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Abstract
This project aims to exploit a millimetre wave radar and machine learning algorithms

to perform tasks by allowing interaction with digital systems such as smart home units
with hand gestures. The radar records data with over a bandwidth of 3.2 GHz and with
the range and velocity resolution of dres = 4.7 cm and vres = 58 mm/s. These used
specifications focus on measuring movements rather than hand shapes. The machine
learning algorithm is implemented as a long short-term memory neural network, a class of
recurrent neural network which allows the network to take previous frames into account
for classifications, by allowing every layer to learn what previous data to keep. This is
applicable to the sequential nature of the gesture data since a sequence of frames classified
as some gesture increase the likelihood of further frames being the same gesture. The
predictions made by the network on incoming data can be used to control, for example,
a music application or some unit like the Google Chromecast™ or connected speakers.
Based on our experiments some gestures achieved probabilities of correct classification of
up to 78 %. These results show promise for the methods and further work can be made
to improve this number or investigate different applications.
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Sammandrag
Projektets syfte är att använda millimetervågsradar och maskininlärning för att styra

enheter för smarta hem med hand gester. Radarn används för att spela in data med focus
på att uppfatta rörelser över handformer och maskininlärningsalgoritmen som används är
ett Long Short-Term Memory neuralt nätverk. Detta specifika nätverk möjlig gör för klas-
sificeringen att ta hänsyn till tidigare ramar i bedömningen av den senaste vilket passar
datan sekventiella natur. Nätverkets klassificeringar används sedan för att kontrollera en
musikapplikation vilken kan kontrollera enheter som Chromecast™ eller kopplade hög-
talare. Resultaten för metoden är lovande med sannolikheten för korrekt bedömning för
vissa gester nådde 78 procent. En del genvägar behövdes dock tas på grund av begrän-
sningar i tid för att nå dessa resultat. För att vidareutveckla projektet kan kontinuerlig
data från radarn användas istället för diskret. Om överföringshastigheten kan förbättras
eller slutapplikationen kan anpassas för lägre upplösning eller långsammare ramshastighet
bör användning av den kompletta datamatrisen från radarn övervägas. Databehandlin-
gen bör genomföras tidigare under processen och mer tid kan användas till att undersöka
andra maskininlärningsmodeller eller till att förbättra datan. Många olika applikationer
kan undersökas.
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1
Introduction

1.1 Background

The pursuit of artificial intelligence (A.I.) comparable to human intelligence is a goal
for a big part of the scientific community. The incredibly wide usage of a centralized
intelligence that can learn from multiple sources at once, mostly exempt from human
error, and be used over a wide range of subjects and distances simultaneously is almost
endless. This is not where research is at though. The field of A.I. has a long history
dating back to the middle of the 20th century with new methods discovered and explored
throughout the latest decades [1]. Recent years have seen a rapid growth of the field and
research has been divided into many sub-fields of application such as natural language
processing and computer vision.

One such field is the field of gesture recognition. Gestures as a communication tool
are widely used by humans, often complementing speech. Some of the main advantages
of using gestures over speech are that they do not interrupt an ongoing conversation
and can be used in a quiet or public space without drawing unwanted attention. One
project exploring this is the Google project Soli [2], using millimetre wave radar and
neural networks to interpret fine gestures. The methods are similar to those of computer
vision, but the uses are more like those of natural language processing. It is a way for
humans to interact and communicate with machines and can be evaluated as such.

A.I. can also be divided into different methods differentiating between supervised and
unsupervised learning [1]. These methods can be broken down further by structure. De-
cision trees, rule-based classifiers, and neural networks are all examples of algorithms for
supervised learning [1]. The method of machine learning being explored in this project
is to exploit artificial neural networks (ANNs) implemented as a deep machine learning
algorithm. An ANN is a computational model that is loosely based on the neural circuit
found in animals [3] in that it is structured by a collective layer of nodes functioning
similarly to neurons. These are connected to transmit signals to one another, process it
and then signal an output node with the results. Deep machine learning is simply the
method of using an ANN with multiple layers.

This bachelor thesis is based on another bachelor thesis which attempted to make
a robot move by reading directional hand gestures [4]. In that project, an averaging
algorithm was used to interpret data collected by radar. This limited the possible gestures
to what that thesis refers to as linear gestures, gestures only differentiated by the average
change in position of the hand, which in turn eliminated the need for machine learning
to solve the problem [4]. A decision tree model did reach an accuracy of 96% on average
per gesture which was considered good enough for the purposes of that project.

This bachelor thesis focuses on the subject of machine learning. By using machine
learning to teach a computer to recognize and understand specific hand gestures, one

1



1.2. AIM CHAPTER 1. INTRODUCTION

could then apply this however one sees fit. This thesis changes the scope by focusing
more on the ability to perceive the hand gestures and the comprehension of what they
mean which can be used for many use cases i.e, the use case is less important than the
computation needed to perform arbitrary tasks.

1.2 Aim
The main task of the project is to explore the process of machine learning to train a

neural network to recognize a specific set of subtle human hand gestures through a radar
and its viability. The network can then be used to classify given gestures in order to
extract an intended command for a computer system.

1.3 Problem
Beyond the specific aim, the project has been expanded to explore the viability of the

machine learning through use cases and the possible applications thereof. This process has
been divided into four parts, building and training the machine learning model, optimizing
the radar settings, processing the data for the machine learning algorithm and applying
the output to an application.

1.3.1 Machine Learning
The main problem in this project is to construct and train a Machine Learning Algo-

rithm (MLA) with the purpose of being able to recognize the same gestures when presented
live with an average accuracy of at least 95%. For this, a specific framework is picked and
tuned for best result.

1.3.2 Radar
The radar will need to be able to collect data from the gestured as accurately and as

frequently as possible. This will allow for more information to be feed into the MLA which
will increase its learning capacity and allow for less divergence as a result of inaccurate
reading.

1.3.3 Data processing
Once the radar can capture data sufficiently it will have to be processed in order to be

supplied to the MLA. Ideally, the MLA would be able to process and understand the raw
data directly. Otherwise, data manipulation can be used to extract useful features and
eliminate others from the data. Once extracted the features will need to be transformed
to be better suited for usage with a machine learning model [5].

1.3.4 Use case
After the neural network has been trained and is able to produce results these will

need to be presented in some way. Therefore some use case needs to be implemented to
allow a reactive action that would show a possible application for the project.

2



CHAPTER 1. INTRODUCTION 1.4. SCOPE

1.4 Scope
Since it’s not feasible to train a network to interpret every possible hand gesture a

limited set of gestures have to be selected. The selection will be made with consideration
to the capability of the radar and what would fit a selected use case. The gestures would
need to be clear enough for the radar to pick up and need to be intuitive for the user with
regards to the desired action in the use case. The decision of what gestures are intuitive
is based simply on the experience of the project group. The degree of intuition of the
gestures does not affect the classification process but would apply to a marketed final
product.

Another constraint is to focus solely on machine learning for solving the classification
problem, no comparisons are made to other kinds of algorithms. The problem is well
suited for machine learning and similar projects have had success with this approach [2].

The project will not research different kinds of radar or how they would affect the
possible gestures which can be classified.

It is also important to note that the focus of the project is on exploring the classification
and therefore the application to the use case is allowed to be somewhat simple.

3
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2
Theory

This chapter presents the theory this thesis is built on. The first section describes how
the radar works, what kinds of data it can capture and the physics involved in doing so.
The second section describes the theory behind different machine learning algorithms and
their usage.

2.1 FMCW radar
In this project, a frequency-modulated continuous-wave (FMCW) radar is used, which

measures the range, the radial distance, to the objects as well as the Doppler shift, the
shift in frequencies between the measurements. The Doppler shift can be converted into
a measurement of the relative speed of the objects moving towards the radar.

2.1.1 Range measurements
To measure range, the radar sends out chirps which are transmitted electromagnetic

signals. The signal’s frequency increases linearly over time with a slope of S from a
starting frequency fs to an end frequency fe, giving a total chirp time of Tc. Assuming
there is an object in front of the radar at a distance of d, a chirp will reach the object in
the time t = d/c, since it propagates at the speed of light, c. The signal is then reflected
and arrives back at the radar after the same amount of time t, making the total flight
time

τ = 2d
c
. (2.1)

At the radar, the reflected signal is received and sent to a mixer along with the origi-
nally transmitted signal. A mixer takes two sinusoids and gives the output

fMixer(x1, x2) = fMixer

(
sin(ωtt+ φt), sin(ωrt+ φr)

)
= sin

(
(ωt − ωr)t+ (φt − φr)

)
,

(2.2)

where x1 and x2 are the two input signals, ω is the angular frequency and φ is the phase
of the signal . For the case of two signals which are sinusoidal in every instance, e.g.
the reflected and original signal, the instantaneous output frequency equals the difference
between the input signals’ instantaneous frequencies and the output phase is simply the
difference of the two input phases[6]. Assuming that there is only one object in front
of the radar, the mixer output will be a signal of constant frequency, even though the
input signals were ramping. The reason is that the received signal is the same signal as
the original, only delayed by τ [6]. So, both frequencies are ramping by the same factor,
S. The difference between them is that the original signal is at the frequency fs + Sτ ,
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when the reflected signal reaches the mixer. Hence, the frequency of the mixer output is
fc = Sτ , which when combined with equation (2.1) gives,

d = cfc

2S , (2.3)

i.e. the distance of a single object in front the radar as a function of the mixer frequency.
When looking at more than one object, the mixer output will consist of several different

frequencies. Therefore a range-FFT [6] is applied to the mixer output to extract the
different distances of objects. The resolution of the range-FFT is given by

dres = c

2B, (2.4)

where B is the bandwidth swept by the chirp (B = STc), and the maximum unambiguous
range is given by

dmax = Fsc

2S , (2.5)

where Fs is the analog to digital converters (ADCs) sampling rate of the radar.

2.1.2 Velocity measurement

When an object is moving with a certain velocity towards the radar its distance from
the radar d will change in between two chrips are sent. Since the time between two chirps
is on the scale of microseconds, the change in distance will be much lower than the distance
resolution, which is on the scale of centimetres. So, to measure the velocity, the other part
of the mixer output is needed, the phase. As mentioned in the previous section, the phase
of the mixer output is determined by the difference in the initial phase of the two signals.
An example is shown in Figure 2.1, the phase difference is zero between the original and
the first signal but π/2 between the original and the second signal. The phase of a signal
varies from 0 to 2π for each cycle of the signal. Therefore, the phase difference is simply

∆φ = 2πfs∆τ. (2.6)

The phase difference can also be represented by the difference in distance travelled by the
two chirp signals, by combining equation (2.6) and equation (2.1),

∆φ = 4π∆d
λs

, (2.7)

where λs is the start wavelength.
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Figure 2.1: Both figures are amplitude-time plots. The first demonstrates the input into the mixer
from the transmitted signal as well as the reflected wave from the first and second chirp respectively.
Note, that all the curves are identical except for a delay in time (extremely exaggerated). The second
figure shows the phase shift in the two outputs from the mixer. Observe that both curves have the
same constant frequency.

The distance traveled by the object between two chirps is ∆d = vTc, with v being the
velocity of the object in the radial axis of the radar. The velocity can now be expressed
as [6]

v = λs∆φ
4πTc

. (2.8)

Since the maximum unambiguous phase difference between chirps is ∆φmax = π, then the
maximum unambiguous velocity can be described as

vmax = λ

4Tc
. (2.9)

Figure 2.2: Shows two chirps begin sent out with Tc between and the result after the range-FFT is
applied. Note the phase difference ∆φ = φ1 − φ0. Picture made with draw.io.

However, this method is only valid if there is at most one objects at a given range.
To differ between objects at the same range a sequence of Nc chirp, called a frame, is
used. The range-FFT, mentioned in the previous section, is applied to every chirp which
separates each object by range. To this result another FFT is applied, called the Doppler-
FFT [6]. The Doppler-FFT makes it possible to separate the object at the same range,

7
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by velocity, as seen in Figure 2.3 , with the resolution of

vres = λ

2Tf
, (2.10)

. where Tf = TcNc is the frame time[7]. Figure 2.4 illustrates vres and vmax.

Figure 2.3: Illustrates the results for the chirp signals after the range-FFT is applied. Note that the
results give that the object are at the same range, but with different phase. Doppler-FFT is then ap-
plied resulting in the separation of the objects. Picture made with draw.io.

Figure 2.4: Illustrates the radar and its scope, with detected objects as dots. Note dres, θres, dmax,
Vmax and Vres in the figure. Made in Vectr.

2.1.3 Angular measurement
When estimating the angle of arrival for an object compared to the normal angle of

the radar, two receiving antennas must be used. When a signal is sent, the two receivers
will have a slight phase difference depending on the angle of arrival. The difference is
given by

∆φ = 2π∆d
λ

, (2.11)

with ∆d being the difference in distance traveled by the signal for the two receiving
antennas [7], as illustrated in Figure 2.5, note that this distance is only from the object
to the receivers and not both ways which gives the factor 2 instead of 4 in Equation (2.7).
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The distance can be approximated using basic geometry, given that the signals arrive
approximately parallel to each other,

∆d = l sin(θ), (2.12)

with l and θ corresponding to the length between the two receiving antennas and the
angle of arrival for the object respectively, see Figure 2.6.

Figure 2.5: The black box represents the radar. The blue rectangle illustrates a transmitting antenna
Tx and the two black rectangles represent receiving antennas Rx. The black circle is the object. Note
the distance between the receiving antennas, λ/2 and the difference in the distance to the object for the
two receiving antennas, ∆d [7]. The figure is not in scale. Made in Vectr.

Figure 2.6: Visualization of parallel incoming signals, and the geometric relations between them.
Made in Vectr.

Combining equation (2.11) and equation (2.12) we get the angle of arrival

θ = sin−1
(
λ∆φ
2πl

)
. (2.13)

It is worth noting that ∆φ has a nonlinear dependency with respect to θ. Meaning that
θ’s estimation validity depends on what value the real θ has. The estimation is more
correct when θ is small[6].

The maximum angle of arrival is given by

θmax = ± sin−1
(
λ

2l

)
. (2.14)
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With a spacing of λ/2 between the receiving antennas, the maximum angle of θmax = ±90◦

is achieved [7].
To distinguish two objects at different angles, a similar method as the one mentioned in

the previous section is used. First are signals divided into different ranges by a range-FFT
followed by the use of a 2D-FFT[6], which corresponds to the Doppler-FFT. Instead of
looking at the number of chirps, as the Doppler-FFT does, the 2D-FFT uses the number
of receivers, Nr, which gives

θres = λ

Nrl cos(θ) . (2.15)

The reason to why this is so unlike Equation (2.13) is the nonlinearity of the problem[6].

2.2 Machine Learning Algorithm
Most computer systems can be simplified as a sequence of input, processing, and

output as in Figure 2.7. When considering a system built to recognize a button press and
make an action correlating to the said button press, it is not difficult to see how this could
be coded by hand into an application. The system used in the project, where the data
collected with the radar needs to be recognized as a specific hand gesture, becomes more
complicated. When the input is something as varying as human gestures, every possible
starting position, speed, hand shape, slight deformity, and angle need to be individually
included into what the application takes into account in order to make it run with any
kind of accuracy. The amount of time it would take to manually code this would make the
task next to impossible. For that reason, this system is built around a machine learning
algorithm instead.

Figure 2.7: Visual representation of a simple system

2.2.1 Training the MLA
The MLA used is trained using supervised learning. This means that the algorithm is

fed the input data(x) and the output label(y) separately, similar to

y = f(x). (2.16)

The f(x) is the mathematical function the MLA creates and fits to the data. For each
input data, the algorithm makes a prediction the likelihood for it belonging to each spe-
cific label according to current values in the function. This is then compared with the
correct label(y) to calculate the loss value, which the algorithm uses with an algorithm
for stochastic gradient descent (SGD) to make adjustments to its function[8]. Gradient
descent is a way to find the slope of the function between parameters, similar to partial
derivatives, as seen in Equation 2.17.

∇f =
(
∂f

∂x1
, ...,

∂f

∂xn

)
(2.17)
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The MLA is taught in iterations which allows the algorithm to use the gradient descent
to minimize the loss value, calculated through categorical cross-entropy[9]. More details
in 2.2.5.1.

The batch gradient descent, which is more common, uses the entire data set to calculate
the descent. The stochastic gradient descent instead selects a few samples out of the data
set to use for the gradient descent. Using SGD, the MLA can calculate in which direction
the slope is angled down. It then uses the variable learning rate to know how much the
parameters need to be adjusted. An example of how a MLA learns and improves its own
loss value and accuracy for each iteration can be observed in Figure 2.8.

Figure 2.8: An example on how MLAs adjusts itself over time.

The calculations of the gradient descent, the handling of the learning rate and adjust-
ment of the parameters takes care of by the optimizer. More details on 2.2.5.

2.2.2 Artificial neural network

Artificial neural network (ANN) is a machine learning algorithm based on the neural
circuit found in animals [3]. The simplest kind of ANN is a perceptron consisting of only
one neuron. It can receive multiple inputs which are all multiplied by a weight before
being fed to an activation function [1, pp. 90-91]. This activation function produces an
output based on the weighted sum of inputs. Many kinds of functions can be used but
popular ones are the step, sign, linear and sigmoid functions[1, p. 92]. A bias can be
introduced to change the activation threshold of the function by adding an additional
input with a value of one with this bias as weight.
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Hidden layers of nodes
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x2
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xn−1
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Figure 2.9: Visual representation of an artificial neuron

A typical model for machine learning is composed of multiple layers of perceptrons.
Data is entered at an input layer and passes through one or multiple hidden layers before
reaching an output layer collecting and presenting the processed data to an output format.
Figure 2.10 shows a simple neural network with one hidden layer.

input
hidden

output

Figure 2.10: Graphical representation of a simple neural network [10].

The process of training this basic neural network is the same as for more complex ones.
Through backpropagation, the weights and the bias is updated based on a calculated
prediction error until this error is minimized [1]. More on this process in Section 2.2.5.

2.2.2.1 Deep learning

While ANN and other types of algorithms use a single layer of nodes to analyze the
data, a deep machine learning algorithm uses multiple hierarchical levels of hidden layers
of nodes. The hierarchical function of deep learning systems enables machines to process
data with a nonlinear approach [11]. Put in the simplest of terms: “The more layers the
algorithm has, the deeper it is”.
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2.2.3 Convolutional neural network
Convolutional neural network (CNN) is a class of deep neural network whose main use

is to recognize and categorize different images. This includes logos, face recognition and
street signs. A CNN “reads” an image as a collection of pixels which is sorted in an array
with the axes height(i)× width(j)× dimensions(k) as axis. This array will pass through
multiple convolutional layers, each with nodes with weights. For each hidden layer, the
information on the pixels are handled with the weights and more or less dense with the
equation:

Vijk = g(
∑
pqr

wpqkrxp+i−1,q+j−1 − θk) (2.18)

Where Vijk is the neuron at the specific coordinates(ijk) and the result of g(b) that is
an activation function. Also, w is the weight in the specific node, x is the specific pixel
in the input array and θ is the bias[3, p. 127]. At the end of the network, there is a layer
that classifies the image with a probabilistic value between 0 and 1. The prediction is
decided by the class with the highest probability.

2.2.4 Recurrent neural network
Recurrent neural network (RNN) is a class of ANN that can be used when a simpler

layout is not enough. While a simple form of ANN usually is only feed-forward, as seen in
Figure 2.10, this class of layer has feed-forward with feedbacks. This means that a node
in the RNN to receive the output of a node down the line or even within the same layer[3,
p. 147]. The algorithm applied is:

V `
i = g(

∑
j

wlijV
`−1
j − θ(`)

i ) (2.19)

on the i-th node in layer `. This allows a RNN to recognize a data’s sequential
characteristics and use patterns to predict the next likely scenario. It does this by using
loops to access previous predictions together with new data to process the input as a
sequence. The most common uses for RNN’s is language modeling and speech recognition.

One of the reasons RNN has such a great appeal is that it allows for predictions over
extended periods of time. An example of this is that it can allow a prediction of the next
word in a text by looking at previous words in a sentence. The problem with RNNs is
that the connection to earlier predictions decays with distance [12].

2.2.4.1 Long Short-Term Memory network

Long Short-Term Memory (LSTM) network is a specific architecture-type of RNN built
as chains of modules each constructed by four neural network layers interacting. These
interactions allow the network to make decisions about which data to keep or forget [12]
which better preserves some connections between recent and older data. It does this by
having a somewhat altered algorithm from what is used for the RNN:

V
(`)
j = g(

∑
k

w`,`−1
jk )V `−1

k − θ(`)
j +

∑
n

w
(`,`−2)
jn V (`−2)

n (2.20)
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2.2.5 Optimizing
When the model is defined, layers and nodes are built and connected, allowing the

model to produce an output based on an input. However, in order to train on data and
improve these outputs two more things are needed. The first one is a loss metric. A
numerical constant if the output was correct or not and how far-off it was. The second
thing is an optimizer. A function used to backpropagate the results and updating the
values of the nodes. Essentially applying the learning to the model.

While there are many loss and optimizer functions, this project is mainly built around
one of each; the categorical cross-entropy loss function [13] and the Adam optimizer [14].

2.2.5.1 Categorical cross-entropy

Categorical cross-entropy is a method for calculating the difference between a predicted
result and an actual value. It is used when the desired value is a one hot vector representing
a single correct class out of a number of classes and the output is a vector with each index
representing the predicted probability of that class being correct. Using categorical cross-
entropy these vectors can be compared to calculate a loss value used for optimization
[13].

2.2.5.2 Adaptive Moment Estimation

Adaptive moment estimation (Adam), is an algorithm for efficient stochastic optimiza-
tion, using stochastic gradient descent, which is used to find a locally optimum solution
to an optimization problem. Stochastic optimization is best used when slightly less than
the optimal solution is adequate, and the algorithm can’t be tailored exactly to the prob-
lem[15]. Adam was proposed as an optimization method for machine learning in 2015
combining two popular methods, AdaGrad [16] and RMSProp [17], to create a generally
applicable method. The convergence of the algorithm was analyzed, and experiments were
made to prove that it performs on par with or better than other algorithms for different
kinds of machine learning problems [14]. Pseudo-code for the algorithm can be found in
Appendix C.1.
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3
Equipment

This chapter will present and describe the software and devices used in the project.
A single-chip radar was used alongside multiple kinds of software including necessary
software to access and control the radar, frameworks and API’s enabling the machine
learning and IDEs to improve coding efficiency.

Radar SDK

Computers

Tensorflow

Training Application

Output Unit

GithubIDEDeveloper

IDE

Developer

IDE Developer

Figure 3.1: A flowchart of the hardware and software used in the project

3.1 Hardware
The AWR1642 chip was the only specific hardware used for this project. This section

describes the specifications of the chip, how the theory applies to the hardware and the
data structure used to handle and access the recorded data.
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Figure 3.2: Picture of the AWR1642 evaluation module with relevant parts outlined [19]. Made using
draw.io.

3.1.1 AWR1642 (Radar)
The radar used in the project is “AWR1642 single-chip 76-GHz to 81-GHz automotive

radar sensor evaluation module”. It is one of the radars in TI’s FMCW mmWave radar
series. The AWR1642 has 2 transmitting antennas with a spacing of 2λ between them
and 4 receiving antennas with a spacing of λ/2 between them. The radar is powered by a
5V connection using Biltema’s universal adapter 5V 2.25A. The board can be connected
to a computer using a micro-USB cable.

Some specifications for the board are its baud rate at 921600 bits per second, maximum
bandwidth at 4 GHz, maximum chirp slope at 100 MHz/µs and maximum sampling rate
at 5 MHz. More specific specifications about the AWR1642 evaluation board can be found
in the manual at [18].

3.1.1.1 Hardware measurements

When using actual hardware, like the project’s AWR1642, some problems will arise
when transitioning from the theoretical calculations.

The maximum range of the radar is still Equation (2.5), since it only depends on the
ADCs sampling rate. The resolution, however, is dependent on the frequency bandwidth
swept by the measurement. The chirp still sweeps the full 4 GHz but the ADCs sampling
rate and the amount of samples, Ns, gives a sampling time of, Ns/Fs. The sampling time
multiplied with the slope gives the measured bandwidth,

B = NsS

Fs
, (3.1)
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which makes the resolution
dres = Fsc

2SNs

, (3.2)

according to Equation (2.4). The full bandwidth could no be used since amount of samples
had to be in the form of Ns = 2n, where n is a positive integer[20].

To calculate the maximum velocity, the actual chirp time is needed. The actual chirp
time differs from the theoretical since the radar computes the range-FFT in between every
chirp. These calculations need to be finished before the next chirp is done [20]. To solve
this, the chirp has an added ideal time between the chirp. This makes the actual chirp
time

Tactual = Tidle + Tchirp, (3.3)

so to optimize the actual chirp time the ideal time needs to be as small as possible. All
in all, this makes the maximum velocity

vmax = λ

4Tactual
. (3.4)

The frame time, controlling the velocity resolution, is as a consequence Tf = TcNc. The
true time between frames is longer since, similarly to Tactual, there is a need for time to
make calculations and to send the data to the computer.

For the angular calculations, the maximum is still the same but for the resolution, a
concept called virtual antennas is used which improves the resolution[6]. There are four
receivers but there are also two transmitters at a distance of 2λ. All of the transmitters and
receivers lie on the same line, which combined with that chirp are send in the alternating
pattern of (Tx1, Tx2 Tx1,..,) which makes the amount of virtual receivers, 8, double the
amount of regular receivers, as seen in Figure 3.3.

Real setup

Tx1 Tx2 Rx1 Rx2 Rx3 Rx4

2λ λ/2

Virtual setup

Txv Rx1 Rx2 Rx3 Rx4 Rx1 Rx2 Rx3 Rx4

Tx1 Tx2

Figure 3.3: The setup of the radar’s transceivers and receivers which allows for the double number of
virtual receivers.

3.1.1.2 Data Structure

The data collected by the AWR1642 mmWave radar is stored in packages. The package
structure for the radar is designed such that the user can, through the mmWave SDK,
choose which parts of the package the radar should send. One whole package is sent every
frame, which parts it contains is set in the configure file for the radar [21].

The structure initiates with the Header, which contains information about the whole
package. The Header always follows the same formula and consists of 36 bytes. It contains
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the version, total packet length, platform, frame number, time, number of detected objects,
and number of data structures in the package. The Header also contains a “magic word”
that signals the start of a packet [21]. The Header is the only mandatory part of the
package and cannot be unselected by the mmWave API commands.

The next part of the structure is Detected Objects. It initiates with 12 bytes of
information containing a structure tag, the length of the structure, and a descriptor. The
Descriptor represents the number of objects detected and the Q-format the data is in
[21]. The Detected Object payload also contains the range, velocity, intensity, and angle
information for every object detected by the radar. More specifically, the features acquired
are range index, Doppler index, the peak value of intensity, x-value, y-value and z-value.
The size for the package is therefore dependent on the number of objects detected. The
size can be described as [21]

size = 12 +Nobjects · 12 bytes, (3.5)

where Nobjects is the number of objects.
The object detection is followed by Range Profile and Noise Profile, both with the size

of
size = #RangeBins · 4 bytes, (3.6)

where range bins are the discrete boxes in which the range-FFT divides the signals, see
Figure 3.4, and there are Ns of them. Both profiles contain a structure tag and the length
of the structure. They also contain a 1D array of data, where the range profile has a 1D
array of log magnitude range FFTs and the noise profile have a 1D array of data which is
considered noise by the radar [21].

[0, dres) [dres, 2dres) · · · [dmax − dres, dmax]
r

Figure 3.4: A illustration of range bins. Each bin represents a part of the continues range axis

The next part of the structures are the heat maps, more specific the Range-Azimuth
Heat Map and the Range-Doppler Heat Map. They both contain a structure tag, the
length of the structure and a heat map [21]. A heat map is a matrix whose elements
consist of intensities and its indexes are arbitrary quantities.

The Range-Azimuth Heat Map contains a range-Azimuth heat map, which column
indices represent the range and row indices represents angle to the normal of the radar.
The size of the range Azimuth heat map is given by

size = #rangeBins ·#virtualAntennas · 4 bytes. (3.7)

The Range-Doppler Heat Map contains a range-Doppler heat map. This heat map has
range values as its column indices and Doppler values as its row indices. The size for the
range-Doppler heat map is given by

size = #rangeBins ·#DopplerBins · 4 bytes, (3.8)

where Doppler bins, works in the same way as range bins, only for Doppler and the amount
is given by

#DopplerBins = #Chirps per frame
##Transmitting antennas (3.9)
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The end of the data package sent by the radar is Statistics Profile and Padding.
The Statistics Profile has a size of 32 bytes and contains the structure tag, length of
the structure, inter-frame processing time, transmit output time, inter-frame processing
margin, inter-chirp processing margin, active frame CPU load, and inter-frame CPU load.
The Padding is a filler, with size between 0-31 bytes, to ensure that the package is the
right length, a multiple of 32 bytes [21].

3.1.2 Computers
When recording gestures, a Lenovo laptop of model 720S-13IKB (Type 81BV) was

used [22]. For training the machine learning model various standard, commercial laptops
and desktops were used.

3.2 Software
Multiple kinds of software were used in this project. Millimeter Wave Software De-

velopment Kit (mmWave-SDK) was used to configure the radar. Python was used with
tensorflow and Keras for the machine learning and for the development application. Fi-
nally, the IDEs PyCharm and Visual studio Code and GitHub were used to facilitate
coding and collaboration.

3.2.1 The mmWave SDK
mmWave Software Development Kit (SDK) is a program developed by Texas Instru-

ments as an Application Programming Interface (API) for their mmWave radars. The
mmWave API commands used in this project are explained in table A.1. The chirp and
frame configuration commands are explained in more detail in Appendix A.2.1, A.2.2 and
A.2.3.

3.2.2 Python
Python is an interpreted, object-oriented, high-level programming language with dy-

namic semantics with built-in data structures that allow for dynamic coding and struc-
turing [23]. Python 3.6 was used in this project. Its simplicity as a language allowed for
easy structuring of the MLA and coding of the application.

3.2.3 Tensorflow and Keras
Tensorflow and Keras were used to easily construct the machine learning model. Ten-

sorflow is an open source platform for machine learning which allows building and training
of machine learning models with varying levels of complexity [24]. Keras is a high-level
API running on top of Tensorflow to allow easy structuring of models [25].

3.2.4 Integrated development environments
An integrated development environment (IDE) is a software suite that consolidates

the basic tools required to write and test software. It allows for easy development as the
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inclusion and use of the text editor, available libraries and compiler all comes included
[26].

3.2.4.1 Pycharm and Visual Studio Code

PyCharm and Visual Studio Code were the most used development environments and
functioned interchangeably. They both allow for debugging and convenient management
of Python’s virtual environments and packages.

3.2.5 GitHub
GitHub is a Git repository hosting service used for collaboration on code and version

control. It allows multiple people working on the same code to synchronize, branch off
and merge for efficiency.
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Method

In order to complete the task stated, gestures were selected with a degree of intuition
based on the project group’s experience and detectability tested with the radar. The
required radar measurement capabilities were determined by the gestures and based on
this the proper configuration was calculated.

The amount of data that could be used was calculated by looking at the baud rate of
the transmission between the radar and the computer together with the size of different
data structures and the desired frame rate. Based on this usable data was selected.

Gathering of the data was done by both the group members and others by performing
the gestures in front of the radar while corresponding labels were set from the computer’s
keyboard. The data was then captured, reformatted, normalized and shuffled in order
to be usable by the machine learning model. Additional data were also synthesized by
translating the recorded data.

The machine learning model was constructed by using Tensorflow [24] and Keras [25] in
Python by adapting solutions to similar problems. Finally, the predictions of the machine
learning model were processed by interpreting a sequence of predictions to determine if a
gesture was detected.

4.1 Selection of gestures
The type and amount of hand gestures were chosen to be intuitive given the selected

use case and discernible by the radar. For every function performed by the end application,
a different gesture was required. The decision of which gestures were intuitive was based
on the experience and intuition of the project group. Once intuitive gestures were chosen,
they were evaluated using the radar. If the radar did not react properly to a gesture it
was modified or replaced.

4.2 Radar structure
The two following sections declare the method of choosing the radar settings and what

parts of radar’s data structure is going to be sent to the computer.

4.2.1 Radar measurement capabilities
The first step to configure the radar was to find the wanted values of dmax, dres, vmax,

and vres. Therefore, TI’s demo visualizer software [27] was used, to get a feel for what
the selected gestures would need for specifications, and saved data from the radar was
analysed. dmax and vmax only need a minimum since gestures was preformed at roughly
the same distance from the radar with a max speed. The minimum were, dmax ≥ 2 m and
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vmax ≥ 1 m/s. Since the project was focusing on intricate gestures the resolutions had to
be minimized but all the parameters are somewhat connected, as shown in table 4.1. The
needed idle time between chirps and frames were also affected by the parameters since
more data need more idle time for calculation and transmission, but trials with the gestures
proved that a high velocity resolution was need for gestures to be noticeable. The result
from experimentation proved that vres needed to be on the 10 mm/s scale. To acquire this
the chirp and frame configuration in Figure A.1, were chosen. This resulted in picking
S = 100 MHz/µs, FADC = 2 · 106 samples/s, Nsamples = 64 samples, Tactual = 260 µs,
Nchirp = 64 chirps/frame, which gave dmax = 3 m, dres = 4.7 cm, vmax = 1.9 m/s, and
vres = 58 mm/s. The θmax and θres were fixed at ±90◦ and 1/2 cos(θ), respectively.

Table 4.1: Shows the change in radar specifications when the radar parameters increase in value.
XXXXXXXXXXXXSpec

Parameter
S FADC Nsamlpes Tactual Nchirp

dres Lowers Increases Lowers None None
vres None Lower Tactual Increases Tactual Lower Lowers
dmax Lowers Increases None None None
vmax None Lower Tactual Increases Tactual Lowers None

4.2.2 Data structure
The parts of the data structure that were considered viable for this project were

the Object-Detection and the Range-Doppler Heat Map since the object’s velocity is
an essential part of detecting its movement. Therefore the Range Profile, Noise Profile,
Statistics Profile, and the Range Azimuth Profile were rendered as obsolete in this project.

The object list was essentially a list of points in the doppler heat map with high
intensities. This meant that the heat map had more information for the MLA to work
with, and could thereby have been the better candidate for this project. The problem,
however, was that the heat map carried too much information. The radar at a fixed
baud rate of 921600 bits per second, which equals 115200 bytes. So a package carrying
more information would take a longer time to transmit. So, the transmission time was an
essential part of choosing data structure, therefore the sizes were calculated.

To calculate the size of the heat map the #rangeBins and #dopplerBins had to be
calculated,

#rangeBins = number of ADC samples = 64, (4.1)
#dopplerBins = #ChirpsPerFrame/#TXantennas = 128/2 = 64. (4.2)

The size of the range doppler heat map could then be calculated as

size = #rangeBins ·#dopplerBins · 4 bytes = 64 · 64 · 4 = 16384 bytes. (4.3)

The size of Object Detection is dependent on the number of objects detected by the
radar. Therefore, the radar was tested with different hand gestures and the highest
observed amount of detected objects by the radar was 15. To calculate the maximum
size, the detected objects was set to 20, corresponding to a size of

size = 12 + #objects · 12 bytes = 12 + 20 · 12 = 252 bytes. (4.4)

Both structures had a header with 36 bytes in front of them bringing the total byte
count up to 16420 and 288. The transmission times of these were 16416/115200=143 ms
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and 284/115200=2.47 ms, while the frame time (ignoring idle time) was 33,3 ms. The
frame rates were thereby 5.67 and 28.0 frames per second. Since gestures could take less
than half a second to perform, the detected object list was chosen for its superior frame
rate.

4.3 Gathering training data
Data was gathered from five individuals not connected to the project, in addition to

the project group members. Before recording a gesture class, they got instructed on how
to perform the gesture and encourage to repeat it until it felt natural. A recording was
then started where approximately 100 gestures were captured for the class and the process
was repeated for the other classes. This resulted in a total of approximately 500 recorded
gestures for each class from independent sources. The four members of the project group
contributed as well with a total of approximately 1000 gestures per class.

When recording, one of the members of the project group labeled the data as back-
ground or gesture, trying to time the start and end of the gesture. To speed up the
process, the background data from these recordings were not used. Instead, background
data was recorded separately and merged with the gesture data in a later step.

4.4 Preprocessing of data
To feed the MLA radar data some preprocessing was needed. First, the radar data

packets had to be read and stored in a, for both humans and computers, readable fashion
so that it could be analyzed and reused. The saved data then had to be formatted in a
readable way for the MLA and lastly, there was a need to normalize the data to make
the MLA more accurate. All steps were done in python and how they were connected is
visualized in Figure 4.1.

4.4.1 Capturing data
To read the data a modified version of user ibaiGorordo’s Github code [28] was used.

This gave a python dictionary, divided into features, as an output. The output was stored
in a CSV format for analyses and future use.

4.4.2 Reformatting data
The MLA needed a standard format to work. Therefore a standardized vector was

produced for each frame with a set length. To achieve this, the maximum amount of
objects where set. Objects far away were less likely to contain useful information so
objects were sorted by the range and if the maximum number was exceeded, the ones
furthest from the radar were cut.

The limit was set to 10 objects since this was an observed limit rarely exceeded by
the gesture data. If less than 10 objects were found, each feature vector (range index,
Doppler index, peak value, x value, y value) was padded with zeros until the length was 10.
Finally, the data was structure as seen in Figure 4.2. The label was optional depending
on if the data was supposed to be used as training/testing data or prediction data for the
application, resulting in a vector of size 51 or 52 elements.
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Figure 4.1: A flowchart demonstrating how data flowed between different programs, storages, and
algorithms.

n r1 r2 · · · rn 0 · · · v1 v2 · · · 0 p1 · · · 0 x1 · · · 0 y1 · · · 0 label

n-elements

10-elements 10-elements 10-elements 10-elements 10-elements

Figure 4.2: The format of a standard vector. First comes the amount of objects, then the objects’
ranges from smallest to largest, the Doppler, peak x, and y. Values with the same index correspond to
the same object.

Since gestures only where performed within a certain range of the radar, a maximum
distance was set to filter out noise. The cut of length was chosen as the 40th range index
which corresponds to 1,87 m after which any objects are cut, regardless of the number of
objects in the frame.

4.4.3 Normalizing data
The final manipulation of the radar data was to normalize it to values between one and

negative one and centering it by making sure the mean value of the data was zero. This
was done right before the data was fed to the network. All data was loaded into a long
list and separated into different features. The mean was then calculated for each feature
and all elements which were not padding were subtracted with the mean value. Then the
absolute maximum of each feature was calculated and divided with which resulted in data
centered around zero with maximums of ±1. The means and maximums were saved so
they could be used when predicting new frames with that model.
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4.4.4 Shuffling data
Since the data was recorded by performing the same gesture multiple times while the

application should be able to detect any sequence of gestures shuffling of the input data
was required. This was done by grouping each continuous sequence with the same label as
an individual gesture. These groups were then selected in a random order to be put in a
sequence. Between each gesture a varying amount of background frames were inserted to
separate them, forming a single sequence of varying gestures with background in between.

4.5 Synthesized data
Synthesized data was created in order to increase the amount of data in a more efficient

way than further data recording. The synthesized data was only used as training data
since it would not give meaningful results as testing data.

The data were synthesized through translation. This was done simply by changing
the x and y coordinates of an object and then calculating the new range value. The same
translations factors dx and dy were used for all frames from one recording.

4.6 Machine learning(ML)
The design of the machine learning structure was primarily done by finding and adapt-

ing solutions to similar problems. Of particular note is the Soli project at Google [2]. Using
the sequential model of Keras in Python the model was built by adding layers together in
sequence. These layers were implemented by running Tensorflow behind the Keras API.

Optimization of hyperparameters was done by comprehensive testing of different com-
binations and iterative improvements of the more successful combinations.

4.7 Applying the results
To interpret the output of the MLA some post-processing was needed. Based in

statistics, a sequence of Ls frames was defined as a gesture of a specific class if more than
a given limit, Nlim, of the frames were classified as a said class of gesture. The detection
of a gesture was further defined as Nd such sequences, classified as the same gesture class,
within LD frames of each other. After detection, the number of times a sequence had
been classified as a certain gesture was reset for all gestures classes. See Appendix B for
the statistical calculations.

A good starting point was assessed to be Ls = 8, Nlim = 4, LD = 9, and Nd = 2.
This assessment was, however, done on approximations, so some testing was done to find
potentially better values. The end result was Ls = 8, Nlim = 3, LD = 9, and Nd = 5. This
gave a good balance between the ability to suppress false detection and still minimizing
the risk of missing a gesture detection.

Resetting values after a detection creates a delay of LD frames before a new frame
can be detected. This is not a bad thing though since gestures and background had been
recorded separately. This makes the network unfamiliar with the transitions between
background and gestures. There was, in fact, a need for an extra delay of 10 frames,
making the total delay 19 frames, to suppress false classifications.
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When a gesture was detected, the program used virtual keys on the computer to control
the music. This allowed the program to change the volume, switch songs, and pause the
music. If the computer was connected to another device such as a Chromecast it would
control the device.
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Results

The final result is an application able to control a media device by using hand gestures.
The accuracy of the gesture detection ranges between 48.1 and 78.5 percent per gesture
using continuous data.

Six hand gestures were chosen, and the model was trained on almost 100000 frames of
gesture data representing 8686 complete gestures. The machine learning model was build
using LSTM layers and reached an average accuracy of 81.6 percent and 85.7 percent for
three and six gestures respectively for recorded shuffled data.

5.1 Application
The final application uses virtual key presses to control media playback and volume

on a PC. Repeat activations of certain buttons during longer gestures are disallowed
by requiring detection of background between each subsequent activation of the same
function.

One gesture is set up to be used to switch between different units, for example, con-
trolling a lamp instead of a media device, but no further uses have been implemented.

5.2 Hand gestures
All hand gestures are made with the right hand.

• Button: Having the fingers slightly cupped. The action is pressing the thumb
down and lifting it back up again. Similar to holding a remote control and pressing
a button. The gesture used to stop/start the music.

Figure 5.1: Visualization of the button gesture. The sequence goes from left to right.

• Swipe next: Keeping the fingers stretched but together. The action is to move the
hand and arm from right to left, similar to a slap. The gesture used to go to the
next song.
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(a) (b) (c)

Figure 5.2: Visualization of the swipe next gesture. The sequence goes from left to right.

• Swipe prev: The reverse of “Swipe next”. The same position of the fingers but the
action is to move them from left to right. The gesture used to go to the previous
song.

Figure 5.3: Visualization of the swipe prev gesture. The sequence goes from left to right.

• Slide up: Holding the fingers similar to holding a pole where the tip of the thumb
touches the tip of the index finger. The actions are to move the thumb down the
index finger while simultaneously extending the rest of the fingers. The end position
is to have the fingers stretched similarly to the “Swipe” gestures. The gesture used
to turn volume up.

Figure 5.4: Visualization of the slide up gesture. The sequence goes from left to right.

• Slide down: The reverse of “Slide up”. Starting instead from the end position then
sliding the thumb along the index finger while slowly cupping the fingers. The end
position is the same as the starting position as “Slide up”. The gesture used to turn
the volume down.

Figure 5.5: Visualization of the slide down gesture. The sequence goes from left to right.

• Flop: The starting position is having an open fist while the palm should be aimed
towards the sky. The action is lifting the hand slightly, turning it counter-clockwise
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and putting it down again. The movement is similar to turning a page in a book or
flipping a card over. The gesture used to change the unit.

Figure 5.6: Visualization of the flop gesture. The sequence goes from left to right.

5.3 Radar
From the data packet Statistics, Profile statistics from the radar were obtained. The

relevant values are as follow the inter-frame processing time at 1915 µs, transmit output
time at 3143 µs, inter-frame processing margin at 9098 µs, inter-chirp processing margin
at 2017 µs.

The calculated frame time was 36 ms, not taking in to account the radar’s internal
calculation time and other arbitrary processes. Through testing, the radar could function
properly at a frame time of 43 ms. The real frame time, calculated through the time
command i python, was 60 ms. Through extensive testing to lower the frame time the
conclusion could be made that the frame time had a lower limitation of 60 ms.

The calculated range and velocity resolutions are

dres = 4.7 cm, (5.1)
vres = 58 mm/s, (5.2)

and the maximum values are

dmax = 3.0 m, (5.3)
vmax = 1.9 m/s. (5.4)

5.4 Data processing
In total, the model was trained on 251 020 frames of data including background frames.

After being shuffled according to Section 4.4.4, 70 percent of the frames were used for
training and the rest for verification. The distribution of gestures and frames per class of
gesture can be seen in table 5.1.

Table 5.1: Number of frames and gestures used in the training and verification of the model.

Nf training Nf testing Nf total Ngestures

Slide up 16301 6696 22997 1725
Slide down 11350 5042 16392 1499
Button 14848 6080 20928 1528

Swipe next 12617 5555 18172 1709
Swipe prev 9468 4320 13588 1365

Flop 5456 2311 7767 860
Total 70040 30004 99844 8686
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Normalizing the data provided a large improvement of the result. With identical hy-
perparameters, the model reached 83.1 percent accuracy on the data before normalization
and 88.5 percent afterward. These results are on different data than the final results but
the increase of 5.4 percentage clearly indicates that normalized data should be used.

The artificial data created was mostly unused in the final training. Results did not
improve significantly when artificial gestures were used in training. Some artificial back-
ground data were used to separate gestures.

5.5 Machine learning

The final model is built by three LSTM layers with a dropout layer between the first
and the second and a final, dense, softmax layer to translate the results into a probability
distribution.

Two optimizations were done, one for three gestures and one for six. Both setups
include the possibility to classify gestures as background. After testing, the configurations
of hyperparameters shown in table 5.2 produced the best result.

Table 5.2: Hyperparameters used in the training of the models.

Number of gestures 3 6
Epochs 500 500

Time-step 10 10
Batch size 10 10

Lstm_output 10 20
Stateful True True
Optimizer Adam Adam

Learning rate 0.00001 0.00025
Decay 0,000001 0,0000025

Accuracy 0.816 0.857
Loss 0.456 0.539

Table 5.2 shows the overall accuracy for six gestures of 0.857 and for three gestures of
0.816. It’s important to note that this does not guarantee that level of accuracy for every
class of gesture and that every class of gesture needs to be classified accurately to ensure
good performance. The distribution of accuracy between gestures can be seen in table 5.3
and table 5.4.

Table 5.3: The confusion matrix when training for three gestures and background.
XXXXXXXXXXXXActual

Predicted Button Swipe Next Swipe Prev Background

Button 70.1 3.0 2.6 24.4
Swipe Next 8.1 69.6 4.7 17.7
Swipe Prev 9.8 9.1 62.3 18.8
Background 3.6 2.8 1.5 92.2
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Table 5.4: The confusion matrix when training for six gestures and background.
XXXXXXXXXXXXActual

Predicted Slide Up Slide Down Button Swipe Next Swipe Prev Flop Background

Slide Up 73.6 6.1 7.8 0.4 0.6 0.5 11.1
Slide Down 9.8 65.0 8.2 0.8 1.0 1.3 14.0
Button 14.4 5.7 66.8 0.3 1.3 0.7 10.8

Swipe Next 1.2 1.0 0.8 79.8 1.5 2.9 12.7
Swipe Prev 1.1 0.8 2.8 2.5 77.3 1.1 14.4

Flop 1.8 5.2 3.0 10.4 2.0 62.5 15.0
Background 1.2 0.9 0.9 0.8 0.7 0.2 95.3

5.6 Post-processing
To make classifications of real-time data the trained model makes predictions based

on the ten latest frames every time a new frame is captured. The frequency of new frames
and therefore the frequency of predictions is approximately 16.6 frames per second.

The total result for predicting sequences of recorded gestures varies depending on the
input data. When the input data is discontinuous, like the training data, the network
will predict with high certainty and accuracy as shown in Figure 5.7. However, when the
network is fed continuous data, the certainty and the accuracy of the predictions goes
down.

Figure 5.7: The probabilities for each gesture plotted against time, represented as frames. The proba-
bility is set to zero when it is lower than the background probability. Otherwise, the full probability is
shown.

Besides the uncertainties, the network was quite sensitive to the positioning of the user
and the radar, and because of the poor results of the six-gestures networks, there is only
going to be results for the application using a three-gesture network and with the user
and radar in good positions. These results are presented in Figures 5.8 to 5.10 but more
are available in Appendix in Figures D.1 to D.3. Figure 5.8 and 5.9 shows the difference
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between not having any delay before being able to detect a new gesture compared to the
delay of ten frames which is used. Important to notice about these two sequences is that
swipe previous spikes detected in between the swipe next and swipe previous sections
where only products of miscommunication.

Figure 5.8: The figure presents the probabilities for each gesture over time where each step is a frame,
where there is no delay between detections. The probabilities are only shown when they are greater
than the probability of background. The dots represent a detection.

Figure 5.9: The figure presents the probabilities for each gesture over time where each step is a frame,
where there is a delay of 10 frames between detections. The probabilities are only shown when they are
greater than the probability of background. The dots represent a detection.
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Figure 5.10: The probabilities for each gesture plotted against time in the form of frames for gestures
recorded in mixed order.

The amount of prediction and the likelihood of a certain output given the input are
shown in tables 5.5 (to see the amount of each gesture, go to Figur D.1 in Appendix). The
tables show that the swipe next gesture had the highest probability of beginning predicted
correctly ∼ 78, 5%. Second, came the swipe previous gesture with ∼ 63, 8% and worst was
the button gesture which only had a probability of ∼ 48, 1%. Background predicted as
gestures was never a problem on its own, but close to gestures were some false detections
produced by mislabeling, moving the hand to the starting position, or back from the end
position. Furthermore, there were a few gestures which got more than one detection. This
is presented in tables 5.6, where detections are coupled with which gesture it was found
close to (The amounts are shown table D.2 in Appendix).

Table 5.5: The confusion matrix for the application where the likelihood of getting a certain output
given an input is shown.

XXXXXXXXXXXXInput
Output Next Button Previous Background

Next 78,5 1,3 12,7 7,6
Button 15,6 48,1 9,1 27,2
Previous 20 0 63,8 16,3

Table 5.6: The confusion matrix for the application where the likelihood of getting a double predic-
tion (i.e a second prediction on an already predicted input) is shown given a certain output and input.

XXXXXXXXXXXXInput
Output Next Button Previous Background

Next 2,53 0 0 0
Button 7,79 1,30 1,30 0
Previous 6,25 0 0 0
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6
Discussion

The final result is significantly lower than the 95 percent accuracy per gesture set up
in the aim for the project, with the best per gesture result with continuous data being
78.5 percent and the worst being 41.1 percent. Looking at the accuracy per frame with
segmented data the results are slightly better with the best per gesture result per frame
being 79.8 percent and the worst being 62.3 percent in the machine learning validation.

The result is mostly dependent on three factors; the tuning of the hyperparameters,
the machine learning model and the input data. Further sections will discuss how each of
those could be improved.

6.1 Tuning

The tuning of the hyperparameters was done in a comprehensive although slightly
unstructured way. Since most iterations improved on previously successful settings it
is possible that some very different combinations of values would provide a better result.
However, some iterations included high variations of variables and the number of iterations
still range a large section of possible combinations. If a better setting exists it is still
unlikely that the improvements are very significant.

6.2 Machine Learning structure

The choice of using Tensorflow as the framework for the machine learning was made
partly because of its widespread usage resulting in a wide amount of information and
tutorials available. The ecosystem of API’s and connected frameworks, most importantly
Keras, also influenced the decision. Tensorflow with Keras has been easy and fast to use
but no comparisons to other frameworks have been made so it is impossible to determine
if better results would have been reached with another choice.

The choice of using LSTM layers in the model is supported by the theory. Since
the classification of one frame to a certain class of gestures is highly correlated with the
classification of nearby frames. This is also supported by the early testing of different
combinations of layers.

However, not much testing of different models was done later in the project. Neither
types of layers or amount of layers were varied after the tuning of hyperparameters had
begun. It is also possible that the use of Keras to build the model resulted in an overly
simplified model which was not specialized enough to this problem.

Some possible modifications of the model are likely to improve the result.

35



6.3. DATA CHAPTER 6. DISCUSSION

6.3 Data

The quality of the data is dependent on a few factors. The performance of the gestures
when recording, the accuracy of the radar to capture this data, what data the radar is
able to output and the processing of the data before it is used in the machine learning
model.

6.3.1 Radar

A big problem with the radar is the deviating measured frame time. It is, roughly
15 ms slower compared to the frame time of the radar. After doing several tests to find a
bottleneck, no results were found. The time used to process the received data was below
2 ms so the code was not the factor. After consolidation with Texas Instrument employees,
the hardware of the computer receiving the data was believed to be the reason behind
the long frame time. However, after testing the possible underlying issues we could not
pinpoint which part of the computer was responsible. All that is clear is that some part
of the computer and radar communication was not working properly which must have
caused a delay in the process.

Another problem noticed was that the Object Detection list used as output format
from the radar might have carried too little information for the neural network. There
where a lot of similar or identical frames which left less room for nuances. To combat
this, the heat map data structure could be used. However, the AWR1642 evaluation
board is not made for extracting a huge amount of data from it, considering that the only
connection port is a micro-USB. To achieve a higher frame rate with the heat map, TI
has developed a real-time data-capture adapter. The board is called DCA1000 and would
increase the transmission speed to 1 GB/s. This is an option that should be considered
for a future project with the AWR1642 radar.

6.3.2 Data gathering

When training neural network there was need of a lot of recorded data, we were recom-
mended to have at least 1000 recordings of each gesture. Because of the short time span
of the project, and the considerable time needed to train each machine learning model,
the gestures were recorded separately from the background leading to a discontinuous
data sequence. This lead to the MLA having trouble predicting frames right before and
after gestures. If the gestures would have been recorded continuously with proper back-
ground in between each gesture the MLA might even have been better at predicting when
a gesture was on its way.

The problem with this is that it would be hard to shuffle data. Either you would
have to record thousands of snippets with pre-gesture background, gesture, post-gesture
background, stop and shuffle these snippets or the data would have to be recorded with
gestures coming in random order. The first method would take way to much time for this
bachelor’s project. The second, however, could be viable, but it would be confusing for
the people being recorded and the person labeling the data.
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6.3.3 Data Processing
The data processing worked quite well for the project. The number of objects allowed

in the standard vector was never changed or tested, neither was the cut-off length. This
was since the values were determined by observations. The cut of length was also a decided
maximum for how far from the radar a gesture would be performed and a change in the
number of objects would increase the processing time.

The zero meaning and normalization of the data proved very effective to improve the
result. Before using these methods, the highest probability achieved for three gestures
was 75 percent and after, the result was sometimes closer to 95 percent. The choice of
processing the data feature by feature instead of the whole standard vector was done to
equalize the importance of each feature.

6.4 Application
Using virtual key presses to let the application control media setting means the app is

highly dependent on the operating system. This creates some limitations. To begin with,
the operating system determines what the result of each press is, for example how much
one press of volume up increases the volume, and most importantly the app is only tested
for one operating system and will most likely not work correctly on another one.

6.5 Hand gestures
As seen in the result there is a big discrepancy between the highest and the lowest

accuracy of recognized hand gestures with continuous data. One likely explanation for this
is that some of our hand gestures produced better data through the radar. With another
selection of gestures better results might have been reached, this is, however, likely to
result in the gestures being less intuitive.

6.6 Conclusions
In conclusion, this thesis explored using fine gestures in machine learning and reached

a starting point from which further work can be made. Different machine learning al-
gorithms have been explored and from this, a functional neural network model has been
designed with three LSTM-layers and one dropout layer. After exhaustive tuning of the
hyperparameters, this model provided adequate results. The object-detection data from
the radar has been evaluated and methods for processing this data have been collected.
Using this type of data allowed higher frame-rate but some information was lost. Finally,
a method for post-processing the output in order to improve stability has been calculated.

The overall result was less than hoped for but it is not likely that better could have
been achieved with the limited experience and time available. The accuracy was also less
than the thesis this one is based on. The most significant difference is that this thesis
uses a different machine learning algorithm which might perform worse but allows solving
far more difficult problems. One significant difference in the problem is that the LSTM
network allows any gesture to be classified after training, with the limitation being if
the radar can get discernible data between gestures, as opposed to the limit of only linear
gestures previous. The other major difference is that the application allows for continuous
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classification while the application in the previous thesis required the user to signify when
a gesture was started.

This thesis provides an improvement in usability from the previous project but some
accuracy and reliability have been lost. With the knowledge acquired through the project,
several areas of improvement to remedy this have been identified.

6.6.1 Future works
First, data gathering could be improved. One possible improvement is to try and

get continuous data. Issues and benefits with this have been discussed but one possible
improvement could be to implement some system of automatic labeling which could avoid
the human error when capturing varying gestures in sequence. More data processing
should be done early to avoid training and tuning the model for less than optimal data.

Less time could be spent tuning hyperparameters and instead spent investigating dif-
ferent machine learning models or working with the data.

Finally, it should be considered what data from radar to use. The heatmap is likely
preferable if transfer speed can be improved or the application made to work with less
resolution or lower frame rate.
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A
Radar configurations

A.1 Radar configuration file
The AWR1642 mmWave radar is configured by sending the radar a configure file (.cfg).
Figure A.1 shows the configure file for this specific project.

Figure A.1: Configure file (.cfg) used to configure the AW1642 mmWave radar.
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A.2 TI’s mmWave radar commands

Table A.1 explains the mmWave API commands and parameters used in the configure file
(see Figure A.1) for the radar. See [29] for a more comprehensive explanation.

Table A.1: List of mmWave API commands used to configure the AWR1642 mmWave radar [29].

Configuration com-
mand Command details Command Parame-

ters

sensorStop Stops the mmWave Front End
and the processing chain. -

flushCfg
Flushes the old configuration.
Should be located after sen-
sorStop.

-

dfeDataOutputMode Sets the transmitting mode for
the radar. <mode Type>

channelCfg Receives antenna mask from the
radar. <rxChannelEn>,

<txChannelEn>,
<cascading>

adcCfg Sets the number of ADC bits and
the output format.

<numADCBits>, <ad-
cOutputFmt>

adcbufCfg adcBuf hardware config.
<dont_care>, <ad-
cOutputFmt>, <Sam-
pleSwap>,
<ChanInterleave>,
<Chirp Threshold>

profileCfg See section A.2.1. <profileId>,
<startFreq>,
<idleTime>,
<adcStartTime>,
<rampEndTime>,
<txOutPower>,
<txPhaseShifter>,
<freqSlopeConst>,
<txStartTime>,
<numAdcSamples>,
<digOutSampleRate>,
<hpfCornerFreq1>,
<hpfCornerFreq2>,
<rxGain>

II



APPENDIX A. RADAR CONFIGURATIONSA.2. TI’S MMWAVE RADAR COMMANDS

chirpCfg See section A.2.2. <chirpStartIdx>,
<chirpEndIdx>,
<profileId>,
<startFreqVar>,
<freqSlopeVar>,
<idleTimeVar>,
<ADCstartTimeVar>,
<txEnMask>

frameCfg See section A.2.3. <chirpStartIdx>,
<chirpEndIdx>,
<numOfLoops>,
<numOfFrames>,
<framePeriod>,
<trigSelect>,
<FrameTrigDelay>

lowPower Low Power mode config message. <don’t_care>
<ADCMode>

guiMonitor Enables export of different data
gathered by the radar. <subFrameIdx>,

<detected objects>,
<log_magnitude_range>,
<noise profile>,
<rangeAzimuthHeatMap>,
<rangeDopplerHeatMap>,
<statsInfo>

cfarCfg CFAR config message to datap-
ath. <subFrameIdx>,

<procDirection>,
<mode>,
<noiseWin>,
<guardLen>,
<divShift>,
<dont_care>,
<ThresholdScale>

peakGrouping

Enables the reporting of a cluster
of detected neighboring points as
only one point, the highest one,
this reducing the total number of
detected points per frame.

<scheme>,

<PGinRangeDir>,
<PGinDopplerDir>,
<EndRangeIdx>
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multiObjBeamForming

Allows radar to separate re-
flections from multiple ob-
jects originating from the same
range/Doppler detection.

<subFrameIdx>,

<Feature Enabled>,
<threshold>

clutterRemoval

Static clutter removal algorithm
implemented by subtracting from
the samples the mean value of the
input samples to the 2D-FFT.

<enabled>

calibDcRangeSig

When enabled the antenna cou-
pling signature is estimated dur-
ing the first N chirps, and then
it is subtracted during the subse-
quent chirps.

<subFrameIdx>,

<enabled>,
<negativeBinIdx>,
<positiveBinIdx>,
<numAvg>

extendedMaxVelocity Extends max velocity for object
detection to 2 · vmax.

<subFrameIdx>,

<enabled>

bpmCfg

Enables configuration to TDM-
MIMO scheme and provides SNR
improvement by running 2Tx si-
multaneously.

<subFrameIdx>,

<enabled>,
<chirp0Idx>,
<chirp1Idx>

lvdsStreamCfg Enables the streaming of various
data streams over LVDS lanes. <subFrameIdx>,

<enableHeader>,
<dataFmt>,
<enableSW>

nearFieldCfg Enables near field correction algo-
rithm. <subFrameIdx>,

<enabled>,
<startRangeIndex>,
<endRangeIndex>

compRangeBias-
AndRxChanPhase

Command for datapath to com-
pensate for bias in the range esti-
mation and receive channel gain
and phase imperfections.

<rangeBias>,

<Re(A,B)>,
<Im(A,B)>

IV
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measureRangeBias-
AndRxChanPhase

Command for datapath to enable
the measurement of the range
bias and receive channel gain and
phase imperfections.

<enabled>,

<targetDistance>,
<searchWin>

CQRxSatMonitor Rx Saturation Monitoring config
message for Chirp quality. <profile>,

<satMonSel>,
<priSliceDuration>,
<numSlices>,
<rxChanMask>

CQSigImgMonitor
Signal and image band energy
Monitoring config message for
Chirp quality.

<profile>,

<numSlices>,
<numSamplePerSlice>

analogMonitor Enables/Disables monitor fea-
tures. <rxSaturation>,

<sigImgBand>

sensorStart

Starts the sensor. This func-
tion triggers the transmission of
the frames as per the frame and
chirp configuration. Starts the
mmWave Front End and the pro-
cessing chain.

-

A.2.1 chirp profile configuration
The mmWave SDK allows for up to four different chirp profiles, which every chirp is based
on. The commands variables are explained in Figure A.2.

Figure A.2: Parameter explanation for mmWave API command “profileCfg” used in the configure file
for the AWR1642 radar in the project. Made in draw.io.

A.2.2 Chirp configuration
Every chirp is based on a chirp profile and the chirp configuration command allows for
variations to those variables. The mmWave SDK allows for 512 individual chirps in each
chirp profile. An explanation for the variables in the command is shown in Figure A.3.
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Figure A.3: Parameter explanation for mmWave API command “chirpCfg” used in the configure file
for the AWR1642 radar in the project. Made in draw.io.

A.2.3 Frame configuration
The frame configuration command sets the frame parameters. The number of loops sets
the number of times the chirp sequence is run until it is considered a whole frame. See
Figure A.4 for the command parameters explanations.

Figure A.4: Parameter explanation for mmWave API command “frameCfg” used in the configure file
for the AWR1642 radar in the project. Made in draw.io.
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B
Statistical calculations

To calculate the statistics some assumptions are required:

i The true input follows the alternating pattern, gesture, background, gesture...

ii A given gesture has the probability ρG of being predicted correctly.

iii Background has the probability ρB of being predicted correctly.

iv If a background frame is predicted incorrectly it is equally likely that any one of the
gestures is predicted instead.

Assumption (i) comes from how the application is indented to be used, while Assump-
tion (ii) and (iii) are approximations that each gesture and background frame has the
same probability no matter where in the chain they are placed. The final assumption, (iv)
is an approximation that seems justified when looking at the confusion matrices from the
neural network in table 5.3, for three gestures, and table 5.4, for all gestures.

Table B.1: The probability of not missing a gesture in per cent for different values of LG and Ls and
ρG = ρB = 0, 6

HHH
HHHLs

LG 4 5 6 7 8 9 10

4 0,3983 0,0714 0,0128 0,0023 0,0004 0,0001 0,0000
5 2,8873 0,9165 0,2909 0,0924 0,0293 0,0093
6 0,0817 0,0146 0,0026 0,0005 0,0001
7 0,7259 0,2104 0,0610 0,0177
8 0,0163 0,0028 0,0005
9 0,1769 0,0472
10 0,0032
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Table B.2: Values for (B.1) given different values for x and li, notice that the values where x ≈ li are
the ones with highest probability

H
HHH

HHx
li 4 5 6 7 8 9 10

0 2.5600 1.0240 0.4096 0.1638 0.0655 0.0262 0.0105
1 15.3600 7.6800 3.6864 1.7203 0.7864 0.3539 0.1573
2 34.5600 23.0400 13.8240 7.7414 4.1288 2.1234 1.0617
3 34.5600 34.5600 27.6480 19.3536 12.3863 7.4318 4.2467
4 12.9600 25.9200 31.1040 29.0304 23.2243 16.7215 11.1477
5 0 7.7760 18.6624 26.1274 27.8692 25.0823 20.0658
6 0 0 4.6656 13.0637 20.9019 25.0823 25.0823
7 0 0 0 2.7994 8.9580 16.1243 21.4991
8 0 0 0 0 1.6796 6.0466 12.0932
9 0 0 0 0 0 1.0078 4.0311
10 0 0 0 0 0 0 0.6047

A sequence of frames with a length of Ls frames is according to Assumption (i) going to
consist of a sequence of gin ∈ [0, Ls] gesture frames of a certain gesture, and bin = Ls−gin
background frames. If Ls is less than the sum of the length of the shortest gesture and
the length of the shortest sequence of background this sequence can at most contain one
gesture. The gesture frames and background frames can be separated into two sets, G and
B, shown in Figure B.1. This separation combined with Assumption (ii) and (iii) allows
for an easy way to calculate the likelihood of x frames in a given set being predicted as
the correct class of gesture.

B1 · · · Bb G1 · · · Gg

Ls-elements

bin-elements gin-elements

B1

...
Bb

G1

...
Gg

Set: B Set: G

Figure B.1: How an input sequence is divided into subgroups, where the input is assumed to follow
(i).

The probabilities will follow a binomial distribution [30] as follows,

Pi(x, li, ρs, ρf ) =
(
li
x

)
ρxs(1− ρs)li−x, (B.1)

where i denotes the set, x = 0 · · · li and represents as mentioned the number of frames
predicted correctly as the gesture, li is the number of frames in the set, and ρs is the
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probability for success, which in this case means predicting a frame as the gesture. The
probability of getting at least x successes is simply

li∑
x=n

Pi(x, li, ρs, ρf ). (B.2)

Given equation (B.1), the probability of predicting x frames of the set G as the wanted
gesture follows,

PG(x) =
(
gin
x

)
ρxG(1− ρG)gin−x. (B.3)

For set B, ρs is unknown but given (iii) and (iv) it is easily calculated to ρs = (1− ρB)/6
and 1− ρs = 1− (1− ρB)/6 = (5 + ρB)/6 which makes equation (B.1) for set B,

PB(x) =
(
bin
x

)
((1− ρB)/6)x((5 + ρB)/6)bin−x. (B.4)

Now it is possible to calculate the probability that the neural network will predict a
majority of the frames in a sequence as gesture frames, which this project defines as a
correctly predicted gesture. The minimum frames required is Nlim = Ls/2 rounded up. If
gin ≥ Nlim probability of correctly predicting a gesture in that sequence is

PSG(gin) =
gin∑

i=Nlim

PG(i) +
Nlim−1∑
i=0

PG(i)
(

bin∑
j=Nlim−i

PB(i)
)
, (B.5)

notice that the second term is for when there is not enough of G-frames predicted correctly
so there need’s to be B-frames predicted incorrectly as the gesture. This term only works
for i:s where i+ bin ≥ Nlim, the term should otherwise be zero.
The probability of missing a gesture of length LG, where LG ≥ Ls, is

Pmiss gesture =
Ls−1∏
i=Nlim

(1− PSG(i))2 · (1− PSG(Ls))Lg−Ls+1, (B.6)

since there are two sequences which contain gin ∈ [Nlim, Ls − 1], one at the start and one
at the end, and there is LG−Ls+1 sequences of only gesture frames. Important to note is
that even values of Ls give a significantly lower probability of missing a frame compared
to its odd counterparts. This stems from the fact that the even number compared to the
odd number right below it, will have the same Nlim but an extra term in both equation
(B.3) and equation (B.4). This extra term is one of the middle terms of the series which
carries with it a high probability thanks to the binomial term. So sequences with odd
values of Ls lose a lot of probability. This is further shown in table B.1 and table B.2.
The equations for calculating the probability of incorrectly finding gestures in background
is similar to the equations above. Since background segments, in general, are much longer
than gesture segments, it is pointless to look at the edges of the segment. Therefore, there
is only a need for calculating the probability of sequences with the pure background as
input. The probability of finding a gesture in a sequence of pure background is then

PSB(Ls) = 6
Ls∑

i=Nlim

PB(i), (B.7)

since there are six different gestures that the background can convert to.
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B.1. FINDING GESTURES CLOSE TO EACH OTHERAPPENDIX B. STATISTICAL CALCULATIONS

B.1 Finding gestures close to each other
A stricter definition of what classifies as a detected gesture is that more sequences of
frames need to be classified as a gesture before being considered a detected gesture. This
suppresses false positives even better, yet keeps the probability of not missing a gesture
high. The probability of finding two gestures within a span of LD−frames of each other
is complicated. A simplification is to just look at a gesture of length LD and see what the
probability of finding only one or none of the gesture sequences. The probability can be
found by using equation (B.5) and (B.6). The probability of getting a detection in one of
the sequences but not the others is simply

P1miss(gin) = PSG(gin)Pmiss gesture

1− PSG(gin) . (B.8)

This makes the total probability of not detecting two or more gestures in the span of the
whole gesture,

P2miss = Pmiss gesture + 2
Ls−1∑
i=Nlim

P1miss(i) + (LG − Ls + 1)P1s(Ls). (B.9)

The actual probability is lower than this since the window is moving along the gesture
and can detect gestures even when not right on top of it.

B.2 Probability in background
If the number of times a sequence is classified as a gesture is reset every time a gesture
is detected, then the assumption that false positives only occurs in sequences of only
background is valid. The probability of finding a sequence falsely classified is PB(x),
being the probability function from equation (B.4). So the possibility of finding two
falsely classified sequences within a certain amount of frames LF will follow a negative
binomial distribution [31]

PFF (Ls, LF ) =
(
LF − 1

1

)
PSG(Ls)2(1− PSG(Ls))Ls−2

= LF · PSG(Ls)2(1− PSG(Ls))Ls−2.

(B.10)

This means that the probability of having found a false positive after exactly LF + x
sequences will be a geometric distribution [32],

PF (Ls, LF , x) = (1− PFF (Ls, LF ))x−1PFF (Ls, LF ). (B.11)

The sum of this expression gives the probability of not classifying a gesture over x gives
the probability of making it LF + x before getting.
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C
Machine learning optimizers

C.1 Adam optimizer
The pseudo-code algorithm for the adam optimizer [14].

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. g2
t indicates

the elementwise square gt � gt. Good default settings for the tested machine learning
problems are α = 0.001, β1 = 0.9, β2 = 0.999 and ε = 10 − 8. All operations on vectors
are element-wise. With βt1 and βt2 we denote β1 and β2 to the power t.

Require: α: Stepsize
Require: β1, β2 ∈ [0, 1): Exponential decay rates for the moment estimates
Require: f(θ): Stochastic objective function with parameters θ
Require: θ0: Initial parameter vector
m0 ← 0 (Initialize 1st moment vector)
v0 ← 0 (Initialize 2nd moment vector)
t← 0 (Initialize timestep)
while θt not converged do
t← t+ 1
gt ← ∇θft(θt − 1) (Get gradients w.r.t. stochastic objective at timestep t)
mt ← β1 ·mt−1 + (1− β1) · gt (Update biased first moment estimate)
vt ← β2 · vt−1 + (1− β2) · g2

t (Update biased second raw moment estimate)
m̂t ← mt/(1− βt1) (Compute bias-corrected first moment estimate)
v̂t ← vt/(1− βt2) (Compute bias-corrected second raw moment estimate)
θt ← θt−1 − α · m̂t/(

√
v̂t + ε) (Update parameters)

end while
return θt (Resulting parameters)
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D
Application results

Table D.1: The confusion matrix for the application where the amount of predictions are shown given
a certain input and output.

XXXXXXXXXXXXInput
Output Next Button Previous Background Total

Next 62 1 10 6 79
Button 12 37 7 21 77
Previous 16 0 51 13 80

Table D.2: The confusion matrix for the application where the amount of double predictions (i.e a
second prediction on an already predicted input) are shown given a certain input and output.

XXXXXXXXXXXXInput
Output Next Button Previous Background Total

Next 8 0 0 0 8
Button 2 1 1 0 4
Previous 6 0 0 0 6
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APPENDIX D. APPLICATION RESULTS

Figure D.1: The probabilities for each gesture plotted against time in the form of frames for gestures
recorded in mixed order.

Figure D.2: The probabilities for each gesture plotted against time in the form of frames for gestures
recorded in mixed order.
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APPENDIX D. APPLICATION RESULTS

Figure D.3: The probabilities for each gesture plotted against time in the form of frames for gestures
recorded in mixed order.

Figure D.4: The probabilities for each gesture plotted against time in the form of frames for gestures
recorded in mixed order.
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