 3.6 the attention weights between the core atoms of the
source molecule and the R-group of the generated molecule were retrieved. Also,
for these, the maximum and average attention weights for each R-group atom of
the generated molecule were saved. These attention weights were used as a relative
comparison for the attention weights between the R-groups and helped to determine
if those could be considered to be high. As this procedure requires that both the
source and generated molecule have an R-group, it was performed on the R-group
dataset.
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Figure 3.6: Step four, for the retrieval of attention weights between different
atoms in the source molecule and the R-group atoms in the generated molecule.
To the left, the attention weight between the R-group atom in the source and the
R-group atom in the generated molecule is obtained. To the right, the attention
weights between the core atoms of the source molecule and the R-group atom in the
generated molecule are retrieved.
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4
Results and discussion

In this chapter, we will present all our results, make some interesting observations
and discuss their implications. We will begin by giving an overview of the attention
weights for different input token categories. This overview will be given both for the
maximum attention weights between each category and the atoms in the R-group,
and for the maximum attention weights between each category and all the output
tokens.

Figure 4.1: A visualization of which tokens that corresponds to each category.

After the overview, we will move on to presenting all the results for all research
questions. Also in the results, the research questions were divided into the three
categories: property change, molecular structure, and transformed part of the source
molecule’s effect on the transformation. In some plots, attention weights involving
different subsets of the SMILES tokens will be used. To make it clear which tokens
that belongs to which category, a visualization of this is showed in Figure 4.1. All
the statistical presentations that are visualized were performed on attention head 1.
The same visualizations for the other heads can be found in Appendix C. Moreover,
the results for the other heads will be discussed briefly in the corresponding result
section.

Last, we will discuss the high attention weight between the start token in the input
sequence and the tokens in the generated sequence.
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4.1 Overview of attention weights over input to-
ken categories

Here, we have presented an overview of how the maximum attention weights are
distributed over four different input token categories. The first category is the
property tokens: logD, solubility and clint. The second category is only the start
token, which is used to show that the SMILES string begins. The third category is
all the SMILES tokens, which describes the molecule. The fourth category is the
end token, which constitutes the end of the SMILES string.

(a) Maximum attention weights for each
token category and all output tokens.

(b) Maximum attention weights for each
token category and atom in the R-group
of the generated molecule

Figure 4.2: An overview of attention weights over the different input token cate-
gories: property change, start, SMILES, and end tokens. The main body is the data
point within the quartiles (i.e., between 25:th percentile, Q1 and 75:th percentile,
Q3). The vertical lines are the whiskers, here defined as all data points in the inter-
val [2.5Q1 − 1.5Q3, 2.5Q3 − 1.5Q1]. These whisker parameters are commonly used
in box plots and corresponds to the interquartile range (IQR) 1.5. The circles are
the outlier data points, defined as all data points outside the whisker interval.

The results for each category are visualized with box plots in Figure 4.2. On the left
side (Figure 4.2a), the maximum attention weight for each category is taken over all
the output tokens. In other words, for each input-output pair, only one maximum
attention weight is obtained for each input token category and molecule pair. On
the right side of the Figure (Figure 4.2b), the maximum attention weight is instead
obtained for each atom in the generated molecule that belongs to the R-group.

The same general trends were found for most of the heads. However, which of the
start and SMILES token category that had the largest median attention weights, in
both Figure 4.2a and 4.2b varied between the different heads. The same plots for
all eight heads can be found in Figure C.1 and C.2 in Appendix C.
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In Figure 4.2b the property and the SMILES token have similar maximum attention
weights, while the the attention weights are larger for the start token and smaller for
the end token. This indicates that the property and SMILES token that contribute
most to the atom in the R-group are of equal importance. It also indicates that the
start token contributes more to the generation of the R-group. As the start token
only is used to tell the model that the SMILES string begins and looks the same for
all inputs, it is unlikely that it should affect the generation of the R-group to this
extent. A further discussion of this behaviour is presented in Section 4.5.

In Figure 4.2a the SMILES tokens have the highest median of the maximum at-
tention weights, meaning that the maximum attention weight in the attention head
often was a SMILES token. The large difference between the maximum attention
weights of the SMILES tokens between Figure 4.2a and 4.2b can be explained by
that the highest attention weights involving SMILES tokens were found between
core atoms. This observation was first observed in the heatmaps of the attention
heads (an example is shown in Figure B.1 and B.2 in Appendix B) and will be
described in further detail in Section 4.3.2.

From Figure 4.2a, we can also see that the property and start token have significantly
higher values compared to in Figure 4.2b. This indicates that they are important,
not only for the transformation, but also for the recreation of the core of the molecule.

4.2 The effect of input property tokens on the
transformation

To determine the relative importance that the input property tokens had on the
transformations, two reference points were used. First, we compared with how much
other input token categories contributed to the transformation. Then, we compared
it with how important the property tokens were for regenerating the other atoms,
i.e., recreating the core.

From Figure 4.2b, we can see that the maximum attention weight from the property
tokens to an atom in the R-group on average is roughly the same as for the maximum
attention weight between all SMILES tokens and an atom in the R-group. This
means that the property token that contributes most to the generation has about
the same contribution as the SMILES token that contributes the most. As there
are many more SMILES tokens compared to property tokens, this supports the
assumption that the property tokens are important for the transformation.

In Figure 4.3 the attention weight between the property tokens and the R-group
is generally slightly higher than the attention weight between the property tokens
and the core. The same trend could be seen for all other heads. See Figure C.3 in
Appendix C for the same visualization for all eight heads.

The consistency of higher attention weights for the R-group supports the assumption
that the property change should contribute more to the transformation than to the
preservation of the core. However, as the difference in attention weights between the
R-group and the core was small more investigation, such as using other explainability
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Figure 4.3: Box plots of the attention weights between the property tokens and
R-group in the generated molecule and the core, respectively. The attention weights
are computed for each atom in the R-group and core.

methods, could be useful to strengthen the argument. Due to time constraints we
did not do this ourselves, but a brief discussion of another explainability methods
will be presented under further work in Section 5.

4.3 Relationship between topological distance and
attention weights

Here, we have presented the results for how the topological distance between atoms
affect the attention weights. First, we visualize the maximum topological distances
of the core and the R-group in the generated molecule. These were presented first, as
they were used to decide the number of bins that should be used for the topological
distance analysis. Secondly, the results for how the topological distance between
atoms affect the attention weights are presented. Last, a breakdown of the attention
weights for the different SMILES tokens is shown. This breakdown was made to
explain the large difference between the attention weights between atoms in the
topological distance result and the attention weights of all SMILES tokens in the
overview. For more information about how and why these results were obtained,
see Section 3.2.3 in the method.

4.3.1 Size distribution of the R-group and core in the gen-
erated molecule

We here define the size as the maximum topological distance between all atoms.

Figure 4.4a shows the size distribution of the core of the generated molecule. The
most common maximum distance within the core is 13 and the distribution looks
similar to a normal distribution.
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(a) Distribution of the maximal distance
between any two atoms in the core of each
molecule.

(b) Distribution of the maximal distance
between any two atoms in the R-group of
each generated molecule.

Figure 4.4: The distributions of maximum topological distance within the core
and within the R-group, respectively.

Figure 4.4b shows the size distribution of the generated molecule. Note that there
are generated molecules without any R-group, which are not represented in this
image. The most common maximal distance is distance 4 with over 2000 occurrences.
Distances 0, 2, 3 and 5 all have roughly 1500 occurrences each. The zero distances
means that there is only a single atom in the R-group of the generated molecule.

After comparing the size distributions of the R-groups and cores, it was decided to
only use two bins in the topological distance analysis. This decision was made as
the relative size of the R-group was too large to justify using more bins.

4.3.2 Attention weights for short and long distances
For this analysis, the atoms were sorted into different bins according to their dis-
tance to the atom of interest. From the distribution results of maximum topological
distances within the core and the R-group, visualized in Figure 4.4, it was decided
to only use two bins. In the first bin, the 50 % of the atoms with the shortest
distances to the atom of interest were placed and in the second bin the rest of the
atoms were placed. For more details about the procedure and the motivation behind
it, see Section 3.2.4 in the method.

In Figure 4.5 the attention weights for the short and large distances are visualized.
On the left side of the figure (Figure 4.5a), the distance is measured from all core
atoms of the source molecule to all R-group atoms of the generated molecule. The
maximum attention weight was then taken for each bin and atom in the R-group.
The atoms with short distances and the large distances to the atom in the R-group
both had very low and similar attention weights. The very low attention weights,
and the similar values, were seen in all heads. However, which of the distance
categories that had the slightly higher median attention weight, differed between
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(a) Maximum attention weights between
the core of the source molecule and each
atom in the R-group of the generated
molecule.

(b) Maximum attention weights between
the core of the source molecule and
each atom in the core of the generated
molecule.

Figure 4.5: Maximum attention weights for each bin and atom of interest to all
core atoms. The atom of interest is either an atom in the R-group in the generated
molecule or an atom in the core.

the heads. For the same visualization as in Figure 4.5a for all heads, see Figure C.4
in Appendix C.

The small difference in the magnitude of the attention weights between the short
and long distances, indicates that the distance to the R-group is irrelevant for how
much it contributed to its generation. However, to strengthen this claim other
explainability methods could be used to verify that the attribution to the R-group
is about the same for atoms with short and long topological distances to it. As
mentioned in the introduction, the chemists’ intuition is also that the atoms closer
to the R-group will contribute more to the transformation when the property change
is small. Both the use of other explainability methods and to specifically investigate
the relevance of the topological distance for molecule pairs with small property
changes will be discussed as future work in the conclusion chapter.

In Figure 4.5b, the distance is measured from all atoms of the source molecule to each
core atom of the generated molecule. The maximum attention weight was obtained
for each bin and core atom. It is clearly visible that the atoms with shorter distances
to the core atoms have substantially higher attention weights than the ones that are
further away. The same trend was visible for all eight heads, see Figure C.5 in
Appendix C for the same visualization for all heads.

That the distance would be important for preserving the core of the molecule in the
prediction coincides with our observation of the attention heatmaps. An example
of all attention heatmaps for a molecule pair is visualized as heatmaps in Figure
B.1 and B.2 in Appendix B. In some of these heatmaps there is a diagonal of high
attention weights where each atom in the core of the molecule has high attention
weights to themselves. This indicates that the model attends most to the atom
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in the source molecule that it is recreating. In some of the heatmaps, it was also
seen that the molecules close to each other generally had higher attention weights
between them. This implies that the model uses the atoms close by to understand
where to place the atoms in the generated molecule.

4.3.3 Breakdown of attention weights to SMILES tokens
When the maximum attention weights between the core of the source molecule and
the R-group of the generated molecule in Figure 4.5a were compared to the maximum
attention weights between the SMILES tokens of the input and the R-group atoms
of the generated molecule in Figure 4.2b a large gap was observed. The attention
weights in Figure 4.5a were substantially lower than the ones in Figure 4.2b. As
both of these plots measure the maximal attention between the R-group and all core
atoms (in Figure 4.5a) or all SMILES tokens (in Figure 4.2b) this large difference
in attention weights was surprising. As the core atoms are a subset of all SMILES
tokens, it is obvious that the maximal attention weights between the SMILES tokens
and the R-group is higher than the attention weights between the core atoms and
the R-group atoms. However, it was surprising that the difference was so large.

Figure 4.6: A breakdown of the maximum attention weights between the input
SMILES tokens categories on the x-axis and the R-group in the generated molecule.

The previous assumption was that token pairs with atoms had higher attention
weights between them than token pairs with other SMILES tokens. Therefore, the
maximum attention weight between the core and the R-group atoms and between
all SMILES tokens and the R-group atoms should be fairly similar. To explain this
gap, a breakdown of the maximum attention weights for different SMILES tokens
was performed.

Both between the categories All SMILES and all atoms and between all atoms and
core atoms in Figure 4.6, there is a significant drop in the maximum attention
weights. This means that the attention weights of the category atom token were
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not as much higher compared to the other SMILES tokens, as we had expected.
Moreover, as most of the atoms are core atoms, it was also surprising that the
difference of their maximum attention was so large. The large differences between
the categories explain the difference between Figure 4.5a and 4.2b.

The same result was found for most of the heads. However, for some heads, the
attention weights for the all SMILES category were so small that the difference
between the other categories were hard to distinguish. For the visualization in
Figure 4.6, for all the heads, see Figure C.6 in Appendix C.

4.4 The effect of the R-group of the source molecule
on the transformation

To determine the relative importance that the R-group in the source molecule had
on the transformation, a reference point was used. This reference point is the con-
tribution that the core atoms in the source molecule had to the transformation. For
a detailed explanation of how the attention weights were retrieved, see Section 3.2.5
in the method.

Figure 4.7: A visualization of the attention weights between the R-group in the
generated molecule and the R-group in the source molecule and core, respectively.
“All” in the Figure refers to all attention weights between the atoms in the R-group
in the generated molecule. “Max” refers to the maximum value for each atom in the
R-group in the generated molecule.

From Figure 4.7 in the first and second box plot, it is clear that the R-group in
the source molecule in general have higher attention weights to the R-group in the
generated molecule. This indicates that each atom in the R-group of the source
molecule on average contributes more to the transformation than the atoms in the
core of the source molecule.
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In Figure 4.7 in the third and fourth box plot, we can also see that the maximum
attention weights for the R-group and the core are roughly the same. This implies
that the core atom and R-group atom, that contributed most to the transformation,
had approximately the same magnitude of contribution. The same trends as have
been discussed for Figure 4.7 were also seen for most of the heads. See Figure C.7
in Appendix C for the same plots for all heads.

4.5 Analysis of the start token
The results from the overview of the attention weights over input token categories
(Section 4.1) showed that the start token had a relatively high attention weight,
which was an unexpected result. However, a similar behaviour has also been seen
in an analysis of the attention in the transformer based model BERT [4], where
the BERT model focuses on the corresponding separator token called [SEP]. In the
article, they propose that a possible explanation is that [SEP] could be used to
aggregate segment-level information, which can then be read by other heads. To
further investigate this hypothesis, they applied gradient-based measures of feature
importance [35], where they compute the gradient of the loss from BERT’s masked
language modelling task with respect to each attention weight. Their test concluded
that their initial hypothesis was wrong. The result instead showed that when the
[SEP] becomes high, the gradients for attention to [SEP] becomes very small, de-
noting that attending more or less to [SEP] does not substantially change BERT’s
output and that the [SEP] act like an “no-op” (no operation). This implies that an
attention head focuses on the [SEP] tokens when it can not find anything else in the
input sentence to focus on.

Another example of this behaviour was shown by Kobayashi et al. [36] where they
analysed the Transformer model using vector norms. They found that although the
attention score of [SEP] token was high, the norm of the value vector that is being
multiplied with the attention score was very low. So low that the final product
ends up being close to zero. They argued that special tokens are considered as an
operation that does not collect anything, just like a “no-op”. In our case, the start
token could act similar to a separator token such as [SEP], because it separates
the property tokens and the SMILES tokens. Therefore, we believe that the start
token in our case acts like a “no-op” as well and will not affect the output of the
generation.
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5
Conclusion

This thesis has focused on explaining the Transformer model [16] for molecular op-
timization presented in [3]. The aim was to investigate attention [22] as an explain-
ability technique for chemical language, which has not yet been deeply explored. To
do so, we have developed our own framework for analysing how different parts of
the input affect the generated molecules. In particular, we wanted to investigate if
the chemists’ intuition regarding what part of the input is of most relevance when
optimizing a molecule agrees with where the model puts its attention. This was in-
vestigated through our research questions: (i) Is the property change important for
generating the transformation? (ii) Is the transformation affected most by the atoms
closest to its corresponding part in the source molecule? (iii) Is the transformed part
in the source molecule important for generating the transformation?

The main findings were: Firstly, the property tokens seem to have an important
contribution to the transformation. Secondly, the R-group of the source molecule
on average contributes more to the transformation than the atoms in the core of
the source molecule. Finally, the chemists’ intuition regarding the distance to the
R-group being relevant for the contribution of the transformation does not seem to
agree with how the model learns. Nevertheless, it is difficult to tell whether the
distance to the R-group is truly irrelevant for the model or if simply looking at the
attention weights is not a good method to investigate this particular dependency.
Additionally, the Transformer’s attention focuses a lot on the start token, similar to
BERT attending to the separator token [SEP] [4, 36]. This is a result of the token
acting as a “no-op” and does not affect the output.

The Transformer is, as all deep learning models, a black box, meaning that it is
difficult to understand why a certain prediction is made. However, to be able to
improve the model, it can be of great importance to understand what is most im-
portant for the predictions. Therefore, being able to explain so that human users
can understand the results of a solution generated by Artificial Intelligence is of high
relevance. In our specific case, where the Transformer has been used for molecu-
lar optimization, it is important to understand if the model shares the chemists’
intuition for what transformations that are suitable. In general, the results of our
experiments showed a resemblance with the chemists’ intuition for which part of the
input that will affect the transformation. However, the absolute attention weights,
for both the input part that was believed to have a high impact and the part used
for comparison, were generally low. Moreover, only three assumptions inspired by
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the chemists’ intuition were tested. To draw conclusions regarding how similar the
chemists’ intuition and the model’s decision process truly are, further investigations
are needed, e.g., doing similar analysis with other explainability techniques and test
more assumptions based on the chemists’ intuition.

Future work
In our thesis, we investigated the relationship of the topological distance between
the core atoms and R-group and the core atoms’ contribution to the R-group of
the generated molecule. It was concluded that the distance did not seem to affect
the contribution of the atoms at all. However, the chemists’ intuition regarding the
effect of the distance was also that it should be more important for small property
changes. Due to time constraint, we did not investigate whether this seemed to be
the case. However, this could easily by done creating one dataset with only large
property changes and one with only small property changes. The same box plots as
in Figure 4.5a for each dataset could then be made and compared. If the median of
the maximum attention weight is higher for the dataset with small property changes,
it will support the chemists’ intuition.

The topological distance between the core atoms of the source and the core atoms of
the generated molecule seemed to be of great importance for the reconstruction of
the core. From our results, it is unfortunately not possible to determine if it is truly
the topological distance rather than just the distance between the SMILES tokens
that is important for the conservation. The distinction was not relevant for our
research questions, however it might be interesting to look at. If it is actually the
topological distance and not the distance between the SMILES tokens that is of most
importance for the conservation of the core, it would imply that the model in some
sense understands the molecular structure of the molecule. In other words, the model
could understand how the SMILES strings are used to determine the graph-like
structure of the molecule. To investigate if it is truly the topological distance rather
than the distance between the SMILES tokens that matters, the effect of the different
distances could be compared. This could be done similarly to our experiments for
the topological distance; by using a bin for short distances and another for long
distances. If the attention weights for the atoms with short topological distances
are higher than those for the atoms with short distances between the SMILES token,
it is reasonable to conclude that the model understand the topological distances.

To validate our findings, other explainability methods can be used. In particular,
integrated gradient has shown potential as an explainability method. Unlike other
gradient based methods, the integrated gradient interpolates between an empty
input and the real input, and measures the effect each new part added to the input
has in the output in every step. This interpolation means that integrated gradient
does not break sensitivity. To satisfy sensitivity is defined as: for every interpolation
of the input which differs in one feature, but yields different predictions, the differing
feature most have a non-zero attribution [35]. Integrated gradient has been used in
various fields of machine learning, such as image recognition, sentiment analysis and
also in machine translation in the article “Towards Understanding Neural Machine
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Translation with Word Importance” by He et al.[37] where it outperformed attention.
Originally, our plan was to use the integrated gradient method ourselves, but due to
time constraints we decided to omit it. However, it is fairly easy to implement and
also yields a matrix with an attribution score for every input-output token pair. It
therefore seems like a natural next step to use the integrated gradient to validate
our findings.
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A
Sample from the full dataset

A sample from the full dataset, with columns: source molecule, predicted molecule,
transformation, core, delta logD, delta solubility, delta clint, source molecule’s solu-
bility, source molecule’s logD, source molecule’s clint, predicted molecule’s solubility,
predicted molecule’s logD, predicted molecule’s clint, are shown in Figure A.1.

Figure A.1: A sample from the full dataset.
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A. Sample from the full dataset
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B
Visualization of attention

heatmaps

Example of eight attention heads for transforming the source molecule’s SMILES
’Cc1nc(N)nc2c1c(-c1ccc3oc(N)nc3c1)nn2C(C)C’ into the generated molecule’s SMILES
’CNc1nc2c(c(-c3ccc4oc(N)nc4c3)nn2C(C)C)c(C)n1’. The horizontal axis label shows
each token of the three property changes concatenated with the source molecule’s
SMILES tokens. The vertical axis label shows each token of the generated molecule’s
SMILES tokens. The red highlighted bar represents the R-group in the generated
molecule. In both axis labels there are two indexings. The index closest to the token
is the regular index starting from 0 to n, n being the length of the molecule. The
second index ’d_’ represents the topological distance from the current atom to the
R-group.
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B. Visualization of attention heatmaps

Figure B.1: Heatmaps of attention heads 1-4.
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B. Visualization of attention heatmaps

Figure B.2: Heatmaps of attention heads 5-8, and figures of the source and gen-
erated molecule with corresponding SMILES string.
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B. Visualization of attention heatmaps
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C
Additional results for all heads

In this appendix, all heads will be presented for the result visualized in Section 4.1-
4.4 in the result chapter. We will begin with the overview plots and then present
the plots associated with each research question in order.
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C. Additional results for all heads

(a) Attention head 1 (b) Attention head 2

(c) Attention head 3 (d) Attention head 4

(e) Attention head 5 (f) Attention head 6

(g) Attention head 7 (h) Attention head 8

Figure C.1: An overview of the maximum attention weights between all output
tokens and different input token categories: property change, start, SMILES, and
end tokens.
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C. Additional results for all heads

(a) Attention head 1 (b) Attention head 2

(c) Attention head 3 (d) Attention head 4

(e) Attention head 5 (f) Attention head 6

(g) Attention head 7 (h) Attention head 8

Figure C.2: An overview of the maximum attention weights between each atom
in the R-group of the generated molecule and the different input token categories:
property change, start, SMILES, and end tokens.
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C. Additional results for all heads

(a) Attention head 1 (b) Attention head 2

(c) Attention head 3 (d) Attention head 4

(e) Attention head 5 (f) Attention head 6

(g) Attention head 7 (h) Attention head 8

Figure C.3: Box plots of the attention weights between the property tokens and
R-group in the generated molecule and the core, respectively. The attention weights
are computed for each atom in the R-group and core.
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C. Additional results for all heads

(a) Attention head 1 (b) Attention head 2

(c) Attention head 3 (d) Attention head 4

(e) Attention head 5 (f) Attention head 6

(g) Attention head 7 (h) Attention head 8

Figure C.4: Maximum attention weights for each bin and atom in the R-group of
the generated molecule to all core atoms.
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C. Additional results for all heads

(a) Attention head 1 (b) Attention head 2

(c) Attention head 3 (d) Attention head 4

(e) Attention head 5 (f) Attention head 6

(g) Attention head 7 (h) Attention head 8

Figure C.5: Maximum attention weights for each bin and atom in the core of the
generated molecule to all core atoms in the source molecule.
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C. Additional results for all heads

(a) Attention head 1 (b) Attention head 2

(c) Attention head 3 (d) Attention head 4

(e) Attention head 5 (f) Attention head 6

(g) Attention head 7 (h) Attention head 8

Figure C.6: A breakdown of the maximum attention weights between the R-group
in the generated molecule and the different categories of SMILES tokens on the
x-axis.
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C. Additional results for all heads

(a) Attention head 1 (b) Attention head 2

(c) Attention head 3 (d) Attention head 4

(e) Attention head 5 (f) Attention head 6

(g) Attention head 7 (h) Attention head 8

Figure C.7: A visualization of the attention weights between the R-group in the
generated molecule and the R-group in the source molecule and core, respectively.
“All” in the Figure refers to all attention weights between the atoms in the R-group
in the generated molecule. “Max” refers to the maximum value for each atom in the
R-group in the generated molecule.
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