
Puzzle Solving with Proof
Writing a Verified SAT Encoding Chain in HOL4

Master’s thesis in Computer Science – Algorithms, Languages, and Logic

SOFIA GILJEGÅRD
JOHAN WENNERBECK

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2021

Master’s thesis 2021

Puzzle Solving with Proof
Writing a Verified SAT Encoding Chain in HOL4

SOFIA GILJEGÅRD
JOHAN WENNERBECK

Department of Computer Science and Engineering
Formal Methods Division

Chalmers University of Technology
University of Gothenburg

Gothenburg, Sweden 2021

Puzzle Solving with Proof
Writing a Verified SAT Encoding Chain in HOL4
SOFIA GILJEGÅRD
JOHAN WENNERBECK

© SOFIA GILJEGÅRD, JOHAN WENNERBECK, 2021.

Supervisor: Magnus Myreen, Department of Computer Science and Engineering
Examiner: Wolfgang Ahrendt, Department of Computer Science and Engineering

Master’s Thesis 2021
Department of Computer Science and Engineering
Formal Methods Division
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2021

iv

Puzzle Solving with Proof
Writing a Verified SAT Encoding Chain in HOL4
SOFIA GILJEGÅRD, JOHAN WENNERBECK
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
The development of SAT solvers is an ongoing research area, driven by the possi-
bility to use SAT solvers to solve a wide range of problems. This development has
made SAT solvers fast, and they solve increasingly more difficult problems. In or-
der to take advantage of this development, the encoding process to SAT is crucial
and must be correct. The purpose of this project is to implement a verified chain
of encoding functions. The encoding functions are written in and verified using
HOL4 as part of CakeML. The result is three different versatile datatypes that
can be used, together with a SAT solver, to solve problems containing Boolean
variables, natural numbers, and unordered sets. The usage of the three datatypes
is demonstrated on different logical puzzles. Using the verified SAT encoding chain
allows encodings of new problems to conjunctive normal form to be made with a
reduced number of proofs needed in the verification process. We believe that this
is the first instance of a verified SAT encoding chain in HOL4.

Keywords: encodings, SAT, CNF, formal methods, formal verification, interactive
theorem prover, HOL, CakeML, puzzles

v

Acknowledgements
We would like to thank our supervisor Magnus Myreen for all the support, great
ideas and challenging discussions during the thesis. Your guidance and your advice
has been invaluable for many breakthroughs. We would also like to thank our
examiner Wolfgang Ahrendt for the valuable feedback and your engagement in the
formal methods course that made us both interested in the subject. Furthermore,
we would like to give our biggest gratitude to the HOL4/CakeML community for
all lighting fast responses to our many questions.

Sofia Giljegård, Johan Wennerbeck
Gothenburg, June 2021

vii

Contents

1 Introduction 1
1.1 Contributions . 2

2 Background 5
2.1 The SAT Problem Type . 5
2.2 CakeML . 6
2.3 Formal Verification and HOL4 . 6

3 Sudoku Example 9
3.1 The Sudoku Type in HOL4 . 9
3.2 Encoding . 10
3.3 Satisfiability . 11
3.4 Proving That a Sudoku is Valid . 12

4 Verified Encoding Functions 13
4.1 The Encoding Functions at a Glance 13
4.2 The CNF Datatype . 14
4.3 Encoding Booleans . 15

4.3.1 Naive Encoding of Simple Boolean Expressions 15
4.3.2 Improving the Encoding of Simple Boolean Expressions . . . 16
4.3.3 Quantifiers over Boolean Expressions 18
4.3.4 Pseudo-Boolean Constraints 18
4.3.5 Preparing the Boolean Datatype for Encoding of Natural

Numbers . 20
4.4 Encoding Natural Numbers . 20

4.4.1 The First Datatype for Natural Numbers 21
4.4.2 Encoding Using Order Encoding 21
4.4.3 Extending the Datatype for Natural Numbers 23
4.4.4 Adding Different Ranges for Different Variables 24

4.5 Encoding Unordered Sets . 24

ix

Contents

5 Proving That the Encodings Preserve Satisfiability 27
5.1 The Satisfiability Theorem . 27
5.2 Proof by Induction . 28
5.3 Adding Fresh Variables . 29
5.4 Proving the Encoding of Natural Numbers 29

6 Case Studies 31
6.1 Algorithmic Problems . 31

6.1.1 N-Queens Problem . 31
6.1.2 Graph Coloring Problem . 32
6.1.3 Hamiltonian Path Problem 33

6.2 Logical Puzzles . 34
6.2.1 Kakuro . 34
6.2.2 Killer Sudoku . 35

7 Discussion 37
7.1 Contribution to CakeML . 37
7.2 Related Work . 38

7.2.1 SMT Solvers and QBF Solvers 38
7.3 Encoding Strategies . 39
7.4 Future work . 40
7.5 Lessons learned . 41
7.6 Conclusion . 41

Bibliography 43

x

1
Introduction

Satisfiability testing, in the form of SAT solvers, is an ongoing research area [1,
2]. It is driven by, for example, the need to verify software and hardware [3]. SAT
solvers solve Boolean satisfiability (SAT) problems, which involves telling whether
a Boolean formula has an assignment of the Boolean variables that makes the
formula true. Even though SAT problems are NP-complete, and therefore difficult
to solve, SAT solvers are efficient. In order to use a SAT solver to solve a problem,
the problem must be encoded to SAT. The encoding process is crucial and must
be correct.

Much research has been done on how to encode problems to SAT efficiently. How-
ever, not many of these encoding methods have been formally verified. By formally
verifying the encoding process, one is confident that the solution to the original
problem and the solution to the encoded problem are the same.

This project aims to implement verified SAT encoding functions for logical puzzles.
Say, for example, that we would like to encode a sudoku, such as the one to the
left in Figure 1.1. Sudoku is one of the most well-known logical problems, and it
consists of a 9 × 9 grid where each cell should be filled with one of the numbers
1 to 9. It is solved if, within each row, column, and 3 x 3 block, each number
appears exactly once. A sudoku is valid if it has exactly one solution.

The rules of a sudoku can easily be expressed as logical constraints. For example,
the fact that the first row should contain each number exactly once is one such
constraint. SAT solvers are ideal for solving logical constraints. Therefore if we
encode the problem to SAT, we can use a SAT solver to find a solution to the
sudoku, or to determine if it is valid.

1

1. Introduction

(a) Unsolved (b) Solved

Figure 1.1: Example sudoku

The encoding from sudoku to SAT encodes a cell, which is a number between 1
and 9, to nine Boolean variables. Each Boolean variable corresponds to filling that
cell with a particular number. The rules of a sudoku are encoded to comparing
these Boolean variables to make sure that there exists no duplicate numbers in
any row, column, or block.

1.1 Contributions

This project implements verified functions for encoding problems to SAT problems.
These functions can be used to encode a range of different problems, where sudoku
is one example. Chapter 3 explains how the encoding of our sudoku is performed.

The encoding functions are written in and verified using HOL4. They are imple-
mented as part of CakeML, a functional programming language, and tools built
around the language. One such tool is a verified compiler, with which our func-
tions are compiled. By compiling the functions with the verified compiler, one is
confident that the compiler does not miscompile the given function. Chapter 2
contains relevant information about CakeML, HOL4, and other core concepts for
the project.

The result of the project is a collection of datatypes with verified encodings to
SAT problems. A description of the datatypes and their encoding functions can

2

1. Introduction

be found in Chapter 4, and a description of the verification process can be found
in Chapter 5. There are three main datatypes, intended to be used for different
logical problems.

The first datatype is intended to use for problems containing only Boolean vari-
ables. One such problem could be, for example, the n-queens problem, explained
in Section 6.1.1. The goal of the n-queens problem is to place n queens on a n×n
sized chessboard so that no two queens threaten each other.

The second datatype allows for natural numbers variables. These variables have
an upper and a lower bound, and equations using them include adding and com-
paring variables. This datatype can be used to encode logical problems involving
adding natural numbers, such as killer sudoku, which is explained in Section 6.2.2.
Killer sudoku is a sudoku version with additional constraints involving addition of
numbers.

The last datatype is made for use with problems containing variables of other
types. One example of this is the graph coloring problem, which is explained in
Section 6.1.2. The goal of the graph coloring problem is to color all vertices in a
graph so that no connected vertices have the same color. Here the variables are
vertices in a graph, and they belong to a set of colors.

The focus has been on proving the encodings correct, not to make them efficient.
A discussion of how they compare to other encodings can be found in Chapter 7.

3

1. Introduction

4

2
Background

This chapter introduces fundamental concepts needed to understand the rest of the
report. Section 2.1 gives necessary background information on the SAT problem
type. The project will be part of CakeML, which Section 2.2 introduces. CakeML
is built upon HOL4. Section 2.3 describes HOL4 in order to give the reader an
idea of how the tool is used.

2.1 The SAT Problem Type

The task of a SAT solver is to solve Boolean Satisfiability Problems. This type
of problem consists of Boolean variables together with different operators, such as
negation or implication.

SAT solvers take their input in a standardized form, called conjunctive normal
form (CNF). The definition of CNF is

literal = a boolean variable or the negation of a boolean variable
clause = a disjunction of literals
CNF = a conjunction of clauses.

For example,
(b1 ∨ ¬b2) ∧ (b2),

where b1 and b2 are Boolean variables, is a formula in CNF consisting of two
clauses.

5

2. Background

A SAT solver determines whether a formula of this type is satisfiable or not. A
formula is satisfiable if there exists an assignment of the Boolean variables that
makes the equation evaluate to true [4]. For example, our example above evaluates
to true when both b1 and b2 evaluate to true.

2.2 CakeML

CakeML is a functional programming language and an ecosystem of proofs and
tools built around the language. The base is a compiler, written and proved correct
in HOL4 [5]. By writing and proving functions in HOL4 and compiling them with
the CakeML compiler, one is confident that the compiler does not miscompile the
given function.

The CakeML ecosystem includes a verified checker, cake_lpr, for checking the
output of a SAT solver [6]. It checks proof traces, which are generated by a SAT
solver when the SAT problem is unsatisfiable. If a verified checker finds a fault in
the proof-trace, it means that a bug exists in the SAT solver [7, 8].

If the input to the SAT solver is satisfiable, no checker is needed because the
verification is trivial [7, 8]. Instead of a proof trace, the SAT solver outputs an
assignment of the used variables. It is enough to test the proposed assignments
and see if the CNF-formula evaluates to true.

2.3 Formal Verification and HOL4

HOL4 is a proof assistant specialized for higher-order logic, which uses Standard
ML (SML) as the implementation language [9]. It provides built-in libraries and
proof tools to help implement new proof tools and solve theorems automatically
or interactively [10].

When using HOL4, there are two windows, which can be seen in Figure 2.1. In
the left window, a proof script is developed. The script consists of commands such
as Type, Datatype, Definition, Theorem, and tactics. Tactics are the methods used
to prove theorems. Most of the code is similar to other functional programming
languages. The right window shows how HOL4 responds to these commands. The

6

2. Background

code is loaded from the left window into the right.

Figure 2.1: An example of the workspace for HOL4.

One thing that differs from other functional programming languages is theorems
and proofs. Theorems are written using logical operators. HOL4 proofs are a
collection of tactics that will be applied to the theorem to prove its validity.

The code below shows a theorem and proof, saying that a toddler has an age
between 0 and 4.

Theorem toddler_age_is_correct:
∀ person.
person = Toddler =⇒
(return_age_span person = (0, 4))

Proof
Cases_on‘person’
>> rw[return_age_span_def]

QED

Figure 2.2 shows the same theorem and proof loaded into HOL4.

7

2. Background

Figure 2.2: The theorem toddler_age_is_correct loaded into HOL and proved.

When a theorem is loaded into HOL4, it is called a goal. A goal is proved using
tactics, such as Cases_on and rw[] above. rw, which is short for rewrite, is used
to simplify proofs. Inside the brackets, one specifies already proved theorems or
definitions that will be used to prove the goal. In the example above, the definition
of the function return_age_span is used. >> is used as a link between two tactics.

8

3
Sudoku Example

This chapter describes how our datatypes can be used to solve the example sudoku
from Chapter 1. It also describes how we can determine if the sudoku is valid. A
sudoku is valid if it has exactly one solution. If the sudoku is valid, the problem
of finding a second solution will be unsatisfiable.

3.1 The Sudoku Type in HOL4

First, we need to implement a type for sudoku in HOL4. We implement a cell as
a number, with empty cells represented by the value 0. A row is implemented as
a list of cells, and a sudoku is implemented as a list of rows. In HOL4, the type
of a sudoku is then num list list. Here is the unsolved version of our example
from Figure 1.1 implemented in HOL4.

[[5; 3; 0; 0; 7; 0; 0; 0; 0];
[6; 0; 0; 1; 9; 5; 0; 0; 0];
[0; 9; 8; 0; 0; 0; 0; 6; 0];
[8; 0; 0; 0; 6; 0; 0; 0; 3];
[4; 0; 0; 8; 0; 3; 0; 0; 1];
[7; 0; 0; 0; 2; 0; 0; 0; 6];
[0; 6; 0; 0; 0; 0; 2; 8; 0];
[0; 0; 0; 4; 1; 9; 0; 0; 5];
[0; 0; 0; 0; 8; 0; 0; 7; 9]]

9

3. Sudoku Example

We also need to define what it means for a sudoku to be well-formed. This is done
in the function sudoku_ok,

sudoku_ok sudoku def=
length sudoku = 9 ∧ every (λ row. length row = 9) sudoku ∧
every (λ n. 0 ≤ n ∧ n ≤ 9) (flat sudoku).

This function consists of three parts. The first part, length sudoku = 9, tells that
the length of the sudoku should be nine. Remember that a sudoku is a list of rows,
so this constraint says that a sudoku must have nine rows.

The second part, every (λ row. length row = 9) sudoku says that the length of each
row should be nine. every takes a predicate and checks that it holds for all elements
in a list. Here, the list is the sudoku where every element is a row. The predicate,
λ row. length row = 9, checks that the length of the row is equal to nine.

The last part, every (λ n. 0 ≤ n ∧ n ≤ 9) (flat sudoku), checks that all cells have
a valid value. flat takes a list of lists and flattens it to simply one list. Thus,
flat sudoku returns one list with all cells. The predicate checks that an element
has a value between 0 and 9.

3.2 Encoding

The idea of the encoding is to have one versatile datatype, to which the sudoku
can be easily translated. This datatype should be able to capture a variety of
logical problems. From this datatype, we encode the problem to CNF via several
intermediate datatypes. This process is visualized in Figure 3.1.

Passing the encoded problem to a SAT solver gives a solution in the form of an
assignment function. After encoding this assignment function back to match the
sudoku datatype, we will use it to solve the sudoku.

It is important that all these encodings, both of the problem and the solution,
are proved to preserve satisfiability. By this, we mean that if the sudoku has a
solution, the SAT problem should be satisfiable. Moreover, if the sudoku does not
have a solution, the SAT problem should be unsatisfiable.

10

3. Sudoku Example

CNFSudoku
Intermediate
datatypes

… …

Encoding the problem

Encoding the solution

Versatile
datatype

…

…

Encoding the problem

Encoding the solution

Figure 3.1: The steps of the encoding process, first encoding the problem from
sudoku to CNF and then encoding the solution back to sudoku.

3.3 Satisfiability

The assignment function used to solve the sudoku will have the type num → num,
which means it is a function from number to number. The input is the position
of a cell, and the output is the value that should be assigned to that cell. The
positions are numbered from 00 to 88, where the first number represents the row
and the second number represents the column. An assignment is valid if it assigns
every position to a value between 1 and 9.

Deciding whether an assignment function solves a sudoku consists of three steps:

1. Generating lists of all rows, columns, and blocks.

2. Filling each cell in the lists of rows, columns, and blocks, using the assignment
function.

3. Checking if all values are distinct in each of the lists.

If all values are distinct within each of these lists, the assignment function provides
a solution to the sudoku.

11

3. Sudoku Example

3.4 Proving That a Sudoku is Valid

As previously mentioned, a sudoku is valid if it has exactly one solution. Proving
that a sudoku is valid is done in two steps. First, we solve the sudoku. Then we
try to solve the sudoku again but specify that we want a different solution. This
specification is done by adding the constraints that at least one cell should have a
different value than in the first solution. Using our example sudoku and solution
in Figure 1.1, we would specify that cell 02 should not have value 4, or cell 03
should not have value 6, and so on. The reason that we use disjunction between
the different constraints is that we only want to forbid this exact solution, not all
solutions where cell 02 has value 4.

If we find a solution the first time but not a different solution the second time, then
the sudoku is valid. For this to hold, we must prove that the encoding preserves
satisfiability. In other words, we need to prove that the sudoku has a solution if
and only if the SAT problem is satisfiable. Logically this can be expressed as

eval_sudoku w sudoku⇐⇒
eval_sat (encode_assignment w) (encode_sudoku sudoku),

(3.1)

where w is an assignment function.

In the following chapter, we will look at how the intermediate datatypes can be
implemented in order to build up a versatile datatype to encode a variety of logical
problems. Our result will be three different versatile datypes, suitable for different
types of logical problems. Throughout all intermediate datatypes, we need to
prove a version of equation (3.1). Proving preservation of satisfiability is the key
to freely use our datatypes to encode SAT problems.

12

4
Verified Encoding Functions

This chapter explains the development of the verified encoding functions. Each
encoding function corresponds to a new datatype with added functionality. Our ap-
proach is to add functionality in small steps rather than starting with one datatype
including everything.

4.1 The Encoding Functions at a Glance

Figure 4.1 shows the implemented datatypes and how they relate to each other.
The datatypes in bold are cnf and the three main datatypes, which should be
used to encode problems. cnf is in bold because it is the datatype to which all
other datatypes will be encoded.

cnf

boolExp

quant

pseudoBool numBoolRange unorderedSets

orderBool

numBool

numBoolExtended

Boolean
Expressions

Natural
Numbers

Unordered Sets

Figure 4.1: Implemented datatypes and their relations.

13

4. Verified Encoding Functions

The left-hand side of the figure shows all datatypes for Boolean expressions.
boolExp extends cnf with implication and equivalence and allows all operators
to be used in any order. The next datatype adds the existential (∃) and universal
(∀) quantifier, which will quantify over Booleans. The datatype pseudoBool has
added operators for at least one, at most one, and exactly one of a list of Boolean
expressions. pseudoBool is the main datatype for Boolean expressions.

After this follows the encoding of natural numbers. First is the datatype orderBool.
It contains only Boolean expressions but prepares for natural numbers. After this
follow three datatypes for natural numbers that each adds additional functionality.

To the right in the figure is the encoding of unordered sets. It only has one
datatype, which builds on natural numbers.

4.2 The CNF Datatype

The CNF datatype will be used as the base, to which all other datatypes will be
encoded. Its smallest building block is the literal. A literal is either a Boolean
variable or the negation of a Boolean variable.

We use literals to build clauses. We define the clause datatype as

clause =
ClauseEmpty
| ClauseLit literal
| ClauseOr clause clause.

A clause can either be empty, a literal or a disjunction of clauses.

A CNF consists of conjunctions of clauses. We define the datatype as

cnf = CnfEmpty | CnfClause clause | CnfAnd cnf cnf.

A CNF can either be empty, a clause, or a conjunction of CNFs.

The evaluation function for CNF is called eval_cnf. It takes a CNF formula
and an assignment function w as arguments, where w is a function from Boolean
variables to Booleans. CnfAnd and ClauseOr are evaluated as the logical operators
∧ and ∨, and a literal is evaluated using the assignment function. If bv is the
Boolean variable of the literal, the evaluation of bv is w bv.

14

4. Verified Encoding Functions

Since we want

eval_cnf (CnfAnd c CnfEmpty) = eval_cnf c,

we let CnfEmpty evaluate to true. For similar reasons with ClauseOr, we let
ClauseEmpty evaluate to false.

4.3 Encoding Booleans

We encode Boolean expressions using several datatypes, adding more functionality
in every step. First, we encode simple Boolean expressions containing True, False,
literals, and the operators not, and, or, implication, and equivalence. This is done
in two different ways; first a naive encoding and then a smarter one resulting in
the CNF formula being linear in size relative to the input size. After this, we add
the existential and universal quantifiers in a new datatype. Then we add pseudo-
Boolean expressions. Lastly, we add an operator specialized for the encoding that
we will use for natural numbers.

Since type constructors need to be unique in HOL4, we have added a prefix to
most of the constructors in the datatypes in the following sections. For example,
the And constructor in the quantifier datatype is called QAnd.

4.3.1 Naive Encoding of Simple Boolean Expressions

Our first goal is to encode Boolean expressions into CNF. In HOL4 the datatype
is defined as

boolExp =
True
| False
| Lit literal
| Not boolExp
| And boolExp boolExp
| Or boolExp boolExp
| Impl boolExp boolExp
| Iff boolExp boolExp.

To encode Boolean expressions to CNF we follow a simple algorithm described in

15

4. Verified Encoding Functions

the book Logic in Computer Science [4]. The first step is to remove all implications
and equivalences using

b1 =⇒ b2 = ¬b1 ∨ b2

b1 ⇐⇒ b2 = (b1 ∧ b2) ∨ (¬b1 ∧ ¬b2).

The second step is to push all negations inwards so that the only negated expres-
sions are literals. After this is done, the expression is said to be in negation normal
form (NNF). This is achieved using de Morgan’s laws,

¬(b1 ∧ b2) = ¬b1 ∨ ¬b2

¬(b1 ∨ b2) = ¬b1 ∧ ¬b2.

The last part is to encode from NNF to CNF. True is encoded to CnfEmpty and
False is encoded to ClauseEmpty. Lit is already in CNF. b1 ∧ b2 is also in CNF if
both b1 and b2 are in CNF.

To encode b1 ∨ b2, we first ensure that both b1 and b2 are in CNF. Then there are
two cases. The first case is when both b1 and b2 are Booleans or literals, which
results in b1 ∨ b2 already being in CNF. The second case is when at least one of
them is a conjunction. This case is encoded using the distribution laws. If for
example b1 = (b11 ∧ b12), we use

(b11 ∧ b12) ∨ b2 = (b11 ∨ b2) ∧ (b12 ∨ b2),
to get an expression that is in CNF.

After defining our encoding function, we need to prove that it preserves satisfiabil-
ity. For this, we need the function eval_boolExp. This function is constructed by
replacing the datatype constructor with the corresponding logical operator. For
example, And is replaced by ∧. This function is then used in the theorem

` eval_boolExp w b ⇐⇒ eval_cnf w (boolExp_to_cnf b)
that proves satisfiability.

4.3.2 Improving the Encoding of Simple Boolean Expres-
sions

Our previously described encoding of Boolean expressions has one problem; the
encoding of some types of expressions leads to an exponential increase in size [11].

16

4. Verified Encoding Functions

Therefore, we implement an encoding function from Boolean expressions to CNF
based on Tseytin transformation.

The idea of Tseytin transformation is to replace each subformula with a fresh
Boolean variable. Then we add the encoding that the variable and the subformula
are equal [11].

Say that we want to encode

(b1 ∧ b2) ∨ (b3 ∧ b4),

where b1, ..., b4 are Boolean variables. The first subformula is b1 ∧ b2, which we
replace with b5. We replace the second subformula b3∧ b4 with b6. Then the whole
formula can be written as b5 ∨ b6, which we replace by b7.

The encoding will then be built up of the parts

b5 ⇐⇒ (b1 ∧ b2)
b6 ⇐⇒ (b3 ∧ b4)
b7 ⇐⇒ (b5 ∨ b6)
b7,

where the last row means that the variable b7 should be true.

Since we cannot use equivalence in a CNF formula, we also need to encode all of
the substitutions. For this, we define one encoding function for each of the possible
subformulas. For example, we can rewrite the first substitution above using

b5 ⇐⇒ (b1 ∧ b2) =
(b5 =⇒ (b1 ∧ b2)) ∧ ((b1 ∧ b2) =⇒ b5) =
(¬b5 ∨ (b1 ∧ b2)) ∧ (¬(b1 ∧ b2) ∨ b5) =
(¬b5 ∨ b1) ∧ (¬b5 ∨ b2) ∧ (¬b1 ∨ ¬b2 ∨ b5).

The last row above is used as the CNF version of the encoding of substitution of a
conjunction. Similar encoding functions are defined for all substitutions, and then
combined to encode Boolean expressions using Tseytin transformation.

17

4. Verified Encoding Functions

4.3.3 Quantifiers over Boolean Expressions

The next step is to implement Boolean quantifiers. Two different quantifiers are
implemented: the universal quantifier (∀) and the existential quantifier (∃). To
quantify over Booleans is to quantify over the set {T, F}. Therefore, ∀x. p(x)
means that p(x) should be true both when x is replaced with true and replaced
with false. Similarly, ∃x. p(x) means that p(x) should be true either when x is
replaced with true or replaced with false.

The implementation of quantifiers can be found in a datatype called quant,

quant =
. . .
| QAll name quant
| QEx name quant,

where name is the variable the quantifier is applied to.

We evaluate quantifiers by adding mappings of the Boolean variable in the assign-
ment function w. If we want to evaluate QAll b1 ((b1 ∨ b2) ∧ (b1 ∧ b3)), we need to
evaluate a conjunction between the two cases. The evaluation becomes

eval w QAll b1 ((b1 ∨ b2) ∧ (b1 ∧ b3)) ⇐⇒
eval wLb1 7→ T M ((b1 ∨ b2) ∧ (b1 ∧ b3)) ∧ eval wLb1 7→ F M ((b1 ∨ b2) ∧ (b1 ∧ b3)).

The quant datatype is encoded to boolExp in a way that is similar to the evaluation
process. The difference is that instead of mapping the variable in w, we replace
the variable in the expression.

4.3.4 Pseudo-Boolean Constraints

Pseudo-Boolean constraints are constraints that consists of addition of Boolean
variables. Three cases of pseudo-Boolean constraints commonly used in puzzles
are the at least one constraint, at most one constraint and exactly one constraint.
They look like

At least one: x1 + ...+ xn > 1
At most one: x1 + ...+ xn 6 1
Exactly one: x1 + ...+ xn = 1.

18

4. Verified Encoding Functions

We include these three pseudo-Boolean constraints in our formal syntax as the fol-
lowing cases of a datatype for Boolean expressions extended with pseudo-Boolean
constraints,

pseudoBool =
. . .
| PLeastOne (pseudoBool list)
| PMostOne (pseudoBool list)
| PExactlyOne (pseudoBool list).

The implementations consist of a list of Boolean expressions. The semantics are
defined to be as in the equations above. The procedure of evaluating an expression
consists of the following steps:

1. Evaluate each Boolean expression to T and F

2. Map T and F to 1 and 0

3. Add the values and compare them to 1:

• PLeastOne is true for > 1
• PMostOne is true for 6 1
• PExactlyOne is true for = 1

Next, we have to define the encoding of our pseudo-Boolean constraints. This is
done differently for the three instances.

Say that we want to encode PLeastOne [b1; b2; b3]. At least one of them has to be
true, but we can also have two or more to be true. This is the same as having b1
or b2 or b3. I.e., the encoding is b1 ∨ b2 ∨ b3.

If we instead want to encode PMostOne [b1; b2; b3], we get one clause for each
expression. If b1 is true, both b2 and b3 are false. This can be expressed as
b1 =⇒ (¬b2 ∧ ¬b3). Note that it also holds if b1 is false. To capture the case
when b1 is false and b2 is true, we add the clause b2 =⇒ ¬b3. Then we have
the case when both b1 and b2 are false. In this case, it does not matter whether
b3 is true or false, which we write as b3 =⇒ T . The final encoding becomes
(b1 =⇒ (¬b2 ∧ ¬b3)) ∧ (b2 =⇒ ¬b3) ∧ (b3 =⇒ T).

The encoding of exactly one, for example PExactlyOne [b1; b2; b3], is the simplest
one yet. It is defined as at least one and at most one. For our example that is
PLeastOne [b1; b2; b3] ∧ PMostOne [b1; b2; b3].

19

4. Verified Encoding Functions

4.3.5 Preparing the Boolean Datatype for Encoding of Nat-
ural Numbers

In our encoding of natural numbers, we will use order encoding [12]. This is an
encoding method where the variable x ∈ [0, k] is encoded by b0, ..., bk, where bi is
true if x 6 i. For example, if x ∈ [0, 2] then x = 1 is represented by [F, T, T].

From the order of natural numbers, it follows that if x 6 i then x 6 i+1. However,
if x
 i then we do not know whether x 6 i+ 1 or not. Therefore, bi =⇒ bi+1.

To make the encoding of natural numbers easier, we create a datatype that captures
this ordering. This datatype is called orderBool. It is an extension of pseudoBool,
with the added constructor OrderAxiom that takes a list of Boolean variables as
an argument.

OrderAxiom evaluates to true if, after evaluating each Boolean variable individu-
ally, the list consists of 0 or more false followed by 1 or more true. For example,
the list [F, T, T] evaluates to true, but the list [F, T, F] evaluates to false. The
last example says that x 6 1 and x
 2, which cannot be true at the same time.

The reason that we need at least one value that evaluates to true in the list is to
keep the number variable inside the allowed range. For example, if x ∈ [0, 2] is
represented by [F, F, F], the representation says that x > 2 which is not allowed.

The encoding of OrderAxiom is defined as(
k−1∧
i=0

(bi =⇒ bi+1)
)
∧ bk.

4.4 Encoding Natural Numbers

The next step is to encode natural numbers. As with the Boolean expressions, we
do this sequentially through several datatypes. The first datatype is called numBool
and adds the possibility of having natural numbers together with four core opera-
tors. Each natural number belongs to the same range of valid numbers, from 0 up
to some specified number k. The next datatype is called numBoolExtended, and it
extends numBool with more operators. The last datatype is called numBoolRange,
and it allows variables to belong to different ranges.

20

4. Verified Encoding Functions

This section describes the datatypes, evaluation, and encoding functions.

4.4.1 The First Datatype for Natural Numbers

The datatype numBool extends the usability of the datatype of Boolean expres-
sions. This means that it allows usage of true, false, Boolean variables, and the
operators not, and, or, implication, and equivalence. It also contains the operators

Add: x+ y = z

Leq: x 6 y

EqConst: x = n

LeqConst: x 6 n,

where x, y and z are variables of the type natural number, and n is a constant.

Note that the four added operators all evaluate to either true or false, which means
that they can be used freely in any expressions. We could, for example, write the
expression

b =⇒ (x 6 10),
and then the program will try to find a Boolean value for b and a natural number
for x that satisfies the equation.

The evaluation function for numBool uses two different assignment functions; one
for Boolean variables and one for number variables. The assignment function for
Boolean variables is defined in the same way as in previous evaluations, and the
assignment function for natural numbers is new. If we let w′ be the new assignment
function, the evaluation of the new operators becomes

Add: w′ x+ w′ y = w′ z

Leq: w′ x 6 w′ y

EqConst: w′ x = n

LeqConst: w′ x 6 n.

4.4.2 Encoding Using Order Encoding

We encode numBool to the datatype orderBool, using order encoding. This means
that the variable x ∈ [0, k] is encoded by b0, ..., bk where bi is true if x 6 i [12].

21

4. Verified Encoding Functions

The encoding consists of four steps:

1. Create a variable map that maps every number variable x to the correspond-
ing Boolean variables bi used for the encoding of x.

2. Encode the expression.

3. Encode the axioms, which specifies that natural numbers have an order. We
do this with a direct application of the constructor OrderAxiom, described
in Section 4.3.5.

4. Encode the new assignment function w′ into assignments from Boolean vari-
ables to Booleans.

To create the variable map, we recurse through the expression and create a list
of all the used number variables. The variable map is then constructed as a list
of pairs, where each pair contains a number variable and a list of fresh Boolean
variables used for the encoding.

In order to encode the expression, we need to define new encoding functions for our
four added operators. The easiest one to encode is LeqConst, since it corresponds
well to the definition of order encoding. The equation x 6 i is encoded as bi.

The encoding of EqConst is almost as simple. x = i can be rewritten to x 6
i ∧ ¬(x 6 i− 1), which is then encoded as bi ∧ ¬bi−1.

The encoding of x 6 y, where both x and y are variables, builds on the concept that
if y 6 i, then x 6 i. If we let bx

0 , ..., bx
n be the Boolean variables corresponding to x

and by
0, ..., by

n be the Boolean variables corresponding to y, the encoding becomes

k∧
i=0

(by
i =⇒ bx

i) .

22

4. Verified Encoding Functions

The encoding of x + y = z builds on two concepts. The first concept is that
x+y = z holds if and only if for all i, (x+y 6 i)⇐⇒ (z 6 i). This can be written
as

k∧
i=0

((x+ y 6 i)⇐⇒ (z 6 i)) . (4.1)

We already know how to encode z 6 i, so it remains to encode x+ y 6 i.

The encoding of x+ y 6 i is the second concept. x+ y 6 i will be true if we have
one combination of x and y that is smaller than i. For example, we could have
x 6 0 and y 6 i, or x 6 1 and y 6 i− 1. The encoding function becomes

i∨
j=0

(
bx

j ∧ b
y
i−j

)
. (4.2)

Combining equation (4.1) with equation (4.2) we get the full equation for encoding
x+ y = z,

k∧
i=0

 i∨
j=0

(
bx

j ∧ b
y
i−j

)⇐⇒ bz
i

We encode the assignment function for number variables, w′, by modifying the
encoding function for Boolean variables. Assume that w is the encoding function
for all Boolean variables present in our expression. Then the encoded assignment
function will do the following when applied to a Boolean variable b. If b is present
in the variable map, representing x 6 v for some x and v, return w′ x 6 v. Else,
return w b.

4.4.3 Extending the Datatype for Natural Numbers

The next step is the datatype numBoolExtended, where constructors are added for
all expressions of the forms

x # y

x # n

n # x,

where x and y are number variables, n is a constant and # is one of =, 6=, <, 6,
> and >. For example, a constructor for x < y is added.

23

4. Verified Encoding Functions

The evaluation of the added constructors is made by applying w′ to all number
variables. In the example above, the evaluation becomes w′ x < w′ y.

In the encoding function, all of the added constructors are encoded into combi-
nations of Leq, EqConst, and LeqConst from numBool. For example, x < y is
encoded to ¬(y 6 x).

4.4.4 Adding Different Ranges for Different Variables

In numBool and numBoolExtended, all number variables ranged from 0 to some
k, where k was provided together with the equation. The next step is to allow
different variables to have different ranges. The input provided together with the
equation is then a range list, which is a list of all number variables and their upper
and lower bounds. However, only ranges of non-negative numbers are allowed.

In order for the evaluation to work, w′ must evaluate all number variables to a
value within the allowed range. Aside from that extra condition, the evaluation is
done in the same way as before.

For the encoding part, the strategy is to encode the ranges as part of the equation.
A range x ∈ [m,n] is replaced by (m 6 x) ∧ (x 6 n). We let k be the highest
upper bound among all variables.

4.5 Encoding Unordered Sets

The third versatile datatype is called unorderedSets. In this datatype, both vari-
ables and the sets they belong to are specified. The datatype is called unordered
sets because the logic does not contain any ordering relation between the elements
of the set.

This datatype can have both Boolean variables and set variables. The datatype
is an extension of the boolExp, with two added operators. EqVarCon is equality
between a set variable and a constant. EqVarVar is equality between two set
variables. Every time a set variable is used in an equation, one needs to specify
the name of the set that the variable belongs to. The equation is not valid if it
contains equalities between variables that belong to different sets.

24

4. Verified Encoding Functions

Together with an equation to be solved, one also needs to specify the sets and
their elements. This is done in a list, where each element is a pair of the set name
and a list of the set elements.

We do the evaluation using two different assignment functions. The first one is
a function from Boolean variables to Booleans, which we have used before. The
second one is a function from set variables to set elements. The new equality con-
structors are evaluated by evaluating each set variable and checking the equality.

We encode this datatype to numBoolRange. This means that each element in a set
is encoded to a natural number. Since elements in a set have a fixed order in the
set list, we use the index of each element for the encoding.

Three things need to be encoded; the equation, the set list, and the assignment
function for set variables. In the equation, the only new constructors are EqVarCon
and EqVarVar. EqVarCon is encoded to equality between the variable and the index
of the constant in the set list. EqVarVar is encoded to equality between two number
variables.

The set list is encoded to a range list. This is done by letting each variable range
from 0 to the highest index in the set list.

The assignment function for set variables is encoded to an assignment function
for number variables. If w′ is the assignment function for set variables and x is a
set variable, w′ x is the element of x. The new assignment function is encoded to
return the index of w′ x in the set list.

25

4. Verified Encoding Functions

26

5
Proving That the Encodings

Preserve Satisfiability

In the previous chapter, we defined the datatypes of our encoding chain. For
each datatype, we also defined one function for evaluation and one function for
encoding. In this chapter, we use the encoding and the evaluation functions to
prove that the encodings preserve satisfiability.

5.1 The Satisfiability Theorem

By proving that the encodings preserve satisfiability, we mean two things. Firstly,
if the SAT solver gives a solution, we also have a solution to the original problem.
Secondly, if the SAT solver concludes that the problem is unsatisfiable, the original
problem is unsatisfiable.

We achieve both of these things by proving that the original problem and the
encoded problem evaluates to the same value, for every assignment function w.
For example, for the encoding from pseudoBool to cnf we want to prove

` eval_pseudoBool w b ⇐⇒ eval_cnf w (pseudoBool_to_cnf b),
where b is any expression of type pseudoBool and w is any assignment.

In order to simplify the proofs, we do one proof for each encoding step. For
example, instead of proving the satisfiability theorem directly from pseudoBool to
cnf, we first prove the theorem from pseudoBool to quant,

` eval_pseudoBool w b ⇐⇒
eval_quant w (pseudoBool_to_quant b).

27

5. Proving That the Encodings Preserve Satisfiability

After that, we prove the satisfiability theorem for the encoding from quant to
boolExp, and then from boolExp to cnf. These proofs are then combined to create
the original proof, that the encoding of the problem to CNF preserves satisfiability.

5.2 Proof by Induction

The key idea in all proofs is to use induction on the expression. In the exam-
ples above, the expression is b, which is of type pseudoBool. The induction will
generate a set of base cases, and a set of inductive cases.

The base cases will come from the non-recursive constructors, such as the con-
structors for true, false and literals. The base cases are often simple to solve, using
a rewrite tactic with the appropriate definitions. For example, the case

` eval_pseudoBool w PTrue ⇐⇒
eval_quant w (pseudoBool_to_quant PTrue),

where PTrue is the true-constructor for pseudoBool, is solved by
rw[pseudoBool_to_quant_def, eval_pseudoBool_def, eval_quant_def].

This rw contains three definitions. The encoding from pseudoBool to quant
will rewrite pseudoBool_to_quant PTrue to QTrue that is the true-constructor for
quant. The evaluation functions for both datatypes, eval_pseudoBool_def and
eval_quant_def, evaluates both sides of the theorem. In this case, both sides
evaluates to true. Since both sides evaluates to the same value, this case is proved.

The inductive steps are proved in a similar way using rewrites. The difference here
is that we have inductive hypotheses. For example, in the case

` eval_pseudoBool w (PAnd b1 b2) ⇐⇒
eval_quant w (pseudoBool_to_quant (PAnd b1 b2)),

where b1 and b2 are arbitrary expressions of type pseudoBool, we have the as-
sumptions that the theorem holds for b1 and b2,

` eval_pseudoBool w b1 ⇐⇒
eval_quant w (pseudoBool_to_quant b1)

and
` eval_pseudoBool w b2 ⇐⇒

eval_quant w (pseudoBool_to_quant b2).

28

5. Proving That the Encodings Preserve Satisfiability

If we use the same rw as above, the goal changes to

` eval_pseudoBool w b1 ∧ eval_pseudoBool w b2 ⇐⇒
eval_quant w (pseudoBool_to_quant b1) ∧
eval_quant w (pseudoBool_to_quant b2),

which holds from the assumptions.

5.3 Adding Fresh Variables

In some of the encoding functions, we add fresh variables. For example, this is the
case when we encode from boolExp to cnf using Tseytin transformation. Adding
fresh variables complicates the proof, because we cannot use the same assignment
function on both sides. For example, an assignment function that assigns all
variables in the expression of type boolExp correctly might not assign the fresh
variables in the expression of type cnf correctly.

To solve this problem, we decided to encode the assignment function. This means
that we get two encoding functions, one for the expression and one for the assign-
ment function. When encoding the assignment function, we let each fresh variable
be assigned to the value of the subformula that it replaces.

5.4 Proving the Encoding of Natural Numbers

Another encoding where we add fresh variables is the encoding from numBool to
orderBool. Here the encoding of the assignment function must go from assign-
ments of number variables to assignments of Boolean variables. We also need to
be able to encode the solution from the SAT solver, so therefore we need a second
encoding of the assignment function, back to numbers. Thus we define two en-
codings of assignments, one from Booleans to numbers and one from numbers to
Booleans. To be certain that these functions behave correctly, we also prove that
if you apply both of the encodings to an assignment function, you end up with the
same assignment function as you started with.

A strategy that we use in the satisfiability proofs from numBool to orderBool is
to separate the creation and the usage of the variable map. The variable map

29

5. Proving That the Encodings Preserve Satisfiability

contains number variables and the fresh Boolean variables corresponding to the
number variables. We know that after creating a variable map from the expression
b, the variable map contains exactly those number variables that are present in b.
However, the encoding of the expression would work just fine even if there were
additional, unused number variables in the variable map. Moreover, the inductive
steps in the encodings become more manageable if we can use the same variable
map everywhere.

In the proof, we start with proving that the created variable map is well-formed.
For example, it should contain all variables in the current expression and contain
no duplicate variables. Then, for the rest of the proof, we assume that we have a
well-formed variable map.

Another strategy in the satisfiability proofs for natural numbers is to separate
the proof into one lemma about the axioms and one lemma about the expression.
This is the same way as the encoding was divided. First, we prove that the axioms
are always true. Then, we prove that the encoding of the expression preserves
satisfiability, assuming that the axioms are true.

30

6
Case Studies

This chapter shows some problems and how they are encoded into the three versa-
tile datatypes. For most problems, the encoding to one of the versatile datatypes
is trivial, since the datatypes include the necessary functionality to easily capture
the problem. The problems are divided into two different categories; algorithmic
problems and logical puzzles.

6.1 Algorithmic Problems

This section explores different famous algorithmic problems and how these can be
encoded to one of the three datatypes.

6.1.1 N-Queens Problem

The n-queens problem is a problem commonly used in benchmarks for hardware
processors [13], and to compare the performance of different SAT-solvers [14]. The
problem is to place n queens on a chessboard of the size n×n so that no two queens
threaten each other. Thus, a solution requires that two queens do not share the
same row, column, or diagonal. Figure 6.1 shows one out of 92 solutions to the
eight-queens problem.

31

6. Case Studies

Figure 6.1: A solution to the eight-queens problem.

We encoded this problem to the datatype pseudoBool. Since the at most one and
the at least one constraints are defined in pseudoBool, this encoding is relatively
straightforward. Each square is represented by a Boolean variable that is true if
there is a queen in that square and false otherwise. Each row, column, and diagonal
is encoded to an at most one constraint since the queens should not be able to
attack each other. Additional to the at most one constraints, the problem is only
solved when n queens are placed on the board. To guarantee this, a constraint
to have at least one queen per row is added. All constraints are combined with
conjunction since all of them need to be valid.

6.1.2 Graph Coloring Problem

The goal of the graph coloring problem is to color all vertices in a graph such
that no two vertices sharing the same edge have the same color. Figure 6.2 shows
a graph consisting of 10 vertices that can be colored with only 3 colors without
breaking the rules of the problem. The task is either to solve the problem with
a predefined number of colors or to find out the least number of colors needed to
solve the problem. The latter case can be divided into multiple instances of the
first case.

32

6. Case Studies

Figure 6.2: A proper graph coloring with three colors. From Wikipedia [15].

We encoded this problem to the datatype unorderedSets. Since the graph coloring
problem is similar to how unorderedSets is defined, this encoding could be easily
expressed with the inequality constructor. Each vertex is encoded to a variable
in the unorderedSets datatype belonging to the set of colors available in the
problem. For all vertices in the graph, each vertex should not have the same color
as any of its neighbors.

6.1.3 Hamiltonian Path Problem

A Hamiltonian path in a graph is a path that passes all vertices exactly once.
Figure 6.3 shows an example of a Hamiltonian path.

Figure 6.3: An example of a Hamiltionian path. From Wikipedia [16]. (GFDL
/ CC-BY-SA)

33

6. Case Studies

We encoded the Hamiltonian path problem to the datatype pseudoBool. Each
edge is represented by a Boolean variable. If a vertex is visited only once, it will
have at least one and at most two connecting edges traversed. Since pseudoBool
does not include an at most two constraint, we need to add that logic by hand.
We do this by encoding that if an edge to a vertex is traversed, at most one of
the remaining connected edges will be traversed. The encoding function combines
the two constraints, at least one and at most two constraints, for all edges of each
vertex.

6.2 Logical Puzzles

Besides sudoku, a wide range of logical puzzles can be encoded. Below are short
descriptions of the encodings of kakuro [17] and killer sudoku [18]. Other puzzles
such as Dominosa1, Filling2, Flip3, Magnets4, Tents5, Towers6, Unequal7, among
many others (see this puzzle website8 for more puzzles) can be encoded in similar
ways.

6.2.1 Kakuro

Kakuro is a logical puzzle quite similar to sudoku. The goal is to insert digits
between 1-9 into all white cells in a grid. The grid also contains black cells, called
clues, specifying the sum of the white cells following to the right or below. The
white cells belonging to the same clue cannot contain any duplicates. Figure 6.4
shows a kakuro problem, unsolved to the left and solved to the right.

1https://www.chiark.greenend.org.uk/ sgtatham/puzzles/js/dominosa.html
2https://www.chiark.greenend.org.uk/ sgtatham/puzzles/js/filling.html
3https://www.chiark.greenend.org.uk/ sgtatham/puzzles/js/flip.html
4https://www.chiark.greenend.org.uk/ sgtatham/puzzles/js/magnets.html
5https://www.chiark.greenend.org.uk/ sgtatham/puzzles/js/tents.html
6https://www.chiark.greenend.org.uk/ sgtatham/puzzles/js/towers.html
7https://www.chiark.greenend.org.uk/ sgtatham/puzzles/js/unequal.html
8https://www.chiark.greenend.org.uk/ sgtatham/puzzles/

34

https://www.chiark.greenend.org.uk/~sgtatham/puzzles/js/dominosa.html
https://www.chiark.greenend.org.uk/~sgtatham/puzzles/js/filling.html
https://www.chiark.greenend.org.uk/~sgtatham/puzzles/js/flip.html
https://www.chiark.greenend.org.uk/~sgtatham/puzzles/js/magnets.html
https://www.chiark.greenend.org.uk/~sgtatham/puzzles/js/tents.html
https://www.chiark.greenend.org.uk/~sgtatham/puzzles/js/towers.html
https://www.chiark.greenend.org.uk/~sgtatham/puzzles/js/unequal.html
https://www.chiark.greenend.org.uk/~sgtatham/puzzles/

6. Case Studies

(a) Unsolved. From Wikipedia [19].
(GFDL / CC-BY-SA)

(b) Solved. From Wikipedia [20].
(GFDL / CC-BY-SA)

Figure 6.4: Example Kakuro

We encoded this problem to the datatype numBoolRange. Each cell is represented
by a variable that ranges from 1 to 9. To calculate the sum of each clue, addition is
used. Since numBoolRange only allows addition of two variables, the encoding will
have to save the result of one addition into a new variable used in the next addition.
When all additions for a clue are connected, they should equal the number given
by the clue. Lastly, we add the constraint that the cells belonging to the same
clue needs to be unique. This is done by encoding that none of the cells should
equal another cell in the same clue.

6.2.2 Killer Sudoku

Killer sudoku is a combination of sudoku and kakuro. Like sudoku, it consists of a
9 x 9 grid with 3 x 3 blocks, and the same constraints apply to this puzzle. Killer
sudoku also has cages, similar to the clues in kakuro. Each cage consists of several
cells whose sum should equal the number defined for the cage. The numbers in a
cage need to be unique. In Figure 6.5, the cages are seen in different colors.

35

6. Case Studies

(a) Unsolved. From Wikipedia [21]. (b) Solved. From Wikipedia [22].

Figure 6.5: Example Killer Sudoku

We encoded killer sudoku to the datatype numBoolRange by combining the sudoku
and kakuro encodings. Each cell is represented as a variable that ranges from 1
to 9, as both puzzles have in common. All rows, columns, and blocks are encoded
as a regular sudoku, and the cages are encoded in the same way as the clues in
kakuro.

36

7
Discussion

This project has implemented verified functions for encoding problems to SAT.
The final products are three different datatypes; one for Boolean expressions, one
for natural numbers, and one for sets of other types. The encoding functions from
these datatypes to CNF are encoded and proved correct in HOL4 and compiled
using CakeML.

The focus of this project has been to create verified encoding functions, and all
encoding functions described in Chapter 4 have been proved correct. However, the
focus has not been on creating efficient encoding functions. Section 7.2 discusses
how our encodings compare to other encodings.

Chapter 6 shows a range of problems and how they are encoded to one of the
three main datatypes. However, there are still problem types that the datatypes
do not cover. Section 7.4 discusses how the work can be extended to include more
problem types.

7.1 Contribution to CakeML

This project has been implemented as part of CakeML. CakeML includes a checker
for SAT solver output, cake_lpr [6]. This software can, together with a SAT solver,
produce a verified solution to a SAT problem.

If cake_lpr is combined with the encoding chain implemented in this project,
more problems than those in CNF can be solved. This opens up opportunities for
broader usage of CakeML on verified problem solving.

37

7. Discussion

7.2 Related Work

In 2010, Anuarul Hoque et al. [23] used HOL to verify encodings for specific prob-
lems. This verification technique individually verified the encoding of each problem
instead of verifying the encoding from one datatype to another. This resulted in
an added verification time for each problem and a need to write a new proof for
each problem. The encoding presented in this report instead covers all verification
in the implementation in order for easier usage.

Proving the general encoding process is not yet a common research topic, but an
example can be found in a paper by Ishii et al. in 2020 [24]. They showed how it
is possible to verify two encoding methods called k-induction [25] and IC3/PDR
[26]. This was done with the Coq proof assistant [27]. They think they are the
first to formally verify a tool for these encoding methods.

Since this is a relatively new research subject, we believe we are the first to write
a verified SAT-encoding tool in HOL4.

7.2.1 SMT Solvers and QBF Solvers

SMT (satisfiability modulo theories) solvers and QBF (quantified Boolean formula)
solvers are two problem solvers similar to SAT solvers but with different input
specialties. SMT solvers are good at arithmetics and can solve equations similar
to the datatype for natural numbers developed in this project [28]. QBF solvers
solve quantified Boolean formulas, i.e., formulas with the quantifiers ∀ and ∃ over
Boolean variables [29].

SMT and QBF solvers can be used in place of SAT solvers, and for many problems
they are better suited. However, they do not produce a proof trace in the same
way as SAT solvers do. This means that the correctness is harder to verify. In
comparison, this project provides a verified way of solving similar problems.

38

7. Discussion

7.3 Encoding Strategies

The encoding from the datatype boolExp to cnf was done in two different ways.
The first way used a naive encoding approach with de Morgan’s law and the
distribution property. This could potentially lead to an exponential increase in
equation size. The second way used Tseytin transformation [11] to get a linear
growth relative to the input size. It is not always the case that encodings using
Tseytins transformation are smaller or more efficient than when using de Morgan’s
law and the distribution property.

The reason for doing the encoding in two different ways was that the naive encoding
from boolExp to cnf turned out to be a bottleneck in the encoding. Encoding
a sudoku with the naive approach, for example, lead to a CNF expression bigger
than CakeML could handle. Using Tseytin transformation, there was no problem
encoding a sudoku. Even though using Tseytin transformation is not more efficient
than the naive encoding in all cases, we think the improvement in cases like the
sudoku is motivation enough to make the change to use Tseytin transformation in
our encoding function.

However, Tseytin transformation involves creating new variables. Theoretically,
this should not be a problem, but in practice, it made things more difficult. Firstly,
the encoding process needs to keep track of all new variables and what they should
be used for. Secondly, the assignment function w that assigns Boolean values to
Boolean variables, also needs to assign the new variables correctly. Both of these
things also make the proofs of preservation of satisfiability more difficult.

The focus of this project has been on making the encodings as simple as possible,
however with the encoding from boolExp to cnf the simplest solution was not
enough.

Further down the encoding chain is the encoding of the pseudo-Boolean constraints
at least one, at most one, and exactly one. This encoding process can also be
improved by constructing new variables, using a technique called Commander-
Variable encoding [30]. This encoding method is one of many improvements to the
encoding of pseudo-Boolean constraints [31]. Commander-variable encoding has
been shown to be faster than the naive encoding [30].

The implementation of the Commander-Variable encoding in this project would
again lead to all the difficulties with introducing new variables, which is one of

39

7. Discussion

the reasons why this is not done. Another reason is that the encoding of pseudo-
Boolean constraints never turned out to be a bottleneck, and implementing and
improving other parts of the encoding chain was prioritized.

The encoding of natural numbers was not done using the most naive encoding direct
encoding but instead order encoding. In direct encoding, the Boolean variables
represent x = i for some number variable x and some constant i, as opposed to
order encoding where the Boolean variables represent x 6 i.

Tamura et al. [32] showed that order encoding performs better than direct encoding
and a third encoding method called support encoding on a set of benchmarking
problems. Order encoding was able to both solve problems faster and solve some
previously unsolved problems. Still, there exist even better encoding techniques
for natural numbers than order encoding [33], which were not used in this project
due to the focus not being on efficiency.

7.4 Future work

There are two different areas within which future work could be done. Firstly, the
efficiency of the current encodings could be improved. Several ways of doing this
were discussed in Section 7.3. Secondly, the project could be expanded with more
datatypes in order to cover more problems.

The first functionality to add when expanding the encoding chain is the possibility
to calculate sums of natural numbers. In the current state, our datatype for
natural numbers includes addition of two numbers. However, in order to add more
numbers one needs to manually construct new variables to hold the intermediate
calculations. For example, a + b + c = d must be encoded as a + b = x ∧ x + c =
d. Creating a new datatype with an added sum constructor would simplify the
encoding of problems such as killer sudoku and kakuro.

Some functionalities next in line after addition are the possibilities of expressing
negative numbers, multiplication and division with numbers, MAX/MIN functions,
and time representation such as an UNTIL operator. After these functionalities are
added, additional problems can be encoded to the verified encoding chain such as
the knapsack problem, scheduling problems, and nondeterministic finite automata.

40

7. Discussion

7.5 Lessons learned

During the project, we learned how important it is to make the encoding functions
as simple as possible. The reason for this is that it makes it easier to prove that the
encoding preserves satisfiability. The choice of which predefined HOL4 functions
to use is also important, since some functions have more theorems built around
them than others. Furthermore, some functions are not defined for all possible
inputs.

Another thing we learned is that more functionality in a datatype does not always
make the proof more difficult. A concrete example of this is the encoding of natural
numbers compared to the encoding of unordered sets. Verifying the encoding of
unordered sets to a Boolean datatype turned out to be more difficult than verifying
the encoding of natural numbers to a Boolean datatype, even though the datatype
for natural numbers contains more functionality. There are several possible reasons
for this, for example, that order encoding was not possible to use with unordered
sets, or that in numBool all variables were restricted to range between 0 and some
k. When the datatype for natural numbers was implemented, it could be used as
the basis for the encoding of unordered sets.

One more thing we improved on over time was to divide the proofs into several
lemmas that handle different layers of the proof. For example, a proof about
numbers in a list might be possible to divide into one general property about
numbers and one property about lists.

7.6 Conclusion

This project shows that it is possible to write verified SAT encoding functions to
encode different problems to SAT. Furthermore, the case studies show that the
technique is usable on real problems. The contribution of this project is a verified
encoding chain that can easily be extended to new problems, reducing the number
of proofs needed to get the whole encoding to CNF verified.

The development of SAT solvers is an ongoing research area, and SAT solvers
are used to solve increasingly computationally heavy problems. To utilize the
development of SAT solvers to solve new problems, the encoding process is crucial.
Using CakeML and HOL4, one is confident that the encoding is correct, all the

41

7. Discussion

way down to machine code. We hope this project inspires SAT encoding research
to see the potential in formal verification.

42

Bibliography

[1] SAT Competitions. The International SAT Competition Web Page. url:
http://www.satcompetition.org/ (visited on 30/11/2020).

[2] H. H. Hoos and T. Stützle. ‘SATLIB: An Online Resource for Research on
SAT’. In: Sat (2000), pp. 283–292.

[3] M. Sheeran, S. Singh and G. Stålmarck. ‘Checking Safety Properties Us-
ing Induction and a SAT-Solver’. In: International Conference on Formal
Methods in Computer-Aided Design. Springer. 2000, pp. 127–144.

[4] M. Huth and M. Ryan. Logic in Computer Science: Modelling and Reasoning
about Systems. USA: Cambridge University Press, 2004.

[5] CakeML, a Verified Implementation of ML. url: https://cakeml.org/
(visited on 27/11/2020).

[6] Y. K. Tan, M. J. H. Heule and M. O. Myreen. ‘Cake_lpr: Verified Propa-
gation Redundancy Checking in CakeML’. In: International Conference on
Tools and Algorithms for the Construction and Analysis of Systems. 2021.

[7] L. Zhang and S. Malik. ‘Validating SAT Solvers Using an Independent Resolution-
Based Checker: Practical Implementations and Other Applications’. In: Au-
tomation and Test in Europe Conference and Exhibition 2003 Design. Mar.
2003, pp. 880–885.

[8] E. Goldberg and Y. Novikov. ‘Verification of Proofs of Unsatisfiability for
CNF Formulas’. In: Automation and Test in Europe Conference and Exhibi-
tion 2003 Design. Mar. 2003, pp. 886–891.

[9] HOL, Interactive Theorem Prover. url: https://hol-theorem-prover.
org/ (visited on 27/11/2020).

43

http://www.satcompetition.org/
https://cakeml.org/
https://hol-theorem-prover.org/
https://hol-theorem-prover.org/

Bibliography

[10] K. Slind and M. Norrish. ‘A Brief Overview of HOL4’. In: Theorem Proving
in Higher Order Logics. Ed. by O. A. Mohamed, C. Muñoz and S. Tahar. Lec-
ture Notes in Computer Science. Berlin, Heidelberg: Springer, 2008, pp. 28–
32.

[11] G. S. Tseitin. ‘On the Complexity of Derivation in Propositional Calculus’.
In: Structures in Constructive Mathematics and Mathematical Logic (1968),
pp. 115–125.

[12] N. Tamura et al. ‘Compiling Finite Linear CSP into SAT’. In: Constraints
14.2 (June 2009), pp. 254–272.

[13] N-Queens Benchmark - OpenBenchmarking.Org. url: https://openbenchmarking.
org/test/pts/n-queens (visited on 20/04/2021).

[14] A. Niewiadomski et al. ‘Applying Modern SAT-Solvers to Solving Hard Prob-
lems’. In: Fundamenta Informaticae 165.3-4 (14th Mar. 2019). Ed. by W.
Penczek, H. Schlingloff and P. Wasilewski, pp. 321–344.

[15] File:Petersen Graph 3-Coloring.Svg - Wikimedia Commons. url: https://
commons.wikimedia.org/wiki/File:Petersen_graph_3-coloring.svg
(visited on 18/05/2021).

[16] C. Sommer. Hamiltonian Path through a Dodecahedron. 27th Feb. 2007. url:
https://commons.wikimedia.org/wiki/File:Hamiltonian_path.svg
(visited on 12/05/2021).

[17] Kakuro. In: Wikipedia. 22nd Apr. 2021. url: https://en.wikipedia.org/
w/index.php?title=Kakuro&oldid=1019222284 (visited on 27/04/2021).

[18] Killer Sudoku. In:Wikipedia. 10th Mar. 2021. url: https://en.wikipedia.
org/w/index.php?title=Killer_sudoku&oldid=1011314386 (visited on
10/05/2021).

[19] Octahedron80. A Simple Kakuro Puzzle. 25th Oct. 2007. url: https://
commons.wikimedia.org/wiki/File:Kakuro_black_box.svg (visited on
12/05/2021).

[20] Octahedron80. A Simple Kakuro Puzzle with Solution. 25th Oct. 2007. url:
https : / / commons . wikimedia . org / wiki / File : Kakuro _ black _ box _
solution.svg (visited on 12/05/2021).

[21] File:Killersudoku Color Solution.Svg. In: Wikipedia. url: https : / / en .
wikipedia.org/wiki/File:Killersudoku_color_solution.svg (vis-
ited on 18/05/2021).

[22] File:Killersudoku Color.Svg. In: Wikipedia. url: https://en.wikipedia.
org/wiki/File:Killersudoku_color.svg (visited on 18/05/2021).

44

https://openbenchmarking.org/test/pts/n-queens
https://openbenchmarking.org/test/pts/n-queens
https://commons.wikimedia.org/wiki/File:Petersen_graph_3-coloring.svg
https://commons.wikimedia.org/wiki/File:Petersen_graph_3-coloring.svg
https://commons.wikimedia.org/wiki/File:Hamiltonian_path.svg
https://en.wikipedia.org/w/index.php?title=Kakuro&oldid=1019222284
https://en.wikipedia.org/w/index.php?title=Kakuro&oldid=1019222284
https://en.wikipedia.org/w/index.php?title=Killer_sudoku&oldid=1011314386
https://en.wikipedia.org/w/index.php?title=Killer_sudoku&oldid=1011314386
https://commons.wikimedia.org/wiki/File:Kakuro_black_box.svg
https://commons.wikimedia.org/wiki/File:Kakuro_black_box.svg
https://commons.wikimedia.org/wiki/File:Kakuro_black_box_solution.svg
https://commons.wikimedia.org/wiki/File:Kakuro_black_box_solution.svg
https://en.wikipedia.org/wiki/File:Killersudoku_color_solution.svg
https://en.wikipedia.org/wiki/File:Killersudoku_color_solution.svg
https://en.wikipedia.org/wiki/File:Killersudoku_color.svg
https://en.wikipedia.org/wiki/File:Killersudoku_color.svg

Bibliography

[23] K. Anuarul Hoque et al. ‘An Automated SAT Encoding-Verification Ap-
proach for Efficient Model Checking’. In: 2010 International Conference on
Microelectronics. 2010 International Conference on Microelectronics. Dec.
2010, pp. 419–422.

[24] D. Ishii and S. Fujii. ‘Formalizing the Soundness of the Encoding Methods
of SAT-Based Model Checking’. In: arXiv (24th June 2020).

[25] A. F. Donaldson et al. ‘Software Verification Using K-Induction’. In: Static
Analysis. Ed. by E. Yahav. Lecture Notes in Computer Science. Berlin, Hei-
delberg: Springer, 2011, pp. 351–368.

[26] A. R. Bradley. ‘SAT-Based Model Checking without Unrolling’. In: Verifi-
cation, Model Checking, and Abstract Interpretation. Ed. by R. Jhala and D.
Schmidt. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer,
2011, pp. 70–87.

[27] The Coq Proof Assistant. url: https://coq.inria.fr/ (visited on 26/04/2021).
[28] L. de Moura and N. Bjørner. ‘Z3: An Efficient SMT Solver’. In: Tools and

Algorithms for the Construction and Analysis of Systems. Ed. by C. R. Ra-
makrishnan and J. Rehof. Lecture Notes in Computer Science. Berlin, Hei-
delberg: Springer, 2008, pp. 337–340.

[29] E. Giunchiglia, M. Narizzano and A. Tacchella. ‘QuBE++: An Efficient QBF
Solver’. In: Formal Methods in Computer-Aided Design. Ed. by A. J. Hu
and A. K. Martin. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 2004, pp. 201–213.

[30] W. Klieber and G. Kwon. ‘Efficient CNF Encoding for Selecting 1 from N
Objects’. In: Proc. International Workshop on Constraints in Formal Veri-
fication (2007), p. 14.

[31] V.-H. Nguyen et al. ‘Empirical Study on SAT-Encodings of the At-Most-One
Constraint’. In: International Conference on Smart Media and Applications
(SMA). 2020, p. 6.

[32] N. Tamura, T. Tanjo and M. Banbara. ‘Solving Constraint Satisfaction Prob-
lems with SAT Technology’. In: Functional and Logic Programming. Ed. by
M. Blume, N. Kobayashi and G. Vidal. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, 2010, pp. 19–23.

[33] C. Vasconcellos-Gaete, V. Barichard and F. Lardeux. ‘Abacus: A New Hybrid
Encoding for SAT Problems’. In: 2020 IEEE 32nd International Conference
on Tools with Artificial Intelligence (ICTAI). Nov. 2020, pp. 145–152.

45

https://coq.inria.fr/

	Introduction
	Contributions

	Background
	The SAT Problem Type
	CakeML
	Formal Verification and HOL4

	Sudoku Example
	The Sudoku Type in HOL4
	Encoding
	Satisfiability
	Proving That a Sudoku is Valid

	Verified Encoding Functions
	The Encoding Functions at a Glance
	The CNF Datatype
	Encoding Booleans
	Naive Encoding of Simple Boolean Expressions
	Improving the Encoding of Simple Boolean Expressions
	Quantifiers over Boolean Expressions
	Pseudo-Boolean Constraints
	Preparing the Boolean Datatype for Encoding of Natural Numbers

	Encoding Natural Numbers
	The First Datatype for Natural Numbers
	Encoding Using Order Encoding
	Extending the Datatype for Natural Numbers
	Adding Different Ranges for Different Variables

	Encoding Unordered Sets

	Proving That the Encodings Preserve Satisfiability
	The Satisfiability Theorem
	Proof by Induction
	Adding Fresh Variables
	Proving the Encoding of Natural Numbers

	Case Studies
	Algorithmic Problems
	N-Queens Problem
	Graph Coloring Problem
	Hamiltonian Path Problem

	Logical Puzzles
	Kakuro
	Killer Sudoku

	Discussion
	Contribution to CakeML
	Related Work
	SMT Solvers and QBF Solvers

	Encoding Strategies
	Future work
	Lessons learned
	Conclusion

	Bibliography

