
Parlira
An Interactive Phrasebook for Android Devices
Bachelor of Science Thesis in Computer Science and Engineering

BJÖRN HEDSTRÖM
MATILDA HORPPU
DAVID MICHAËLSSON

Department of Computer Science and Engineering
Chalmers University of Technology
Gothenburg, Sweden, June 2016

Parlira
An Interactive Phrasebook for Android Devices
BJÖRN HEDSTRÖM
MATILDA HORPPU
DAVID MICHAËLSSON

© BJÖRN HEDSTRÖM, 2016.
© MATILDA HORPPU, 2016.
© DAVID MICHAËLSSON, 2016.

Examiner: Niklas Broberg, Department of Computer Science and Engineering

Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

The Author grants to Chalmers University of Technology the nonexclusive right to
publish the Work electronically and in a non-commercial purpose make it accessible
on the Internet. The Author warrants that he/she is the author to the Work, and
warrants that the Work does not contain text, pictures or other material that vio-
lates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for
example a publisher or a company), acknowledge the third party about this agree-
ment. If the Author has signed a copyright agreement with a third party regarding
the Work, the Author warrants hereby that he/she has obtained any necessary per-
mission from this third party to let Chalmers University of Technology store the
Work electronically and make it accessible on the Internet.

Cover: The logotype for Parlira designed by Björn Hedström.

Department of Computer Science and Engineering
Gothenburg, Sweden 2016

ii

Parlira
An Interactive Phrasebook for Android Devices

BJÖRN HEDSTRÖM
MATILDA HORPPU
DAVID MICHAËLSSON
Department of Computer Science and Engineering
Chalmers University of Technology

Bachelor of Science Thesis

Abstract
This bachelor thesis documents the development of Parlira. Parlira is an offline
phrasebook application for Android devices with a foundation built on the func-
tional programming language the Grammatical Framework(GF). The goal of the
project was to develop an application where the user can alter different phrases to
fit specific situations. The main problems were to create an intuitive user interface
with dynamic updating of the translations, as well as making the application con-
figurable.

During the project, several commonly used practices in user interface design and
software development were used and reviewed for example Scrum and user stories.
They were used in order to ensure the fulfillment of the requirements and the smooth
development of the application.

The project has resulted in an application that supports dynamic updating by rep-
resenting the abstract syntaxes of GF with a tree structure in Java. As a result of
this, a user can choose a phrase and alter different parts of it according to his or her
needs. All configurations of the available phrases are stored in an extensible XML
file. This means that new phrases can be added by just changing the configuration
file without altering the code of the application.

Keywords:Grammatical Framework, Android, translation

iii

Sammandrag
Denna kandidatrapport dokumenterar utvecklingen av Parlira. Parlira är en fras-
bokssapplikation för Android-enheter som baseras på det funktionella programmer-
ingsspråket Grammatical Framework(GF) och fungerar utan internetuppkoppling.
Målet med projektet var att utveckla en applikation där användaren kan ändra i
olika fraser för att dem ska passa specifika situationer. De främsta problemen att
lösa var att skapa ett intuitivt användargränssnitt med dynamiskt uppdaterande
översättningar och att göra det lätt att konfigurera applikationen.

Under projektets gång användes flera beprövade metoder inom design av använ-
dargränssnitt och mjukvaruutveckling, exempelvis Scrum och användarberättelser.
Detta för att försäkra att de specifierade kraven skulle uppnås samt att utvecklingen
skulle fortgå på ett effektivt sätt.

Projektet resulterade i en applikation som tillhandahåller dynamisk uppdatering
genom att representera GF:s abstrakta syntaxer med hjälp av en trädstruktur i
Java. Till följd av detta kan en användare välja en fras och ändra vissa delar av
den baserat på hens behov. Alla konfigureringar av de tillgängliga fraserna lagras i
en utökningsbar XML-fil. Detta betyder att nya fraser kan läggas till i XML-filen
utan att behöva ändra i koden för applikationen.

Nyckelord:Grammatical Framework, Android, översättning

iv

Acknowledgements
We would like to especially thank our supervisor Krasimir Angelov. Without his
support, guidance and expertise within the field this project would not have been
possible to complete. Everyone who helped us with the testing of the application
also deserves to be thanked. Without their help many bugs would not have been
discovered and the application would probably not be as user friendly as it is.

BJÖRN HEDSTRÖM, Gothenburg, JUNE 2016
MATILDA HORPPU, Gothenburg, JUNE 2016
DAVID MICHAËLSSON, Gothenburg, JUNE 2016

v

Glossary
API: Application Programming Interface, specifies how software can communicate
with another given software
Origin language: The language to be translated from
Target language: The language to be translated to
Abstract syntax: An abstract representation of a natural language
Syntax tree: A tree data structure used to represent phrasebook phrases
Scrum: A working method used in software development
Interlingua: Intermediary language

Contents

1 Introduction 3
1.1 Background . 4
1.2 Purpose . 5
1.3 Problem description . 5

1.3.1 Dynamic User Interface . 5
1.3.2 Back end configurability . 5

1.4 Scope . 6

2 Methods 7
2.1 Research and Project Planning . 7

2.1.1 Research . 7
2.1.2 Work Procedures . 7

2.2 Practices . 8
2.2.1 Personas and User Stories . 8
2.2.2 User Tests . 9

3 Technical Background 11
3.1 Android Development . 11

3.1.1 Application Structure . 11
3.1.2 Material Design . 12

3.2 XML . 12
3.3 Grammatical Framework . 13

4 Design Process 15
4.1 Identifying User Needs . 15

4.1.1 Personas . 15
4.1.2 User Stories . 16

4.2 Designs at Different Stages and User Tests 17
4.2.1 Initial designs . 17
4.2.2 Paper Prototype User Test . 19
4.2.3 Software Prototype User Test 21

5 Implementation 23
5.1 Representing Sentences . 23

5.1.1 XML Configuration File . 23
5.1.2 Syntax Tree Structure . 26

5.2 Dynamic Updating . 27

vii

Contents

6 The Final Product 29
6.1 Application . 29
6.2 Features of Parlira . 29

7 Discussion 33
7.1 Method Discussion . 33

7.1.1 Design Process . 33
7.1.2 Implementation Process . 34

7.2 Result Discussion . 35
7.2.1 The Application . 35
7.2.2 Further Development . 36
7.2.3 Parlira in Society . 37

8 Conclusion 39

A User stories I

B Sketches V

C Paper Prototypes IX
C.0.1 Paper Prototype Test Specification IX
C.0.2 Summary of Observations . XII

D Usability Test Plan XIII
D.1 Test Specification . XIII
D.2 Product Under Test . XIII
D.3 Business Case . XIV
D.4 Participants . XIV
D.5 Equipment . XIV
D.6 Responsibilities . XIV
D.7 Location and Dates . XIV
D.8 Follow-up Questionnaire . XIV
D.9 Summary of Results . XV

1

Contents

2

1
Introduction

When travelling abroad one of the first obstacles encountered, which can often be
proven to be the most significant, is the language barrier. The ability to commu-
nicate with others is key to not only making travelling enjoyable, but can also be
of utmost importance in emergency situations. Even if many regions are proficient
in English, some territories still require travellers to either have basic knowledge of
the native language, or some sort of means for translation.

Most travelers in the past have made use of a phrasebook. Although a physical
phrasebook is a powerful tool, it does have several limitations. The phrases are
often limited and hard to alter to suit specific situations since the grammatical
structure of the sentence can change quite drastically with small alterations. It can
also be quite cumbersome to travel with a phrasebook, especially if the journey takes
the traveler to several regions with different languages where separate phrasebooks
will be needed for each one.

In later years, solutions to these problems have emerged with the introduction of
smartphones. A phrasebook for a specific language can be downloaded to the phone,
thus removing the problem of cumbersome transportation. Online translation tools
have also gained popularity and can provide fairly accurate translations based on
statistics. One example of such a tool is Google Translate [1]. One disadvantage
with Google Translate is that it is based on statistical machine translation, which
means that the translations are based on data gathered from a large amount of
text [2]. Thus, the credibility of translations of this kind can be low since the data
gathered may not be grammatically or semantically correct at all. In contrast, a
phrasebooks do not suffer from these constraints, but is in turn limited by its smaller
domain.

The fact that many translators require Internet connection raises the problem that
connecting to the internet can be difficult or even impossible in some regions, espe-
cially in developing countries. Those translators that have offline capabilities on the
other hand often have a quite restrictive domain. For example, they might have a
limited number of words and languages available to them. As such, the coverage of
the translation may not be adequate for the user’s current situation.

3

1. Introduction

1.1 Background

To resolve the problems of the traditional mobile translators there have been at-
tempts to make a more complete translation tool. One programming language that
can be used for developing translation programs is the Grammatical Framework
(GF) [3]. GF is a functional language designed to write grammars which defines the
rules of one or several languages. Using a grammar, it is possible to analyze a sen-
tence in one language and then generate the same sentence in another language. This
is possible through the separation between abstract syntax and concrete syntaxes.
Every grammar contains one abstract syntax and one or more concrete syntaxes.
The abstract syntax describes the abstract theory of the particular language domain
while the concrete syntaxes hold the rules for the particular languages [4]. By uti-
lizing both an abstract syntax representation in the form of tree structures, and a
concrete representation which represents a specific language, GF allows for precise
translation by parsing from one concrete language to an abstract tree and then gen-
erating a translation in another concrete language. As GF uses the abstract syntax
as interlingua, the overall size for a wide covering translator will be small, with 15
languages fitting in 30 MBytes. For a limited domain with a more specific coverage,
the size would be even smaller.

Examples of applications for mobile devices that use GF today are GF Offline Trans-
lator [5] and PhraseDroid [6]. GF Offline Translator allows the user to translate both
text and speech input. One feature that GF Offline Translator has is the ability to
show the quality of the translation to the user. This is done by colour coding the
outputted translation, allowing the user to know whether to trust the translation or
not. However, one thing that this application lacks is the ability to show the user
what phrases the application is able to translate entirely correctly. In PhraseDroid,
on the other hand, the user builds phrases from words that are shown in the user
interface. Only the words that can follow the previously chosen words are shown,
and thus it is ensured that it is only possible to enter input that can be correctly
translated. Although the translations are always correct, the incremental approach
to building a sentence can be inconvenient for the users. One issue is that it is
difficult for the user to see if the desired phrase is actually covered by the language
domain before the phrase is constructed.

The problem of not showing the user what phrases are available for translation is
something that the web application Phrasomatic [7] solves. In Phrasomatic, a user
can choose a type of sentence from a list and then customize it with different options
in order to receive the desired phrase with perfect semantics. The drawback of this
is that since it is web based it requires an internet connection to function. Another
disadvantage is that the user interface for Phrasomatic is not optimized for mobile
devices, making it difficult to use on a smaller screen.

An application that would combine the browsing abilities of Phrasomatic with the
translation capabilities of the GF Offline Translator, would showcase the potential
for portable phrasebook applications. Customizable and correctly translated phrases

4

1. Introduction

would facilitate communication abroad for many groups of people, including tourists
and businessmen.

1.2 Purpose
The goal of this bachelor project is to develop an offline phrasebook application
for mobile devices which can translate different linguistic phrases using GF. The
application should have a user interface which allows the user to customize phrases
in an intuitive and simple way while showing the translation dynamically. In the
application it should also be possible to browse through the available phrases in the
phrasebook. Both the user interface and the back end of the application should be
flexible and dynamic to make it reusable for several grammars.

1.3 Problem description
The main issues to be solved are how to represent the sentences’ varying amount of
available options in both the user interface and the back-end. These two problems
are described below.

1.3.1 Dynamic User Interface
A typical procedure for using a phrasebook would be to locate the desired phrase to
be translated and view the translation. One problem with a phrasebook for mobile
devices is the limiting screen. This becomes especially apparent when the phrase
is customizable with several options. Thus, there is a higher risk of the options
cluttering the screen and overwhelming the user.

The problem to be solved is how an application can be created where the user intu-
itively finds and uses phrases without being overwhelmed by the amount of options
available. The user should feel secure when customizing a phrase in order to satisfy
their current needs without being overpowered or losing interest in the application.

Another obstacle to overcome is the application’s need for instant translation. This
means that a new translation should immediately be generated as soon as an option
is altered. Not having this dynamic updating would risk an increased frustration for
the user. Another aspect to the dynamic updating is that it should be designed in
a way that allows for adding new phrases without altering the user interface.

1.3.2 Back end configurability
The back end of the application will mainly depend on GF. As a result of this, the
phrases in the application must be represented in a way that allows for text gen-
eration with GF as well as being compatible with the user interface. This includes
supporting the alteration of phrases in an efficient way.

5

1. Introduction

The application should be expandable with new phrases and phrasebooks without
any alteration to the code of the application. Therefore the logical structure of
sentences should be stored outside the core code as a configuration. A developer
must also be able to add new GF grammars to the project and be able to run the
application immediately without altering its code.

1.4 Scope
There are multiple ways in which the application developed in this project could
be expanded. However, the project had to be limited due to time restrictions and
choices regarding the focus of the project.

In this project, an Android application was developed. This decision was made since
the time frame was quite limited and the time was rather spent on creating a good
application than developing support for several platforms such as iOS and Windows
10 Mobile.

As a fully functioning translator with text input from the user already exists in the
GF-Offline Translator, this application focus on phrasebook traits such as template
sentences that could be customized by the user.

6

2
Methods

In this chapter the methods used throughout the project will be described. This
includes research, project planning and practices used.

2.1 Research and Project Planning
In general a project needs a period of initial background research and planning
before the work process can begin. The corresponding phase in this project will be
described in this section.

2.1.1 Research
Before the application was implemented, several fields were researched in order to
get an understanding of what problems had to be solved during the project. A part
of this period was spent studying the web application Phrasomatic since one goal
of this project was to adapt its features to fit on a smaller screen. Alongside this
process, it was investigated what data structure would best represent the sentences.

Due to some unfamiliarity regarding Android development within the group, time
had to be spent on learning basic concepts. This included how the foundation of
an application is built as well as what components are present for improving user
experience. There are also Android design guidelines which the developers required
knowledge of to be able to successfully design visual aspects of the application.

2.1.2 Work Procedures
The project was planned to be developed in two major phases, aptly named De-
velopment phase 1 and Development phase 2. The goal of Development phase 1
was to develop a working prototype of the application. Initial sketching of the user
interface was carried out in parallel to the research and project planning. Thus, a
complete design was finished before Development phase 1 started, although small
changes were made during the implementation in order to meet new requirements
that were identified during the process.

During Development phase 2 the user interface of the application was polished. This
included implementing the last parts of the interface as well as designing it according
to Android’s material design guidelines. Since it was near the project’s end small

7

2. Methods

problems in the application were also resolved, such as back-end malfunctions and
graphical glitches. Towards the end of Development phase 2, final user tests were
performed in order to evaluate the result of the project and to identify key points
of improvements for further development on the application.

Inspiration for working methods was taken from Scrum in order to remain effective
and productive throughout the whole project. Scrum is an agile working method
for system development that allows the project to change during the process in a
structured way. In Scrum the development is divided into shorter phases called
sprints. Each sprint is planned with the help of a backlog which contains all the
tasks that are to be completed during the project. This way of working encourages
change along the way and is often improving productivity since there is a sense of
team effort that motivates the group [8]

In order to plan the sprints a backlog was constructed from user stories which will be
further explained in Section 2.2.1. Weekly meetings were held with the supervisor
to outline what features would be implemented during the upcoming week. Smaller
meetings were also held within the group to plan the working sessions, thus ensuring
that all tasks would be completed.

2.2 Practices
In order to guide the design process and development of the application, a few
practices that work well with scrum were adapted. In this section, these will be
described starting with personas and user stories followed by user tests. How these
practices have been applied in this project will be described in more detail in
Chapter 4.

2.2.1 Personas and User Stories
When creating the backlog for the project according to Scrum practices, user stories
were applied. However, before constructing user stories, it was important that the
user stories covered all necessary functionality of the application. To ensure this,
a pair of personas were constructed. Personas are empathic descriptions of fictive
persons that are expected to use the product that is developed [9]. These personas
were created in order to understand the needs of users that might have different
experience in using applications than the developers do. Since our way of working
was inspired by agile methods, the personas were adapted to them. In this case,
in order for the developers to not get stuck with precise requirements, the personas
acted more as a guideline and were not as detailed as they usually are. The benefit
of this was that there was more flexibility in the development while still having a
clear direction.

Based on these personas the user stories previously mentioned were defined. A
user story is a high-level description of a requirement from a user’s perspective [10].
Each user story should define what functionality a user wants and why. As such, user

8

2. Methods

stories may be used by the developer in order to set out what requirements the app
should have. One of the main benefits of working with user stories is that everyone
included in the development of the product have the same understanding of the
requirements and what the end product should look like. This prevents unnecessary
rework of the product and helps improve productivity [11].

2.2.2 User Tests
In order to make sure that the design of the user interface is appealing to possible
users, paper prototype tests were performed. A paper prototype is a representation
of the user interface made by pen and paper. This prototype can then be utilized
in order to gather information about how users would interact with the particular
interface and what they think of it. This form of testing is very cost and time
efficient since it does not require any programming in order to test basic interface
ideas. An additional advantage is that it is easy to test several different ideas at
the same time. Based on the observations from this test, the first iteration of the
software prototype was built [12].

When the software prototype had been developed, high fidelity user tests were per-
formed. In this case it means that users tested the product on an actual device. This
form of testing provides a clearer view of how the user interacts with the system
since the user is able to use the common controls of the specific device. The model
that was followed was the “Usability Test Plan Dashboard” suggested by Dr. David
Travis [13]. This plan includes the most essential part of usability testing and is
adapted for projects with few persons working on the user experience. The plan also
gives the developers a structure to keep in mind, that facilitates the construction of
a test.

9

2. Methods

10

3
Technical Background

The development of the application has been dependent on different technologies.
These will be described in this chapter in order to provide a good foundation for
understanding the content in this report. This includes Android development, XML
and the Grammatical Framework as these are the most important technical parts
and build the foundation for this project.

3.1 Android Development
Android is an operating system for mobile devices based on Linux. The multi-user
Linux core enables the applications installed on the device to operate isolated from
each other. As a result of this, each app only has access to the parts of the system
that are crucial for its functionality. If an application requires access to device data
such as contacts, Bluetooth or the camera, it needs to ask for the user’s permission.
This results in an effective usage of the limited memory available in mobile devices
[14].

3.1.1 Application Structure
Applications for Android devices are mainly developed in the programming language
Java using the Android API. However other languages may be used as well, such as
C or C++ by using Android Native Development Kit (NDK) [15].

The parts of the application that the user sees and can interact with is composed
of activities. An application can have several different activities with different con-
tents and layouts which the user can switch between. An activity always occupies
the whole screen and its layout is defined using XML. In order to further customize
the different activities, fragments can be added. Similar to activities, the fragments
have their own functionality and layout. However, the difference between them is
that a fragment can only be a part of an activity, and it cannot be an independent
screen by itself [14] [16].

Every graphical element in the application’s user interface should be defined sepa-
rately from the Java code in resource files. This includes, for example layouts for
activities and fragments, predefined values, images and icons. This practice allows
for simple adaptions to different screen sizes and orientation. While keeping the ap-
pearance separate from the functionality of the activities the graphical components

11

3. Technical Background

can be modified and replaced without affecting the Java code [14].

3.1.2 Material Design
In Android 5.0 material design was introduced for application development. Material
design is a collection of new design elements, aimed to “create a visual language for
our users that synthesizes the classic principles of good design with the innovation
and possibility of technology and science”[17]. The guidelines for these new elements
are described in Android’s material design specifications. This document provides
the developer with a multitude of design examples and guidelines of how content
should be laid out on the screen, including spacing, text size and colour schemes.

3.2 XML
Extensible Markup Language, or XML, is a markup language which can be used to
store textual information. In XML markup is done by using start-tags and end-tags
to enclose the selected text. These tags constitute the concept of elements in XML.
It is also possible for an XML element to contain other XML elements, hence form-
ing a tree structure. The contained elements can be referred to as child elements
while the element surrounding it is called the parent element. XML elements can
also include more data than the text content it encloses by using attributes. This
may be done by assigning variables with string values inside the start tag [18].

Listing 3.1: Example of XML
<?xml ve r s i on ="1.0" encoding="UTF−8"?>
<root>

<person name="Al i c e ">
<age>20</age>

</person>
</root>

As shown in listing 3.1 the elements have a hierarchical relation to each other. For
example, the element <age> is the child element to the element <person>, whereas
<person> is the parent element to <age>. The element <person> also showcases
the usage of attributes. In this case, the <person> element has an attribute "name"
with the value "Alice".

Once an XML document is saved and accessible by the program, it is possible to
read and parse the XML data by using different APIs. In Java, it is possible to use
the Java API for XML Processing (JAXP) in order to handle parsing of an XML
document. By using the DocumentBuilder class from said API, it is possible to load
an in-memory tree representation of the XML document. The document tree can
then be processed, node by node, in order to get and use the data stored in the
XML document [19].

12

3. Technical Background

3.3 Grammatical Framework
The Grammatical Framework (GF) is a typed functional programming language
which has been inspired by the ML language and Haskell by using algebraic datatypes
and higher-order functions. It is primarily designed for writing multilingual gram-
mars for natural languages which can be used to generate translations [3].

In GF it is possible to write programs called grammars. A grammar is the definition
of several languages and the translation between these. Grammars thus consist of
rules and functions that are used to translate, parse and generate a language. The
central component of every GF program is the abstract syntax which is a description,
independent from natural languages, of the domain. Every abstract syntax can be
equipped with one or more concrete syntaxes. Abstract syntaxes are tree-like rep-
resentations of phrases which work like a model for semantically relevant structures
of language. Concrete syntaxes on the other hand relate this tree structure to a
linear string representation for a specific language. This is useful as computers have
an easier time reading tree structures while humans have a significantly easier time
reading string structures [3].

Listing 3.2: Example of abstract syntax
PQuestion (QWhatName YouFamFemale)

In Listing 3.2 an example of abstract syntax is shown. The abstract syntax consists
of several abstract functions. These are used to define various principles of sentence
in an abstract way. For example, PQuestion denotes that the sentence is a ques-
tion, QWhatName denotes a question posing what name a person has and finally
YouFamFemale signifies a familiar female person as the subject. The abstract func-
tions have both inputs and outputs. For instance, the input of PQuestion is the
output from QWhatName, as seen in Listing 3.2. While the example may not be
easily understandable for persons not familiar with GF, the abstract syntax can be
linearised to a string in a concrete language. For instance, the abstract syntax in
Listing 3.2 would be linearised as:

What is your name? in English,
Comment t’appelles-tu? in French, and

Mikä on nimesi? in Finnish

Even though GF works equally well for implementing grammars for traditional trans-
lations between two languages at a time, the real strength of Grammatical Frame-
work lies in the multilingual design of grammars. This means that one grammar can
handle several different languages at the same time. A fundamental difference from
other compilers is the fact that GF grammars are reversible, i.e. a string in any
concrete language can be transformed into an abstract syntax tree and vice versa.
Due to this it is possible to translate a phrase from any language supported by the

13

3. Technical Background

grammar into another language. This is done by parsing the input sentence into an
abstract syntax tree and then generating the sentence in the target language from
the abstract syntax tree [3].

One use of GF is for development of mobile and web applications. The original GF
grammars are written in a high-level functional language which is easy for humans
to use but hard for computers to interpret. Writing source level representations of
grammars for a multitude of different environments is unnecessarily complicated.
This problem is solved by the Portable Grammar Format (PGF) [20] which is an
easy to interpret assembly language to which the GF grammars are compiled. As
there exists a version of PGF runtime written in C, it is possible to use PGF on
Android by using the Android NDK and and a Java Native Interface binding to the
C runtime [4]. As such it is possible to use the functionality of grammars in mobile
development which has been done with “GF Offline Translator” [5].

14

4
Design Process

The interaction design of the application developed in this project has been one of
the main focal points. In order to achieve a user interface that is both intuitive, easy
to use and follows Android’s design guidelines the design process has been divided
into several steps. In this chapter the design process will be described which includes
identifying user needs, initial design and user tests.

4.1 Identifying User Needs
Identifying the user’s needs and expectations of an application is a crucial step in
the design process. In this project, personas and user stories have been used to
target this issue. These will be described in this section.

4.1.1 Personas
The purpose of the application is to provide help in communicating and understand-
ing people correctly when interacting in foreign languages, both when speaking and
in writing. Since there are many types of persons that could be possible users of the
application the main types had to be defined. When designating the scope it was
decided to mainly focus on travelers. The type of travelers that this application was
designed for are tourists and business travelers. The personas representing each type
of traveler have been created based on data gathered from statistical investigations
and are listed below.

Tourist
Anna, 23, Sweden

Anna is currently studying to become an engineer. Alongside her studies
she works at Knowly in order to be able to travel, which is one of her
greatest interests. Anna likes to travel to different places every time,
and it is possible that the locals do not speak Swedish or English which
are the only two languages Anna can speak fluently. Since she is a stu-
dent she can not afford to use the Internet on her smartphone abroad.
She would like to be able to construct her own phrasebooks for different
occasions that she knows are grammatically correct in order to be more
confident when interacting with other people.

15

4. Design Process

Business Person
James, 38, USA

James is working as an executive assistant at a technology company.
He travels a lot alongside his boss all around the world. Even though
he enjoys the trips he still finds it important to be able to stay in touch
with his family. To do this he always has his laptop and smartphone
with him. On these trips he usually have a very tight schedule and need
to get to one place to another as quickly as possible. In order to travel
fast in a foreign country it is convenient to know a few phrases in the
particular language. Since James prefer to use wifi when he is abroad an
offline translation application would satisfy this need. Such an applica-
tion should be easy to use since he often need to find a phrase quickly.
It is also important that the phrases are grammatically correct since he
encounters many important persons each day.

4.1.2 User Stories
From the personas described in section 4.1.1, user stories were constructed in order
to make sure that all the users needs would be covered by the final product. The
user stories follow the style of the following example:

5 Choose phrasebook
As a traveler, I want to be able to choose from several different phrase-
books depending on the trip I am on.

Conditions of satisfaction
- Nice UI with a grid of default phrasebooks
- When entering a phrasebook the user should see a list of the phrases
within the specific phrasebook.

The complete collection of user stories can be found in Appendix A. Each user story
is connected to the persona that mainly represents the particular functionality re-
quirement, although many of the requirements would be satisfying for the other
persona as well. Some of the user stories have been considered equally important
for both personas and are thus connected to both.

The finished user stories were prioritized by importance in order to guide the de-
velopment and to know what features are the most crucial to be finished. They are
prioritized so that the most basic functionality would be implemented early on in
development phase 1 and less important features towards the end.

The user stories A-C in Appendix A do not represent a specific features of the
application but rather serve as general guidelines and basic requirements. These
include that the application should be able to run offline, on smartphones and that

16

4. Design Process

the user interface should be intuitive. These are not included in the priority list but
should be kept in mind during the whole development process.

4.2 Designs at Different Stages and User Tests
During the course of the project user tests have been performed at different stages of
the development. The purpose of the user tests was to find flaws in the user interface
and create an application which is easy to use. In this section the user tests and
the most important observations will be described in conjunction with designs at
different stages in the designing process.

4.2.1 Initial designs
After identifying the users’ needs and expectations of the application, initial sketches
of the user interface were made. In order to produce as many different concepts as
possible, a number of designs were sketched individually in order to avoid inspira-
tion from other sketches. The different designs were developed based on the user
stories described in Section 4.1.2. The focus was mainly on the navigation of the
application as well as the design of the phrase customization screen.

Two initial sketches

Figure 4.1 Figure 4.2

The first iterations of sketches varied quite drastically from one another. This served
well as a basis for further dialog regarding the design. The discussions mainly re-
volved around the phrase customization screen as this is the main feature of the
application and it required a good design. From the user stories it was apparent
that showing more than one pair of languages on the screen would be redundant, as
displaying several languages would be more interesting for linguists rather than for
ordinary travellers. It was also decided that the placement of the translation should
be at the top of the screen, as shown in Figure 4.2, since it was perceived as the
most intuitive option when comparing the different designs. An important aspect

17

4. Design Process

of this layout was that the translation should always be visible as well as all the
available customizations.

Another valuable input when evaluating the designs was regarding representing the
functionality for changing language with flags, which was a part of the design shown
in Figure 4.1. The issue was mainly about connecting a language to a specific na-
tionality. Since many languages are spoken in many different countries, it could
be unclear what language a flag actually represents. Likewise, some people could
be offended that their language is represented by another nation’s flag. Another
disadvantage is that the navigation to the functionality for changing language has a
prominent presence on the screen. This was realized when comparing the function-
ality to our pre-defined user stories. It was discovered that changing language would
not be used frequently enough to warrant such a pronounced position. Therefore,
it was recommended to consider moving this functionality elsewhere. Based on all
these conclusions new designs were made individually.

Two secondary sketches

Figure 4.3 Figure 4.4

In the second iteration the designs were quite similar. The main difference was
how the choices were presented to the user. In Figure 4.3, by clicking an option
a separate screen woud open displaying all the different choices, while in Figure
4.4, the choices were shown in drop down menus. The argument for the design in
Figure 4.3 was that it would be visually appealing to present the options in a clear
view without additional distractions. For the drop down menus on the other hand,
the advantage was that the translation would be visible while making the choice.
Since there were positive aspects for both options, it was decided that they would
be tested on potential users in order to know what felt most intuitive to them.

18

4. Design Process

Two initial prototypes

Figure 4.5 Figure 4.6

The designs in Figure 4.5 and Figure 4.6 have different solutions to the problem
that emerges if the amount of customization would not fit on one screen. In the
design in Figure 4.5, the thought was to have all options in one screen which could
be scrolled. The design in Figure 4.6 on the other hand, did not contain any scroll
bar but would show the rest of the options in another screen which the user could
swipe to. Additional design conflicts also arose when the advanced options were to
be displayed in this screen as well. According to our user stories these options would,
in comparison to the standard options, not be used very frequently and should thus
not always be shown. A solution to this that were to be tested was to put the
advanced options at the end of the scrollable view where they would be available by
inflating the advanced options tag.

From the initial design iterations the screens in Figure 4.5 and Figure 4.6 were
developed and was a part of the paper prototype which was to be tested. The whole
collection of sketches can be found in Appendix B.

4.2.2 Paper Prototype User Test
To assure quality of the initial design, a paper prototype of the application was cre-
ated. This was used as a basis for tests performed on a number of potential users.
The paper prototype included all the views in the application that a user would
encounter. Before the test began each person was given a brief explanation of the

19

4. Design Process

application so that they would have the same background knowledge. This infor-
mation along with the test specification and observations are found in Appendix
C. After reading the background description they were given a few tasks that they
were supposed to complete while explaining how they were thinking. The tasks
given were the following:

1. Get started with Swedish as language to translate to.
2. Go customize a phrase of your choice.
3. Make the following customizations of the phrase "Somebody’s name is..."

(a) Change who you are talking about.
(b) Change the type of the phrase.
(c) Find the advanced options.

4. Add your own phrasebook and then add a phrase to it.
5. Change the target language.
6. Change the application language.

When all tasks were completed four follow up questions were asked in order to re-
ceive feedback that may not have been previously covered. The questions asked
were the following:

1. What was your favourite design choice?
2. What was the main problem regarding the design?
3. Is there a function that you feel is missing?
4. Is there a function that you think should be improved?

The user test provided answers to a few of the design problems that had emerged
during the first stages of the design process. According to this feedback the design
was changed before beginning the development of the software prototype. It was
planned to have a screen that would only be shown the first time the application
is started on a specific device. On this screen the user would choose origin and
target language and the initial thought was that the application language would
change to the origin language as well. This functionality was removed after the user
test since it was not clear that it would change both application and origin language.

It was decided to use drop down lists for all the options in the customization screen
since that alternative had more advantages compared to the previously considered
options. Another aspect of the customization screen that emerged during the test
was whether the user should scroll through all alteration options available or swipe
to the side if all alteration options did not fit on one page. It was discovered that
it was more intuitive to swipe to the side than scrolling. As a result of this the
scroll was removed from the design. With all this input in mind, the process began
moving towards implementing a functioning software prototype.

20

4. Design Process

4.2.3 Software Prototype User Test
As foundation for the software prototype user test, “The Usability Test Plan Dash-
board” was used [13]. The whole test specification can be found in Appendix D.
Five potential users participated in this test, all of them had similar technical back-
grounds and smartphone usage experience. When performing the test, the test
persons were asked to perform the following tasks:

• Go to a phrase and alter it.
• Play a phrase using text to speech.
• Change language.
• Add a phrasebook.
• Add a phrase to your phrasebook.
• Find the advanced options in the phrase "Someone is thirsty".

After performing the tasks, they were also asked to answer a questionnaire regarding
the application. The questions below were asked in order to get a solid foundation
for evaluation of the application rather than making changes to it so late in the
project. In the first four questions the users answered with a number between 1 and
10, 1 being bad and 10 being very good. The two last questions were answered in
text.

1. What was your overall impression of Parlira?
2. How useful would you find the application while travelling?
3. How did you find the navigation?
4. How did you find the phrase customization screen?
5. What features could be improved? In what way?
6. Is there any feature you are missing in the application?

The test highlighted some design issues that had previously been missed by the
developers. The functionality for adding phrases to a phrasebook was only present
in the phrase customization screen. But based on the feedback from the test, it was
decided that some kind of navigation should be added to the phrasebook as well, in
order to facilitate adding phrases to it. This would contribute to better navigation
through the application which also was something that should be improved based
on the answers from the questionnaire.

It was also agreed upon within the development team that the functionality for
changing language could be improved based on the feedback. This functionality
would be more intuitively used if it was placed in a more prominent place but in the
same time not be visible to the user at all times.

21

4. Design Process

22

5
Implementation

The final product consists of different components that work together to form the
application. In this chapter, the back end and how it is implemented in order to
support the alteration of sentences will be described and justified. This includes
how the phrases are represented as well as how the back end allows for dynamic
updating of the user interface.

5.1 Representing Sentences
The translation functionality for the application was provided by a PGF grammar
that contains the abstract functions required for translating the available phrases.
A translation can be generated in any supported language by using a string repre-
sentation of an abstract syntax which is processed by the PGF grammar. For the
program to be able to use the PGF grammar the required abstract syntax strings
had to be generated. This problem was solved by defining the abstract functions for
each available phrase in an XML-file. The phrases are then parsed into a tree-like
data structure in Java, here on referred to as a syntax tree, which enables the user
to alter different parts of the phrase. In this section, the XML and the syntax tree
representations of phrases will be described in more detail.

5.1.1 XML Configuration File
Using XML to define sentences was an intuitive choice as it is possible to specify
hierarchical structures similar to the abstract syntaxes that can be found in GF
as well as the syntax tree described in Section 5.1.2. By storing the phrases in a
XML-file it is also possible to add new sentences post-release, without altering the
Java code. As a result, the application becomes more modular.

In the XML-file the abstract syntaxes of each phrase are expressed by different
markups. New phrases that are covered by the grammar can be added to the appli-
cation by updating the XML-file. It should be noted that the XML-file only defines
the phrases that are currently available in the application, and does not necessarily
represent every possible combination of abstract functions for the currently used
grammar. New abstract functions that might be needed for adding new phrases to
the application should be added by replacing the PGF grammar used by the appli-
cation.

23

5. Implementation

In the XML-file, each abstract function that would be represented by a node in the
syntax tree is expressed by a tag. A majority of the tags are enclosing other tags
which results in hierarchical relationships between the abstract functions.

Listing 5.1: The sentence "Someone speaks a language" represented in XML.
1 <sentence desc="Someone speaks a language " id="ASpeak">
2 <node ch i l d=" ph ra s e i t ">
3 <node syntax="PropAction">
4 <node args ="2" syntax="ASpeak">
5 <opt ion opt ion="Who speaks i t ?">
6 <node ch i l d=" a l l p e r s o n s " />
7 </option>
8 <opt ion opt ion="What language ?">
9 <node ch i l d=" language " />
10 </option>
11 </node>
12 </node>
13 </node>
14 </sentence>

Each sentence is constructed by several elements contained within the markup <sen-
tence>, shown at row 1 in Listing 5.1. Within the <sentence> tag all information
for that specific phrase is stored, both for building the syntax tree and the user
interface. When creating a syntax tree all abstract functions need to be acquired in
the right order. This is provided by the hierarchical structure of each <sentence>
by collecting the values of all the "syntax" attributes for a phrase.

Since some parts of the phrase can be customized, the abstract syntax functions for
all the options for each alteration available need to be stored. The parts that are
customizable are enclosed by a <option> tag, seen at row 5 in Listing 5.1. Instead
of listing all the options directly in the specific sentence the options are stored in
separate lists that can be reused for several sentences. The fact that a list will be
used is denoted by the attribute "child". The value of the attribute will indicate
which list of abstract syntax functions will be replacing the tag when parsing the
<sentence> to a syntax tree.

24

5. Implementation

Listing 5.2: Child option used by "Someone speaks a language"
1 <ch i l d id=" ph ra s e i t ">
2 <opt ion opt ion="How do you want to phrase i t ?">
3 <node desc="As a statement " syntax="PSentence">
4 <node syntax="SProp"/>
5 </node>
6 <node desc="As a ques t i on " syntax="PQuestion">
7 <node syntax="QProp"/>
8 </node>
9 <node desc="As a negat ion " syntax="PSentence">
10 <node syntax="SPropNot"/>
11 </node>
12 </option>
13 </ch i ld>

One example of a list of options for a specific alteration is "phraseit" shown in Listing
5.2. This list contains all the information for the option where the user decides if
they want to turn a phrase into a statement, question or negation.

Some syntax functions need multiple arguments in order for the grammar to inter-
pret the abstract syntax correctly. To facilitate this problem, an argument attribute
called "args" was created. This attribute denotes how many arguments the abstract
function represented by the node should have. If this attribute is missing the func-
tion requires one input as long as it has a child. In Listing 5.1, the node with the
syntax function ASpeak will be given two inputs: one node from the child node set
"allpersons" and one from the child node set "language".

The majority of the text present in the user interface is acquired from the XML file
in order to make it possible to add phrases without altering Java code. The first
thing the user interface has to know is the name of all the phrases for displaying
them in a list the user can choose from. The name of a phrase is present in the "desc"
attribute present in row 1 in Listing 5.1. When the user has selected a phrase the
interface also needs information of what alterations can be made and what options
are available. The available alterations, or the questions that are asked the user,
can be found in an attribute in the tag <option>. While the options are found in
the "desc" attributes in the "child" lists.

To illustrate how the XML can describe the abstract syntax we can study a basic
example. Take the English phrase "I speak Bulgarian", which has the following ab-
stract syntax:

PSentence (SProp (PropAction (ASpeak IMale (LangNat Bulgarian))))

The abstract syntax above would be a possible result from the XML in Listing 5.1.
Here the child "phraseit" has resulted in PSentence (SProp while the other lists
provide input for the ASpeak-node.

25

5. Implementation

5.1.2 Syntax Tree Structure
The information stored in an XML-file mainly describes how a sentence should be
structured. In order to utilise that information, the syntax tree class was created.
A syntax tree is a tree-like data structure designed to be a representation of a sen-
tence in Java that supports alteration of the specific sentence. In short, a sentence
described in the XML-file is parsed into a syntax tree by an XML-parser. Each node
in the syntax tree represents an abstract function. As such, an abstract syntax can
be built from the information stored in the syntax tree.

Figure 5.1: A visual representation of a syntax tree for the template sentence
"Someone speaks a language"

A node in the syntax tree may have a reference to a set of child nodes. This set of
nodes represents the possible inputs for the abstract syntax function in the parent
node. In Figure 5.1 these types of node sets are enclosed by dotted squares.

26

5. Implementation

In order to build a correct abstract syntax, at most one node from each set of child
nodes can be used. What nodes that will be used in each child node set is decided
by the user in the user interface. In order to keep track of what node is currently
selected, that node is stored in the parent node. The selected nodes in each set are
then used for walking the tree and building the abstract syntax.

To illustrate these ideas the example from Section 5.1.1 is continued, i.e. the ab-
stract syntax for the sentence "I speak Bulgarian":

PSentence (SProp (PropAction (ASpeak IMale (LangNat Bulgarian))))

The syntax functions "PropAction" and "ASpeak" are static since they are alone at
their respective level in the syntax tree, as can be seen in Figure 5.1. The other
functions of this abstract syntax are parts of node sets and thus replaceable by an-
other node from the same set. The functions "PSentence" and "SProp" are chosen
from the set of nodes at the top of the tree present in Figure 5.1. If the user changed
this option and wants to create a question instead, the nodes of the syntax functions
"PQuestion" and "QProp" will be used instead.

Using sets of nodes to represent the potential choices a user can choose works well for
the most part. However, for abstract functions regarding numbers, a set of choices
is not sufficient. The main reason why is that to represent numbers in GF several
abstract functions are needed [21]. For example, the number 18 is represented by
the abstract syntax:

num (pot2as3 (pot1as2 (pot1to19 n8)))

This case can not be represented by a set of nodes due to the large amount of
abstract functions involved. In order to solve this problem, a different node was
created. This node does not represent a single abstract function but rather generate
the requested sequence of abstract functions from an integer acquired from user
input.

5.2 Dynamic Updating
The user interface was designed to immediately accustom a sentence according to
the user’s choices without the need for an update button. In practice this means
that whenever the user changes an option for a particular sentence, both the origin
translation and target translation are immediately updated. Some of the options
enables more customization that appears immediately when that specific option is
chosen. As an example, when the option "Wife Of. . . " is selected the GUI adds a
new option to enable the user to choose which person’s wife we are talking about.

When the user chooses a phrase, that specific phrase is parsed from the XML-file
into a syntax tree. The GUI is then built based on the information that is stored
in the syntax tree, including how many parts of the specific phrase that can be

27

5. Implementation

altered and what options should be included. Every syntax tree has a list of op-
tions which holds this information and makes it accessible for the GUI. Whenever
a option is changed, the user interface communicates this change to the back end.
When the back end is notified that a change has occurred, it asks the currently
active syntax tree to generate a new options data structure as described above.
This means that the syntax tree changes the selected node for the specific option
that has been altered. After receiving this new structure the user interface rebuilds
itself to accommodate this updated list of options and the newly parsed translations.

Since the phrases all have different structures and different alterable parts, the GUI
will look different for almost every phrase. This is made possible by nested fragments
in the phrase customization screen. Every separate option, for example the subject
of the sentence, is accommodated in one fragment. Then, depending on how many
alterations are available, a number of these fragments, each representing a separate
option, will be added to the container fragment that constitutes the bottom part of
this screen. These fragments will also be different depending on what type of input
a specific alteration requires, for example a drop down list or a number input field.

28

6
The Final Product

In this chapter, the result of this project will be presented. The functionality and
abilities of the application will be described, as well as the features that the user
can utilise.

6.1 Application

The result of this project is an application called Parlira. In Parlira, a user can
select a type of sentence and modify it through its dynamic user interface in order
to change the outputted translation. The user can choose to translate between 22
different languages and the majority of these are compatible with the text-to-speech
functionality. At the project’s completion the number of possible sentences was 27.
However, it’s possible for a developer to add even more sentences by modifying the
XML document defining the sentences. Parlira also works without the need of an
internet connection. During the final weeks of the project, the total installed size of
Parlira was approximately 8 MB.

6.2 Features of Parlira

Figure 6.1: First usage screen

29

6. The Final Product

When first starting the application, the user is presented with a “First usage” screen
shown in Figure 6.1. This screen only appears the very first time the application is
used on the specific device. In this screen, the user is prompted to select the desired
origin and target languages that will be used for translating. This choice is made
by using drop down lists. By clicking the "START" button the choice is confirmed
and the application progresses.

Figure 6.2: Default Phrasebooks Figure 6.3: Default Phraselist

After having selected and confirmed translation languages, the home screen in Figure
6.2 comes into view. This screen will also be the default starting screen in future
usage of the application. From the home screen, the user can chose the “default”
phrasebook. This is a phrasebook containing all possible phrases the application
currently supports. It is in this screen new phrasebooks will be added by developers
when extending the application with new phrases. Clicking the “default” phrasebook
leads the user to the screen shown in Figure 6.3 which shows all the phrases in that
phrasebook.

30

6. The Final Product

Figure 6.4: Standard options Figure 6.5: Advanced options

Once a phrase has been selected, the user is presented with the customization and
translation screen for that specific phrase, shown in Figure 6.4. By using the dif-
ferent options presented at the bottom part of the screen, the user can change the
outputted translation. This is done instantly, as soon as option is changed. Most
of the choices are made by selecting an option from drop down lists. For numbers
however, the choice will be made using a slider or manual input depending on what
the user prefers. Some phrases have advanced options that become available by
swiping the bottom part of the screen. If it is possible to switch to advanced option,
it is indicated by the two dots at the bottom of the screen. The advanced options is
applied when checking the check-box present beneath the translation box, as seen
in Figure 6.5.

Parlira can also read the translation to the user by using text-to-speech (TTS). By
pressing the TTS icon in the translation box, the user can play the phrase in the
target language. However, the quality may vary as the smartphone running the
application needs to have TTS engine support for the requested language. In this
translation box there is also a button for marking the current phrase as a favourite.
When a phrase is a favourite it can be found in the phrasebook favourites shown in
the screen "My Phrasebooks".

31

6. The Final Product

Figure 6.6: My
Phrasebooks

Figure 6.7: Adding
to phrasebook

Figure 6.8: Change
language

One feature that Parlira has is the functionality to select and save phrases in custom
phrasebooks. A user can create and name a custom phrasebook in the application,
shown in Figure 6.6, by navigating to "My Phrasebooks" in the navigational drawer.
When a phrasebook has been created it is possible to add a phrase to it. This is
done from the phrase customization screen by clicking the floating action button in
the bottom right corner. When the user clicks the button a dialog appears asking
the user what phrasebook to add the current phrase to, which is shown in Figure
6.7. The phrasebooks along with their phrases are saved between sessions.
Finally the user can change the origin and target language of the application through
the "Change language" screen displayed in Figure 6.8. The available languages are
displayed in two drop-down lists, one for the origin language and one for the target
language. Upon pressing "confirm", the users choices are applied and the user is
returned to the previously visited screen which is now adapted for the new languages.

32

7
Discussion

During the project the plans that were made in the beginning changed due to differ-
ent circumstances. In this chapter, the methods that were chosen in the project will
be reviewed, such as how well the methods worked and how they could have been
improved. Apart from this, a reflection regarding the results of the project will end
the chapter.

7.1 Method Discussion
At the beginning of the project, the methods used in the development process were
established. Every method has advantages and disadvantages which will be dis-
cussed in this section. These practices have been divided into two categories: Design
Process methods and Implementation Process methods.

7.1.1 Design Process
In order for the initial design to be accurate in incorporating the necessary func-
tionality, a number of personas were developed from research about potential users.
Although these personas gave insight of the potential users and their expectations,
no user-type was different enough to warrant special treatment of the design. If this
method was to be performed again, a larger set of data would be recommendable to
assure that the personas were correctly described. To achieve this a questionnaire
could have been done to assure that the personas would be correctly defined.

Based on the insights that were gained from the personas, the team constructed
user stories. Although the user stories have been useful during the development, the
motivations behind them might not be accurate since the personas on which they
were based were vaguely defined. Despite this, the user stories gave a good overview
of what functionalities were to be implemented. They were also helpful when ensur-
ing that no functionality had been forgotten. When evaluating the designs, it was
helpful to look at the user stories in parallel to the user tests to understand what
functionalities should be improved.

The first stages of the development involved designing the user interface. The team
chose to make individual sketches in two iterations with evaluation discussions after
each one. Working in this way helped when trying to come up with new ideas and
having many different styles for different screens. This was especially helpful when

33

7. Discussion

designing the phrase customization screen, as this approach led to a lot of different
ideas which in turn allowed for an optimal solution by combining these.

Both the paper prototype user tests and the software prototype user tests were
equally important and contributed to the design process in similar ways. They were
exceptionally helpful in identifying problematic areas in the application since those
are sometimes difficult to spot as a developer. One aspect that might have made
the user tests even more helpful would be if the test subjects had a more diverse
background. The persons that tested the prototypes had similar background and
were around the same age. If more persons with more diverse backgrounds and
different ages were included in the tests, the test results may have been different.
This might have given a more fair picture of reality, and thus giving more valuable
input. However due to time constraints and the small size of the development team,
time could not be spared to test with a larger set of subjects.

7.1.2 Implementation Process
In the early stages of development, the implementation was planned to be in sprints,
just as the process had been in the design phase. But during this process, the plan
that was set up was not followed as well as it should have been. As a result of
this a lot of the implementation on several different parts was done simultaneously.
However, when the core translation implementation was finished, it was decided to
implement each new feature in short sprints. This was made possible in part due
to that many functionalities had been started on during the less structured phase
and thus needed very little time to actually incorporate into the existing product.
As such, some sprints would be completed in a day, such as the advanced options.
Other could take some more time, although none took longer than a week to com-
plete, this to ensure that we kept progressing in the project.

As a result from not working in proper sprints the code obtained a quite rigid struc-
ture as some small functionality would not be planned in advance. This lead to
many separate methods being created that served a similar purpose, which could
easily have been avoided if more specific requirements had been set up in advance
for each new functionality.

Although the shorter sprints for additional functionality ensured that all function-
ality were implemented and working, it was somewhat poorly executed in regards
to planning. In our case, we implemented functionality such as advanced options
before we had completed the ability for users to create personalized phrasebooks.
This was a functionality that according to our user stories were much more desired
than the ability to create more complex sentences.

Something that could have helped the team in the development were more specific
milestones. The milestones used in this project were: completing a user interface
design, a functioning software prototype and a tweaked software prototype. These
were set due to the difficulty to predict what would make good milestones in advance.

34

7. Discussion

When the project came to an end, it was discovered that better milestones could have
been created, for example being able to alter a phrase and incorporating advanced
options.

7.2 Result Discussion
Before the development of Parlira began, a few requirements were established which
the application was going to fulfill at the end of the project. In this section, it will
be discussed how well the application meets these requirements and what aspects of
the final product that could be improved.

7.2.1 The Application
During this project Phrasomatic has been a target in both functionality and in re-
quirements. At the end of the project, most of what can be done in Phrasomatic
can also be done in Parlira, although there are some differences between them. One
being the function to see the abstract syntax used for generating translations found
in Phrasomatic. It should be stated however, that this function is only really valu-
able to developers. In fact, we as developers have been using that function feverishly
when creating sentence representations in the XML document However, for actual
users seeing the abstract syntax is not that useful and with the user stories in mind,
this functionality can be considered completely irrelevant.

On the subject of implementation, there are some things that could have been done
differently. In the back end for instance, the data structure representing sentences
could have been designed in another way. One issue with the currently implemented
syntax tree, is that it could be much smaller and more optimized than it currently
is. In order to prevent redundancies such as multiple instances of the same set of
children in the syntax tree, the XML parser could have been made better or another
data structure could have been used instead.

It is also important to note that, although the core of a sentence representation is
completely adaptive, the advanced options are not. In the current implementation
the only way to state that a advanced option exists is a small note in the <sentence>
tag which directs to the specific advanced option for reported speech. The parsing
of advanced options are also tailored specifically for the reported speech option. If
the application should be extended with more advanced options then the parsing of
said option should probably be defined in a configuration-file. For the sentences, a
smarter solution for adding multiple or different advanced options should be imple-
mented. Sadly this was discovered to late in the development process and thus not
implemented.

Using XML to build phrases also posed some difficulties in the development phase.
While using XML worked well in conjunction with a tree structure, as both rep-
resentations have a hierarchical structure, there were some problems in regards of
efficiency. In the current implementation the XML document has child elements

35

7. Discussion

defined in a separate section. This was done so that the the child elements could be
reused in other sentences. However, this approach resulted in the XML document
becoming cluttered with definitions, making it more difficult navigating the XML
document. If the developers were more well-versed with XML, another method for
solving the repeated usage problem could have been used.

An area which could see improvements is the time it takes to start the application.
The start-up time, while not unreasonable high, could be detrimental for the user
experience. Due to the many potential causes for the long start-up time, we were
not able to improve on this issue before deadline.

Apart from the problems in the back end described above, there are some features
that could be improved in order to make the experience better for the user. As
described in section 4.2.3 many of the test persons thought the functionality to add
phrases to a custom phrasebook was not intuitive. One part of the problem de-
scribed could be improved by adding a floating action button to the screen that
shows all the included phrases in a phrasebook. The button would indicate that the
user is able to add something in the currently viewed screen. Hence, it would be a
better option for adding phrases to the phrasebook. The other part of the problem
was that the floating action button in the customization screen could have been
better placed. One suggested solution to this was to add a small button beside the
favourite and text-to-speech buttons and remove the floating action button. The
advantages of this solution are that all actions the user can perform with the phrase
are collected in the same place and that the floating action button will no longer
cover parts of the customization. A floating action button was initially chosen since
adding a phrase to a phrasebook would be a frequently used feature according to
the user stories.

From the user tests, a problem regarding the functionality for changing translation
languages was indicated. A few of the test persons felt that the placement of it was
not optimal and could be more intuitively placed elsewhere. One could argue that
this functionality should be a part of the customization screen, but this is not a
good option since the user might want to change languages from other views in the
application as well. One solution that was discussed within the team, was to have
two drop down lists in the navigation drawer where you can choose languages. This
way, the functionality is easy to reach from any part of the application.

7.2.2 Further Development
Parlira could be further developed in many different ways in order to improve the
user experience. One thing that was initially discussed, was the inclusion of applica-
tion languages. This is intuitive to include, since Parlira is a phrasebook application
and people from different countries should be able to use it. The functionality was
not implemented since it was of low priority in comparison to other features that
have been included, and would require manual translation of UI elements.

36

7. Discussion

Another functionality that was requested during the user tests, was to be able to
add phrases that are not already included in the application. These phrases would
not be customizable but would still serve a great purpose since it gives the user more
freedom in what he or she wants to use the application for.

7.2.3 Parlira in Society
The work produced from this project could be used in society in different ways.
Parlira provides correctly translated phrases without the need for internet connec-
tion, which makes it useful in many parts of the world. The fact that it supports
many languages is also quite unique and it saves the user the need for downloading
several language packs for different languages. As the application was designed to
be extensible, the value it provides for its user could be even greater if it would be
further developed.

The development of the application could be valuable for other developers as well.
Certain information displayed in this thesis details advantages and pitfalls during
the development, which could be beneficial to other developers building similar
applications. The representation of sentences in XML could also be interesting to
developers, as the potential application area could be greater than just translating.

37

7. Discussion

38

8
Conclusion

In this report the development of Parlira, an android application for mobile devices
inspired by Phrasomatic, has been described and discussed. The goal of the project
was to develop an offline translation application using GF, that would support alter-
ation of phrases. An important aspect of the application was that the user interface
would be intuitive and dynamic in order for the user to have a pleasant experience.
The application was also supposed to be extensible, meaning that it should be pos-
sible to add new phrases without modifying the Java code. Additional requirements
were added after user tests. These were the ability to construct personalized phrase-
books and to edit these.

After the project’s end, the application met all of the previously stated requirements
in various degrees. The application built uses configuration files as well as tree data
structures to model phrases. These models enable the user to alter the phrases.
The back end also transforms these models to a format that can be translated using
GF resources. The usability of the application was also an important aspect of the
development and the end product mostly fulfills this requirement. However, there
are some features that could be improved and further developed.

Working with GF has revealed a new way of translation and the vast possibilities for
improvement of machine translation in the future, that was unknown to the group
prior to the project. Even though no one worked directly with GF, the theoretical
knowledge has not only given the necessary insight to further delve into the field but
also woken interests in natural language processing and further work in the field.

39

8. Conclusion

40

Bibliography

[1] Google Inc, “Google Translate.” http://translate.google.com, 2016. Ac-
cessed: 2016-05-16.

[2] P. Koehn, Statistical Machine Translation. Cambridge: Cambridge University
Press, 2009.

[3] A. Ranta, Grammatical Framework: Programming with Multilingual Gram-
mars. CSLI Publications, 2011.

[4] K. Angelov, The Mechanics of the Grammatical Framework. PhD thesis,
Chalmers University of Technology and Göteborg University, 2011.

[5] K. Angelov, B. Bringert, and A. Ranta, “Speech-Enabled Hybrid Multilingual
Translation for Mobile Devices,” in Proceedings of the Demonstrations at the
14th Conference of the European Chapter of the Association for Computational
Linguistics, pp. 41–44, Association for Computational Linguistics, 2014.

[6] A. Ranta, R. Enache, and G. Détrez, “Controlled Language for Everyday Use:
The MOLTO Phrasebook,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics), vol. 7175 LNAI, pp. 115–136, 2012.

[7] M. B. Měchura, “Phrasomatic.” http://phrasomatic.net/. Accessed: 2016-
04-26.

[8] I. Goldstein, Scrum shortcuts without cutting corners : agile tactics, tools, &
tips. Upper Saddle River, NJ: Addison-Wesley, 2014.

[9] L. Nielsen, Personas - User Focused Design. 2013.
[10] M. Cohn, User stories applied: For agile software development. 2004.
[11] M. Daneva and O. Pastor, eds., Requirements Engineering: Foundation for Soft-

ware Quality, vol. 9619 of Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2016.

[12] C. Snyder, Paper prototyping : the fast and easy way to design and refine user
interfaces. Morgan Kaufmann Pub., 2003.

[13] D. Travis, “The 1-page usability test plan.” http://www.userfocus.co.uk/
articles/usability_test_plan_dashboard.html. Accessed: 2016-05-16.

[14] Google Inc, “Application Fundamentals.” https://developer.android.com/
guide/components/fundamentals.html, 2016. Accessed: 2016-05-30.

[15] Google Inc, “Android NDK.” https://developer.android.com/ndk/, 2016.
Accessed: 2016-05-16.

[16] Google Inc, “Fragments.” https://developer.android.com/guide/
components/fragments.html, 2016. Accessed: 2016-05-30.

41

http://translate.google.com
http://phrasomatic.net/
http://www.userfocus.co.uk/articles/usability_test_plan_dashboard.html
http://www.userfocus.co.uk/articles/usability_test_plan_dashboard.html
https://developer.android.com/guide/components/fundamentals.html
https://developer.android.com/guide/components/fundamentals.html
https://developer.android.com/ndk/
https://developer.android.com/guide/components/fragments.html
https://developer.android.com/guide/components/fragments.html

Bibliography

[17] Google Inc, “Introduction - Material Design.” https://www.google.com/
design/spec/material-design/introduction.html, 2016. Accessed: 2016-
05-16.

[18] T. Bray, J. Paoli, C. Sperberg-McQueen, E. Maler, and F. Yergeau, “Extensible
Markup Language (XML) 1.0 (Fifth Edition).” https://www.w3.org/TR/xml/,
2008. Accessed: 2016-05-16.

[19] Oracle, “Lesson: Introduction to JAXP.” http://docs.oracle.com/javase/
tutorial/jaxp/intro/index.html, 2015. Accessed: 2016-05-16.

[20] K. Angelov, B. Bringert, and A. Ranta, “PGF: A portable run-time format
for type-theoretical grammars,” Journal of Logic, Language, and Information,
vol. 19, no. 2, pp. 201–228, 2010.

[21] H. Hammarström and A. Ranta, “Cardinal Numerals Revisited in GF,” in
Workshop On Numerals In The World’s Languages. 29 - 30 March 2004 Leipzig,
Germany, 2004.

42

https://www.google.com/design/spec/material-design/introduction.html
https://www.google.com/design/spec/material-design/introduction.html
https://www.w3.org/TR/xml/
http://docs.oracle.com/javase/tutorial/jaxp/intro/index.html
http://docs.oracle.com/javase/tutorial/jaxp/intro/index.html

A
User stories

The user stories used to guide the development of Parlira is listed below. They are
ordered by priority with the most important as number 1. The stories A-C are the
general guidelines mentioned in section 4.1.2 and are not prioritized but are equally
important.

A Offline
As a traveler, I want to be able to use this application fully without the need
of an internet connection since it is expensive and limited abroad.

Conditions of satisfaction
- All functionality provided is available offline.

B Android Phone
As a traveler, I want to be able to use this application on my android phone
so that it is always available.

Conditions of satisfaction
- All functionality provided is available and suited for the small screen size.

C Intuitive and Dynamic User Interface
As a businessperson I want to have a simple and easily used interface so that
I can customize my phrase quickly.

Conditions of satisfaction
- The user interface is intuitive for most persons
- The content is placed on the screen in a way that makes it easy to compre-
hend
- The colour scheme is is pleasing to look at and helps highlighting important
components
- The content is updated directly when an interaction with the interface should
result in the interface changing.

1 Choose origin language
As a user, I want to be able to choose an origin language to translate from
when I start using the application.

I

A. User stories

2 Choose target language
As a user, I want to be able to pick target language to translate to when I
start using the application.

Conditions of satisfaction 1&2
- First usage activity is complete
- UI is finished with correct colour scheme
- A logo is present
- The target and origin language settings should be altered depending on what
choice has been made
- The application language should be changed into the origin language chosen.

3 Change target language
As a user, I want to be able to change target language within the application.

4 Change origin language
As a user, I want to be able to change origin language within the application.

Conditions of satisfaction 3&4
- An screen for language settings should be finished
- UI is finished with correct colour scheme
- The language settings should be altered depending on what choice has been
made

5 Choose phrasebook
As a traveler, I want to be able to choose from several different phrasebooks
depending on the trip I am on.

Conditions of satisfaction
- Nice UI with a grid of default phrasebooks
- When entering a phrasebook the user should see a list of the phrases within
the specific phrasebook.

6 Choose a phrase
As a traveler, I want to be able to choose a phrase from a phrasebook so that
I know what phrases are available for translation and alteration.

Conditions of satisfaction
- All phrases should be shown in a list.
- When clicking a phrase the user should enter the phrase customization screen.
- In the default phrasebooks the phrases are shown in their template form, i.e.
"Someone’s name is".
- In the user’s own phrasebooks the phrases are shown in their customized
form, i.e. "My name is".

II

A. User stories

7 Customize a phrase
As a businessperson, I want customize a phrase and get the corresponding
translation in order to get a socially correct phrase.

Conditions of satisfaction
- The options should be made using appropriate input methods.
- When a choice is made the translation should be updated immediately with-
out having to confirm it.
- The advanced options should be placed intuitively.

8 Text to speech
As a tourist, I want to use speech synthesis to say the translated output since
it may be difficult for me to read the foreign languages.

Conditions of satisfaction
- There should be a button present in the customization screen that plays the
target phrase when pressed.
- The target phrase should be spoken in the corresponding language.

9 Create Phrasebook
As a tourist, I want to be able to create my own phrasebooks in order to fa-
cilitate the interaction in a specific situations.

Conditions of satisfaction
- There should be a clear indication in the user interface of how to add a new
phrasebook.
- The user should be able to give the phrasebook a name.
- The phrasebook should appear immediately in a grid.

10 Delete Phrasebook
As a user, I want to delete phrasebooks that I have created in case they are
not relevant anymore.

Conditions of satisfaction
- There is a clear indication in the user interface of how to delete a phrasebook.
- The phrasebook disappears from the grid of phrasebooks immediately.

11 Add to phrasebook
As a user, I want to add a phrase to my own phrasebook.

Conditions of satisfaction
- There is a clear indication in the user interface of how to add a phrase to a
phrasebook.
- There is feedback present from the user interface that the phrase has been
added.

III

A. User stories

12 Delete from phrasebook
As a user, I want to delete phrases from my phrasebook.

Conditions of satisfaction
- There is a clear indication in the user interface how to delete a phrase.
- The phrase disappears from the phrasebook immediately.

13 Save between sessions
As a user, I want the application to save my settings between sessions so that
I do not have to make the same settings every time.

Conditions of satisfaction
- Language settings and My Phrasebooks are saved between sessions.
- The startup screen is only shown the first time the application is used on the
specific device.

14 Favourites
As a user, I want to save a (customized)phrase to favourites so that I do not
have to build commonly used phrases several times.

Conditions of satisfaction
- There is a clear indication in the user interface of how to add a phrase to the
favourites
- There is a phrasebook called Favourites where all favourite phrases are added.

15 Application Language
As a user I want to be able to choose another language that English for the
application language so that I can understand it.

Conditions of satisfaction
- The user can switch between English and Swedish for application language.
- There is a finished screen for changing application language

IV

B
Sketches

In this document sketches from the design process are presented.

Figure B.1: Sketches from first draft

Figure B.2: Sketches from first draft

V

B. Sketches

Figure B.3: Sketches from first draft

VI

B. Sketches

Figure B.4: Sketches from second draft

VII

B. Sketches

Figure B.5: Sketches from second draft

VIII

C
Paper Prototypes

In this document the whole test specification for the paper prototype user test
described in Section 4.2.2 is presented. Pictures of the prototype is included and at
the end the observations that were made are summarized.

C.0.1 Paper Prototype Test Specification
This is a simple prototype of the user interface of a translation application for An-
droid devices. You will be asked to perform a series of tasks which are essential for
the application. For each task you will explain your thinking and point out design
choices that you find unintuitive or that could be improved in some way.

The idea of the application is that you should be able to choose a phrase from a list
which you can then customize for the specific situation you want to use it in. This
phrase is then dynamically translated to a language of your choice. Have in mind
that this is the first time you use the application.

Tasks to be completed:
1. Get started with Swedish as language to translate to.
2. Go customize a phrase of your choice
3. Make the following customizations of the phrase "Somebody’s name is..."

(a) Change who you are talking about
(b) Change the type of the phrase
(c) Find the advanced options

4. Add your own phrasebook and then add a phrase to it.
5. Change the target language.
6. Change the application language.

Follow-up questions:
1. What was your favourite design choice?
2. What was the main problem regarding the design?
3. Is there a function that you feel is missing?
4. Is there a function that you think should be improved?

IX

C. Paper Prototypes

The paper prototype that was used is shown below:

Figure C.1: The phrase customization screen, first usage screen, and language
screen

Figure C.2: The phrase list screen, m screen, and language screen

X

C. Paper Prototypes

Figure C.3: The settings screen and the phrase customization screen

Figure C.4: The navigation drawer

XI

C. Paper Prototypes

C.0.2 Summary of Observations
The first task was included in order to test the initial screen, shown in Figure D.1
that will only be visible when the user installs the application on a device for the
first time. At this stage in the design process the origin language chosen in this
initial screen would be the language of the application. This was something that
one of the persons did not understand, as this person did not grasp that this should
be a language that the user is supposed to know since the label said "What language
do you translate from?". The other persons did not have an issue with this since
they had in mind that the application is supposed to be similar to a phrasebook.

Task 2 and 3 are similar but in order to cover both the navigation and the cus-
tomization both felt relevant. For task number 3 two different views were tested,
shown in figure D.1 and D.3, in order to find out which one was most appreciated by
the users. None of the users had any problem with either finding the customization
screen or to customize a phrase. The users preferred to make the choices using a
drop down list since it would be too many options to swipe between and they did
not like the idea to switch to another screen where the options were shown. They
also felt that it was a good idea to have the bottom part swipeable since it gives the
user an idea of how many options there are to be made.

When performing task 4 two of the persons had some difficulties regarding adding
a phrase to a phrasebook when being in the phrasebook screen shown in Figure
D.2. The reason was that the navigation was quite confusing and that it did not
make sense to have an "add to phrasebook-button" in that screen. Even though the
navigation was confusing it was obvious for all persons how to add a phrase to a
phrasebook when being in the customization screen.

Task 5 and 6 were included in order to test the functions of changing languages
on different functionalities in the application and if it was clear what language
would be changed. All three persons found it easy to find both screens for changing
languages. These screens are shown in Figure D.1. It was clear what would change
the application language. Task 5, on the other hand, was fairly unclear since the
term target language was used. One person said it was easy to find the functionality
when the test conductor explained what the term meant.

XII

D
Usability Test Plan

D.1 Test Specification

USABILITY TEST PLAN DASHBOARD

PROCEDURE

TEST TASKS

What are the test tasks?

What are the main steps in the test procedure?

PRODUCT UNDER TEST

What’s being tested? What are
the business and experience
goals of the product?

RESPONSIBILITIES

Who is involved in the test and
what are their responsibilities?

TEST OBJECTIVES

What are the goals of the
usability test? What speci!c
questions will be answered?
What hypotheses will be tested?

PARTICIPANTS

How many participants will be
recruited? What are their key
characteristics?

EQUIPMENT

What equipment is required?
How will you record the data?

LOCATION & DATES

Where and when will the test
take place? When and how will
the results be shared?

The Usability Test Plan Dashboard is licensed under the Creative Commons Attribution-Share Alike 3.0 Un-ported License. Attribution: www.userfocus.co.uk/dashboard

AUTHOR CONTACT DETAILS FINAL DATE FOR COMMENTS

BUSINESS CASE

Why are we doing this test?
What are the bene!ts? What are
the risks of not testing?

Figure D.1: “The Usability Test Plan Dashboard” by http://www.userfocus.
co.uk/dashboard is licensed under CC BY-SA 3.0

D.2 Product Under Test

In this test, the application Parlira will be tested. Parlira aims to facilitate commu-
nication for travelers visiting foreign countries where they have difficulties making
themselves understood. The application provides a set of template sentences that
can be altered to fit a specific situation.

XIII

http://www.userfocus.co.uk/dashboard
http://www.userfocus.co.uk/dashboard
http://creativecommons.org/licenses/by-sa/3.0/

D. Usability Test Plan

D.3 Business Case
From the test the developers want to receive information regarding what potential
users think of the application and its features and how well they feel the interaction
works. The specific questions that require answers are:

• Is the user interface intuitive?
• Is it clear to the user how to use the features within the application?
• Are there any malfunctions that has to be fixed?
• What features could be improved?

D.4 Participants
Five persons will participate in this test. The subjects have similar knowledge in
smartphone usage and languages in general. They have all been on journeys where
they had to communicate in a foreign language and know what difficulties that could
appear.

D.5 Equipment
The only equipment will be a smartphone with the application Parlira installed.

D.6 Responsibilities
When the test is conducted by one person from the development team who will be
present to observe how the test persons interact with the application. This person
will document the observations and possible malfunctions that will appear.

D.7 Location and Dates
This is not applicable for this test since the test will be performed immediately upon
request.

D.8 Follow-up Questionnaire
All questions requires an answer between 1 and 10, 1 being bad and 10 being very
good.

• What was your overall impression of Parlira?
• How useful would you find the application while travelling?
• How did you find the navigation?
• How well did you find the phrase customization screen?
• What features could be improved? In what way?
• Is there any feature you are missing in the application?

XIV

D. Usability Test Plan

D.9 Summary of Results

The first step in the test for the test persons was to perform the tasks earlier specified.
Most of the tasks were completed without any problems. The task where the user
would add a phrasebook was problematic for all test persons. They were asked to
perform this task directly after having added their own phrasebook so they would
still be in the screen for "My Phrasebooks". It was very unclear how they would
add a phrase to the phrasebook they had just created. Everyone started by entering
the phrasebook but did not find functionality there to add a phrase which all of
them thought would be intuitive. After a while all of them found the floating action
button in the phrase customization screen and were able to add a phrase to their
phrasebook.

XV

D. Usability Test Plan

XVI

D. Usability Test Plan

What features could be improved?
The main thing that all users mentioned as something that should be improved is
how you add phrases to a phrasebook since it was problematic for all of them to
find it. It could be improved by adding a button somewhere in the screen when you
have entered a phrasebook. The two users that tried out the application some more
than just the tasks pointed out that the user should not be able to save exactly the
same phrase twice to a phrasebook. These two persons also found the functionality
that it is possible to delete a phrasebook by holding in on the phrasebook. They
thought this was very unclear and that some kind of indication that the phrase-
book will disappear should be added. Another thing that was brought up by most
of the users was that the functionality for changing language should not be in the
navigational drawer. This functionality should be easier to reach although it should
not be present in the phrase customization screen at all times. Also some of the
headlines and titles in the application should be improved, such as renaming the
default phrasebook to "Default phrases" instead of "Default".

Is there any feature you are missing in the application?
For two of the users it was unclear that it was only possible to add phrases that
already exist in the application to a phrasebook. They thought it would be a nice
feature if the user could add other phrases as well, but only as text that could not
be customized. Another feature that was discussed was a search function in the
phrasebooks so that it would be easier to find a phrase if you know exactly what
phrase you are looking for.

XVII

	Introduction
	Background
	Purpose
	Problem description
	Dynamic User Interface
	Back end configurability

	Scope

	Methods
	Research and Project Planning
	Research
	Work Procedures

	Practices
	Personas and User Stories
	User Tests

	Technical Background
	Android Development
	Application Structure
	Material Design

	XML
	Grammatical Framework

	Design Process
	Identifying User Needs
	Personas
	User Stories

	Designs at Different Stages and User Tests
	Initial designs
	Paper Prototype User Test
	Software Prototype User Test

	Implementation
	Representing Sentences
	XML Configuration File
	Syntax Tree Structure

	Dynamic Updating

	The Final Product
	Application
	Features of Parlira

	Discussion
	Method Discussion
	Design Process
	Implementation Process

	Result Discussion
	The Application
	Further Development
	Parlira in Society

	Conclusion
	User stories
	Sketches
	Paper Prototypes
	Paper Prototype Test Specification
	Summary of Observations

	Usability Test Plan
	Test Specification
	Product Under Test
	Business Case
	Participants
	Equipment
	Responsibilities
	Location and Dates
	Follow-up Questionnaire
	Summary of Results

