
Structural design and analysis
of elastically bent gridshells
The development of a numerical simulation tool
Master’s thesis in Structural Engineering and Building Technology

EMIL POULSEN

Department of Applied Mechanics
Chalmers University of Technology
Gothenburg, Sweden 2015

Master’s thesis 2015:95

Structural design and analysis
of elastically bent gridshells

The development of a numerical simulation tool

EMIL POULSEN

Department of Applied Mechanics
Division of Material and Computational Mechanics

Chalmers University of Technology
Gothenburg, Sweden 2015

Structural design and analysis of elastically bent gridshells
The development of a numerical simulation tool
EMIL POULSEN

© EMIL POULSEN, 2015.

Supervisor: Niklas Johansson, Ramböll Byggteknik
Examiner: Mats Ander, Department of Applied Mechanics

Master’s Thesis 2015:95
ISSN 1652-8557
Department of Applied Mechanics
Division of Material and Computational Mechanics
Chalmers University of Technology
SE-412 96 Gothenburg
Sweden
Telephone +46 31 772 1000

Cover: Computational model of a gridshell constructed in the developed software
showing the bending process

Printed by Reposervice
Gothenburg, Sweden 2015

iv

Structural design and analysis of elastically bent gridshells
The development of a numerical simulation tool
EMIL POULSEN
Department of Applied Mechanics
Chalmers University of Technology

Abstract
An elastically bent gridshell is a type of freeform shell structure composed by a
network of continuous elements across its span. It is assembled by straight members
into a two dimensional mat which subsequently is bent into a three dimensional dou-
bly curved shell. In contrary to gridshells made of discrete members, the continuous
elements can easily be connected using identical clamps or bolts. The material of
the structure must exhibit a low Young’s modulus - bending capacity ratio in order
to facilitate the elastic formation process without breakage. Actively bent gridshells
can cross large spans with a small amount of material due to its shell action. They
can be considered a sustainable design option to achieve large and architecturally
qualitative roof structures, especially with local timber as the material of choice.
Even though the benefits of elastically bent gridshells seem apparent, only a hand-
ful large scale structures of this kind have been built so far. A reason for this is
thought to be the involved design process and lack of intuitive tools.

The objective in this thesis is to formulate a design and analysis process of elastically
bent gridshells. Included in this is to develop a codebase which can simulate the
highly non-linear bending process with automatic supervision of the material capac-
ity. The mechanics used is based on a nodal six degree of freedom formulation of the
Dynamic Relaxation method. All equations and logics are compiled into a C# .NET
class library which functions as an application programming interface (API). It is
given the name EMU.dll and has been implemented as a plugin to the parametric
3D modelling software Grasshopper3d® for Rhinoceros®. In order to achieve good
code design which easily can be maintained and extended, the concepts of object
oriented design patterns are used.

The structural output of the developed numerical framework is compared against
analytical and physical models. Through four test cases the code is benchmarked
and proven to be performing accurately. As a real-time structural analysis plug-in
in a parametric environment, the user can easily interact with the model during
run time. Suggestions of how the developed tool fits into a bigger system of the
gridshell design and analysis process are presented. The implementation of software
design patterns makes EMU.dll straightforward to extend and modify to suit project
specific needs.

Keywords: Postformed gridshell, active bending, non-linear finite element analysis,
Dynamic Relaxation, software design patterns, object oriented programming.

v

Preface
This master thesis has been carried out during the fall of 2015 as part of the six
year programme Architecture and Engineering at Chalmers University of Technol-
ogy, Gothenburg, Sweden. As the main focus of the thesis has been to propose a
workflow for the design and analysis of actively bent gridshell structures, a non-
linear structural analysis software has been developed. Videos, samples and other
related explanatory material regarding the software can be found on the following
link:

https://vimeo.com/emlplsn

Acknowledgements
Firstly I would like to thank my examiner Dr. Mats Ander and my supervisor
Niklas Johansson at Ramboll for their guidance and inspiration throughout the the-
sis. Special thanks to Martin Pettersson and Patrik Thorsson at Ramboll for lots
of interesting conversations and feedback. I would also like to thank the following
people: Jim Brouzoulis (assistant professor in material and computational mechan-
ics), John Harding and Iain Sproat (former members of Ramboll Computational
Design), Viktoria Henriksson and Maria Hult (fellow students and opponents of the
thesis). Last but not least I would like to express my gratitude and appreciation
to Professor Karl-Gunnar Olsson, the founder of the Architecture & Engineering
program at Chalmers for the inspiration and for making this happen.

Emil Poulsen, Gothenburg, December 2015

vii

Contents

1 Introduction 1
1.1 Context . 2

1.1.1 Gridshells and actively bent structures 2
1.1.1.1 Erection method . 4
1.1.1.2 Precendent elastic gridshells 5
1.1.1.3 Form-finding and design strategies 9

1.1.2 Organization of objected oriented code 12
1.2 Purpose . 12
1.3 Limitations . 13

2 Theory 15
2.1 Geometrical nonlinear analysis . 15

2.1.1 General theory . 15
2.1.2 Dynamic relaxation . 17

2.1.2.1 Rotation . 18
2.1.2.2 Element internal forces 19
2.1.2.3 Apply element forces to nodes 20
2.1.2.4 Rotations and translations 20

2.1.3 Numerical Integration schemes 21
2.1.3.1 Symplectic Euler . 22
2.1.3.2 Fourth order Runge-kutta 22
2.1.3.3 Velocity Verlet method 23

2.2 Design requirements . 23
2.2.0.4 General design values 23
2.2.0.5 Combined bending and axial compression 24
2.2.0.6 Tension . 24
2.2.0.7 Torsion . 25

2.3 The design of object oriented code . 25
2.3.1 Design principles . 25
2.3.2 Software design patterns . 27

2.3.2.1 Strategy pattern . 27
2.3.2.2 Abstract factory pattern 28

3 Methodology 31
3.1 General approach . 31
3.2 Workflow . 31

ix

Contents

3.2.1 Model generation . 31
3.2.2 Form-finding . 33
3.2.3 Global structural analysis . 33

3.2.3.1 Ultimate limit state analysis 34
3.2.3.2 Buckling analysis . 34
3.2.3.3 Global structural analysis using Autodesk Robot® us-

ing COM interoperability 35

4 Results 37
4.1 EMU.dll . 37

4.1.1 Geometry namespace . 38
4.1.2 Structural namespace . 39
4.1.3 Structural.Relax namespace 40
4.1.4 Implementation in Grasshopper3d® 41

4.2 Benchmarking . 42
4.2.1 Simply supported beam . 42
4.2.2 Beam overhanging both supports 44
4.2.3 Buckling of slender pin-ended column 46

4.3 Case study . 47
4.3.1 Computational model . 47

4.3.1.1 Moment about major axis (element local Mxx) 49
4.3.1.2 Moment about minor axis (element local Myy) 50
4.3.1.3 Torsion (element local Mzz) 51

4.3.2 Physical model . 52

5 Discussion 55
5.1 Reflections . 55

5.1.1 The feasibility of elastically bent gridshells 55
5.1.2 Structure of EMU.dll . 56
5.1.3 Performance of EMU.dll . 57

5.2 Recommendations for further work 57

6 Conclusion 61

Bibliography 63

A Appendix 1: Class diagram I

x

1
Introduction

The term gridshell is often referred to as a type of freeform shell structure which
is constructed of one dimensional elements instead of a continuous surface. As for
ordinary shells, the stability and load bearing capacity is gained from the doubly
curved geometry of the surface. Mechanically, gridshells can be perceived as shells
with regular areas of void, which forces the stresses to be concentrated in the present
material left. This makes a very light and efficient structure which can cross large
spans with a very small amount of material. [7]

Apart from being an efficient way to achieve large roof structures, actively bent
gridshells are a rational and sustainable design option to achieve elegant shells.
Considering its benefits one would expect to see more of these structures. The rea-
son for why they are rarely built is thought to be the involved design and simulation
process associated with them. The formation of the initially flat grid into a three
dimensional shell is a very sensitive process where the limits of the material must
not be exceeded (bending capacity for instance).

The aim of this thesis is to explore and propose a suitable design process for elas-
tically bent gridshells. A digital tool is written to simulate the highly non-linear
bending process utilizing a nodal six degree of freedom (DOF) formulation of the
dynamic relaxation (DR) method. The logics of the form-finding tool, which has
been given the name EMU.dll, is written as an independent class library in the ob-
ject oriented programming language C# .NET. The logics of EMU.dll is exposed as
an application programming interface (API) which can be implemented in various
contexts. In this thesis, Grasshopper3d® for Rhinoceros® has been chosen as host
software for EMU.dll.

When developing software and larger sets of code, it is essential to have a strategy
for the organization of it. Principles of documented software design patterns are
evaluated and implemented to achieve maintainability and extensibility of the code.

Subsequent to the form-finding, a process of structural analysis in ultimate limit
state (ULS) and serviceability limit state (SLS) must be executed to verify the
gridshell. Design requirements concerning load carrying capacity are explored along
with methods for exporting the form-found model into a commercial FEM package
using COM interoperability.

1

1. Introduction

1.1 Context
In this section, a contextual perspective of the subjects in the thesis is presented.
Firstly, a short presentation of the concepts around actively bent gridshells is carried
out to give the reader an insight of the logics and fundamentals of such structures. In
the second section, three selected realized gridshells are presented to show examples
of how they can be implemented. Subsequently, existing methods for the design
and analysis of gridshells are presented. A short contextual introduction of software
design patterns and principals is given before the chapter concludes with presenting
the purpose and limitations of the thesis.

1.1.1 Gridshells and actively bent structures
As just explained, gridshells are shell structures consisting of one dimensional mem-
bers instead of a continuous surface. These elements can mainly be of two kinds.[10]
The first is when the structure consists of relatively short (discrete) beams or bars
which start and end between the nodes of the grid. This is the most common strat-
egy when steel is chosen as the structural material. The other way of constructing
a gridshell is to use continuous members spanning between the supports. These are
initially flat and bent into their three dimensional desired shape by utilizing the
material’s bending capacity.

Figure 1.1: To the left: example of a continuous concrete shell by Heinz Isler.
[4] To the right: example of a gridshell (Weald and Downland gridshell, see section
1.1.1.2) [8]

In terms of production, the elements of gridshell structures with discrete members
between nodes (such as steel gridshells), must be fabricated in correct lengths and
mounted between their two corresponding nodes. The geometry of these connec-
tions can be very complex, with various number of connecting members in different
angles in 3D space making the production costs high. Also the assembly process
usually requires some sort of false-work to support the shell while cantilevering until
completion.

Gridshells with continuous members on the other hand are especially interesting if
the manufacturing and construction process is considered. When the shell is con-
structed by slender continuous members that are elastically bent into position, a
network of flat elements can be assembled on ground prior to the erection of the

2

1. Introduction

Figure 1.2: Erection process of actively bent gridshell. The initial squares deforms
into rhombuses when curvature is introduced. [16]

structure. The connections do not need to be uniquely produced, but can be mass
manufactured and added to the lattice. Mechanically, a number of criteria for the
nodes connecting the members must be fulfilled to make the flat grid deformable: [7]

• The nodes lock the connecting members in translation.
• The continuous members must be able to rotate relative to each other (an

extra rotational degree of freedom in each node is required).
• The connection must not substantially reduce the members load bearing ca-

pacity (by penetrating the material for instance).

To turn a directional flat grid into a doubly curved surface without changing the
node position along the members is therefore only possible if the joints are rotat-
able. For a bidirectional grid with members arranged orthogonally, the initial flat
configuration forms squares between the laths. When a Gaussian curvature κ 6= 0 is
introduced these squares shear into rhombuses. The material of choice must have a
low ratio between its Young’s modulus and bending capacity. That means it must
be possible to deform the material extensively without yielding or breaking. Since
the laths seldom follow the geodesic curves on the surface, another requirement of
the material is low torsional stiffness since they must rotate along their longitudinal
axis. [8]

When the lattice has been erected to its desired shape, the freely rotating nodes
must be constrained in order to make transmission of forces between the members
possible. In its initial pinned condition, the grid can transmit forces in the direction
of the laths and by out of plane bending, but not in-plane shear.[7] Diagonal stiffness
must be added, which can be modelled and achieved in various ways:

3

1. Introduction

• By stiffening the nodes by making them moment resistant.
• Provide diagonal bracing, either by adding cable elements or struts.
• Applying a continuous shear stiff cladding onto the grid.

The preferred bracing method is a choice influenced by a number of factors such as
design intent, load conditions and given erection method.

Figure 1.3: To the left: lattice distortions. To the right: Shear stiffness is provided
in a continuous shell element but not for a set of grid shell elements with rotatable
joints. [7]

1.1.1.1 Erection method

The method of raising the flat network of components into a three dimensional shell
structure can be executed in different ways. A combination of external forces are
applied to the structure which results in internal shaping forces within the material.
As a consequence the members will deform. If the flat mat has been designed prop-
erly to match with the final shell geometry, the construction workers only need to
put the beam ends to their corresponding support nodes after sufficient deformation.
Four methods of achieving the deformation is presented in [12]:

• Lift up. To lift the structure upwards, a well anchored lifting device is needed
above. This can be carried out using cranes. It is a safe method since no
workers need to be below the structure during the procedure. However, a crane
may become hard and expensive to transport if the building site is remotely
situated. Many anchor points to the structure are needed to minimize the risk
of over-stressing the material during the erection process. If the cables from
the crane are not attached vertically to the grid, horizontal force components
may cause extra stress in the members.

• Push up. Pushing the structure from the inside may be considered a method
well suited for smaller gridshells. It can be carried out without any additional
technology using pallets or similar objects. This method have been used for a
number of small scale pavilions. On the contrary, The push up method was
used for the Mannheim Multihalle gridshell using scaffolding towers (further
discussed in section 1.1.1.2) - the largest actively bent timber gridshell to date.
It is uncertain if this would have been accepted with today’s safety regulations.

• Ease down. To avoid the process of lifting the gridshell upwards, the mat
can instead be constructed or put on an elevated level relative its final support
attachment. When this is done, the potential energy from the dead weight can

4

1. Introduction

be utilized to successively remove the underlying scaffolding. Supervision of
the node positions during the procedure is essential to avoid unexpected stress
conditions. This was the method used in the Weald and Downland project
discussed in section 1.1.1.2. As for the two previously presented methods, the
ease down method may introduce large local stresses at the attachments of
temporary support.

• Inflate. A method tested and discussed in [12] is to push up the gridshell
from beneath by applying force from underlying inflated pneumatic cushions.
This is an excellent method for distributing the pushing force evenly among
the nodes, minimizing local stresses caused by the erection. The cushions may
however become hard and expensive to produce with increasing complexity
of the shell geometry. On the other hand the cushions could potentially be
reused as cladding for the complete shell.

Figure 1.4: Four different erection mehtods. [12]

1.1.1.2 Precendent elastic gridshells

The concept of elastically bent gridshells made of identical straight members was
first developed by professor Frei Otto in the 1960s. [7] For the German building
exhibition at Essen 1962 professor Otto designed a small prototype which became
the first of this type ever built. It had an elliptical base of 15 x 15 with a top height
of 5 meter. The material of choice was Oregon pine. Since then, only a handful grid-
shells have been realized in fullscale. In the following subsection, three gridshells
which are considered especially interesting for the thesis are presented.

5

1. Introduction

Multihalle Mannheim

For the German garden festival in Mannheim 1975, a double layered timber gridshell
was designed and built.[7] The concept of a membrane covering the exhibition area
was first proposed by the architects but without any realistic concepts of how to
solve the load-bearing system. It was initially proposed to lift the structure using
balloons, but was declined by the building authorities. At this stage, Frei Otto was
invited to do the structural design and the concept of an elastically bent gridshell
was chosen as an appropriate solution.

The layout of the design includes two major domes; one spanning 60 meter and the
other spanning 40 meter connected by pathways. Only a few small-scale pavilions
of this type had been built before (including the Essen gridshell), so it was truly
a pioneering project. The grid consist of a double layer system with 50 x 50 mm
hemlock sections. The in-plane stiffness is achieved by pairs of 6 mm cables crossing
every sixth node.

The Multihalle Mannheim roof is the largest and most complex elastically bent
gridshell built to date.

Figure 1.5: Top left: the fork lifting system, top right: the plan, lower left: the flat
lattice, lower right: birds eye perspective [7]

6

1. Introduction

Weald and Downland Gridshell

The Weald and Downland gridshell was built in 2002 for the Weald and Downland
Open Air museum in West Sussex, UK.[8] The museum requested a modern tim-
ber building for the study and practice of building conservation, aligned with the
timber-framing tradition in England.

The result became a triple-bulb hourglass shaped gridshell 48 meter long with a
width varying between 11 and 16 meter. The internal height varies between 7 and
10 meter. The load-bearing lattice consists of 50 x 35 mm oak laths in a double layer
system. These were assembled flat on an elevated height (as described in section
1.1.1.1) with 1000 mm spacing. In areas with high load concentration the spacing
is decreased to 500 mm. Diagonal timber bracing were added to increase the sta-
bility which also functioned as support of the cladding. Red Cedar boards (in the
lower part) and polycarbonate glazing (in the upper part) were chosen as cladding
material.

The success of the project is considered to be a consequence of tight collaboration
between the architects Edward Cullinan Architects, the engineers Buro Happold
and the carpenters Green Oak Carpentry.

Figure 1.6: The forming process of Weald and Downland gridshell [14]

7

1. Introduction

Soliday Pavilion

In 2011, a group of researchers from Université Paris est (including Olivier Baverel)
and Ecole Nationale Supérieure d’Arcitecture de Grenoble designed a gridshell for
the Soliday festival in Paris. [13] Its base is a half-peanut shape with a total area
of 280 m2. The dimensions of the structure is 26 meter in length, 15 meter wide
and 7 m high. The material of choice is glass fibre composite in form of pultruded
unidirectional tubes. Standard scaffolding joints were used to connect the orthogo-
nal members. A couple of test pavilions in smaller scale with the same material had
been built earlier by the team. It was lifted using two cranes and according to [13],
the erection process took no longer than a few hours for 10 people.

Figure 1.7: Erection process for the Soliday pavilion [13]

8

1. Introduction

1.1.1.3 Form-finding and design strategies

Since this thesis work is focused on the design process of elastically bent gridshells,
it is necessary to study established and suggested methods in the past. These can
in fact vary a lot - from fully analog to completely digital.

Physical modelling
When the Mannheim gridshell was built in the 1970s, computers were not a trivial
part of neither the designers’ nor the engineers’ toolbox. A high level of physical
modelling was therefore carried out to find the correct geometry of the shell. [7]
Firstly, a hanging chain model was built to find the ideal node positions for the
given boundary conditions and element lengths. The model was simplified by in-
cluding every third lath. When the funicular form was found, the node positions
were recorded by photogrammetric measurements. The data was registered in a
computer where a program to eliminate some physical inaccuracies had been writ-
ten for the project. From this initial model a more detail analysis model could be
built.

Although the distance between the nodes in the hanging chain model was constant
during the relaxation, no bending stiffness was accounted for. Due to the strain
energy caused by the elastic deformation of the flat lattice, a redistribution of the
nodes occurs. This was tested in an acrylic model using the information from the
hanging-chain model. The acrylic model was also used for deformation and buckling
testing.

Curvature analysis and compass method
For the Soliday Pavillion, a more geometrical approach was adopted. [13] In an
initial step a NURBS surface describing a continuous representation of the shell
was created. An equidistant grid was thereafter mapped onto the surface using the
Chebychev net method (also known as compass method). This algorithm starts with
creating two curves on the surface. These are usually oriented orthogonally relative
each other but the algorithm does also work with other angles as long as they aren’t
oriented identically on the surface. Starting from the intersection point, the curves
are successively divided in segments by a desired length. When this is done, three
nodes of a rhombus are defined if the intersection point in the middle is included.
From these, a fourth point can be found by creating two intersecting circles. This
process is repeated for all four quadrants. See figure 1.8.

At this stage, an equidistant grid with acceptable curvature is found. The last step is
to find the position of the nodes which represent the smallest bending energy of the
grid. In the case of Soliday Pavilion, a dynamic relaxation engine in a commercial
FEM package was used. The presented method is also described comprehensively
in [14].

Pseudo pysical simulation
Previously presented methods represent form-finding strategies on two opposite ends
- the first one almost completely based on information from physical modelling and

9

1. Introduction

Figure 1.8: A geometrical approach for generating equal distant grid on free form
surfaces. [17]

the second one achieved by digital means. Both have their pros and cons. With
physical modelling the material properties present become an inevitable constraint
in the form-finding (which is preferable). On the other hand the process of building
the model can become time-consuming and the results may become hard to pass on
to later design stages. Therefore, a digitalized process where real material properties
are taken into account is perceived as "the best of both worlds" in the context of
this thesis. This has been studied by many researchers, e.g. [9] and [3].

For elastically bent gridshells, the most critical stage for the structure is usually
the erection. It can therefore be a good idea to mimic this process as accurate as
possible when executing the form-finding to ensure that no overstress occurs. A
method suggested in [3] is to make a total separation of the sought shell geometry
and the grid itself. By doing this, the forming of the grid can start out from flat
(just as it would in reality) and be bent into the three-dimensional shape by pulling
it to the desired surface. The pulling force can be achieved by virtual springs be-
tween the grid and the surface. The spring stiffness which will dictate how hard the
grid is attracted to the surface, can be adjusted continuously to avoid over-stressing.

After an equilibrium configuration has been found, post-processing of the geometry
is needed (also described in [9]). Since the virtual springs do not exist in reality, these
need to be removed and proper supports have to be inserted. The position of the
supports can be defined by a clipping plane, which trims the grid in a desired height.
This is necessary because the exact length of the members in the flat configuration
is not known beforehand. This second step is sometimes referred to as "spring back
analysis". See figure 1.10 for an illustration of the process.

10

1. Introduction

Figure 1.9: Virtual springs from flat to target surface [3]

Figure 1.10: Form-finding simulation suggested in [9].

11

1. Introduction

1.1.2 Organization of objected oriented code
Object oriented programming (OOP) is a programming concept where discrete snip-
pets of code are encapsulated into smaller modules called classes. [6] These classes
can represent real-life things (like a beam), and possess mainly two types of data;
properties (like beam length, end nodes etc) and methods (like calculating dead
load). A class defines a description or a "drawing" of something. To actually use
the code defined in the class, it needs to be instantiated by creating an object of the
class. A software developed using OOP is designed by making objects interact with
each other. This concept started to developed in the 1950s and early 1960s at MIT.
It is widely used today and is considered to be an efficient and powerful program-
ming method, especially when developing larger software. Examples of languages
supporting OOP is C++, Java and C#.

When building more complex software based on OOP, a major issue is the orga-
nization of the objects in order to make it as flexible, maintainable and extensible
as possible. A strategy to accomplish this is the use of so called software design
patterns, which is a set of solutions to recurring design problems in OOP. It was
first popularized by Gamme et al [1]. The goal with design patterns is to facilitate
the reuse of proven solutions and therefore gain following qualities:

• Improved software quality
• Reduced development time
• Provide a common vocabulary among developers.

Design patterns offer models and descriptions of how objects in a software can relate
based on common design situations. However, the realization and implementation
of these are entirely up to the designer him or herself.

1.2 Purpose
The purpose of this thesis is to formulate a process for the design and analysis of
actively bent gridshells. Focus is put on the development of a numerical form find-
ing tool written in the programming language C#. The following topics will be
investigated:

• Actively bent gridshells.
– Methods for finding the geometry of actively bent gridshells and proposals

for workflow.
– What requirements of the design are set by Eurocode 5 in the respect of

timber gridshells?
– How can these requirements be implemented in the form-finding process?

• Geometrically non-linear finite element analysis.
– The limitations of linear analysis and when non-linear methods must be

applied
– Theory and implementation of 6DOF elements in dynamic relaxation
– Numerical integration schemes

12

1. Introduction

– Verification and benchmarking
• Organization of OOP code

– How can a structural analysis tool be designed to ensure flexibility, adapt-
ability and extensibility?

– How can the separation between geometry and structural properties take
place?

– What design patterns can be applied?

1.3 Limitations
The tool developed in conjunction with the thesis is not expected to be used for de-
tailed structural analysis, but rather as an early stage form-finding tool. However,
it should be sufficiently reliable to provide correct structural response, with output
of real engineering quantities.

The code base will be developed as an independent direct linked library (dll) and is
thought to work as an application programming interface (API) providing the busi-
ness logic including the FE engine. Emphasize has been put on making the code
base as independent as possible (i.e. minimizing third party code) hence making it
possible to implement as a plugin on various CAD systems. Note that an indepen-
dent graphics layer is not written. Instead the code is implemented and tested as a
plugin for Grasshopper3d ®for Rhinoceros®.

The programming language used is C# .NET, which is a high level language based
on automated memory allocation. Hence, manual memory allocation for code opti-
mization (like in C++) is not possible. Also, code written using the .NET framework
does not run on Mac iOS computers.

13

1. Introduction

14

2
Theory

Since a new design tool is to be developed for the thesis, a rigid theoretical framework
regarding the mathematics, mechanics and coding techniques involved needs to be
established. A general description of the non-linear structural analysis is presented
in the first section. This is followed by a presentation of the form-finding method
implemented in the context, the so called Dynamic Relaxation algorithm including
different schemes for numerical integration. Finally the concepts around how to
improve code quality using software design patterns are explained.

2.1 Geometrical nonlinear analysis

2.1.1 General theory
The purpose of mechanical analysis of buildings is to understand their structural
behaviour under different load conditions. With a given set of boundary conditions,
external forces, elements and their connectivity, it is possible to compute the inter-
nal forces as well as the deformations of the equilibrium state. If the structure is
modelled correctly, it can be simulated and tested before it has been built, which
has enormous benefits. The key is to make the right assumptions. A very common
assumption in structural analysis is that the structural model behaves linearly. This
can be concluded in the following aspects [18]:

• The displacement-strain relationship is linear
• The stress-strain relationship is linear
• The equilibrium conditions are established at the original (non-deformed) ge-

ometry.

This implies that if the load is doubled, the deformation, strain and stress are also
doubled. Geometrical linearity is valid only if the displacements and strains are
relatively small. The result will be that the equilibrium equations are linear, the
load-displacement relationships as well as the load-internal forces relationship are
linear. In practice this means that the math is based on the starting geometry, load
cases can be added together and partial factors can be applied after analysis.

Most structures behave linearly as the structural design is usually carried out to keep
the deformations of a given configuration low. For instance, the vertical deflection is
normally kept below L/300 for a simply supported beam (depending on the code).
However, in the case of actively bent gridshells the deformations must be extensive

15

2. Theory

in order to transform a flat lattice into a three dimensional shell structure. It is
therefore incorrect to assume geometrical linearity. To illustrate this, consider the
following simplified case:

Figure 2.1: To the left: geometrically linear structure. To the right: geometrically
non-linear structure.

For the structure on the left hand side where linearity can be assumed, the defor-
mation due to P and Q is ignored when the equilibrium equations are established:

F = P (2.1.1)
V = Q (2.1.2)

M = Qh (2.1.3)

If the mechanical properties and the external forces acting on the structure are
given, the system can easily be solved to obtain the internal forces and deflections.
But when the deformations start to get significant as in the structure on the right
hand side, they will have impact on the force components. The axial load starts to
increase the moment and the lateral load starts to reduce the vertical reaction.

F = P cos(θ)−Q sin(θ) (2.1.4)
V = Q cos(θ)− P sin(θ) (2.1.5)

M = Qh+ Pδ (2.1.6)

An angle θ is introduced which has to be considered when establishing the equilib-
rium equation. As a result, the structure does no longer behave linearly. To solve a

16

2. Theory

non-linear system like this, other methods need to be adopted.

A common method for geometrically non-linear FE analysis is incremental load
stepping. The concept of this algorithm is to solve the same system of equations as
in the ordinary Direct Stiffness Method (DSM); Ka = f, but with a modification
on the the load component. f is scaled down and applied onto the structure in
sufficiently small steps to make the deformations behave linearly. The procedure is
iterative and can be described in the following pseudo code:

Algorithm 1 Incremental load step FE solver
1: procedure SolveIncLoad . Solve incremental load step
2: coord← nodal coordinates . assign node coordinates
3: K← Global stiffness matrix . assign K
4: a← initial displacement . assign a
5: f ← initial force vector . assign f
6: inc← number of load increments . assign inc as number of steps
7: iL← f / inc . compute incremental load by division
8: for (i = 1; i < inc; i++) do . loop through load increments
9: cL← iL times i . update current load

10: <Solve a for K and cL> . Ka = cL
11: <Add a to coord> . coord = coord + a
12: <Recompute K based on updated coord>
13: return coord . deformed model

The method is an extension of conventional FE analysis. Interaction with the model
during the load step iteration is not possible and sufficient prescribed boundary con-
ditions must be provided to form a solvable system of equations. These limitations
constitute the demand of a more flexible method for geometrically nonlinear analy-
sis.

2.1.2 Dynamic relaxation
An alternative approach of finding the equilibrium state of a structure considering
the non-linear effects is the method of Dynamic Relaxation (DR). It is an iterative
technique where the system is solved as a fictitious dynamic problem in discrete
time steps. [11] By introducing the mass multiplied with the acceleration as an
extra term in the static equilibrium equation, a residual force of a node can be
computed at each time step. The node is subsequently moved in the direction of
the acceleration. When the position of the node is updated, new elongations and
rotations occur in the structure which introduces new forces and moments in the
elements. These are computed and added to the adjacent nodes as residual forces
which again can be translated into accelerations, velocities and finally new positions.
The procedure continues until an equilibrium configuration is reached for the com-
plete structure. A summary of the method is stated in Algorithm 2. The reader is
referred to [4] for a more thorough explanation of the different steps in the procedure.

17

2. Theory

Algorithm 2 Dynamic relaxation
1: procedure SolveDynamicRelaxation(a, b) . DR procedure
2: TOL← kinematic threshold . assign TOL
3: m← FE model . assign m
4: converged← false . set converge flag to false
5: while not converged do . loop until convergence
6: for each node n in m do
7: <Reset forces and moments>
8: for each element n in m do
9: <Compute internal forces in n>

10: <Apply force to adjacent nodes>
11: for each node n in m do
12: <Compute acceleration (force, mass)>
13: <Compute velocity (acceleration, time step)>
14: <Compute new displacement (velocity, times step)>
15: if kinetic energy < TOL then
16: converged← true . set converge flag to true
17: else
18: converged← false . set converge flag to false
19: return m . deformed model

An important difference between the DSM and DR is the absence of a global stiffness
matrix in DR. [11] The equilibrium state of the nodes are sought locally, which
indirect will result in the global equilibrium state when the solution has converged.
This means that the lack of prescribed DOFs will not result in an unsolvable system.
In fact, using DR even the structural behaviour of a mechanism can be simulated.

2.1.2.1 Rotation

In order to enable multi-axial analysis of beam elements, each node in a beam
must possess a local coordinate system. The Z axis of these are aligned with the
direction of the beam initially and gets updated at each iteration. As an initial step
of calculating the internal forces and moments (line 9 in Algorithm 2), the internal
rotations must be computed as a function of the two coordinate systems and the
one dimensional line vector connecting the nodes. In figure 2.2 a diagram over the
axes and angles present in the calculations is displayed. The rotations of a beam
can be computed using equation 2.1.7 - 2.1.9.

θx,1 = y1 · p
|p| θy,1 = −x1 · p

|p| (2.1.7)

θx,2 = y2 · p
|p| θy,2 = −x2 · p

|p| (2.1.8)

18

2. Theory

Figure 2.2: Definition of beam coordinate systems [9]

Where
θx,1, θy,1, θx,2 and θy,2 are the rotations around the local x1, y1, x2 and y2 axes.
p is a vector connecting the two end nodes expressed in coordinates of a global
coordinate system. The twist angle ϕ is calculated in using the same arguments:

ϕ = x1 · y2 − x2 · y1
2 (2.1.9)

The elongation of a beam in bending is caused by a combination of elastic strain
and bowing. Given the output from equation 2.1.7 - 2.1.9 and the initial length L0,
the elongation e is computed by

e = |p|
2 − L2

0
2L0

+ L0

60
[
4
(
θ2

x,1 + θ2
y,1

)
− 2(θx,1θx,2 − θy,1θy,2) + 4

(
θ2

x,2 + θ2
y,2

)]
(2.1.10)

For derivations of the presented formulas, the reader is referred to [2].

2.1.2.2 Element internal forces

When the rotations of the element coordinate systems have been computed, the
normal force N , major end-moments (Mx,1,Mx,2), minor end-moments (My,1,My,2)
and twisting moment (Mϕ) can be calculated using the following equations [11]:

N = EA

L0
· e (2.1.11)

Mx,1 = NL0

30 (4θx,1 − θx,2) + 2EIx

L0
(2θx,1 − θx,2) (2.1.12)

Mx,2 = NL0

30 (4θx,2 − θx,1) + 2EIx

L0
(2θx,2 − θx,1) (2.1.13)

19

2. Theory

My,1 = NL0

30 (4θy,1 − θy,2) + 2EIy

L0
(2θy,1 − θy,2) (2.1.14)

My,2 = NL0

30 (4θy,2 − θy,1) + 2EIy

L0
(2θy,2 − θy,1) (2.1.15)

Mϕ = GJ

L0
ϕ (2.1.16)

Here E is the Young’s modulus, A the cross sectional area, Ix the second moment
of area about the local x axis, Iy the second moment of area about the local y axis,
G the shear modulus and J the torsional constant.

2.1.2.3 Apply element forces to nodes

The element forces computed above shall now be applied to the nodes in the system.
Since they were originally calculated based on the local coordinate system of the
beams, a transformation to global axes needs to take place. Contributions from
forces Npi can be decomposed into global x, y, z components, while contribution
from moments must be transformed explicitly using the local axes.

F1,i = 1
L0

(
Npi +Mx,1y1,i −My,1x1,i +Mx,2y2,i +My,2x2,i

)
(2.1.17)

F2,i = − 1
L0

(
Npi +Mx,1y1,i −My,1x1,i +Mx,2y2,i +My,2x2,i

)
(2.1.18)

M1,i = −εijk

(
Mx1

pky1j

L0
−My1

pkx1j

L0
+Mϕ

x1jy2k − y1jx2k

2
)

(2.1.19)

M2,i = −εijk

(
Mx2

pky2j

L0
−My2

pkx2j

L0
+Mϕ

x1jy2k − y1jx2k

2
)

(2.1.20)

Where
i, j, k is 1, 2, 3 representing x, y, z,

εijk =

1 if i = 1, j = 2, k = 3 or a permutation of these values.
−1 if i = 3, j = 2, k = 1 or a permutation of these values.

2.1.2.4 Rotations and translations

When the summation of all forces and moments from the adjacent elements relative
the nodes has been performed, the calculation of new positions and rotations can
be executed. The problem can be formulated as a second order differential equation
which typically requires a numerical integration scheme for the general case. This
involves the computation of the following steps:

20

2. Theory

• The translational acceleration based on the node’s translational (fictive) mass
and force

• The translational velocity based on the translational acceleration and time
step

• The translations given the translational velocity and time step
• The rotational acceleration based on the node’s rotational mass moment of

inertia
• The rotational velocity based on the rotational acceleration and time step
• The rotations based on the rotational velocity and time step

In short converting the forces and moments in a node to translations and rotations.
The process of numerical integration can be done in various ways. This is explored
further in the next section.

2.1.3 Numerical Integration schemes
In structural dynamics, the spatial coordinates of a multiple degrees-of-freedom
system with mass matrix m at a given time t can be obtained by solving the second
order (ordinary) differential equation of motion [19]:

mü(t) + cu̇(t) + ku(t) = p (2.1.21)

Where u(t), u̇(t) and ü(t) is the position vector and its first and second time deriva-

tives (also analog with rotation), p is the external force vector and c is the damping.

For smaller systems in lower dimensions, an analytical solution can be found rela-
tively easy. Either by direct integration or by adopting methods like Laplace trans-
form. For larger systems in a three dimensional space, exact solution might be hard
(or impossible) to find and numerical techniques have to be applied. This implies
that u(t) is not found as a continuous function, but is instead solved by iterat-
ing through small time steps generating the solution as data points. For equation
2.1.21 in the application of the DR method, this is executed in two steps. First by
calculating the velocity based on the acceleration;

v(t) =
∫ t1

t0
a(t) dt (2.1.22)

and secondly by obtaining the position based on the velocity;

u(t) =
∫ t1

t0
v(t) dt (2.1.23)

There are several ways to solve the time dependent integrals above numerically
which are typically organized under two categories; explicit and implicit methods.
Explicit methods calculate the next time step solely based on data from the current

21

2. Theory

position, while implicit methods calculate the next time step based on data both
from the current state and the future state. [15] Normally implicit methods are
numerically stable and more accurate but are computationally more expensive. In
the following sections three numerical integration schemes are presented which have
been implemented in the developed codebase.

2.1.3.1 Symplectic Euler

The most basic way of integrating the equation of motion is the adoption of the
Forward Euler method. [20] The next position is calculated based on the current
position and current velocity. Secondly the next velocity is calculated on the current
velocity and the current acceleration. The scheme is here exemplified in the x
direction, but is analogous to y and z (The same applies for the equations written
in the upcoming two sections).

ut+∆t
xi = ut

xi + u̇t
xi∆t (2.1.24)

u̇t+∆t
xi = cu̇t

xi + üt
xi∆t (2.1.25)

For the application of Dynamic Relaxation, this method usually generate poor re-
sults in terms of accuracy and stability. [20] A slight modification of Forward Euler,
where the updated velocity is used for the computation of the new position, gives
better results without extra cost.

u̇t+∆t
xi = cu̇t

xi + üt
xi∆t (2.1.26)

ut+∆t
xi = ut

xi + u̇t+∆t
xi ∆t (2.1.27)

This method is called Symplectic Euler (also known as Semi-implicit Euler).

2.1.3.2 Fourth order Runge-kutta

The fourth order Runge-kutta (RK4) is a method that results in very accurate
approximations of any analytical ordinary differential equation. [15] The reason for
this is that it takes into account the integration of the second and third derivatives.
Exemplified in the x direction, a scalar version of the technique is performed as
follows [9]:

ka
1 = üxi kb

1 = u̇t+∆t
xi (2.1.28)

ka
2 = üxi + ∆tk

a
1

2 kb
2 = u̇t+∆t

xi + ∆tk
b
1

2 (2.1.29)

22

2. Theory

ka
3 = üxi + ∆tk

a
2

2 kb
3 = u̇t+∆t

xi + ∆tk
b
2

2 (2.1.30)

ka
4 = üxi + ∆tka

3 kb
4 = u̇t+∆t

xi + ∆tkb
3 (2.1.31)

u̇t+∆t
xi = u̇xi + ∆t

6 (ka
1 + 2ka

2 + 2ka
3 + ka

4) ut+∆t
xi = uxi + ∆t

6 (kb
1 + 2kb

2 + 2kb
3 + kb

4)
(2.1.32)

The left column represents the integration of acceleration and the right column rep-
resents the integration of velocity. Critically speaking, this algorithm includes more
steps to compute and is therefore relatively expensive compared to the previously
presented integration methods.

2.1.3.3 Velocity Verlet method

Verlet integration is a family of algorithms which is very popular in molecular dy-
namics. [15] The concept of Velocity Verlet is to compute the current velocity based
on the previous and current acceleration. Here, examplified in the x-direction:

u̇t
xi = cu̇t−∆t

xi + ∆t
2 (üt−∆t

xi + üt
xi) (2.1.33)

ut+∆t
xi = ut

xi + ∆t u̇t
xi + ∆t2

2 üt
ix (2.1.34)

This method has many positive aspects in terms of long-time accuracy and speed.
It does however require extra memory since the values from t−∆t must be stored.
Memory efficiency is important to consider when many particles (nodes) are present.
In physics engines for computes games this becomes especially relevant.

2.2 Design requirements
In order to confirm the load-bearing capacity of a structure subjected to predefined
loads, it must be checked against a set of harmonized technical rules. Eurocode is
used in this report. Even though elastically bent gridshells can be implemented in
many materials, the requirements for timber structures (Eurocode 5) are presented
in this section.

2.2.0.4 General design values

Based on empirical tests, the characteristic material strength (which normally rep-
resents a 5 percentile ratio) of a material can be determined. Based on this value,
a design value can be derived and used for calculations in the ultimate limit state
(ULS) and the serviceability limit state (SLS). The general formula to calculate the
design value Xd of a strength property can be calculated as

23

2. Theory

Xt,0,d = kmod
Xk

γM

(2.2.1)

where:
Xk is the characteristic value of a strength property;
γM is the partial factor for a material property;
kmod is a modification factor taking into account the effect of the duration of load
and moisture content.

2.2.0.5 Combined bending and axial compression

When timber is subjected to bending, compression and tension stresses are intro-
duced in the cross section. These must not exceed the bending capacity of the the
material. This is confirmed by equation 2.2.2 and 2.2.3;

(
σc,0,d

fc,0,d

)2

+ σm,y,d

fm,y,d

+ km
σm,z,d

fm,z,d

≤ 1 (2.2.2)(
σc,0,d

fc,0,d

)2

+ km
σm,y,d

fm,y,d

+ σm,z,d

fm,z,d

≤ 1 (2.2.3)

where:
σm,y,d, σm,z,d are the design normal stresses due to bending about the principal axes
y and z respectively.
fm,y,d, fm,z,d are the corresponding design bending strength due to bending about
the principal axes.

The factor km makes allowance for re-distribution of stresses and the effect of in-
homogeneities of the material in a cross-section. For solid timber, glued laminated
timber and LVL (laminated veneer lumber) the value is determined by the members
cross section. For rectangular cross-sections, km = 0.7 and of other cross-sections
km = 1.0. For all other wood-based structural products, km = 1.0.

2.2.0.6 Tension

For member in tension, the following condition must be satisfied:

σt,0,d ≤ ft,0,d (2.2.4)

where:
σt,0,d is the design tensile stress along the grain;
ft,0,d is the design tensile strength along the grain.

24

2. Theory

For solid timber in tension or bending the effect of member size on strength may be
taken into account. Since larger cross sections are more likely to contain imperfec-
tion, an increase of capacity ft,0,k with the factor kh can be applied for cross section
with its largest dimension less than 150 mm using the following logic:

kh = min

(

150
h

)0.2

1.3
(2.2.5)

where:
h is the depth for bending members or width for tension members, in mm.

2.2.0.7 Torsion

The twist of a beam calculated by 2.1.9 will induce torque (or twisting moment)
calculated by 2.1.16. These will induce shear stresses in the cross section and must
not exceed the material’s shear limits which can be checked by equation 2.2.6.

τtor,d ≤ kshapefv,d (2.2.6)

kshape =

1.2 for a circular cross-section

min

1 + 0.15h
b

2.0 for a rectangular cross-section
(2.2.7)

where:
τtor,d is the design torsional stress
fv,d is the design shear strength
kshape is a factor depending on the shape of the cross-section
h is the larger cross-sectional dimension
b is the smaller cross-sectional dimension

2.3 The design of object oriented code
As presented in section 1.1.2, software design patterns were invented to offer solu-
tions to recurring problems. These patterns are often based on more general design
principles applied when building object oriented programming (OOP) applications.
[1] A few of these are considered especially relevant to the thesis and are presented
in the next section.

2.3.1 Design principles
Software design principles represent a set of guidelines for OOP designers to follow
in the pursuit of good coding practice. Some of them are here presented in an ab-

25

2. Theory

stract fashion, without any direct relation to its implementation or language.

• Encapsulate what varies - Identify the aspects of the application that vary
and separate them from what stays the same. This principle forms the foun-
dation for many design patterns. It means that if there are parts of the code
that are prone to change in the future, they should be encapsulated from other
parts which stay the same. The driving achievement of this principle is that
when something is modified, as little code as possible should notice. In the
context of this report it can become relevant in many ways, for instance the
integration scheme of the motion equations which can be implemented using
various methods.

• Program to interfaces, not implementations. - Interfaces are contracts
and they don’t know anything about implementations. This principle indicates
that code operating on an object-level should not communicate with the con-
crete class itself, but rather with its interface or abstract class. This makes
it much easier to substitute the implementation at a later stage or even at
runtime. The client code (operating code) doesn’t know how the class per-
forms its duties, it only knows what to tell it to do. This can come in handy
when the relax engine operates with the finite elements - it doesn’t know how
it calculates e.g. its internal forces, but only knows that it does. A related
subject is the use of abstract methods - which is provided by the super class
or the interfaces and obligates the sub class to implement a function.

• Composition over inheritance. - HAS-A can be better than IS-A. By the
use of inheritance a class is tied to be in a certain way, which may become
disadvantageous in the long run. Another more flexible approach is the use of
composition - i.e. a class is aggregated (or an instance) in another class. The
relation between the geometrical object Edge and the structural object FeBar
can be carried out both using inheritance and composition. To be preferred is
composition since it opens up for more flexible solutions. This also avoids a
lot of object casting between the sub class and super class.

• Loose coupling - Strive for loosely couple designs between objects that inter-
act. In a project where the concepts of OOP has been adopted, objects must
communicate with other. The knowledge these objects which interact have
about each other is an essential topic. In general - the lesser the better. The
only thing an object needs to know about another object is that it implements
a certain interface. It should not care about the concrete class behind it or
details of its implementation.

• Open closed principle - Classes should be open for extension but closed for
modification. As discussed in [1], an active application must grow and change
over time or it will die. Therefore, the possibility to extend the code base will
be fundamental. This shall preferably be done without changing the existing
classes. Much time can be spent on making the classes stable and bug-free. If

26

2. Theory

new functionality is embedded in the existing classes, there is a probability of
introducing new bugs. This design principle states that it is better to extend
the existing classes by making new ones. The relation between the new and
old object is however up to the designer to decide. An interesting paradoxical
fact on this theme (also stated in [1]) is that "change is the one constant in
software development".

• Single responsibility - a class should only have one reason to change. This
principle indirectly states that classes must not be too large, and if they are,
they must be separated properly. The way code is divided between classes
is often based on intuitive decisions. Sometimes it is easy to map program-
ming objects to real-life objects. The functionality and properties of a node
and a bar would not likely be mixed in a common class in a FEM OO ap-
plication. When there is no such reality-based matching, the dividing line
becomes harder to draw. The single responsibility principle puts emphasis to
the classes’ responsibilities - if a class has two reasons to change, it should be
split up into two classes.

2.3.2 Software design patterns

The art of using the principles described above in the pursuit of flexible, reusable
and maintainable systems is not always straightforward. In some contexts, these
principles might even strive for solutions where they contradict each other. With
this background, suggested OOP systems which do not violate the principles have
been developed to cope with reoccurring problems. These are refereed to as design
patterns and there were originally 23 of them. [1] Presented below are two which
are considered especially relevant to the thesis work.

2.3.2.1 Strategy pattern

The strategy patterns defines a family of algorithms, encapsulates them by putting
them in different classes with a common interface, and makes them interchange-
able. [1] One of the biggest qualities achieved by this pattern is the encapsulation
of behaviours that might vary. In figure 2.3, the context class has two strategies (or
behaviours) that may vary and are therefore encapsulated. In a structural analysis
application, the context might be a finite element. The two strategies could repre-
sent two properties of the element - cross section and material. These can vary and
should therefore be abstracted and encapsulated behind the interfaces IMaterial
and IXSection. So the element aggregates the interfaces but doesn’t know its de-
tails; i.e. it doesn’t know what kind of material or cross section hiding behind the
interfaces. This makes it very easy to change the properties of the finite element
(even during runtime).

27

2. Theory

���������	

���������

�������

	
�����������

�����	

������

����

������

������

����

��������	�����

����

��������	������

����

����������

���������

��������������

����

���������������

����

���������	 ���������	

���������� ����������

���������	

����������

���������� ����������

Figure 2.3: UML Class diagram of the stategy pattern

2.3.2.2 Abstract factory pattern

The concept of the abstract factory pattern is to define a resilient way of creating
new objects. [1] Many times the instantiation of an object depends on a user choice,
which often leads to floating hard-to-maintain code using conditional statements
(like if or switch blocks). For the case of instantiating a finite element object, it
could look like this:

FeElement newElem;
switch(elemType){

case Elements.FeBar:
newElem = new FeBar();

case Elements.FeBeam:
newElem = new FeBeam();

case Elements.FeSpring:
newElem = new FeSpring();

default:
newElem = null;

}

Serveral concrete classes can be instantiated depending on the the input enum
elemType. Often this kind of conditional block occurs on several locations in
the source code, making the process of adding more elements cumbersome. It is
prone to change and should therefore be encapsulated, which is what the abstract
factory pattern addresses. The code snippet above is moved to a factory class
RelaxElementFactory or MatrixElementFactory (which both are derived from
(ElementFactory) which holds the method CreateElement(Element elementType);

28

2. Theory

ElementFactory elemFacRelax = new RelaxElementFactory();
ElementFactory elemFacMatrix = new MatrixElementFactory();

RelaxBeam beamRelax = elemFacRelax.CreateElement(Element.Beam);
MatrixBeam beamMatrix = elemFacMatrix.CreateElement(Element.Beam);

The code above will create two different elements, one of the type RelaxBeam and
one of the type MatrixBeam.

���������	����
�

�����

����	
�

��������	
���

��������	
���

���������	����
�

�����

����	
�

��������	
���

��������	
���

����	���������

���������

����	����������

���������

����	���	����

���������

��������

�����

��������

�����

���������

�����

���������

�����

������

�����

������������	��������������	��

����������	
���

����������	
���

����������	
���

����������	
���

��	
����

��	
����

��	
����

��	
����

������������	��

����������	
���

����������	
���

��������

��������

Figure 2.4: UML Class diagram of the abstract factory pattern

In figure 2.4 a class diagram of the abstract factory pattern is provided and the
following analogies can be made:

• AbstractFactory represents ElementFactory
• ConcreteFactor1 and ConcreteFactory2 represent RelaxElementFactory

and MatrixElementFactory
• AbstractProductA represents FeElement
• ProductA1 and ProductA2 represent RelaxBeam and MatrixBeam.

In short, the Abstract Factory Pattern simplifies the process of extending the appli-
cation in terms of adding more elements.

29

2. Theory

30

3
Methodology

In this chapter the methodology of the proposed design and analysis process is
explained. An overview of the approach taken is firstly presented and then followed
by a more in-depth description of the different steps the method is composed of.

3.1 General approach
The method for gridshell design in this thesis starts with an accurate simulation
of the bending process. An initial lattice with realistic properties and an optional
target surface is defined geometrically. Boundary conditions and shaping forces are
applied to the system. The equilibrium state of the geometry is then computed
using the six degree of freedom Dynamic Relaxation engine written based on the
theory in section 2.1.2. The nature of the algorithms allows the user to interact with
the model during the simulation process.

Taking the form-found model as a point of departure, the structural verification
procedure is executed through analysis in an external FEM software. A link between
the form-finding software and the FEM application allows data to be exchanged
automatically, without having to save and open files from the hard-drive. Using the
described link, the output from the structural analysis is fed back to the form-finding
application where detailing design can be made.

3.2 Workflow
In this section a complete methodology of the workflow is presented for the design
and analysis of actively bent gridshells. The process is composed by an initial model
generation, a form-finding simulation and global structural analysis.

3.2.1 Model generation
The first step towards the simulation is to build a representative centreline struc-
tural model for the problem at hand. The initial geometry in this example is defined
by a bidirectional flat lattice which is generated using native Grasshopper3d® com-
ponents. The materials and the cross sections used in the model must be defined in
parallel.

31

3. Methodology

The centrelines are separated into two different lists, one aligning with the X axis
and one aligning with the Y axis. These can then be plugged into two different
Lath components and marked with an index for each corresponding directions. The
Lath component works like the 12 DOF beam element with the exception that it
doesn’t transfer moments between the lath groups. This enables the node with
connecting laths in different direction to work like a pair of scissors - moments will
be transferred within the laths but not between. The method adopted to achieve
this is based on separating the contributing moments from the laths into different
sets of lists according to [11]. As an example, moment contributions from lath group
1 will not be mixed with contributions from group 2. This results in two different
residual forces which subsequently get integrated separately.

Figure 3.1: Part of the GH definition for the model generation.

Note that the material and cross section indices defined in the lath components must
correspond to defined properties in order to map them correctly. The supports in
the model in this example are defined as pinned joints (locked translation and free
to rotate) located at the corners of the rectangular grid. The output from the lath
element, cross section, material, forces and support components are plugged into
the model component. This will assemble the pieces into a FE model and sort the
topology.

The model generation procedure can be diverse depending on the topology and
geometry of the desired shape. Here a simple two dimensional mat is studied. If a
certain target shape is desired explained in section 1.1.1.3, the user is provided with
a SpringTargetSurf component.

32

3. Methodology

3.2.2 Form-finding
Due to the interactive nature of Grasshopper3d® and the plug-in developed for the
thesis, the user is able to update the position of the support points during runtime.
The driving form-finding mechanism in this example will be moving the support
points, in the plane of the grid, towards the centre of the initial grid. If the grid is
subjected to a triggering transversal load, imperfections will cause the grid to buckle
due to emerging compression forces when the support nodes are moved. When the
structure has started to buckle, the triggering imperfection load can be set to null.
This is illustrated in figure 3.2.

As mentioned in section 1.1.1.3, a strategy to form-find the geometry for an elasti-
cally bent gridshell is to pull a flat grid to a predefined surface. A component for
this has been developed with an optional dynamic adjustment of the pulling force
taking the utilization ratio of the laths into account. When the utilization ratio is
low, the pulling force is large and vice versa. This ensures the curvature of the mat
to never exceed its corresponding stress limit of the material. Material data such as
Young’s modulus and bending strength can be imported from EC5 if timber is the
material of choice.

Figure 3.2: The form-finding process of the lattice driven by pushing the end nodes
towards the centre. Bending moments are supervised realtime.

3.2.3 Global structural analysis
So far there are no external forces applied on the structure apart from the forces
keeping the supports focused towards the middle which causes the deformation. To
verify the safety of the structure, it must be analysed with respect to the actions
subjecting the structure during its lifetime according to appropriate building codes.

33

3. Methodology

On element level stresses must not exceed the limits of the material. Global stability
and dynamic properties are also important to check.

3.2.3.1 Ultimate limit state analysis

As previously mentioned, the ratio between the bending stiffness and the span must
be small during the erection process of the structure. This is achieved by having
cross-sections with a relatively small height. This may become a disadvantage dur-
ing the buildings life-time when the elements must carry load without risking global
buckling or becoming overstressed. If timber is used, the introduction of a second
layer of laths is a solution. They are connected to the primary laths without coupling
the two cross-sections in bending making the height of only one lath being struc-
turally active during the erection process. Upon the completion of the formation,
these two layers can be coupled to get a composite cross section with a substantially
larger second moment of area. [9] [8] This is made possible by tightening the node
connection and by the installation of shear blocks which enable the transfer of shear
between the parallel layers. During the forming process, rotations are allowed in
the nodes which structurally makes the grid a mechanism. In order to achieve full
shell action, these joints must be tightened and additional diagonal stiffness (like
bracing) must be added.

Figure 3.3: Connection details of double layer gridshells. [7]

Appropriate load case combinations based on prestress, dead load, imposed load,
environmental loads etc. must subsequently be identified and analyzed in relation to
the structure. The resulting stresses can be compared against the criteria presented
in section 2.2 to verify the elements’ load bearing capacity. Notable is that relaxation
in the bent material due to creep may reduce the internal prestress over time. For
timber, a reduction up to 0.5 can occur. [14]

3.2.3.2 Buckling analysis

As for all thin shell structures with a low cross-section height compared to its span,
prevention of global buckling due to asymmetrical loads is a fundamental design cri-
teria. As further described in section 4.2.3, buckling loads and buckling modes can
either be found using eigenvalue analysis (like linearized prebuckling) or by adopt-
ing iterative techniques. In the case of the current version of EMU.dll, eigenvalue
analysis of the structure is not possible since there is no global stiffness matrix.

34

3. Methodology

On the other hand, buckling behaviour of an overloaded structure analyzed using
the 6DOF DR implementation is solved naturally. This can be explained by the
minimum energy state buckling modes represent which is the driving goal of DR.

3.2.3.3 Global structural analysis using Autodesk Robot® using COM
interoperability

For applications developed by large software companies like Autodesk®, it is fairly
common to find an associated application programming interface (API). An API
is usually a thin layer of high-level code that allows programmatic communication
with the application core for a given software. This allows users to automate certain
aspects of the application, i.e. control the program from a script instead of clicking
on buttons. APIs are essential in terms of plugin development.

Using the API developed by Autodesk for their FEM application Robot®, a W.I.P.
link (COM interoperability) from Grasshopper3d® has been developed by engineers
at Ramboll®. The link opens up possibilities to automate the procedure of struc-
tural analysis of a form-found gridshell. The entire Grasshoppr3d®model can be
automatically be generated within seconds. The analysis results from Robot®can
be fed back to Rhinoceros®as a foundation for detailed structural design. The usage
of the link in action is illustrated in figure 3.4.

Figure 3.4: Generation of FE model in Autodesk Robot through COM interoper-
ability.

35

3. Methodology

36

4
Results

In this section the results of the proposed method is presented. An overview of
the code base written will be explained including design philosophies and class di-
agrams. The implementation of the code base in Grasshopper3d®will be explained
subsequently.

Three test cases are set up to benchmark the validity of the programs output by
comparing with analytical solutions from literature. Subsequently, a design case
study of more geometrically complex nature is performed. It aims to verify the
proposed workflow presented in the report, including the design phase, geometry
generation, form-finding and lastly structural analysis. Also, a physical scale model
is built for comparison and verification.

4.1 EMU.dll
All code written throughout the thesis work has been collected and stored in a single
dynamic linked library (dll), which has been given the name EMU. The program-
ming language chosen is C# .NET; a modern high-level language well suited for the
application in this context. The integrated development environment (IDE) chosen
is Visual Studio Express, which is Microsoft’s own platform free of charge.

Considering the vast amount of logic required to achieve the desired functionality
of EMU.dll, code management in terms of organization and structure has been
essential. As presented in section 2.3, the organization of object oriented code
is a well studied topic and solutions to reoccurring problems have already been
established many years ago, so called software design patterns. These have been
studied and implemented when considered appropriate in EMU.dll. Apart from the
relation between objects, the codebase has been categorized into a number of main
branches (so called namespaces in C#). Most relevant to present in this chapter are
the three following:

• Geometry namespace
• Structural namespace
• Structural.Relax namespace

These will be presented in the following sections.

37

4. Results

4.1.1 Geometry namespace

The geometry namespace contains classes which solely deal with geometrical op-
erations. They have no intelligence about FEM nor Dynamic Relaxation. It has
been written in such a way that it can be used in other non-structural contexts
as well. The mesh is the central top-level object which aggregates collections of
its components - the faces, edges and vertices (See figure 4.1 for a class diagram).
An important responsibility of the geometrical components is storage of topology
information; an arbitrary vertex in the mesh knows its connecting edges, adjacent
faces and surrounding vertices. The same intelligence holds for faces and edges.
This makes lookups and queries fast. The actual geometrical properties of the
objects (such as Cartesian coordinates) are encapsulated in custom created value
types, so called structs in C#, which don’t hold any information about the topol-
ogy. EmuVector, EmuPlane and EmuPoint are examples of structs.

All geometrical objects have a corresponding interface to separate the out-facing ab-
straction from the actual implementation. This makes the process of exchanging the
implementations smooth. For more complicated geometrical objects such as NURBS
surfaces, logic from third party assemblies can be used in EMU.dll without being
dependent on them using the Adapter pattern. In this case an interface has been
created in EMU.dll (such as IEmuSurface representing the target in the Adapter
pattern) which offers rather sophisticated methods such as computing normals and
closest points on surfaces. This interface can later be implemented as a concrete
class (the adapter) in a context where EMU.dll is used. If the context happens to be
Rhino (as in this case) all requests of IEmuSurface are delageted to a Rhino surface
object (the adaptee) which is aggregated in the adapter. A goal has been to make
EMU.dll completely independent of any third party code (not including the .NET
framework).

	
�	��

���		

	
�����

���		

	
�����

���		

	
�������

���		
�	��

�������

�����

�������

�����

�������

�������

����	���

�������

	
������

�����

	
������

�����

	
�������

�����

����

����

��)

*����

�����

�����

�	�
���

�	�
���

�	�
���

�����)

���-����

B

B

A

A

1.

2.

1. A inherrits / implements

 B (Is-a relationship)

2. A aggregates / compose

 B (Has-a relationship)

Explanations

Figure 4.1: Class diagram of the geometry namespace. A central mesh is the top-
level object which aggregates face, vertex and edges. See appendix 1 for the complete
class diagram.

38

4. Results

����������������

���		

���������

���		

���������

��������

�������

��������

���		

�����

�����������

���		

�����

�����������

���		

���������

��	��������		

����������	

���������

��	��������		

�������

���		

��!���

���		

�����������

���		

���	��
���

�������

���!���

���������������	

�������

�"���

�����������

���		

	��
���������#

���		

�����������#

���		

��������������#

���		

!���������#

���		

��""���������#

���		

��������������#

���		

$������	��������

���		

�%�����	���������

�������

�������

���������

��������

�������

	��
��� �"�����

"�	�����	����#
�����$

���		

����� �"������#

"�	�����	����#����$

���		

�������� �"�����

"�	�����	����#
����$

���		

!��� �"������#

"�	�����	����#
�� �$

���		

� �"������#*+,

����������#�%

�&�������#
����	���$

'������
�������

��""��� �"�����

"�	�����	����#
����$

���		

�������� �"�����

"�	�����	����#
(����$

���		

���""���

�������

!������""���

���		

(�������

(�������
(�������

+�	�������

+�	(�������

+�	�������

+�	(�������

���������

(�������

�
���������

����*����

�� ���

��/���

��/�

�����

�������

Structural namespace

Concrete relax elements

hold references to Finite

Elements

FeModel aggregates

each on of these

B

B

A

A

1.

2.

1. A inherrits / implements

 B (Is-a relationship)

2. A aggregates / compose

 B (Has-a relationship)

Explanations

Figure 4.2: Class diagram of the structural namespace. See appendix 1 for the
complete class diagram.

4.1.2 Structural namespace

In the structural namespace, all classes related to the modelling of a structure are
collected. As seen in the class diagram in figure 4.2, the central object is the FeModel
which holds all information needed to perform an analysis. The components of the
model (elements, nodes, materials, cross sections, external forces and supports) are
collected in repository classes which don’t expose their underlying data structure.
By communicating with the repositories through the interface IRepository, the
idea is being able to switch its implementation and not fix arrays/lists as the only
option. For instance, searching for the closest node in a structure given a single
point can be made much faster if the nodes are stored in a space partitioning data
structure (such as k-dimensional tree) instead of a single array. In that way, the
search algorithm can discard large chunks of data and find the sought node with
O(log n) complexity instead of O(n2) complexity. [5]

The elements themselves store a reference to their geometrical representations. A

39

4. Results

FeBeam has a corresponding EmuEdge and can access the topological information
through it. Other element specific properties such as material and cross section
are aggregated on an abstract level in the element class. Following the concept of
Strategy pattern (see section 2.3), this makes it possible to exchange properties of
the elements at runtime (changing materials and cross sections for instance).

The process of creating structural elements has been encapsulated in specific classes
according to the abstract Factory pattern (see section 2.3.2.2). All factories inherit
from the same supertype and are aggregated in the FeModel class.

4.1.3 Structural.Relax namespace
An important matter during the development of EMU.dll has been to make the rela-
tion between the structural model and the solver loosely coupled, meaning that the
method of finding the equilibrium configuration of a given structure is not specified
within the model itself. The Relax namespace, which actually lives inside of the
Structural namespace, provides all classes needed to perform dynamic relaxation of
the model. The relax specific data for the elements (velocities, accelerations etc.) is
stored in separate relax objects. Note that these are not extensions of their corre-
sponding elements in the Structural namespace. Instead an aggregation relationship
is chosen. For instance the RelaxBeam does not inherit its properties and methods
from FeBeam, but encapsulates an instance of FeBeam and can in that way reference
its data and functionality. The reasons for why a HAS-A relationship is preferred
over an IS-A relationship are many, but central is the avoidance of copying data
across the namespaces by typecasting. See figure 4.3 for a class diagram.

Since a separation between the analysis results and the model components are de-
sired, the relax objects do also store the results from the relaxation process. The
relaxation engine is written in a way that it communicates with the elements on an
abstract level. As a consequence, adding new element types is possible without hav-
ing to rewrite the relaxation engine. Also, the integration scheme is encapsulated in
an integrator object. In the Step() method, which is called from the RelaxSolver
class, the IntegrateTimeStep(IIntegrator integrator) method is invoked in
the nodes individually:

public override void IntegrateTimeStep(IIntegrator integrator)
{

integrator.IntegrateTranslationalDofs(this);
integrator.IntegrateRotationalDofs(this);

}

Here, this refers to the node object because the function is stored in the node
class. As an input argument the chosen integration object is delivered behind the
interface IIntegrator, which makes it possible to easily change or implement new
integration schemes.

40

4. Results

 ���� ������

���		

�����������

��	��������		

�����	

������������

��	��������		

 �������

�������

���		

 �������

�������

���		

�������

��	��������		

 ����!���&��'

����� ���

���		

 ����!���(��'

����� ���!���

���		

 �����"���

�������

����������		

�����������

��	��������		

�������������"�

���		

 ���)���������

�������

���		

�#
"������	�����

�������

���		

 �������-��

���		

����-��

�������

��� ������

�������

����	���	

��������

+�	�������

+�	(�������

+�	(�������

��������

���,�

���������-������	

����� ���

������������

����� ���.���

����� ���!���

����� ���!���

�������

���������

B

B

A

A

1.

2.

1. A inherrits / implements

 B (Is-a relationship)

2. A aggregates / compose

 B (Has-a relationship)

Explanations

Figure 4.3: Class diagram over the Relax namespace. See appendix 1 for the
complete class diagram.

4.1.4 Implementation in Grasshopper3d®
As stated before, EMU.dll is a class library which holds algorithms and logic for
geometry and structural analysis. It is not a standalone executable software which
facilitates a graphical user interface (GUI) to preview models in, but rather an
application programming interface (API) developed to be implemented in other
software. For this thesis, the graphical algorithm editor Grasshopper3d® (GH) for
Rhinoceros® has been chosen as host application. GH is a suitable program for para-
metric design, which lets the user generate geometries rather than drawing them as
in ordinary computer aided design (CAD) software. A model is built by connecting
components which encapsulate functionality or objects. By using the Rhino software
development kit (SDK) Rhinocommon and the Grasshopper SDK, it is possible to
program custom components collected in a Grasshopper Assembly (gha). In this
way, it was possible to implement EMU.dll as a plugin for Grasshopper (EMU.gha)
which essentially is composed of a number of components.

In the current version of EMU.gha (v.1.0.0.0), the components are organized in 7
categories. They can be seen in figure 4.4 under the EMU tab:

• Elements: Finite elements such as beams, springs and bars.
• Load: A set of load components - point loads, transversal line loads etc.

41

4. Results

Figure 4.4: A typical setup of Grasshopper components. The geometry is generated
using native GH components, which are converted into model components. These
are assembled, solved and subsequently analyzed.

• Material: Currently available is generic linear elastic material and timber.
• Section: Components for creation of cross section objects.
• Solvers: To solve the structural system.
• Analysis: Components to extract data from the analysis.
• Misc: A range of utilities, such as a Chebyshev net generator.

The strength of Grasshopper as a host for the code written in the thesis is without
a doubt the parametric environment it exhibits. Grids and geometries can easily
be generated by connecting native components which later are used as input to
EMU.gh. The plugin takes the geometrical information and sends it straight into
EMU.dll where the structural model is built and analyzed. The logic and algorithms
of EMU.gha is entirely referenced to the EMU.dll.

4.2 Benchmarking
In order to verify the correctness of the algorithms written to perform the structural
analysis, three test cases have been set up, analyzed and compared with their cor-
responding analytical solutions. The first two test models deal with linear analysis
and the last system aims to test the nonlinear behaviour of the structure.

4.2.1 Simply supported beam
The bending moment diagram for a simply supported beam with a uniformly dis-
tributed load follows the shape of a parabola (see figure 4.5) with its maximum value
in the middle (M(L/2) = Mmax) and zero at the ends (M(0) = 0, M(L) = 0). [21]
The maximum moment Mmax and the maximum deflection wmax can be calculated
using the two following trivial formulas:

Mmax = WL2

8 , (4.2.1)

42

4. Results

wmax = 5WL4

384EI
(4.2.2)

where
W is the uniformly distributed load [N/m], L is the span of the beam [m], E is the
Youngs modulus in the material and I is the second moment of area for the cross
section used.

In this test, the following properties of the beam will be used:

E = 210 GPa I = 4.27× 10−6 L = 5 W = 2 kN/m

Using the formulas 4.2.1 and 4.2.2, the maximum bending moment and deflections
are calculated:

M exact
max = WL2

8 = 2× 103 · 52

8 = 6250 Nm (4.2.3)

wexact
max = 5WL4

384EI = 5 · 2× 103 · 54

384 · 210× 109 · 4.27× 10−6 = 0.01814 m (4.2.4)

The maximum moment and deflection calculated by EMU.dll is:

M emu
max = 6249.724 Nm (4.2.5)

wemu
max = 0.018038 m (4.2.6)

Figure 4.5: Analysis output from EMU. A moment diagram as a result of a simply
supported beam subjected to a uniformly distributed load. The values and colours
correspond to bending moments.

Comparing the output of EMU.dll with the analytical calculation gives the ratio:

43

4. Results

ratioM = M exact
max

M emu
max

= 6250.000
6249.724 = 1.000044 (4.2.7)

ratiow = wexact
max

wemu
max

= 0.01814
0.018038 = 1.005655 (4.2.8)

Which is equivalent to a discrepancy of 0.044 %� and 5.655 %�.

4.2.2 Beam overhanging both supports
The beam from the previous test is analyzed again, but with different positions of
the supports (see figure 4.6). They are moved towards the centre of the beam with
a distance a and c, creating a cantilever effect at the ends. Here three positions are
of interest to study; over the supports (M1 and M2) and the location in the span
where the moment becomes largest (M3). The moment for these positions can be
calculated using the three formulas [21]:

M1 = −Wa2

2
(4.2.9)

M2 = −Wc2

2
(4.2.10)

M3 = R1
(R1

2W − a
)

(4.2.11)

where

R1 = WL(L− 2c)
2b R2 = WL(L− 2a)

2b
(4.2.12)

The variables have the same meaning and quantity as the previous example with
the extension of a, b and c which are lengths along the beam according to figure 4.6.
The values used for these in the test are:

a = 0.9375 m b = 3.125 m c = 0.9375 m

Using the formulas 4.2.9 and 4.2.10 and 4.2.11 the reaction forces, maximum bending
moment and deflections are calculated:

R1 = WL(L− 2c)
2b = 2× 103 · 5(5− 2 · 0.9375)

2 · 0.9375 = 5000 N (4.2.13)

R2 = WL(L− 2a)
2b = 2× 103 · 5(5− 2 · 0.9375)

2 · 0.9375 = 5000 N (4.2.14)

M exact
1 = Wa2

2 = 2× 103 · 0.93752

2 = −878.90 Nm (4.2.15)

M exact
2 = −Wc2

2 = 2× 103 · 0.93752

2 = −878.90 Nm (4.2.16)

44

4. Results

M exact
3 = R1

(R1

2W − a
)

= 5000
(5000

2 · 2× 103 − 0.9375
)

= 1562.5 Nm (4.2.17)

The maximum moment and deflection calculated by EMU.dll is:

M emu
1 = −878.9 Nm (4.2.18)

M emu
2 = −878.9 Nm (4.2.19)

M emu
3 = 1562.4973 Nm (4.2.20)

Figure 4.6: Analysis output from EMU. A moment diagram as a result of a beam
with cantilevers at both supports subjected to a uniformly distributed load. The values
and colours correspond to bending moments.

Comparing the output of EMU.dll with the analytical calculation gives the ratio:

ratioM1 = M exact
1

M emu
1

= −878.900000
−878.906095 = 1.000000 (4.2.21)

ratioM2 = M exact
2

M emu
2

= −878.900000
−878.906095 = 1.000000 (4.2.22)

ratioM3 = M exact
3

M emu
3

= 1562.5000
1562.4973 = 1.000002 (4.2.23)

which is equivalent or less than a discrepancy of 2 millionth.

45

4. Results

4.2.3 Buckling of slender pin-ended column
To test how the program deals with geometrical non-linearity, a simple buckling
problem is formulated according to the second Euler buckling case. The analytical
buckling load Pcr for a structure with pinned ends subjected to axial load can be
calculated with the following formula [18]:

Pcr = π2EI

L2 (4.2.24)

Where
L is the length of the column [m], E is the Youngs modulus in the material [Pa]
and I is the second moment of area of the cross section [m4]. Using the values

E = 210 GPa I = 20.44× 10−3 m4 L = 32.5 m

the value of the analytical buckling load can be computed as

P exact
cr = π2 · 210× 109 · 20.44× 10−3

32.52 = 40.12× 106 N (4.2.25)

A common approach for linear buckling analysis in FEM is to utilize the property
of singularity in the global stiffness matrix. [22] When a buckling load is reached
for a certain structure the displacements of the nodes become indeterminate and
the stiffness matrix is singular: det(K) = 0. This state can be found by iteratively
adding more load and examining the properties of K continuously described by Al-
gorithm 1 in section 2.1.1. Another approach is to solve the eigenvalue problem of
the structure, and as an outcome obtain the critical load factor and the buckling
shape.

In Dynamic Relaxation, there is no such thing as a global stiffness matrix to exam-
ine. A similar method by adding load and evaluate the structure can still be used.
In this example, the analytical Euler buckling load is calculated and multiplied by
a factor λ. The load is applied on the structure and λ starts with the value 0 and is
being increased by 0.005 until it reaches 1.01. The vertical displacement of the top
node is recorded after each increment. Note that a static equilibrium must be found
before incrementing λ. Therefore the program is set to iterate 500 times before
additional load is applied to ensure static equilibrium is reached.

Following the procedure described above, the buckling load can be found by study-
ing the diagram produced by comparing the load against the vertical displacement
of the top node (See figure 4.7). The model behaves linearly until the buckling load
is reached. The displacement will then keep growing and become very large without
adding more load.

To get a quantitative comparison between the analytical and numerical results, the
vertical position on the load-displacement curve where the second derivative is the

46

4. Results

largest (proportional to the curvature) is found. This position is considered being a
representative turning-point where linear elasticity no longer applies for the structure
and buckling occurs.

P emu
cr

(
∂2P

∂w2

∣∣∣
max

)
= 40.04× 106 N (4.2.26)

Comparing the exact solution against the numerical gives

P exact
cr

P emu
cr

= 1.002 (4.2.27)

Which is equivalent to a discrepancy of 2 %�.

1 2 3

1

2 3

Figure 4.7: Analysis output from EMU: Euler 2 buckling test

4.3 Case study
In order to demonstrate the output of EMU.dll for more geometrically complex
models, the gridshell from section 3.2.2 is going to be further analyzed. The form-
found model will be compared to a representative physical modell.

4.3.1 Computational model
The results presented in the following four sections concern the analysis of a form-
found square grid with 18 × 18 cells, each cell with 500 mm side length. The grid
is composed of timber C24 laths with 50 × 50 mm cross sections. There are no
additional external forces applied on the structure apart from the forces needed to

47

4. Results

create the shape. A multidimensional analysis of the internal stresses is performed,
taking into account bending about the major axis (Mxx), minor axis (Myy) and tor-
sion (Mzz).

The moments are presented in two diagrams each for every analysis; one showing
the data visualized as a gradient mesh, the other one as a plotted moment diagram
along one direction of the grids.

48

4. Results

4.3.1.1 Moment about major axis (element local Mxx)

The analysis of the major axis bending naturally produces the largest stresses in
the grid. The areas with largest values are at the middle of the edges where the
maximum curvature is found. Largest positive bending is found near the supports
where the moment also shifts to negative.

Figure 4.8: Bending moment about major axis analyzed in EMU.dll. On the top
visualized as a colour gradient, on the bottom as a moment diagram in one direction
of the grid.

49

4. Results

4.3.1.2 Moment about minor axis (element local Myy)

With a maximum value of 1.92 kNm the largest minor axis moments is about 60%
of the largest major axis bending moment. These occur close to the support nodes.
The normal force of the laths in the orthogonal direction (aligned with the global
Y axis) are largest there, making the shear force in the in the X axis elements
extensive at this position. On the other hand, the areas on the middle of the edge
elements (where the maximum major axis bending is found), the minor axis bending
is relatively small.

Figure 4.9: Bending moment about minor axis analyzed in EMU.dll. On the top
visualized as a colour gradient, on the bottom as a moment diagram in one direction
of the grid.

50

4. Results

4.3.1.3 Torsion (element local Mzz)

Torsions in the elements are very small compared to the major and minor axis
bending - less than 1%. The torsions are constant over an element, and changes
direction in the middle of the laths. The largest values are found where the elements
twist the most, i.e. in the corners.

Figure 4.10: Torsion analyzed in EMU.dll. On the top visualized as a colour
gradient, on the bottom as a moment diagram in one direction of the grid.

51

4. Results

4.3.2 Physical model
The method of benchmarking against analytical solutions is highly preferable when
testing the correctness of custom FEA implementations. For simple cases, like the
ones presented in section 4.2.1 - 4.2.3, analytical solutions can easily be found.
On the other hand, when the structural model becomes complex in its geometrical
layout, finding an exact solution is hard. An alternative approach is to benchmark
against physical models, hence why one was built in conjunction to the thesis work.
It was constructed by fibre composite rods of 2 mm diameter in a bidirectional
grid. The structure consists of 19 x 19 rods which define cells of 50 x 50 mm. The
connections were made of firmly tightened rubber band, which allows rotation but
not translation.

Figure 4.11: Grid of fibre composite rods configuration

To quantify the geometrical similarities between the digital and the physical model,
the height from the floor to two characterizing nodes were measured. The first node
is the one in the middle of the the outermost rod, corresponding to the height zedge.
Since there are four of this type of node, a mean value was calculated. The second
node is the one representing the geometrical centre of the grid, corresponding to the
height zmid. Measured from the model, the following values were recorded:

zphys
edge = 270 mm zphys

mid = 357 mm

Measuring the same nodes in the computational model gives:

zemu
edge = 266 mm zemu

mid = 371 mm

Comparing the physical and digital data, ratios can be computed:

zphys
edge

zemu
edge

= 1.015 zphys
mid

zemu
mid

= 0.962

This is equal to a discrepancy of 1.5% and 3.8%.

52

4. Results

Figure 4.12: Different connection nodes between a 670 mm string results in differ-
ent buckling shapes.

Figure 4.13: Visual comparison between the digital and physical model.

53

4. Results

54

5
Discussion

In the following chapter a discussion concerning the results and methods presented
in the thesis is held. Apart from purely technical aspects, a more general discussion
regarding the feasibility of elastically bent gridshell structures is included. Finally
some recommendations for further work is presented.

5.1 Reflections

5.1.1 The feasibility of elastically bent gridshells
The technology of bending material to achieve efficient doubly curved roof structures
has, as previously presented, many advantages; connection repeatability, rational
construction process, low mass-span ratio, aesthetics and sustainability to name a
few. The complications concerning the design and analysis process was thought to
be one of the main reasons why actively bent gridshells are not built more often.
With the developed toolbox it is hoped to respond to this issue. Other potential
obstructions for the realization of a gridshell have been discussed throughout the
thesis work.

A major question is the financial aspects of such structure. Is it more expensive
compared to other buildings due to its non-standard properties? Are bending active
gridshells cheaper than discrete gridshells? Exemplified in [10], the total cost of the
Weald & Downland gridshell was £1097/m2, wheras the price of the roof constitute
28%. This is slightly below the average price of a typical visitor centre building which
makes the argument that timber gridshells always end up being more expensive than
less non-standard buildings invalid. A comparison between a number of gridshell
projects is also carried out in [10]. Notable is the difference in cost between a
typical steel gridshell made up of discrete members (Palacio de Comunicaciones)
and typical timber gridshells constructed using elastically bent laths (Mannheim
and Weald & Downland). The cost of the steel gridshell is more than three times as
big compared to the Mannheim and Weald & Downland gridshells. (See figure 5.1).
Further more, the relationship and trust between the parties involved in a building
project is of great importance. Since a very few gridshells have been constructed in
full scale, the technology might become considered unproven among clients. With
increased experience of consultants and contractors comes increased confidence of
clients. Therefore, a tight project team with trust is a necessity to successfully
conduct a building of this kind, especially in the early stages.

55

5. Discussion

Figure 5.1: Cost comparison between a steel gridshell (Palacio de Comunicaciones)
and a three timber gridshells (Mannheim, Weald & Downland and Savill). [10]

5.1.2 Structure of EMU.dll
The initial concept with EMU.dll was to produce a tool to use throughout the whole
design process. Despite that there is nothing preventing functionalities aimed for
the later design phases to be implemented, focus naturally was put on the initial
form-finding stage. This is also considered being the stage which it is hard to find
suitable tools for in existing software, hence why it was prioritized.

Finding a good OOP design for the codebase took time and effort. In fact, the
current class structure was written entirely from scratch after only 4 weeks of devel-
opment. The key was to evaluate the parts which are likely to change in the future
and encapsulate these by separating implementations from interfaces. Examples
of code prone to be extended are solver algorithm (potentially matrix solver and
eigen solver), element types (potentially plates and tetrahedral elements), integra-
tion methods (potentially Implicit Euler and Crank Nicholson).

Although the numerical framework was programmed in the pursuit of simplifying
the design and analysis of elastically bent gridshells, its design allows more types of
geometrically non-linear analysis to take place. Possible scenarios could include:

• Form-finding of compression-only structures
• Form-finding of tensile membrane structures
• Instability analysis and post-buckling
• Progressive collapse analysis

Putting extra effort into the design and structure of the codebase required more
development time in the beginning of project. The first steps consisted of sketch-
ing out class diagrams on paper, which made it easy to draw parallels to the way
designing architects work. By many means the design process of software is very
similar to the design process of buildings. The time and effort spent on thinking
through the project in an early stage to achieve an overall good design, is very often
paid back in later stages of the project with greater magnitude.

56

5. Discussion

5.1.3 Performance of EMU.dll
When the output of EMU.dll in terms of geometry and structural data is compared
to analytical solutions in section 4.2.1-4.2.3, the discrepancy is proven to be very
small. The presented bending moment show a ratio less than 0.1 %�, which could be
considered negligible in the context. The ratio between the numerical and analytical
buckling load tested in 4.2.3 is also very small, even though the point of maximum
second derivative of the load-displacement curve (which was defined as the point
of buckling) is highly dependent on the initial imperfection. The smaller the ini-
tial eccentricity is, the less deviation from the analytical solution. The dimensional
measurements taken on the physical models corresponded well to the digital form-
finding. The deviation of 3.8% can be explained by sliding rods and eccentricity
between the two layers. It was hard to find a suitable method for joining the fibre
composite rods in a way which would represent the real mechanical properties. The
rubber bands made the joints rotatable, but the resulting friction was found to be
too low which occasionally caused the rods to slide relative each other.

The computation speed works satisfactory for structures up to a certain scale. Also
the load and support conditions have great influence of the simulation time. When
too many elements are involved and load is concentrated to few areas, more com-
putation is needed for each iteration which slows down the form-finding procedure.
The easier the load can "propagate" through the structure, the faster the analysis is
going to take.

As explained and presented in [2], incorporating bending stiffness between elements
is also possible with a 3 DOF formulation of the dynamic relaxation mehtod. The
moments of an element are based on the angles to adjacent elements, converted to
force-couples and added to the connecting nodes. In this way a local coordinate sys-
tem is not needed for each node which makes the computations much faster. On the
other hand multi-axial bending analysis including torsion is hard (if not impossible)
to achieve without coordinate systems. Multiaxial analysis was a criteria established
early in the development.

EMU.dll is considered to be a useful tool which fits the gap of what existing software
cannot offer in terms of design and analysis of elastically bent gridshells. There are
however potentials for many improvements and areas of further development in order
to make the tool more complete.

5.2 Recommendations for further work
• Implementation on other platforms. The EMU.dll API has only been

implemented as a plugin to Grasshopper3d® so far. Yet there is nothing
prohibiting the API to be implemented in other CAD packages, for instance
Autodesk Revit/Dynamo®, Google Sketchup®. Even an independent user
interface could be developed as a desktop application to prove its interde-
pendency towards commercial host software. As a suggestion, OpenTK is a

57

5. Discussion

graphics library which can be used to facilitate the geometrical representations.
Microsoft WPF can be used for building the UI.

• Test more integration schemes. Only three integration algorithms have
been implemented so far in the developed tool. Adding more, especially ones
with implicit nature would be interesting. A full comparison between different
integration schemes would also be good to carry out. A suggested format for
this is speed vs. number of iterations to achieve equilibrium. Some techniques
seem to be more stable than others while some are faster. The relaxation
algorithm could automatically evaluate the circumstance to pick the most
suitable.

• Add more element types. The main focus so far has been to simulate the
bending of one dimensional elements in the context of gridshells. However, the
area of bending active structures could also include two dimensional elements.
Simulating bending of steel sheets or strips would require such a formulation.

• Speed improvements. When a set of nodes or constraints are added in the
structure, the NodeRepository class will first search for coordinates in the
same position, making sure no duplications occur. This process is performed
by measuring the euclidean distance between the nodes which is character-
ized by an O(N2) algorithm. When the number of nodes become large, the
process becomes very time consuming. Suggested is to use another type of
data structures such as k-d tree. It is a neat space-partitioning data structure
invented 1975 by J.L Bently [5] which organizes the nodes in k-dimensional
sub-domains. Another take on speed improvement is the introduction of paral-
lel computing and multithreaded algorithms, which has tremendous potentials
in the application of Dynamic Relaxation.

• Implementation of DSM Solver. As suggested in [4], the benefits of a
Direct stiffness approach (matrix) can be combined with dynamic relaxation
to perform faster analysis. In an initial step, the a DirectStiffnessSolver
shall be created by implementing the interface ISolver. The DS/DR hybrid
solver can then be created, which aggregates both solvers.

• Fire. Questions regarding the fire safety aspects of timber gridshells were risen
during the thesis work. For conventional timber frame structures, load bearing
elements are usually either covered by gypsum boards or they are sufficiently
thick to maintain capacity during the coalification process for a required time
span. Timber gridshells are often doubly curved thin shells which may be
hard to protect using conventional methods. It would be interesting find a
way around this issue by exploring alternative fire protection methods.

• Automatic spring back analysis. When artificial shaping forces are present
in the form-finding such as pulling a grid to a target surface as described in
section 1.1.1.3, the equilibrium configuration will be slightly off. This is due
to the fact that the artificial forces do not exist in reality. An extension of
EMU.dll could be to automatically perform the cutting of the grid at a certain
level, apply new supports and run a second stage form-finding.

• Cladding. The pattern produced by the bent network of elements exhibit
aesthetical qualities which can be exposed as part of the architectural expres-
sion. Since the grid itself only provide a load bearing structure, additional

58

5. Discussion

cladding must be attached in order to function as a climate screen. An inter-
esting topic of further research could be to find a rational cladding technique
which doesn’t hide the geometrical pattern of the grid.

• Cross section transformation. A common method for gaining smaller radii
when the laths are bent without using large cross sections is the use of double
layering as described in section 3.2.3.1. When simulating the erection process,
the layers must slide freely relative each other. When the equilibrium is found
and the ULS/SLS analysis is about to be performed, the layers are locked. To
execute this instant change of cross section numerically, the bending moments
need to be updated accordingly. The node positions remain the same, but not
the internal stresses. The logics and equations to implement this are described
in [9].

• Formation stress in ULS/SLS analysis - To get a more realistic analysis
result in the ULS / SLS design checks, the stresses induced by the forma-
tion should be included. This could be done in two ways; either by applying
external loads after the form-finding in EMU.gh, or export the model with
pres-tress into a commercial FEM package.

59

5. Discussion

60

6
Conclusion

The question this thesis addresses is the feasibility of elastically bent gridshells in a
Scandinavian context. Looking worldwide at realized gridshells and existing design
methods, a gap has been identified between the required analysis process and exist-
ing available design tools. This has led to the pursuit of formulating a design and
analysis process. Included in this has been to develop a codebase which can simulate
the highly non-linear bending process with automatic supervision of the material ca-
pacity. The mechanics used is based on a nodal six degree of freedom formulation of
the Dynamic Relaxation method (6DoF DR). All equations and logics are compiled
into a C# .NET class library which functions as an application programming inter-
face (API). It is given the name EMU.dll and has been implemented as a plugin to
the parametric 3D modelling software Grasshopper3d® (GH) for Rhinoceros®. In
order to achieve good code design which easily can be maintained and extended, the
concepts of object oriented design patterns are used.

The structural output of the developed numerical framework is compared against
analytical and physical models. Through four test cases the code is benchmarked
and proven to be performing accurately. As a real-time structural analysis plug-in
in a parametric environment, the user can easily interact with the model during
run-time. Suggestions of how the developed tool fits into a bigger system of the
gridshell design and analysis process are presented. The implementation of software
design patterns makes EMU.dll straightforward to extend and modify to suit project
specific needs.

The developed tool can be used in the structural design and analysis process of
elastic gridshells. The combination of the underlying 6DoF DR engine and the
implementation in GH makes EMU a novel tool with capabilities to interactively
control structural models. Although the tool was written in the purpose of elastic
gridshells, EMU can be used to perform various non-linear frame analysis including
buckling, progressive collapse and form-finding.

61

6. Conclusion

62

Bibliography

[1] B.C.P. Heng, R.I. Mackie (2008) Using design patterns in object-oriented finite
element programming. Computers and Structures 87(2009) 952-961.

[2] Adriaenssens SML (2000) Stressed spline structures. PhD thesis. University of
Bath (2000).

[3] Kuijvenhoven M, Hoogenboom P. Particle-spring method for form finding grid
shell structures consisting of flexible members. Journals of the International
Association for Shell and Spatial Structures 53(1) (2012).

[4] Olsson J. Form finding and size optimization: Implementation of beam elements
and size optimization in real time form finding using dynamic relaxation.Master
thesis. Chalmers University of Technology (2012)

[5] Bently J. L. (1975). Multidimensional binary search trees used for associative
searching. Communications of the ACM 18 (9)

[6] Freeman, Eric; Freeman, Elisabeth; Sierra, Kathy; Bates, Bert (2004). Head
First Design Patterns. (paperback) 1. O’REILLY

[7] Happold, E Liddell, W.I. (1975). Timber lattice roof for the Mannheim Bun-
desgartenschau. The Structural Engineer, No. 3, Volume 53, March 1975

[8] Kelly O, Harris R, Dickson M, Rowe J. (2001). The construction of the down-
land gridshell. The Structural Engineer, No. 17, Volume 79, 2001

[9] B. D’Amico, A. Kermani, H. Zhang, P. Shepherd, C.J.K. Williams (2015).
Optimization of cross-section of actively bent grid shells with strength and ge-
ometric compatibility constraints. Computers Structures, Volume 154, 1 July
2015, Pages 163–176

[10] Naicu D.I. (2012). Geometry and Performance of Timber Gridshells. Master
thesis. University of Bath (2012)

[11] B. D’Amico, A. Kermani, H. Zhang, (2014). Form-finding and structural analy-
sis of actively bent timber grid shells. Engineering Structures, Volume 81, 2014,
Pages 195-207.

[12] Quinn G.C, Gengnagel C. (2015). Simulation Methods for the Erection of
Strained Grid Shells Via Pneumatic Falsework. Design Modelling Symposium
2015, Volume: Modelling Behaviour (2015). Pages 257-268

[13] F. Tayeb, J.-F. Caron, O. Baverel, L. Du Peloux (2013). Stability and robustness
of a 300 m2 composite gridshell structure. Construction and Building Materials,
Volume 49 (2013). Pages 926-938

[14] Toussaint, M.H. (2007). A Design Tool for Timber Gridshells. Master thesis.
T.U. Delft (2007)

[15] Van Verth J. M. (2010). Mathematical Background. Game Physics Pearls (2010)
Pages 3-27

63

Bibliography

[16] Department of Civil and Environmental Engineering - Prince-
ton University. MANNHEIM MULTIHALLE [Online] Available at:
http://shells.princeton.edu/Mann1.html [Accessed 6 November 2015].

[17] Otto F. IL10 Gitterschalen. Institut für leichte Flächentragwerke (IL), 1974.
[18] Lundh H. Grundläggande hållfasthetslära. Department of Solid Mechanics -

Royal Institute of Technology, 2000.
[19] Craig R. R., Kurdila A. J. Fundamentals of Structural Dynamics, 2nd Edition.

JOHN WILEY SONS, 2006.
[20] Melgar E. R. Integrating Physics into the Design Process. Master of Science

Thesis, University College London (2010)
[21] The American Wood Council Beam formulas with shear and moment diagrams.

American Forest Paper association (2007)
[22] Dahlblom O., Olsson K.G. Strukturmekanik, modellering och analys av ramar

och fackverk. Studentlitteratur AB, Lund, 2010

64

A
Appendix 1: Class diagram

This appendix includes a simplified UML (Unified Modeling Language) class dia-
gram over EMU.dll. For the sake of readability, not all classes and relationships
are illustrated. It aims to expose the overall design concept and the general system
rather than a complete description of all components present in the application. The
diagram has been presented as partitions in section 4.1.1,4.1.2 and 4.1.3 where an
associated explanation for each selection can be found.

I

A. Appendix 1: Class diagram

	
�	��

���		

	
�����

���		

	
�����

���		

	
�������

���		
�	��

�������

�����

�������

�����

�������

�������

����	���

�������

	
������

�����

	
������

�����

	
�������

�����

����������������

���		

���������

���		

���������

��������

�������

��������

���		

�����

�����������

���		

�����

�����������

���		

���������

��	��������		

����������	

���������

��	��������		

�������

���		

��!���

���		

�����������

���		

���	��
���

�������

���!���

���������������	

�������

�"���

�����������

���		

	��
���������#

���		

�����������#

���		

��������������#

���		

!���������#

���		

��""���������#

���		

��������������#

���		

$������	��������

���		

�%�����	���������

�������

�������

���������

��������

�������

	��
��� �"�����

"�	�����	����#
�����$

���		

����� �"������#

"�	�����	����#����$

���		

�������� �"�����

"�	�����	����#
����$

���		

!��� �"������#

"�	�����	����#
�� �$

���		

� �"������#*+,

����������#�%

�&�������#
����	���$

'������
�������

��""��� �"�����

"�	�����	����#
����$

���		

�������� �"�����

"�	�����	����#
(����$

���		

���""���

�������

!������""���

���		

����

����

��)

*����

(�������

(�������
(�������

+�	�������

+�	(�������

+�	�������

+�	(�������

���������

(�������

�
���������

����*����

�� ���

��/���

�����

�	�
���

�	�
���

�	�
���

��/�

�����

�������

�����)

���-����

Geometry namespace

Structural namespace

Concrete relax elements

hold references to Finite

Elements

FeModel aggregates

each on of these

B

B

A

A

1.

2.

1. A inherrits / implements

 B (Is-a relationship)

2. A aggregates / compose

 B (Has-a relationship)

Explanations

II

A. Appendix 1: Class diagram

�������������

����������		

	
����������

����������		
�	��

�������

	
�����

����������		

 ���� ������

���		

	��
�

����������		

�����������

��	��������		

�����	

������������

��	��������		

 �������

�������

���		

 �������

�������

���		

�������

��	��������		

 ����!���&��'

����� ���

���		

 ����!���(��'

����� ���!���

���		

 �����"���

�������

����������		

�����������

��	��������		

�������������"�

���		

 ���)���������

�������

���		

�#
"������	�����

�������

���		

 �������-��

���		

����-��

�������

��� ������

�������

����

����	���	

��������

+�	�������

+�	(�������

+�	(�������

��������

���,�

���������-������	

����� ���

������������

����� ���.���

����� ���!���

����� ���!���

�������

�����

���������

Relax namespace

Static utility classes

III

	Introduction
	Context
	Gridshells and actively bent structures
	Erection method
	Precendent elastic gridshells
	Form-finding and design strategies

	Organization of objected oriented code

	Purpose
	Limitations

	Theory
	Geometrical nonlinear analysis
	General theory
	Dynamic relaxation
	Rotation
	Element internal forces
	Apply element forces to nodes
	Rotations and translations

	Numerical Integration schemes
	Symplectic Euler
	Fourth order Runge-kutta
	Velocity Verlet method

	Design requirements
	General design values
	Combined bending and axial compression
	Tension
	Torsion

	The design of object oriented code
	Design principles
	Software design patterns
	Strategy pattern
	Abstract factory pattern

	Methodology
	General approach
	Workflow
	Model generation
	Form-finding
	Global structural analysis
	Ultimate limit state analysis
	Buckling analysis
	Global structural analysis using Autodesk Robot® using COM interoperability

	Results
	EMU.dll
	Geometry namespace
	Structural namespace
	Structural.Relax namespace
	Implementation in Grasshopper3d®

	Benchmarking
	Simply supported beam
	Beam overhanging both supports
	Buckling of slender pin-ended column

	Case study
	Computational model
	Moment about major axis (element local Mxx)
	Moment about minor axis (element local Myy)
	Torsion (element local Mzz)

	Physical model

	Discussion
	Reflections
	The feasibility of elastically bent gridshells
	Structure of EMU.dll
	Performance of EMU.dll

	Recommendations for further work

	Conclusion
	Bibliography
	Appendix 1: Class diagram

